Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NJ.?3  

Office of Legacy Management (LM)

r-2 r-2 . . . * c J/y. a5 NJ.?3 ti I "( -r par 7 This docam& consists of 3tiHpages, ~$0. .F of 2' topics, Series A WY/~ F/yS. 5 2 --s.d %6/e /. Prospectus On Uranium Center Operation Speciri! Rcreview FInsI Dctei mmaiion February 1, 1951 # A. L. Baker President THE KELLEX CORPORATION 233 BROADWAY NEW YORK 7, N.Y. "CAUTION" This document contains information affecting the National Defense of the Ulliterl :JI.F~*?s. ~. _________-.-.. ___-.-~~ -- . CONTENTS " ' -' P F. Brown INTRODUCTION ............................................ Page 5 PROPOSED PROGRAM ...................................... 7 Contract Scope ....................................... 7 Corporate Mechanism ................................. 8 Contract Terms ...................................... 9

2

DOE - Office of Legacy Management -- Middlesex North NJ Site - NJ 05  

Office of Legacy Management (LM)

Middlesex North NJ Site - NJ 05 Middlesex North NJ Site - NJ 05 FUSRAP Considered Sites Middlesex North, NJ Alternate Name(s): Middlesex Landfill Middlesex Municipal Landfill NJ.05-2 NJ.05-4 Location: Mountain Avenue to Bound Brook, Middlesex, New Jersey NJ.05-2 Historical Operations: Served as a disposal site for low-level radioactive pitchblende ore generated from activites at the Middlesex Sampling Plant. NJ.05-2 NJ.05-3 Eligibility Determination: Eligible NJ.05-1 Radiological Survey(s): Assessment Surveys NJ.05-3 NJ.05-4 Site Status: Certification Basis and Federal Register Notice. USACE determination for additional remediation is pending. NJ.05-5 NJ.05-6 Long-term Care Requirements: Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites S07566_FUSRAP

3

Grow NJ (New Jersey) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grow NJ (New Jersey) Grow NJ (New Jersey) Eligibility Commercial Savings For Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization...

4

DOE - Office of Legacy Management -- New Brunswick NJ Site - NJ 14  

Office of Legacy Management (LM)

Brunswick NJ Site - NJ 14 Brunswick NJ Site - NJ 14 FUSRAP Considered Sites New Brunswick, NJ Alternate Name(s): New Brunswick Laboratory NJ.14-1 Location: 986 Jersey Avenue, New Brunswick, New Jersey NJ.14-2 Historical Operations: Performed radiochemical analyses on uranium, thorium, beryllium, and zirconium metals and compounds for MED, AEC, ERDA, and DOE to support nuclear power and weapons programs. NJ.14-3 NJ.14-5 Eligibility Determination: Eligible NJ.14-1 Radiological Survey(s): Assessment Surveys, Verification Surveys NJ.14-2 NJ.14-4 NJ.14-6 Site Status: Certification Basis, Federal Register Notice Included NJ.14-5 Long-term Care Requirements: Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites S07566_FUSRAP Also see New Brunswick, New Jersey, Site

5

DOE - Office of Legacy Management -- Maywood Site - NJ 10  

Office of Legacy Management (LM)

Maywood Site - NJ 10 Maywood Site - NJ 10 FUSRAP Considered Sites Maywood, NJ Alternate Name(s): Maywood Chemical Works Maywood Chemical Company Maywood Interim Storage Site (MISS) Stepan Chemical Company NJ.10-2 NJ.10-3 NJ.10-7 NJ.10-11 Location: 100 West Hunter Avenue, Maywood/Rochelle Park, New Jersey NJ.10-4 Historical Operations: Processed monazite sands for extraction of rare earth compounds and mantle-grade thorium nitrates. NJ.10-2 NJ.10-3 NJ.10-4 NJ.10-5 Eligibility Determination: Eligible NJ.10-1 NJ.10-10 Radiological Survey(s): Assessment Surveys NJ.10-6 NJ.10-7 NJ.10-8 Site Status: Cleanup in progress by U.S. Army Corps of Engineers. NJ.10-9 NJ.10-13 USACE FUSRAP Long-term Care Requirements: To be determined upon completion. Also see FUSRAP Maywood Superfund Site

6

DOE - Office of Legacy Management -- Jersey City NJ Site - NJ 07  

NLE Websites -- All DOE Office Websites (Extended Search)

Jersey City NJ Site - NJ 07 Jersey City NJ Site - NJ 07 FUSRAP Considered Sites Jersey City, NJ Alternate Name(s): Kellex Laboratory Jersey City Laboratory Kellex/Pierpont Vitro Corporation of America Delco-Levco Pierpont Property M.W. Kellogg Site NJ.07-1 NJ.07-2 NJ.07-6 Location: New Jersey Route 440 and Kellogg Street, Jersey City, New Jersey NJ.07-5 Historical Operations: Conducted research and development for MED and AEC on gaseous diffusion process for uranium enrichment using uranium hexaflouride and solvent extraction process for uranium recovery from ores. Also conducted solvent extraction of uranium and other byproducts from waste. Processes resulted in contamination of uranium, radium, and thorium. NJ.07-3 NJ.07-5 Eligibility Determination: Radiological Survey(s): Assessment Survey, Verification Survey NJ.07-4

7

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA  

Gasoline and Diesel Fuel Update (EIA)

0.00-1.99 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 1996 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 1996 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: In 1996, consumption of natural gas for agricultural use

8

Palmco Power NJ, LLC | Open Energy Information  

Open Energy Info (EERE)

Palmco Power NJ, LLC Jump to: navigation, search Name Palmco Power NJ, LLC Place New York Utility Id 56501 Utility Location Yes Ownership R Operates Generating Plant Yes References...

9

VT Nuclear Services ltd | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon VT Nuclear Services ltd Jump to: navigation, search Name VT Nuclear Services ltd Place...

10

SolarWorks NJ | Open Energy Information  

Open Energy Info (EERE)

Jersey Sector Renewable Energy, Solar Product SolarWorks NJ, LLC, a provider of turnkey solar electricity installations and renewable energy solutions. References SolarWorks...

11

Category:Burlington, VT | Open Energy Information  

Open Energy Info (EERE)

VT VT Jump to: navigation, search Go Back to PV Economics By Location Media in category "Burlington, VT" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Burlington VT Central Vermont Pub Serv Corp.png SVFullServiceRestauran... 67 KB SVMidriseApartment Burlington VT Central Vermont Pub Serv Corp.png SVMidriseApartment Bur... 68 KB SVQuickServiceRestaurant Burlington VT Central Vermont Pub Serv Corp.png SVQuickServiceRestaura... 68 KB SVStandAloneRetail Burlington VT Central Vermont Pub Serv Corp.png SVStandAloneRetail Bur... 68 KB SVHospital Burlington VT Central Vermont Pub Serv Corp.png SVHospital Burlington ... 64 KB SVLargeHotel Burlington VT Central Vermont Pub Serv Corp.png SVLargeHotel Burlingto... 63 KB SVLargeOffice Burlington VT Central Vermont Pub Serv Corp.png

12

DOE - Office of Legacy Management -- Princeton University - NJ 08  

NLE Websites -- All DOE Office Websites (Extended Search)

Princeton University - NJ 08 Princeton University - NJ 08 FUSRAP Considered Sites Site: PRINCETON UNIVERSITY (NJ.08) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Princeton , New Jersey NJ.08-1 Evaluation Year: 1985 NJ.08-2 Site Operations: During 1940's, performed experiments on uranium isotope separation and experiments for the development of diffusion barrier material for the gaseous diffusion enrichment process. NJ.08-2 Site Disposition: Eliminated - Radiation levels below criteria NJ.08-1 NJ.08-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NJ.08-2 NJ.08-3 Radiological Survey(s): Yes NJ.08-1 NJ.08-4 Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to PRINCETON UNIVERSITY

13

VT PowerPoint Template  

NLE Websites -- All DOE Office Websites (Extended Search)

EMBEDDED ACTIVE FIBER OPTIC SENSING EMBEDDED ACTIVE FIBER OPTIC SENSING NETWORK FOR STRUCTURAL HEALTH MONITORING IN HARSH ENVIRONMENTS DE-FE0007405 Anbo Wang, Cheng Ma Virginia Tech Center for Photonics Technology Blacksburg, VA 24061 awang@vt.edu, cma1@vt.edu http://photonics.ece.vt.edu/ 1 Advanced Research Sensor and Controls Project Review Meeting DOE NETL Morgantown, WV 03/12/2012 Outline * Motivation, Overview & Objectives * Background and Fundamentals of Proposed Technology * Project Scope and Work Plan 2 MOTIVATION AND OBJECTIVES 3 Motivation * Non-Destructive Evaluation (NDE) of structural health in advanced energy systems. Examples: * Ultra Supercritical (USC) systems: * Steam temperature 760 o C, pressure 5000 psi. * Integrated Gasification Combined Cycle (IGCC):

14

VT PowerPoint Template  

NLE Websites -- All DOE Office Websites (Extended Search)

DISTRIBUTED FIBER OPTIC SENSOR FOR DISTRIBUTED FIBER OPTIC SENSOR FOR ON-LINE MONITORING OF COAL GASIFIER REFRACTORY HEALTH DE-FE0005703 Anbo Wang, Cheng Ma Virginia Tech Center for Photonics Technology Blacksburg, VA 24061 awang@vt.edu, cma1@vt.edu http://photonics.ece.vt.edu/ 1 Advanced Research Sensor and Controls Project Review Meeting DOE NETL Morgantown, WV 03/12/2012 Outline * Motivation, Overview & Objectives * Background and Fundamentals of Proposed Technology * Project Scope and Work Plan * Project Progress 2 MOTIVATION AND OBJECTIVES 3 Motivation * Refractory health monitoring in slagging coal gasifiers: * Rapid corrosion of refractory materials. * High-temperature reducing environment. * Difficult to predict remaining refractory life. * Localized thinning, spallation, cracking.

15

Northeast - NY NJ CT PA Area | Open Energy Information  

Open Energy Info (EERE)

Northeast - NY NJ CT PA Area Northeast - NY NJ CT PA Area (Redirected from New York Area - NY NJ CT PA) Jump to: navigation, search Contents 1 Clean Energy Clusters in the Northeast - NY NJ CT PA Area 1.1 Products and Services in the Northeast - NY NJ CT PA Area 1.2 Research and Development Institutions in the Northeast - NY NJ CT PA Area 1.3 Networking Organizations in the Northeast - NY NJ CT PA Area 1.4 Investors and Financial Organizations in the Northeast - NY NJ CT PA Area 1.5 Policy Organizations in the Northeast - NY NJ CT PA Area Clean Energy Clusters in the Northeast - NY NJ CT PA Area Products and Services in the Northeast - NY NJ CT PA Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

16

Valero Refining Company - NJ | Open Energy Information  

Open Energy Info (EERE)

Valero Refining Company - NJ Valero Refining Company - NJ Jump to: navigation, search Name Valero Refining Company - NJ Place New Jersey Utility Id 56325 Utility Location Yes Ownership R Operates Generating Plant Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0652/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Valero_Refining_Company_-_NJ&oldid=411921" Categories: EIA Utility Companies and Aliases

17

VT PowerPoint Template  

NLE Websites -- All DOE Office Websites (Extended Search)

SINGLE-CRYSTAL SAPPHIRE OPTICAL SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR DE-FC26-99FT40685 Anbo Wang, Gary Pickrell, Ke Wang, Cheng Ma, Brian Scott Virginia Tech Center for Photonics Technology Blacksburg, VA 24061 awang@vt.edu http://photonics.ece.vt.edu/ 1 Advanced Research Sensor and Controls Project Review Meeting DOE NETL Morgantown, WV 03/12/2012 Outline * Motivation & Objective * Background and Fundamentals of Proposed Technology * Project Scope and Work Plan * Project Progress 2 MOTIVATION AND OBJECTIVE 3 Motivation 4 * Temperature sensor for harsh-environments: * Coal gasifier (major focus of prior work). * Gas turbine. * Temperature measurement is critical for: * Gasifier start-up. * Process optimization. * Event/failure detection.

18

DOE - Office of Legacy Management -- Bloomfield Tool Co - NJ 21  

Office of Legacy Management (LM)

Bloomfield Tool Co - NJ 21 Bloomfield Tool Co - NJ 21 FUSRAP Considered Sites Site: Bloomfield Tool Co. (NJ.21 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Bloomfield , New Jersey NJ.21-1 Evaluation Year: 1987 NJ.21-2 Site Operations: During a small-scale experiment, uranium slugs were machined. NJ.21-3 Site Disposition: Eliminated - Potential for contamination considered remote due to limited scope and duration of the operations NJ.21-4 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NJ.21-2 NJ.21-3 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Bloomfield Tool Co. NJ.21-1 - AEC Memorandum; Reichard to Files; Visit to Bloomfield

19

DOE - Office of Legacy Management -- Navy Ammunition Depot - NJ 15  

Office of Legacy Management (LM)

Navy Ammunition Depot - NJ 15 Navy Ammunition Depot - NJ 15 FUSRAP Considered Sites Site: NAVY AMMUNITION DEPOT (NJ.15) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Earle, New Jersey NJ.15-1 Evaluation Year: 1987 NJ.15-2 Site Operations: Storage facility and disposal unit for drummed radioactive waste that was dumped at sea. NJ.15-1 Site Disposition: Eliminated - Referred to DOD NJ.15-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Radioactive Waste Materials NJ.15-2 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP - Referred to DOD NJ.15-2 Also see Documents Related to NAVY AMMUNITION DEPOT NJ.15-1 - AEC Memorandum; Piccot to the Files; Subject: Visit to

20

Northeast - NY NJ CT PA Area | Open Energy Information  

Open Energy Info (EERE)

Northeast - NY NJ CT PA Area Northeast - NY NJ CT PA Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Northeast - NY NJ CT PA Area 1.1 Products and Services in the Northeast - NY NJ CT PA Area 1.2 Research and Development Institutions in the Northeast - NY NJ CT PA Area 1.3 Networking Organizations in the Northeast - NY NJ CT PA Area 1.4 Investors and Financial Organizations in the Northeast - NY NJ CT PA Area 1.5 Policy Organizations in the Northeast - NY NJ CT PA Area Clean Energy Clusters in the Northeast - NY NJ CT PA Area Products and Services in the Northeast - NY NJ CT PA Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DOE - Office of Legacy Management -- Heyden Chemical Corp - NJ 19  

Office of Legacy Management (LM)

Heyden Chemical Corp - NJ 19 Heyden Chemical Corp - NJ 19 FUSRAP Considered Sites Site: Heyden Chemical Corp. (NJ.19 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: American Cyanamid NJ.19-2 Location: Princeton , New Jersey NJ.19-1 Evaluation Year: 1987 NJ.19-1 Site Operations: Commercial chemical operation. AEC was interested in their process for keeping thorium oxide in suspension. No indication of AEC contractual relationship with Heyden. NJ.19-1 NJ.19-3 Site Disposition: Eliminated - No indication of AEC operations conducted on the site NJ.19-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Thorium Oxide NJ.19-2 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP

22

DOE - Office of Legacy Management -- Wayne Site - NJ 16  

Office of Legacy Management (LM)

Wayne Site - NJ 16 Wayne Site - NJ 16 FUSRAP Considered Sites Wayne, NJ Alternate Name(s): Wayne Interim Storage Site (WISS) W.R. Grace and Company W.R. Grace Site Rare Earths, Inc. Davison Chemical Division NJ.16-1 NJ.16-2 NJ.16-3 Location: 868 Black Oak Road, Wayne, New Jersey NJ.16-5 Historical Operations: Produced crude thorium hydroxide and rare earth elements from monazite sands. Site was also used for interim storage of contaminated material removed from vicinity properties under FUSRAP. NJ.16-5 Eligibility Determination: Eligible NJ.16-1 NJ.16-11 Radiological Survey(s): Assessment Surveys NJ.16-3 NJ.16-6 NJ.16-7 NJ.16-8 NJ.16-9 Site Status: USACE cleanup complete, not yet delisted from the National Priorities List. USACE Website EPA Website Long-term Care Requirements: Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites S07566_FUSRAP

23

Category:Atlantic City, NJ | Open Energy Information  

Open Energy Info (EERE)

NJ NJ Jump to: navigation, search Go Back to PV Economics By Location Media in category "Atlantic City, NJ" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Atlantic City NJ Public Service Elec & Gas Co.png SVFullServiceRestauran... 63 KB SVMidriseApartment Atlantic City NJ Public Service Elec & Gas Co.png SVMidriseApartment Atl... 62 KB SVQuickServiceRestaurant Atlantic City NJ Public Service Elec & Gas Co.png SVQuickServiceRestaura... 64 KB SVSecondarySchool Atlantic City NJ Public Service Elec & Gas Co.png SVSecondarySchool Atla... 62 KB SVStandAloneRetail Atlantic City NJ Public Service Elec & Gas Co.png SVStandAloneRetail Atl... 63 KB SVHospital Atlantic City NJ Public Service Elec & Gas Co.png

24

DOE - Office of Legacy Management -- Bowen Lab - NJ 33  

NLE Websites -- All DOE Office Websites (Extended Search)

Bowen Lab - NJ 33 Bowen Lab - NJ 33 FUSRAP Considered Sites Site: Bowen Lab (NJ.33) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Bowen Engineering, Inc. NJ.33-1 Location: North Branch , New Jersey NJ.33-1 Evaluation Year: Circa 1990 NJ.33-2 Site Operations: Test runs of spray calcining of boiled down pitchblende raffinates was conducted on May 15 and 16, 1951. Equipment used was decontaminated on May 17. NJ.33-1 Site Disposition: Eliminated - Potential for contamination considered remote due to the limited quantities of material used and the duration of the tests, and subsequent cleanup of the site following the tests. NJ.33-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NJ.33-1

25

DOE - Office of Legacy Management -- Fairmont Chemical Co - NJ 25  

Office of Legacy Management (LM)

Fairmont Chemical Co - NJ 25 Fairmont Chemical Co - NJ 25 FUSRAP Considered Sites Site: Fairmont Chemical Co. (NJ.25 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Newark , New Jersey NJ.25-1 Evaluation Year: 1987 NJ.25-1 Site Operations: Company was a commercial chemical company identified as a rare earths processor (hafnium). NJ.25-1 Site Disposition: Eliminated - Potential for contamination remote NJ.25-1 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Fairmont Chemical Co. NJ.25-1 - DOE Memorandum/Checklist; Wallo to File; Fairmont Chemical

26

DOE - Office of Legacy Management -- Bakelite Corp - NJ 35  

Office of Legacy Management (LM)

Bakelite Corp - NJ 35 Bakelite Corp - NJ 35 FUSRAP Considered Sites Site: Bakelite Corp (NJ 35) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Bound Brook , New Jersey NJ.35-1 Evaluation Year: 1986 NJ.35-1 Site Operations: Processed nickel metal and various chemicals in support of the K-25 plant. No indication that radioactive materials were handled. NJ.35-1 Site Disposition: Eliminated - No indication that radioactive material was used at the site NJ.35-1 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Bakelite Corp NJ.35-1 - DOE Checklist/Memorandum; D.Levine to the File; Subject:

27

DOE - Office of Legacy Management -- Tube Reducing Co - NJ 11  

Office of Legacy Management (LM)

experiments involving the sizing and reduction of rolled Uranium rod by the "Rockrite Process" for National Lead Company of Ohio. NJ.11-1 NJ.11-4 Site Disposition: Eliminated -...

28

Palmco Power NJ, LLC (New Jersey) | Open Energy Information  

Open Energy Info (EERE)

NJ, LLC (New Jersey) Jump to: navigation, search Name Palmco Power NJ, LLC Place New Jersey Utility Id 56501 References EIA Form EIA-861 Final Data File for 2010 - File220101...

29

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million Cubic Feet) Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million...

30

DOE - Office of Legacy Management -- E I Du Pont - NJ 06  

Office of Legacy Management (LM)

- NJ 06 - NJ 06 FUSRAP Considered Sites E.I. Dupont, NJ Alternate Name(s): E.I. Du Pont De Nemours and Company E.I. Du Pont Company Dupont Chambers Works Plant NJ.06-1 NJ.06-5 Location: Pennsville and Carney Townships, Southeast bank of the Delaware River, Deepwater, New Jersey NJ.06-5 Historical Operations: Development of a process for converting uranium oxide to uranium tetraflouride, production of uranium tetraflouride, research into conversion of uranium oxide to uranium metal, and production of uranium metal. NJ.06-3 NJ.06-5 Eligibility Determination: Eligible NJ.06-1 Radiological Survey(s): Assessment Surveys NJ.06-3 NJ.06-5 NJ.06-7 NJ.06-8 Site Status: Cleanup in progress by U.S. Army Corps of Engineers. NJ.06-2 NJ.06-6 USACE Website Long-term Care Requirements: To be determined upon completion.

31

DOE - Office of Legacy Management -- Aluminum Co of America - NJ 24  

Office of Legacy Management (LM)

NJ 24 NJ 24 FUSRAP Considered Sites Site: Aluminum Co of America (NJ.24 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: ALCOA (Garwood Plant) NJ.24-1 Location: Garwood , New Jersey NJ.24-1 Evaluation Year: Circa 1987 NJ.24-5 Site Operations: Constructed and altered die-casting dies and conducted die casting operation on uranium slugs. NJ.24-1 NJ.24-3 NJ.24-4 Site Disposition: Eliminated - Potential for residual contamination considered remote due to limited scope of activities performed at the site NJ.24-2 NJ.24-5 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium metal NJ.24-1 NJ.24-3 NJ.24-4 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP

32

DOE - Office of Legacy Management -- J T Baker Chemical Co - NJ 0-02  

Office of Legacy Management (LM)

J T Baker Chemical Co - NJ 0-02 J T Baker Chemical Co - NJ 0-02 FUSRAP Considered Sites Site: J.T. BAKER CHEMICAL CO. ( NJ.0-02 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Subsidiary of Vick Chemical Company NJ.0-02-1 Location: 600 North Broad Street , Phillipsburg , New Jersey NJ.0-02-2 Evaluation Year: 1987 NJ.0-02-3 Site Operations: Commercial operation - licensed to process and distribute refined source material. NJ.0-02-2 NJ.0-02-3 NJ.0-02-4 NJ.0-02-5 Site Disposition: Eliminated - No basis for inclusion in FUSRAP NJ.0-02-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NJ.0-02-5 NJ.0-02-6 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP

33

DOE - Office of Legacy Management -- Vitro Corp of America - NJ 02  

Office of Legacy Management (LM)

NJ 02 NJ 02 FUSRAP Considered Sites Site: Vitro Corp. of America (NJ.02) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Vitro Laboratories NJ.02-1 Location: West Orange , New Jersey NJ.02-2 Evaluation Year: 1985 NJ.02-3 Site Operations: Performed work that involved conversion of low enrichment uranium dioxide to uranium carbon spheres and for the separation of fission products. NJ.02-3 NJ.02-4 Site Disposition: Eliminated - Radiation levels below criteria NJ.02-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium Compounds NJ.02-2 NJ.02-4 Radiological Survey(s): Yes NJ.02-2 Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Vitro Corp. of America

34

DOE - Office of Legacy Management -- Metals Disintegrating Co Inc - NJ 0-03  

Office of Legacy Management (LM)

Disintegrating Co Inc - NJ Disintegrating Co Inc - NJ 0-03 FUSRAP Considered Sites Site: METALS DISINTEGRATING CO., INC. (NJ.0-03 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 271 Grove Avenue , Verona or Elizabeth , New Jersey NJ.0-03-1 NJ.0-03-2 NJ.0-03-3 Evaluation Year: 1987 NJ.0-03-3 Site Operations: Provided nickel to Linde. NJ.0-03-3 NJ.0-03-4 Site Disposition: Eliminated - No radioactive materials were handled at this site. NJ.0-03-3 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to METALS DISINTEGRATING CO., INC. NJ.0-03-1 - Letter; Goman to Metals Disintegrating Company, Inc.

35

Precios de Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

Precios de Gasolina para Ciudades en EEUU Pulse en el mapa para ver los precios de la gasolina en diferentes ciudades de su estado. AK VT ME NH NH MA MA RI CT CT DC NJ DE DE NY WV...

36

DOE - Office of Legacy Management -- Baker and Williams Co - NJ 13  

NLE Websites -- All DOE Office Websites (Extended Search)

Baker and Williams Co - NJ 13 Baker and Williams Co - NJ 13 FUSRAP Considered Sites Site: Baker and Williams Co (NJ 13) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Baker and Company, Inc. Engelhard Industries, Baker Platinum Division NJ.13-8 NJ.13-1 Location: 113 Astor Street , Newark , New Jersey NJ.13-1 NJ.13-8 Evaluation Year: 1990 NJ.13-2 NJ.13-7 Site Operations: From 1943 through the mid-1950s, the facility processed spent catalyst (contaminated platinum) to recovery the platinum for the AEC. From the Mid-1950s to the early-1960s the facility conducted research and development on metal fabrication processes including rolling, drawing uranium metal metals continued recovery operations (uranium from scrap under AEC source material license). NJ.13-3

37

Hinsdale, NH Wal-Mart's impact on small businesses in Brattleboro, VT : a case study.  

E-Print Network (OSTI)

??The debate over the effects of big box retail on smaller communities is one of the most contentious topics of public planning discourse. Many feel (more)

Sadlowski, Jin, 1970-

2010-01-01T23:59:59.000Z

38

DOE - Office of Legacy Management -- United Lead Co - NJ 29  

NLE Websites -- All DOE Office Websites (Extended Search)

Lead Co - NJ 29 Lead Co - NJ 29 FUSRAP Considered Sites Site: United Lead Co. (NJ.29 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if any, with MED/AEC operations. Reviews of contact lists, accountable station lists, health and safety records and other documentation of the period do not provide sufficient information to warrant further search of historical records for information on these sites. These site files remain "open" to

39

,"North Troy, VT Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Troy, VT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

40

,"Highgate Springs, VT Natural Gas Pipeline Imports From Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

Highgate Springs, VT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","L...

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOE - Office of Legacy Management -- New York Shipbuilding Corp - NJ 34  

Office of Legacy Management (LM)

Shipbuilding Corp - NJ 34 Shipbuilding Corp - NJ 34 FUSRAP Considered Sites Site: NEW YORK SHIPBUILDING CORP. (NJ.34) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: South Yard, New York Shipbuilding facility on the Delaware River , Camden , New Jersey NJ.34-1 Evaluation Year: Circa 1990 NJ.34-2 Site Operations: NYX Project (1951 - 1954) - fabricated and assembled equipment (reactors) for the AEC Savannah River Plant under subcontract to AEC Prime. Later built the N.S. Savannah, the world's first nuclear-powered cargo-passenger ship -- a joint project of the AEC and the Maritime Administration authorized by the Congress in 1956. NJ.34-1 NJ.34-3 Site Disposition: Eliminated - Potential for contamination related to work for Savannah River Plant considered remote due to the limited quantity of radioactive material involved and duration of the activity NJ.34-2

42

Price of Highgate Springs, VT Natural Gas LNG Imports from Canada...  

Annual Energy Outlook 2012 (EIA)

Springs, VT Natural Gas LNG Imports from Canada (Dollars per Thousand Cubic Feet) Price of Highgate Springs, VT Natural Gas LNG Imports from Canada (Dollars per Thousand...

43

NJ Regional Middle School Science Bowl | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

February 22, 2013, 8:00am February 22, 2013, 8:00am Science Education Lab-wide Event NJ Regional Middle School Science Bowl Teams of students are invited to participate in the Department of Energy's National Science Bowl Competition. Each year PPPL hosts the New Jersey Regional Science Bowl which decides which teams from the local area can continue onto the national competition in Washington, D.C. The Science Bowl is a double elimination contest with oral question and answer rounds in the fields of chemistry, biology, physics, astronomy and mathematics plus general and earth sciences. Questions are given in a toss-up with a bonus format. For more information, visit our Science Bowl website! Contact Information Website: NJ Regional Middle School Science Bowl Coordinator(s): Deedee Ortiz

44

New Jersey Solar Power LLC NJ Solar Power | Open Energy Information  

Open Energy Info (EERE)

Solar Power LLC NJ Solar Power Solar Power LLC NJ Solar Power Jump to: navigation, search Name New Jersey Solar Power LLC (NJ Solar Power) Place New Jersey Sector Solar Product A photovoltaic engineering firm which offers and installs a complete line of solar electric products for residential, commercial, and institutional customers. References New Jersey Solar Power LLC (NJ Solar Power)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. New Jersey Solar Power LLC (NJ Solar Power) is a company located in New Jersey . References ↑ "New Jersey Solar Power LLC (NJ Solar Power)" Retrieved from "http://en.openei.org/w/index.php?title=New_Jersey_Solar_Power_LLC_NJ_Solar_Power&oldid=349171

45

North Troy, VT Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

Million Cubic Feet) North Troy, VT Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

46

North Troy, VT Natural Gas Pipeline Imports From Canada (Dollars...  

Annual Energy Outlook 2012 (EIA)

Dollars per Thousand Cubic Feet) North Troy, VT Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

47

NREL: Wind Research - Ventera's VT 10 Turbine Testing and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventera's VT 10 Turbine Testing and Results Ventera's VT 10 Turbine Testing and Results Ventera's VT10 wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL is testing Ventera's VT10 small wind turbine at the National Wind Technology Center (NWTC). The VT10 is a horizontal-axis downwind, three-bladed turbine rated at 10 kilowatts (kW). Its diameter is 6.7 meters, and it is mounted on a lattice tower with a hub height of 21.7 meters. The VT10 uses a single-phase, grid-connected, permanent-magnet generator that operates at 240 volts AC. Testing Summary The summary of the tests is listed below, along with the final reports. Cumulative Energy Production 3/22/2010: 0; 3/29/2010: 26; 3/31/2010: 74; 4/1/2010: 75; 4/2/2010: 174;

48

Figure 23. Average price of natural gas delivered to U.S. commercial...  

Annual Energy Outlook 2012 (EIA)

Natural and Supplemental Gas Supply and Disposition," and Form EIA-910, "Monthly Natural Gas Marketer Survey." IN OH TN WV VA KY MD PA NY VT NH MA CT ME RI DE DC NC SC GA FL NJ AL...

49

Microsoft Word - figure_22.doc  

Gasoline and Diesel Fuel Update (EIA)

Natural and Supplemental Gas Supply and Disposition," and Form EIA-910, "Monthly Natural Gas Marketer Survey." IN OH TN WV VA KY MD PA NY VT NH MA CT ME RI DE DC NC SC GA FL NJ AL...

50

Category:Concord, NH | Open Energy Information  

Open Energy Info (EERE)

Go Back to PV Economics By Location Go Back to PV Economics By Location Media in category "Concord, NH" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Concord NH Public Service Co of NH.png SVFullServiceRestauran... 74 KB SVHospital Concord NH Public Service Co of NH.png SVHospital Concord NH ... 75 KB SVLargeHotel Concord NH Public Service Co of NH.png SVLargeHotel Concord N... 74 KB SVLargeOffice Concord NH Public Service Co of NH.png SVLargeOffice Concord ... 76 KB SVMediumOffice Concord NH Public Service Co of NH.png SVMediumOffice Concord... 74 KB SVMidriseApartment Concord NH Public Service Co of NH.png SVMidriseApartment Con... 71 KB SVOutPatient Concord NH Public Service Co of NH.png SVOutPatient Concord N... 72 KB SVPrimarySchool Concord NH Public Service Co of NH.png

51

Help in N.J. for Those Struggling with Energy Costs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in N.J. for Those Struggling with Energy Costs in N.J. for Those Struggling with Energy Costs Help in N.J. for Those Struggling with Energy Costs April 2, 2010 - 2:27pm Addthis Joshua DeLung In Newark, N.J., times are still tough for some residents. Among the rows of worn brick architecture, though, there are signs of hope, thanks to a local community action agency's weatherization assistance program and an extra boost in funding from the Recovery Act. The stories of homes in need of retrofitting in Newark are like those in many cities across America. Sammie Rutledge worked as a carpenter since he was a teenager but stopped working in 2004 when he was diagnosed with cancer. Faced without a paycheck from a full-time job and with high energy bills, as much as $600 each month, Sammie was distraught. Then, a friend

52

Help in N.J. for Those Struggling with Energy Costs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Help in N.J. for Those Struggling with Energy Costs Help in N.J. for Those Struggling with Energy Costs Help in N.J. for Those Struggling with Energy Costs April 2, 2010 - 2:27pm Addthis Joshua DeLung In Newark, N.J., times are still tough for some residents. Among the rows of worn brick architecture, though, there are signs of hope, thanks to a local community action agency's weatherization assistance program and an extra boost in funding from the Recovery Act. The stories of homes in need of retrofitting in Newark are like those in many cities across America. Sammie Rutledge worked as a carpenter since he was a teenager but stopped working in 2004 when he was diagnosed with cancer. Faced without a paycheck from a full-time job and with high energy bills, as much as $600 each month, Sammie was distraught. Then, a friend

53

January 21, 2014 @ 5:00 PM (EST): 2014 NJ Regional Science Bowl...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tuesday, January 21, 2014 - 05:00 January 21, 2014 @ 5:00 PM (EST): 2014 NJ Regional Science Bowl registration closes Registration for the 2014 New Jersey Regional Science Bowl...

