National Library of Energy BETA

Sample records for nitrogen steam chilled

  1. Part-load cogeneration technology meets chilled water and steam requirements

    SciTech Connect (OSTI)

    Leach, M.D.

    1998-10-01

    Louisiana State University`s Energy Savings Performance Contract with CES/Way was a groundbreaking project that applied part-load cogeneration technology to a large university campus to meet chilled water and steam requirements for expansion needs. Simultaneously, the project provided these utilities at no additional out of pocket cost to the institution by using the innovative financing mechanism of performance contracting, in which project savings pay for the investment. In addition, the work is performed via a cogeneration system operating most of the year at part-load. This mechanical cogeneration project could also be termed a thermal cogeneration project, as it provides a dual thermal benefit from a single input energy source. Not only did the project achieve the projected energy savings, but the savings proved to be so dependable that the University opted for an early buyout of the project from CES/Way in 1994, after only about two years of documented savings.

  2. Thomas Reddinger Director, Steam

    E-Print Network [OSTI]

    McConnell, Terry

    Thomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance & Operations Tim Winterfield Operations Supervisor (Distribution) Deborah Moorhead Office Coordinator III Jacob Donovan- ColinSteam Plant Operator Vincent Massara Steam Plant Operator SU Steam Station/Chilled Water

  3. CHILLING CONSIDERATIONS GLOBAL WARMING

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    CHILLING CONSIDERATIONS REGARDING GLOBAL WARMING Stephen E. Schwartz http IS INCREASING Global carbon dioxide concentration over the last thousand years Polar ice cores #12;Mann et al 1000-1850) 1998 THE TEMPERATURE'S RISING #12;GLOBAL ANNUAL TEMPERATURE ANOMALY, 1880-2008 0.8 0.6 0.4 0

  4. Improve Chilled Water System Peformance: Chilled Water System Analysis Tool (CWSAT) Improves Efficiency

    SciTech Connect (OSTI)

    2010-06-25

    This fact sheet describes how the Industrial Technologies Program Chilled Water System Analysis Tool (CWSAT) can help optimize the performance of of industrial chilled water systems.

  5. CHILLING CONSIDERATIONS ABOUT GLOBAL WARMING

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    CHILLING CONSIDERATIONS ABOUT GLOBAL WARMING: GREENHOUSE GASES, AEROSOLS, RADIATIVE FORCING dioxide increase: sources, mixing ratio, forcing Global temperature change Climate sensitivity and time;#12;ATMOSPHERIC RADIATION Energy per area per time Power per area Unit: Watt per square meter W m-2 #12;GLOBAL

  6. CHILLING CONSIDERATIONS ABOUT GLOBAL WARMING

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    CHILLING CONSIDERATIONS ABOUT GLOBAL WARMING Stephen E. Schwartz Ethical Culture Society of Suffolk;ATMOSPHERIC RADIATION Energy per area per time Power per area Unit: Watt per square meter W m-2 #12;GLOBAL ENERGY BALANCE Global and annual average energy fluxes in watts per square meter 343 237 237 254K 390

  7. Applying DDC and VFD to Central Chilled Water Plants for Profits 

    E-Print Network [OSTI]

    Utesch, A. L.

    1985-01-01

    chiller consists of a 4000 KW, 4160 V, 5000 HP, DDC controlled variable frequency power controller serving a 5000 HP, 1200 RPM synchronous motor. The motor is connected to an existing centrifugal chiller compressor through a 3.27/l speed increasing... the Fall of 1973 and has continuously operated since that time. The original plant produced steam for heating and for chilled water generation via condensing turbine type centrifugal chiller drives. Its original service area was 1.4 million square feet...

  8. 1. Introduction Chilled water, a unique resource comprising water and

    E-Print Network [OSTI]

    Ahrendt, Wolfgang

    1. Introduction Chilled water, a unique resource comprising water and energy elements, is commonly the targeted buildings. In typical chilled water systems, chilled water is distributed throughout the building to provide air conditioning and equipment cooling. The chilled water system has been one of the most

  9. Steam Quality 

    E-Print Network [OSTI]

    Johnston, W.

    1989-01-01

    "STEAM QUALITY has been generally defined as the amount of moisture/vapor (or lack thereof) contained within steam produced from some form of boiler. It has long been used as the standard term for the measurement of ""wet or dry"" steam and as a...

  10. Superheated steam power plant with steam to steam reheater. [LMFBR

    SciTech Connect (OSTI)

    Silvestri, G.J.

    1981-06-23

    A desuperheater is disposed in a steam supply line supplying superheated steam to a shell and tube reheater.

  11. Continuous Commissioning of a Central Chilled Water & Hot Water System 

    E-Print Network [OSTI]

    Deng, S.; Turner, W. D.; Batten, T.; Liu, M.

    2000-01-01

    A central chilled water / hot water system provides cooling / heating energy from central utility plants to multiple customers (buildings) through campus distribution loops. To effectively transport the chilled water and hot water to the buildings...

  12. A Free Cooling Based Chilled Water System at Kingston 

    E-Print Network [OSTI]

    Jansen, P. R.

    1984-01-01

    In efforts to reduce operating costs, the IBM site at Kingston, New York incorporated the energy saving concept of 'free cooling' (direct cooling of chilled water with condenser water) with the expansion of the site chilled water system. Free...

  13. An Improved Simple Chilled Water Cooling Coil Model

    E-Print Network [OSTI]

    Wang, Liping

    2014-01-01

    design and control of chilled water systems, Ph.D. Thesis,Dynamic modeling of chilled water cooling coils. PhD thesis,of the ratio of the water-side to the air-side conductance

  14. Inspect and Repair Steam Traps, Energy Tips: STEAM, Steam Tip...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    installed steam traps may have failed-thus allowing live steam to escape into the condensate return system. In systems with a regularly scheduled maintenance program, leaking...

  15. Deaerators in Industrial Steam Systems, Energy Tips: STEAM, Steam...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Systems Deaerators are mechanical devices that remove dissolved gases from boiler feedwater. Deaeration protects the steam system from the effects of corrosive gases....

  16. Cryogenic cooling system of HTS transformers by natural convection of subcooled liquid nitrogen

    E-Print Network [OSTI]

    Chang, Ho-Myung

    and the iron core in vacuum tank. The HTS windings were maintained at around 30 K by the circulation of helium gas chilled by a GM cryocooler, and the radiation shields were cooled at 77 K by liquid nitrogen

  17. Steam Turbine Cogeneration 

    E-Print Network [OSTI]

    Quach, K.; Robb, A. G.

    2008-01-01

    Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

  18. Steam Pricing 

    E-Print Network [OSTI]

    Jones, K. C.

    1986-01-01

    stream_source_info ESL-IE-86-06-19.pdf.txt stream_content_type text/plain stream_size 30463 Content-Encoding ISO-8859-1 stream_name ESL-IE-86-06-19.pdf.txt Content-Type text/plain; charset=ISO-8859-1 STEAM PRICING... Kenneth C. Jones Shell Oil Company Houston, Texas ABSTRACT Steam is used in many plants to furnish both heat and mechanical energy. It is typically produced in several fired boilers which may operate at different pressures and with different...

  19. Steam in Distribution and Use: Steam Quality Redefined 

    E-Print Network [OSTI]

    Deacon, W.

    1989-01-01

    "Steam quality is an important measurement in steam generation. It's a measurement of steam to moisture ratio. In use, steam quality takes on a different meaning - steam which maximizes energy transfer. To do this, the steam must be clean, dry...

  20. Steam in Distribution and Use: Steam Quality Redefined 

    E-Print Network [OSTI]

    Deacon, W. T.

    1989-01-01

    Steam quality is an important measurement in steam generation. It's a measurement of steam to moisture ratio. In use, steam quality takes on a different meaning- steam which maximizes energy transfer. To do this, the steam must be clean, dry...

  1. Best Practices for Energy Efficient Cleanrooms: Control of Chilled Water System

    E-Print Network [OSTI]

    : Control of chilled water system Tengfang Xu Contents HVAC WATER SYSTEMSLBNL-58635 Best Practices for Energy Efficient Cleanrooms: Control of Chilled Water System Tengfang.............................................................................................. 2 Control of chilled water system

  2. Chilled Water Thermal Storage System and Demand Response at the University of California at Merced

    E-Print Network [OSTI]

    Granderson, Jessica

    2010-01-01

    Chilled Water Thermal Storage System and Demand Response atCalifornia. Chilled Water Thermal Storage System and Demandin the presence of thermal energy storage (TES) and the

  3. Improve Chilled Water System Performance, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program Chilled Water System Analysis Tool (CWSAT) can help optimize the performance of of industrial chilled water systems.

  4. Energy Conservation in Process Chilled Water Systems 

    E-Print Network [OSTI]

    Ambs, L. L.; DiBella, R. A.

    1993-01-01

    System," ASHRAE Transactions, Vol. 93, Pt 2, 1987, pp. 1830-1852. 3. D. Murphy, "Cooling Towers Used For Free Cooling," ASHRAE Journal, June, 1991, pp. 16-26. 4. W.L. Jackson, F.C. Chen, and B.C. Hwang, "The Simulation and Perfonnance of a...ON IN PROCESS CHILLED WATER SYSTEMS Robert A. DiBella Lawrence L. Ambs, Ph.D. Projcct Engineer Associate Professor Xenergy Inc. University of MassachuseLts Burlington, MA Amherst, MA ABSTRACT The energy consumption of the chiller and cooling tower in a...

  5. Achieving High Chilled Water Delta T Without Blending Station 

    E-Print Network [OSTI]

    Wang, Z.; Wang, G.; Xu, K.; Yu, Y.; Liu, M.

    2007-01-01

    Typically a blending station is designed to ensure that its user is able to avoid low chilled water return temperature in the district cooling system. When the chilled water return temperature drops to a low limit, building return water is blended...

  6. Steam System Optimization 

    E-Print Network [OSTI]

    Aegerter, R.

    2004-01-01

    and Cost The ultimate goal in optimizing the steam system is to minimize the steam generation costs. Most projects are dependent on the steam balance and can only be justified if low-pressure steam is being vented or if steam is being let down. Some... savings can be quantified. Steam Venting or Letting Down? Typically a plant will be either venting excess low-pressure steam or letting down steam to meet the low-pressure steam demand. If a plant has multiple operating units, it is possible...

  7. Steam System Optimization 

    E-Print Network [OSTI]

    Aegerter, R. A.

    1998-01-01

    Most plant steam systems are complex systems. Usually the fuel required to produce the steam represents a major expense for manufacturing facilities. By properly operating and maintaining the steam system and making minor improvements, significant...

  8. Steam Digest Volume IV

    SciTech Connect (OSTI)

    2004-07-01

    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  9. Steam Trap Application 

    E-Print Network [OSTI]

    Murphy, J. J.

    1982-01-01

    The effective application of steam traps encompasses three primary areas which are the selection and sizing, the installation, and the monitoring of the steam trapping system. Proper application of steam traps will improve production rates, product...

  10. Steam Path Audits on Industrial Steam Turbines 

    E-Print Network [OSTI]

    Mitchell, D. R.

    1992-01-01

    on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits include the ability to identify... areas of performance degradation during a turbine outage. Repair priorities can then be set in accordance with quantitative results from the steam path audit. As a result of optimized repair decisions, turbine efficiency increases, emissions...

  11. Cooling Semiconductor Manufacturing Facilities with Chilled Water Storage 

    E-Print Network [OSTI]

    Fiorino, D. P.

    1995-01-01

    2). Recovery of this facility's very large fixed costs caused the high voltage demand charge to increase by 135% (from $5.20/kW to $ 12.20/kW) making daytime electric water chilling a much more! expensive practice than previously. DPIIDMOS5... and pumping horsepower. And, if necessary, valves in the secondary pump suction header permit the "warm" pump to substitute for either of the two "cold" pumps. CHILLED WATER STORAGE Storage Type Stratified chilled water storage was the most cost...

  12. The Chilled Water and Hot Water Building Differential Pressure Setpoint Calculation - Chilled Water and Hot Water Pump Speed Control 

    E-Print Network [OSTI]

    Turner, W. D.; Bruner, H., Jr.; Claridge, D.; Liu, C.; Deng, S.

    2002-01-01

    Water and Hot Water Building Deferential Pressure Setpoint Calculation ? Chilled Water and Hot Water Pump Speed Control Chenggang Liu Research Associate Energy Systems Laboratory Texas A&M University College Station, TX Homer L. Bruner... of chilled water and hot water consumption with the leaking control valves on the cooling and heating coils. Variable speed pumps save cooling and heating energies. However, most of these advantages are lost when proper speed control is not maintained...

  13. Steam Oxidation of Advanced Steam Turbine Alloys

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2008-01-01

    Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650°C to 800°C) to steam at 34.5 MPa (650°C to 760°C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

  14. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  15. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Doyle, Edward F. (Dedham, MA); DiBella, Francis A. (Roslindale, MA)

    1994-01-01

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  16. Steam Technical Brief: Steam Pressure Reduction: Opportunities and Issues

    SciTech Connect (OSTI)

    2010-06-25

    A BestPractices Technical Brief describing industrial steam generation systems and opportunities for reducing steam system operating pressure.

  17. Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    million yearly after upgrading the steam system in its ammonia plant in Verdigris, Oklahoma. Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption...

  18. Waste Steam Recovery 

    E-Print Network [OSTI]

    Kleinfeld, J. M.

    1979-01-01

    An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally...

  19. Steam Digest 2001

    SciTech Connect (OSTI)

    Not Available

    2002-01-01

    Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  20. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  1. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Muir, James F. (Albuquerque, NM); Wayland, Jr., J. Robert (Albuquerque, NM)

    1987-01-01

    An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

  2. 4. Heat exchangers; Steam, steam processes

    E-Print Network [OSTI]

    Zevenhoven, Ron

    to transfer a certain heat rate Q (J/s = W) For a small section dx of the tube (with diameter D), the heat With average temperature difference = for the heat exchanger length, the heat rate can1/74 4. Heat exchangers; Steam, steam processes Ron Zevenhoven Åbo Akademi University Thermal

  3. The Development of an Energy Evaluation Tool for Chilled Water Systems 

    E-Print Network [OSTI]

    Stocki, M.; Kosanovic, D.; Ambs, L.

    2001-01-01

    An energy evaluation tool for chilled water systems was developed. This tool quantifies the energy usage of various chilled water systems and typical energy conservation measures that are applied to these systems. It can be used as a screening tool...

  4. Climate change effects on winter chill for fruit crops in Germany

    E-Print Network [OSTI]

    Luedeling, Eike; Blanke, Michael; Gebauer, Jens

    2009-01-01

    Stunden (engl. Growing Degree Hours) stellt sich heraus,chill unit and growing degree hour accu- mulator. Acta Hort

  5. Steam trap monitor

    DOE Patents [OSTI]

    Ryan, M.J.

    1987-05-04

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

  6. Steam System Survey Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a steam system, (2) identifying steam properties for the steam system, (3) improving boiler operations, (4) improving resource utilization in the steam system, and (5)...

  7. MFR PAPER 1'238 Chilled Seawater System for

    E-Print Network [OSTI]

    valued at $2.6 million (Statistics and Market News Division, 1975). Much of the U.S.-landed herring meetings, Edinburgh, Scotland. Unpublished . 4 cessors in order to maintain operation dur- ing herring and spoilage rate indicated the impor- tance of rapid chilling on the maintenance of quality. Estimates made

  8. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, James E. (Simi Valley, CA)

    1987-01-01

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  9. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, J.E.

    1987-08-25

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  10. HP Steam Trap Monitoring 

    E-Print Network [OSTI]

    Pascone, S.

    2011-01-01

    stream_source_info ESL-IC-11-10-61.pdf.txt stream_content_type text/plain stream_size 2024 Content-Encoding ISO-8859-1 stream_name ESL-IC-11-10-61.pdf.txt Content-Type text/plain; charset=ISO-8859-1 STEAM MONITORING HP... Steam Trap Monitoring HP Steam Trap Monitoring ? 12-18 months payback! ? 3-5% permanent reduction in consumption ? LEED Pt.? Innovation in Operations EB O&M ? Saved clients over $1,000,000 Annual consumption Steam Trap Monitoring ? Real...

  11. Steam System Survey Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TO ACTION-IDENTIFYING STEAM SYSTEM PROPERTIES... 3-1 4. OPPORTUNITIES FOR BOILER EFFICIENCY IMPROVEMENT... 4-1 4.1 OVERVIEW AND GENERAL...

  12. Steam Champions in Manufacturing 

    E-Print Network [OSTI]

    Russell, C.

    2001-01-01

    Traditionally, industrial steam system management has focused on operations and maintenance. Competitive pressures, technology evolution, and increasingly complex regulations provide additional management challenges. The practice of operating a...

  13. Benchmark the Fuel Cost of Steam Generation, Energy Tips: STEAM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of your steam system. This cost is dependent upon fuel type, unit fuel cost, boiler efficiency, feedwater temperature, and steam pressure. This calculation provides a...

  14. Options for Generating Steam Efficiently 

    E-Print Network [OSTI]

    Ganapathy, V.

    1996-01-01

    This paper describes how plant engineers can efficiently generate steam when there are steam generators and Heat Recovery Steam Generators in their plant. The process consists of understanding the performance characteristics of the various equipment...

  15. Steam Trap Management 

    E-Print Network [OSTI]

    Murphy, J. J.; Hirtner, H. H.

    1985-01-01

    A medium-sized plant of a high technology company is reaping the benefits of a Pro-active Steam Trap Program provided by Yarway's TECH/SERV Division. Initial work began March '84 and the most recent steam trap feasibility study conducted in March...

  16. Steam and Condensate Systems 

    E-Print Network [OSTI]

    Yates, W.

    1980-01-01

    In the late 60's and early 70's oil was plentiful and steam was relatively inexpensive. The switch to low sulphur fuel oil and the oil embargo suddenly changed the picture. The cost of steam rose from $0.50 per 1,000# to today's cost of $4...

  17. Steam and Condensate Systems 

    E-Print Network [OSTI]

    Yates, W.

    1979-01-01

    In the late 60's and early 70's oil was plentiful and steam was relatively inexpensive. The switch to low sulphur fuel oil and the oil embargo suddenly changed the picture. The cost of steam rose from about $0.50 per 1,000# to $3.00 or more. Many...