54

NH NH NH NH  

NLE Websites -- All DOE Office Websites (Extended Search)

- Grand Station Foyer Continental Breakfast - Grand Station iii PoSt-CoMbuStion MeMbrane-baS Moderator - Jos Figueroa, U.S. Department of Energy, National Energy Techno tueSday,...

55

VrnVtR^iTY OF CALIFOKKIA L  

NLE Websites -- All DOE Office Websites (Extended Search)

VrnVtR^iTY OF CALIFOKKIA VrnVtR^iTY OF CALIFOKKIA L a w r e n c s BadidUon L a b o r a t o r y B e r k e l e y , Calift^raia Contract rto "*'-740n-.e,ig~48 THE EARLY ANJ'IPROTON WORK Owen GharBDeriair. DecetDfter 15, 195.9 L i G A L N O T I C E - This report was prepared as an account ot <: I nor any person acUng on beliflU of the C DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,

56

Updated 6/10 Volunteer NH!  

E-Print Network (OSTI)

Plant a garden 5 Hitchcock Hall Durham, NH 03824 Marianne Fortescue, Coordinator 603-862-2197 marianne.fortescue

Pohl, Karsten

57

Duration Test Report for the Ventera VT10 Wind Turbine  

DOE Green Energy (OSTI)

This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small wind turbines. Five turbines were tested at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) as a part of round one of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality. Test results will provide manufacturers with reports that can be used to fulfill part of the requirements for small wind turbine certification. The test equipment included a grid-connected Ventera Energy Corporation VT10 wind turbine mounted on an 18.3-m (60-ft) self-supporting lattice tower manufactured by Rohn.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2013-06-01T23:59:59.000Z

58

Gas Prices  

NLE Websites -- All DOE Office Websites (Extended Search)

Prices Gasoline Prices for U.S. Cities Click on the map to view gas prices for cities in your state. AK VT ME NH NH MA MA RI CT CT DC NJ DE DE NY WV VA NC SC FL GA AL MS TN KY IN...

59

**NO SCIENCE ON SATURDAY TODAY** NJ Regional High School Science Bowl |  

NLE Websites -- All DOE Office Websites (Extended Search)

February 23, 2013, 8:00am February 23, 2013, 8:00am Science Education Lab-wide Event **NO SCIENCE ON SATURDAY TODAY** NJ Regional High School Science Bowl Teams of students are invited to participate in the Department of Energy's National Science Bowl Competition. Each year PPPL hosts the New Jersey Regional Science Bowl which decides which teams from the local area can continue onto the national competition in Washington, D.C. The Science Bowl is a double elimination contest with oral question and answer rounds in the fields of chemistry, biology, physics, astronomy and mathematics plus general and earth sciences. Questions are given in a toss-up with a bonus format. For more information, visit our Science Bowl website! Contact Information Website: NJ Regional High School Science Bowl

60

U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NJ1PA DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NJ1PA DETERMINATION NJ1PA DETERMINATION RECIPIENT:Abengoa Solar Inc. Page 1 of2 STATE: CO PROJECT TITLE: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Power Plants Funding Opportunity Announcement Numbu Procurement Instrument Number NEPA Control Numbu ell) Number DE·PS36-08G098032 G018156 GFQ.G018156-003 G018156 Based on my review oflhe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A),1 have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but nollimiled to, literature surveys. inventories. audits), data analysis (indudm9 computer modeling). document preparation (such as conceptual design or feasibility studies, analytical energy supply

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE - Office of Legacy Management -- R Brew Co - NH 01  

NLE Websites -- All DOE Office Websites (Extended Search)

R Brew Co - NH 01 R Brew Co - NH 01 FUSRAP Considered Sites Site: R. BREW CO. (NH.01 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Concord , New Hampshire NH.01-1 Evaluation Year: 1994 NH.01-2 Site Operations: Conducted vacuum furnace tests using uranium and copper billets. NH.01-1 NH.01-3 Site Disposition: Eliminated - Potential for contamination remote NH.01-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NH.01-1 NH.01-3 Radiological Survey(s): Yes - radiological monitoring during operations NH.01-3 Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to R. BREW CO. NH.01-1 - Memorandum/Checklist; Landis to File; Subject: R. Brew

62

NJ,O-04 MEMOHANDUtl TO: FILE FRon: SITE NAME: CITY:  

Office of Legacy Management (LM)

I I &-?I, I . . . ,- . . -' * 3 8OC NJ,O-04 MEMOHANDUtl TO: FILE FRon: SITE NAME: CITY: _____ -&-&~--------STATE: . . ------ .- OWNER(S) -------- P=st:~__------_-____--------- Current: ~~~~~~~-~----~-~~-~--~-~~~ Owner contacted q yes I-J no; if yes, date contacted TYPE OF OPERATION ~_--_---_-~~----- 0 Research & Develapment q Facility Type 0 Production scale testing 0 Pilot Scale g Bench Scale Process ? a Theoretical Studies? $0 Sample & Analysis E Production 0. Disposal/Storage q Manufacturing 0 University 0 Research Organization 0 Government Cpansored Faci 1 i ty 0 Other ~~~-~~~-~-_~~--~--~-- TYPE OF CONTRACT ~-_-----~-~----- A Prime q Subcontractk- 0 Purchase Order 0 Other information (i.e., cost + fixed fee, unit price,

63

Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine  

DOE Green Energy (OSTI)

This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-11-01T23:59:59.000Z

64

H. B. Fry, Staff Assistant NJ-, i.4 SUBJECT: DISCUSSION CCSJCERMZIQ THE M  

Office of Legacy Management (LM)

' ' : H. B. Fry, Staff Assistant NJ-, i.4 SUBJECT: DISCUSSION CCSJCERMZIQ THE M E W BRUNSWICK UBORAIORY; MONDAY, EOVEKBER 1, '1948 REFER TO SYb5BOLt SA:HBF tu 14-7 2 Those presentr M r. Rodden, Dr. Donovan, Hr. K&lay, Dr. Chadwell, Messrs. Fry, Bslmore and Hill, The purpose of the meeting was to disouss the program and working relationships of the New York Offioe and the laboratory at New Brunswick. There is attached an agenda for the meeting. There was no disagreement on the functiona of the laboratory described by Mr. Belmore as followat 1. To assist the Produotion Division in oontrolling wality of uranium, thori=, beryllium, zirconium metals and oompounds, (or any material assigned to NYOO). (a) By analyzing various raw materials, intermediater and

65

US. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NJ1PA DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OF ENERGY OF ENERGY EERE PROJECT MANAGEMENT CENTER NJ1PA DETERMINATION Page 1 of2 RECIPIENT:ELECTRATHERM, Inc. STATE: NV PROJECT TITLE: ·Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: MiningOperation" Funding Opportunity Announcement Number PNK:urement Instrument Number N£PA Control Number em Number OE+FOAOOOO336 DE-EEOOO4435 GF0-0004435-002 G04435 Based on my review of the information c:oncerning tbe proposed action, 85 NEPA Compliance Officer (authorized under DOE Order 451.IA),1 have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Info rm ation gathering, analysis, and d issemination Information gathering (including , but not limited to, literature surveys, inventories, site visits, and

66

NH House Committee_April27 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control Mercury Control Technology R&D Program for Coal-Fired Boilers Working Session of the New Hampshire House Science, Technology, & Energy Committee April 26, 2005 Concord, New Hampshire Thomas J. Feeley, III thomas.feeley@netl.doe.gov National Energy Technology Laboratory NH House Committee_April 2005 Mercury Control Technology Field Testing Program Performance/Cost Objectives * Have technologies ready for commercial demonstration by 2007 for all coals * Reduce "uncontrolled" Hg emissions by 50-70% * Reduce cost by 25-50% compared to baseline cost estimates Baseline Costs: $50,000 - $70,000 / lb Hg Removed 2000 Year Cost NH House Committee_April 2005 Stages of Mercury Control Technology Development DOE RD&D Model Lab/Bench/Pilot-Scale Testing Field Testing

67

DECONTAMINATION OF DREDGED MATERIAL FROM PORT OF NY/NJ DECONTAMINATION OF DREDGED MATERIAL FROM THE PORT OF  

E-Print Network (OSTI)

of Liters Transported (Source: New Jersey Petroleum Council) Rank Port Liters 1 New York Harbor, NY/NJ 106 Jersey ranks first in the United States in volume of petroleum products handled each year. In addition to the discharge of significant amounts of petroleum hydrocarbons into the waters of the New York/New Jersey region

Brookhaven National Laboratory

68

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA  

Gasoline and Diesel Fuel Update (EIA)

176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY...

69

www.eia.gov  

U.S. Energy Information Administration (EIA)

MO MT NE NV NH NJ NM NY NC ND OH OK OR PA RI SC SD TN TX UT VT VA WA WV WI WY U.S. Number of states in which marketer is licensed ... Service Tech & Research Corp

70

C:\\ANNUAL\\VENTCHAP.V8\\NGA.VP  

Gasoline and Diesel Fuel Update (EIA)

4 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99...

71

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DC NC SC GA AL MS LA FL HI AK DE 0 2 4 6 8 10 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998...

72

C:\\ANNUAL\\VENTCHAP.V8\\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 15. Marketed Production of Natural Gas in the United States, 2001...

73

C:\\ANNUAL\\VENTCHAP.V8\\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

0 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Sources: Energy...

74

NGA98fin5.vp  

Annual Energy Outlook 2012 (EIA)

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99...

75

U.S. Energy Information Administration | Annual Energy Outlook...  

Annual Energy Outlook 2012 (EIA)

3 Regional maps Figure F6. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE...

76

U.S. DEPARTlVIENT OF ENERGY EERE PROJECT )'vtAHAGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

)'vtAHAGEMENT CENTER )'vtAHAGEMENT CENTER NEPA DETERl\ifINATION RECIPIENT:Colorado School of Mines Page 1 of2 STATE: CO PROJECT TITLE: Joint Inversion of Electrical and Seismic data for Fracture Characterization and Imaging of Fluid Flow in Geotllermal Systems Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE·PS36·08G098008 . DE·FG36·08G018195 GFO·G018195·002 0 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

77

,"Pittsburg, NH Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pittsburg, NH Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

78

NH Clean Power Act (New Hampshire) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NH Clean Power Act (New Hampshire) NH Clean Power Act (New Hampshire) NH Clean Power Act (New Hampshire) < Back Eligibility Agricultural Commercial Industrial Investor-Owned Utility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Hampshire Program Type Environmental Regulations Provider NH Department of Environmental Services The Act calls for annual reductions of multiple pollutants, including SO2, Nox, CO2, and mercury. The Act calls for an 87% reduction in SO2 emissions and a 70% reduction in Nox emissions from 1999 levels. CO2 emissions are to be reduced to 1990 levels by the end of 2006. Act is implemented under NH Rules Env-A 2900. This act applies specifically to three existing fossil

79

u.s. DI!PARThIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NJ!PA DETEJU,llNATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MANAGEMENT CENTER MANAGEMENT CENTER NJ!PA DETEJU,llNATION RECIPIENT :Ocean Renewable Power Company, LlC Page I of2 STATE: AK PROJECf TITLE: Acoustic Monitoring of Beluga Whale Interactions withCook Inlet Tidal Energy Project Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-FOA-OOOOO69 DE-EE0002657 GFO-O002657-002 G02657 Based on my review oftbe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: B3.3 Research related to Field and laboratory research, inventory, and information collection activities that are directly conservation of fish, wildlife, related to the conservation of fish and wildlife resources or to the protection of cultural

80

2nd Int. Symp. on Lithium Applications for Fusion Devices, April 27-29, 2011, Princeton, NJ Program for the 2nd International Symposium  

E-Print Network (OSTI)

2nd Int. Symp. on Lithium Applications for Fusion Devices, April 27-29, 2011, Princeton, NJ Program for the 2nd International Symposium on Lithium Applications for Fusion Devices April 27-29, 2011:40 Welcome, S. Prager, Director, PPPL 8:45 Announcement: Local organizer Session I-A. Lithium in Magnetic

Princeton Plasma Physics Laboratory

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Molecular Biology of the Brain, edited by S.J. Higgins. Princeton, NJ: Princeton University Press, 1999. 196 pp. $32.50.  

E-Print Network (OSTI)

Molecular Biology of the Brain, edited by S.J. Higgins. Princeton, NJ: Princeton University Press level is one of the great- est and most important questions facing science. The Molecular Biology of the Brain reviews the state of current knowledge about the molecular foundations of brain function and gives

Schoenemann, P. Thomas

82

Public Service Co of NH | Open Energy Information  

Open Energy Info (EERE)

NH NH (Redirected from PSNH) Jump to: navigation, search Name Public Service Co of NH Place New Hampshire Service Territory New Hampshire Website www.psnh.com Green Button Landing Page www.psnh.com/SaveEnergyMo Green Button Reference Page www.psnh.com/SaveEnergyMo Green Button Implemented Yes Utility Id 15472 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections

83

Microsoft Word - figure_8.doc  

Gasoline and Diesel Fuel Update (EIA)

T I D O R W Y ND SD C A N V U T CO NE KS A Z NM OK TX MN WI MI IA I L IN OH MO AR M S AL GA T N KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI A K J a p a n Mexico M e x...

84

Public Service Co of NH | Open Energy Information  

Open Energy Info (EERE)

Name Public Service Co of NH Name Public Service Co of NH Place New Hampshire Service Territory New Hampshire Website www.psnh.com Green Button Landing Page www.psnh.com/SaveEnergyMo Green Button Reference Page www.psnh.com/SaveEnergyMo Green Button Implemented Yes Utility Id 15472 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now!

85

Tracking the Sun IV: An Historical Summary of the Installed Cost of Photovoltaics in the United States from 1998 to 2010  

E-Print Network (OSTI)

Energy Grant Program MN MSEO Solar Electric Rebate Program NH NHPUC Renewable Energy Rebate Program NJ

Darghouth, Naim

2012-01-01T23:59:59.000Z

86

Characterization of the selective reduction of NO by NH/sub 3/  

Science Conference Proceedings (OSTI)

The selective reduction of NO by NH/sub 3/ addition has been studied in a lean-burning oil-fired laboratory combustion tunnel as a function of equivalence ratio, NH/sub 3/ injection temperature, concentration of NH/sub 3/ added, and the source of NO. Ammonia breakthrough was found to depend strongly on the NH/sub 3/ addition temperature. The total concentration of nitrogen containing species other N/sub 2/, NO, and NH/sub 3/ was measured with a variety of techniques and was found to be less than 5 ppM over the range of conditions studied.

Lucas, D.; Brown, N.J.

1981-04-01T23:59:59.000Z

87

U.S . DEPART]\.1ENT OF ENERGY EERE PROJECT T'....IANACiE!vtENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S S . DEPART]\.1ENT OF ENERGY EERE PROJECT T'....IANACiE!vtENT CENTER NEPA DETERl\HNATION RECI PI ENT:Amonix, Inc. STATE: CA PROJECT Low Cost High Concentration Photovoltaic Power Systems for Utility Power Generation - Sandia site TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-PS36-06G 096034 DE-FC36-07G017042 GFO-G017042-006 G017042 Based on my review of the information concerning the proposed action, as N EPA Compliance Officer (authorized under DOE Order 451.1 A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation , and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

88

Page 1 of 7 2013 NH 4-H HORSE QUIZ BOWL  

E-Print Network (OSTI)

at http://extension.unh.edu/4H/NH4-HHorseProject.htm or by sending an Excel document to Rhiannon.Beauregard

New Hampshire, University of

89

RECIPIENT:Princeton Power Systems STATE: NJ PROJECT Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Princeton Power Systems Princeton Power Systems STATE: NJ PROJECT Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm Number DE-FOA-0000293 DE-EE0003640 GFO-000364~001 GOO Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the foUowing determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, ~terature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

90

CHARACTERIZATION STUDIES OF THE SELECTIVE REDUCTION OF NO by NH3  

E-Print Network (OSTI)

and Maloney, K.L. , "NOx Reduction with Ammonia: Laboratoryand Hashizawa, K. , "Reduction of NOx in Combustion ExhaustSelective Noncatalytic Reduction of NOx with NH3," EPRI NOx

Brown, N.J.

2013-01-01T23:59:59.000Z

91

Thermal Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx Reduction  

SciTech Connect

Multiple catalytic functions (NOx conversion, NO and NH3 oxidation, NH3 storage) of a commercial Cu-zeolite urea/NH3-SCR catalyst were assessed in a laboratory fixed-bed flow reactor system after differing degrees of hydrothermal aging. Catalysts were characterized by using x-ray diffraction (XRD), 27Al solid state nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) / energy dispersive X-ray (EDX) spectroscopy to develop an understanding of the degradation mechanisms during catalyst aging. The catalytic reaction measurements of laboratory-aged catalysts were performed, which allows us to obtain a universal curve for predicting the degree of catalyst performance deterioration as a function of time at each aging temperature. Results show that as the aging temperature becomes higher, the zeolite structure collapses in a shorter period of time after an induction period. The decrease in SCR performance was explained by zeolite structure destruction and/or Cu agglomeration, as detected by XRD/27Al NMR and by TEM/EDX, respectively. Destruction of the zeolite structure and agglomeration of the active phase also results in a decrease in the NO/NH3 oxidation activity and the NH3 storage capacity of the catalyst. Selected laboratory aging conditions (16 h at 800oC) compare well with a 135,000 mile vehicle-aged catalyst for both performance and characterization criteria.

Schmieg, Steven J.; Oh, Se H.; Kim, Chang H.; Brown, David B.; Lee, Jong H.; Peden, Charles HF; Kim, Do Heui

2012-04-30T23:59:59.000Z

92

Photolysis of solid NH{sub 3} and NH{sub 3}-H{sub 2}O mixtures at 193 nm  

SciTech Connect

We have studied UV photolysis of solid ammonia and ammonia-dihydrate samples at 40 K, using infrared spectroscopy, mass spectrometry, and microgravimetry. We have shown that in the pure NH{sub 3} sample, the main species ejected are NH{sub 3}, H{sub 2}, and N{sub 2}, where the hydrogen and nitrogen increase with laser fluence. This increase in N{sub 2} ejection with laser fluence explains the increase in mass loss rate detected by a microbalance. In contrast, for the ammonia-water mixture, we see very weak signals of H{sub 2} and N{sub 2} in the mass spectrometer, consistent with the very small mass loss during the experiment and with a <5% decrease in the NH{sub 3} infrared absorption bands spectroscopy after a fluence of {approx}3 x 10{sup 19} photons/cm{sup 2}. The results imply that ammonia-ice mixtures in the outer solar system are relatively stable under solar irradiation.

Loeffler, M. J. [Astrochemistry Laboratory, NASA Goddard Space Flight Center, Code 691, Greenbelt, Maryland 20771 (United States); Laboratory for Atomic and Surface Physics, Engineering Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Baragiola, R. A. [Laboratory for Atomic and Surface Physics, Engineering Physics, University of Virginia, Charlottesville, Virginia 22904 (United States)

2010-12-07T23:59:59.000Z

93

Grants to Help N.H. Towns Conserve Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grants to Help N.H. Towns Conserve Energy Grants to Help N.H. Towns Conserve Energy Grants to Help N.H. Towns Conserve Energy March 19, 2010 - 4:17pm Addthis New Hampshire has a plan to lower expenses and create jobs, all while conserving energy. In all, the state has received $17.3 million in Energy Efficiency and Conservation Block Grant (EECBG) funding. Of that, $9.6 million has been sent to the New Hampshire Office of Energy and Planning (NHOEP) to launch several energy saving projects. NHOEP established a subgrant program to award $6.6 million of the EECBG grant funding to local municipalities and counties. New Hampshire municipalities and counties submitted over 270 applications, totaling over $21 million in grant requests. "Substantial energy efficiency improvements will be made throughout the

94

Grants to Help N.H. Towns Conserve Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grants to Help N.H. Towns Conserve Energy Grants to Help N.H. Towns Conserve Energy Grants to Help N.H. Towns Conserve Energy March 19, 2010 - 4:17pm Addthis New Hampshire has a plan to lower expenses and create jobs, all while conserving energy. In all, the state has received $17.3 million in Energy Efficiency and Conservation Block Grant (EECBG) funding. Of that, $9.6 million has been sent to the New Hampshire Office of Energy and Planning (NHOEP) to launch several energy saving projects. NHOEP established a subgrant program to award $6.6 million of the EECBG grant funding to local municipalities and counties. New Hampshire municipalities and counties submitted over 270 applications, totaling over $21 million in grant requests. "Substantial energy efficiency improvements will be made throughout the

95

Export.gov - NJ Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerospace Agribusiness ArchitectureConstruction AutomotiveTransportation Education Energy Environmental Technology Franchising HotelRestaurant Information & Communication...

96

Synthesis and Characterization of Th2N2(NH) Isomorphous to Th2N3  

SciTech Connect

Using a new, low-temperature, fluoride-based process, thorium nitride imide of the chemical formula Th{sub 2}N{sub 2}(NH) was synthesized from thorium dioxide via an ammonium thorium fluoride intermediate. The resulting product phase was characterized by powder X-ray diffraction (XRD) analysis and was found to be crystallographically similar to Th{sub 2}N{sub 3}. Its unit cell was hexagonal with a space group of P3m{bar 1} and lattice parameters of a = b = 3.886(1) and c = 6.185(2) {angstrom}. The presence of -NH in the nitride phase was verified by Fourier transform infrared spectroscopy (FTIR). Total energy calculations performed using all-electron scalar relativistic density functional theory (DFT) showed that the hydrogen atom in the Th{sub 2}N{sub 2}(NH) prefers to bond with nitrogen atoms occupying 1a Wyckoff positions of the unit cell. Lattice fringe disruptions observed in nanoparticle areas of the nitride species by high-resolution transmission electron microscopic (HRTEM) images also displayed some evidence for the presence of -NH group. As ThO{sub 2} was identified as an impurity, possible reaction mechanisms involving its formation are discussed.

Silva, G W Chinthaka M [ORNL; Yeamans, Charles B. [University of California, Berkeley; Hunn, John D [ORNL; Sattelberger, Alfred P [Argonne National Laboratory (ANL); Czerwinski, Ken R. [University of Nevada, Las Vegas; Weck, Dr. Phil F [University of Nevada, Las Vegas

2012-01-01T23:59:59.000Z

97

Page 1 of 16 2013 NH 4-H Horse Quiz Bowl  

E-Print Network (OSTI)

: 9:00 AM to 5:00 PM Location: Belmont Middle School, 38 School Street, Belmont NH 03220 Deadline Quiz Bowl is an event where youth demonstrate their knowledge of equine science in a contest similar to high school quiz bowls. Teams of four race to hit their buzzers and answer equine-related questions

New Hampshire, University of

98

The Institute for Critical Technology and Applied Science at Virginia Tech supports and promotes cutting-edge research at the intersection of engineering, science, and medicine. Please visit www.ictas.vt.edu.  

E-Print Network (OSTI)

.ictas.vt.edu. Fuel Cell Research A Focus Area within the ICTAS Sustainable Energy Thrust Mission The mission cell technology to help meet society's energy needs. Technical Approach At its core, a fuel cell employees, students, or applicants for admission or employment on the basis of race, gender, disability, age

Beex, A. A. "Louis"

99

Page 1 of 16 2014 NH 4-H Horse Quiz Bowl  

E-Print Network (OSTI)

their knowledge of equine science in a contest similar to high school quiz bowls. Teams of four race to hitPage 1 of 16 2014 NH 4-H Horse Quiz Bowl Date: Saturday January 25, 2014 Time: 9:00 AM to 5:00 PM the day of the contest. The New Hampshire 4-H Quiz Bowl is an event where youth demonstrate

New Hampshire, University of

100

Theoretical Investigations on the Formation and Dehydrogenation Reaction Pathways of H(NH2BH2)nH (n=1-4) Oligomers: Importance of Dihydrogen Interactions (DHI)  

DOE Green Energy (OSTI)

The H(NH2BH2)nH oligomers are possible products from dehydrogenation of ammonia borane (NH3BH3) and ammonium borohydride (NH4BH4), which belong to a class of boron-nitrogen-hydrogen (BNHx) compounds that are promising materials for chemical hydrogen storage. Understanding the kinetics and reaction pathways of formation of these oligomers and their further dehydrogenation is essential for developing BNHx-based hydrogen storage materials. We have performed computational modeling using density functional theory (DFT), ab initio wavefunction theory, and Car-Parrinello molecular dynamics (CPMD) simulations on the energetics and formation pathways for the H(NH2BH2)nH (n=1-4) oligomers, polyaminoborane (PAB), from NH3BH3 monomers and the subsequent dehydrogenation steps to form polyiminoborane (PIB). Through transition state searches and evaluation of the intrinsic reaction coordinates, we have investigated the B-N bond cleavage, the reactions of NH3BH3 molecule with intermediates, dihydrogen release through intra- and intermolecular hydrogen transfer, dehydrocoupling/cyclization of the oligomers, and the dimerization of NH3BH3 molecules. We discovered the formation mechanism of H(NH2BH2)n+1H oligomers through reactions of the H(NH2BH2)nH oligomers first with BH3 followed by reactions with NH3 and the release of H2, where the BH3 and NH3 intermediates are formed through dissociation of NH3BH3. We also found that the dimerization of the NH3BH3 molecules to form c-(NH2BH2)2 is slightly exothermic, with an unexpected transition state that leads to the simultaneous release of two H2 molecules. The dehydrogenations of the oligomers are also exothermic, typically by less than 10 kcal/(mol of H2), with the largest exothermicity for n=3. The transition state search shows that the one-step direct dehydrocoupling cyclization of the oligomers is not a favored pathway because of high activation barriers. The dihydrogen bonding, in which protic (HN) hydrogens interact with hydridic (HB) hydrogens, plays a vital role in stabilizing different structures of the reactants, transition states, and products. The dihydrogen interaction (DHI) within the -BH2(?2-H2) moiety accounts for both the formation mechanisms of the oligomers and for the dehydrogenation of ammonia borane. Support was provided from the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division and from the U.S. Department of Energy, Energy Efficiency and Renewable Energy, Chemical Hydrogen Storage Center of Excellence. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Li, Jun; Kathmann, Shawn M.; Hu, Han-Shi; Schenter, Gregory K.; Autrey, Thomas; Gutowski, Maciej S.

2010-09-06T23:59:59.000Z

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A WATER MASER AND NH{sub 3} SURVEY OF GLIMPSE EXTENDED GREEN OBJECTS  

SciTech Connect

We present the results of a Nobeyama 45 m H{sub 2}O maser and NH{sub 3} survey of all 94 northern GLIMPSE extended green objects (EGOs), a sample of massive young stellar objects (MYSOs) identified based on their extended 4.5 {mu}m emission. We observed the NH{sub 3}(1,1), (2,2), and (3,3) inversion lines, and detected emission toward 97%, 63%, and 46% of our sample, respectively (median rms {approx} 50 mK). The H{sub 2}O maser detection rate is 68% (median rms {approx} 0.11 Jy). The derived H{sub 2}O maser and clump-scale gas properties are consistent with the identification of EGOs as young MYSOs. To explore the degree of variation among EGOs, we analyze subsamples defined based on mid-infrared (MIR) properties or maser associations. H{sub 2}O masers and warm dense gas, as indicated by emission in the higher-excitation NH{sub 3} transitions, are most frequently detected toward EGOs also associated with both Class I and II CH{sub 3}OH masers. Ninety-five percent (81%) of such EGOs are detected in H{sub 2}O (NH{sub 3}(3,3)), compared to only 33% (7%) of EGOs without either CH{sub 3}OH maser type. As populations, EGOs associated with Class I and/or II CH{sub 3}OH masers have significantly higher NH{sub 3} line widths, column densities, and kinetic temperatures than EGOs undetected in CH{sub 3}OH maser surveys. However, we find no evidence for statistically significant differences in H{sub 2}O maser properties (such as maser luminosity) among any EGO subsamples. Combining our data with the 1.1 mm continuum Bolocam Galactic Plane Survey, we find no correlation between isotropic H{sub 2}O maser luminosity and clump number density. H{sub 2}O maser luminosity is weakly correlated with clump (gas) temperature and clump mass.

Cyganowski, C. J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)] [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Koda, J.; Towers, S.; Meyer, J. Donovan [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)] [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Rosolowsky, E. [Department of Physics and Astronomy, University of British Columbia, Okanagan, Kelowna BC V1V 1V7 (Canada)] [Department of Physics and Astronomy, University of British Columbia, Okanagan, Kelowna BC V1V 1V7 (Canada); Egusa, F. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)] [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Momose, R. [Department of Astronomy, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)] [Department of Astronomy, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Robitaille, T. P., E-mail: ccyganowski@cfa.harvard.edu [Max Planck Institute for Astronomy, Heidelberg (Germany)

2013-02-10T23:59:59.000Z

102

NGA98fin5.vp  

Gasoline and Diesel Fuel Update (EIA)

8 8 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 1998 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 1998 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental

103

C:\ANNUAL\VENTCHAP.V8\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

2000 2000 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-99.99 10.00-11.99 12.00+ 19. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2000 (Dollars per Thousand Cubic Feet) Figure 20. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 2000 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural

104

C:\Annual\VENTCHAP.V8\NGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

2002 2002 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and Form EIA 910, "Monthly Natural Gas Marketer Survey." 17. Average Price of Natural Gas Delivered to U.S. Commercial Consumers, 2002 (Dollars per Thousand Cubic Feet) Figure 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 2002 (Dollars per Thousand Cubic Feet) Figure Source: Energy Information Administration

105

Microsoft Word - Figure_18_19.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 0.00-2.49 2.50-4.49 4.50-6.49 6.50-8.49 8.50-10.49 10.50+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK MD 0.00-2.49 2.50-4.49 4.50-6.49 6.50-8.49 8.50-10.49 10.50+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Figure 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2004 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Power Consumers, 2004 (Dollars per Thousand Cubic Feet) Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: States where the electric power price has been withheld (see Table 23) are included in the $0.00-$2.49 price category.

106

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

49 49 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK MD 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Figure 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2003 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Power Consumers, 2003 (Dollars per Thousand Cubic Feet) Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: States where the electric power price has been withheld (see Table 23) are included in the $0.00-$1.99 price category.

107

NGA98fin5.vp  

Gasoline and Diesel Fuel Update (EIA)

1998 1998 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 1998 (Dollars per Thousand Cubic Feet) Figure

108

C:\ANNUAL\VENTCHAP.V8\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 30. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2001 (Dollars per Thousand Cubic Feet) Figure 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 31. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 2001 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of

109

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 1999 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 1999 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental

110

C:\ANNUAL\VENTCHAP.V8\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

Energy Energy Information Administration / Natural Gas Annual 2000 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ 17. Average Price of Natural Gas Delivered to U.S. Residential

111

C:\Annual\VENTCHAP.V8\NGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2002 (Dollars per Thousand Cubic Feet) Figure Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 2002 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost

112

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 1999 (Dollars per Thousand Cubic Feet) Figure

113

C:\ANNUAL\VENTCHAP.V8\NGA.VP  

Gasoline and Diesel Fuel Update (EIA)

8 8 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 1997 (Dollars per Thousand Cubic Feet) Figure

114

C:\ANNUAL\VENTCHAP.V8\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 28. Average Price of Natural Gas Delivered to U.S. Onsystem Residential Consumers, 2001 (Dollars per Thousand Cubic Feet) Figure 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition."

115

[(CH3)4N][(C5H5NH)0.8((CH3)3NH)0.2]U2Si9O23F4 (USH-8): An Organically Templated Open-Framework Uranium Silicate  

E-Print Network (OSTI)

-Framework Uranium Silicate Xiqu Wang, Jin Huang, and Allan J. Jacobson* Department of Chemistry, Uni pyramids we obtained also a number of open-framework uranium silicates.18,19 These new compounds were-framework uranium fluorosilicate [(CH3)4N][(C5H5NH)0.8((CH3)3NH)0.2]U2Si9O23F4 (USH- 8) that has been synthesized

Wang, Xiqu

116

Ammonia as a hydrogen energy-storage medium. [LH/sub 2/, MeOH, and NH/sub 3/  

DOE Green Energy (OSTI)

Liquid Hydrogen (LH/sub 2/), Methanol (MeOH), and Ammonia (NH/sub 3/) are compared as hydrogen energy-storage media on the basis of reforming the MeOH to produce H/sub 2/ and dissociating (cracking) the NH/sub 3/ to release H/sub 2/. The factors important in this storage concept are briefly discussed. Results of the comparison show that, in terms of energy input for media manufacture from natural gas, hydrogen energy content of the medium, and energy cost ($/10/sup 6/ Btu), NH/sub 3/ has a wide advantage and comes the closest to matching gasoline. The tasks required in developing a safe and practicial hydrogen energy-storage system based on the storage and cracking of NH/sub 3/ are listed. Results of the technical and economic evaluation of this concept will provide the basis for continued development.

Strickland, G

1980-08-01T23:59:59.000Z

117

Metallicity of InN and GaN surfaces exposed to NH{sub 3}.  

Science Conference Proceedings (OSTI)

A systematic study of energies and structures of InN and GaN (0001) surfaces exposed to NH{sub 3} and its decomposition products was performed with first-principles methods. A phenomenological model including electron counting contributions is developed based on calculated DFT energies and is used to identify low-energy structures. These predictions are checked with additional DFT calculations. The equilibrium phase diagrams are found to contain structures that violate the electron counting rule. Densities of states for these structures indicate n-type conductivity, consistent with available experimental results.

Walkosz, W.; Zapol, P.; Stephenson, G. B. (Materials Science Division)

2012-01-01T23:59:59.000Z

118

Quasielastic neutron scattering of -NH3 and -BH3 rotational dynamics in orthorhombic ammonia borane  

Science Conference Proceedings (OSTI)

Neutrons scattering techniques are ideally suited to directly probe H in materials due to the large incoherent scattering cross-section of hydrogen atom, and have been invaluable in providing direct insight into the local fluctuations and large amplitude motions in AB. Dihydrogen bonding may have a significant affect on materials to be used to store hydrogen for fuel-cell powered applications. We have noticed a trend of low temperature release of H2 in materials composed of hydridic and protonic hydrogen. This phenomenon has caught our attention and motivated our interest to gain more insight into dihydrogen bonding interactions in AB. We present results from a thorough Quasielastic Neutron Scattering (QENS) investigation of diffusive hydrogen motion in NH311BH3 and ND311BH3 to obtain (1) a direct measure of the rotational energy barriers the protonated species and (2) a confirmation of the 3-site jump model for rotational motion. The amplitude of the energy barrier of rotation of BH3 and NH3 determined by QENS are compared to those determined for BD3 and ND3 determined by 2H NMR studies.

Hess, Nancy J.; Hartman, Michael R.; Brown, Craig; Mamontov, Eugene; Karkamkar, Abhijeet J.; Heldebrant, David J.; Daemen, Luke L.; Autrey, Thomas

2008-06-27T23:59:59.000Z

119

Herschel / HIFI observations of CO, H2O and NH3 in Mon R2  

E-Print Network (OSTI)

Context. Mon R2 is the only ultracompact HII region (UCHII) where the associated photon-dominated region (PDR) can be resolved with Herschel. Due to its brightness and proximity, it is the best source to investigate the chemistry and physics of highly UV-irradiated PDRs. Aims. Our goal is to estimate the abundance of H2O and NH3 in this region and investigate their origin. Methods. We present new observations obtained with HIFI and the IRAM-30m telescope. Using a large velocity gradient approach, we model the line intensities and derive an average abundance of H2O and NH3 across the region. Finally, we model the line profiles with a non-local radiative transfer model and compare these results with the abundance predicted by the Meudon PDR code. Results. The variations of the line profiles and intensities indicate complex geometrical and kinematical patterns. The H2O lines present a strong absorption at the ambient velocity and emission in high velocity wings towards the HII region. The spatial distribution of...

Pilleri, P; Cernicharo, J; Ossenkopf, V; Bern, O; Gerin, M; Pety, J; Goicoechea, J R; Rizzo, J R; Montillaud, J; Gonzlez-Garca, M; Joblin, C; Bourlot, J Le; Petit, F Le; Kramer, C

2012-01-01T23:59:59.000Z

120

Growth kinetics and micromorphology of NH{sub 4}Cl:Mn{sup 2+} crystals formed in the NH{sub 4}Cl-MnCl{sub 2}-H{sub 2}O-CONH{sub 3} system  

Science Conference Proceedings (OSTI)

The growth kinetics and elementary growth processes on the surface of NH{sub 4}Cl:Mn{sup 2+} heterogeneous crystals formed in the NH{sub 4}Cl-MnCl{sub 2}-H{sub 2}O-CONH{sub 3} system are experimentally studied. It is found that a change in the composition of complexes in an NH{sub 4}Cl crystal from Mn(NH{sub 4}){sub 2}Cl{sub 4} {center_dot} 2H{sub 2}O to MnCl{sub 2} {center_dot} 2CONH{sub 3} leads to the occurrence of a local maximum in the kinetic curve and a change in the shape of dislocation growth centers from flat to conical. The growth kinetics of {l_brace}100{r_brace} faces of heterogeneous NH{sub 4}Cl:Mn{sup 2+} crystals is described within the Bliznakov model using the Fowler-Guggenheim adsorption isotherm, which takes into account the lateral interaction of adsorbed particles.

Pyankova, L. A., E-mail: lyuba_pyan@mail.ru; Punin, Yu. O.; Bocharov, S. N.; Shtukenberg, A. G. [Petersburg State University (Russian Federation)

2012-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

VT_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

DataTechnologySpecificUnitedStatesWindHighResolutionVermontWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Vermont...

122

VT PowerPoint Template  

NLE Websites -- All DOE Office Websites (Extended Search)

DISTRIBUTED FIBER OPTIC SENSOR FOR ON-LINE MONITORING OF COAL GASIFIER REFRACTORY HEALTH DE-FE0005703 Anbo Wang, Cheng Ma Virginia Tech Center for Photonics Technology Blacksburg,...

123

Verification of Allowable Stresses In ASME Section III Subsection NH For Grade 91 Steel & Alloy 800H  

Science Conference Proceedings (OSTI)

The database for the creep-rupture of 9Cr-1Mo-V (Grade 91) steel was collected and reviewed to determine if it met the needs for recommending time-dependent strength values, S{sub t}, for coverage in ASME Section III Subsection NH (ASME III-NH) to 650 C (1200 F) and 600,000 hours. The accumulated database included over 300 tests for 1% total strain, nearly 400 tests for tertiary creep, and nearly 1700 tests to rupture. Procedures for analyzing creep and rupture data for ASME III-NH were reviewed and compared to the procedures used to develop the current allowable stress values for Gr 91 for ASME II-D. The criteria in ASME III-NH for estimating S{sub t} included the average strength for 1% total strain for times to 600,000 hours, 80% of the minimum strength for tertiary creep for times to 600,000 hours, and 67% of the minimum rupture strength values for times to 600,000 hours. Time-temperature-stress parametric formulations were selected to correlate the data and make predictions of the long-time strength. It was found that the stress corresponding to 1% total strain and the initiation of tertiary creep were not the controlling criteria over the temperature-time range of concern. It was found that small adjustments to the current values in III-NH could be introduced but that the existing values were conservative and could be retained. The existing database was found to be adequate to extend the coverage to 600,000 hours for temperatures below 650 C (1200 F).

R. W. Swindeman; M. J. Swindeman; B. W. Roberts; B. E. Thurgood; D. L. Marriott

2007-11-30T23:59:59.000Z

124

Effect of sulfated CaO on NO reduction by NH{sub 3} in the presence of excess oxygen  

Science Conference Proceedings (OSTI)

The effect of sulfated CaO on NO reduction by NH{sub 3} in the presence of excess oxygen was investigated to evaluate the potential of simultaneous SO{sub 2} and NO removal at the temperature range of 700-850{sup o}C. The physical and chemical properties of the CaO sulfation products were analyzed to investigate the NO reduction mechanism. Experimental results showed that sulfated CaO had a catalytic effect on NO reduction by NH{sub 3} in the presence of excess O{sub 2} after the sulfation reaction entered the transition control stage. With the increase of CaO sulfation extent in this stage, the activity for NO reduction first increased and then decreased, and the selectivity of NH{sub 3} for NO reduction to N{sub 2} increased. The byproduct (NO{sub 2} and N{sub 2}O) formation during NO reduction experiments was negligible. X-ray photoelectron spectroscopy (XPS) analysis showed that neither CaSO{sub 3} nor CaS was detected, indicating that the catalytic activity of NO reduction by NH{sub 3} in the presence of excess O{sub 2} over sulfated CaO was originated from the CaSO{sub 4} product. These results revealed that simultaneous SO{sub 2} and NOx control by injecting NH{sub 3} into the dry flue gas desulfurization process for NO reduction might be achieved. 38 refs., 6 figs., 1 tab.

Tianjin Li; Yuqun Zhuo; Yufeng Zhao; Changhe Chen; Xuchang Xu [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education

2009-04-15T23:59:59.000Z

125

Plasma-sprayed semiconductor electrodes: Photoelectrochemical characterization and NH sub 3 photoproduction by substoichiometric tungsten oxides  

Science Conference Proceedings (OSTI)

Two substoichiometric tungsten oxide coatings have been obtained by plasma spray of WO{sub 3} powder on Ti substrates. The films are 40 {plus minus} 20 {mu}m thick and are yellow (WO{sub 2.99}) or dark blue (WO{sub 2.97}). WO{sub 2.99} coatings show a highly textured surface with a specific area 27.9 times the geometrical one. X-ray diffraction pattern reveals that their structure is a mixture of monoclinic and triclinic phases. The yellow films have been characterized photoelectrochemically in regenerative cells by using O{sub 2}/H{sub 2}O redox at pH 2.0. Under anodic polarization of 1.5 V (SCE) their quantum yield is between 10% and 20% in the wavelength range comprised between 270 and 430 nm with an indirect bandgap of 2.55 eV and a flatband potential of {minus}0.1 V. WO{sub 2.99} films have been tested for NH{sub 3} photoproduction.

Ladouceur, M.; Dodelet, J.P. (INRS-Energie, Varennes, Quebec (Canada)); Tourillon, G. (Universite Paris-Sud, Orsay (France)); Parent, L.; Dallaire, S. (IGM, Boucherville, Quebec (Canada))

1990-05-31T23:59:59.000Z

126

Capacitive deionization of NH{sub 4}CIO{sub 4} solutions with carbon aerogel electrodes. Revision 1  

Science Conference Proceedings (OSTI)

A process for capacitive deionization of water with a stack of carbon aerogel electrodes was developed. Unlike ion exchange, one of the more conventional deionization processes, no chemicals are required for regeneration of the system; electricity is used instead. An aqueous solution of NH{sub 4}ClO{sub 4} is pumped through the electrochemical cell. After polarization, NH{sub 4}{sup +} and ClO{sub 4}{sup -} ions are removed from the water by the imposed electric field and trapped in the extensive cathodic and anodic double layers. Thsi process produces one stream of purified water and a second stream of concentrate. Effects of cell voltage, salt concentration, and cycling on electrosorption capacity were studied and results reported.

Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

1996-01-01T23:59:59.000Z

127

A reaction mechanism for titanium nitride CVD from TiCl{sub 4} and NH{sub 3}  

Science Conference Proceedings (OSTI)

A gas-phase and surface reaction mechanism for the CVD of TiN from TiCl{sub 4} and NH{sub 3} is proposed. The only gas-phase process is complex formation, which can compete with deposition. The surface mechanism postulates the stepwise elimination of Cl and H atoms from TiCl{sub 4} and NH{sub 3}, respectively, to form solid TiN and gaseous HCl. The mechanism also accounts for the change in oxidation state of Ti by allowing for liberation of N{sub 2}. Provided that the surface composition is at steady state, the stoichiometry of the overall reaction is reproduced exactly. In addition, the global kinetic law predicted by the mechanism is successfully fit to new deposition data from a rotating disk reactor and is shown to be consistent with literature results.

Larson, R.S.; Allendorf, M.D.

1995-12-01T23:59:59.000Z

128

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

DAKOTA NEBRASKA KANSAS ARIZONA NEW MEXICO OKLAHOMA ARKANSAS MISSOURI IOWA MINNESOTA WISCONSIN MICH PA MD DELAWARE CONNECTICUT RHODE ISLAND MASS NH NJ ILL INDIANA OHIO VIRGINIA WV...

129

Microsoft Word - FUSRAP Wayne NJ.rtf  

Office of Legacy Management (LM)

Wayne Interim Storage Site (WISS) Wayne, New Jersey FACT SHEET January 2004 DESCRIPTION: The Wayne site is located in a highly developed area of northern New Jersey, approximately 20 miles north-northwest of Newark, New Jersey. The site was formerly owned and operated by Rare Earths, Inc. and W.R. Grace & Co. Contamination at the property resulted from rare earths and thorium processing activities conducted at the facility during the period of 1948 to 1971. The property is now owned by the U.S. government and is designated as the Wayne Interim Storage Site (WISS). The site is located at the intersection of Black Oak Ridge Road and Pompton Plains Cross Road in Wayne Township, Passaic County, New Jersey. The WISS consists of approximately 6.5 acres of fenced property, roughly

130

Microsoft Word - FUSRAP Middlesex NJ.doc  

Office of Legacy Management (LM)

were traces of radioactive materials that had been carried offsite over the years by wind and rain to yards of neighboring homes. Also, records later revealed that in 1948, some...

131

US MidAtl NJ Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

in New Jersey homes is for space heating. Air conditioning accounts for a larger share of household consumption than other Northeast states, but still only accounts for 3% of the...

132

The January Thaw at New Brunswick, NJ  

Science Conference Proceedings (OSTI)

An investigation of the January thaw phenomenon, a period of unseasonable warmth, was conducted using daily maximum temperatures recorded at New Brunswick, New Jersey, from 18581981. Student's t-tests, comparing long-term means of daily maximum ...

John R. Lanzante; Robert P. Harnack

1982-07-01T23:59:59.000Z

133

US MidAtl NJ Site Consumption  

Annual Energy Outlook 2012 (EIA)

than the average U.S. household. * New Jersey homes are 20% larger than the average U.S. home. CONSUMPTION BY END USE Nearly half the energy consumed in New Jersey homes is for...

134

Microsoft Word - FUSRAP Maywood NJ.rtf  

Office of Legacy Management (LM)

Maywood, New Jersey Maywood, New Jersey FACT SHEET January 2004 DESCRIPTION: The Maywood site is located in a highly developed area of northeastern New Jersey, in the boroughs of Maywood and Lodi and the township of Rochelle Park. It is located approximately 13 miles northeast of Newark, New Jersey. Contamination at the properties resulted from rare earths and thorium processing activities conducted at the Maywood Chemical Works (MCW) from the early 1900 through 1959. MCW stopped extracting thorium in 1959. The property was subsequently sold to the Stepan Company (Stepan), a pharmaceutical manufacturer, in 1959. The Maywood site is composed of the Maywood Interim Storage Site (MISS) and various nearby properties, including the Stepan property and numerous residential, commercial, and

135

DOE/EIA-0131(96) Distribution Category/UC-960 Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

ID ID OR WY ND SD CA NV UT CO NE KS AZ NM OK TX MN WI MI IA IL IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Japan Mexico Mexico Algeria Canada Canada Canada Canada Canada Canada Canada Algeria Canada United Arab Emirates Interstate Movements of Natural Gas in the United States, 1996 (Volumes Reported in Million Cubic Feet) Supplemental Data From Volume To From Volume To (T) AL KY (T) MA ME (T) AL LA MA NH (T) AL MO (T) MA NJ (T) AL SC MD DC CT RI RI MA DE MD VA DC MA CT (T) Trucked Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." E I A NERGY NFORMATION DMINISTRATION 906,407 355,260 243,866 220 384,311 576,420 823,799 842,114 27,271 126,012 133 602,841 266 579,598 16,837 268,138 48,442 182,511 219,242 86,897 643,401 619,703 8,157 937,806 292,711 869,951 12,316 590,493 118,256

136

UNH Cooperative Extension is an equal opportunity educator and employer, UNH, U.S. Dept. of Agriculture and NH counties cooperating.  

E-Print Network (OSTI)

-up of what you did to Rhiannon Beauregard, 4-H State Program Coordinator. Signature of Applicant Date: Rhiannon Beauregard, 4-H State Program Coordinator Moiles House, 180 Main Street, Durham, NH 03824 Rhiannon.beauregard

New Hampshire, University of

137

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Fuels Used and End Uses in Homes in Northeast Region, Divisions, and States, 2009" 8 Fuels Used and End Uses in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Fuels Used and End Uses",,,,"MA",,,"NY","PA","NJ" "Total Homes",113.6,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Fuels Used for Any Use" "Electricity",113.6,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Natural Gas",69.2,13.8,2.9,1.7,1.1,10.9,5.7,2.3,2.8

138

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Computers and Other Electronics in Homes in Northeast Region, Divisions, and States, 2009" 8 Computers and Other Electronics in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Computers and Other Electronics",,,,"MA",,,"NY","PA","NJ" "Total Homes",113.6,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Computers" "Number of Computers" 0,27.4,4.7,1,0.5,0.5,3.7,1.7,1.4,0.5 1,46.9,8.7,2.3,1,1.3,6.4,3.2,2,1.2 2,24.3,4.3,1.2,0.5,0.7,3.1,1.4,0.9,0.8

139

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Televisions in Homes in Northeast Region, Divisions, and States, 2009" 8 Televisions in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Televisions",,,,"MA",,,"NY","PA","NJ" "Total Homes",113.6,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Televisions" "Number of Televisions" 0,1.5,0.4,0.1,0.1,"Q",0.2,"Q","Q","Q" 1,24.2,4.6,1.2,0.6,0.6,3.5,2,1,0.4

140

Better Buildings Neighborhood Program: San Diego  

NLE Websites -- All DOE Office Websites (Extended Search)

Diego to Diego to someone by E-mail Share Better Buildings Neighborhood Program: San Diego on Facebook Tweet about Better Buildings Neighborhood Program: San Diego on Twitter Bookmark Better Buildings Neighborhood Program: San Diego on Google Bookmark Better Buildings Neighborhood Program: San Diego on Delicious Rank Better Buildings Neighborhood Program: San Diego on Digg Find More places to share Better Buildings Neighborhood Program: San Diego on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC TN | TX | VT | VI | VA WA | WI San Diego County, California Energy Upgrade California Motivates Home Improvements in San Diego County

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. Energy Information Administration | Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

1 1 Regional maps Figure F6. Coal supply regions Figure F6. Coal Supply Regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana Wyoming, Northern Powder River Basin Wyoming, Southern Powder River Basin Western Wyoming OTHER WEST Rocky Mountain Southwest Northwest KY AK 1000 0 SCALE IN MILES Source: U.S. Energy Information Administration, Office

142

Better Buildings Neighborhood Program: Alabama - SEP  

NLE Websites -- All DOE Office Websites (Extended Search)

Alabama - Alabama - SEP to someone by E-mail Share Better Buildings Neighborhood Program: Alabama - SEP on Facebook Tweet about Better Buildings Neighborhood Program: Alabama - SEP on Twitter Bookmark Better Buildings Neighborhood Program: Alabama - SEP on Google Bookmark Better Buildings Neighborhood Program: Alabama - SEP on Delicious Rank Better Buildings Neighborhood Program: Alabama - SEP on Digg Find More places to share Better Buildings Neighborhood Program: Alabama - SEP on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC TN | TX | VT | VI | VA WA | WI Alabama - SEP Alabama Program Takes a Dual Approach to Energy Efficiency Upgrades

143

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Space Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" 8 Space Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Space Heating",,,,"MA",,,"NY","PA","NJ" "Total Homes",113.6,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Space Heating Equipment" "Use Space Heating Equipment",110.1,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Have Space Heating Equipment But Do "

144

Better Buildings Neighborhood Program: Virginia - SEP  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia - Virginia - SEP to someone by E-mail Share Better Buildings Neighborhood Program: Virginia - SEP on Facebook Tweet about Better Buildings Neighborhood Program: Virginia - SEP on Twitter Bookmark Better Buildings Neighborhood Program: Virginia - SEP on Google Bookmark Better Buildings Neighborhood Program: Virginia - SEP on Delicious Rank Better Buildings Neighborhood Program: Virginia - SEP on Digg Find More places to share Better Buildings Neighborhood Program: Virginia - SEP on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC TN | TX | VT | VI | VA WA | WI Virginia - SEP Virginia's Regional Energy Alliances Help Forge a State Program for

145

Better Buildings Neighborhood Program: Austin, Texas  

NLE Websites -- All DOE Office Websites (Extended Search)

Austin, Texas Austin, Texas to someone by E-mail Share Better Buildings Neighborhood Program: Austin, Texas on Facebook Tweet about Better Buildings Neighborhood Program: Austin, Texas on Twitter Bookmark Better Buildings Neighborhood Program: Austin, Texas on Google Bookmark Better Buildings Neighborhood Program: Austin, Texas on Delicious Rank Better Buildings Neighborhood Program: Austin, Texas on Digg Find More places to share Better Buildings Neighborhood Program: Austin, Texas on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC TN | TX | VT | VI | VA WA | WI Austin, Texas Austin Energy Accelerates Residential and Multifamily Efficiency Upgrades

146

Better Buildings Neighborhood Program: Michigan - SEP  

NLE Websites -- All DOE Office Websites (Extended Search)

- - SEP to someone by E-mail Share Better Buildings Neighborhood Program: Michigan - SEP on Facebook Tweet about Better Buildings Neighborhood Program: Michigan - SEP on Twitter Bookmark Better Buildings Neighborhood Program: Michigan - SEP on Google Bookmark Better Buildings Neighborhood Program: Michigan - SEP on Delicious Rank Better Buildings Neighborhood Program: Michigan - SEP on Digg Find More places to share Better Buildings Neighborhood Program: Michigan - SEP on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC TN | TX | VT | VI | VA WA | WI Michigan - SEP Better Buildings Means Better Business for Michigan

147

Better Buildings Neighborhood Program: Toledo, Ohio  

NLE Websites -- All DOE Office Websites (Extended Search)

Toledo, Ohio Toledo, Ohio to someone by E-mail Share Better Buildings Neighborhood Program: Toledo, Ohio on Facebook Tweet about Better Buildings Neighborhood Program: Toledo, Ohio on Twitter Bookmark Better Buildings Neighborhood Program: Toledo, Ohio on Google Bookmark Better Buildings Neighborhood Program: Toledo, Ohio on Delicious Rank Better Buildings Neighborhood Program: Toledo, Ohio on Digg Find More places to share Better Buildings Neighborhood Program: Toledo, Ohio on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC TN | TX | VT | VI | VA WA | WI Toledo, Ohio A Broad Approach to Energy Efficiency in Northwest Ohio

148

Better Buildings Neighborhood Program: San Jose  

NLE Websites -- All DOE Office Websites (Extended Search)

San Jose to San Jose to someone by E-mail Share Better Buildings Neighborhood Program: San Jose on Facebook Tweet about Better Buildings Neighborhood Program: San Jose on Twitter Bookmark Better Buildings Neighborhood Program: San Jose on Google Bookmark Better Buildings Neighborhood Program: San Jose on Delicious Rank Better Buildings Neighborhood Program: San Jose on Digg Find More places to share Better Buildings Neighborhood Program: San Jose on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC TN | TX | VT | VI | VA WA | WI San Jose, California San Jose Leverages Partnerships to Improve Low-Income Households' Energy

149

Wind Program: Stakeholder Engagement and Outreach  

Wind Powering America (EERE)

Outreach Outreach Printable Version Bookmark and Share The Stakeholder Engagement and Outreach initiative of the U.S. Department of Energy's Wind Program is designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Highlights Resources Wind Resource Maps State Activities What activities are happening in my state? AK AL AR AZ CA CO CT DC DE FL GA HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY Installed wind capacity maps. Features A image of a house with a residential-scale small wind turbine. Small Wind for Homeowners, Farmers, and Businesses Stakeholder Engagement & Outreach Projects

150

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

2 2 Source: U.S. Energy Information Administration, Office of Energy Analysis. U.S. Energy Information Administration / Annual Energy Outlook 2010 213 Appendix F Regional Maps Figure F1. United States Census Divisions Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Source: U.S. Energy Information Administration, Office of Integrated Analysis and Forecasting. Appendix F Regional Maps Figure F1. United States Census Divisions U.S. Energy Information Administration | Annual Energy Outlook 2012

151

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Air Conditioning in Homes in Northeast Region, Divisions, and States, 2009" 8 Air Conditioning in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Air Conditioning",,,,"MA",,,"NY","PA","NJ" "Total Homes",113.6,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Air Conditioning Equipment" "Use Air Conditioning Equipment",94,16.5,3.9,1.9,2,12.6,5.3,4.4,2.9 "Have Air Conditioning Equipment But"

152

Assumptions to the Annual Energy Outlook 2007 Report  

Gasoline and Diesel Fuel Update (EIA)

clothes drying, ceiling fans, coffee makers, spas, home security clothes drying, ceiling fans, coffee makers, spas, home security systems, microwave ovens, set-top boxes, home audio equipment, rechargeable electronics, and VCR/DVDs. In addition to the major equipment-driven end-uses, the average energy consumption per household is projected for other electric and nonelectric appliances. The module's output includes number Energy Information Administration/Assumptions to the Annual Energy Outlook 2007 19 Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central

153

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 13. Net Interstate Movements, Imports, and Exports of Natural Gas in the United States, 2007 (Million Cubic Feet) Nigeria Algeria 37,483 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Algeria Canada Canada i i N g e r a Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and the Office of Fossil Energy, Natural Gas Imports and Exports.

154

Better Buildings Neighborhood Program: Maine - SEP  

NLE Websites -- All DOE Office Websites (Extended Search)

- SEP to - SEP to someone by E-mail Share Better Buildings Neighborhood Program: Maine - SEP on Facebook Tweet about Better Buildings Neighborhood Program: Maine - SEP on Twitter Bookmark Better Buildings Neighborhood Program: Maine - SEP on Google Bookmark Better Buildings Neighborhood Program: Maine - SEP on Delicious Rank Better Buildings Neighborhood Program: Maine - SEP on Digg Find More places to share Better Buildings Neighborhood Program: Maine - SEP on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC TN | TX | VT | VI | VA WA | WI Maine - SEP Maine Makes Multifamily Units Energy-Efficient and Cost-Effective

155

Better Buildings Neighborhood Program: Seattle, Washington  

NLE Websites -- All DOE Office Websites (Extended Search)

Seattle, Seattle, Washington to someone by E-mail Share Better Buildings Neighborhood Program: Seattle, Washington on Facebook Tweet about Better Buildings Neighborhood Program: Seattle, Washington on Twitter Bookmark Better Buildings Neighborhood Program: Seattle, Washington on Google Bookmark Better Buildings Neighborhood Program: Seattle, Washington on Delicious Rank Better Buildings Neighborhood Program: Seattle, Washington on Digg Find More places to share Better Buildings Neighborhood Program: Seattle, Washington on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC TN | TX | VT | VI | VA

156

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Home Appliances in Homes in Northeast Region, Divisions, and States, 2009" 8 Home Appliances in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Home Appliances",,,,"MA",,,"NY","PA","NJ" "Total Homes",113.6,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)" "Use a Stove",102.3,19.2,5.2,2.3,2.8,14.1,6.8,4.6,2.7

157

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Household Demographics of Homes in Northeast Region, Divisions, and States, 2009" 8 Household Demographics of Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Household Demographics",,,,"MA",,,"NY","PA","NJ" "Total Homes",113.6,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Number of Household Members" "1 Person",31.3,6,1.5,0.7,0.8,4.5,2.1,1.6,0.8 "2 Persons",35.8,6.3,1.8,0.8,1,4.5,2,1.5,0.9

158

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Structural and Geographic Characteristics of Homes in Northeast Region, Divisions, and States, 2009" 8 Structural and Geographic Characteristics of Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" "Structural and Geographic Characteristics",,"Total Northeast",,,"CT, ME, NH, RI, VT" ,,,,"MA",,,"NY","PA","NJ" "Total Homes",113.6,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Urban and Rural2" "Urban",88.1,18,4.4,2.2,2.2,13.6,6.6,3.9,3.1 "Rural",25.5,2.8,1.1,0.3,0.8,1.7,0.6,1,"Q"

159

U.S. Energy Information Administration | Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

4 4 Regional maps Figure F7. Coal demand regions Figure F7. Coal Demand Regions CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT 16. PC 15. ZN 12. WS 11. C2 9. AM 5. GF 8. KT 4. S2 7. EN 6. OH 2. YP 1. NE 3. S1 10. C1 KY,TN 8. KT 16. PC AK,HI,WA,OR,CA 10. C1 CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT

160

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

2 2 Regional maps Figure F7. Coal demand regions Figure F7. Coal Demand Regions CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT 16. PC 15. ZN 12. WS 11. C2 9. AM 5. GF 8. KT 4. S2 7. EN 6. OH 2. YP 1. NE 3. S1 10. C1 KY,TN 8. KT 16. PC AK,HI,WA,OR,CA 10. C1 CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DENSE GAS TRACERS IN PERSEUS: RELATING THE N{sub 2}H{sup +}, NH{sub 3}, AND DUST CONTINUUM PROPERTIES OF PRE- AND PROTOSTELLAR CORES  

SciTech Connect

We investigate 35 prestellar cores and 36 protostellar cores in the Perseus molecular cloud. We find a very tight correlation between the physical parameters describing the N{sub 2}H{sup +} and NH{sub 3} gas. Both the velocity centroids and the line widths of N{sub 2}H{sup +} and NH{sub 3} correlate much better than either species correlates with CO, as expected if the nitrogen-bearing species are probing primarily the dense core gas where the CO has been depleted. We also find a tight correlation in the inferred abundance ratio between N{sub 2}H{sup +} and para-NH{sub 3} across all cores, with N(p-NH{sub 3})/N(N{sub 2}H{sup +}) = 22 +- 10. We find a mild correlation between NH{sub 3} (and N{sub 2}H{sup +}) column density and the (sub)millimeter dust continuum derived H{sub 2} column density for prestellar cores, N(p-NH{sub 3})/N(H{sub 2}) {approx}10{sup -8}, but do not find a fixed ratio for protostellar cores. The observations suggest that in the Perseus molecular cloud the formation and destruction mechanisms for the two nitrogen-bearing species are similar, regardless of the physical conditions in the dense core gas. While the equivalence of N{sub 2}H{sup +} and NH{sub 3} as powerful tracers of dense gas is validated, the lack of correspondence between these species and the (sub)millimeter dust continuum observations for protostellar cores is disconcerting and presently unexplained.

Johnstone, Doug; Kirk, Helen [National Research Council Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Rosolowsky, Erik [University of British Columbia Okanagan, Kelowna, BC V1V 1V7 (Canada); Tafalla, Mario, E-mail: doug.johnstone@nrc-cnrc.gc.c [Observatorio Astronomico Nacional (IGN), Alfonso XII 3, E-28014 Madrid (Spain)

2010-03-10T23:59:59.000Z

162

NOIlVUlSININdV NOIlVWdOdNI AOd3N3 ACTO3NH  

Gasoline and Diesel Fuel Update (EIA)

NOIlVUlSININdV NOIlVWdOdNI AOd3N3 NOIlVUlSININdV NOIlVWdOdNI AOd3N3 ACTO3NH 0661 This publication may be purchased from the Superintendent of Documents, U.S. Government Printing Office. Purchasing in formation for this or other Energy Information Administration (EIA) publications may be obtained from the Government Printing Office or ElA's National Energy Information Center. Questions on energy statistics should be directed to the Center by mail, telephone, or telecommunications device for the hearing impaired. Addresses, telephone numbers, and hours are as follows: National Energy Information Center Energy Information Administration Forrestal Building, Room 1F-048 Washington, DC 20585 (202) 586-8800 Telecommunications Device for the Hearing Impaired Only: (202) 586-1181 8 a.m. - 5 p.m., eastern time, M-F

163

A model of the gas-phase chemistry of boron nitride CVC from BCl{sub 3} and NH{sub 3}  

Science Conference Proceedings (OSTI)

The kinetics of gas-phase reactions occurring during the CVD of boron nitride (BN) from BCl{sub 3} and NH{sub 3} are investigated using an elementary reaction mechanism whose rate constants were obtained from theoretical predictions and literature sources. Plug-flow calculations using this mechanism predict that unimolecular decomposition of BCl{sub 3} is not significant under typical CVD conditions, but that some NH{sub 3} decomposition may occur, especially for deposition occurring at atmospheric pressure. Reaction of BCl{sub 3} with NH{sub 3} is rapid under CVD conditions and yields species containing both boron and nitrogen. One of these compounds, Cl{sub 2}BNH{sub 2}, is predicted to be a key gas-phase precursor to BN.

Allendorf, M.D.; Melius, C.F.; Osterheld, T.H.

1995-12-01T23:59:59.000Z

164

FLUORESCENCE EXCITATION MODELS OF AMMONIA AND AMIDOGEN RADICAL (NH{sub 2}) IN COMETS: APPLICATION TO COMET C/2004 Q2 (MACHHOLZ)  

SciTech Connect

Ammonia is a major reservoir of nitrogen atoms in cometary materials. However, detections of ammonia in comets are rare, with several achieved at radio wavelengths. A few more detections were obtained through near-infrared observations (around the 3 {mu}m wavelength region), but moderate relative velocity shifts are required to separate emission lines of cometary ammonia from telluric absorption lines in the 3 {mu}m wavelength region. On the other hand, the amidogen radical (NH{sub 2}-a photodissociation product of ammonia in the coma) also shows rovibrational emission lines in the 3 {mu}m wavelength region. Thus, gas production rates for ammonia can be determined from the rovibrational emission lines of ammonia (directly) and amidogen radical (indirectly) simultaneously in the near-infrared. In this article, we present new fluorescence excitation models for cometary ammonia and amidogen radical in the near-infrared, and we apply these models to the near-infrared high-dispersion spectra of comet C/2004 Q2 (Machholz) to determine the mixing ratio of ammonia to water in the comet. Based on direct detection of NH{sub 3} lines, the mixing ratio of NH{sub 3}/H{sub 2}O is 0.46% {+-} 0.03% in C/2004 Q2 (Machholz), in agreement with other results. The mixing ratio of ammonia determined from the NH{sub 2} observations (0.31%-0.79%) is consistent but has relatively larger error, owing to uncertainty in the photodissociation rates of ammonia. At the present level of accuracy, we confirm that NH{sub 3} could be the sole parent of NH{sub 2} in this comet.