  18. Analysis of gas chilling alternatives for Arctic pipelines

    SciTech Connect (OSTI)

    Dvoiris, A.; McMillan, D.K.; Taksa, B.

    1994-12-31

    The operation of buried natural gas pipelines in Arctic regions requires installation of gas chilling facilities at compressor stations. These facilities are required in order to cool compressed pipeline gases to temperatures below that of permanently frozen surrounding soil. If these pipeline gas temperatures are too high, the frozen ground around the pipelines will eventually thaw. This is undesirable for many reasons amongst which are ground settlement and possible catastrophic failure of the pipeline. This paper presents the results of a study which compared several alternative methods of gas chilling for possible application at one of the compressor stations on the proposed new Yamal-Center gas pipeline system in the Russian Arctic. This technical and economic study was performed by Gulf Interstate Engineering (GIE) for GAZPROM, the gas company in Russia that will own and operate this new pipeline system. Geotechnical, climatical and other information provided by GAZPROM, coupled with information developed by GIE, formed the basis for this study.

  19. Streams of Steam The Steam Boiler Specification Case Study

    E-Print Network [OSTI]

    Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

  20. Steam trap monitor

    DOE Patents [OSTI]

    Ryan, Michael J. (Plainfield, IL)

    1988-01-01

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

  1. Steam Condensation Induced Waterhammer 

    E-Print Network [OSTI]

    Kirsner, W.

    2000-01-01

    mer-- i.e. fast moving steam picking up a slug of condensate and hurling it downstream against an elbow or a valve. Condensation Induced Waterham mer can be 100 times more powerful than this type of waterhammer. Because it does not require flowing... to seek relief from the Owner. A compromise was negotiated after the first week- steam would be de-energized at midnight before each workday, asbestos abators would start work at 4:00 a.m. and finish by noontime at which time steam would be restored...

  2. Steam System Data Management 

    E-Print Network [OSTI]

    Roberts, D.

    2013-01-01

    stream_source_info ESL-IE-13-05-35.pdf.txt stream_content_type text/plain stream_size 5953 Content-Encoding ISO-8859-1 stream_name ESL-IE-13-05-35.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Steam System Data... Certifications ?Retired From Chevron After 25 Years ? Established A Steam System Program ? Planner For Routine Maintenance Work ? Planner For Steam System Improvements ? Wal-Tech Valve, Inc. ? Purchased Wal-Tech Valve, Inc. In 2007 ? Implemented Safety...

  3. Radicle length and osmotic stress affect the chilling sensitivity of cucumber radicles

    E-Print Network [OSTI]

    Mangrich, M E; Martinez-Font, R T; Saltveit, Mikal E

    2006-01-01

    seedling vigor, and induced osmotic- and heat-shock pro-2006 Radicle Length and Osmotic Stress Affect the Chillingmm before and after the osmotic treatment, after chilling,

  4. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Bend, OR); Miller, Warren K. (Bend, OR)

    1993-01-01

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  5. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Bend, OR); Miller, Warren K. (Bend, OR)

    1996-01-01

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  6. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, D.T.; Babcock, W.C.; Edlund, D.J.; Miller, W.K.

    1996-05-14

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas. 5 figs.

  7. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, D.T.; Babcock, W.C.; Edlund, D.J.; Miller, W.K.

    1993-07-06

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  8. Email To Friend Steam Electricity Generator

    E-Print Network [OSTI]

    . keymanengravables.com Steam Turbine Generator Info, Pictures And Deals For Steam turbine generator ediscountshoppingBack One Email To Friend Steam Electricity Generator Need Steam Electricity Generator? See Steam Electricity Generator. greenshieldsindustrial.com Steam Generators Deals on Steam Generators Find what you

  9. Steam Pressure Reduction: Opportunities and Issues | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Pressure Reduction: Opportunities and Issues Steam Pressure Reduction: Opportunities and Issues This brief details industrial steam generation systems best practices and...

  10. DOE's BestPractices Steam End User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution Losses Module 1 June 29, 2010 Steam EndUser Training Steam Distribution System Losses Module Slide 1 pressure. #12;DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution

  11. Heat Transfer Performance and Piping Strategy Study for Chilled Water Systems at Low Cooling Loads 

    E-Print Network [OSTI]

    Li, Nanxi 1986-

    2012-12-05

    studied in this thesis is the chilled water system at the Dallas/Fort Worth International Airport (DFW Airport). This system has the problem of low delta-T under low cooling loads. When the chilled water flow is much lower than the design conditions at low...

  12. The Quality of Squid Held in Chilled Seawater Versus Conventional Shipboard Handling

    E-Print Network [OSTI]

    ). Some reasons for using seawater cooled either by mechanical means (re- frigerated = RSW) or by ice (chilled seawater = CSW) are to cool the fresh fish down to a temperature of O°C (32 OF) or lower for ease of loading and unloading (Roach, 1965). Chilled seawater, using ice as the coolant, has recently

  13. Brief Chilling to Subzero Temperature Increases Cold Hardiness in the Hatchling Painted Turtle (Chrysemys picta)

    E-Print Network [OSTI]

    Lee Jr., Richard E.

    freezing when cooled in the presence or absence of ice and exogenous ice nuclei. Survival following tests174 Brief Chilling to Subzero Temperature Increases Cold Hardiness in the Hatchling Painted Turtle-acclimated turtles were "cold conditioned" by chilling them in the supercooled (unfrozen) state to 7 C over a few

  14. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, Lonnie C. (Powell, TN); Simpson, Marc L. (Knoxville, TN)

    1995-01-01

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

  15. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, L.C.; Simpson, M.L.

    1995-01-17

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  16. Evaluating Steam Trap Performance 

    E-Print Network [OSTI]

    Fuller, N. Y.

    1986-01-01

    stream_source_info ESL-IE-86-06-126.pdf.txt stream_content_type text/plain stream_size 11555 Content-Encoding ISO-8859-1 stream_name ESL-IE-86-06-126.pdf.txt Content-Type text/plain; charset=ISO-8859-1 EVALUATING STEAM... TRAP PERFORMANCE Noel Y Fuller, P.E. Holston Defense Corporation Kingsport, Tennessee ABSTRACT Laboratory tests were conducted on several types of steam traps at Holston Defense Corporation in Kingsport, Tennessee. Data from these tests...

  17. Reduction in Unit Steam Production 

    E-Print Network [OSTI]

    Gombos, R.

    2004-01-01

    In 2001 the company's Arch-Brandenburg facility faced increased steam costs due to high natural gas prices and decreased production due to shutdown of a process. The facility was challenged to reduce unit steam consumption to minimize the effects...

  18. Steam generator tube rupture study

    E-Print Network [OSTI]

    Free, Scott Thomas

    1986-01-01

    This report describes our investigation of steam generator behavior during a postulated tube rupture accident. Our study was performed using the steam generator, thermal-hydraulic analysis code THERMIT-UTSG. The purpose ...

  19. Steam System Forecasting and Management 

    E-Print Network [OSTI]

    Mongrue, D. M.; Wittke, D. O.

    1982-01-01

    Union Carbide's Taft Plant is a typical petrochemical complex with several processes that use and produce various fuel and steam resources. The plant steam and fuel system balances vary extensively since several process units 'block operate...

  20. Heat Recovery Steam Generator Simulation 

    E-Print Network [OSTI]

    Ganapathy, V.

    1993-01-01

    The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs...

  1. Economics of Steam Pressure Reduction 

    E-Print Network [OSTI]

    Sylva, D. M.

    1985-01-01

    Economics of Steam Pressure Reduction is a technical paper that addresses the operating and economic advantages associated with the program to lower the steam operating pressure. Evaluation of a testing program will be discussed. The paper...

  2. Campus Energy Infrastructure Steam Turbine

    E-Print Network [OSTI]

    Rose, Michael R.

    Campus Energy Infrastructure Steam Turbine Gas Turbine University Substation High Pressure Natural,000 lbs/hr (with duct fire) Steam Turbine Chiller 2,000 tons Campus Heat Load 60 MMBtu/hr (average) Campus-hours) Generator Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller

  3. Steam Pressure Reduction Opportunities and Issues 

    E-Print Network [OSTI]

    Berry, J.; Griffin, B.; Wright, A. L.

    2006-01-01

    of changes in the high-pressure side of the steam system from the boiler through the condensate return system. In the boiler plant, losses from combustion, boiler blowdown, radiation, and steam venting from condensate receivers would be reduced... by reducing steam pressure. Similarly, in the steam distribution system, losses from radiation, flash steam vented from condensate receivers, and component and steam trap leakage would also be reduced. There are potential problems associated with steam...

  4. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  5. Steam separator latch assembly

    DOE Patents [OSTI]

    Challberg, R.C.; Kobsa, I.R.

    1994-02-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

  6. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, Jr., Edward P. (Idaho Falls, ID)

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  7. NONLINEAR SEMIGROUPS GENERATED BY j-ELLIPTIC FUNCTIONALS RALPH CHILL, DANIEL HAUER, AND JAMES KENNEDY

    E-Print Network [OSTI]

    Sydney, University of

    KENNEDY ABSTRACT. We generalise the theory of energy functionals used in the study of gra- dient systems CHILL, DANIEL HAUER, AND JAMES KENNEDY that the Dirichlet-to-Neumann operator assigns to each boundary

  8. Tenderness, drip loss, and postmortem metabilism of broiler pectoralis from electrically stimulated and air chilled carcasses 

    E-Print Network [OSTI]

    Skarovsky, Clinton John

    1997-01-01

    This study was conducted to evaluate the effects of postmortem electrical stimulation (ES) on tenderness, absorbance ratio (r-value), pH, and drip loss of breast fillets following air chilling. In each of four replications, eight birds were...

  9. Energy Comparison Between Conventional and Chilled Water Thermal Storage Air Conditioning Systems 

    E-Print Network [OSTI]

    Sebzali, M.; Hussain, H. J.; Ameer, B.

    2010-01-01

    , encouraged by government subsidies and driven by the rapid and continual expansion in building construction, urban development, and the heavy reliance on Air Conditioning (AC) systems for the cooling of buildings. The Chilled Water Thermal Storage (CWTS...

  10. Lessons and Measures Learned from Continuous Commissioning(SM) of Central Chilled/Hot Water Systems 

    E-Print Network [OSTI]

    Deng, S.; Turner, W. D.; Claridge, D. E.; Bruner, H.; Chen, H.; Wei, G.

    2001-01-01

    As it has been proved repeatedly that commissioning is very necessary for new construction and renovation/retrofit projects, we found continuous commissioningSM (CC) is an effective and efficient way to manage and optimize existing central chilled...

  11. Chilled Water System Hydraulic Study for The University of Texas at San Antonio 

    E-Print Network [OSTI]

    Xu, D. C.; Qiang, C.; Deng, S.; Turner, W. D.

    2002-01-01

    The University of Texas at San Antonio needs to expand their central chilled water distribution system as a result of planned additions to the campus. The current distribution system may be inadequate for the planned ...

  12. Model Based Building Chilled Water Loop Delta-T Fault Diagnosis 

    E-Print Network [OSTI]

    Wang, L.; Watt, J.; Zhao, J.

    2012-01-01

    -thirds of design at low loads (Taylor, 2002) due to various causes, such as air entering and leaving temperatures, chilled water supply temperature, type and effectiveness of flow control valves, tertiary connection configuration types and operation, coil cooling...

  13. Optimization of Chilled Water Flow and Its Distribution in Central Cooling System 

    E-Print Network [OSTI]

    Maheshwari, G. P.; Hajiah, A. E.; ElSherbini, A. I.

    2007-01-01

    This paper analyzes the impact of chilled water flow and its distribution on energy efficiency and comfort quality, using the results of a field study conducted for a central cooling production system during 2006 in Kuwait. The paper identifies...

  14. Water-Efficient Technology Opportunity: Steam Sterilizer Condensate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Sterilizer Condensate Retrofit Kit Water-Efficient Technology Opportunity: Steam Sterilizer Condensate Retrofit Kit Steam sterilizers are heated by steam that condenses and...

  15. The effect of chilled drinking water on heat-stressed lactating Holstein cows 

    E-Print Network [OSTI]

    Baker, Christopher Charles

    1987-01-01

    THE EFFECT OF CHILLED DRINKING WATER ON HEAT-STRESSED LACTATING HOLSTEIN COWS A Thesis by CHRISTOPHER CHARLES BAKER Submitted to the Graduate College of Texas A 5 M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1987 Major Subject: Nutrition THE EFFECT OF CHILLED DRINKING WATER ON HEAT-STRESSED LACTATING HOLSTEIN COWS A Thesis by CHRISTOPHER CHARLES BAKER Approved as to style and content: Carl E. Coppock (Chair of Committee...

  16. Steam Technical Brief: Industrial Steam System Heat-Transfer Solutions

    SciTech Connect (OSTI)

    None

    2010-06-25

    This BestPractices Steam Technical Brief provides an overview of considerations for selecting the best heat-transfer solution for various applications.

  17. Steam Pressure Reduction: Opportunities and Issues; A BestPractices Steam Technical Brief

    SciTech Connect (OSTI)

    Not Available

    2005-11-01

    A BestPractices Technical Brief describing industrial steam generation systems and opportunities for reducing steam system operating pressure.

  18. Process for purifying geothermal steam

    DOE Patents [OSTI]

    Li, Charles T. (Richland, WA)

    1980-01-01

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  19. The Elimination of Steam Traps 

    E-Print Network [OSTI]

    Dickman, F.

    1985-01-01

    compile published data by three leading steam trap facturers. ANNUAL COST OF STEAM LOSS FOR 100 PSIG STEAM AT $5/1000 LBS. TgpOrlflce l18nul8ctuNf M.,utectu,., DI.mNr A' 84 1/." . $ 3,150 $ 2,313 e to from nu ufKluNf co 3,1711 1/4" $12,eoo $ 9...

  20. Review of Orifice Plate Steam Traps

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 25 iv v LIST OF FIGURES Figure Page 1 Steam supply and condensate drainage piping for a common space heater ... 1 2 Typical orifice plate steam...

  1. Steam Digest 2001: Office of Industrial Technologies

    SciTech Connect (OSTI)

    None, None

    2002-01-01

    Steam Digest 2001 chronicles Best Practices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  2. Steam boosted internal combustion engine

    SciTech Connect (OSTI)

    Green, M.A.

    1987-01-20

    A device is described to supplement the power produced by burning fuel in an internal combustion engine with steam, the device comprising: a means for producing a constant flow of water past a boiler means; a means for allowing the water to flow in the direction of the boiler; a boiler means external to the internal combustion engine to convert the water into superheated steam; a means for controlling the pressure of the water such that the water pressure is greater than the pressure of the steam produced by the boiler; and a means for injection of the superheated steam directly into a cylinder of the internal combustion engine, a means for producing a constant flow of water at a pressure greater than the pressure of the superheated steam, wherein the constant flow means at greater pressure comprises a chamber with a gaseous component, with the gaseous component being of constant volume and exerting constant pressure upon water within the chamber.

  3. Experimental investment of a pulse combustion steam generator and assessment of its environmental characteristics

    SciTech Connect (OSTI)

    Tereshchenko, M.A.; Bychenok, V.I.; Mozgovoi, N.V. [Voronezh State Technical University, Voronezh (Russian Federation)

    2009-07-01

    The design of a steam generator constructed on the basis of a pulse combustion apparatus equipped with a swirl combustion chamber and an aerodynamic vale is described, and results of its experimenta; investment are presented. The quantity of nitrogen oxide emissions is estimated. A schematic arrangement for practical application of such an apparatus is proposed.

  4. Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships 

    E-Print Network [OSTI]

    Jones, T.

    1997-01-01

    The Alliance to Save Energy, a national nonprofit organization based in Washington DC, and the U.S. Department of Energy are working with energy efficiency suppliers to promote the comprehensive upgrade of industrial steam systems. Like EPA's Green...

  5. ProSteam- A Structured Approach to Steam System Improvement 

    E-Print Network [OSTI]

    Eastwood, A.

    2002-01-01

    improved insulation, better condensate return, increased process integration, new steam turbines or even the installation of gas-turbine based cogeneration. This approach allows sites to develop a staged implementation plan for both operational and capital...

  6. Trends in packaged steam generators

    SciTech Connect (OSTI)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

    1996-09-01

    Oil and gas-fired packaged steam generators are used in many industrial plants. They generate saturated or superheated steam up to 250,000 lb/hr, 1000 psig, and 950 F. They may be used for continuous steam generation or as standby boilers in cogeneration systems. Numerous variables affect the design of this equipment. A few important considerations should be addressed at an early point by the plant engineer specifying or evaluating equipment options. These considerations include trends such as customized designs that minimize operating costs and ensure emissions regulations are met. The paper discusses efficiency considerations first.

  7. Wet-steam erosion of steam turbine disks and shafts

    SciTech Connect (OSTI)

    Averkina, N. V.; Zheleznyak, I. V.; Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G.; Shishkin, V. I.

    2011-01-15

    A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

  8. Non-Isothermal Steam Mixing Motivation & Objectives

    E-Print Network [OSTI]

    Psaltis, Demetri

    gas turbine is connected to a heat recovery steam generator (HRSG), which together feed a single steam turbine. When running multiple gas turbines at different loads, the HRSGs will produce steam streams into the intermediate pressure (IP) steam turbine (figure 1). The goal of this thesis is to determine a compact yet

  9. Combined Heat and Power Plant Steam Turbine

    E-Print Network [OSTI]

    Rose, Michael R.

    waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

  10. Steam Plant Conversion Eliminating Campus Coal Use

    E-Print Network [OSTI]

    Dai, Pengcheng

    Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12;· Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12;· UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal · Constructed in 1964, provides steam for

  11. The Steam System Scoping Tool: Benchmarking Your Steam Operations Through Best Practices 

    E-Print Network [OSTI]

    Wright, A.; Hahn, G.

    2001-01-01

    system efficiency. The BestPractices Steam effort, a part of the DOE-OIT effort, has developed a new tool that steam energy managers and operations personnel can use to assess their steam operations and improve their steam energy usage -the Steam System...