Kawakita, Hideyo [Department of Physics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Mumma, Michael J., E-mail: kawakthd@cc.kyoto-su.ac.jp [Solar System Exploration Division, Mailstop 690.3, NASA Godard Space Flight Center, Greenbelt, MD 20771 (United States)

2011-02-01T23:59:59.000Z

165

Short-term recovery of NH4-15N applied to a temperate forest inceptisol and ultisol in east Tennessee USA  

Science Conference Proceedings (OSTI)

The short-term fate and retention of ammonium (NH4)-{sup 15}nitrogen (N) applied to two types of forest soils in east Tennessee was investigated. Four ridgetop forests, predominantly oak (Quercus spp.), were studied. Five applications of NH{sub 4}-{sup 15}N tracer were made to the forest floor at 2- to 4-week intervals over a 14-week period in 2004. Nitrogen-15 recovery in the forest floor, fine roots (100 weeks) indicated the forest floor is an effective filter for atmospheric N inputs.

Garten Jr, Charles T [ORNL; Brice, Deanne Jane [ORNL; Todd Jr, Donald E [ORNL

2007-11-01T23:59:59.000Z

166

Highgate Springs, VT LNG Imports from Canada  

U.S. Energy Information Administration (EIA) Indexed Site

Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Pipeline Volumes 8,021 8,106 9,319 8,895...

167

VT PowerPoint Template2  

NLE Websites -- All DOE Office Websites (Extended Search)

injection site * Determine optimal sensor array Aneth - Reservoir Information * Aneth oil field, discovered in 1956 * Limestone * Permeability: 3-30 mD * Porosity: 10.2% *...

168

Regulatory Safety Issues in the Structural Design Criteria of ASME Section III Subsection NH and for Very High Temperatures for VHTR & GEN IV  

Science Conference Proceedings (OSTI)

The objective of this task is to identify issues relevant to ASME Section III, Subsection NH [1], and related Code Cases that must be resolved for licensing purposes for VHTGRs (Very High Temperature Gas Reactor concepts such as those of PBMR, Areva, and GA); and to identify the material models, design criteria, and analysis methods that need to be added to the ASME Code to cover the unresolved safety issues. Subsection NH was originally developed to provide structural design criteria and limits for elevated-temperature design of Liquid Metal Fast Breeder Reactor (LMFBR) systems and some gas-cooled systems. The U.S. Nuclear Regulatory Commission (NRC) and its Advisory Committee for Reactor Safeguards (ACRS) reviewed the design limits and procedures in the process of reviewing the Clinch River Breeder Reactor (CRBR) for a construction permit in the late 1970s and early 1980s, and identified issues that needed resolution. In the years since then, the NRC and various contractors have evaluated the applicability of the ASME Code and Code Cases to high-temperature reactor designs such as the VHTGRs, and identified issues that need to be resolved to provide a regulatory basis for licensing. This Report describes: (1) NRC and ACRS safety concerns raised during the licensing process of CRBR , (2) how some of these issues are addressed by the current Subsection NH of the ASME Code; and (3) the material models, design criteria, and analysis methods that need to be added to the ASME Code and Code Cases to cover unresolved regulatory issues for very high temperature service.

William J. ODonnell; Donald S. Griffin

2007-05-07T23:59:59.000Z

169

Effects of gaseous NH{sub 3} and SO{sub 2} on the concentration profiles of PCDD/F in flyash under post-combustion zone conditions  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Influence of NH{sub 3} and SO{sub 2} on 2378-PCDD/F in flyash and flue gases was investigated. Black-Right-Pointing-Pointer NH{sub 3} decreased the concentration of PCDD and PCDF by 34-75% in the flyash. Black-Right-Pointing-Pointer NH{sub 3} decreased the concentration of PCDD and PCDF by 21-40% from the flue gases. Black-Right-Pointing-Pointer SO{sub 2} led to 99% PCDD and 93% PCDF reductions in the flyash. Black-Right-Pointing-Pointer SO{sub 2} led to 89% PCDD and 76% PCDF reductions in the flue gases. - Abstract: The influence of gaseous ammonia and sulphur dioxide on the formation of 2378-substituted PCDD/F on a reference flyash from a municipal waste incinerator has been investigated using a laboratory scale fixed-bed reactor. The reference flyash samples (BCR-490) was reacted under a simulated flue gas stream at temperatures of 225 and 375 Degree-Sign C for 96 h. The experiments were carried out in two series: first with simulated flue gas alone, and then with injection of NH{sub 3} or SO{sub 2} gas into the flue gas just before the reactor inlet. It was found that the injection of gaseous ammonia into the flue gas could decrease the concentration of both PCDD and PCDF by 34-75% from the solid phase and by 21-40% from the gas phase. Converting the results to I-TEQ values, it could reduce the total I-TEQ values of PCDD and PCDF in the sum of the flyash and exhaust flue gas by 42-75% and 24-57% respectively. The application of SO{sub 2} led to 99% and 93% reductions in the PCDD and PCDF average congener concentrations, respectively in the solid phase. In the gas phase, the total reductions were 89% and 76% for PCDD and PCDF, respectively. Moreover, addition of SO{sub 2} reduced the total I-TEQ value of PCDD and PCDF in the flyash and exhaust flue gas together by 60-86% and 72-82% respectively. Sulphur dioxide was more effective than ammonia in suppressing PCDD/F formation in flyash under the conditions investigated.

Hajizadeh, Yaghoub; Onwudili, Jude A. [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom)

2012-07-15T23:59:59.000Z

170

Decomposition of NH3BH3 at sub-ambient pressures: A combined thermogravimetry-differential thermal analysis-mass spectrometry study  

DOE Green Energy (OSTI)

We report a systematic study of the isothermal decomposition of ammonia borane, NH3BH3, at 363 K as a function of argon pressure ranging between 50 and 1040 mbar using thermogravimetry and differential thermal analysis coupled with mass analysis of the volatile species. During thermal aging at 363 K, evolution of hydrogen, aminoborane and borazine is monitored, with the relative mass loss strongly depending on the pressure in the reaction chamber. Furthermore, the induction period required for hydrogen release at 363 K decreases with decreasing pressure.

Palumbo, Oriele; Paolone, Annalisa; Rispoli, Pasquale; Cantelli, Rosario; Autrey, Thomas

2010-03-15T23:59:59.000Z

171

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

WA WA MT ID OR WY ND SD CA NV UT CO NE KS AZ NM OK TX MN WI MI IA IL IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Japan Mexico Mexico Algeria Canada Canada Canada Canada Canada Canada Canada Algeria Canada United Arab Emirates Australia Australia Trinidad Qatar Malaysia Canada Mexico Interstate Movements of Natural Gas in the United States, 1999 (Volumes Reported in Million Cubic Feet) Supplemental Data From Volume To From Volume To (T) AL TX MA NH CT RI MD DC DE MD RI MA MA CT VA DC (T) Trucked Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." E I A NERGY NFORMATION DMINISTRATION 837,902 415,636 225,138 232 308,214 805,614 803,034 800,345 685 147 628,589 9,786 790,088 17,369 278,302 40,727 214,076 275,629 51,935 843,280 826,638 9,988 998,603 553,440 896,187 11,817 629,551 98,423

172

Quantum wells on 3C-SiC/NH-SiC heterojunctions. Calculation of spontaneous polarization and electric field strength in experiments  

SciTech Connect

The results of experiments with quantum wells on 3C-SiC/4H-SiC and 3C-SiC/6H-SiC heterojunctions obtained by various methods are reconsidered. Spontaneous polarizations, field strengths, and energies of local levels in quantum wells on 3C-SiC/NH-SiC heterojunctions were calculated within a unified model. The values obtained are in agreement with the results of all considered experiments. Heterojunction types are determined. Approximations for valence band offsets on heterojunctions between silicon carbide polytypes and the expression for calculating local levels in quantum wells on the 3C-SiC/NH-SiC heterojunction are presented. The spontaneous polarizations and field strengths induced by spontaneous polarization on 3C-SiC/4H-SiC and 3C-SiC/6H-SiC heterojunctions were calculated as 0.71 and 0.47 C/m{sup 2} and 0.825 and 0.55 MV/cm, respectively.

Sbruev, I. S.; Sbruev, S. B., E-mail: science@yandex.ru [Moscow Aviation Institute (Russian Federation)

2010-10-15T23:59:59.000Z

173

HfO2 Gate Dielectric on (NH4)2S Passivated (100) GaAs Grown by Atomic Layer Deposition  

Science Conference Proceedings (OSTI)

The interface between hafnium oxide grown by atomic layer deposition and (100) GaAs treated with HCl cleaning and (NH{sub 4}){sub 2}S passivation has been characterized. Synchrotron radiation photoemission core level spectra indicated successful removal of the native oxides and formation of passivating sulfides on the GaAs surface. Layer-by-layer removal of the hafnia film revealed a small amount of As{sub 2}O{sub 3} formed at the interface during the dielectric deposition. Traces of arsenic and sulfur out-diffusion into the hafnia film were observed after a 450 C post-deposition anneal, and may be the origins for the electrically active defects. Transmission electron microscopy cross section images showed thicker HfO{sub 2} films for a given precursor exposure on S-treated GaAs versus the non-treated sample. In addition, the valence-band and the conduction-band offsets at the HfO{sub 2}/GaAs interface were deduced to be 3.18 eV and a range of 0.87-0.97 eV, respectively. It appears that HCl+(NH{sub 4})2{sub S} treatments provide a superior chemical passivation for GaAs and initial surface for ALD deposition.

Chen, P.T.; /Stanford U., Materials Sci. Dept.; Sun, Y.; /SLAC, SSRL; Kim, E.; McIntyre, P.C.; /Stanford U., Materials Sci. Dept.; Tsai, W.; Garner, M.; /Intel, Santa Clara; Pianetta, P.; /SLAC, SSRL; Nishi, Y.; /Stanford U., Elect. Eng. Dept.; Chui, C.O.; /UCLA

2007-09-28T23:59:59.000Z

174

AFFECTS OF MECHANICAL MILLING AND METAL OXIDE ADDITIVES ON SORPTION KINETICS OF 1:1 LiNH2/MgH2 MIXTURE  

DOE Green Energy (OSTI)

The destabilized complex hydride system composed of LiNH{sub 2}:MgH{sub 2} (1:1 molar ratio) is one of the leading candidates of hydrogen storage with a reversible hydrogen storage capacity of 8.1 wt%. A low sorption enthalpy of {approx}32 kJ/mole H{sub 2} was first predicted by Alapati et al. utilizing first principle density function theory (DFT) calculations and has been subsequently confirmed empirically by Lu et al. through differential thermal analysis (DTA). This enthalpy suggests that favorable sorption kinetics should be obtainable at temperatures in the range of 160 C to 200 C. Preliminary experiments reported in the literature indicate that sorption kinetics are substantially lower than expected in this temperature range despite favorable thermodynamics. Systematic isothermal and isobaric sorption experiments were performed using a Sievert's apparatus to form a baseline data set by which to compare kinetic results over the pressure and temperature range anticipated for use of this material as a hydrogen storage media. Various material preparation methods and compositional modifications were performed in attempts to increase the kinetics while lowering the sorption temperatures. This paper outlines the results of these systematic tests and describes a number of beneficial additions which influence kinetics as well as NH{sub 3} formation.

Erdy, C.; Anton, D.; Gray, J.

2010-12-08T23:59:59.000Z

175

High-throughput and in situ EDXRD investigation on the formation of two new metal aminoethylphosphonates - Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) and Ca(OH)(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3}){center_dot}2H{sub 2}O  

SciTech Connect

The system Ca{sup 2+}/2-aminoethylphosphonic acid/H{sub 2}O/NaOH was systematically investigated using high-throughput methods. The experiments led to one new compound Ca(O{sub 3}PC{sub 2} H{sub 4}NH{sub 2}) (1) and the crystal structure was determined using in house X-ray powder diffraction data (monoclinic, P2{sub 1}/c, a=9.7753(3), b=6.4931(2), c=8.4473(2) A, {beta}=106.46(2) Degree-Sign , V=514.20(2) A{sup 3}, Z=4). The formation of 1 was investigated by in situ energy dispersive X-ray diffraction measurements (EDXRD) at beamline F3 at HASYLAB (light source DORIS III), DESY, Hamburg. An intermediate, Ca(OH)(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3}){center_dot}2H{sub 2}O (2), was observed and could be isolated from the reaction mixture at ambient temperatures by quenching the reaction. The crystal structure of 2 was determined from XRPD data using synchrotron radiation (monoclinic, P2{sub 1}/m, a=11.2193(7), b=7.1488(3), c=5.0635(2) A, {beta}=100.13(4) Degree-Sign , V=399.78(3) A{sup 3}, Z=2). - Graphical abstarct: The detailed in situ energy dispersive X-ray diffraction (EDXRD) investigation on the formation of the new inorganic-organic hybrid compound Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) leads to the discovery of a new crystalline intermediate phase. Both crystal structures were elucidated using X-ray powder diffraction data. Highlights: Black-Right-Pointing-Pointer High-throughput investigation led to new metal aminoethylphosphonate Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}). Black-Right-Pointing-Pointer The formation of Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) was followed by in situ EDXRD measurements. Black-Right-Pointing-Pointer The crystalline intermediate Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3})(OH){center_dot}2H{sub 2}O was discovered. Black-Right-Pointing-Pointer Isolation of Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3})(OH){center_dot}2H{sub 2}O was accomplished by quenching experiments. Black-Right-Pointing-Pointer The structures were determined using X-ray powder diffraction data.

Schmidt, Corinna; Feyand, Mark [Institut fuer Anorganische Chemie, Christian-Albrechts-Universitaet, Max-Eyth Strasse 2, D 24118 Kiel (Germany); Rothkirch, Andre [HASYLAB, DESY Hamburg, Notkestrasse 85, 22607 Hamburg (Germany); Stock, Norbert, E-mail: stock@ac.uni-kiel.de [Institut fuer Anorganische Chemie, Christian-Albrechts-Universitaet, Max-Eyth Strasse 2, D 24118 Kiel (Germany)

2012-04-15T23:59:59.000Z

176

QM/MM Lineshape Simulation of the Hydrogen-bonded Uracil NH Stretching Vibration of the Adenine:Uracil Base Pair in CDCl$_3$  

E-Print Network (OSTI)

A hybrid Car-Parrinello QM/MM molecular dynamics simulation has been carried out for the Watson-Crick base pair of 9-ethyl-8-phenyladenine and 1-cyclohexyluracil in deuterochloroform solution at room temperature. The resulting trajectory is analyzed putting emphasis on the N-H$...$N Hydrogen bond geometry. Using an empirical correlation between the $\\NN$-distance and the fundamental NH-stretching frequency, the time-dependence of this energy gap along the trajectory is obtained. From the gap-correlation function we determine the infrared absorption spectrum using lineshape theory in combination with a multimode oscillator model. The obtained average transition frequency and the width of the spectrum is in reasonable agreement with recent experimental data.

Yan, Yun-an; Khn, Oliver

2008-01-01T23:59:59.000Z

177

High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH{sub 3}-based molecular beam epitaxy  

SciTech Connect

High external quantum efficiency (EQE) p-i-n heterojunction solar cells grown by NH{sub 3}-based molecular beam epitaxy are presented. EQE values including optical losses are greater than 50% with fill-factors over 72% when illuminated with a 1 sun AM0 spectrum. Optical absorption measurements in conjunction with EQE measurements indicate an internal quantum efficiency greater than 90% for the InGaN absorbing layer. By adjusting the thickness of the top p-type GaN window contact layer, it is shown that the short-wavelength (<365 nm) quantum efficiency is limited by the minority carrier diffusion length in highly Mg-doped p-GaN.

Lang, J. R.; Hurni, C. A.; Cruz, S. C.; Matioli, E.; Speck, J. S. [Department of Materials, University of California, Santa Barbara, California 93106 (United States); Neufeld, C. J.; Mishra, U. K. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

2011-03-28T23:59:59.000Z

178

Selective Catalytic Reduction (SCR) of nitric oxide with ammonia using Cu-ZSM-5 and Va-based honeycomb monolith catalysts: effect of H2 pretreatment, NH3-to-NO ratio, O2, and space velocity  

E-Print Network (OSTI)

In this work, the steady-state performance of zeolite-based (Cu-ZSM-5) and vanadium-based honeycomb monolith catalysts was investigated in the selective catalytic reduction process (SCR) for NO removal using NH3. The aim was to delineate the effect of various parameters including pretreatment of the catalyst sample with H2, NH3-to-NO ratio, inlet oxygen concentration, and space velocity. The concentrations of the species (e.g. NO, NH3, and others) were determined using a Fourier Transform Infrared (FTIR) spectrometer. The temperature was varied from ambient (25 C) to 500 C. The investigation showed that all of the above parameters (except pre-treatment with H2) significantly affected the peak NO reduction, the temperature at which peak NO reduction occurred, and residual ammonia left at higher temperatures (also known as 'NH3 slip'). Depending upon the particular values of the parameters, a peak NO reduction of around 90% was obtained for both the catalysts. However, an accompanied generation of N2O and NO2 species was observed as well, being much higher for the vanadium-based catalyst than for the Cu-ZSM-5 catalyst. For both catalysts, the peak NO reduction decreased with an increase in space velocity, and did not change significantly with an increase in oxygen concentration. The temperatures at which peak NO reduction and complete NH3 removal occurred increased with an increase in space velocity but decreased with an increase in oxygen concentration. The presence of more ammonia at the inlet (i.e. higher NH3-to-NO ratio) improved the peak NO reduction but simultaneously resulted in an increase in residual ammonia. Pretreatment of the catalyst sample with H2 (performed only for the Cu-ZSM-5 catalyst) did not produce any perceivable difference in any of the results for the conditions of these experiments.

Gupta, Saurabh

2003-08-01T23:59:59.000Z

179

RECIPIENT:Princeton Power Systems STATE: NJ PROJECT Marine High...  

NLE Websites -- All DOE Office Websites (Extended Search)

This is a fully licensed facility with established safety and chemical handling protocols . All activities meet OSHA standards and the site is monitored and audited by OSHA,...

180

To cities, with nothing : prisoner resettlement in Newark, NJ  

E-Print Network (OSTI)

This thesis considers how cities can improve employment outcomes of recently released, formerly incarcerated people. The Newark Prisoner Reentry Initiative (NPRI) is a unique case where the city directly managed six ...

Feeney, Kevin Joseph

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DOE - Office of Legacy Management -- Maywood Site - NJ 10  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

182

DOE's NJ HIGH SCHOOL SCIENCE BOWL | Princeton Plasma Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

183

Imaging ion-molecule reactions: Charge transfer and C-N bond formation in the C{sup +}+ NH{sub 3} system  

Science Conference Proceedings (OSTI)

The velocity mapping ion imaging method is applied to the ion-molecule reactions occurring between C{sup +} and NH{sub 3}. The velocity space images are collected over the relative collision energy range from 1.5 to 3.3 eV, allowing both product kinetic energy distributions and angular distributions to be obtained from the data. The charge transfer process appears to be direct, dominated by long-range electron transfer that results in minimal deflection of the products. The product kinetic energy distributions are consistent with a process dominated by energy resonance. The kinetic energy distributions for C-N bond formation appear to scale with the total available energy, providing strong evidence that energy in the [CNH{sub 3}]{sup +} precursor to products is distributed statistically. The angular distributions for C-N bond formation show pronounced forward-backward symmetry, as expected for a complex that resembles a prolate symmetric top decaying along its symmetry axis.

Pei, Linsen; Farrar, James M. [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States)

2012-05-28T23:59:59.000Z

184

LOW-TEMPERATURE ION TRAP STUDIES OF N{sup +}({sup 3} P{sub ja} ) + H{sub 2}(j) {yields} NH{sup +} + H  

SciTech Connect

Using a low-temperature 22-pole ion trap apparatus, detailed measurements for the title reaction have been performed between 10 K and 100 K in order to get some state specific information about this fundamental hydrogen abstraction process. The relative population of the two lowest H{sub 2} rotational states, j = 0 and 1, has been varied systematically. NH{sup +} formation is nearly thermo-neutral; however, to date, the energetics are not known with the accuracy required for low-temperature astrochemistry. Additional complications arise from the fact that, so far, there is no reliable theoretical or experimental information on how the reactivity of the N{sup +} ion depends on its fine-structure (FS) state {sup 3} P{sub ja} . Since in the present trapping experiment, thermalization of the initially hot FS population competes with hydrogen abstraction, the evaluation of the decay of N{sup +} ions over long storage times and at various He and H{sub 2} gas densities provides information on these processes. First assuming strict adiabatic behavior, a set of state specific rate coefficients is derived from the measured thermal rate coefficients. In addition, by recording the disappearance of the N{sup +} ions over several orders of magnitude, information on nonadiabatic transitions is extracted including FS-changing collisions.

Zymak, I.; Hejduk, M.; Mulin, D.; Plasil, R.; Glosik, J.; Gerlich, D. [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic)

2013-05-01T23:59:59.000Z

185

Detailed modeling and laser-induced fluorescence imaging of nitric oxide in a NH(i)-seeded non-premixed methane/air flame  

Science Conference Proceedings (OSTI)

In this paper we study the formation of NO in laminar, nitrogen diluted methane diffusion flames that are seeded with ammonia in the fuel stream. We have performed numerical simulations with detailed chemistry as well as laser-induced fluorescence imaging measurements for a range of ammonia injection rates. For comparison with the experimental data, synthetic LIF images are calculated based on the numerical data accounting for temperature and fluorescence quenching effects. We demonstrate good agreement between measurements and computations. The LIF corrections inferred from the simulation are then used to calculate absolute NO mole fractions from the measured signal.The NO formation in both doped and undoped flames occurs in the flame sheet. In the undoped flame, four different mechanisms including thermal and prompt NO appear to contribute to NO formation. As the NH3 seeding level increases, fuel-NO becomes the dominant mechanism and N2 shifts from being a net reactant to being a net product. Nitric oxide in the undoped flame as well as in the core region of the doped flames are underpredicted by the model; we attribute this mainly to inaccuracies in the NO recycling chemistry on the fuel-rich side of the flame sheet.

Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Bessler, Wolfgang G.; Schulz, Christof; Glarborg, Peter; Jensen, Anker D.

2001-12-14T23:59:59.000Z

186

Make Checks Payable to the 4-H Foundation of New Hampshire. For more information contact Rhiannon Beauregard at Rhiannon.Beauergard@unh.edu or (603) 862-2188. All of this information can be found at the NH 4-H State Horse Show Website  

E-Print Network (OSTI)

Beauregard at Rhiannon.Beauergard@unh.edu or (603) 862-2188. All of this information can be found at the NH 4 Foundation of New Hampshire. For more information contact Rhiannon Beauregard at Rhiannon Exposition. Please notify Rhiannon Beauregard, NH 4-H Animal and Agricultural Science Education Coordinator

New Hampshire, University of

187

NH_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionNewHampshireWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of New...

188

Microsoft Word - figure_21.doc  

Annual Energy Outlook 2012 (EIA)

of Natural and Supplemental Gas Supply and Disposition," and Form EIA-910, "Monthly Natural Gas Marketer Survey." IN OH TN WV VA KY MD PA NY VT NH MA CT ME RI DE DC NC SC GA...

189

Microsoft Word - figure_23.doc  

Annual Energy Outlook 2012 (EIA)

11.00+ Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." IN OH TN WV VA KY MD PA NY VT NH MA...

190

Microsoft Word - figure_23.doc  

Gasoline and Diesel Fuel Update (EIA)

Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." IN OH TN WV VA KY MD PA NY VT NH MA...

191

New England Wind Forum: More Search Options  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT More Search Options New England Wind Forum Site...

192

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

,833 ,833 35 Egypt Figure 13. Net Interstate Movements, Imports, and Exports of Natural Gas in the United States, 2009 (Million Cubic Feet) Norway Trinidad/ Tobago Trinidad/ Tobago Egypt Interstate Movements Not Shown on Map From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 111,144 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Canada Canada i i N g e r a Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates

193

AEOSup ltr to Dear Customer  

Gasoline and Diesel Fuel Update (EIA)

WA WA OR CA ID NV UT AZ NM CO WY MT ND SD NE KS OK TX MN IA MO AR LA WI IL KY IN OH WV TN MS AL GA SC NC VA PA NY VT ME NH MA RI CT NJ DE MD D.C. FL MI Electricity Supply Regions 1 ECAR 2 ERCOT 3 MAAC 4 MAIN 5 MAPP 6 NY 7 NE 8 FL 9 STV 10 SPP 11 NWP 12 RA 13 CNV 13 11 12 2 10 5 9 8 1 6 7 3 AK 15 14 H I 14 AK 15 H I Figure 2. Electricity Market Module (EMM) Regions 1. ECAR = East Central Area Reliability Coordination Agreement 2. ERCOT = Electric Reliability Council of Texas 3. MACC = Mid-Atlantic Area Council 4. MAIN = Mid-America Interconnected Network 5. MAPP = Mid-Continent Area Power Pool 6. NY = Northeast Power Coordinating Council/ New York 7. NE = Northeast Power Coordinating Council/ New England 8. FL = Southeastern Electric Reliability Council/ Florida 9. STV = Southeastern Electric Reliability Council /excluding Florida 10. SPP

194

regionalmaps  

Gasoline and Diesel Fuel Update (EIA)

Specific LNG Terminals Specific LNG Terminals Generic LNG Terminals Pacifi c (9) Moun tain (8) CA (12) AZ/N M (11) W. North Centr al (4) W. South Centr al (7) E. South Centr al (6) E. North Centr al (3) S. Atlan tic (5) FL (10) Mid. Atlan tic (2) New Engl. (1) W. Cana da E. Cana da MacK enzie Alask a Cana da Offsh ore and LNG Mexic o Baha mas Primary Flows Secondary Flows Pipeline Border Crossing Specific LNG Terminals Generic LNG Terminals Figure 6. Coal Supply Regions Source: Energy Information Administration. Office of Integrated Analysis and Forecasting WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana

195

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 (Million Cubic Feet) Supplemental Data From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 42,411 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Algeria Canada Canada i i N g e r a Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and the Office of Fossil Energy, Natural Gas Imports and Exports. Energy Information Administration / Natural Gas Annual 2006 253,214 690,780 634,185 658,523 134,764 63,063 526,726 121,049 34,531 492,655 101,101 23,154 40,113 1,496,283 68,601

196

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2013 Annual Energy Outlook 2013 Source: U.S. Energy Information Administration, Office of Energy Analysis. U.S. Energy Information Administration / Annual Energy Outlook 2010 213 Appendix F Regional Maps Figure F1. United States Census Divisions Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Source: U.S. Energy Information Administration, Office of Integrated Analysis and Forecasting. Appendix F Regional Maps Figure F1. United States Census Divisions U.S. Energy Information Administration | Annual Energy Outlook 2013

197

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

Energy Energy Information Administration / Natural Gas Annual 1999 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001 and over 4. Marketed Production of Natural Gas in the United States, 1999 (Million Cubic Feet) Figure 5. Marketed Production of Natural Gas in Selected States, 1995-1999 Figure T e x a s L o u i s i a n a O k l a h o m a N e w M e x i c o W y o m i n g C o l o r a d o K a n s a s A l a b a m a A l a s k a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 6 7 Trillion Cubic Feet Billion Cubic Meters 95 96 97 98 99 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value

198

Microsoft Word - figure_14.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 14. Net Interstate Movements, Imports, and Exports of Natural Gas in the United States, 2010 (Million Cubic Feet) Norway India Trinidad/ Tobago Egypt Yemen Japan Interstate Movements Not Shown on Map From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 53,122 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Canada Canada Gulf of Mexico Canada Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates based on historical data. Energy Information

199

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inventory map reflects the non-federally owned SNF and HLW covered by the Nuclear Waste Policy Act Inventory map reflects the non-federally owned SNF and HLW covered by the Nuclear Waste Policy Act 2 Metric Tons Heavy Metal (MTHM) 3 Based on actual data through 2002 , as provided in the RW-859, and projected discharges for 2003-2010 which are rounded to two significant digits. Reflects trans-shipments as of end-2002. End of Year 2010 SNF & HLW Inventories 1 Approximately 64,000 MTHM 2 of Spent Nuclear Fuel (SNF) 3 & 275 High-Level Radioactive Waste (HLW) Canisters CT 1,900 TX 2,000 MD 1,200 VT 610 RI MT WY NE 790 SD ND OK KS 600 TX 2,000 LA 1,200 AR 1,200 IA 480 MN 1,100 WI 1,300 KY TN 1,500 MS 780 AL 3,000 GA 2,400 FL 2,900 NC 3,400 VA 2,400 WV OH 1,100 PA 5,800 ME 540 NJ 2,400 DE MI 2,500 MA 650 NH 480 IN SC 3,900 CO MO 670 IL 8,400 NY 3,300 CA 2,800 AZ 1,900 NM OR 360 NV UT WA 600 ID < 1 Commercial HLW 275 Canisters (~640 MTHM)

200

Table 25  

Gasoline and Diesel Fuel Update (EIA)

89 89 Table 25 Created on: 1/3/2014 3:10:33 PM Table 25. Natural gas home customer-weighted heating degree days, New England Middle Atlantic East North Central West North Central South Atlantic Month/Year/Type of data CT, ME, MA, NH, RI, VT NJ, NY, PA IL, IN, MI, OH, WI IA, KS, MN, MO, ND, NE, SD DE, FL, GA, MD, DC, NC, SC, VA, WV November Normal 702 665 758 841 442 2012 751 738 772 748 527 2013 756 730 823 868 511 % Diff (normal to 2013) 7.7 9.8 8.6 3.2 15.6 % Diff (2012 to 2013) 0.7 -1.1 6.6 16.0 -3.0 November to November Normal 702 665 758 841 442 2012 751 738 772 748 527 2013 756 730 823 868 511 % Diff (normal to 2013) 7.7 9.8 8.6 3.2 15.6 % Diff (2012 to 2013) 0.7 -1.1 6.6 16.0 -3.0

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

Transmission Transmission Energy Information Administration / Natural Gas Annual 1999 25 6. Principal Interstate Natural Gas Flow Summary, 1999 Figure 2,000 1,000 3,000 4,000 5,000 0 Billion Cubic Feet = Less than 100 BCF Flow WASHINGTON MONTANA IDAHO WYOMING OREGON CALIFORNIA NEVADA UTAH COLORADO NORTH DAKOTA SOUTH DAKOTA NEBRASKA KANSAS ARIZONA NEW MEXICO OKLAHOMA ARKANSAS MISSOURI IOWA MINNESOTA WISCONSIN MICH PA MD DELAWARE CONNECTICUT RHODE ISLAND MASS NH NJ ILL INDIANA OHIO VIRGINIA WV MAINE NEW YORK VT KY TENN NORTH CAROLINA SOUTH CAROLINA MISS GEORGIA FLORIDA ALA TEXAS LA 26 Energy Information Administration / Natural Gas Annual 1999 1 9 7 2 1 9 7 4 1 9 7 6 1 9 7 8 1 9 8 0 1 9 8 2 1 9 8 4 1 9 8 6 1 9 8 8 1 9 9 0 1 9 9 2 1 9 9 4 1 9 9 6 1 9 9 8 0 2 4 6 8 10 12 14 16 18 Percent 7. Net Imports as a Percentage of Total Consumption of Natural Gas, 1972-1999 Figure Sources: 1972-1975: Bureau of Mines, Minerals Yearbook, "Natural Gas"

202

Buildings Energy Data Book: 3.9 Educational Facilities  

Buildings Energy Data Book (EERE)

6 6 2010 Regional New Construction and Renovations Expenditures for Public K-12 Schools ($Million) Region New Schools Additions Renovation Total Region 1 (CT, MA, ME, NH, RI, VT) Region 2 (NJ, NY, PA) Region 3 (DE, MD, VA, WV) Region 4 (KY, NC, SC, TN) Region 5 (AL, FL, GA, MS) Region 6 (IN, MI, OH) Region 7 (IL, MN, WI) Region 8 (IA, KS, MO, NE) Region 9 (AR, LA, OK, TX) Region 10 (CO, MT, ND, NM, SD, UT, WY) Region 11 (AZ, CA, HI, NV) Region 12 (AK, ID, OR, WA) Total Source(s): School Planning & Management, 16th Annual School Construction Report, Feb. 2011 p. CR3 8,669.5 3,074.1 2,796.8 14,540.4 1,605.4 407.3 275.2 2,287.9 258.2 181.8 158.1 598.1 1,653.9 479.6 387.8 2,521.2 548.2 130.9 93.3 772.4 309.3 206.1 135.3 650.7 217.6 231.4 187.8 636.8 1,338.0 327.6 175.9 1,841.4 359.6 286.3 278.9 924.8

203

regionalmaps  

Gasoline and Diesel Fuel Update (EIA)

LNG Imports LNG Imports Pacifi c (9) Moun tain (8) CA (12) AZ/N M (11) W. North Centr al (4) W. South Centr al (7) E. South Centr al (6) E. North Centr al (3) S. Atlan tic (5) FL (10) Mid. Atlan tic (2) New Engl. (1) W. Cana da E. Cana da MacK enzie Alask a Cana da Offsh ore and LNG Mexic o Baha mas Primary Flows Secondary Flows Pipeline Border Crossing Figure 6. Coal Supply Regions Source: Energy Information Administration. Office of Integrated Analysis and Forecasting WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana Wyoming, Northern Powder River Basin Wyoming, Southern Powder River Basin Western Wyoming

204

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

WA WA MT ID OR WY ND SD CA NV UT CO NE KS AZ NM OK TX MN WI MI IA IL IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Japan Mexico Mexico Algeria Canada Canada Canada Canada Canada Canada Canada Algeria Mexico Trinidad Canada Canada Nigeria Oman Qatar Trinidad Gulf of Mexico Gulf of Mexico Gulf of Mexico Canada Trinidad Trinidad Gulf of Mexico Malaysia 13,623 Figure 8. Interstate Movements of Natural Gas in the United States, 2003 (Million Cubic Feet) Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Energy Information Administration / Natural Gas Annual 2003 Supplemental Data From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 366,224 655,731 666,614 633,960 144,284 43,869 536,776 63,133 36,848

205

C:\ANNUAL\VENTCHAP.V8\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

6 6 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 27. Average City Gate Price of Natural Gas in the United States, 2001 (Dollars per Thousand Cubic Feet) Figure Sources: Energy Information Administration (EIA), Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries to Consumers." 0 2 4 6 8 10 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 Dollars per Thousand Cubic Feet 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Meters Constant Dollars Nominal Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 2001 dollars using the chain-type

206

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

and clothes drying. In addition to the major equipment-driven and clothes drying. In addition to the major equipment-driven end-uses, the average energy consumption per household is projected for other electric and nonelectric Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 19 Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Figure 5. United States Census Divisions Source:Energy Information Administration,Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

207

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 13. Net Interstate Movements, Imports, and Exports of Natural Gas in the United States, 2008 (Million Cubic Feet) Norway Trinidad/ Tobago Interstate Movements Not Shown on Map From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 45,772 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Canada Canada i i N g e r a Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates.

208

Green Power Network: Can I Buy Green Power in My State?  

NLE Websites -- All DOE Office Websites (Extended Search)

Can I Buy Green Power in my State? Community Renewable Energy Development Consumer Protection Large Purchasers of Green Power Can I Buy Green Power in My State? Click on your state below to find out which organizations offer green power in your state. The results will include utility green pricing programs, retail green power products offered in competitive electricity markets, and renewable energy certificate (REC) products sold separate from electricity. For additional information about these distinct products, see our Overview of Green Power Markets. Map of the United States. AK AL AR AZ CA CO CT DC DE FL GA HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY Alabama Alaska Arizona Arkansas California Colorado Connecticut Connecticut Delaware Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Maryland Massachusetts Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Hampshire New Jersey New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Vermont Virginia Washington West Virginia Wisconsin Wyoming Washington, DC

209

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

Supply Supply 17 Energy Information Administration / Natural Gas Annual 1999 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001 and over 4. Marketed Production of Natural Gas in the United States, 1999 (Million Cubic Feet) Figure 5. Marketed Production of Natural Gas in Selected States, 1995-1999 Figure T e x a s L o u i s i a n a O k l a h o m a N e w M e x i c o W y o m i n g C o l o r a d o K a n s a s A l a b a m a A l a s k a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 6 7 Trillion Cubic Feet Billion Cubic Meters 95 96 97 98 99 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity

210

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 (Million Cubic Feet) 24,891 2,895 Nigeria WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico Algeria C a n a d a C a n a d a Canada Canada Canada Canada Canada Algeria Canada Canada N i g e r i a O m a n Qatar Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Malaysia 2,986 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and the Office of Fossil Energy, Natural Gas Imports and Exports. Energy Information Administration / Natural Gas Annual 2005 Supplemental Data From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 335,380 634,982 664,318 612,297 125,202 33,223 531,868 103,624

211

Microsoft Word - Figure_14_15.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 0.00-2.49 2.50-4.49 4.50-6.49 6.50-8.49 8.50-10.49 10.50+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DC NC SC GA AL MS LA FL HI AK DE 0 2 4 6 8 10 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 Dollars per Thousand Cubic Feet 0 40 80 120 160 200 240 280 320 360 Dollars per Thousand Cubic Meters Constant Dollars Nominal Dollars Figure 14. Average Price of Natural Gas Delivered to Residential Consumers, 1980-2004 Figure 15. Average City Gate Price of Natural Gas in the United States, 2004 (Dollars per Thousand Cubic Feet) Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and Form EIA-910, "Monthly Natural Gas Marketer Survey." Constant dollars: Prices were converted to 2004 dollars using the chain-type price indexes for Gross Domestic Product

212

APPENDIX A1 Domestic (CONUS) Per Diem Rates -Effective October 1, 2012 State Primary Destination County  

E-Print Network (OSTI)

$ 66 VT Manchester Bennington $ 71 VT Middlebury Addison $ 61 VT Montpelier Washington $ 61 VT Stowe

213

PUBLICATION 460-131 www.ext.vt.edu  

E-Print Network (OSTI)

, but it is similar to that of other coal-mining states in the Appalachian coal region. Modern coal, waste rock, and low-grade coals from run-of-mine coal. Up to 50 percent of the raw, mined product may end up as refuse, particularly when the coal originates from longwall mining operations -- thin

Liskiewicz, Maciej

214

North Troy, VT Natural Gas Imports by Pipeline from Canada  

Gasoline and Diesel Fuel Update (EIA)

Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1997 1998 1999 2000 2001 2002 View...

215

PUBLICATION 420-145 www.ext.vt.edu  

E-Print Network (OSTI)

such functions as sales, distribu- tion, pricing, promotion, products, and many others. Here is an example-satisfying products and services and to price, promote, distribute, and effect exchange of these products generally bring a price premium. Examples of these are specialty hardwood boards for the do

Liskiewicz, Maciej

216

Highgate Springs, VT Natural Gas Pipeline Imports From Canada...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,711 8,136 7,680 8,141 2000's 9,980 7,815 8,421 8,272 8,761 8,392 8,404 8,021 8,106 9,319...

217

Hydrogen storage in a combined M.sub.xAlH.sub.6/M'.sub.y(NH.sub.2).sub.z system and methods of making and using the same  

SciTech Connect

As a promising clean fuel for vehicles, hydrogen can be used for propulsion, either directly or in fuel cells. Hydrogen storage compositions having high storage capacity, good dehydrogenation kinetics, and hydrogen release and uptake reactions which are reversible are disclosed and described. Generally a hydrogen storage composition of a metal aluminum hexahydride and a metal amide can be used. A combined system (Li.sub.3AIH.sub.6/3LiNH.sub.2) with a very high inherent hydrogen capacity (7.3 wt %) can be carried out at moderate temperatures, and with approximately 95% of that inherent hydrogen storage capacity (7.0%) is reversible over repeated cycling of release and uptake.

Lu, Jun (Salt Lake City, UT); Fang, Zhigang Zak (Salt Lake City, UT); Sohn, Hong Yong (Salt Lake City, UT)

2012-04-03T23:59:59.000Z

218

Hydrogen storage in a combined M.sub.xAlH.sub.6/M'.sub.y(NH.sub.2).sub.z system and methods of making and using the same  

DOE Patents (OSTI)

As a promising clean fuel for vehicles, hydrogen can be used for propulsion, either directly or in fuel cells. Hydrogen storage compositions having high storage capacity, good dehydrogenation kinetics, and hydrogen release and uptake reactions which are reversible are disclosed and described. Generally a hydrogen storage composition of a metal aluminum hexahydride and a metal amide can be used. A combined system (Li.sub.3AIH.sub.6/3LiNH.sub.2) with a very high inherent hydrogen capacity (7.3 wt %) can be carried out at moderate temperatures, and with approximately 95% of that inherent hydrogen storage capacity (7.0%) is reversible over repeated cycling of release and uptake.

Lu, Jun (Salt Lake City, UT); Fang, Zhigang Zak (Salt Lake City, UT); Sohn, Hong Yong (Salt Lake City, UT)

2012-04-03T23:59:59.000Z

219

Mechanochemical transformation of mixtures of Ca(OH){sub 2} and (NH{sub 4}){sub 2}HPO{sub 4} or P{sub 2}O{sub 5}  

Science Conference Proceedings (OSTI)

A detailed comparative study of the mechanochemical transformation of two mixtures: Ca(OH){sub 2}-(NH{sub 4}){sub 2}HPO{sub 4} and Ca(OH){sub 2}-P{sub 2}O{sub 5}, milled in a mortar dry grinder for different periods of time was carried out. The phase transformations obtained at each milling stage were studied by X-ray diffraction, infrared spectroscopy, transmission electron microscopy, differential scanning calorimetry and thermogravimetric analysis. The transformations taking place during the first periods of milling are very different for both mixtures. However, prolonged milling, over nearly the same period, causes amorphization of both mixtures. DSC analysis of the milled powders showed the temperature of crystallization of hydroxyapatite and tricalcium phosphate ({beta}-TCP). Calcinations of all the different milled powders at 800 deg. C for 2 h, results in the formation of hydroxyapatite and {beta}-TCP.

Gonzalez, G. [Laboratorio de Materiales, Centro Tecnologico, Instituto Venezolano de Investigaciones Cientificas. Aptdo. 21827 Caracas 1020-A (Venezuela)]. E-mail: gemagonz@ivic.ve; Sagarzazu, A. [Laboratorio de Materiales, Centro Tecnologico, Instituto Venezolano de Investigaciones Cientificas. Aptdo. 21827 Caracas 1020-A (Venezuela); Villalba, R. [Laboratorio de Materiales, Centro Tecnologico, Instituto Venezolano de Investigaciones Cientificas. Aptdo. 21827 Caracas 1020-A (Venezuela)

2006-10-12T23:59:59.000Z

220

SiO{sub 2} nanospheres with tailorable interiors by directly controlling Zn{sup 2+} and NH{sub 3}.H{sub 2}O species in an emulsion process  

Science Conference Proceedings (OSTI)

SiO{sub 2} nanospheres with tailorable interiors were synthesized by a facile one-spot microemulsion process using TEOS as silica source, wherein cyclohexane including triton X-100 and n-octanol as oil phase and Zn{sup 2+} or NH{sub 3}.H{sub 2}O aqueous solution as dispersive phase, respectively. The products were characterized by Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray Powder Diffraction. It was suggested that the as-synthesized silica nanospheres possessed grape-stone-like porous or single hollow interior, and also found that the ammonia dosage and aging time played key roles in controlling the size and structure of silica nanospheres. Furthermore, the comparative results confirmed that in-situ zinc species [ZnO/Zn(OH){sub 2}] acted as the temporary templates to construct grape-stone-like interior, and a simultaneously competing etching process occurred owing to the soluble Zn(NH{sub 3}){sub 4}{sup 2+} complex formation while the additional excessive ammonia was introduced. With the aging time being extended, the in-situ nanocrystals tended to grow into bigger ones by Ostwald Ripening, producing single hollow interior. - Graphical Abstract: Formation process of SiO{sub 2} nanospheres with porous and single hollow interior. Highlights: > ZnO/Zn(OH){sub 2} nanocrystals as the temporary templates shape the interior structures of SiO{sub 2} nanospheres. > Fabrication of porous and single hollow interiors needs no additional processes such as roasting or dissolving. > Tailorable interiors can be easily obtained through adjusting the aging time of temporary templates.

Liao Yuchao [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Wu Xiaofeng [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Wang Zhen [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Chen Yunfa, E-mail: yfchen@home.ipe.ac.cn [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

2011-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

C:\Annual\VENTCHAP.V8\NGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

6 6 Energy Information Administration / Natural Gas Annual 2002 0 1 2 3 4 5 6 7 T e x a s G u l f o f M e x i c o N e w M e x i c o O k l a h o m a W y o m i n g L o u i s i a n a C o l o r a d o A l a s k a K a n s a s C a l i f o r n i a A l l O t h e r S t a t e s Trillion Cubic Feet 0 30 60 90 120 150 180 Billion Cubic Meters 2001 2002 2001 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. 4. Marketed Production of Natural Gas in Selected States and the Gulf of Mexico, 2001-2002 Figure None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001-and over WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK GOM 3. Marketed Production of Natural Gas in the United States and the Gulf of Mexico, 2002 (Million Cubic Feet) Figure GOM = Gulf of Mexico Sources:

222

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Selection Tool: New Construction Windows Window Selection Tool: New Construction Windows The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. SELECT LOCATION: AK Anchorage AK Fairbanks AL Birmingham AL Mobile AR Little Rock AZ Flagstaff AZ Phoenix AZ Tucson CA Arcata CA Bakersfield CA Daggett CA Fresno CA Los Angeles CA Red Bluff CA Sacramento CA San Diego CA San Francisco CO Denver CO Grand Junction CT Hartford DC Washington DE Wilmington FL Daytona Beach FL Jacksonville FL Miami FL Tallahassee FL Tampa GA Atlanta GA Savannah HI Honolulu IA Des Moines ID Boise IL Chicago IL Springfield IN Indianapolis KS Wichita KY Lexington KY Louisville LA Lake Charles LA New Orleans LA Shreveport MA Boston MD Baltimore ME Portland MI Detroit MI Grand Rapids MI Houghton MN Duluth MN Minneapolis MO Kansas City MO St. Louis MS Jackson MT Billings MT Great Falls NC Raleigh ND Bismarck NE Omaha NH Concord NJ Atlantic City NM Albuquerque NV Las Vegas NV Reno NY Albany NY Buffalo NY New York OH Cleveland OH Dayton OK Oklahoma City OR Medford OR Portland PA Philadelphia PA Pittsburgh PA Williamsport RI Providence SC Charleston SC Greenville SD Pierre TN Memphis TN Nashville TX Brownsville TX El Paso TX Fort Worth TX Houston TX Lubbock TX San Antonio UT Cedar City UT Salt Lake City VA Richmond VT Burlington WA Seattle WA Spokane WI Madison WV Charleston WY Cheyenne AB Edmonton MB Winnipeg ON Toronto PQ Montreal SELECT HOUSE TYPE:

223

C:\Annual\VENTCHAP.V8\NGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

Energy Energy Information Administration / Natural Gas Annual 2002 0 1 2 3 4 5 6 7 T e x a s G u l f o f M e x i c o N e w M e x i c o O k l a h o m a W y o m i n g L o u i s i a n a C o l o r a d o A l a s k a K a n s a s C a l i f o r n i a A l l O t h e r S t a t e s Trillion Cubic Feet 0 30 60 90 120 150 180 Billion Cubic Meters 2001 2002 2001 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. 4. Marketed Production of Natural Gas in Selected States and the Gulf of Mexico, 2001-2002 Figure None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001-and over WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK GOM 3. Marketed Production of Natural Gas in the United States and the Gulf of Mexico, 2002 (Million Cubic Feet) Figure GOM = Gulf of Mexico Sources:

224

C:\ANNUAL\VENTCHAP.V8\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

0 0 Energy Information Administration / Natural Gas Annual 2000 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001 and over 4. Marketed Production of Natural Gas in the United States, 2000 (Million Cubic Feet) Figure 5. Marketed Production of Natural Gas in Selected States, 1996-2000 Figure T e x a s L o u i s i a n a N e w M e x i c o O k l a h o m a W y o m i n g C o l o r a d o K a n s a s A l a b a m a A l a s k a C a l i f o r n i a O t h e r S t a t e s 0 1 2 3 4 5 6 7 0 30 60 90 120 150 180 Trillion Cubic Feet Billion Cubic Meters 1996 1997 1998 1999 2000 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly

225

Microsoft Word - Figure_3_4.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001-and over WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK GOM 0 1 2 3 4 5 6 7 T e x a s G u l f o f M e x i c o N e w M e x i c o O k l a h o m a W y o m i n g L o u i s i a n a C o l o r a d o A l a s k a K a n s a s A l a b a m a A l l O t h e r S t a t e s Trillion Cubic Feet 0 30 60 90 120 150 180 Billion Cubic Meters 2002 2003 2002 Figure 4. Marketed Production of Natural Gas in Selected States and the Gulf of Mexico, 2002-2003 Figure 3. Marketed Production of Natural Gas in the United States and the Gulf of Mexico, 2003 (Million Cubic Feet) GOM = Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly and Annual Quantity and Value of Natural Gas Report," and the United States Mineral Management

226

NH Acid Rain Control Act (New Hampshire)  

Energy.gov (U.S. Department of Energy (DOE))

The Act is implemented under New Hampshire's acid deposition control program established under the Rules to Control Air Pollution in Chapter Env-A 400. The goal of the Act is to reduce emissions...

227

Export.gov - NH Our Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Identify potential partners. Market your firm directly to local companies. Partner Search Identify potential partners and get detailed company reports. Determine the...

228

Pittsburg, NH Natural Gas Exports to Canada  

Annual Energy Outlook 2012 (EIA)

56,879 39,438 26,767 18,297 19,826 47,451 1998-2012 Pipeline Prices 7.52 9.72 5.04 5.48 5.45 4.08 1998...

229

Pittsburg, NH Natural Gas Exports to Canada  

Gasoline and Diesel Fuel Update (EIA)

7 2008 2009 2010 2011 2012 View History Pipeline Volumes 0 64 0 0 336 199 2007-2012 Pipeline Prices -- 7.61 -- -- 7.54 2.62 2007-2012...

230

APPENDIX A1 Domestic (CONUS) Per Diem Rates -Effective October 1, 2010 State Primary Destination County  

E-Print Network (OSTI)

Manchester Bennington $71 VT Middlebury Addison $61 VT Montpelier Washington $61 VT Stowe Lamoille October 1

231

DOE - Office of Legacy Management -- U S Radium Corp - NJ 09  

Office of Legacy Management (LM)

Corp Historical documents may contain links which are no longer valid or to outside sources. LM can not attest to the accuracy of information provided by these links. Please see...

232

Superfund Record of Decision (EPA Region 2): Grand Street Mercury Site, Hoboken, NJ, September 30, 1997  

SciTech Connect

This Record of Decision presents the selected remedial action for the Grand Street Mercury Site. The major components of the selected remedy include: permanent relocation of the former residents of the Site; continuation of temporary relocation of the former residents until permanent relocation has been implemented; historic preservation mitigation measures for the buildings at the Site, as appropriate; gross mercury decontamination of the buildings at the Site including recovery of available mercury, whenever possible; identification and abatement of asbestos in the buildings at the Site; removal and recovery of reusable fixtures, appliances, and recyclable scrap metal and other building components; demolition of the two buildings at the Site using measures to minimize releases of mercury into the environment; removal and off-site disposal of all demolition debris at EPA-approved facilities; sampling of soils at the Site; excavation and off-site disposal of contaminated soils at EPA-approved facilities; sampling of soils at off-site adjacent locations; sampling of groundwater at the Site; and assessment of off-site soil and groundwater data to evaluate the need for future remedial action.

1998-01-01T23:59:59.000Z

233

Department of Civil and Environmental Engineering 623 Bowser Rd. Piscataway NJ 08854-8014  

E-Print Network (OSTI)

medical Home Project 150,462 08-104 Allouche, Erez Applications of Inorganic Polymer Concrete (Geopolymer Prostate Cancer Detection System ULM 2,000 Erez Allouche Applications of Inorganic Polymer Concrete (Geopolymer') in Transportation Structures Located in Harsh Environments LTRC 30,000 Kody Varah- ramyan

234

Department of Civil and Environmental Engineering 623 Bowser Rd. Piscataway NJ 08854-8014  

E-Print Network (OSTI)

in Concrete · Corrosion/Fire-Resistant Structural Concretes · Geopolymer Structural Concrete DR. CHRISTINA · Infrastructure Deterioration · Cathodic Protection · Concrete #12;45 DR. TSUNG-CHOW "JOE" SU Professor Eng Concrete Presuel-Moreno, Francisco, Ph.D. .....44 Concurrency Shankar, Ravi, Ph

235

u.s. DEPARTIllENT OF I!NJ1RG EERE PROJECT MANAGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

or industrial practices, and smallscale conservation and renewable energy research and development and pilot projects. The actions could involve building renovations or...

236

NJ,O-04 MEMOHANDUtl TO: FILE FRon: SITE NAME: CITY:  

Office of Legacy Management (LM)

if yes, date contacted TYPE OF OPERATION ----------- 0 Research & Develapment q Facility Type 0 Production scale testing 0 Pilot Scale g Bench Scale Process ? a Theoretical...

237

N.J. DEP recognizes PPPL as state's top environmental steward...  

NLE Websites -- All DOE Office Websites (Extended Search)

use and carbon emissions, convert our vehicles to more environmentally friendly fuels, compost our waste, and in general, implement a broad-based sustainability program, Dr. Cohen...

238

Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols  

Science Conference Proceedings (OSTI)

This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallic complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system and conditions, it was found that the oxidative dehydrogenation of dibenzylamine to Nbenzylidenebenzylamine, with N-methylmorpholine N-oxide (NMMO), was nearly quantitative (96%) within 24 h. However, the reaction with oxygen was much slower, with only a 52% yield of imine product over the same time period. Moreover, the rate of reaction was found to be influenced by the nature of the amine N-oxide. For example, the use of the weakly basic pyridine N-oxide (PyNO) led to an imine yield of only 6% after 24 h. A comparison of amine N-oxide and O2 was also examined in the oxidation of PhCH{sub 2}OH to PhCHO catalyzed by bulk gold. In this reaction, a 52% yield of the aldehyde was achieved when NMMO was used, while only a 7% product yield was afforded when O{sub 2} was the oxidant after 48 h. The bulk gold-catalyzed oxidative dehydrogenation of cyclic amines generates amidines, which upon treatment with Aerosil and water were found to undergo hydrolysis to produce lactams. Moreover, 5-, 6-, and 7-membered lactams could be prepared through a one-pot reaction of cyclic amines by treatment with oxygen, water, bulk gold, and Aerosil. This method is much more atom economical than industrial processes, does not require corrosive acids, and does not generate undesired byproducts. Additionally, the gold and Aerosil catalysts can be readily separated from the reaction mixture. The second project involved studying iron(III) tetraphenylporphyrin chloride, Fe(TPP)Cl, as a homogeneous catalyst for the generation of carbenes from diazo reagents and their reaction with heteroatom compounds. Fe(TPP)Cl, efficiently catalyzed the insertion of carbenes derived from methyl 2-phenyldiazoacetates into O-H bonds of aliphatic and aromatic alcohols. Fe(TPP)Cl was also found to be an effective catalyst for tandem N-H and O-H insertion/cyclization reactions when 1,2-diamines and 1,2-alcoholamines were treated with diazo reagents. This approach provides a one-pot process for synthesizing piperazinones and morpholinones and related analogues such as quinoxalinones and benzoxazin-2-ones.

Klobukowski, Erik

2011-12-29T23:59:59.000Z

239

DOE - Office of Legacy Management -- Standard Oil Development...  

Office of Legacy Management (LM)

Standard Oil Development Co of NJ - NJ 18 FUSRAP Considered Sites Site: STANDARD OIL DEVELOPMENT CO. OF NJ (NJ.18) Eliminated from consideration under FUSRAP Designated Name: Not...

240

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

style, material costs, and labor costs. Initial cost of construction can range from $4.00 per square foot for an open-sided barn to over $6.00 per square foot for a fully enclosed barn. 1 This represents of a 100-foot by 50-foot, open-sided farm storage building. Initial cost of the building is $20

Liskiewicz, Maciej

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Microsoft PowerPoint - AnnualReview1011_Westman_VT.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

Status - 50% complete * Synthetic data generated * Initial analysis completed Initial analysis completed Combination Receiver Array Plume Event Loc. 56 Spiral 750 Plume...

242

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

residential lots. RD takes roof runoff that has been collected in gutters and piped directly to streets, storm Management Handbook,"VCE publication 430-350. #12;2 of 6 to 10 inches, and adding 2 to 4 inches of compost

Liskiewicz, Maciej

243

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

recovery on coal surface-mined lands reclaimed in the Appala- chian region using different reclamation that will encourage native forest recovery on reclaimed coal surface mines. Table 2. Common species observed succession in surface coal mine reclamation. Minerals and the Environment 6(1): 10-22. Burger,J.A

Liskiewicz, Maciej

244

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

the 1940s, surface mining for coal in Southwest Virginia has disturbed more than 100,000 acres of land disturbances such as coal mining. #12;3 and occasionally in the rocks around the coal seams. As discussed later. 1994. Improving coal surface mine reclamation in the central Appala- chian region. In: Rehabilitating

Liskiewicz, Maciej

245

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

is essential to comply with the federal Surface Mining Control and Reclamation Act (SMCRA) by coal-mining seeding of vegetation on coal refuse; these practices may be adapted to reclamation of mine sites, but this is not a general practice in coal surface-mine reclamation. Quality should be considered carefully when purchasing

Liskiewicz, Maciej

246

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

region, owners of lands mined for coal are increasingly interested in assuring that productive for- estsForestryReclamationApproach The Forestry Reclamation Approach (FRA) is a method for reclaiming coal-mined land to forest under SMCRA (see by coal-mining firms in past years to establish both hayland/pasture and unmanaged for- est postmining

Liskiewicz, Maciej

247

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

of mined lands in the Appalachian coal region has resulted in the successful establishment and utilization that reduce forage quality and quantity, resulting in reduced cattle performance on reclaimed, coal-mined by coal mining. Incorporating goats Managing Shrub-Infested, Postmined Pasturelands With Goats and Cattle

Liskiewicz, Maciej

248

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

to advances in reclamation science, Virginia coal mining operations can establish high-value, productive Success on Coal Surface Mines, describes grading practices that are recommended for use in reforestation Grading to Enhance Reforestation Success on Coal Surface Mines. Forest Reclamation Advisory No. 4

Liskiewicz, Maciej

249

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

With the decline of coal-mining jobs in Virginia's coal- fields, availability of local employment in high in the coalfield region is a shortage of suitable industrial sites. In some cases, coal surface mines can create, compared to the woodlands and pastures typi- cally established on reclaimed mines in Virginia's coal

Liskiewicz, Maciej

250

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

or have in the past been used for rec- lamation of coal-mined sites. Due to the nature of the land positive influences on botanical composition and invasive plant species control on reclaimed, coal-mined on reclaimed, coal-mined lands. Mixed grazing resulted in greater utilization of pasture resources, mainly due

Liskiewicz, Maciej

251

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

, coal mining became the region's economic mainstay. After the virgin timber cut, the Appalachian forest and good plant- ing stock. The FRA method has been used successfully by many coal-mining firms productivity of land mined for coal. Thus, mining firms that can dem- onstrate the capability to restore

Liskiewicz, Maciej

252

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

on mined lands in Virginia's coalfields. When active coal mines are being preparing for graz- ing use after concern on coal surface mines is pH. Generally, water used to support livestock should have a pH that is no less than 6.0. Highly acidic (low pH) water from coal mines can often be recognized visually from

Liskiewicz, Maciej

253

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

The development of Southwest Virginia's coal mining region is limited by a lack of building sites. Much develop- ment. In recent years, widespread surface coal mining has created land that is favorably located treatment options is often an obstacle to residential development on reclaimed coal mines. In response

Liskiewicz, Maciej

254

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

infrastructure construction, industrial recruitment, and business development. Reclaimed coal mines are widely typically employed by Appalachian coal surface mines; they are intended to minimize settlement- cialized compaction equipment will be cost-prohibitive for most coal-mining operations. An alternative

Liskiewicz, Maciej

255

U.S . DEPART]\\.1ENT OF ENERGY EERE PROJECT T'....IANACiE!vtENT...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Thermal Test Facility in Albuquerque, New Mexico. The manufacturing of these solar panels is already approved under the original NEPA Control Number GFO-08-005. The...

256

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

primarily based on your LDL number. Persons with a history of heart disease may be put on a very restricted-modifiable Risk Factors Age: Male 45 years or older; Female 55 years or older Family history of premature CHD. · Choose foods low in total fat. · Select soft or liquid margarines or spreads that list liquid oil

Liskiewicz, Maciej

257

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

·11 /2 Tbsp whole wheat flour · 1 /2 Tbsp whole wheat flour and 1 /2 Tbsp all-purpose flour Flour, 1 flour, result in a rye flour or whole wheat flour and reduced volume 1 /2 cup all-purpose flour and a · 3 /4 cup whole wheat flour or bran heavier product. flour and 1 /4 cup all-purpose flour ·1 cup rye

Liskiewicz, Maciej

258

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

Hands ­ On Science with NOAA TITLE: Tying Science to History... Making Rope by Hand OVERVIEW, or wool yarn. INSTRUCTIONS: 1. Each participant should receive 2 lengths of single strand fiber about 15 is fascinating! Research and discuss the development of rope-making technology through human history. · Research

Liskiewicz, Maciej

259

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

't suggest that later software versions have fewer errors. Avishai Wool Tel Aviv University Trends a poorer security history than others. Also, having all 65,536 TCP ports open is probably more risky than. A. Wool, "A Quantitative Study of Firewall Configura- tion Errors," Computer, vol. 37, no. 6, 2004

Liskiewicz, Maciej

260

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

oxygen to the gasoline. Engine warranty Automobiles: Currently, all major automakers (Gen- eral Motors, with fuel ethanol play- ing an important role in this transition. Fuel ethanol can be blended with gasoline (from 10 percent to 85 percent), and thus reduce the amount of gasoline used. In the United States, corn

Liskiewicz, Maciej

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

production to maximize marketability and by making modest increases in the selling price. Add fuel surcharges that adding a fuel surcharge to everything they sold during the spring would reverse their losses and restore afford that? Strongly consider adding delivery charges, or at least fuel surcharges, to delivery services

Liskiewicz, Maciej

262

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

inter- mixed with open weedy areas. They also use riparian and wetland areas as sources of food, or sardine oil, · bear hounds or guard dogs to ward off depredating bears, · habitat manipulation (epp. Black Bear Conservation Committee. 1992. Black bear management handbook for Louisiana

Liskiewicz, Maciej

263

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

-producing state, accounting for about half of the nation's supply. Minne- sota, Kansas, Louisiana, Mississippi for food in the United States are pro- duced in the southern states, primarily Louisiana, Mis- sissippi water gardens, and for stocking natural wetlands to attract waterfowl. Figure 38. Water Lily Figure 39

Liskiewicz, Maciej

264

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

never develop cancer despite years of exposure to tobacco, poor diet, alco- hol, sunlight, etc., while as carcinogens. For unlucky others, a combination of modi- fied genes and a suitable internal environment results, excessive ultraviolet light and radiation provides a strong defense against many common cancers. Food

Liskiewicz, Maciej

265

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

explains the significant price increase of not just petroleum but most raw materials since 2000. During and assesses their impact on the Southwest region's transportation sector. Biofuel transportation requirements, biofuels constitute the focus of this research given the current level of development and potential

Liskiewicz, Maciej

266

Total power optimization combining placement, sizing and multi-Vt through slack distribution management  

Science Conference Proceedings (OSTI)

Power dissipation is quickly becoming one of the most important limiters in nanometer IC design for leakage increases exponentially as the technology scaling down. However, power and timing are often conflicting objectives during optimization. In this ...

Tao Luo; David Newmark; David Z. Pan

2008-01-01T23:59:59.000Z

267

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

is to minimize pesticide use and to define where such use is appropriate, while controlling pests effectively.S. Environmental Protection Agency of certain pesticides and biopesticides. Mostly, these are pest controls for use on a minor crop--that is, a crop grown on less than 300,000 acres nationwide. But IR-4 projects also address

Liskiewicz, Maciej

268

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

? If so, are there any risks associated with this approach? Biochar is a charcoal-based material of purported benefits of biochar usage in soils is long, but are these claims justified when biochar is used in Canadian soils? Are there any environmental risks associated with biochar usage? This talk will summarize

Liskiewicz, Maciej

269

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

replaces them with high- protein foods such as beef, chicken, pork, eggs, and fish and high-fat foods of the Atkins Diet are to remove "carbo- hydrate cravings," "reset" the body's metabolism, and induce fat loss that insulin, not the types or quantity of foods, leads to an imbalanced metabolism and, ultimately, to fat

Liskiewicz, Maciej

270

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

), rendered animal fats, or waste veg- etable oils (WVO). The major components of these feedstocks, and emissions. This pub- lication addresses producing one's own biodiesel fuel from waste oil, fats, and oilseed Fuels Inc. How Biodiesel Is Made Biodiesel is made through a chemical reaction between oils or fats

Liskiewicz, Maciej

271

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-Print Network (OSTI)

of tricylglycerols 2. Animal Fats The second group of feedstock for biodiesel produc- tion is fats and tallow derived

Liskiewicz, Maciej

272

Pakistan Vt. J., 22(4): 2002 STRESS MANAGEMENT FOLLOWING VACCINATION AGAINST  

E-Print Network (OSTI)

Pakistan Vêt. J., 22(4): 2002 STRESS MANAGEMENT FOLLOWING VACCINATION AGAINST COCCIDIOSISPathology, 'Department ofParasitology University ofVeterinary and Animal sciences, Lahore, Pakistan ABSTRACT The présent

Paris-Sud XI, Université de

273

The biopolitics of the vegetative subject  

E-Print Network (OSTI)

Exposed: Biological Citizens after Chernobyl. Princeton, NJ:Exposed: Biological Citizens after Chernobyl. Princeton, NJ:

Pelaprat, Etienne

2010-01-01T23:59:59.000Z

274

DOE - Office of Legacy Management -- Middlesex Sampling Plant...  