  12. Steam System Improvement: A Case Study 

    E-Print Network [OSTI]

    Venkatesan, V. V.; Leigh, N.

    1998-01-01

    , steam requirements for bo process heating and power service do not alwa s coincide. This may leads to an excess of 10 pressure steam that needs to be vented, or a de d for low-pressure steam that has to be supplied from a PRY. Condensing low... condensate. Other direct steam users like oil burners soot blowers and desalters are not in service. Condensate from the steam distribution system is returned to the boiler house in two ways. For large steam users with modulating pressure, steam drums...

  13. Foam Cleaning of Steam Turbines 

    E-Print Network [OSTI]

    Foster, C.; Curtis, G.; Horvath, J. W.

    2000-01-01

    The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

  14. Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation

    E-Print Network [OSTI]

    Lu, Xiaoming

    2012-01-01

    to make additional steam for the steam turbine cycle. Thein multi-pressure-level steam turbines to produce additionalthe superheated steam to the steam turbine cycle. The most

  15. Steam reforming catalyst

    DOE Patents [OSTI]

    Kramarz, Kurt W. (Murrysville, PA); Bloom, Ira D. (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Ahmed, Shabbir (Bolingbrook, IL); Wilkenhoener, Rolf (Oakbrook Terrace, IL); Krumpelt, Michael (Naperville, IL)

    2001-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel. A vapor of the hydrocarbon fuel and steam is brought in contact with a two-part catalyst having a dehydrogenation powder portion and an oxide-ion conducting powder portion at a temperature not less than about 770.degree.C. for a time sufficient to generate the hydrogen rich. The H.sub.2 content of the hydrogen gas is greater than about 70 percent by volume. The dehydrogenation portion of the catalyst includes a group VIII metal, and the oxide-ion conducting portion is selected from a ceramic oxide from the group crystallizing in the fluorite or perovskite structure and mixtures thereof. The oxide-ion conducting portion of the catalyst is a ceramic powder of one or more of ZrO.sub.2, CeO.sub.2, Bi.sub.2 O.sub.3, (BiVO).sub.4, and LaGaO.sub.3.

  16. Consider Steam Turbine Drives for Rotating Equipment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Turbine Drives for Rotating Equipment Consider Steam Turbine Drives for Rotating Equipment This tip sheet outlines the benefits of steam turbine drives for rotating equipment...

  17. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

  18. Low Delta-T Syndrome Diagnosis and Correction for Chilled Water Plants 

    E-Print Network [OSTI]

    Almeida, Agnes

    2014-12-15

    the outside air wet bulb temperature is above 55?F, otherwise maintain a 60?F condenser supply temperature. The reset schedule proposed for the chilled water supply temperature is 37?F from March through September and 42?F from October through December...

  19. Development of a Procedure for the Predictive Control Strategy of a Chilled Water Storage System 

    E-Print Network [OSTI]

    Wei, G.; Sakuri, Y.; Claridge, D. E.; Turner, W. D.; Liu, M.

    2000-01-01

    cooling load during peak demand periods. This paper discusses the development of a simplified predictive control strategy for a 7000 ton-hour chilled water storage system serving a hospital. Control strategies are developed for both on-peak and off...

  20. Getting Started 1) Visit the Java VChill website at http://chill.colostate.edu/java/

    E-Print Network [OSTI]

    Rutledge, Steven

    VCHILL Getting Started 1) Visit the Java VChill website at http://chill.colostate.edu/java/ 2) Click on "Launch VChill" (you will see Java start up * ) 3) Enter signon name (password dialog pops up bookmark case * If it does not, you may need to install Java first. Click on the Download Center link (in

  1. Diversity of Low Chill Peaches (Prunus persica) from Asia, Brazil, Europe and the USA 

    E-Print Network [OSTI]

    Anderson, Natalie A.

    2011-08-08

    , Arithmetic Mean) method. A wide range of diversity was detected, from 0.33 coefficient of similarity amongst the Thai peaches to 0.97 between two Brazilian peaches. The most distant clusters were the low chill peaches from Thailand and Taiwan and the local...

  2. Steam Pressure Reduction, Opportunities, and Issues

    SciTech Connect (OSTI)

    Berry, Jan [ORNL; Griffin, Mr. Bob [Enbridge Gas Distribution, Inc.; Wright, Anthony L [ORNL

    2006-01-01

    Steam pressure reduction has the potential to reduce fuel consumption for a minimum capital investment. When the pressure at the boiler is reduced, fuel and steam are saved as a result of changes in the high-pressure side of the steam system from the boiler through the condensate return system. In the boiler plant, losses from combustion, boiler blowdown, radiation, and steam venting from condensate receivers would be reduced by reducing steam pressure. Similarly, in the steam distribution system, losses from radiation, flash steam vented from condensate receivers, and component and steam trap leakage would also be reduced. There are potential problems associated with steam pressure reduction, however. These may include increased boiler carryover, boiler water circulation problems in watertube boilers, increased steam velocity in piping, loss of power in steam turbines, and issues with pressure reducing valves. This paper is based a Steam Technical Brief sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and Enbridge Gas Distribution, Inc. (5). An example illustrates the use of DOE BestPractices Steam System Assessment Tool to model changes in steam, fuel, electricity generation, and makeup water and to estimate resulting economic benefits.

  3. Use Steam Jet Ejectors or Thermoscompressors to Reduce Venting of Low-Pressure Steam - Steam Tip Sheet #29

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  4. STeam Injected Piston Engine Troels Hrding Pedersen Bjrn Kjellstrm

    E-Print Network [OSTI]

    .............................................................19 Reduction of NOx-formation by steam injection

  5. Steam Cracker Furnace Energy Improvements 

    E-Print Network [OSTI]

    Gandler, T.

    2010-01-01

    ? Energy efficiency improvements Overview Baytown Olefins Plant Page 3 Baytown Complex ?One of world?s largest integrated, most technologically advanced petroleum/petrochemical complexes ?~3,400 acres along Houston Ship Channel, ~ 25 mi. east... Furnace tube hydrocarbon + steam 0 0.2 0.4 0.6 0.8 1 1.2 1 2 time C o k e l a y e r Page 8 Steam Cracker Furnace Energy Efficiency ? Overall energy efficiency of furnace depends on ? Run length or % of time furnace is online (more...

  6. Steam Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of Energy 1 DOE| Department ofSteam SystemSteam Systems

  7. Energy Savings Through Steam Trap Management 

    E-Print Network [OSTI]

    Gibbs, C.

    2008-01-01

    of continuous monitoring. In addition to energy loss failed open steam traps that go undetected can cause steam system issues. Over pressure on deairator tanks and return lines, electric condensate pump cavitation, and back pressure from undersized vent...

  8. Steam Conservation and Boiler Plant Efficiency Advancements 

    E-Print Network [OSTI]

    Fiorino, D. P.

    2000-01-01

    This paper examines several cost-effective steam conservation and boiler plant efficiency advancements that were implemented during a recently completed central steam boiler plant replacement project at a very large semiconductor manufacturing...

  9. Steam-sieve method and apparatus

    SciTech Connect (OSTI)

    Newby, G. R.

    1984-05-21

    Steam is compressed and heated to make a churn gas that is rife in synthetic fuel, and hydrogen and oxygen are sifted from the churn gas before the steam is recycled.

  10. The Future of Steam: A Preliminary Discussion 

    E-Print Network [OSTI]

    Russell, C.; Harrell, G.; Moore, J.; French, S.

    2001-01-01

    Steam production represents a significant proportion of today's industrial energy demand. But the evolution of process technologies, as well as turbulence in energy markets, suggests that steam's role may be subject to change in the next decade...

  11. "Greening" Industrial Steam Generation via On-demand Steam Systems 

    E-Print Network [OSTI]

    Smith, J. P.

    2010-01-01

    boiler technology currently in service in the U.S., it is critical to raise awareness and examine the role of emerging new technologies to address the energy and environmental challenges inherent with steam generation. In the same way that tank-less...

  12. Optimisation of Fuel Usage and Steam Availability in the Power and Steam

    E-Print Network [OSTI]

    Cambridge, University of

    the medium pressure manifold (nominally operated at 14 bar), through a steam turbine that can be usedOptimisation of Fuel Usage and Steam Availability in the Power and Steam Plant of a Paper Mill KEYWORDS: Model Predictive Control, Improved Efficiency, Optimisation, Power and Steam Supply System

  13. DOE's BestPractices Steam End User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End User Training Steam End User Training Navigational Tutorial - 1 8/27/2010 Steam End User Training Navigational Tutorial Module Slide 1 ­ Introduction Hello, and welcome to the Steam End User Training. I would like to take a few minutes to show you how to navigate through

  14. DOE's BestPractices Steam End User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End User Training Steam End User Training Introduction Module - 1 8/27/2010 Steam End User Training Introduction Module Slide 1 - Introduction Title Page Hello, and welcome to the Steam System End User training. In this training, we will investigate how to assess, evaluate

  15. Identifying Steam Opportunity "Impact" Inputs for the Steam System Assessment Tool (SSAT) 

    E-Print Network [OSTI]

    Harrell, G.; Jendrucko, R.; Wright, A.

    2004-01-01

    The U.S. DOE BestPractices Steam "Steam System Assessment Tool" (SSAT) is a powerful tool for quantifying potential steam improvement opportunities in steam systems. However, all assessment tools are only as good as the validity of the modeling...

  16. STEAM-WATER RELATIVE PERMEABILITY A DISSERTATION

    E-Print Network [OSTI]

    Stanford University

    STEAM-WATER RELATIVE PERMEABILITY A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PETROLEUM Laboratory. iv #12;ABSTRACT Steam-water relative permeability curves are required for mathematical models of two-phase geothermal reservoirs. In this study, drainage steam- water relative permeabilities were

  17. Steam System Improvement: A Case Study 

    E-Print Network [OSTI]

    Leigh, N.; Venkatesan, V. V.

    1999-01-01

    usage) where steam generation accounts for 85% of the total energy used. Therefore, optimization of the steam system has the biggest energy saving potential. This paper mill produces 40,000 pounds of steam at 600 psig and distributes it to the paper...

  18. Best Management Practice #8: Steam Boiler Systems

    Broader source: Energy.gov [DOE]

    Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

  19. World launch! Hot-Steam Aerostat

    E-Print Network [OSTI]

    Berlin,Technische Universität

    to the first operable balloon ever that became buoyant by means of superheated steam. The performance of Hei-light and flocked insulation material superheated steam could be maintained also close to the envelopeInfo HeiDAS UH World launch! Hot-Steam Aerostat #12;"If you intend to view the land, if you plan

  20. Two Stage Vapor Compression Heat Pump with Solution Circuits: Catering to Simultaneous Chilling and Water Heating Needs 

    E-Print Network [OSTI]

    Rane, M. V.; Radermacher, R.

    1992-01-01

    The benefits of using a two stage vapor compression heat pump with ammonia water solution circuits (VCHSC) to simultaneously provide chilled water for air conditioning and hot water for various uses are reviewed. The performance results for a two...

  1. Materials Performance in USC Steam

    SciTech Connect (OSTI)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

    2010-05-01

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

  2. Generating Steam by Waste Incineration 

    E-Print Network [OSTI]

    Williams, D. R.; Darrow, L. A.

    1981-01-01

    Combustible waste is a significant source of steam at the new John Deere Tractor Works assembly plant in Waterloo, Iowa. The incinerators, each rated to consume two tons of solid waste per hour, are expected to provide up to 100 percent of the full...

  3. Quality characteristics of vacuum-packaged beef as affected by postmortem chill, storage temperature and storage interval 

    E-Print Network [OSTI]

    Beebe, Sammy Denzil

    1975-01-01

    QUALITY CHARACTERISTICS OF VACUUM-PACKAGED BEEF AS AFFECTED BY POSTMORTEM CHILL, STORAGE TEMPERATURE AND STORAGE INTERVAL A Thesis by SAMMY DENZIL BEEBE Submitted to the Graduate College of Texas A1IM University in partial fulfillment... of the requirement for the deoree of MASTER OF SCIENCE December 1975 Major Subject: Animal Science QUALITY CHARACTERISTICS OF VACUUM-PACKAGED BEEF AS AFFECTED BY POSTMORTEM CHILL, STORAGE TEMPERATURE AND STORAGE INTERVAL A Thesis by SAMMY DENZIL BEEBE...

  4. Transoceanic shipment of variety meats as affected by chilling system and packaging method 

    E-Print Network [OSTI]

    Gawlik, Mary F.

    1986-01-01

    to extended fresh-chilled storage was more effective in maintaining product quality than packaging in either polyethylene (PE) bags or overwrap- ping with polyvinyl chloride (PVC) film. In general, vacuum packaging resulted in less weight loss, less... the product (primal cuts and hindquarters) was protected with PVC film while the beef which was unpro- tected sustained greater degradation of muscle color after 7-11 days of transit. Marriott et al. (1977c) suggested that vacuum packaging increases color...

  5. Alstom's chilled ammonia CO{sub 2} capture process advances toward commercialization

    SciTech Connect (OSTI)

    Peltier, R.

    2008-02-15

    Carbon dioxide emissions aren't yet regulated by the EPA, but it is likely they will be soon. There are many technically feasible, but as-yet-undemonstrated ways to reduce the considerable carbon footprint of any coal-fired plant, whether it uses conventional or unconventional technology. One promising approach to removing CO{sub 2} from a plant's flue gas uses chilled ammonium bicarbonate to drive the separation process.

  6. Steam cooling system for a gas turbine

    DOE Patents [OSTI]

    Wilson, Ian David (Mauldin, SC); Barb, Kevin Joseph (Halfmoon, NY); Li, Ming Cheng (Cincinnati, OH); Hyde, Susan Marie (Schenectady, NY); Mashey, Thomas Charles (Coxsackie, NY); Wesorick, Ronald Richard (Albany, NY); Glynn, Christopher Charles (Hamilton, OH); Hemsworth, Martin C. (Cincinnati, OH)

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

  7. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01

    I Saturated Steam L ___ _ Superheated Steam XBL793-949 Fig.water and generate superheated steam at 144 atmospheres (

  8. Closed loop steam cooled airfoil

    DOE Patents [OSTI]

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  9. Steam Turbine Materials and Corrosion

    SciTech Connect (OSTI)

    Holcomb, G.H.; Hsu, D.H.

    2008-07-01

    Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

  10. Optical steam quality measurement system and method

    DOE Patents [OSTI]

    Davidson, James R.; Partin, Judy K.

    2006-04-25

    An optical measurement system is presented that offers precision on-line monitoring of the quality of steam. Multiple wavelengths of radiant energy are passed through the steam from an emitter to a detector. By comparing the amount of radiant energy absorbed by the flow of steam for each wavelength, a highly accurate measurement of the steam quality can be determined on a continuous basis in real-time. In an embodiment of the present invention, the emitter, comprises three separate radiant energy sources for transmitting specific wavelengths of radiant energy through the steam. In a further embodiment, the wavelengths of radiant energy are combined into a single beam of radiant energy for transmission through the steam using time or wavelength division multiplexing. In yet a further embodiment, the single beam of radiant energy is transmitted using specialized optical elements.

  11. Benchmark the Fuel Cost of Steam Generation - Steam Tip Sheet #15

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  12. Steam Technical Brief: How to Calculate the True Cost of Steam

    SciTech Connect (OSTI)

    2010-06-25

    This BestPractice Steam Technical Brief helps you calculate the true cost of steam. Knowing the correct cost is important for many reasons and all of them have to do with improving the company's bottom line.

  13. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  14. The Steam System Assessment Tool (SSAT): Estimating Steam System Energy, Cost, and Emission Savings 

    E-Print Network [OSTI]

    Wright, A.; Bealing, C.; Eastwood, A.; Tainsh, R.; Hahn, G.; Harrell, G.

    2003-01-01

    The U. S. Department of Energy's (DOE) Industrial Technology Program BestPractices Steam effort is developing a number of software tools to assist industrial energy users to improve the efficiency of their steam system. A major new Best...

  15. Steam Management- The 3M Approach 

    E-Print Network [OSTI]

    Renz, R. L.

    2000-01-01

    by utilizing air vents. ? Steam traps on siphon-drained revolving drying drums frequently operate incorrectly in this application. Automatic differential condensate controllers are being installed on these drums. ? Automatic air vents are also being... and overcooling the drum, which required irJcreased steam for reheat downstream as a consequence. Improved temperature control was added to the cooling portion of the process. ? Flash steam from condensate receivers is reused for low temperature applications...

  16. Method of steam reforming methanol to hydrogen

    DOE Patents [OSTI]

    Beshty, Bahjat S. (Lower Makefield, PA)

    1990-01-01

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  17. Cyclohexanone 1 Steam Optimization, Freeport Texas 

    E-Print Network [OSTI]

    Morales, J. R.

    2010-01-01

    Findings in a Mature Manufacturing Process 2010 ACC Energy Efficiency Award Exceptional Merit Cyclohexanone 1 Steam Optimization, Freeport Texas 3 Energy Survey Concept ? 80% of the savings come from 20% of the recommendations: ?What are the critical... Steam Optimization ? The challenge: ? How to optimize steam usage in a mature plant (greater than 25 years) for a commodity product with increased energy costs? ? The answer: ? The activities included a pinch analysis as well as a design...

  18. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    SciTech Connect (OSTI)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  19. Steam Technical Brief: Industrial Heat Pumps for Steam and Fuel Savings

    SciTech Connect (OSTI)

    2010-06-25

    The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

  20. Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

  1. Covered Product Category: Commercial Steam Cookers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial steam cookers, which are covered by the ENERGY STAR program.

  2. Minimize Boiler Blowdown - Steam Tip Sheet #9

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on minimizing boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  3. Achieve Steam System Excellence: Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in plant improvement projects. * Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries (1) defines the volume and...

  4. Capturing Energy Savings with Steam Traps 

    E-Print Network [OSTI]

    Bockwinkel, R. G.; French, S. A.

    1997-01-01

    , flanges and other connections. The economic loss can be significant. To appre ciate the massive economic impact of wasting steam, let's again look at the very small trap leak on 30 pound pressure typical for many process applications. Chart 1 shows... how much steam will be lost each hour from various size orifices and pressure ranges and the example calcula tions show how much steam is lost per year. Chart 1. Steam Loss Comparison For Various Pressures and Orifice Sizes Drip &Tracer Traps "1...

  5. Pre-In-Plant Training Webinar (Steam)

    Broader source: Energy.gov [DOE]

    This pre-In-Plant training webinar for the Better Plants Program covers how to find energy savings in steam systems.

  6. Designing an ultrasupercritical steam turbine

    SciTech Connect (OSTI)

    Klotz, H.; Davis, K.; Pickering, E.

    2009-07-15

    Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

  7. A Simple and Quick Chilled Water Loop Balancing for Variable Flow System 

    E-Print Network [OSTI]

    Zhu, Y.; Batten, T.; Turner, W. D.; Claridge, D. E.; Liu, M.

    2000-01-01

    of the AHUs are double duct units. The HVAC systems are controlled by a modem EMCS. Chilled Water Risers The entire complex includes five major buildings and a research building. Ther~ arc a total of 14 risers for the cnmplex. Each riser has two... their gratitude to the Johnson Controls at BAMC and BAMC Facility Management for the building commissioning project. A special thanks for the support fiom Ms Lydia Decker of Johnson Controls at BAMC, Mr. Scott Smith and Mr. Ruben Garcia of BAMC Facility...

  8. Relationship of endogenous abscisic acid to peach chilling requirement, bloom date and applied gibberellic acid 

    E-Print Network [OSTI]

    Derickson, Gary Wayne

    1977-01-01

    RIZATIO??SHI ' O). " RvirOGEiVOUS A??SCISIC ACID 'O PZAC. '? !"ni RHQUIR "v?7??T, L' OO&1 DATL' I"'D ArP IB3 QIHB?2 ? II' AC:D A T'?;esis hrr GARY r~?AYI?R D" RIC. "CSOV Sehrei44ec'. to the Gr e~lurrte C" leSr. Iexes A'. ?', University... GARY WAYNE DERICKSON Approved as to style and. content 'by: Chairman of Committee) Head of Departmen g~. QJ, c Member W', n !. Member May 1977 c weas ABHTII(' T Relationship of Endo;, enema Ab cisic Acicl to Peach Chilling Eirquirement, Bloc...

  9. Responses of lactating Holstein cows to chilled drinking in the summer 

    E-Print Network [OSTI]

    Noel, Deborah Lee

    1988-01-01

    temperature from 29. 7 'C during April to 33. 9 'C during July was associated with a decrease in first service conception rates from 25/o to 7'/o. Services per conception and days open were also increased during the warmer months when compared... seen in a study with sheep to determine the effect of chilled water on digestion (13). Ingraham (33) noted a consistent positive advantage of 1. 09 kg of milk per head per day for 100 Holstein cows in which the average ambient temperature was 29. 5...

  10. Primary arm spacing in chill block melt spun Ni-Mo alloys

    SciTech Connect (OSTI)

    Tewari, S.N.; Glasgow, T.K.

    1986-01-01

    Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt % Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacings measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient.

  11. Preliminary Results from the Industrial Steam System Market Assessment 

    E-Print Network [OSTI]

    McGrath, G. P.; Wright, A. L.

    2002-01-01

    This paper discusses fuel use and potential energy savings in the steam systems of three steam intensive industries: pulp and paper, chemical manufacturing, and petroleum refining. To determine the energy consumption to generate steam...

  12. Benchmark the Fuel Cost of Steam Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmark the Fuel Cost of Steam Generation Benchmark the Fuel Cost of Steam Generation This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving...

  13. Energy Savings with Computerized Steam Trap Maintenance Program 

    E-Print Network [OSTI]

    Klidzejs, A. M.

    1994-01-01

    This paper describes the efforts made at 3M Company plants to save energy in the steam distribution system by improving the maintenance of steam traps. The results from steam trap surveys for 17 facilities with over 6,400 ...

  14. Effective Steam Trap Selection/Maintenance - Its Payback 

    E-Print Network [OSTI]

    Garcia, E.

    1984-01-01

    In oil refineries and petrochemical plants large number of steam traps are used to discharge condensate from steam mains, tracers and process equipment. Early efforts on steam traps focused almost exclusively on their selection and sizing...

  15. A Method to Determine the Optimal Tank Size for a Chilled Water Storage System Under a Time-of-Use Electricity Rate Structure 

    E-Print Network [OSTI]

    Zhang, Z.; Turner, W. D.; Chen, Q.; Xu, C.; Deng, S.

    2010-01-01

    In the downtown area of Austin, it is planned to build a new naturally stratified chilled water storage tank and share it among four separated chilled water plants. An underground piping system is to be established to connect these four plants...

  16. Effects of Lactic Acid and Commercial Chilling Processes on Survival of Salmonella spp., Yersinia enterocolitica, and Campylobacter coli in Pork Variety Meats 

    E-Print Network [OSTI]

    King, Amanda Mardelle

    2011-10-21

    (water wash + lactic acid spray + freeze), 2 (freeze), 3 (water wash + lactic acid spray + chill + freeze), 4 (chill + freeze), and 5 (water wash + freeze). Samples were analyzed between treatment steps and after 2 months, 4 months, and 6 months of frozen...

  17. What is Wind Chill Temperature? It is the temperature it "feels like" outside and is based on the rate of heat loss

    E-Print Network [OSTI]

    What is Wind Chill Temperature? It is the temperature it "feels like" outside and is based on the rate of heat loss from exposed skin caused by the effects of wind and cold. As the wind increases, the body is cooled at a faster rate causing the skin temperature to drop. Wind Chill does not impact

  18. Nitrogen spark denoxer

    DOE Patents [OSTI]

    Ng, Henry K. (Naperville, IL); Novick, Vincent J. (Downers Grove, IL); Sekar, Ramanujam R. (Naperville, IL)

    1997-01-01

    A NO.sub.X control system for an internal combustion engine includes an oxygen enrichment device that produces oxygen and nitrogen enriched air. The nitrogen enriched air contains molecular nitrogen that is provided to a spark plug that is mounted in an exhaust outlet of an internal combustion engine. As the nitrogen enriched air is expelled at the spark gap of the spark plug, the nitrogen enriched air is exposed to a pulsating spark that is generated across the spark gap of the spark plug. The spark gap is elongated so that a sufficient amount of atomic nitrogen is produced and is injected into the exhaust of the internal combustion engine. The injection of the atomic nitrogen into the exhaust of the internal combustion engine causes the oxides of nitrogen to be reduced into nitrogen and oxygen such that the emissions from the engine will have acceptable levels of NO.sub.X. The oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

  19. Design and Performance Aspects of Steam Generators 

    E-Print Network [OSTI]

    Ganapathy, V.

    1994-01-01

    generators are "standard" or "off-the-shelf items", that there exists a model number for a given steam capacity and one has to live with whatever performance is offered by the boiler vendor. Unfortunately, boiler suppliers also encourage specifying of steam...

  20. Energy Management - Using Steam Pressure Efficiently 

    E-Print Network [OSTI]

    Jiandani, N.

    1983-01-01

    Saturated steam contains heat in two different forms. Sensible heat and latent heat. Due to the nature of this vapor, the relative proportion of latent heat is higher at lower pressures compared to higher pressures. When steam is used for heating...

  1. Dow Chemical Company: Assessment Leads to Steam System Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a Petrochemical Plant Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a...

  2. Steam System Opportunity Assessment for the Pulp and Paper, Chemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper,...

  3. Steam System Opportunity Assessment for the Pulp and Paper, Chemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy U.S. Department of Energy Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity...

  4. Appendices: Steam System Opportunity Assessment for the Pulp...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy U.S. Department of Energy Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity...

  5. Improving Steam System Performance: A Sourcebook for Industry...

    Office of Environmental Management (EM)

    Second Edition (October 2012) More Documents & Publications Flash High-Pressure Condensate to Regenerate Low-Pressure Steam Deaerators in Industrial Steam Systems Insulate...

  6. Insulate Steam Distribution and Condensate Return Lines, Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Insulate Steam Distribution and Condensate Return Lines Uninsulated steam distribution and condensate return lines are a constant source of wasted energy. The table shows typical...

  7. An Object-Oriented Algebraic Steam-Boiler Control Specification

    E-Print Network [OSTI]

    Ã?lveczky, Peter Csaba

    An Object-Oriented Algebraic Steam-Boiler Control Specification computations cannot happen. 1 Introduction The steam-boiler control specification problem has been

  8. Steam Pressure Reduction: Opportunities and Issues; A BestPractices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    domestic hot water, sterilization autoclaves, and air makeup coils. Oversized boiler plants and steam distribution systems utilizing saturated steam are potential...

  9. Improving Steam System Performance: A Sourcebook for Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Steam System Performance: A Sourcebook for Industry, Second Edition Improving Steam System Performance: A Sourcebook for Industry, Second Edition This sourcebook is...

  10. Deaerators in Industrial Steam Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Industrial Steam Systems (January 2012) More Documents & Publications Improving Steam System Performance: A Sourcebook for Industry, Second Edition Consider Installing a...

  11. Industrial Steam System Heat-Transfer Solutions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Steam System Heat-Transfer Solutions Industrial Steam System Heat-Transfer Solutions This brief provides an overview of considerations for selecting the best...

  12. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Presented at the 2007...

  13. Circumferential cracking of steam generator tubes

    SciTech Connect (OSTI)

    Karwoski, K.J.

    1997-04-01

    On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, {open_quote}Circumferential Cracking of Steam Generator Tubes.{close_quote} GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staff`s assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness.

  14. Steam drying of products containing solvent mixtures

    SciTech Connect (OSTI)

    Pothmann, E.; Schluender, E.U. [Univ. Karlsruhe (Germany). Inst. fuer Thermische Verfahrenstechnik

    1995-12-31

    Drying experiments with single, porous spheres wetted with mixtures of 2-propanol and water were performed using superheated steam, air, or steam-air mixtures as drying agent. Both the drying rate and the moisture composition were determined experimentally for different temperatures and compositions of the drying agent and for different initial compositions of the moisture. It is shown that evaporation of 2-propanol is enhanced by using superheated steam as drying agent instead of air due to steam condensing on the sample. While the overall drying rate increases with rising steam temperature, the evaporation rate of 2-propanol is hardly affected. When drying samples containing mixtures of 2-propanol and water, internal boiling can occur depending on the vapor-liquid equilibrium. Vapor generated inside the sample may cause mechanical dewatering of the sample which greatly increases the drying rate.

  15. Customizing pays off in steam generators

    SciTech Connect (OSTI)

    Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (United States))

    1995-01-01

    Packaged steam generators are the workhorses of chemical process plants, power plants and cogeneration systems. They are available as oil- or gas-fired models, and are used to generate either high-pressure superheated steam (400 to 1,200 psig, at 500 to 900 F) or saturated steam at low pressures (100 to 300 psig). In today's emission- and efficiency- conscious environment, steam generators have to be custom designed. Gone are the days when a boiler supplier--or for that matter an end user--could look up a model number from a list of standard sizes and select one for a particular need. Thus, before selecting a system, it is desirable to know the features of oil- and gas-fired steam generators, and the important variables that influence their selection, design and performance. It is imperative that all of these data are supplied to the boiler supplier so that the engineers may come up with the right design. Some of the parameters which are discussed in this paper are: duty, steam temperature, steam purity, emissions, and furnace design. Superheaters, economizers, and overall performance are also discussed.

  16. Steam atmosphere dryer project: System development and field test. Final report

    SciTech Connect (OSTI)

    NONE

    1999-02-01

    The objective of this project was to develop and demonstrate the use of a superheated steam atmosphere dryer as a highly improved alternative to conventional hot air-drying systems, the present industrial standard method for drying various wet feedstocks. The development program plan consisted of three major activities. The first was engineering analysis and testing of a small-scale laboratory superheated steam dryer. This dryer provided the basic engineering heat transfer data necessary to design a large-scale system. The second major activity consisted of the design, fabrication, and laboratory checkout testing of the field-site prototype superheated steam dryer system. The third major activity consisted of the installation and testing of the complete 250-lb/hr evaporation rate dryer and a 30-kW cogeneration system in conjunction with an anaerobic digester facility at the Village of Bergen, NY. Feedstock for the digester facility at the Village of Bergen, NY. Feedstock for the digester was waste residue from a nearby commercial food processing plant. The superheated steam dryer system was placed into operation in August 1996 and operated successfully through March 1997. During this period, the dryer processed all the material from the digester to a powdered consistency usable as a high-nitrogen-based fertilizer.

  17. Light-gas effect on steam condensation

    SciTech Connect (OSTI)

    Anderson, M.H.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States); Herranz, L.E. [Centro de Investigcaiones Energeticas Medioambientales y Tecnologicas, Madrid (Spain)

    1997-12-01

    In a postulated reactor accident, the loss of coolant results in a release of high-temperature steam into the containment. Under these circumstances steam condensation onto containment walls provides an effective mechanism of energy removal. However, the presence of noncondensable gas is known to degrade the heat transfer. It has also been found that the introduction of a light noncondensable gas has little effect until sufficient quantities are present to disrupt the buoyancy forces. Our investigation shows the dramatic effect of high concentrations of light gas decreasing steam condensation rates under anticipated accident conditions for AP600, with helium as the simulant for hydrogen.

  18. Energy Conservation Through Effective Steam Trapping 

    E-Print Network [OSTI]

    Diamante, L.; Nagengast, C.

    1979-01-01

    the bottom edge and out, the bucket becomes bouyant, floats up, closes the valve and the flow stops. The slight static pressure the water around the bucket exerts on the steam inside will begin to drive it out through the small hole in the top we spoke... at which condensate is forming, thus steam will eventually flow into the trap. Steam unlike condensate, or air in a relative sense, is highly compressible and will undergo a substantial volume change in expanding from the inlet to outlet pressure...

  19. Electrical Cost Reduction Via Steam Turbine Cogeneration 

    E-Print Network [OSTI]

    Ewing, T. S.; Di Tullio, L. B.

    1991-01-01

    REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used in industry. However... reducing valves with turbine generator sets in applications with flows as low as 4000 pounds of steam per hour. These systems produce electricity for $0.01 to $.02 per kWh (based on current costs of gas and oil); system cost is between $200 and $800 per...

  20. Internal combustion engine injection superheated steam

    SciTech Connect (OSTI)

    Mahoney, F.G.

    1991-01-22

    This patent describes a method for introducing water vapor to the combustion chambers of an internal combustion engine. It comprises: introducing a metered amount of liquid water into a heat exchanger; contacting the heat exchanger directly with hot exhaust gases emanating from the exhaust manifold; maintaining the water in the heat exchanger for a period sufficient to vaporize the water into steam and superheat same; reducing pressure and increasing temperature to create superheated steam; introducing the superheated steam into the air supply proximate to the air induction system, upstream of any carburetion, of the internal combustion engine.

  1. Bioengineering nitrogen acquisition in rice

    E-Print Network [OSTI]

    Kronzucker, Herbert J.

    gas prices caused the price of nitrogen fertilizer to nearly double.(7) Increased nitrogen use is also nitrogen application is not an ideal solution, partly from a cost perspective--in 2001, increased natural

  2. The Enbridge "Steam Saver" Program: Steam Boiler Plant Efficiency-Update to Year End 2005 

    E-Print Network [OSTI]

    Griffin, B.; Johnson, D.

    2006-01-01

    ” PROGRAM STEAM BOILER PLANT EFFICIENCY-UPDATE TO YEAR END, 2005 March 1, 2006 Bob Griffin, P.Eng., Energy Solutions Manager, Enbridge Gas Distribution Inc., Toronto, Ontario Daniel Johnson, B.A.Sc., Industrial Energy Engineer, Enbridge Gas Distribution... of Enbridge’s “Steam Saver” program first introduced in 1997. The goal of this program is to reduce fuel consumption in industrial steam plants and distribution systems. We have now completed 92 detailed boiler plant performance tests and audits...

  3. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    SciTech Connect (OSTI)

    Thangirala, Mani

    2015-09-30

    The Steam Turbine critical stationary structural components are high integrity Large Shell and Valve Casing heavy section Castings, containing high temperature steam under high pressures. Hence to support the development of advanced materials technology for use in an AUSC steam turbine capable of operating with steam conditions of 760°C (1400°F) and 35 Mpa (5000 psia), Casting alloy selection and evaluation of mechanical, metallurgical properties and castability with robust manufacturing methods are mandated. Alloy down select from Phase 1 based on producability criteria and creep rupture properties tested by NETL-Albany and ORNL directed the consortium to investigate cast properties of Haynes 282 and Haynes 263. The goals of Task 4 in Phase 2 are to understand a broader range of mechanical properties, the impact of manufacturing variables on those properties. Scale up the size of heats to production levels to facilitate the understanding of the impact of heat and component weight, on metallurgical and mechanical behavior. GE Power & Water Materials and Processes Engineering for the Phase 2, Task 4.0 Castings work, systematically designed and executed casting material property evaluation, multiple test programs. Starting from 15 lbs. cylinder castings to world’s first 17,000 lbs. poured weight, heavy section large steam turbine partial valve Haynes 282 super alloy casting. This has demonstrated scalability of the material for steam Turbine applications. Activities under Task 4.0, Investigated and characterized various mechanical properties of Cast Haynes 282 and Cast Nimonic 263. The development stages involved were: 1) Small Cast Evaluation: 4 inch diam. Haynes 282 and Nimonic 263 Cylinders. This provided effects of liquidus super heat range and first baseline mechanical data on cast versions of conventional vacuum re-melted and forged Ni based super alloys. 2) Step block castings of 300 lbs. and 600 lbs. Haynes 282 from 2 foundry heats were evaluated which demonstrated the importance of proper heat treat cycles for Homogenization, and Solutionizing parameters selection and implementation. 3) Step blocks casting of Nimonic 263: Carried out casting solidification simulation analysis, NDT inspection methods evaluation, detailed test matrix for Chemical, Tensile, LCF, stress rupture, CVN impact, hardness and J1C Fracture toughness section sensitivity data and were reported. 4) Centrifugal Casting of Haynes 282, weighing 1400 lbs. with hybrid mold (half Graphite and half Chromite sand) mold assembly was cast using compressor casing production tooling. This test provided Mold cooling rates influence on centrifugally cast microstructure and mechanical properties. Graphite mold section out performs sand mold across all temperatures for 0.2% YS; %Elongation, %RA, UTS at 1400°F. Both Stress-LMP and conditional Fracture toughness plots data were in the scatter band of the wrought alloy. 5) Fundamental Studies on Cooling rates and SDAS test program. Evaluated the influence of 6 mold materials Silica, Chromite, Alumina, Silica with Indirect Chills, Zircon and Graphite on casting solidification cooling rates. Actual Casting cooling rates through Liquidus to Solidus phase transition were measured with 3 different locations based thermocouples placed in each mold. Compared with solidification simulation cooling rates and measurement of SDAS, microstructure features were reported. The test results provided engineered casting potential methods, applicable for heavy section Haynes 282 castings for optimal properties, with foundry process methods and tools. 6) Large casting of Haynes 282 Drawings and Engineering FEM models and supplemental requirements with applicable specifications were provided to suppliers for the steam turbine proto type feature valve casing casting. Molding, melting and casting pouring completed per approved Manufacturing Process Plan during 2014 Q4. The partial valve casing was successfully cast after casting methods were validated with solidification simulation analysis and the casting met NDT inspection and a

  4. Reservoir performance characterized in mature steam pattern

    SciTech Connect (OSTI)

    Miller, D.D.; McPherson, J.G.; Covington, T.E.