Office of Legacy Management (LM)

berryllium. NJ.04-4 NJ.04-5 Eligibility Determination: Eligible NJ.04-1 Radiological Survey(s): Assessment Surveys NJ.04-6 NJ.04-7 NJ.04-8 NJ.04-9 NJ.04-10 Site Status: Cleanup...

275

Synthesis and crystal structure of a new open-framework iron phosphate (NH{sub 4}){sub 4}Fe{sub 3}(OH){sub 2}F{sub 2}[H{sub 3}(PO{sub 4}){sub 4}]: Novel linear trimer of corner-sharing Fe(III) octahedra  

SciTech Connect

A new iron phosphate (NH{sub 4}){sub 4}Fe{sub 3}(OH){sub 2}F{sub 2}[H{sub 3}(PO{sub 4}){sub 4}] has been synthesized hydrothermally at HF concentrations from 0.5 to 1.2 mL. Single-crystal X-ray diffraction analysis reveals its three-dimensional open-framework structure (monoclinic, space group P2{sub 1}/n (No. 14), a=6.2614(13) A, b=9.844(2) A, c=14.271(3) A, {beta}=92.11(1){sup o}, V=879.0(3) A{sup 3}). This structure is built from isolated linear trimers of corner-sharing Fe(III) octahedra, which are linked by (PO{sub 4}) groups to form ten-membered-ring channels along [1 0 0]. This isolated, linear trimer of corner-sharing Fe(III) octahedra, [(FeO{sub 4}){sub 3}(OH){sub 2}F{sub 2}], is new and adds to the diverse linkages of Fe polyhedra as secondary building units in iron phosphates. The trivalent iron at octahedral sites for the title compound has been confirmed by synchrotron Fe K-edge XANES spectra and magnetic measurements. Magnetic measurements also show that this compound exhibit a strong antiferromagnetic exchange below T{sub N}=17 K, consistent with superexchange interactions expected for the linear trimer of ferric octahedra with the Fe-F-Fe angle of 132.5{sup o}. -- Graphical abstract: The three-dimensional open-framework structure of (NH{sub 4}){sub 4}Fe{sub 3}(OH){sub 2}F{sub 2}[H{sub 3}(PO{sub 4}){sub 4}] is built from a novel isolated, linear (FeO{sub 4}){sub 3}(OH){sub 2}F{sub 2} trimer of corner-sharing Fe(III) octahedra linked by PO{sub 4} tetrahedra. Display Omitted

Mi, Jin-Xiao, E-mail: jxmi@xmu.edu.c [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Wang, Cheng-Xin [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Chen, Ning [Canadian Light Source, University of Saskatchewan, Saskatoon, SK, Canada S7N 0X4 (Canada); Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2 (Canada); Li, Rong [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2 (Canada); Pan, Yuanming [Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2 (Canada)

2010-12-15T23:59:59.000Z

276

APPENDIX A1 Domestic (CONUS) Per Diem Rates -Effective October 1, 2011 State Primary Destination County  

E-Print Network (OSTI)

Date M&IE Rate VT Middlebury Addison $61 VT Montpelier Washington $61 VT Stowe Lamoille October 1 March

277

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA  

Gasoline and Diesel Fuel Update (EIA)

accomplishments accomplishments are impressive in themselves, and associ- ated with each milestone is the expansion of future produc- tion opportunities as another technical barrier is overcome. The extension of recovery opportunities into deep water has established the deep offshore as an area of considerable national significance. A second source of increased supply is gas from coalbed formations. Natural gas production from coalbed methane fields continued to grow in 1996 as projects initiated mainly in the early to mid 1990's matured through the dewatering phase into higher rates of gas production. Coalbed forma- tions contribute almost 1 trillion cubic feet, roughly 5 per- cent, to total U.S. production. Continued production growth from coalbeds is not likely in light of the precipitous drop in new wells completed in coalbed formations since the termination of the production tax

278

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA  

Annual Energy Outlook 2012 (EIA)

857, "Monthly Report of Natural Gas Purchases and Deliveries to Consumers." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 15. Average City Gate Price of Natural...

279

NY/NJ distributed wind power field verification project. Quarterly report for the period November - December 1999  

DOE Green Energy (OSTI)

This report details the Significant Accomplishments for this quarter. The accomplishments are: (1) began preparations for host site installations; and (2) data acquisition system installation at the National Wind Technology Center (NWTC) near Boulder, CO.

Putnam, Robert Jr.

2000-01-01T23:59:59.000Z

280

N.J. Themelis Trip to China, October 2007 Trip of Nickolas Themelis, WTERT Chair, to China, October 18-  

E-Print Network (OSTI)

and Permitted (at 50% RDF co-firing) CO ppm@ 10%02 TCDD TEF ngldNm3@ 7%02 HCI uncontrolled ppm@ 8%02 HCI

Columbia University

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Conserving the Connections: A Nationwide Inventory of State-Based Habitat Connectivity Analysis  

E-Print Network (OSTI)

of Transportation. Montpelier, VT. Personal Communicationin Vermont. Montpelier, VT. http://repositories.cdlib.org/Transportation, Montpelier, VT. http://www.aot.state.vt.us/

Feinberg, Jesse

2007-01-01T23:59:59.000Z

282

Impacts of anisotropic lattice relaxation on crystal mosaicity and luminescence spectra of m-plane Al{sub x}Ga{sub 1-x}N films grown on m-plane freestanding GaN substrates by NH{sub 3} source molecular beam epitaxy  

SciTech Connect

In-plane anisotropic lattice relaxation was correlated with the crystal mosaicity and luminescence spectra for m-plane Al{sub x}Ga{sub 1-x}N films grown on a freestanding GaN substrate by NH{sub 3}-source molecular beam epitaxy. The homoepitaxial GaN film exhibited A- and B-excitonic emissions at 8 K, which obeyed the polarization selection rules. For Al{sub x}Ga{sub 1-x}N overlayers, the m-plane tilt mosaic along c-axis was the same as the substrate as far as coherent growth was maintained (x{<=}0.25). However, it became more severe than along the a-axis for lattice-relaxed films (x{>=}0.52). The results are explained in terms of anisotropic lattice and thermal mismatches between the film and the substrate. Nonetheless, all the Al{sub x}Ga{sub 1-x}N films exhibited a near-band-edge emission peak and considerably weak deep emission at room temperature.

Hoshi, T.; Hazu, K.; Ohshita, K.; Kagaya, M.; Onuma, T.; Chichibu, S. F. [CANTech, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Fujito, K. [Optoelectronics Laboratory, Mitsubishi Chemical Corporation, 1000 Higashi-Mamiana, Ushiku 300-1295 (Japan); Namita, H. [Mitsubishi Chemical Group Science and Technology Research Center, Inc., 8-3-1 Chuo, Ami, Inashiki 300-0332 (Japan)

2009-02-16T23:59:59.000Z

283

Poultry Curriculum Committee Meeting Minutes February 2, 2013 Boscawen, NH  

E-Print Network (OSTI)

Beauregard c. Clubs with Poultry Project Areas: i. Kim Steele (Hillsborough County): Hooves, Hens, Heifers

New Hampshire, University of

284

Page 1 of 4 2013 NH HORSE AD BOOKLET  

E-Print Network (OSTI)

or Rhiannon Beauregard, New Hampshire 4-H Animal and Agricultural Science Education Coordinator at (603) 862-2188 or Rhiannon.Beauregard@unh.edu. 1. Promote the ad campaign within your county - Work with your Extension. Send all materials to Rhiannon Beauregard (see below) by May 17, 2013. You will need to include a copy

New Hampshire, University of

285

Beef Curriculum Committee Meeting Minutes February 2, 2013 Boscawen, NH  

E-Print Network (OSTI)

) (Carroll); Jean Rudolph (Cheshire); and Rhiannon Beauregard (Rockingham) c. Names of Some Folks that should

New Hampshire, University of

286

NH4-smectite: Characterization, hydration properties and hydro mechanical behaviour  

E-Print Network (OSTI)

et al., 1993], [Shackelford, 1994], [Studds et al., 1996], [Coméaga, 1997], [Lin, 1998], [Alawaji, 1999], [Mohan et al., 1999], [Shackelford et al., 2000], #12;[Egloffstein, 2001] and [Jullien et al

Paris-Sud XI, Université de

287

Hydrothermally Stable, Low-Temperature NOx Reduction NH3 ...  

aging. In contrast, the conventional, commercially available chabazite SCR catalyst, Cu-SSZ-13, exhibits high activity only in 200-550 C range.

288

Pittsburg, NH Natural Gas Pipeline Exports to Canada (Million...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 64 0 2010's 0 336 199 - No Data Reported; -- Not Applicable; NA Not Available; W ...

289

Pittsburg, NH Natural Gas Pipeline Exports to Canada (Dollars...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 7.61 -- 2010's -- 7.54 2.62 - No Data Reported; -- Not Applicable; NA Not Available; W...

290

Pittsburg, NH Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 22,820 2000's 38,289 45,808 29,014 34,983 17,257 28,041 31,853 56,879 39,438 26,767 2010's...

291

Pittsburg, NH Natural Gas Pipeline Exports to Canada (Dollars...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 7.54 2012 2.20 2.65 2.46 3.48 2013 14.87 - No Data Reported; -- Not Applicable; NA Not Available; W Withheld to...

292

Pittsburg, NH Natural Gas Pipeline Imports From Canada (Million...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 5,804 3,798 865 295 2,790 248 792 242 144 126 655 4,066 2012 6,044 5,109 1,927 2,629 2,692 3,438 3,976 3,786 4,614 3,630...

293

Pittsburg, NH Natural Gas Pipeline Exports to Canada (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 336 2012 0 138 55 5 2013 21 - No Data Reported; -- Not Applicable; NA Not Available; W Withheld to avoid...

294

Pittsburg, NH Natural Gas Pipeline Imports From Canada (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2.61 2000's 4.07 4.01 3.37 6.08 6.44 10.88 7.26 7.52 9.72 5.04 2010's 5.48 5.45 4.08...

295

Pittsburg, NH Natural Gas Pipeline Imports From Canada (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 6.06 5.95 6.14 5.56 4.91 5.14 5.66 4.76 4.54 4.33 4.49 4.58 2012 4.22 3.79 3.14 2.55 2.72 3.49 3.75 3.52 3.30 3.80 5.65...

296

HIPAA 2013 - The National Health ISAC (NH-ISAC)  

Science Conference Proceedings (OSTI)

... Department of Homeland Security (DHS) Office of Infrastructure ... Dams Critical Manufacturing /Emergency Services Nuclear Reactors, Materials and ...

2013-05-22T23:59:59.000Z

297

Tetrahedral-Network Organo-Zincophosphates: Syntheses and Structures of (N(2)C(6)H(14)).Zn(HPO(4))(2).H(2)O, H(3)N(CH(2))(3)NH(3).Zn(2)(HPO(4))(3) and (N(2)C(6)H(14)).Zn(3)(HPO(4))(4)  

SciTech Connect

The solution-mediated syntheses and single crystal structures of (N2C6H14)Zn(HPO4)2H2O (I), H3N(CH2)3NH3Zn2(HPO4)3 (II), and (N2C6H14)Zn3(HPO4)4 (III) are described. These phases contain vertex-sharing Zn04 and HP04 tetrahedra, accompanied by doubly- protonated organic cations. Despite their formal chemical relationship, as members of the series of tZnn(HP04)n+1 (t= template, n = 1-3), these phases adopt fimdamentally different crystal structures, as one-dimensional, two-dimensional, and three-dimensional Zn04/HP04 networks, for I, II, and III respectively. Similarities and differences to some other zinc phosphates are briefly discussed. Crystal data: (N2C6H14)Zn(HP04)2H20, Mr = 389.54, monoclinic, space group P21/n (No. 14), a = 9.864 (4) , b = 8.679 (4) , c = 15.780 (3) , ? = 106.86 (2), V= 1294.2 (8) 3, Z = 4, R(F) = 4.58%, RW(F) = 5.28% [1055 reflections with I >3?(I)]. H3N(CH2)3NH3Zn2(HP04)3, Mr = 494.84, monoclinic, space group P21/c (No. 14), a= 8.593 (2), b= 9.602 (2), c= 17.001 (3), ?= 93.571 (8), V = 1400.0 (5) 3, Z = 4, R(F) = 4.09%, RW(F) = 4.81% [2794 reflections with I > 3? (I)]. (N2C6H14)Zn3(HP04)4, Mr= 694.25, monoclinic, space group P21/n (No. 14), a = 9.535 (2) , b = 23.246 (4), c= 9.587 (2), ?= 117.74 (2), V= 1880.8 (8) 3, Z = 4, R(F) = 3.23%, RW(F) = 3.89% [4255 reflections with 1> 3?(I)].

Chavez, Alejandra V.; Hannooman, Lakshitha; Harrison, William T.A.; Nenoff, Tina M.

1999-05-07T23:59:59.000Z

298

Ab initio simulation of ammonia monohydrate ,,NH3"H2O... and ammonium hydroxide ,,NH4OH...  

E-Print Network (OSTI)

the whole ammonia-water system. As part of a broader ongoing study into solids in the ammonia-water system,9 pseudopotential plane-wave simulations of the static properties of ammonia monohydrate phase I AMH I and ammonium of the hydrogen bonds in AMH may exhibit properties which are transferable to much more complex molecular solids

Vocadlo, Lidunka

299

New ambient pressure organic superconductors:. alpha. -(BEDT-TTF) sub 2 (NH sub 4 )Hg(SCN) sub 4 ,. beta. m-(BEDO-TTF) sub 3 Cu sub 2 (NCS) sub 3 , and. kappa. -(BEDT-TTF) sub 2 Cu(N(CN) sub 2 )Br  

Science Conference Proceedings (OSTI)

More than one hundred and twenty conducting salts based on the organic donor-molecule BEDT-TTF are known, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene (abbreviated herein as ET). Several of the early salts possessed tetrahedral and octahedral anions, such as (ET){sub 2}ClO{sub 4}(TCE), (ET){sub 2}PF{sub 6}, (ET){sub 2}ReO{sub 4}, and (ET){sub 2}BrO{sub 4}. The perchlorate salt is metallic to 1.4 K,{sup 1} and the perrenate derivative was the first ET based organic superconductor ({Tc} 2 K, 4.5 kbar). Since the discovery of ambient pressure superconductivity in {beta}-(ET){sub 2}I{sub 3} ({Tc} 1.4 K),{sup 5} other isostructural {beta}-(ET){sub 2}X salts have been prepared with higher {Tc}'s. A structure-property correlation for the {beta}-type salts has been reviewed in this volume; it predicts that {Tc}'s higher than 8K are possible if {beta}-salts with linear anions longer than I{sub 3}{sup {minus}} can be synthesized. During the search for new linear anions, a variety of compounds with discovered with polymeric anions. The report of superconductivity in {kappa}-(ET){sub 4}Hg{sub 3}X{sub 8} (X = Cl, {Tc} 5.4 K 29 kbar and X = Br, {Tc} 4.3 K ambient pressure and 6.7 K 3.5 kbar) and {kappa}-(ET){sub 2}Cu(NCS){sub 2} ({Tc} 10.4 K) further stimulated the search for novel polymeric anions. A general synthetic strategy for preparing new salts containing polymeric anions is to couple a coordinatively unsaturated neutral transition metal halide/pseudohalide with a simple halide or pseudohalide during an electrocrystallization synthesis. In this article, the authors discuss three new ambient pressure organic superconductors with novel polymeric anions, {alpha}-(ET){sub 2}(NH{sub 4})Hg(SCN){sub 4}, {beta}m-(BO){sub 3}Cu{sub 2}(NCS){sub 3} and {kappa}-(ET){sub 2}Cu(N(CN){sub 2})Br. 48 refs., 8 figs., 2 tabs.

Wang, H.H.; Beno, M.A.; Carlson, K.D.; Geiser, U.; Kini, A.M.; Montgomery, L.K.; Thompson, J.E.; Williams, J.M.

1990-01-01T23:59:59.000Z

300

Language Assimilation Today: Bilingualism Persists More Than in the Past, But English Still Dominates  

E-Print Network (OSTI)

Somerset- Hunterdon, NJ Detroit, MI Table 2 Childrens homeSomerset- Hunterdon, NJ Detroit, MI Bergen-Passaic, NJSomerset- Hunterdon, NJ Detroit, MI Appendix Table 2

Alba, Richard

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Selling the Alpine Frontier: The Development of Winter Resorts, Sports, and Tourism in Europe and America, 1865-1941  

E-Print Network (OSTI)

Cross Country Skiing (Montpelier, VT: privately printed,Cross Country Skiing. Montpelier, VT: privately printed,

Esson, Dylan Jim

2011-01-01T23:59:59.000Z

302

The Cost of Enforcing Building Energy Codes: Phase 1  

E-Print Network (OSTI)

90% Compliance by 2017. Montpelier, VT: Vermont Department90% Compliance by 2017. Montpelier, VT : Vermont Department

Williams, Alison

2013-01-01T23:59:59.000Z

303

A 65 nm Sub- V_{t} Microcontroller With Integrated SRAM and Switched Capacitor DC-DC Converter  

E-Print Network (OSTI)

Aggressive supply voltage scaling to below the device threshold voltage provides significant energy and leakage power reduction in logic and SRAM circuits. Consequently, it is a compelling strategy for energy-constrained ...

Verma, Naveen

304

Graphic Comm Central http://teched.vt.edu:16080/gcc/[6/29/09 8:58:26 AM  

E-Print Network (OSTI)

Strips For Chelsea Handler, Jennifer Aniston Jealous! Marie Osmond Battles Brother Donny Osmond: Writes With Chelsea Handler Did Hulk Hogan Leak His Own Sex Tape? Brooklyn Decker Goes Brunette -- Better Blonde

Beex, A. A. "Louis"

305

Pakistan Vt. ./., 22(4): 2002 A STUDY ON THE PATHOGENESIS OF YOLK RETENTION IN BROILER CHICKS  

E-Print Network (OSTI)

Pakistan Vêt. ./., 22(4): 2002 A STUDY ON THE PATHOGENESIS OF YOLK RETENTION IN BROILER CHICKS Laboratories Complex. Lahore, Pakistan ABSTRACT The présent project was designed to identify thé factors commonest cause of early chick mortality in Pakistan (Anjum, 1997). Whcn thé chick émerges from it's shell

Paris-Sud XI, Université de

306

Channel estimation and feedback for multiple antenna communication  

E-Print Network (OSTI)

Finite Rate Feedback, in Proc. MILCOM, Atlantic City, NJ,nite rate feedback, in Proc. MILCOM, (Atlantic City, NJ),

Murthy, Chandra Ramabhadra

2006-01-01T23:59:59.000Z

307

Patterns of relationship recognition by same-sex couples in the United States  

E-Print Network (OSTI)

rates were estimated for the following states: NJ (bothof NJ (from 2007 on), ME, and NV. Residency rates were

Badgett, M.V. Lee; Herman, Jody L.

2011-01-01T23:59:59.000Z

308

NETL: NEPA Categorical Exclusions - January 2011 to March 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

1 to March 2011 1 to March 2011 Archive (November 2009 -March 2011) ARRA Date Title Recipient Name Location DOE/NETL Sponsors N 3/31/2011 The Oil Recovery Tool: Acoustic Source for Increased Oil Production Hydroacoustics Inc. Torrey, NY FE/SCNGO N 3/31/2011 National Biodiesel Foundation: Biodiesel Terminal Installation Project National Biodiesel Foundation Port Chester, NY EE/VT/PVT N 3/31/2011 Portable Raman Gas Composition Monitor Benjamin Chorpening Morgantown, WV FE/ORD Y 3/29/2011 Grant for State Sponsored RE and EE Projects - Montclair State University Solar Farm New Jersey Board of Public Utilities Montclair, NJ EE/PMC/IPOD Y 3/29/2011 RI Non-Utility Scale Renewable Energy Program Rhode Island Warwick, RI EE/PMC/IPOD Y 3/28/2011 Workforce Development Initiative Market Title North Carolina Multiple sites, NC EERE/PMC/IPOD

309

Category:StandAloneRetail | Open Energy Information  

Open Energy Info (EERE)

StandAloneRetail StandAloneRetail Jump to: navigation, search Go Back to PV Economics By Building Type Media in category "StandAloneRetail" The following 77 files are in this category, out of 77 total. SVStandAloneRetail Atlantic City NJ Public Service Elec & Gas Co.png SVStandAloneRetail Atl... 63 KB SVStandAloneRetail Bismarck ND Montana-Dakota Utilities Co (North Dakota).png SVStandAloneRetail Bis... 70 KB SVStandAloneRetail Burlington VT Central Vermont Pub Serv Corp.png SVStandAloneRetail Bur... 68 KB SVStandAloneRetail Cedar City UT Moon Lake Electric Assn Inc (Utah).png SVStandAloneRetail Ced... 57 KB SVStandAloneRetail Charleston SC South Carolina Electric&Gas Co.png SVStandAloneRetail Cha... 67 KB SVStandAloneRetail Cheyenne WY Powder River Energy Corporation.png

310

Category:MidriseApartment | Open Energy Information  

Open Energy Info (EERE)

MidriseApartment MidriseApartment Jump to: navigation, search Go Back to PV Economics By Building Type Media in category "MidriseApartment" The following 77 files are in this category, out of 77 total. SVMidriseApartment Atlantic City NJ Public Service Elec & Gas Co.png SVMidriseApartment Atl... 62 KB SVMidriseApartment Bismarck ND Montana-Dakota Utilities Co (North Dakota).png SVMidriseApartment Bis... 74 KB SVMidriseApartment Burlington VT Central Vermont Pub Serv Corp.png SVMidriseApartment Bur... 68 KB SVMidriseApartment Cedar City UT Moon Lake Electric Assn Inc (Utah).png SVMidriseApartment Ced... 60 KB SVMidriseApartment Charleston SC South Carolina Electric&Gas Co.png SVMidriseApartment Cha... 66 KB SVMidriseApartment Cheyenne WY Powder River Energy Corporation.png

311

 

Buildings Energy Data Book (EERE)

2 Home Performance with ENERGY STAR, Completed Jobs 2 Home Performance with ENERGY STAR, Completed Jobs Rank Program Sponsor State 2007 2008 2009 2010 Total (2) 1 NY State Energy R&D Authority NY 4,301 5,206 6,343 6122 26209 2 National Grid MA 2,536 2,351 6,259 10019 26017 3 Austin Energy TX 1,950 2,223 2,773 2633 12579 4 Wisconsin Energy Conservation Corp. WI 840 1,012 1,944 2176 8717 5 New Jersey Board of Public Utilities NJ 17 163 1,138 4365 5686 6 Energy Trust of Oregon OR 560 1,040 767 777 3156 7 Sacramento Municipal Utility District (1) CA 338 417 1,194 155 2104 8 Long Island Power Authority NY 43 138 703 930 1885 9 Metropolitan Energy Center MO - 28 760 843 1631 10 Efficiency Vermont VT 122 295 494 632 1594

312

US Relations with Mexico and Central America, 1977-1999  

E-Print Network (OSTI)

United States Relations. Montpelier, VT: The Academy ofUnited States Relations. Montpelier, VT: The Academy ofUnited States Relations. Montpelier, VT: The Academy of

Rosenblum, Marc

2000-01-01T23:59:59.000Z

313

Better Buildings Neighborhood Program: Better Buildings Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Partners to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Partners on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Partners on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Partners on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY

314

Better Buildings Neighborhood Program: Jacksonville, Florida  

NLE Websites -- All DOE Office Websites (Extended Search)

Jacksonville, Jacksonville, Florida to someone by E-mail Share Better Buildings Neighborhood Program: Jacksonville, Florida on Facebook Tweet about Better Buildings Neighborhood Program: Jacksonville, Florida on Twitter Bookmark Better Buildings Neighborhood Program: Jacksonville, Florida on Google Bookmark Better Buildings Neighborhood Program: Jacksonville, Florida on Delicious Rank Better Buildings Neighborhood Program: Jacksonville, Florida on Digg Find More places to share Better Buildings Neighborhood Program: Jacksonville, Florida on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC

315

Better Buildings Neighborhood Program: Indianapolis, Indiana  

NLE Websites -- All DOE Office Websites (Extended Search)

Indianapolis, Indianapolis, Indiana to someone by E-mail Share Better Buildings Neighborhood Program: Indianapolis, Indiana on Facebook Tweet about Better Buildings Neighborhood Program: Indianapolis, Indiana on Twitter Bookmark Better Buildings Neighborhood Program: Indianapolis, Indiana on Google Bookmark Better Buildings Neighborhood Program: Indianapolis, Indiana on Delicious Rank Better Buildings Neighborhood Program: Indianapolis, Indiana on Digg Find More places to share Better Buildings Neighborhood Program: Indianapolis, Indiana on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC

316

LATE SYN-INTRUSIVE CLASTIC DIKES AT THE BASE OF THE PALISADES INTRUSIVE SHEET, FORT LEE, NJ, IMPLY A SHALLOW (~3 to 4 KM) DEPTH OF  

E-Print Network (OSTI)

dikes, vesicles, pipe amygdales, and brecciated chilled-margin facies of the Palisades suggest, the Palisades intrusive sheet, Watchung basalts, and place-names mentioned in the text. Index map modified from

Merguerian, Charles

317

From: Methods in Molecular Biology, vol. 400: Methods in Membrane Lipids Edited by: A. M. Dopico Humana Press Inc., Totowa, NJ  

E-Print Network (OSTI)

of molecular motions within the bilayer. For fluid bilayers, the dynamics of the lipids may encompass membrane deformations. In the fluid state, lipid membranes can bend locally with an energy cost undulations give rise to logarithmically varying positional correlations that generate scattering peaks

Brown, Michael F.

318

Performance Measures for Complete, Green Streets: A Proposal for Urban Arterials in California  

E-Print Network (OSTI)

and Bicycle Policy Plan. Montpelier, VT: Vermont Agency ofand Bicycle Policy Plan. Montpelier, VT: Vermont Agency of

Macdonald, Elizabeth; Sanders, Rebecca; Anderson, Alia

2010-01-01T23:59:59.000Z

319

PATTERNS OF UNITED STATES MORTALITY FOR TEN SELECTED CAUSES OF DEATH  

E-Print Network (OSTI)

NY NY NJ OH PA NY IN NJ Rate Score Cancer of the Rectum :-Bergen New York Lake NJ IL NJ NY OH Rate Score Cancer of theNew York Middlesex Rate Score IL NJ MI OH NY PA NY IL NY MA

Selvin, S.

2013-01-01T23:59:59.000Z

320

Multi-fluid shocks in clusters of galaxies: entropy, sigma_ v-T, M-T and L_x-T scalings  

E-Print Network (OSTI)

The nonthermal phenomena in clusters of galaxies are considered in the context of the hierarchical model of cosmic structure formation by accretion and merging of the dark matter (DM) substructures.Accretion and merging processes produce large-scale gas shocks. The plasma shocks are expected to be collisionless. In the course of cluster's aggregation, the shocks, being the main gas-heating agent, generate turbulent magnetic fields and accelerate energetic particles via collisionless multi-fluid plasma relaxation processes. The intracluster gas heating and entropy production rate by a collisionless shock may differ significantly from that in a single-fluid collisional shock. Simple scaling relations for postshock ion temperature and entropy as functions of shock velocity in strong collisionless multi-fluid shocks are presented. We show that the multi-fluid nature of the collisionless shocks results in high gas compression, reduced entropy production and modified sigma_v-T, M-T and L_x-T scalings. The scaling i...

Bykov, A M

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Multi-fluid shocks in clusters of galaxies: entropy, sigma_ v-T, M-T and L_x-T scalings  

E-Print Network (OSTI)

The nonthermal phenomena in clusters of galaxies are considered in the context of the hierarchical model of cosmic structure formation by accretion and merging of the dark matter (DM) substructures.Accretion and merging processes produce large-scale gas shocks. The plasma shocks are expected to be collisionless. In the course of cluster's aggregation, the shocks, being the main gas-heating agent, generate turbulent magnetic fields and accelerate energetic particles via collisionless multi-fluid plasma relaxation processes. The intracluster gas heating and entropy production rate by a collisionless shock may differ significantly from that in a single-fluid collisional shock. Simple scaling relations for postshock ion temperature and entropy as functions of shock velocity in strong collisionless multi-fluid shocks are presented. We show that the multi-fluid nature of the collisionless shocks results in high gas compression, reduced entropy production and modified sigma_v-T, M-T and L_x-T scalings. The scaling indexes estimated for a simple model of a strong accretion multi-fluid shock are generally consistent with observations. Soft X-ray and extreme ultraviolet photons dominate the emission of strong accretion shock precursors that appear as large-scale filaments. Magnetic fields, turbulence and energetic particles constitute the nonthermal components contributing into the pressure balance, energy transport and emission of clusters. Nonthermal emission of energetic particles could be a test to constrain the cluster properties.

A. M. Bykov

2005-01-26T23:59:59.000Z

322

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1994 January ........................... 89.6 91.0 90.2 83.8 88.4 80.4 87.3 88.8 92.1 102.5 February ......................... 92.9 94.6 93.8 90.4 91.3 86.6 91.4 92.3 91.5 105.5 March .............................. 91.4 92.5 92.1 85.9 88.3 83.6 89.4 91.0 91.2 102.0 April ................................ 88.2 89.0 89.4 80.8 86.0 78.2 85.1 88.3 89.2 93.7 May ................................. 86.1 86.6 85.4 76.8 85.1 75.4 83.3 86.7 84.4 83.1 June ................................ 85.2 85.6 86.1 75.6 83.7 73.1 82.3 84.6 82.0 W July ................................. 82.7 83.1 84.2 75.6 82.1 71.8 81.6 83.0 80.5 W August ............................ 82.1 82.4 79.7 78.0 78.7 72.8 84.0 83.8 82.3 81.9 September ...................... 83.2 83.7 80.5 78.5 81.1 72.9 84.7 83.3 83.1 86.2 October ........................... 84.7

323

Up-Hill ET in (NH3)5Ru(III)-Modified Ferrocytochrome c  

NLE Websites -- All DOE Office Websites (Extended Search)

Up-Hill Electron Transfer in Pentaammineruthenium(III)-Modified Up-Hill Electron Transfer in Pentaammineruthenium(III)-Modified Ferrocytochrome c: Rates, Thermodynamics, and the Mediating Role of the Ruthenium Moiety Ji Sun, James F. Wishart, and Stephan S. Isied Inorg. Chem. 34, 3998-4000 (1995) Abstract: At moderate to high ionic strengths (>0.1 M), Co(oxalate)33- oxidizes native cytochrome c very slowly, however it undergoes a rapid reaction with pendant ruthenium complexes covalently attached to the surface of the protein. Under these conditions, the rate of the thermodynamically unfavorable (up-hill) FeII-to-RuIII electron transfer process in pentaammineruthenium-modified horse-heart cytochrome c can be revealed using sufficiently high Co(oxalate) 33- concentrations. Rate measurements performed over a wide range of CoIII concentrations confirm the proposed

324

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1995 January ........................... 86.9 87.6 86.7 77.8 84.8 78.4 87.3 85.7 88.4 102.4 February ......................... 87.4 88.2 87.8 77.4 84.9 78.5 87.3 85.9 88.5 103.4 March .............................. 86.6 87.3 87.0 76.3 82.5 77.7 87.0 85.6 87.6 103.3 April ................................ 85.4 85.8 85.2 76.7 81.9 76.6 86.5 84.8 87.0 100.0 May ................................. 86.4 86.9 86.5 78.7 84.7 75.8 86.1 84.5 85.2 93.2 June ................................ 84.6 85.2 84.2 78.1 82.5 74.5 83.2 83.9 83.0 NA July ................................. 82.0 82.4 79.4 76.9 80.6 72.9 81.7 81.7 80.0 85.1 August ............................ 80.7 81.1 77.4 76.7 80.9 73.0 85.3 81.7 82.1 W September ...................... 82.3 82.7 79.2 76.2 81.7 73.8 84.9 82.5 82.4 86.1 October ...........................