    1989-04-01

    A detailed reservoir description provided new insight in an investigation of a ten-year-old steam flood. Mobil Oil Corporation conducted this study of the Pleistocene upper Tulare sands in South Belridge field, located in the San Joaquin basin, Kern County, California. The study area is on the gently dipping (6/degrees/) southwestern flank of the South Belridge anticline. Wireline logs from 19 wells in a 10-ac (660 ft x 660 ft) pattern were correlated in detail. Seven post-steam conventional cores (1523 ft) aided (1) the evaluation of vertical and lateral steam-sweep efficiency, (2) evaluation of reservoir and fluid changes due to steam, (3) influence of lithofacies in reservoir quality, and (4) provided insight to the three-dimensional reservoir flow-unit geometries.

  5. Optimized Control Of Steam Heating Coils 

    E-Print Network [OSTI]

    Ali, Mir Muddassir

    2012-02-14

    Steam has been widely used as the source of heating in commercial buildings and industries throughout the twentieth century. Even though contemporary designers have moved to hot water as the primary choice for heating, a large number of facilities...

  6. Steam turbine upgrading: low-hanging fruit

    SciTech Connect (OSTI)

    Peltier, R.

    2006-04-15

    The thermodynamic performance of the steam turbine, more than any other plant component, determines overall plant efficiency. Upgrading steam path components and using computerized design tools and manufacturing techniques to minimise internal leaks are two ways to give tired steam turbines a new lease on life. The article presents three case studies that illustrate how to do that. These are at Unit 1 of Dairyland's J.P. Madgett Station in Alma, WI, a coal-fired subcritical steam plant; the four units at AmerenUE's 600 MW coal-fired Labadie plant west of St. Louis; and Unit 3 of KeyPlan Corp's Northport Power Station on Long Island. 8 figs.

  7. Consider Steam Turbine Drives for Rotating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  8. Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities 

    E-Print Network [OSTI]

    Hata, S.; Horiba, J.; Sicker, M.

    2011-01-01

    in which they operate. This energy growth requires high efficiency improvements for machine design and operation to minimize life cycle cost. This paper will focus on the mechanical drive steam turbines which power the main process equipment in the heart...

  9. Optimizing Steam & Condensate System: A Case Study 

    E-Print Network [OSTI]

    Venkatesan, V. V.; Norris, C.

    2011-01-01

    Optimization of Steam & Condensate systems in any process plant results in substantial reduction of purchased energy cost. During periods of natural gas price hikes, this would benefit the plant in controlling their fuel budget significantly...

  10. Solar steam generation by heat localization

    E-Print Network [OSTI]

    Ghasemi, Hadi

    Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated ...

  11. Extraction Steam Controls at EPLA-W 

    E-Print Network [OSTI]

    Brinker, J. L.

    2004-01-01

    ExxonMobil's Baton Rouge site encompasses a world-scale refinery, chemical plant and third party power station. Historically, inflexible and unreliable control systems on two high-pressure, extracting/condensing steam turbines prevented the site...

  12. Steam System Optimization : A Case Study 

    E-Print Network [OSTI]

    Iordanova, N.; Venkatesan, V. V.; Calogero, M.

    2002-01-01

    The steam system optimization (generation, distribution, use and condensate return) offers a large opportunity for action to comply with the new levels of energy efficiency standards. Superior design and improved maintenance practices are the two...

  13. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOE Patents [OSTI]

    Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  14. Optimization of Steam Network in Tehran Oil Refinery 

    E-Print Network [OSTI]

    Khodaie, H.; Nasr, M. R. J.

    2008-01-01

    involved super heater, preheater, water drum, economizer and radiant chamber. In this case study boilers do not have any economizer so no heat exchanger between the incoming boilers feed water and the hot flue gases before they are vented to atmosphere... boiler feed water treatment, steam boilers, steam turbines, steam distribution, steam users and producer. row water needs to be treated before it can be used for steam generation it need to be first filtered to remove suspend solids then need...

  15. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  16. Oxidation of advanced steam turbine alloys

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  17. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, James F. (Bonneville County, ID); Koenig, John F. (Idaho Falls, ID)

    1985-01-01

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  18. DOE's BestPractices Steam End User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    , SSAT, and the 3E-Plus Insulation Tool. The Steam Generation Efficiency module focuses on boiler efficiency. In this section the definition of boiler efficiency will be discussed and the various avenues of boiler losses will be explored. Resource Utilization Effectiveness will discuss fuel selection, steam

  19. Boiler Efficiency vs. Steam Quality- The Challenge of Creating Quality Steam Using Existing Boiler Efficiencies 

    E-Print Network [OSTI]

    Hahn, G.

    1998-01-01

    A boiler works under pressure and it is not possible to see what is happening inside of it. The terms "wet steam" and "carry over" are every day idioms in the steam industry, yet very few people have ever seen these phenomena and the actual water...

  20. DOE's BestPractices Steam End User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    steam systems - Measure boiler efficiency - Estimate the magnitude of specific boiler losses - Identify and prioritize areas of boiler efficiency improvement - Recognize the impacts of fuel selection Measurements] Boiler o Flue gas temperature o Flue gas oxygen content o Boiler fuel flow o Boiler steam

  1. Sources of error in chilled and hot water metering at shared sites: differential pressure transmitters and flowmeter installation 

    E-Print Network [OSTI]

    Corley, Megan Anne

    1998-01-01

    37 Figure 5. 1 Flowmeter installation - Plant Bio Tech chilled water 42 Figure 5. 2 Flowmeter installation - Thompson hot water 43 Figure 5. 3 Welded flowmeter - Wells 47 Figure 5. 4 Potential hazard ? Lechner 48 Figure 5. 5 Single all.... Preliminary results showed that peak flow~ were generally less than 60% of transmitter range with two buildings peaking as low as 6 and 14% of full range. respectively. Table 1. 1: Shared signal buildmgs monitored by the ESL Building Name Bio-Bio...

  2. Subsurface steam sampling in Geysers wells

    SciTech Connect (OSTI)

    Lysne, P. [Lysne (Peter), Albuquerque, NM (United States); Koenig, B. [Unocal Geothermal and Power Operations Group, Santa Rose, CA (United States); Hirtz, P. [Thermochem, Inc., Santa Rosa, CA (United States); Normann, R.; Henfling, J. [Sandia National Labs., Albuquerque, NM (United States)

    1997-01-01

    A new downhole sampling tool has been built for use in steam wells at The Geysers geothermal reservoir. The tool condenses specimens into an initially evacuated vessel that is opened down hole at the direction of an on-board computer. The tool makes a temperature log of the well as it is deployed, and the pressure and temperature of collected specimens are monitored for diagnostic purposes. Initial tests were encouraging, and the Department of Energy has funded an expanded effort that includes data gathering needed to develop a three-dimensional model of The Geysers geochemical environment. Collected data will be useful for understanding the origins of hydrogen chloride and non-condensable gases in the steam, as well as tracking the effect of injection on the composition of produced steam. Interested parties are invited to observe the work and to join the program.

  3. Ultra supercritical turbines--steam oxidation

    SciTech Connect (OSTI)

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret; Alman, David E.

    2004-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

  4. Integrated vacuum absorption steam cycle gas separation

    DOE Patents [OSTI]

    Chen, Shiaguo (Champaign, IL); Lu, Yonggi (Urbana, IL); Rostam-Abadi, Massoud (Champaign, IL)

    2011-11-22

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  5. Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil 

    E-Print Network [OSTI]

    Tinss, Judicael Christopher

    2001-01-01

    in accelerating oil production and to compare the performance of steam-propane injection versus steam injection alone on an intermediate crude oil of 21 ?API gravity. Eight experimental runs were performed: three pure steam injection runs, three steam...

  6. Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation

    E-Print Network [OSTI]

    Lu, Xiaoming

    2012-01-01

    and adding the superheated steam to the steam turbine cycle.into gasifier as superheated steam in order to reach a highsignificant amount of superheated steam has to be generated

  7. Energy & Environmental Benefits from Steam & Electricity Cogeneration 

    E-Print Network [OSTI]

    Ratheal, R.

    2004-01-01

    -site powerhouses (one coal-fired and one natural gas-fired) and from gas-fired and waste heat boilers in its four hydrocarbon cracking plants. The challenge was to find a way to reduce costs and improve reliability of procuring and/or producing electricity... and steam while maintaining or reducing TEX air emissions. TEX entered into an agreement with Eastex Cogeneration to build, own and operate a 440 MW gas-fired steam and electric cogeneration facility on site. Implementation of the project was complex...

  8. Savings in Steam Systems (A Case Study) 

    E-Print Network [OSTI]

    DeBat, R.

    2001-01-01

    stream_source_info ESL-IE-01-05-37.pdf.txt stream_content_type text/plain stream_size 35654 Content-Encoding ISO-8859-1 stream_name ESL-IE-01-05-37.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Savings in Steam... Systems (A Case Study) Rich DeBat Steam Systems Engineer Armstrong Service, Inc. Three Rivers, MI ABSTRACT Armstrong Service Inc. (ASI) conducted an engineered evaluation at an Ammonium Nitrate Manufacturing facility during the Fall of 1999...

  9. Cover Heated, Open Vessels - Steam Tip Sheet #19

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO steam tip sheet on covering heated, open vessels provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  10. Finding Benefits by Modeling and Optimizing Steam and Power Systems 

    E-Print Network [OSTI]

    Jones, B.; Nelson, D.

    2007-01-01

    A site-wide steam modeling and optimization program (Visual MESA) was implemented at the INEOS Chocolate Bayou site. This program optimizes steam production, compressor turbine extraction, pump operation (turbine/motor) operation, as well...

  11. The Analysis and Development of Large Industrial Steam Systems 

    E-Print Network [OSTI]

    Waterland, A. F.

    1980-01-01

    Chemicals, petroleum, pulp and paper, and many other industries depend heavily on extensive complex steam systems for thermal and mechanical energy delivery. Steam's versatility and desirable characteristics as both a heat transfer medium and a...

  12. Case Study- Steam System Improvements at Dupont Automotive Marshall Laboratory 

    E-Print Network [OSTI]

    Larkin, A.

    2002-01-01

    and implement small scale cogeneration. These recommendations included reducing the medium pressure steam distribution to low pressure, eliminating the medium pressure to low pressure reducing stations, installing a back pressure steam turbine generator...

  13. Steam Tracing...New Technologies for the 21st Century 

    E-Print Network [OSTI]

    Pitzer, R. K.; Barth, R. E.; Bonorden, C.

    1999-01-01

    For decades, steam tracing has been an accepted practice in the heating of piping, vessels, and equipment. This paper presents recent product innovations such as "burn-safe" and "energy efficient" steam tracing products. For the many applications...

  14. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting...

    Broader source: Energy.gov (indexed) [DOE]

    to Recover Low-Pressure Waste Steam Flash High-Pressure Condensate to Regenerate Low-Pressure Steam Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators...

  15. Install and Automatic Blowdown Control System - Steam Tip Sheet #23

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO steam tip sheet on installing automatic blowdown controls provide how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  16. Reliability Improvement Programs in Steam Distribution and Power Generation Systems 

    E-Print Network [OSTI]

    Petto, S.

    1987-01-01

    can be found in power generation. steam distribution, and in all types of durable and non-durable Industrial productions. I 300 " 0 " 200 C " ? ? ~ 'DO ?~ 50 ' .. '7. '70 '75 '50 '.2 The cost to maintain steam systems. namely...

  17. CIBO's Energy Efficiency Handbook for Steam Power Systems 

    E-Print Network [OSTI]

    Bessette, R. D.

    1997-01-01

    The Council of Industrial Boiler Owners (CIBO) has developed a handbook to help boiler operators get the best performance from their industrial steam systems. This energy efficiency handbook takes a comprehensive look at the boiler and steam system...

  18. Review of Orifice Plate Steam Traps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review of Orifice Plate Steam Traps Review of Orifice Plate Steam Traps This guide was prepared to serve as a foundation for making informed decisions about when orifice plate...

  19. Use Vapor Recompression to Recover Low-Pressure Waste Steam,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that it can be reused. Vapor recompression relies upon a mechanical compressor or steam jet ejector to increase the temperature of the latent heat in steam to render it usable for...

  20. Following Where the Steam Goes: Industry's Business Opportunity 

    E-Print Network [OSTI]

    Jaber, D.; Jones, T.

    1999-01-01

    Many associated benefits accrue from plant projects which comprehensively address steam systems. The DOE-Alliance to Save Energy Steam Challenge program was initiated shortly after last year's IETC on April 30, 1998 to promote awareness...

  1. Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve

    SciTech Connect (OSTI)

    Song, Li; Wang, Gang; Brambley, Michael R.

    2013-04-28

    A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

  2. Chilled Water Thermal Storage System and Demand Response at the University of California at Merced

    SciTech Connect (OSTI)

    Granderson, Jessica; Dudley, Junqiao Han; Kiliccote, Sila; Piette, Mary Ann

    2009-10-08

    The University of California at Merced is a unique campus that has benefited from intensive efforts to maximize energy efficiency, and has participated in a demand response program for the past two years. Campus demand response evaluations are often difficult because of the complexities introduced by central heating and cooling, non-coincident and diverse building loads, and existence of a single electrical meter for the entire campus. At the University of California at Merced, a two million gallon chilled water storage system is charged daily during off-peak price periods and used to flatten the load profile during peak demand periods. This makes demand response more subtle and challenges typical evaluation protocols. The goal of this research is to study demand response savings in the presence of storage systems in a campus setting. First, University of California at Merced summer electric loads are characterized; second, its participation in two demand response events is detailed. In each event a set of strategies were pre-programmed into the campus control system to enable semi-automated response. Finally, demand savings results are applied to the utility's DR incentives structure to calculate the financial savings under various DR programs and tariffs. A key conclusion to this research is that there is significant demand reduction using a zone temperature set point change event with the full off peak storage cooling in use.

  3. Compact cold stage for micro-computerized tomography imaging of chilled or frozen samples

    SciTech Connect (OSTI)

    Hullar, Ted; Anastasio, Cort; Paige, David F.; Rowland, Douglas J.

    2014-04-15

    High resolution X-ray microCT (computerized tomography) can be used to image a variety of objects, including temperature-sensitive materials. In cases where the sample must be chilled or frozen to maintain sample integrity, either the microCT machine itself must be placed in a refrigerated chamber, or a relatively expensive commercial cold stage must be purchased. We describe here the design and construction of a low-cost custom cold stage suitable for use in a microCT imaging system. Our device uses a boron nitride sample holder, two-stage Peltier cooler, fan-cooled heat sink, and electronic controller to maintain sample temperatures as low as ?25?°C ± 0.2?°C for the duration of a tomography acquisition. The design does not require modification to the microCT machine, and is easily installed and removed. Our custom cold stage represents a cost-effective solution for refrigerating CT samples for imaging, and is especially useful for shared equipment or machines unsuitable for cold room use.

  4. Thermal performance of a full-scale stratified chilled-water thermal storage tank

    SciTech Connect (OSTI)

    Bahnfleth, W.P.; Musser, A.

    1998-12-31

    The thermal performance of a full-scale 1.47 million gallon (5300 m{sup 3}), 44.5 ft (13.6 m) water-depth, naturally stratified chilled-water thermal storage tank with radial diffusers is analyzed. Controlled, constant inlet flow rate tests covering the full range of the system have been performed for both charge and discharge processes. Thermal performance for these half-cycle tests is quantified using performance metrics similar to the figure of merit (FOM). Lost capacity, a new measure of performance with practical significance, is also presented. Uncertainty analysis shows that under some circumstances, particularly for tall tanks, lost capacity allows thermal performance to be quantified with less experimental uncertainty than FOM. Results of these tests indicate that discharge cycles performance is not as good as charge cycle performance at the same flow rate. However, the half-cycle figure of merit for all cycles tested was in excess of 90%, despite the fact that the inlet Reynolds number exceeded that recommended in the literature by up to a factor of five.

  5. Improving Steam System Performance: A Sourcebook for Industry, Second Edition

    SciTech Connect (OSTI)

    2012-02-23

    This sourcebook is designed to provide steam system users with a reference that describes the basic steam system components, outlines opportunities for energy and performance improvements, and discusses the benefits of a systems approach in identifying and implementing these improvement opportunities. The sourcebook is divided into three main sections: steam system basics, performance improvement opportunities, and where to find help.

  6. Industrial Steam Power Cycles Final End-Use Classification 

    E-Print Network [OSTI]

    Waterland, A. F.

    1983-01-01

    Final end uses of steam include two major classifications: those uses that condense the steam against heat transfer surfaces to provide heat to an item of process or service equipment; and those that require a mass flow of steam for stripping...

  7. Steam boiler control specification problem: A TLA solution

    E-Print Network [OSTI]

    Merz, Stephan

    Steam boiler control specification problem: A TLA solution Frank Le�ke and Stephan Merz Institut f of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi­ cal state of the steam boiler and the model maintained by the controller and discuss

  8. An Object-Oriented Algebraic Steam-Boiler Control Specification

    E-Print Network [OSTI]

    Ã?lveczky, Peter Csaba

    An Object-Oriented Algebraic Steam-Boiler Control Specification Peter Csaba ()lveczky, Poland Abstract. In this paper an object-oriented algebraic solution of the steam-boiler specification Introduction The steam-boiler control specification problem has been proposed as a challenge for different

  9. An Object-Oriented Algebraic Steam-Boiler Control Specification

    E-Print Network [OSTI]

    Ã?lveczky, Peter Csaba

    An Object-Oriented Algebraic Steam-Boiler Control Specification.In this paper an object-oriented algebraic solution of the steam-boiler specification problem is presented computations cannot happen. 1 Introduction The steam-boiler control specification problem has been

  10. Steam boiler control speci cation problem: A TLA solution

    E-Print Network [OSTI]

    Cengarle, María Victoria

    Steam boiler control speci cation problem: A TLA solution Frank Le ke and Stephan Merz Institut fur of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi- cal state of the steam boiler and the model maintained by the controller and discuss

  11. An ObjectOriented Algebraic SteamBoiler Control Specification

    E-Print Network [OSTI]

    Ã?lveczky, Peter Csaba

    An Object­Oriented Algebraic Steam­Boiler Control Specification Peter Csaba Ë? Olveczky 1# , Piotr, Poland Abstract. In this paper an object­oriented algebraic solution of the steam­boiler specification Introduction The steam­boiler control specification problem has been proposed as a challenge for di

  12. STEAM RECEIVER MODELS FOR SOLAR DISH CONCENTRATORS: TWO MODELS COMPARED

    E-Print Network [OSTI]

    that commercial steam turbines operate at. It is envisaged that plants based on large arrays of dishes wouldSTEAM RECEIVER MODELS FOR SOLAR DISH CONCENTRATORS: TWO MODELS COMPARED José Zapata, Keith response of a parabolic dish steam cavity receiver. Both approaches are based on a heat transfer model

  13. Lowest Pressure Steam Saves More BTU's Than You Think 

    E-Print Network [OSTI]

    Vallery, S. J.

    1985-01-01

    the high and low steam pressures. The discussion below shows how the savings in using low pressure steam can be above 25%! The key to the savings is not in the heat exchanger equipment or the steam trap, but is back at the powerhouse - the sensible heat...

  14. Supported metal catalysts for alcohol/sugar alcohol steam reforming

    SciTech Connect (OSTI)

    Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

    2014-08-21

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  15. Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator

    E-Print Network [OSTI]

    Demirel, Melik C.

    Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

  16. Water spray ejector system for steam injected engine

    SciTech Connect (OSTI)

    Hines, W.R.

    1991-10-08

    This paper describes a method of increasing the power output of a steam injected gas turbine engine. It comprises: a compressor, a combustor having a dome which receives fuel and steam from a dual flow nozzle, and a turbine in series combination with a gas flow path passing therethrough, and a system for injection of superheated steam into the gas flow path, the method comprising spraying water into the steam injection system where the water is evaporated by the superheated steam, mixing the evaporated water with the existing steam in the steam injection system so that the resultant steam is at a temperature of at least 28 degrees celsius (50 degrees fahrenheit) superheat and additional steam is added to the dome from the fuel nozzle to obtain a resultant increased mass flow of superheated steam mixture for injection into the gas flow path, and controlling the amount of water sprayed into the steam injection system to maximize the mass flow of superheated steam without quenching the flame.

  17. Steam Trap Testing and Evaluation: An Actual Plant Case Study 

    E-Print Network [OSTI]

    Feldman, A. L.

    1981-01-01

    With rising steam costs and a high failure rate on the Joliet Plants standard steam trap, a testing and evaluation program was begun to find a steam trap that would work at Olin-Joliet. The basis was to conduct the test on the actual process...

  18. Replace Pressure-Reducing Valves with Backpressure Turbogenerators (International Fact Sheet), Energy Tips-Steam, Steam Tip Sheet #20c

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This English/Chinese ITP steam tip sheet on replacing pressure-reducing valves provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  19. Use Low-Grade Waste Steam to Power Absorption Chillers - Steam Tip Sheet #14

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on waste steam to power absorption chillers provides how-to advice for improving the system using low-cost, proven practices and technologies.

  20. Consider Steam Turbine Drives for Rotating Equipment - Steam Tip Sheet #21

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  1. Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam with propane-distillation 

    E-Print Network [OSTI]

    Ramirez Garnica, Marco Antonio

    2004-09-30

    Recent experimental and simulation studies -conducted at the Department of Petroleum Engineering at Texas A&M University - confirm oil production is accelerated when propane is used as an additive during steam injection. To better understand...

  2. Improved Steam Assisted Gravity Drainage (SAGD) Performance with Solvent as Steam Additive 

    E-Print Network [OSTI]

    Li, Weiqiang

    2011-02-22

    Steam Assisted Gravity Drainage (SAGD) is used widely as a thermal recovery technique in Canada to produce a very viscous bitumen formation. The main research objectives of this simulation and experimental study are to investigate oil recovery...

  3. Steam Challenge: Developing A New DOE Program to Help Industry be Steam Smart 

    E-Print Network [OSTI]

    Jones, T.; Hart, F.

    1998-01-01

    Last year, the Alliance to Save Energy, the Department of Energy's Office of Industrial Technologies, and a cadre of private companies and associations formed an innovative "Steam Partnership" with the goal of developing a new, DOE technical...

  4. Method of removing cesium from steam

    DOE Patents [OSTI]

    Carson, Jr., Neill J. (Clarendon Hills, IL); Noland, Robert A. (Oak Park, IL); Ruther, Westly E. (Skokie, IL)

    1991-01-01

    Method for removal of radioactive cesium from a hot vapor, such as high temperature steam, including the steps of passing input hot vapor containing radioactive cesium into a bed of silicate glass particles and chemically incorporating radioactive cesium in the silicate glass particles at a temperature of at least about 700.degree. F.

  5. Task 1—Steam Oxidation (NETL-US)

    SciTech Connect (OSTI)

    G. R. Holcomb

    2010-05-01

    The proposed steam in let temperature in the Advanced Ultra Supercritical (A·USC) steam turbine is high enough (760°C) Ihat traditional turbine casing and valve body materials such as ferr;tic/manensitic steels will not suffice due to temperature lim itations of this class of materials. Cast versions of three traditionally wrought Ni-based superalloys (Haynes 263. Haynes 282, and Nimonic 105) were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantia l: 2-5,000 kg each half and on the order of 100 nun thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equi valem microslruclUre •. A multi_step homogenization heat treatment was d~ve loped to better disperse the al loy constituents. These castings were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (al 760 and 800 "C).

  6. Gas turbine row #1 steam cooled vane

    DOE Patents [OSTI]

    Cunha, Frank J. (Longwood, FL)

    2000-01-01

    A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.

  7. Steam Trap Maintenance as a Profit Center 

    E-Print Network [OSTI]

    Bouchillon, J. L.

    1996-01-01

    program at a large, 4000 trap chemical plant. The previously "good" maintenance program which was losing $565,000 per year in steam was turned into a $485,000 per year cost savings. This paper will also give the steps that can in as few as 3 months...

  8. Low chemical concentrating steam generating cycle

    DOE Patents [OSTI]

    Mangus, James D. (Greensburg, PA)

    1983-01-01

    A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.

  9. Coreflood experimental study of steam displacement 

    E-Print Network [OSTI]

    Cerutti, Andres Enrique

    1997-01-01

    The main objective of this study was to verify experimentally whether or not a Buckley-Leverett shock front exists when steam displaces oil in a porous medium, as assumed in the Aydelotte-Pope steamflood predictive model. Experiments were conducted...

  10. Natural gas-assisted steam electrolyzer

    DOE Patents [OSTI]

    Pham, Ai-Quoc (San Jose, CA); Wallman, P. Henrik (Berkeley, CA); Glass, Robert S. (Livermore, CA)

    2000-01-01

    An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

  11. Fuel cell integrated with steam reformer

    DOE Patents [OSTI]

    Beshty, Bahjat S. (Lower Makefield, PA); Whelan, James A. (Bricktown, NJ)

    1987-01-01

    A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

  12. Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam-with-propane distillation 

    E-Print Network [OSTI]

    Jaiswal, Namit

    2007-09-17

    the synthetic sample and experimental study previously carried out. (e) To correlate steam-propane distillation yields for some crude oils and synthetic hydrocarbons to generate steam-propane distillation data that could be used to develop the input data... there is need to develop a model to predict distillate yield under any set of conditions for any heavy oil, requiring only the simulated distillation (SIMDIS) trace (i.e. percent off vs. normal boiling temperature) of the oil. The expected deliverables from...

  13. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, P.W.; Bannister, R.L.

    1995-07-11

    A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

  14. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

    1995-01-01

    A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

  15. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  16. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  17. Deliberate ignition of hydrogen-air-steam mixtures in condensing steam environments

    SciTech Connect (OSTI)

    Blanchat, T.K.; Stamps, D.W.

    1997-05-01

    Large scale experiments were performed to determine the effectiveness of thermal glow plug igniters to burn hydrogen in a condensing steam environment due to the presence of water sprays. The experiments were designed to determine if a detonation or accelerated flame could occur in a hydrogen-air-steam mixture which was initially nonflammable due to steam dilution but was rendered flammable by rapid steam condensation due to water sprays. Eleven Hydrogen Igniter Tests were conducted in the test vessel. The vessel was instrumented with pressure transducers, thermocouple rakes, gas grab sample bottles, hydrogen microsensors, and cameras. The vessel contained two prototypic engineered systems: (1) a deliberate hydrogen ignition system and (2) a water spray system. Experiments were conducted under conditions scaled to be nearly prototypic of those expected in Advanced Light Water Reactors (such as the Combustion Engineering (CE) System 80+), with prototypic spray drop diameter, spray mass flux, steam condensation rates, hydrogen injection flow rates, and using the actual proposed plant igniters. The lack of any significant pressure increase during the majority of the burn and condensation events signified that localized, benign hydrogen deflagration(s) occurred with no significant pressure load on the containment vessel. Igniter location did not appear to be a factor in the open geometry. Initially stratified tests with a stoichiometric mixture in the top showed that the water spray effectively mixes the initially stratified atmosphere prior to the deflagration event. All tests demonstrated that thermal glow plugs ignite hydrogen-air-steam mixtures under conditions with water sprays near the flammability limits previously determined for hydrogen-air-steam mixtures under quiescent conditions. This report describes these experiments, gives experimental results, and provides interpretation of the results. 12 refs., 127 figs., 16 tabs.

  18. Control Optimization for a Chilled Water Thermal Storage System Under a Complicated Time-of-Use Electricity Rate Schedule 

    E-Print Network [OSTI]

    Zhou, J.; Wei, G.; Turner, W.D.; Deng, S.; Claridge, D.E.; Contreras, O.

    2005-01-01

    .6 m) in diameter with a total volume capacity of 1,400,000 gallon (5,299,560 L). Under design conditions, the fully charged thermal storage tank can hold a cooling capacity of 12,000 ton-hr (42,204 kWh). The temperatures of the stratified chilled... of time for the tank to discharge is selected, as many higher-priced hours as possible. The time charge the tank is automatically determined as n, the average chiller production rate required e charging period is calculated from the total campus load...

  19. On Water, Steam and String Theory

    E-Print Network [OSTI]

    Christof Schmidhuber

    1997-01-22

    This is a colloquium-style review lecture for physicists and non-physicists, as part of the requirements for ``Habilitation'' at the university of Bern: At a pressure of 220 atm. and a temperature of 374 Celsius there is a second-order phase transition between water and steam. Understanding it requires the concept of the renormalization group. Images from computer simulations of the lattice gas model (included) are used to explain its basic ideas. It is briefly reviewed how the renormalization group is used to compute critical coefficients for the water-steam phase transition, in good agreement with experiment. Applications in particle physics and string theory are mentioned. The appendix contains a sample of the author's results on renormalization group flows in theories with dynamical gravity and their relation to perturbative string theory: gravity modifies critical coefficients and phase diagrams, in agreement with numerical calculations, and leads to curious phenomena such as oscillating flows and quantum mechanical flows.

  20. Cash Flow Impacts of Industrial Steam Efficiency 

    E-Print Network [OSTI]

    Russell, C.

    2003-01-01

    . Corporate leaders can maintain ROI by avoiding asset additions, but eventually the downtime imposed by failing assets begins to defeat this strategy. Plant optimization achieved through applied energy efficiency can only support the manager's adherence... gets the resources to upgrade steam assets and maintenance. But in addition, product managers enjoy lower costs per unit due to reduced waste of direct materials, as well as avoided downtime. Sales and marketing staff enjoy a bit more negotiating...

  1. Propellant actuated nuclear reactor steam depressurization valve

    DOE Patents [OSTI]

    Ehrke, Alan C. (San Jose, CA); Knepp, John B. (San Jose, CA); Skoda, George I. (Santa Clara, CA)

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  2. Materials Performance in USC Steam Portland

    SciTech Connect (OSTI)

    G.R. Holcomb; J. Tylczak; R. Hu

    2011-04-26

    Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interest include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.

  3. Oxidation of alloys for advanced steam turbines

    SciTech Connect (OSTI)

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Alman, David E.

    2005-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  4. Laser removal of sludge from steam generators

    DOE Patents [OSTI]

    Nachbar, Henry D. (Ballston Lake, NY)

    1990-01-01

    A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.

  5. Steam System Optimization: A Case Study 

    E-Print Network [OSTI]

    Iordanova, N.; Venkatesan, V. V.

    2000-01-01

    to the atmosphere. Figure 6. Existing and proposed collection of atmospheric condensate at Plant C. Recovery of condensate and vented flash steam at the Atmospheric Flash Drums will save Plant C $144,000 annual1y. The savings estimation is based on the amount... vent condenser, and finally collected at the recycle solvent drum. A pressure relieve valve at the vent header, maintains the temperature and the pressure without Figure 7. Existing arrangements at Crystal1izers. Typical Material Balance data from...

  6. Steam System Modeler | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of Energy 1 DOE| Department ofSteam System Modeler

  7. Steam System Survey Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of Energy 1 DOE| Department ofSteam System

  8. Underground coal gasification using oxygen and steam

    SciTech Connect (OSTI)

    Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

    2009-07-01

    In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

  9. Measuring non-condensable gases in steam

    SciTech Connect (OSTI)

    Doornmalen, J. P. C. M. van; Kopinga, K., E-mail: k.kopinga@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2013-11-15

    In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1 %) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3M{sup TM} Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.

  10. Identification of mixing effects in stratified chilled-water storage tanks by analysis of time series temperature data

    SciTech Connect (OSTI)

    Caldwell, J.S.; Bahnfleth, W.P.

    1998-12-31

    Several one-dimensional models of mixing in stratified chilled-water thermal energy storage tanks have been proposed. In the simplest models, mixing is assumed to be uniform throughout the tank. Other models permit spatial variation of mixing intensity. Published models were developed by adjusting model parameters to achieve qualitative agreement with measured profiles. The literature does not describe quantitative criteria for evaluating the performance of mixing models. This paper describes a method that can be used to determine the relative spatial distribution of mixing effects directly from experimental data. It also illustrates a method for quantitative comparison of experimental and modeled temperature profiles. The mixing calculation procedure may be applied to instantaneous spatial temperature data if temperature sensor spacing is sufficiently small. When sensors are widely spaced, time series data taken at individual sensors provide better accuracy. A criterion for maximum sensor spacing is proposed. The application of these procedures to time series charge-cycle operating data from a full-scale chilled-water thermal storage system serving a large medical center is described. Results of this analysis indicate that mixing is localized near the inlet diffuser and that one-dimensional flow with streamwise conduction predominates in most of the tank.

  11. Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems

    SciTech Connect (OSTI)

    Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R. [Pacific Northwest Lab., Richland, WA (United States)

    1993-11-01

    This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.

  12. Nitrogen fixation apparatus

    DOE Patents [OSTI]

    Chen, Hao-Lin (Walnut Creek, CA)

    1984-01-01

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

  13. ARM - Measurement - Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Roomparticlecontent ARMgovMeasurementsNitrogen ARM Data

  14. ARM - Oxides of Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendar NSA Related LinksOxides of Nitrogen Outreach Home

  15. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect (OSTI)

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  16. Biomass Production and Nitrogen Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Peer Review WBS 4.2.2.10: Biomass Production and Nitrogen Recovery Date: March 23, 2015 Technology Area Review: Sustainability Principal Investigator: M. Cristina Negri...

  17. Return Condensate to the Boiler - Steam Tip Sheet #8

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on returning condensate to boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  18. Consider Installing a Condensing Economizer - Steam Tip Sheet #26A

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet is part of a series of tip sheets on how to optimize an industrial steam system.

  19. Improving Steam System Performance: A Sourcebook for Industry

    SciTech Connect (OSTI)

    2004-10-01

    A sourcebook designed to provide steam system users with a reference outlining opportunities to improve system performance and optimize energy efficiency in industrial energy systems.

  20. Steam System Opportunity Assessment for the Pulp and Paper, Chemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper, Chemical...

  1. Full Steam Ahead for PV in US Homes?

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    Full Steam Ahead for PV in US Homes? Mark Bolinger, Galenutility-scale photovoltaic (PV) installations in the yearsimplications for PV rebate program administrators, PV system

  2. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    drying and heating, multi-effect evaporators, vulcanizers, reboilers, strippers, condensate receiver tanks, and solvent extraction processes. Producing a Vacuum with Steam Jet...

  3. Consider Steam Turbine Drives for Rotating Equipment, Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Rotating Equipment Steam turbines are well suited as prime movers for driving boiler feedwater pumps, forced or induced-draft fans, blowers, air compressors, and other...