325

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1997 January ........................... 107.9 109.0 108.6 105.2 106.5 102.1 107.0 104.4 106.5 130.4 February ......................... 105.1 106.0 105.2 102.2 103.4 101.0 104.5 103.5 104.2 127.0 March .............................. 101.6 102.5 99.3 94.3 97.7 98.6 100.4 103.1 100.7 121.4 April ................................ 99.2 100.3 97.6 90.9 95.9 95.2 99.4 100.4 100.1 116.3 May ................................. 96.4 97.1 93.4 90.6 93.0 91.9 97.3 97.7 96.4 108.6 June ................................ 92.3 92.9 89.9 88.1 89.1 89.1 93.3 92.9 90.8 99.9 July ................................. 88.3 88.7 83.7 86.7 87.5 85.6 91.6 91.1 88.8 W August ............................ 86.9 86.8 84.2 85.8 84.7 85.3 91.0 92.7 89.2 W September ...................... 88.7 89.0 85.5 87.0 87.0 86.3 91.2 91.7 88.5 NA October ...........................

326

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1996 January ........................... 94.6 96.1 94.5 93.0 92.0 89.1 94.9 92.6 94.7 111.7 February ......................... 95.9 97.5 96.2 93.2 93.8 90.8 95.6 93.7 94.4 112.9 March .............................. 99.1 100.6 99.6 96.7 99.3 93.8 99.7 97.3 96.1 117.7 April ................................ 101.5 102.7 102.1 98.7 101.5 96.5 98.8 100.3 100.7 115.9 May ................................. 97.8 98.1 96.8 95.4 95.9 93.6 94.9 98.8 98.0 109.7 June ................................ 91.0 91.3 88.8 90.1 87.9 87.2 88.7 92.2 91.9 102.5 July ................................. 87.9 88.0 84.9 87.5 87.5 83.6 87.7 88.5 91.0 97.3 August ............................ 88.1 88.2 84.0 89.5 89.0 85.1 88.3 89.0 91.0 99.2 September ...................... 94.5 94.4 92.5 96.4 93.1 91.9 96.6 94.4 95.3 106.2 October ...........................

327

THE INFLUENCE OF FUEL SULFUR ON THE SELECTIVE REDUCTION OF NO BY NH3  

E-Print Network (OSTI)

No. KVB-15500-717B, 1978. Wendt, J.O. , Morcomb, J.T. andsulfur combustion chemistry. Wendt et al 9 and De Soete 10in agreement with the results of Wendt et al 9 Wendt et al

Lucas, Donald

2012-01-01T23:59:59.000Z

328

Details in Semiconductors Gordon Conference, New London, NH, August 3-8, 2008  

SciTech Connect

Continuing its tradition of excellence, this Gordon Conference will focus on research at the forefront of the field of defects in homogeneous and structured semiconductors. The conference will have a strong emphasis on the control of defects during growth and processing, with an increases emphasis on nanostructures as compared to previous conferences. Electronic, magnetic, and optical properties of bulk, thin film, and nanoscale semiconductors will be discussed in detail. In contrast to many conferences, which tend to focus on specific semiconductors, this conference deals with defects in a broad range of bulk and nanoscale electronic materials. This approach has proved to be extremely fruitful for advancing fundamental understanding in emerging materials such as wide-band-gap semiconductors, doped nanoparticles, and organic semiconductors. Presentations of state-of-the-art theoretical methods will contribute to a fundamental understanding of atomic-scale phenomena. The program consists of about twenty invited talks, with plenty of discussion time, and a number of contributed poster sessions. Because of the large amount of discussion time, the conference provides an ideal forum for dealing with topics that are new and/or controversial.

Shengbai Zhang and Nancy Ryan Gray

2009-09-16T23:59:59.000Z

329

Multi-Objective Evolutionary Fuzzy Cognitive Maps for Decision N.H. Mateou  

E-Print Network (OSTI)

motorcade as it traveled to a meeting with an opposition figure in Damascus and then trying to break

Coello, Carlos A. Coello

330

Trapped Lee Waves Observed during PYREX by Constant Volume Balloons: Comparison with Meso-NH Simulations  

Science Conference Proceedings (OSTI)

The main objective of the present paper is the use of a constant volume balloon (CVB) as a tool to (i) study trapped lee waves and (ii) assess the forecasting capability of a nonhydrostatic numerical model. Then, CVB data obtained during the ...

Ernest NDri Koffi; Marc Georgelin; Bruno Benech; Evelyne Richard

2000-07-01T23:59:59.000Z

331

Update and Improve Subsection NH - Simplified Elastic and Inelastic Design Analysis Methods  

SciTech Connect

The objective of this subtask is to develop a template for the 'Ideal' high temperature design Code, in which individual topics can be identified and worked on separately in order to provide the detail necessary to comprise a comprehensive Code. Like all ideals, this one may not be attainable as a practical matter. The purpose is to set a goal for what is believed the 'Ideal' design Code should address, recognizing that some elements are not mutually exclusive and that the same objectives can be achieved in different way. Most, if not all existing Codes may therefore be found to be lacking in some respects, but this does not mean necessarily that they are not comprehensive. While this subtask does attempt to list the elements which individually or in combination are considered essential in such a Code, the authors do not presume to recommend how these elements should be implemented or even, that they should all be implemented at all. The scope of this subtask is limited to compiling the list of elements thought to be necessary or at minimum, useful in such an 'Ideal' Code; suggestions are provided as to their relationship to one another. Except for brief descriptions, where these are needed for clarification, neither this repot, nor Task 9 as a whole, attempts to address details of the contents of all these elements. Some, namely primary load limits (elastic, limit load, reference stress), and ratcheting (elastic, e-p, reference stress) are dealt with specifically in other subtasks of Task 9. All others are merely listed; the expectation is that they will either be the focus of attention of other active DOE-ASME GenIV Materials Tasks, e.g. creep-fatigue, or to be considered in future DOE-ASME GenIV Materials Tasks. Since the focus of this Task is specifically approximate methods, the authors have deemed it necessary to include some discussion on what is meant by 'approximate'. However, the topic will be addressed in one or more later subtasks. This report describes work conducted toward developing a template for what might be the 'Ideal' high temperature design Code. While attempting to be as comprehensive as possible as to subject matter, it does not presume to recommend what individual components of a Code should be implemented, some of which is the focus of other Tasks in the DOE-ASME Gen IV/NGNP Materials Projects. This report does serve as a basis for construction of an attribute chart which is being prepared as part of Task 9.2; the intention for which is to provide a uniform format and concise means for summarizing and comparing other high temperature Codes currently in use around the world.

Jeries J. Abou-Hanna; Douglas L. Marriott; Timothy E. McGreevy

2009-06-27T23:59:59.000Z

332

Structure of the Electron-Transfer Probe Analogue trans-(NH3...  

NLE Websites -- All DOE Office Websites (Extended Search)

electron transfer in cytochrome c, azurin, and myoglobin have exploited the modification of these metalloprotein surfaces with ruthenium ammine probes attached to surface...

333

Reconstructing the NH Mean Temperature: Can Underestimation of Trends and Variability Be Avoided?  

Science Conference Proceedings (OSTI)

There are indications that hemispheric-mean climate reconstructions seriously underestimate the amplitude of low-frequency variability and trends. Some of the theory of linear regression and error-in-variables models is reviewed to identify the ...

Bo Christiansen

2011-02-01T23:59:59.000Z

334

Multipodal coordination of a tetracarboxylic crown ether with NH 4 + : A vibrational spectroscopy and computational study  

Science Conference Proceedings (OSTI)

The elucidation of the structural requirements for molecular recognition by the crown ether (18crown6)-2

Paola Hurtado; Francisco Gmez; Said Hamad; Bruno MartnezHaya; Jeffrey D. Steill; Jos Oomens

2012-01-01T23:59:59.000Z

335

Electron Transfer in (NH3)5Ru-Cobaltocytochrome c  

NLE Websites -- All DOE Office Websites (Extended Search)

Pentaammineruthenium(III)-Modified Cobaltocytochrome c Ji Sun, Chang Su, and James F. Wishart Inorg. Chem., 35, 5893-5901 (1996) Find paper at ACS Publications or use ACS...

336

NH3- H2O absorption systems used for research and student activities  

Science Conference Proceedings (OSTI)

In the context of the sustainable development and of the future environment and energy concerns, a new laboratory was developed based on absorption systems (a chiller-heater and a heat pump). The installation together with the proposed experimental activity ... Keywords: absorption systems, education and research activity, environment, heat pump

Ioan Boian; Alexandru Serban; Stan Fota; Florea Chiriac

2009-10-01T23:59:59.000Z

337

CHARACTERIZATION STUDIES OF THE SELECTIVE REDUCTION OF NO by NH3  

E-Print Network (OSTI)

post combustion gases of propane/air in a laboratory scalepost combustion gases of propane/air in a laboratory scaleThe combustion products of propane and air are diluted by

Brown, N.J.

2013-01-01T23:59:59.000Z

338

Continued investigations of the catalytic reduction of N? to NH? by molybdenum triamidoamine complexes  

E-Print Network (OSTI)

A study of the effects of employing different solvents and the introduction of dihydrogen during the catalytic reduction of dinitrogen to ammonia with [HIPTN 3N]Mo complexes was completed. During a catalytic reaction, the ...

Hanna, Brian S. (Brian Stewart)

2011-01-01T23:59:59.000Z

339

Hydramotor (R) Actuator Application and Maintenance Guide: ASCO NH90 Series Hydramotors (R) for Nuclear Applications  

Science Conference Proceedings (OSTI)

Hydramotors(R), electro-hydraulic actuators manufactured by ASCO General Controls (formerly ITT Barton and ITT General Controls), are widely used in nuclear power plant systems. Many provide critical safety functions such as valve and damper operation. While Hydramotors(R) are generally very reliable, regular maintenance and overhaul is important. Improving the reliability of Hydramotor(R) actuators has become an industry focus because of the implementation of the Nuclear Regulatory Commission's Maintena...

2000-02-15T23:59:59.000Z

340

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1993 January ........................... 94.3 95.7 94.9 85.2 94.0 87.1 91.7 93.4 91.2 105.2 February ......................... 94.6 95.9 96.2 85.4 94.4 86.9 91.8 93.3 90.8 106.8 March .............................. 95.4 96.5 96.7 86.4 94.8 86.6 92.4 93.7 92.4 108.5 April ................................ 92.6 93.4 93.6 83.0 91.5 84.5 90.4 91.2 91.6 106.7 May ................................. 91.1 91.7 91.6 81.7 91.1 83.9 90.7 91.3 89.4 104.3 June ................................ 88.9 89.4 88.6 81.1 88.6 82.4 87.6 89.7 90.6 100.4 July ................................. 85.6 85.9 86.5 78.5 83.9 78.3 85.2 85.5 86.4 100.2 August ............................ 84.1 84.6 84.0 77.4 83.4 76.0 82.7 85.6 83.5 96.1 September ...................... 85.5 85.8 84.2 78.3 83.8 74.9 84.8 86.6 84.6 95.5 October ...........................

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DOE - Office of Legacy Management -- Chemical Construction Co Linden Pilot  

Office of Legacy Management (LM)

Chemical Construction Co Linden Chemical Construction Co Linden Pilot Plant - NJ 12 FUSRAP Considered Sites Site: Chemical Construction Co., Linden Pilot Plant (NJ.12 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Chemical Construction Corporation Pilot Plant Chemico NJ.12-1 NJ.12-2 Location: Linden , New Jersey NJ.12-3 Evaluation Year: 1987 NJ.12-4 Site Operations: Performed research and development operations under AEC contract to develop a process for recovering uranium, cobalt, nickel, and copper from low grade residues. NJ.12-5 NJ.12-6 NJ.12-7 Site Disposition: Eliminated - Potential for contamination considered remote due to nature and duration of the operations NJ.12-4 NJ.12-8 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NJ.12-6

342

Tracking the Sun II: The Installed Cost of Photovoltaics in the U.S. from 1998-2008  

E-Print Network (OSTI)

Program NJ NJCEP Solar Renewable Energy Credit ProgramProgram NJ NJCEP Solar Renewable Energy Credit Program NVkW NJCEP Solar Renewable Energy Credit Program** NJ 10-100

Barbose, Galen L

2010-01-01T23:59:59.000Z

343

Demography, movement patterns, and mating system of leopard sharks (Triakis semifasciata) aggregating along the open coast of southern California, USA  

E-Print Network (OSTI)

NJ (1990) Leopard shark Triakis semifasciata distribution, mortality-rate,NJ (1990) Leopard shark (Triakis semifasciata) distribution, mortality rate,NJ (1990) Leopard Shark (Triakis semifasciata) distribution, mortality rate,

Nosal, Andrew Phillip

2013-01-01T23:59:59.000Z

344

Identifying the Basal Angiosperm Node in Chloroplast Genome Phylogenies: Sampling One's Way Out of the Felsenstein Zone  

E-Print Network (OSTI)

p NJ analyses with among-site rate variationNJ analysis under the simpler model without variation in ratesNJ analyses of the nucleotide alignment were run with and without rate

2005-01-01T23:59:59.000Z

345

DOE - Office of Legacy Management -- Westinghouse Electric Corp...  

Office of Legacy Management (LM)

Electric Corp - NJ 03 FUSRAP Considered Sites Site: WESTINGHOUSE ELECTRIC CORP. ( NJ.03 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name:...

346

International Workshop: MFE Roadmapping in the ITER Era | Princeton...  

NLE Websites -- All DOE Office Websites (Extended Search)

Princeton University Princeton, NJ International Workshop: MFE Roadmapping in the ITER Era Princeton University Princeton, NJ Host: G.H. Neilson Coordinator: Pamela Hampton...

347

U.S. Department of Energy Office of Energy Efficiency and Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NJ-City-Edison, Township of Location: City Edison, Township of NJ American Recovery and Reinvestment Act: Proposed Action or Project Description 1) Hire a Project Administrator to...

348

Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431  

E-Print Network (OSTI)

of Omaha Omaha NE Fuel Cell AT&T Basking Ridge NJ Recip.NJ Recip. Engine Verizon Communications Garden City NY Fuel Cell

Brown, Richard; Alliance to Save Energy; ICF Incorporated; ERG Incorporated; U.S. Environmental Protection Agency

2008-01-01T23:59:59.000Z

349

Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States  

E-Print Network (OSTI)

NJ Credit Multipliers Specific Technology Solar Energy *:NJ, NM, NV, OH, OR, PA Specific Application Distributed Generation : AZ, CO, NM, NY Solar Energy :

Wiser, Ryan

2010-01-01T23:59:59.000Z

350

Trichloroethene Removal From Waste Gases in Anaerobic Biotrickling Filters Through Reductive Dechlorination  

E-Print Network (OSTI)

NJ) was continuously added to the sump at the flow rate ofNJ) was continuously added to the sump at the flow rate of

Popat, Sudeep Chandrakant

2010-01-01T23:59:59.000Z

351

Real Time Pricing as a Default or Optional Service for C&I Customers: A Comparative Analysis of Eight Case Studies  

E-Print Network (OSTI)

rates only for the PJM region as a whole, and not for NJ andrates. 57 % of Eligible Customers % of Eligible Load NJ MD

Barbose, Galen; Goldman, Charles; Bharvirkar, Ranjit; Hopper, Nicole; Ting, Michael; Neenan, Bernie

2005-01-01T23:59:59.000Z

352

Analysis of Assembly Bill 428: Fertility Preservation  

E-Print Network (OSTI)

NJ, van Santbrink EJP, van Inzen W, Romijn C, Dohle GR. Use rateNJ, van Santbrink EJ, van Inzen W, Romijn JC, Dohle GR. Use rate

California Health Benefits Review Program (CHBRP)

2011-01-01T23:59:59.000Z

353

,"Vermont Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

80SVT3","N3050VT3","N3010VT3","N3020VT3","N3035VT3","N3045VT3" "Date","Vermont Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Vermont Natural Gas Pipeline and...

354

Health in black and white : debates on racial and ethnic health disparities in Brazil  

E-Print Network (OSTI)

Biological Citizens after Chernobyl. Princeton, N.J. :damages incurred from Chernobyl. Petryna interprets their

Pagano, Anna

2011-01-01T23:59:59.000Z

355

NIST TIP White Paper Submission Critical National Need Idea ...  

Science Conference Proceedings (OSTI)

... Submitting organization: Montclair State University Contact: Eileen Fitzpatrick Linguistics Department Montclair State University Montclair NJ 07043 ...

2011-08-02T23:59:59.000Z

356

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073  

E-Print Network (OSTI)

Princeton Scientific Instruments Inc, Monmouth Junction, NJ 6 Hiroshima University, Hiroshima, Japan

357

Mining Data to Find Subsets of High Activity Dhammika Amaratunga1  

E-Print Network (OSTI)

.W. Johnson Pharmaceutical Research Institute, Raritan, NJ 08869 (damaratu@prius.jnj.com) 2 National

Cabrera, Javier

358

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

Fuel Cells for Generation and Cogeneration, Center for Energy and Environmental Studies, Princeton University, Princeton, NJ.

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

359

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

Fuel Cells for Generation and Cogeneration Center for Energy and Environmental Studies Princeton University Princeton, NJ

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

360

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

Fuel Cells for Generation and Cogeneration Center for Energy and Environmental Studies Princeton University Princeton, NJ

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network (OSTI)

Fuel Cells for Generation and Cogeneration, Center for Energy and Environmental Studies, Princeton University, Princeton, NJ,

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

362

THE SYNTHESES AND ELECTRONIC STRUCTURES OF DECAMETHYLMETALLOCENES  

E-Print Network (OSTI)

NJ, 07036. **Present address: ***Present address: Chemistry Department, Beloit College, Beloit, WI Solar Energy

Robbins, J.L.

2013-01-01T23:59:59.000Z

363

Phylogenomics of strongylocentrotid sea urchins  

E-Print Network (OSTI)

NJ, Hoyle DC, Higgs PG: RNA sequence evolution with secondary structure constraints: comparison of substitution rate

Kober, Kord M; Bernardi, Giacomo

2013-01-01T23:59:59.000Z

364

The genetic basis of multiple sclerosis: a model for MS susceptibility  

E-Print Network (OSTI)

NJ, Sadovnick AD, Ebers GC, the Canadian Collaborative Study Group: Twin concordance and sibling recurrence rates

Goodin, Douglas S

2010-01-01T23:59:59.000Z

365

Keloids: Pathophysiology and management  

E-Print Network (OSTI)

rate [ 35 , 36 , 37 , 38 , 39 ]. Triamcinolone acetonide (Kenalog; Bristol-Myers Squibb, Princeton, NJ)

Robles, David T; Moore, Erin; Draznin, Michelle; Berg, Daniel

2007-01-01T23:59:59.000Z

366

Security Standards for the Global Information Grid Gary Buda, Booz Allen & Hamilton, Linthicum, MD 21090  

E-Print Network (OSTI)

, Telcordia Technologies, Morristown, NJ 07960 Chris Kubic, Department of Defense, Ft. Meade, MD, 20755

Lee, Ruby B.

367

4th Annual DOE-ERSP PI Meeting: Abstracts  

E-Print Network (OSTI)

Laboratory, Berkeley, CA, Peter Jaffe, Princeton University, Princeton, NJ, Lee Kerkhof, Rutgers Uni- versity, New Brunswick,

Hazen, Terry C.

2009-01-01T23:59:59.000Z

368

UTILITYID","UTILNAME","STATE_CODE","YEAR","MONTH","RESIDENTIAL...  

U.S. Energy Information Administration (EIA) Indexed Site

VT)","VT",2013,1,1372,8449,16525,2476,15128,3706,777,5247,12,0,0,0,4625,28824,20243 7601,"Green Mountain Power Corp","VT",2013,1,28620,159754,218382,18657,134557,38190,10074,105040...

369

Virtualization (Panel Discussion)  

Science Conference Proceedings (OSTI)

... Perf improvements for interrupt intensive env, faster VM boot Interrupt isolation & remapping PCI-SIG ATS support Intel VT-x Intel VT-d Intel VT-c ...

2008-09-24T23:59:59.000Z

370

Category:Utility Rate Impacts on PV Economics By Location | Open Energy  

Open Energy Info (EERE)

Utility Rate Impacts on PV Economics By Location Utility Rate Impacts on PV Economics By Location Jump to: navigation, search Impact of Utility Rates on PV Economics Montgomery, AL Little Rock, AR Flagstaff, AZ Phoenix, AZ Tucson, AZ Arcata, CA LA, CA San Francisco, CA Boulder, CO Eagle County, CO Pueblo, CO Bridgeport, CT Wilmington, DE Miami, FL Tampa, FL Atlanta, GA Savannah, GA Des Moines, IA Mason, IA Boise, ID Chicago, IL Springfield, IL Indianapolis, IN Goodland, KS Wichita, KS Lexington, KY New Orleans, LA Shreveport, LA Boston, MA Baltimore, MD Caribou, ME Portland, ME Detroit, MI Houghton-Lake, MI Traverse City, MI International Falls, MN Minneapolis, MN Kansas City, MO Jackson, MS Billings, MT Greensboro, NC Wilmington, NC Bismarck, ND Minot, ND Omaha, NE Concord, NH Atlantic City, NJ Albuquerque, NM Las Vegas, NV Reno, NV New York, NY

371

Major DOE Biofuels Project Locations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels Biofuels Project Locations Pacific Ethanol (Boardman, OR) BlueFire Ethanol (Corona, CA) POET (Emmetsburg, IA) Lignol Innovations (Commerce City, CO) ICM (St. Joseph, MO) Abengoa (Hugoton, KS) DOE Joint Bioenergy Institute (Berkeley, CA) DOE Great Lakes Bioenergy Research Center (Madison, WI) DOE Bioenergy Science Center (Oak Ridge, TN) NewPage (Wisconsin Rapids, WI) Range Fuels (Soperton, GA) DSM Innovation Center (Parsippany, NJ) Novozymes (Davis, CA) Genencor (Palo Alto, CA) Verenium Corp (San Diego, CA) Dupont (Wilmington, DE) Mascoma (Lebanon, NH) Cargill Inc (Minneapolis, MN) Regional Partnerships South Dakota State University, Brookings, SD Cornell University, Ithaca, NY University of Tennessee, Knoxville, TN Oklahoma State University, Stillwater, OK Oregon State University, Corvallis, OR

372

A Review of the Representation of Induced Highway Travel in Current Travel and Land Use Models  

E-Print Network (OSTI)

and User Reference Report. SACOG. Sacramento, CA.number of case studies (Sacramento, CA, Chittenden, VT, andhighway capacity in Sacramento (CA), Chittenden (VT), and

Rodier, Caroline J

2004-01-01T23:59:59.000Z

373

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DE-EE0000088 DE-EE0000088 New Jersey Clean Cities Coalition EE/VT DE-EE0000088 PVT ARRA Erin Russell-Story 12/15/09 to 12/14/13 ACUA:6700 Delilah Rd, Egg Harbor Twp, NJ New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CCities AOI #4: The project funds the deployment of CNG refuse trucks and shuttle buses and the development of four CNG refueling locations.- ACUA CNG FUELING DEVELOPMENT TASKS ONLY 02 18 2010 Erin Russell-Story Digitally signed by Erin Russell-Story DN: cn=Erin Russell-Story, c=US, o=NETL, ou=Clean Cities, email=erin.russell-story@netl.doe.gov Date: 2010.02.18 11:55:48 -05'00' 03 31 2010 john ganz Digitally signed by john ganz DN: cn=john ganz, o=NETL- DOE, ou=140 OPFC, email=john.ganz@netl.doe.gov, c=US Date: 2010.03.31 14:26:25

374

Buildings Energy Data Book: 9.1 ENERGY STAR  

Buildings Energy Data Book (EERE)

2 2 Home Performance with ENERGY STAR, Completed Jobs Rank Program Sponsor State 1 NY State Energy R&D Authority NY 2 National Grid MA 3 Austin Energy TX 4 Wisconsin Energy Conservation Corp. WI 5 New Jersey Board of Public Utilities NJ 6 Energy Trust of Oregon OR 7 Sacramento Municipal Utility District (1) CA 8 Long Island Power Authority NY 9 Metropolitan Energy Center MO 10 Efficiency Vermont VT Total Note(s): Source(s): Personal communication, Chandler Von Schrader, U.S. EPA, February 10, 2012. 11,647 13,549 24,818 35,012 110,922 1) Part of the California Building Performance Contractors Association. 2) Totals include homes completed since program's inception in 2001. 122 295 494 632 1594 43 138 703 930 1885 - 28 760 843 1631 560 1,040 767 777 3156 338 417 1,194 155 2104 840 1,012 1,944 2176 8717 17 163 1,138 4365

375

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0088 0088 New Jersey Clean Cities Coalition EE/VT DE-EE0000088 PVT 2010 Erin Russell-Story 12/15/09 to 12/14/13 CJW:500 Breunig Ave, Trenton NJ 08608 New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CCities AOI #4: The project funds the deployment of CNG refuse trucks and shuttle buses and the development of four CNG refueling locations.- CENTRAL JERSEY WASTE CNG FUELING DEVELOPMENT TASKS ONLY 02 16 2010 Erin Russell-Story Digitally signed by Erin Russell-Story DN: cn=Erin Russell-Story, c=US, o=NETL, ou=Clean Cities, email=erin.russell-story@netl.doe.gov Date: 2010.02.16 09:41:06 -05'00' 03 01 2010 john ganz Digitally signed by john ganz DN: cn=john ganz, o=NETL- DOE, ou=140 OPFC, email=john.ganz@netl.doe.gov, c=US Date: 2010.03.01 15:57:30 -05'

376

Partitioning of solutes between liquid water and steam in the system {l_brace}Na-NH{sub 4}-NH{sub 3}-H-Cl{r_brace} to 350{degree}C  

DOE Green Energy (OSTI)

Measurements have been made of the partitioning of solutes between liquid and vapor phases for hydrochloric acid and chloride salts found in both power plant steam cycles and in natural geothermal systems. Static sampling of equilibrium liquid and vapor phases extended from 350 C to the lowest temperatures for which reliable analytical determinations of vapor-phase solute concentrations could be made. Equilibrium constants for the partitioning of the various solutes were calculated from the measured equilibrium compositions, and represented as functions of temperature and solvent density over the full temperature range investigated. These equilibrium constants can be used to calculate equilibrium compositions of coexisting liquid and vapor phases under conditions ranging from steam production from saline geothermal brines to early-condensate formation in all-volatile treatment steam cycles.

Simonson, J.M.; Palmer, D.A. [Oak Ridge National Lab., TN (United States). Chemical and Analytical Sciences Div.

1994-12-31T23:59:59.000Z

377

2011 Laser Diagnostics in Combustion Gordon Research Conference, (August 14-19, 2011, Waterville Valley Resort, Waterville Valley, NH)  

SciTech Connect

The vast majority of the world's energy needs are met by combustion of fossil fuels. Optimum utilization of limited resources and control of emissions of pollutants and greenhouse gases demand sustained improvement of combustion technology. This task can be satisfied only by detailed knowledge of the underlying physical and chemical processes. Non-intrusive laser diagnostics continuously contribute to our growing understanding of these complex and coupled multi-scale processes. The GRC on Laser Diagnostics in Combustion focuses on the most recent scientific advances and brings together scientists and engineers working at the leading edge of combustion research. Major tasks of the community are developing and applying methods for precise and accurate measurements of fluid motion and temperatures; chemical compositions; multi-phase phenomena appearing near walls, in spray and sooting combustion; improving sensitivities, precision, spatial resolution and tracking transients in their spatio-temporal development. The properties and behaviour of novel laser sources, detectors, optical systems that lead to new diagnostic capabilities are also part of the conference program.

Thomas Settersten

2011-08-19T23:59:59.000Z

378

Reconstruction of the Extratropical NH Mean Temperature over the Last Millennium with a Method that Preserves Low-Frequency Variability  

Science Conference Proceedings (OSTI)

A new multiproxy reconstruction of the Northern Hemisphere extratropical mean temperature over the last millennium is presented. The reconstruction is performed with a novel method designed to avoid the underestimation of low-frequency variability ...

Bo Christiansen; Fredrik Charpentier Ljungqvist

2011-12-01T23:59:59.000Z

379

A numerical and experimental study of in-situ NO formation in laminar NH3-seeded syngas diffusion flames.  

E-Print Network (OSTI)

?? Oxides of nitrogen formed during combustion are significant threats to our environment. They result in the formation of acid rain, smog, and depletion of (more)

Li, Miao

2012-01-01T23:59:59.000Z

380

A numerical and experimental study of in-situ NO formation in laminar NH3-seeded syngas diffusion flames.  

E-Print Network (OSTI)

??Oxides of nitrogen formed during combustion are significant threats to our environment. They result in the formation of "acid rain", smog, and depletion of the (more)

Li, Miao

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

U.S. LNG Imports from Other Countries  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

382

U.S. LNG Imports from Egypt  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

383

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

384

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

385

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

386

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

387

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

388

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

389

U.S. LNG Imports from Indonesia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

390

U.S. LNG Imports from Canada  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

391

U.S. LNG Imports from Norway  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

392

U.S. LNG Imports from Equatorial Guinea  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

393

U.S. LNG Imports from Australia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

394

U.S. LNG Imports from United Arab Emirates  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

395

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

396

U.S. LNG Imports from Qatar  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

397

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Average Square Footage of Northeast Homes, by Housing Characteristics, 2009" 0 Average Square Footage of Northeast Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Northeast",20.8,2121,1663,921,836,656,363 "Northeast Divisions and States" "New England",5.5,2232,1680,625,903,680,253 "Massachusetts",2.5,2076,1556,676,850,637,277 "CT, ME, NH, RI, VT",3,2360,1781,583,946,714,234 "Mid-Atlantic",15.3,2080,1657,1028,813,647,402

398

Preliminary Release: April 19, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

2 Total Square Footage of Northeast Homes, by Housing Characteristics, 2009" 2 Total Square Footage of Northeast Homes, by Housing Characteristics, 2009" " Final" ,,"Total Square Footage" ,"Housing Units1","Total2","Heated","Cooled" "Housing Characteristics","Millions","Billions","Billions","Billions" "Total Northeast",20.8,44.1,34.5,19.1 "Northeast Divisions and States" "New England",5.5,12.3,9.3,3.4 "Massachusetts",2.5,5.1,3.9,1.7 "CT, ME, NH, RI, VT",3,7.2,5.4,1.8 "Mid-Atlantic",15.3,31.7,25.3,15.7 "New York",7.2,13.2,10.6,4.9 "Pennsylvania",4.9,11,8.4,5.9 "New Jersey",3.2,7.6,6.2,4.9 "Urban and Rural3"

399

New England Wind Forum: Publications  

Wind Powering America (EERE)

Connecticut Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Projects in New England Building Wind Energy in New England Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Publications This page lists publications for New England. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Total of 298 records found. Page 1 of 30, Sorted by descending date Filtered by: Publication and Potential New England Wind Forum Information 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Next Page >> Date sort by ascending date sort by descending date State sort by ascending state sort by descending state Type of Information Program Area Title sort by ascending title sort by descending title More Details

400

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

New England Wind Forum: Large Wind  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Large Wind When establishing wind farms, wind energy developers generally approach landowners where they want to build. Interest in wind farms is frequently spurred by external pressures such as tax and other financial incentives and legislative mandates. Since each situation is influenced by local policies and permitting, we can only provide general guidance to help you learn about the process of installing wind turbines. Publications Wind Project Development Process Permitting of Wind Energy Facilities: A Handbook. (August 2002). National Wind Coordinating Collaborative. Landowner Frequently Asked Questions and Answers. (August 2003). "State Wind Working Group Handbook." pp. 130-133.

402

New England Wind Forum: New England Wind Projects  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Projects This page shows the location of installed and planned New England wind projects. Find windfarms, community-scale wind projects, customer-sited wind projects, small wind projects, and offshore wind projects. Read more information about how to use the Google Map and how to add your wind project to the map. Text version New England Wind Energy Projects Connecticut, East Canaan Wind Connecticut, Klug Farm Connecticut, Phoenix Press Connecticut, Wind Colebrook (South and North)

403

New England Wind Forum: Past Webinars  

Wind Powering America (EERE)

Connecticut Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Projects in New England Building Wind Energy in New England Newsletter Perspectives Events Past Webinars Quick Links to States CT MA ME NH RI VT Bookmark and Share Past Webinars Here you will find audio visual files and transcripts of webinars hosted by the New England Wind Energy Project (NEWEEP). You can also learn about upcoming NEWEEP webinars. Title: Wind Power as a Neighbor: Experience with Techniques for Mitigating Public Impacts: A NEWEEP Webinar Speaker(s): Charles Newcomb, National Renewable Energy Laboratory; John Knab, Sheldon, NY; Nils Bolgen, Massachusetts Clean Energy Center Date: 12/7/2011 Running time: 2 hour, 20 minutes Title: Understanding the Current Science, Regulation, and Mitigation of Shadow Flicker: A NEWEEP Webinar

404

New England Wind Forum: New England Wind Energy Education Project  

Wind Powering America (EERE)

Webinars Webinars Conference Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Energy Education Project The New England Wind Energy Education Project (NEWEEP) is designed to complement the New England Wind Forum website and newsletter as a comprehensive source of objective information on wind energy issues in the New England region. The project, funded by the U.S. Department of Energy's (DOE's) former Wind Powering America Initiative under a 2-year grant, began as an eight-part webinar series and a conference. The NEWEEP webinar series provides the public with objective information to allow informed decisions about proposed wind energy projects throughout the New England region.