  4. DOE's BestPractices Steam End-User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    loss is almost always the largest boiler loss. [Slide Visual ­ Stack Loss Title Page] Steam factor in managing boiler performance. We will discuss both of these aspects of stack loss--we will start in the boiler exhaust gas. The temperature of the exhaust gas is an indicator of the amount of energy lost from

  5. Apparatus and methods for supplying auxiliary steam in a combined cycle system

    DOE Patents [OSTI]

    Gorman, William G. (Ballston Spa, NY); Carberg, William George (Ballston Spa, NY); Jones, Charles Michael (Ballston Lake, NY)

    2002-01-01

    To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

  6. Oxy-Combustion Environment Characterization: Fire- and Steam-Side Corrosion in Advanced Combustion

    SciTech Connect (OSTI)

    G. R. Holcomb; J. Tylczak; G. H. Meier; B. S. Lutz; N. M. Yanar; F. S. Pettit; J. Zhu; A. Wise; D. E. Laughlin; S. Sridhar

    2012-09-25

    Oxy-fuel combustion is burning a fuel in oxygen rather than air. The low nitrogen flue gas that results is relatively easy to capture CO{sub 2} from for reuse or sequestration. Corrosion issues associated with the environment change (replacement of much of the N{sub 2} with CO{sub 2} and higher sulfur levels) from air- to oxy-firing were examined. Alloys studied included model Fe-Cr alloys and commercial ferritic steels, austenitic steels, and nickel base superalloys. The corrosion behavior is described in terms of corrosion rates, scale morphologies, and scale/ash interactions for the different environmental conditions. Additionally, the progress towards laboratory oxidation tests in advanced ultra-supercritical steam is updated.

  7. The value of steam turbine upgrades

    SciTech Connect (OSTI)

    Potter, K.; Olear, D.

    2005-11-01

    Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

  8. Greenville Steam Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to: navigation,Capital AdvisorsSteam Biomass

  9. Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation

    E-Print Network [OSTI]

    Lu, Xiaoming

    2012-01-01

    Iron FT Synthesis, Steam-Power Cycle All Values in 2010 $CO 2 capture, Steam-Power Cycle All Values in 2010 $ MinimumCO 2 Capture Steam-Power Cycle All Values in 2010 $ Minimum

  10. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01

    stream conditions in steam power cycle. Table 4.1 Reactantreactor system. Steam power cycle 8.1 Efficiencies vs.793-944 Fig. 3.5. Steam power cycle. Table 3.3. Flows and

  11. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01

    IOUT *MEBP *STC(QAAN. R )-STEAM TURBINE CALC. ~ETFQMIN~5 ST~KJ/S) 1JC. /(GROSS STEAM TURBINE POWER PRODUCTION) STEA~ GENprogram then prints the steam turbine results. All flows in

  12. A Case Study of Steam System Evaluation in a Petroleum Refinery 

    E-Print Network [OSTI]

    Venkatesan, V. V.; Iordanova, N.

    2003-01-01

    in the areas of: Steam generation, Steam distribution, Steam Utilization, Condensate recovery, and Combustion optimization in kilns. By implementing all the above 31 ECMs, the refinery is estimated to save $3.5 million annually. Based on our preliminary...

  13. Experimental study of Morichal heavy oil recovery using combined steam and propane injection 

    E-Print Network [OSTI]

    Goite Marcano, Jose Gregorio

    1999-01-01

    with steam (for the purpose of increasing steam recovery efficiency) are being evaluated. An experimental study has been performed to investigate the effect of combined steam and propane injection on recovery of heavy oil from the Morichal field, Venezuela...

  14. Flash High-Pressure Condensate to Regenerate Low-Pressure Steam...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Flash High-Pressure Condensate to Regenerate Low-Pressure Steam Low-pressure process steam requirements are usually met by throttling high- pressure steam, but a portion of the...

  15. Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking

    SciTech Connect (OSTI)

    Das, S.K.; Ningileri, S.; Long, Z.; Saito, K.; Khraisheh, M.; Hassan, M.H.; Kuwana, K.; Han, Q.; Viswanathan, S.; Sabau, A.S.; Clark, J.; Hyrn, J. (ANL)

    2006-08-15

    Approximately 68% of the aluminum produced in the United States is first cast into ingots prior to further processing into sheet, plate, extrusions, or foil. The direct chill (DC) semi-continuous casting process has been the mainstay of the aluminum industry for the production of ingots due largely to its robust nature and relative simplicity. Though the basic process of DC casting is in principle straightforward, the interaction of process parameters with heat extraction, microstructural evolution, and development of solidification stresses is too complex to analyze by intuition or practical experience. One issue in DC casting is the formation of stress cracks [1-15]. In particular, the move toward larger ingot cross-sections, the use of higher casting speeds, and an ever-increasing array of mold technologies have increased industry efficiencies but have made it more difficult to predict the occurrence of stress crack defects. The Aluminum Industry Technology Roadmap [16] has recognized the challenges inherent in the DC casting process and the control of stress cracks and selected the development of 'fundamental information on solidification of alloys to predict microstructure, surface properties, and stresses and strains' as a high-priority research need, and the 'lack of understanding of mechanisms of cracking as a function of alloy' and 'insufficient understanding of the aluminum solidification process', which is 'difficult to model', as technology barriers in aluminum casting processes. The goal of this Aluminum Industry of the Future (IOF) project was to assist the aluminum industry in reducing the incidence of stress cracks from the current level of 5% to 2%. Decreasing stress crack incidence is important for improving product quality and consistency as well as for saving resources and energy, since considerable amounts of cast metal could be saved by eliminating ingot cracking, by reducing the scalping thickness of the ingot before rolling, and by eliminating butt sawing. Full-scale industrial implementation of the results of the proposed research would lead to energy savings in excess of 6 trillion Btu by the year 2020. The research undertaken in this project aimed to achieve this objective by a collaboration of industry, university, and national laboratory personnel through Secat, Inc., a consortium of aluminum companies. During the four-year project, the industrial partners and the research team met in 16 quarterly meetings to discuss research results and research direction. The industrial partners provided guidance, facilities, and experience to the research team. The research team went to two industrial plants to measure temperature distributions in commercial 60,000-lb DC casting ingot production. The project focused on the development of a fundamental understanding of ingot cracking and detailed models of thermal conditions, solidification, microstructural evolution, and stress development during the initial transient in DC castings of the aluminum alloys 3004 and 5182. The microstructure of the DC casting ingots was systematically characterized. Carefully designed experiments were carried out at the national laboratory and university facilities as well as at the industrial locations using the industrial production facilities. The advanced computational capabilities of the national laboratories were used for thermodynamic and kinetic simulations of phase transformation, heat transfer and fluid flow, solidification, and stress-strain evolution during DC casting. The achievements of the project are the following: (1) Identified the nature of crack formation during DC casting; (2) Developed a novel method for determining the mechanical properties of an alloy at the nonequilibrium mushy zone of the alloy; (3) Measured heat transfer coefficients (HTCs) between the solidifying ingot and the cooling water jet; (4) Determined the material constitutive model at high temperatures; and (5) Developed computational capabilities for the simulation of cracking formation in DC casting ingot. The models and the database de

  16. Eighth international congress on nitrogen fixation

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  17. Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ??

    E-Print Network [OSTI]

    Henzinger, Thomas A.

    Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ?? Thomas A. Henzinger1 Howard model a steam-boiler control system using hybrid au- tomata. We provide two abstracted linear models of the nonlinear be- havior of the boiler. For each model, we de ne and verify a controller that maintains the safe

  18. Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;??

    E-Print Network [OSTI]

    Henzinger, Thomas A.

    Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;?? Thomas A. Henzinger 1 Howard model a steam­boiler control system using hybrid au­ tomata. We provide two abstracted linear models of the nonlinear be­ havior of the boiler. For each model, we define and verify a controller that maintains

  19. ENERGY SERIES "CFD Modeling and its Application in Steam Condenser

    E-Print Network [OSTI]

    Bergman, Keren

    SEMINAR: ENERGY SERIES "CFD Modeling and its Application in Steam Condenser Performance Improvement will discuss the application of CFD to steam condensers, an area where both of the above mentioned limitations of computational fluid dynamics, having applied these techniques extensively in the design large heat exchangers

  20. Steam distribution and energy delivery optimization using wireless sensors

    SciTech Connect (OSTI)

    Olama, Mohammed M [ORNL; Allgood, Glenn O [ORNL; Kuruganti, Phani Teja [ORNL; Sukumar, Sreenivas R [ORNL; Djouadi, Seddik M [ORNL; Lake, Joe E [ORNL

    2011-01-01

    The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  1. Plant View On Reducing Steam Trap Energy Loss 

    E-Print Network [OSTI]

    Vallery, S. J.

    1982-01-01

    's total energy consumption is used by industry in producing the goods which are consumed around the world. Steam is the most commonly used energy source for the petrochemical industry. Most of this steam is used for heating and evaporating the many...

  2. Use Low-Grade Waste Steam to Power Absorption Chillers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for CHP Applications, April 2005 Improving Steam System Performance: A Sourcebook for Industry, Second Edition Flash High-Pressure Condensate to Regenerate Low-Pressure Steam...

  3. Tools to Boost Steam System Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program steam software tools can help industrial plants identify steam system improvements to save energy and money.

  4. Feasibility of Steam Hydrogasification of Microalgae for Production of Synthetic Fuels

    E-Print Network [OSTI]

    Suemanotham, Amornrat

    2014-01-01

    Figure 2.2. Biomass Air Steam Oxygen Hydrogen Gasifier typeAir GasifierSteam Gasifier Oxygen Gasifier Hydrogen Gasifier

  5. Investigation of Bio-Ethanol Steam Reforming over Cobalt-based...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Presented at the 2007...

  6. Water injection as a means for reducing non-condensible and corrosive gases in steam produced from vapor-dominated reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten; Spycher, Nicolas; Kneafsey, Timothy J.

    2008-01-01

    Hydrogen Chloride in Superheated Steam and Chloride in Deepof Chloride in Superheated Geothermal Steam, Geothermics,

  7. Issues in the selection of the LMFBR steam cycle

    SciTech Connect (OSTI)

    Buschman, H.W.; McConnell, R.J.

    1983-01-01

    Unlike the light-water reactor, the liquid-metal fast breeder reactor (LMFBR) allows the designer considerable latitude in the selection of the steam cycle. This latitude in selection has been exercised by both foreign and domestic designers, and thus, despite the fact that over 25 LMFBR's have been built or are under construction, a consensus steam cycle has not yet evolved. This paper discusses the LMFBR steam cycles of interest to the LMFBR designer, reviews which of these cycles have been employed to date, discusses steam-cycle selection factors, discusses why a consensus has not evolved, and finally, concludes that the LMFBR steam-cycle selection is primarily one of technical philosophy with several options available.

  8. Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines

    SciTech Connect (OSTI)

    Gordon H. Holcomb

    2009-01-01

    U.S. Department of Energy’s goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

  9. Steam oxidation and chromia evaporation in ultrasupercritical steam boilers and turbines

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2009-07-01

    The U.S. Department of Energy's goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 {sup o}C and 340 atm, so-called ultrasupercritical conditions. Evaporation of protective chromia scales is a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

  10. SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT

    SciTech Connect (OSTI)

    Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

    2005-07-01

    Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

  11. Method and apparatus for improving the performance of a steam driven power system by steam mixing

    DOE Patents [OSTI]

    Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA); Prichard, Andrew W. (Richland, WA); Reid, Bruce D. (Pasco, WA); Burritt, James (Virginia Beach, VA)

    1998-01-01

    A method and apparatus for improving the efficiency and performance of a steam driven power plant wherein addition of steam handling equipment to an existing plant results in a surprising increase in plant performance. For Example, a gas turbine electrical generation system with heat recovery boiler may be installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  12. COMBUSTION SOURCES OF NITROGEN COMPOUNDS

    E-Print Network [OSTI]

    Brown, Nancy J.

    2011-01-01

    Rasmussen, R.A. (1976). Combustion as a source of nitrousx control for stationary combustion sources. Prog. Energy,CA, March 3-4, 1977 COMBUSTION SOURCES OF NITROGEN COMPOUNDS

  13. Chemical tailoring of steam to remediate underground mixed waste contaminents

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Udell, Kent S. (Berkeley, CA); Bruton, Carol J. (Livermore, CA); Carrigan, Charles R. (Tracy, CA)

    1999-01-01

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  14. Environmental assessment of a proposed steam flood of the Shallow Oil Zone, Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    The US Department of Energy proposes to develop a limited enhanced oil recovery project in the Shallow Oil Zone at Naval Petroleum Reserve No. 1 (NPR-1) Elk Hills. The project would employ steam forced into the oil-bearing formation through injector wells, and would involve two phases. The initiation of the second phase would be dependent on the economic success of the first phase. The total project would require the drilling of 22 new wells in a 45-acre area supporting seven existing production wells. It would also require construction of various surface facilities including a tank setting (gas-oil separation system), steam generators, and a water treatment plant. Adverse environmental impacts associated with the proposed steam flood project would include the effects on vegetation, wildlife and land-use resulting from the total reconfiguration of the topography within the project bondaries. Other adverse impacts include the emission of oxides of nitrogen, carbon monoxide, hydrocarbons and particulates from steam generators, vehicles and associated surface facilities. Minor adverse impacts include localized noise and dust during constuction, and reduction of visual quality. 48 refs., 7 figs., 10 tabs.

  15. Thermo-gasification of steam classified municipal solid waste

    SciTech Connect (OSTI)

    Eley, M.H.; Sebghati, J.M.

    1996-12-31

    Municipal solid waste (MSW) has been processed using a procedure called steam classification. This material has been examined for use as a combustion fuel, feedstock for composting, and cellulytic enzyme hydrolysis. An initial study has been conducted using a prototype plasma arc pyrolysis system to transform the steam classified MSW into a pyrolysis gas and vitrified material. With 136 kg (300 lbs) of the steam classified MSW pyrolysized at a feed rate of 22.7 kg/hour (50 lbs/hour), samples of the gas and grasslike material were captured for analysis. A presentation of the emission data and details on the system used will be presented.

  16. Why Condensing Steam Turbines are More Efficient than Gas Turbines 

    E-Print Network [OSTI]

    Nelson, K. E.

    1988-01-01

    turbine at 75'rc adiabatic efficiency to a vacuum of 2"Hg. No steam is extracted. 15,7 ~Blu/hr STACK Figure 3. Enthalpy analysis of power plant cycle. Analyzing this system points to the steam turbine condenser as the source of inefficiency... it's thrown away. Why be concerned about throwing away something that has virtually no value? But there is concern. The steam turbine condenser is nearly always viewed as the source of inefficiency in the cycle. The problem is that the wrong thing...

  17. Steam bubble collapse induced water hammer in draining pipes

    SciTech Connect (OSTI)

    Griffith, P.; Silva, R.J.

    1991-08-01

    When hot steam replaces cold condensate in a horizontal or almost horizontal pipe, a steam bubble collapse induced water hammer often results. The effect of condensate drainage velocity and pipe declination on the incidence of steam bubble collapse induced water hammer is investigated experimentally. Declining the pipe more than 2.4{degrees} allows drainage velocities up to 3 ft/sec (1m/s) in a two inch (5 cm) pipe without water hammer. A semi-empirical theory allows extrapolation to other pressures, pipe sizes and inclinations. 4 refs.

  18. 1. Introduction The efficiency of steam turbines can be improved by in-

    E-Print Network [OSTI]

    Cambridge, University of

    1. Introduction The efficiency of steam turbines can be improved by in- creasing the maximum-efficiency power plant. 2. Turbines, Steam, Efficiency and Power Plant A power plant has a steam generator which the operating pressure is below about 22 MPa, in which case the steam is separated and passed on to the turbine

  19. DYNAMIC SIMULATION OF MONO-TUBE CAVITY RECEIVERS FOR DIRECT STEAM GENERATION

    E-Print Network [OSTI]

    for intended deployment in large arrays of dishes, with steam directed to a central large steam turbine powerDYNAMIC SIMULATION OF MONO-TUBE CAVITY RECEIVERS FOR DIRECT STEAM GENERATION José Zapata 1 , John dish has been in operation since 2010 with a mono-tube steam cavity receiver, the SG4 system

  20. ESTIMATION OF OUTLET MASS FLOW FOR A MONO-TUBE CAVITY RECEIVER FOR DIRECT STEAM GENERATION

    E-Print Network [OSTI]

    arrays of parabolic dishes, where each collector contributes steam to a central steam-turbine power blockESTIMATION OF OUTLET MASS FLOW FOR A MONO-TUBE CAVITY RECEIVER FOR DIRECT STEAM GENERATION José This paper presents recent developments on a dynamic model for a mono-tube cavity receiver for direct steam

  1. DIRECT STEAM GENERATION USING THE SG4 500m2 PARABOLOIDAL DISH CONCENTRATOR

    E-Print Network [OSTI]

    steam turbine power block. As well as DSG, the ANU group is investigating energy conversion options conveyed the steam to our 50 kWe steam turbine; the new dish is oversized for the current engine, so someDIRECT STEAM GENERATION USING THE SG4 500m2 PARABOLOIDAL DISH CONCENTRATOR Greg Burgess 1 , Keith

  2. Corrections to "Proving Safety Properties of the Steam Boiler Controller" Correction Sheet

    E-Print Network [OSTI]

    Lynch, Nancy

    Corrections to "Proving Safety Properties of the Steam Boiler Controller" 1 Correction Sheet After our paper "Proving Safety Properties of the Steam Boiler Controller" went already to print, Myla_steam_water_est(sr) = #12;Corrections to "Proving Safety Properties of the Steam Boiler Controller" 2 7. p.11, The initial

  3. Nitrogen Deposition in the Southern High Plains 

    E-Print Network [OSTI]

    Upadhyay, Jeetendra; Auvermann, Brent W.; Bush, K. Jack; Mukhtar, Saqib

    2008-02-11

    convert nitrogen into other chemical forms. Legume roots sustain rhizobia, the organisms capable of nitrogen fixation, a microbial process for con- verting nitrogen into ammonium (NH 4 ). Reactive nitrogen species (RNS) are nitrogen- bearing compounds... acid gas can dissolve as the ammonium ion (NH 4 +), where it may react with Sources Transport / Transformation Removal Effects Photochemistry Chemical Transformations Cloud Processes Vertical Mixing Prevailing Winds Dry DepositionWet Deposition...