405

New England Wind Forum: Interviews with Wind Industry Stakeholders and  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Interviews With Wind Industry Stakeholders and Pioneers in New England The New England Wind Forum will interview different stakeholders actively shaping the wind power landscape in New England and wind pioneers to examine how they have laid the groundwork for today's New England wind energy market. Stephan Wollenburg, Green Energy Program Director of Energy Consumers Alliance of New England January 2013 A Panel of Seven Offer Insight into the Evolving Drivers and Challenges Facing Wind Development in New England June 2011 John Norden, Manager of Renewable Resource Integration, Independent System Operator-New England September 2010 Angus King, Former Governor of Maine and Co-Founder of Independence Wind

406

New England Wind Forum: New England Wind Forum Newsletter  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Forum Newsletter Follow news from the New England Wind Forum by subscribing to its newsletter. Newsletter The New England Wind Forum Newsletter informs stakeholders of New England Wind Energy Education Project announcements, plus, events, project, siting, and policy updates. Enter your email address below to begin the registration process. After you subscribe to the New England Wind Forum Newsletter, you can choose to subscribe to other energy efficiency and renewable energy news. Archived copies of this e-newsletter are not available, but all of the news items can be found on this website under news, events, and publications. If you have ideas or news items to contribute for future issues, please contact Sustainable Energy Advantage.

407

New England Wind Forum: New England Regional and State Activities  

Wind Powering America (EERE)

Connecticut Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Projects in New England Building Wind Energy in New England Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Activities Although much of the wind-power-related activity in the New England region occurs at the state level, regional activities and organizations are also prevalent. For state-specific wind power activities and information, follow the links to specific states on the left-hand menu. Operating and Planned Wind Projects A clickable regional map provides information on operating and planned wind projects in New England. Regional Resource Agencies Northeast States for Coordinated Air Use Management New England Governors Conference

408

New England Wind Forum: Building Wind Energy in New England  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Building Wind Energy in New England Many factors influence the ability to develop wind power in the New England region. A viable project requires the right site and the right technology for the application. It must provide suitable revenue or economic value to justify investment in this capital-intensive but zero-fuel technology. Policy initiatives are in place throughout the region to support the expansion of wind power's role in the regional supply mix. However, issues affecting public acceptance of wind projects in host communities must be addressed. Information on topics affecting wind power development in New England can be found by using the navigation to the left.

409

New England Wind Forum: New England Wind Resources  

Wind Powering America (EERE)

New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resources Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Resources Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Massachusetts wind resource map. Go to the Connecticut wind resource map. Go to the Rhode Island wind resource map. New England Wind Resource Maps Wind resources maps of Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, and Vermont.

410

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

411

New England Wind Forum: News  

Wind Powering America (EERE)

Connecticut Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Projects in New England Building Wind Energy in New England Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share News This page lists news for New England. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Total of 251 records found. Page 1 of 26, Sorted by descending date Filtered by: News and Potential New England Wind Forum Information 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Next Page >> Date sort by ascending date sort by descending date State sort by ascending state sort by descending state Type of Information Program Area Title sort by ascending title sort by descending title More Details

412

DOE - Office of Legacy Management -- Eclipse-Pioneer Div of Bendix Aviation  

Office of Legacy Management (LM)

Eclipse-Pioneer Div of Bendix Eclipse-Pioneer Div of Bendix Aviation Corp - NJ 30 FUSRAP Considered Sites Site: Eclipse-Pioneer Div. of Bendix Aviation Corp. (NJ.30 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Allied Bendix Aerospace Corporation Sumitomo Machinery Corporation of America Metpath Incorporated NJ.30-7 Location: Teterboro , New Jersey NJ.30-4 Evaluation Year: Circa 1989 NJ.30-1 NJ.30-2 NJ.30-3 NJ.30-5 Site Operations: Plant #4 built by U.S. Navy on contractor property to cast magnesium-thorium alloy aircraft parts during WWII. Foundry operated till about 1966. Manufactured electronic components for MED 1940s-1950s. Operated under NRC license - closed out 22 October 1981. Property released for unrestricted use. NJ.30-6

413

DOE - Office of Legacy Management -- International Nickel Co - Bayonne  

Office of Legacy Management (LM)

Nickel Co - Bayonne Nickel Co - Bayonne Laboratories - NJ 17 FUSRAP Considered Sites Site: International Nickel Co., Bayonne Laboratories (NJ.17 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Bayonne , New Jersey NJ.17-1 Evaluation Year: 1994 NJ.17-1 Site Operations: Conducted research on the nickel plating of uranium metal. NJ.17-2 Site Disposition: Eliminated - Potential for contamination considered remote due to limited scope of the operations Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NJ.17-2 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to International Nickel Co., Bayonne Laboratories

414

The Institute for Critical Technology and Applied Science at Virginia Tech supports and promotes cutting-edge research at the intersection of engineering, science, and medicine. Please visit www.ictas.vt.edu.  

E-Print Network (OSTI)

on the basis of race, gender, disability, age, veteran status, national origin, religion, sexual orientation and Deterioration Science Construction and Renewal Engineering Public Health and Wealth Water-Energy-Climate Nexus

Beex, A. A. "Louis"

416

Thin Film CIGS and CdTe Photovoltaic Technologies: Commercialization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar - AZ Applied Materials - CA Primestar Solar - CO Miasole - CA Power Films - IA AVA Solar - CO Energy PV - NJ Energy PV - NJ Solar Fields - OH Ascent Solar - CO MV Systems -...

417

Microsoft Word - 201304_Fuels_Industry_Newsletter_April_2013...  

NLE Websites -- All DOE Office Websites (Extended Search)

Primus Green Energy to Support Gas-to-Liquids Research at Princeton University" Primus Green Energy, March 21, 2013 Hillsborough, N.J. and Princeton, N.J. (March 21, 2013) -...

418

Tracking the Sun: The Installed Cost of Photovoltaics in the U.S. from 1998-2007  

E-Print Network (OSTI)

State Energy Office: Solar Electric Rebate Program NJ CleanEnergy Office: Solar Electric Rebate Program MW No. Systems NJEnergy Office: Solar Electric Rebate Program 10-100 kW >100 kW NJ

Wiser, Ryan

2009-01-01T23:59:59.000Z

419

Array Comparative Genomic Hybridizations: Assessing the Ability to Recapture Evolutionary Relationships Using an In Silico Approach  

E-Print Network (OSTI)

substitution rate (Figure 3B). When NJ was used with theNJ and parsimony tree construction but there are differences in the efficacy of the different tree construc- tion algorithms and simulated substitution rates.

Gilbert, Luz B; Chae, Lee; Kasuga, Takao; Taylor, John W

2011-01-01T23:59:59.000Z

420

A quasi-Newton strategy for the sSQP method for variational ...  

E-Print Network (OSTI)

From the fact that Mj+1 = ??,Lj (Mj) and Nj ? Lj, by (36) we have that. D?(Nj,Mj+ 1) ..... Using this property, we conclude that the convergence rate of the primal.

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

38017,"AMERADA HESS CORP ",1,130,"MOTOR...  

U.S. Energy Information Administration (EIA) Indexed Site

CO ",32,840,"UNFINISHED OILS, HEAVY GAS OILS",1003,"NEWARK, NJ","NEW JERSEY",1,515,"KOREA, REPUBLIC OF",265,0,0,"IMTT BAYONNE ","BAYONNE TERM","NJ","NEW JERSEY",1 38017,"SHELL...

422

2nd Annual DOE-ERSP PI Meeting: Abstracts  

E-Print Network (OSTI)

Laboratory, Richland, WA Rutgers University, New Brunswick,New Brunswick, NJ Georgia State University, Atlanta, GA Oak Ridge National Laboratory,Laboratory, Berkeley, CA; 7 Princeton University, Prince- ton, NJ; 8 Rutgers University, New Brunswick,

Hazen, Terry C.

2007-01-01T23:59:59.000Z

423

Safeguarding Health Information: Building Assurance through ...  

Science Conference Proceedings (OSTI)

... Privacy Workgroup Panelists: Balavignesh Thirumalainambi (NJ-HITEC) Joseph McClure, JD (Siemens) Doreen Espinosa (Utah Health Information ...

2013-05-09T23:59:59.000Z

424

X-Ray Microtomography of an ASTM C-109 mortar exposed to ...  

Science Conference Proceedings (OSTI)

... 20899 USA. J. Dunsmuir Exxon Research and Engineering Company Route 22 East, Annandale, NJ 08801 USA. LM Schwartz ...

2005-02-18T23:59:59.000Z

425

Distribution Category: Magnetic Fuaion Energy  

E-Print Network (OSTI)

, Burns & Roe,Inc., Oradell, N.J. H. K. Forsen, Exxon Nuclear Co., Inc., Bellevue, Wash. M. J. Lubin

Abdou, Mohamed

426

Distribution Category: Magnetic Fusion Energy  

E-Print Network (OSTI)

: S. Baron, Burns & Roe, Inc., Oradell, N.J. H. K. Forsen, Exxon Nuclear Co., Inc., Bellevue, Wash. M

Harilal, S. S.

427

DIRECTORY OF ACCREDITED NORTH AMERICAN ...  

Science Conference Proceedings (OSTI)

... The directory also includes ... Operates in Houston, TX (Headquarters); River Edge, NJ ... de Normalisation) AIDMO (Arab Organization for Industrial ...

2011-08-22T23:59:59.000Z

428

Limonene and tetrahydrofurfurly alcohol cleaning agent ...  

Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic; ... NJ) Application Number: 08/ 577,723: Filed: ...

429

NIST Manuscript Publication Search  

Science Conference Proceedings (OSTI)

... Scanning Probe Microscopy for Energy Research. ... World Scientific Publishing Company, Hackensack, NJ. ... Atomic force microscopy (AFM), Solar. ...

2013-05-27T23:59:59.000Z

430

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Solar Energy Materials, Vol. ... Carino, NJ; Clifton, JR; Prototype Computer- Integrated Knowledge System: Predicting Service Life of Chloride-Exposed ...

431

Gery Stafford  

Science Conference Proceedings (OSTI)

... Summit, NJ, where he worked on electrogenerative processes and the development of polymeric separator materials for batteries and fuel cells. ...

2012-10-02T23:59:59.000Z

432

Information Technology and Worker Satisfaction  

E-Print Network (OSTI)

rate for the survey was 42%, with MSAs varying from a low of 32% (Middlesex-Somerset- Hunterdon, NJ),

Danziger, Jim; Dunkle, Debbie

2005-01-01T23:59:59.000Z

433

Is it Worth it? A Comparative Analysis of Cost-Benefit Projections for State Renewables Portfolio Standards  

E-Print Network (OSTI)

rates = 0.04 Average retail (% - left axis ) Average retail (/kWh - right axis ) RI (Tellus) - 18% NJ (

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

434

Renewables Portfolio Standards: A Factual Introduction to Experience from the United States  

E-Print Network (OSTI)

rates = 0.04 Average retail (% - left axis) Average retail (/kWh - right axis) WA (Lazarus) - 15% NJ (

Wiser, R.; Namovicz, C.; Gielecki, M.; Smith, R.

2008-01-01T23:59:59.000Z

435

Methods of Training in the Workplace  

E-Print Network (OSTI)

rate for the survey was 42%, with MSAs varying from a low of 32% (Middlesex-Somerset- Hunterdon, NJ),

Danziger, Jim; Dunkle, Debbie

2005-01-01T23:59:59.000Z

436

1619.ps  

E-Print Network (OSTI)

RUTCOR - Rutgers University Center for Operations Research, Piscataway, NJ, USA ...... Logical Analysis of Data: From Combinatorial Optimization to Medical.

437

INTERIOR-POINT METHODS FOR NONCONVEX NONLINEAR ...  

E-Print Network (OSTI)

Feb 16, 2012 ... Technical report, Argonne National Laboratory, January 2001. ... David F. Shanno, Emeritus, Rutgers University, New Brunswick, NJ...

438

Air System Management for Fuel Cell Vehicle Applications  

E-Print Network (OSTI)

Fuel Cells II, Edited by S. Gottesfeld et al. , Electrochemical Society, Pennington, NJ,Fuel Cells II, Edited by S. Gottesfeld et al. , Electrochemical Society, Pennington, NJ,Fuel Cells II, Edited by S. Gottesfeld et al. , Electrochemical Society, Pennington, NJ,

Cunningham, Joshua M

2001-01-01T23:59:59.000Z

439

Macroscopic Modeling of Polymer-Electrolyte Membranes  

E-Print Network (OSTI)

Fuel Cells Iv, The Electrochemical Society Proceeding Series, Pennington, NJ,Fuel Cells, PV 95-23, The Electrochemical Society Proceeding Series, Pennington, NJ,Fuel Cell, and Photoenergy Conversion Systems, PV 86-12, The Electrochemical Society Proceeding Series, Pennington, Nj,

Weber, A.Z.; Newman, J.

2008-01-01T23:59:59.000Z

440

Disparities in Health Insurance and Access to Care for Residents Across U.S. Cities  

E-Print Network (OSTI)

High Rates of Uninsurance El Paso, TX Jersey City, NJ LosHigh Rates of Uninsurance El Paso, TX Jersey City, NJ LosNJ Las Vegas, NVAZ Salt Lake City, UT Charlotte, NCSC MSAs with High Rates

Brown, E. Richard; Wyn, Roberta; Teleki, Stephanie

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

442

U.S. LNG Imports from Indonesia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

443

U.S. LNG Imports from Brunei  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

444

U.S. LNG Imports from Egypt  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

445

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

446

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

447

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

448

U.S. LNG Imports from Oman  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

449

U.S. LNG Imports from Australia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

450

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

451

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

452

U.S. LNG Imports from United Arab Emirates  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

453

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

454

U.S. LNG Imports from Canada  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

455

U.S. Natural Gas Imports by Pipeline from Mexico  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

456

GREEN BANK TELESCOPE OBSERVATIONS OF THE NH{sub 3} (3, 3) AND (6, 6) TRANSITIONS TOWARD SAGITTARIUS A MOLECULAR CLOUDS  

SciTech Connect

Ammonia (3, 3) and (6, 6) transitions have been observed using the Green Bank Telescope toward the Sgr A region. The gas is mainly concentrated in 50 km s{sup -1} and 20 km s{sup -1} clouds located in a plane inclined to the galactic plane. These 'main' clouds appear to be virialized and influenced by the expansion of the supernova remnant Sgr A East. The observed emission shows very complicated features in the morphology and velocity structure. Gaussian multi-component fittings of the observed spectra revealed that various 'streaming' gas components exist all over the observed region. These components include those previously known as 'streamers' and 'ridges', but most of these components appear not to be directly connected to the major gas condensations (the 50 km s{sup -1} and 20 km s{sup -1} clouds). They are apparently located out of the galactic plane, and they may have a different origin than the major gas condensations. Some of the streaming components are expected to be sources that feed the circumnuclear disk of our Galactic center directly and episodically. They may also evolve differently than major gas condensations under the influence of the activities of the Galactic center.

Minh, Young Chol [Korea Astronomy and Space Science Institute, Daeduk-daero 776, Yuseong, Daejeon 305-348 (Korea, Republic of); Liu, Hauyu Baobab; Ho, Paul T. P.; Hsieh, Pei-Ying; Su, Yu-Nung [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Kim, Sungsoo S. [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Kyungki-do 446-701 (Korea, Republic of); Wright, Melvyn [Radio Astronomy Laboratory, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States)

2013-08-10T23:59:59.000Z

457

Detailed modeling and laser-induced fluorescence imaging of nitric oxide in a NH(i)-seeded non-premixed methane/air flame  

E-Print Network (OSTI)

an axisymmetric laminar diffusion flame. Proc. Comb. Inst. ,laminar diffusion flames. Combust. Sci. Tech. , [25] N .premixed ethylene/air flames. Combust. Flame, 127:2004-2022,

2001-01-01T23:59:59.000Z

458

Assessment of the use of H{sub 2}, CH{sub 4}, NH{sub 3} and CO{sub 2} as NTP propellants. Revision  

DOE Green Energy (OSTI)

In this paper the effect of changing from the traditional NTP coolant, hydrogen, to several alternative coolant is studied. Hydrogen is generally chosen as an NTP coolant, since its use maximizes the specific impulse for a given operating temperature. However, there are situations in which it may not be available as optional. The alternative coolant which were considered are ammonia, urethane, carbon dioxide and carbon monoxide. A particle bed reactor (PBR) generating 200 MW and coolant by hydrogen was used as the baseline against which all the comparisons were made. Both 19 and 37 element cases were considered and the large number of elements was found to be necessary in the case of the carbon monoxide. The coolant reactivity worth was found to be directly proportional to the hydrogen coolant content. It was found that due to differences in the thermophysical proportions of the coolant that it would not be possible to use one reactor for all the coolants. The reactor would have to constructed specifically for a coolant type.

Selcow, E.C.; Davis, R.E.; Perkins, K.R.; Ludewig, H.; Cerbone, R.J.

1991-10-01T23:59:59.000Z

459

Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting at T.J.Maxx in Manchester, NH Phase I  

SciTech Connect

A report describing the process and results of replacing existing parking lot lighting, looking at a LED option with occupancy sensors, and conventional alternates. Criteria include payback, light levels, occupant satisfaction. This report is Phase I of II. Phase I deals with initial installation.

Myer, Michael; Goettel, Russell T.

2010-06-29T23:59:59.000Z

460

Addendum to Guarantee Testing Results from the Greenidge Multi-Pollutant Control Project: Additiona NH3, NOx, and CO Testing Results  

SciTech Connect

On March 28-30 and May 1-4, 2007, CONSOL Energy Inc. Research & Development (CONSOL R&D) performed flue gas sampling at AES Greenidge to verify the performance of the multi-pollutant control system recently installed by Babcock Power Environmental Inc. (BPEI) on the 107-MW Unit 4 (Boiler 6). The multi-pollutant control system includes combustion modifications and a hybrid selective non-catalytic reduction (SNCR)/in-duct selective catalytic reduction (SCR) system to reduce NO{sub x} emissions, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system and baghouse to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, HF, and particulate matter. Mercury removal is provided via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. The testing in March and May demonstrated that the multi-pollutant control system attained its performance targets for NO{sub x} emissions, SO{sub 2} removal efficiency, acid gas (SO{sub 3}, HCl, and HF) removal efficiency, and mercury removal efficiency. However, the ammonia slip measured between the SCR outlet and air heater inlet was consistently greater than the guarantee of 2 ppmvd {at} 3% O{sub 2}. As a result, additional testing was performed on May 30-June 1 and on June 20-21, 2007, in conjunction with tuning of the hybrid NO{sub x} control system by BPEI, in an effort to achieve the performance target for ammonia slip. This additional testing occurred after the installation of a large particle ash (LPA) screen and removal system just above the SCR reactor and a fresh SCR catalyst layer in mid-May. This report describes the results of the additional tests. During the May 30-June 1 sampling period, CONSOL R&D and Clean Air Engineering (CAE) each measured flue gas ammonia concentrations at the air heater inlet, downstream of the in-duct SCR reactor. In addition, CONSOL R&D measured flue gas ammonia concentrations at the economizer outlet, upstream of the SCR reactor, and CAE measured flue gas NO{sub x} and CO concentrations at the sampling grids located at the inlet and outlet of the SCR reactor. During the June 20-21 sampling period, CONSOL R&D measured flue gas ammonia concentrations at the air heater inlet. All ammonia measurements were performed using a modified version of U.S. Environmental Protection Agency (EPA) Conditional Test Method (CTM) 027. The NO{sub x} and CO measurements were performed using U.S. EPA Methods 7E and 10, respectively.

Daniel P. Connell; James E. Locke

2008-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Improved synthesis and application of planar-chiral nucleophilic catalysts in asymmetric reactions and copper-catalyzed enantioselective N-H insertion reactions  

E-Print Network (OSTI)

The development of an improved synthesis of nucleophilic planar-chiral catalysts is described in Chapter 1. This route is amenable to scale-up and preparative chiral HPLC is unnecessary to resolve the racemic catalysts. ...

Lee, Elaine C

2007-01-01T23:59:59.000Z

462

M h?nh T?i ?u Ha N?i Tr?i theo Xc Su?t ?u Th?  

E-Print Network (OSTI)

Artificial Intelligence (ICTAI'2003), pages 149-156, Los Alamitos, CA, November 2003. Sacramento,. California, IEEE Computer Society, (2003). [14] Ragsdell...

463

Vector-thread architecture and implementation  

E-Print Network (OSTI)

This thesis proposes vector-thread architectures as a performance-efficient solution for all-purpose computing. The VT architectural paradigm unifies the vector and multithreaded compute models. VT provides the programmer ...

Krashinsky, Ronny (Ronny Meir), 1978-

2007-01-01T23:59:59.000Z

464

U.S. LNG Imports from Indonesia  

Annual Energy Outlook 2012 (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

465

U.S. LNG Imports from Australia  

Annual Energy Outlook 2012 (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

466

U.S. LNG Imports from Equatorial Guinea  

Gasoline and Diesel Fuel Update (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

467

U.S. LNG Imports from Other Countries  

Annual Energy Outlook 2012 (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

468

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

469

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

470

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

471

U.S. Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

472

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

473

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

474

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

475

U.S. LNG Imports from Oman  

Annual Energy Outlook 2012 (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

476

U.S. LNG Imports from Egypt  

Annual Energy Outlook 2012 (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

477

U.S. LNG Imports from Norway  

Annual Energy Outlook 2012 (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

478

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

479

U.S. Natural Gas Exports to Canada  

Annual Energy Outlook 2012 (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

480

U.S. LNG Imports from Brunei  

Annual Energy Outlook 2012 (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

Note: This page contains sample records for the topic "nj vt nh" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

National Idling Reduction Network News - August 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

found at http:www.idleair.com. August 2012 5 EDUCATION, OUTREACH, AND CAMPAIGNS Idle-Free VT Launching "Idle Free from the Start" Idle-Free VT is taking a new approach to the...

482

Exploring the Tradeoffs between Programmability and Efficiency in Data-Parallel Accelerators  

Science Conference Proceedings (OSTI)

We present a taxonomy and modular implementation approach for data-parallel accelerators, including the MIMD, vector-SIMD, subword-SIMD, SIMT, and vector-thread (VT) architectural design patterns. We introduce Maven, a new VT microarchitecture based ...

Yunsup Lee, Rimas Avizienis, Alex Bishara, Richard Xia, Derek Lockhart, Christopher Batten, Krste Asanovi?

2013-08-01T23:59:59.000Z

483

Marriage, Registration and Dissolution by Same-Sex Couples in the US  

E-Print Network (OSTI)

P.L.2006, c.103 C.2A.34-8; Vermont: Vt. Stat. Ann. tit. 15,reciprocal beneficiary); Vermont: Vt. Stat. Ann. tit. 15, sex couples traveled to Vermont for civil unions (the only

Gates, Gary J; Badgett, M.V. Lee; Ho, Deborah

2008-01-01T23:59:59.000Z

484

150MILEMEALS BREAKFAST AT MISSION PARK  

E-Print Network (OSTI)

) Maplebrook Farm Feta (Bennington, VT) Featuring Misty Knoll Farms Chicken (New Haven, VT) Peace Valley Farm, Applesauce, and Cider (Williamstown) Sidehill Farm Plain and Maple-Flavored Low-Fat Yogurt (Ashfield, MA

Aalberts, Daniel P.

485

Company Level Imports  

U.S. Energy Information Administration (EIA)

all states asphalt inc 0209 derby line, vt ... united kingdom kinder morgan liq termls llc ... st louis, mo missouri

486

Effects of Weather Variables on Pedestrian Volumes in Alameda County, California  

E-Print Network (OSTI)

volume was undertaken in Montpelier, Vermont (7). That studyregion. The study done in Montpelier, VT found that during a

Attaset, Vanvisa; Schneider, Robert J.; Arnold, Lindsay S.; Ragland, David R

2010-01-01T23:59:59.000Z

487

ECE 3050 Analog Electronics Quiz 3 January 28, 2009  

E-Print Network (OSTI)

with the simplified T model. For each circuit, it is given that Rtb = 1 k, RE = 2 k, r0 = 20 k, = 99, = 0.99, IC = 1 mA, and VT = 0.025 V. Relevant equations are i0 c = gmv = ib = i0 e r0 e = Rtb 1 + + re gm = IC VT r = VT IB re = VT IE IC = IB = IE = gmr (a) Solve for vo/vtb using the hybrid- model. (b) Solve

Leach Jr.,W. Marshall

488

NCWM 93 Annual Meeting  

Science Conference Proceedings (OSTI)

... Jennifer Nuckolls Siemens Energy & Automation, Inc. ... July 13 - 17, 2008 Sheraton Burlington Hotel Burlington, VT Attendee List ...

2011-10-26T23:59:59.000Z

489

Projected Regional Impacts of Appliance Efficiency Standards for the U.S. Residential Sector  

E-Print Network (OSTI)

TX UT VA VT WA WI WV WY US Primary Energy Savings PetajoulesTX UT VA VT WA WI WV WY US Primary Energy Savings PetajoulcsTX UT VA VT WA WI wv WY US Primary Energy Savings Petaioules

Koomey, J.G.

2010-01-01T23:59:59.000Z

490

NATIONAL GEODATABASE OF TIDAL STREAM POWER RESOURCE IN USA  

Science Conference Proceedings (OSTI)

A geodatabase of tidal constituents is developed to present the regional assessment of tidal stream power resource in the USA. Tidal currents are numerically modeled with the Regional Ocean Modeling System (ROMS) and calibrated with the available measurements of tidal current speeds and water level surfaces. The performance of the numerical model in predicting the tidal currents and water levels is assessed by an independent validation. The geodatabase is published on a public domain via a spatial database engine with interactive tools to select, query and download the data. Regions with the maximum average kinetic power density exceeding 500 W/m2 (corresponding to a current speed of ~1 m/s), total surface area larger than 0.5 km2 and depth greater than 5 m are defined as hotspots and documented. The regional assessment indicates that the state of Alaska (AK) has the largest number of locations with considerably high kinetic power density, followed by, Maine (ME), Washington (WA), Oregon (OR), California (CA), New Hampshire (NH), Massachusetts (MA), New York (NY), New Jersey (NJ), North and South Carolina (NC, SC), Georgia (GA), and Florida (FL).

Smith, Brennan T [ORNL; Neary, Vincent S [ORNL; Stewart, Kevin M [ORNL

2012-01-01T23:59:59.000Z

491

Implementation of supersymmetric processes in the HERWIG event generator.  

E-Print Network (OSTI)

. [4, 5, 6], the mass and decay spectra are fed in from a data file. In particular, we have provided a separate code (ISAWIG) for the conversion of data from ISAJET [9]. This way, the masses of the sparticles and their R-parity conserving decay rates... ), and the following coefficients C?? : CLL = Lq sin 2?W Ni4Nj4 ?Ni3Nj3 s?M2Z + iMZ?Z + LqiLqj u?M2qL ; (3.30) 15 CLR = Lq sin 2?W Ni3Nj3 ?Ni4Nj4 s?M2Z + iMZ?Z ? LqiLqjt?M2qL ; (3.31) CRL = Rq sin 2?W Ni4Nj4 ?Ni3Nj3 s?M2Z + iMZ?Z ? RqiRqjt?M2qR ; (3...

Moretti, Stefano; Odagiri, Kosuke; Richardson, P; Seymour, Michael H; Webber, Bryan R

492

untitled  

Gasoline and Diesel Fuel Update (EIA)

Prices of No. 2 Distillate to Residences by PAD District Prices of No. 2 Distillate to Residences by PAD District and Selected States a (Cents per Gallon Excluding Taxes) Year Month U.S. Average PAD District I Average CT ME MA NH RI VT DE DC 1983 .................................... 107.8 109.0 109.1 102.8 109.1 104.1 110.5 112.9 106.0 117.0 1984 .................................... 109.1 111.3 112.1 103.9 111.6 108.4 111.4 111.9 109.6 118.7 1985 .................................... 105.3 106.8 108.0 99.7 107.0 102.4 106.7 107.7 104.6 114.3 1986 .................................... 83.6 86.2 89.0 74.4 82.1 75.9 82.8 86.6 85.0 93.1 1987 .................................... 80.3 81.4 83.4 74.7 80.6 76.5 82.5 81.1 79.3 91.8 1988 .................................... 81.3 82.7 85.3 77.7 82.1 78.2 83.6 82.6 80.1 91.6 1989 ....................................

493

New England Wind Forum: Calendar of Wind-Related Events in New England  

Wind Powering America (EERE)

Connecticut Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Projects in New England Building Wind Energy in New England Newsletter Perspectives Events Past Webinars Quick Links to States CT MA ME NH RI VT Bookmark and Share Calendar of Wind-Related Events in New England Here you can find information about wind-related events happening in the New England region. Currently, there are 5 event(s) listed. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Renewable Energy Market Update Webinar Date: 1/29/2014 Contact: Department of Energy Tribal Energy Program This information was last updated on 12/4/2013 1:00 p.m. - 2:30 p.m. ET Attendees will learn about the latest developments of five types of renewable energy technologies: biomass, geothermal, low-head hydro, solar, and wind. They will also discover each technology's unique characteristics, how the various technologies are competing in the marketplace, and how they can be used separately and in combination to provide the most benefit to the tribal community.

494

New England Wind Forum: Wind Power Policy in New England  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Renewable Energy Portfolio Standards State Renewable Energy Funds Federal Tax Incentives and Grants Net Metering and Interconnection Standards Pollutant Emission Reduction Policies Awareness Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Policy in New England Why Incentives and Policy? Federal and state policies play an important role in encouraging wind energy development by leveling the playing field compared to other energy sources. Many of the substantial benefits of wind power as a domestic, zero-emission part of the energy portfolio - sustainability, displacement of pollutant emissions from other power sources, fuel diversity, price stabilization, keeping a substantial portion of energy expenditures in the local economy - are shared by society as a whole and cannot be readily captured by wind generators directly in the price they charge for their output. In addition, while wind power receives some policy support, the level of federal incentives for wind represents less than 1% of the subsidies and tax breaks given to the fossil fuels and nuclear industries (source: "Wind Power An Increasingly Competitive Source of New Generation." Wind Energy Weekly #1130.).

495

C:\ANNUAL\VENTCHAP.V8\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

18 18 Energy Information Administration / Natural Gas Annual 2001 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. 0 1 2 3 4 5 6 7 T e x a s L o u i s i a n a N e w M e x i c o O k l a h o m a W y o m i n g C o l o r a d o A l a b a m a K a n s a s A l a s k a C a l i f o r n i a A l l O t h e r S t a t e s Trillion Cubic Feet 0 30 60 90 120 150 180 Billion Cubic Meters 1997 1998 1999 2000 2001 2001 16. Marketed Production of Natural Gas in Selected States, 1997-2001 Figure Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001-and over WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI

496

New England Wind Forum: Historic Wind Development in New England  

Wind Powering America (EERE)

First Large Scale Windmill First Large Scale Windmill 1970s OPEC Oil Embargo Sparks Renewed Interest Age of PURPA Spawns the Wind Farm An Industry in Transition More New England Wind Farms Modern Wind Turbines History Wrap Up State Activities Projects in New England Building Wind Energy in New England Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Historic Wind Development in New England Wind has been an important energy source for centuries. In the United States, mechanical windmills provided as much as 25% of all non-transportation energy by the end of the 1800s. New England has relied on the wind from its early days, from powering seafaring commerce to grinding grain in the windmills of Cape Cod, several of which still stand. Some 6 million windmills across the nation were used for small-scale generation of electricity from the 1920s until the 1950s, when the U.S. government's rural electrification programs successfully reached remote areas. By the early 1970s, the number of windmills operating in the U.S. had dwindled to 150,000 - used mostly for watering livestock in remote areas of the western United States - although their widespread use continued elsewhere in the world.

497

HIPAA 2013 Conference, May 21-22, 2013 - FINAL AGENDA  

Science Conference Proceedings (OSTI)

... Security and Privacy Workgroup Panelists: Mike Zegar (NJ-HITEC) Joseph McClure, JD (Siemens) Doreen Espinosa (Utah Health Information ...

2013-05-28T23:59:59.000Z

498

World Power Technologies | Open Energy Information  

Open Energy Info (EERE)

NJ Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL National Wind Technology Center...

499

Julian Szekely Memorial Symposium: Technical Program: Session 6  

Science Conference Proceedings (OSTI)

Metal Production and Greenhouse Gases: N.J. Themelis and I.K. Wernick*, Columbia ... Effect of Vehicle Lightweighting on the Profitability of the Automobile ...

500

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NJ Computational Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers This project will develop advanced nanostructured corrosion resistant coatings for...