  4. Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine

    DOE Patents [OSTI]

    Eldrid, Sacheverel Q. (Saratoga Springs, NY); Salamah, Samir A. (Niskayuna, NY); DeStefano, Thomas Daniel (Ballston Lake, NY)

    2002-01-01

    The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

  5. Steam Partnerships: Case Study of Improved Energy Efficiency 

    E-Print Network [OSTI]

    Calogero, M. V.; Hess, R. E.; Leigh, N.

    2002-01-01

    energy consumers. They have supplied the energy commodities (fuel, electricity, or water) and may have even assisted with energy (steam) generation and production. But in most cases, their assistance and expertise came up short when dealing...

  6. Steam Efficiency: Impacts from Boilers to the Boardroom 

    E-Print Network [OSTI]

    Russell, C.

    2000-01-01

    potentially include increased shareholder value, market branding opportunities, avoidance of emission control penalties, and improvements in workplace safety. This discussion also covers the U.S. Department of Energy's BestPractices Steam program, which...

  7. Thermohydraulic analysis of U-tube steam generators

    E-Print Network [OSTI]

    da Silva, Hugo Cardoso

    1984-01-01

    Recent trends in plant safety analysis reveal a need for benchmark analytical representations of the steam generators to aid in the improvement of system codes and of fast codes for operator assistance. A model for such ...

  8. Steam bubble collapse, water hammer and piping network response

    E-Print Network [OSTI]

    Gruel, R.

    Work on steam bubble collapse, water hammer and piping network response was carried out in two closely related but distinct sections. Volume I of ,,is report details the experiments and analyses carried out in conjunction ...

  9. C++ Implementation of IAPWS Water/Steam Properties

    SciTech Connect (OSTI)

    Ling Zou; Haihua Zhao; Hongbin Zhang; Qiyue Lu

    2014-02-01

    For the calculations of water-involved systems, such as safety analysis of light water reactors, it is essential to provide accurate water properties. The International Association for the Properties of Water and Steam is an international non-profit association of national organizations concerned with the properties of water and steam. It provides internationally accepted formulations of water/steam properties for scientific and industrial applications. The purpose of this work is to provide a stand-alone software package in C++ programming language to provide accurate and efficient water/steam properties evaluation, based on the latest IAPWS releases. The discussion on related IAPWS releases, code implementations and verifications are provided in details.

  10. Steam System Management Program Yields Fuel Savings for Refinery 

    E-Print Network [OSTI]

    Gaines, L. D.; Hagan, K. J.

    1983-01-01

    The Phillips refinery at Borger, Texas, determined the need to develop a utility monitoring system. Shortly after this commitment was made, the refinery was introduced to a flowsheet modeling program that could be used to model and optimize steam...

  11. The Economics of Back-Pressure Steam Turbines 

    E-Print Network [OSTI]

    Wagner, J. R.; Choroszylow, E.

    1982-01-01

    Recently, back-pressure steam turbines have become the focal point in many cogeneration applications. This is a result of the savings in operating costs associated with the generation of electrical or mechanical power coincident with the economical...

  12. Steam Turbines for Critical Applications and Emergency or Standby Drives 

    E-Print Network [OSTI]

    Waterland, A. F.

    1986-01-01

    Steam turbines are frequently preferred over electric motors where operational continuity is important. This often imposes extreme premiums in operating cost. The parameters affecting relative economics are explored and a range of alternatives...

  13. Recover Heat from Boiler Blowdown - Steam Tip Sheet #10

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on recovering heat from boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  14. Minimize Boiler Short Cycling Losses - Steam Tip Sheet #16

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  15. Minimize Boiler Short Cycling Losses - Steam Tip Sheet #16

    SciTech Connect (OSTI)

    2006-01-01

    This revised AMO tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  16. Improving Steam System Performance: A Sourcebook for Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    content of a solid. Dryers account for the largest end use of steam in the pulp and paper industry. 9 The chemical manufacturing, textiles, and food processing industries also...

  17. Steam Turbine Performance in Europe | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steam Turbine Performance in Europe Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to...

  18. Rapid Recolonisation of Agricultural Soil by Microarthropods After Steam Disinfestation

    E-Print Network [OSTI]

    Cucco, Marco

    sterilisation. This research was supported by ACNA and MURST grants. Journal of Sustainable Agriculture, Vol. 27 to methyl bromide. Indeed, steam sterilisation presents several obvious advantages, such as the lack

  19. Hanford 300 Area steam transition preliminary utility options study

    SciTech Connect (OSTI)

    Olson, N.J.; Weakley, S.A.; Berman, M.J.

    1995-06-01

    The cost of steam in the Hanford 300 Area is approaching $60 per million Btu; the cost in industry is {approx} $10 per million Btu. The cost of steam in the 300 Area is expected to continue to increase because of the age of the central steam system, load decreases, safety requirements, and environmental regulations. The intent of this report is to evaluate options that would more cost-effectively met the future heating needs of the buildings in the 300 Area. In general, the options fall into two categories: central systems and distributed systems. A representative option from each category was analyzed using the life-cycle cost analysis (LCCA) techniques mandated by the federal government. The central plant option chosen for evaluation was the existing central steam plant modified to allow continued operation. The distributed option chosen was a dedicated heating system for each building.

  20. Steam System Efficiency Optimized After J.R. Simplot Fertilizer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J.R. Simplot Don plant in Pocatello, Idaho, repaired boiler feed water pumps such as the one pictured above, and revised boiler operating practices to reduce steam venting by 17...

  1. Energy Conservation Thru Steam Trap Surveys and Preventive Maintenance Programs 

    E-Print Network [OSTI]

    Boynton, T.; Dewhirst, B.

    1980-01-01

    justification for the survey program. Defective steam traps and their energy characteristics will also be discussed. An on-going preventive maintenance program can be initiated from the information derived from the survey. Sustained energy efficiency...

  2. Paducah Package Steam Boilers to Provide Efficiency, Environmental...

    Energy Savers [EERE]

    and operates to provide steam on demand. The boilers are most efficient when they run at full capacity. When a boiler is turned down, the efficiency drops. To maximize...

  3. Assessment of superheated steam drying of wood waste

    SciTech Connect (OSTI)

    Woods, B.G.; Nguyen, Y.; Bruce, S.

    1994-12-31

    A 5 MW co-generation facility using wood waste is described which will supply power to Ontario Hydro, steam to the sawmill for process heating, and hot water for district heating customers in the town. The use of superheated steam for drying the wood was investigated to determine the impact on boiler performance, the environmental impact and the economic feasibility. The main benefit with superheated steam drying is the reduction in VOC emissions. The capital cost is currently higher with superheated steam drying, but further investigation is warranted to determine if the cost reductions which could be achieved by manufacturing the major components in North America are sufficient to make the technology cost competitive.

  4. Dow Chemical Company: Assessment Leads to Steam System Energy...

    Broader source: Energy.gov (indexed) [DOE]

    describes how Dow Chemical Company saved 272,000 MMBtu and 1.9 million annually after increasing the steam system energy efficiency of a plant in Louisiana. Dow Chemical Company:...

  5. Downhole steam generator having a downhole oxidant compressor

    DOE Patents [OSTI]

    Fox, R.L.

    1981-01-07

    Am improved apparatus is described for the downhole injection of steam into boreholes, for tertiary oil recovery. It includes an oxidant supply, a fuel supply, an igniter, a water supply, an oxidant compressor, and a combustor assembly. The apparatus is designed for efficiency, preheating of the water, and cooling of the combustion chamber walls. The steam outlet to the borehole is provided with pressure-responsive doors for closing the outlet in response to flameout. (DLC)

  6. Method for increasing steam decomposition in a coal gasification process

    DOE Patents [OSTI]

    Wilson, Marvin W. (Fairview, WV)

    1988-01-01

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  7. Heat transfer and film cooling with steam injection 

    E-Print Network [OSTI]

    Conklin, Gary Eugene

    1982-01-01

    HEAT TRANSFER AND FILM COOLING WITH STEAM INJECTION A Thesis by GARY EUGENE CONKLIN Submitted to the Graduate College of Texas AIM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1982 Major... Subject: Mechanical Engineering HEAT TRANSFER AND FILM COOLING WITH STEAM INJECTION A Thesis by GARY EUGENE CONKLIN Approved as to style and content by: (Chairm of Committee) (Member) (Memb e r) (Me r (Head Departme ) May 1982 ABSTRACT Heat...

  8. Drum drying of black liquor using superheated steam impinging jets

    SciTech Connect (OSTI)

    Shiravi, A.H.; Mujumdar, A.S.; Kubes, G.J. [McGill Univ., Montreal, Quebec (Canada)

    1997-05-01

    A novel drum dryer for black liquor utilizing multiple impinging jets of superheated steam was designed and built to evaluate the performance characteristics and effects of various operating parameters thereon. Appropriate ranges of parameters such as steam jet temperature and velocity were examined experimentally to quantify the optimal operating conditions for the formation of black liquor film on the drum surface as well as the drying kinetics.

  9. An Analysis of Steam Process Heater Condensate Drainage Options 

    E-Print Network [OSTI]

    Risko, J. R.

    1999-01-01

    , Houston, TX, May 12-13, 1999 POTENTIAL INSTALLAnON DESIGNS -Stearn Inlet Control Valve with Outlet Steam Trap (Figure A). -Stearn Inlet Control Valve with Outlet Level Pot (Figure B). -Steam Inlet Control Valve with Outlet Condensate Level Control... (Figure C). -Condensate Outlet Control Valve and Level Override (Figure D). -Condensate Outlet Control Valve for Drainage and Set Point Control (Figure E). -Stearn Inlet Control Valve with Outlet Condensate PumplTrap Drainage (Figure F). An in...

  10. Method for increasing steam decomposition in a coal gasification process

    DOE Patents [OSTI]

    Wilson, M.W.

    1987-03-23

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  11. FLASH predictions of the MB-2 steam line break tests

    SciTech Connect (OSTI)

    Lincoln, F.W.; Coffield, R.D.; Johnson, E.G.

    1992-12-31

    If a main steam line from a pressurized water reactor (PWR) steam generator were to rupture, the effect would be a depressurization of the secondary side and a consequential overcooling transient on the primary side. Analyses must accurately predict the effects of the rapid cooldown of the reactor vessel coolant on positive nuclear-kinetic reactivity feedback to the core plus thermal shock to the reactor vessel and other primary system components. Many early studies of the steam line break (SLB) transient made extremely conservative assumptions to maximize the primary to secondary heat transfer which in turn maximized the reactor vessel cooldown rate. Among the more significant of these assumptions was that flow from the break was pure steam and that the tube bundle remained covered until the secondary mass inventory was significantly reduced. The Model F commercial PWR steam generator testing performed in the Model Boiler No. 2 (MB-2) facility located at the Westinghouse Engineering Test Facility in Tampa, Florida provided data to better qualify the actual variation in these key parameters. A conclusion of this analysis is that the MB-2 steam line break data base is accurate and of sufficient detail to provide a valuable basis for making comparisons relative to code predictions. Results obtained using the FLASH transient safety analysis code were found to be in excellent agreement with the data.

  12. Single pressure steam bottoming cycle for gas turbines combined cycle

    SciTech Connect (OSTI)

    Zervos, N.

    1990-01-30

    This patent describes a process for recapturing waste heat from the exhaust of a gas turbine to drive a high pressure-high temperature steam turbine and a low pressure steam turbine. It comprises: delivering the exhaust of the gas turbine to the hot side of an economizer-reheater apparatus; delivering a heated stream of feedwater and recycled condensate through the cold side of the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus to elevate the temperature below the pinch point of the boiler; delivering the discharge from the high pressure-high temperature steam turbine through the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus; driving the high pressure-high temperature steam turbine with the discharge stream of feedwater and recycled condensate which is heated to a temperature below the pinch point of the boiler by the economizer-reheater apparatus; and driving the low pressure steam turbine with the discharged stream of the high pressure-high temperature steam turbine reheated below the pinch point of the boiler by the economizer-reheater apparatus.

  13. Downhole steam generator using low pressure fuel and air supply

    DOE Patents [OSTI]

    Fox, Ronald L. (Albuquerque, NM)

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

  14. Heat recovery steam generator outlet temperature control system for a combined cycle power plant

    SciTech Connect (OSTI)

    Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

    1986-04-01

    This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

  15. Closed circuit steam cooled turbine shroud and method for steam cooling turbine shroud

    DOE Patents [OSTI]

    Burdgick, Steven Sebastian (Schenectady, NY); Sexton, Brendan Francis (Simpsonville, SC); Kellock, Iain Robertson (Simpsonville, SC)

    2002-01-01

    A turbine shroud cooling cavity is partitioned to define a plurality of cooling chambers for sequentially receiving cooling steam and impingement cooling of the radially inner wall of the shoud. An impingement baffle is provided in each cooling chamber for receiving the cooling media from a cooling media inlet in the case of the first chamber or from the immediately upstream chamber in the case of the second through fourth chambers and includes a plurality of impingement holes for effecting the impingement cooling of the shroud inner wall.

  16. Evaluation of some transport and thermodynamic properties of superheated steam: Effects of steam temperature and pressure

    SciTech Connect (OSTI)

    Devahastin, S.; Mujumdar, A.S.

    2000-05-01

    For machine computation of drying, humidification and dehumidification processes it is necessary to have reliable correlations to predict transport and thermodynamic properties of the drying medium as functions of temperature and pressure. In this paper empirical correlations for specific volume, dynamic viscosity, thermal conductivity as well as specific isobaric heat capacity of superheated steam over the temperature range of 160--500 C and the pressure range of 100--500 kPa are presented. The Prandtl numbers at various temperatures and pressures are also presented. Comments on the properties and the use of these correlations are given.

  17. Evolution of temperature distributions in a full-scale stratified chilled-water storage tank with radial diffusers

    SciTech Connect (OSTI)

    Musser, A.; Bahnfleth, W.P.

    1998-10-01

    Temperature profiles in a full-scale, naturally stratified, chilled-water thermal storage tank are described. Tests were performed using a 1.4 million gallon (5,300 m{sup 3}), 44.5 ft (13.56 m) water depth cylindrical tank with radial diffusers. Nine charge and discharge cycle tests were performed for various flow rates, covering and extending beyond the normal operating range of the system. A method for obtaining thermocline thickness from field data was derived, and a relationship between inlet flow rate and initial thermocline thickness was established. Significant differences between profiles obtained for charge and discharge cycles at similar flow rates suggest that the free surface at the top of the tank allows more mixing to occur near the upper diffuser. A study of thermocline growth compares measured temperature profiles with those predicted by a numerical conduction model that uses temperature profiles measured early in the cycle as an initial condition. Comparison with the numerical study shows that, for high flow rate tests, large-scale mixing induced by the inlet diffuser can have significant effects on thermocline development, even after the thermocline has moved away from the inlet diffuser.

  18. Field-measured performance of four full-scale cylindrical stratified chilled-water thermal storage tanks

    SciTech Connect (OSTI)

    Musser, A.; Bahnfleth, W.P.

    1999-07-01

    Results are presented for controlled flow rate tests in four full-scale cylindrical chilled-water storage tanks. The tanks range in volume from 1.15 to 5.18 million gallons (4.35 to 19.61 million liters) and have water depths of 40 to 65 ft (12.2 to 19.8 m). Water is introduced into and withdrawn from two of these tanks using radial parallel plate diffusers, while the remaining two tanks utilize octagonal slotted pipe diffuser designs. Thermal performance is quantified for full cycles in terms of Figure of Merit, for single charge and discharge processes as half-cycle Figure of Merit, and for incomplete charge and discharge processes as Lost Capacity. Results show that the thermal performance of all four tanks is excellent, with less than 4% of theoretical cooling capacity lost to inlet mixing and other degradation mechanisms for flow rates less than or equal to design. Based on these results, the appropriateness of current design guidance is discussed. Operational issues that affect implementation of controlled flow rate full-scale tests are also identified, and measurement issues are addressed.

  19. What Happens to Nitrogen in Soils? 

    E-Print Network [OSTI]

    Provin, Tony; Hossner, L. R.

    2001-07-09

    35,000 tons of inert nitrogen gas (N 2 ). Most of the nitrogen found in soil originated as N 2 gas and nearly all the nitrogen in the atmosphere is N 2 gas. This inert nitrogen cannot be used by the plant until it is changed to ammonium (NH 4... + ) or nitrate (NO 3 - ) forms. Three important methods for changing nitrogen gas (N 2 ) to ammonium (NH 4 + ) are: a73 Free-living N 2 -fixing bacteria a73 N 2 -fixing bacteria in nodules on the roots of leguminous plants, and a73 Nitrogen fertilizer production...

  20. Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

  1. High-temperature oxidation of Zircaloy in hydrogen-steam mixtures. [PWR; BWR

    SciTech Connect (OSTI)

    Chung, H.M.; Thomas, G.R.

    1982-09-01

    Oxidation rates of Zircaloy-4 cladding tubes have been measured in hydrogen-steam mixtures at 1200 to 1700/sup 0/C. For a given isothermal oxidation temperature, the oxide layer thicknesses have been measured as a function of time, steam supply rate, and hydrogen overpressure. The oxidation rates in the mixtures were compared with similar data obtained in pure steam and helium-steam environments under otherwise identical conditions. The rates in pure steam and helium-steam mixtures were equivalent and comparable to the parabolic rates obtained under steam-saturated conditions and reported in the literature. However, when the helium was replaced with hydrogen of equivalent partial pressure, a significantly smaller oxidation rate was observed. For high steam-supply rates, the oxidation kinetics in a hydrogen-steam mixture were parabolic, but the rate was smaller than for pure steam or helium-steam mixtures. Under otherwise identical conditions, the ratio of the parabolic rate for hydrogen-steam to that for pure steam decreased with increasing temperature and decreasing steam-supply rate.

  2. Reliable steam: To cogenerate or not to cogenerate?

    SciTech Connect (OSTI)

    Jaber, D.; Jones, T.; D'Anna, L.; Vetterick, R.

    1999-07-01

    Leading industrial companies and institutions are forever seeking new and better ways to reduce their expenses, reduce waste, meet environmental standards, and, in general, improve their bottom-line. One approach to achieving all of these goals is a 100 year-old concept, cogeneration. Many industrial and institutional plants need thermal energy, generally as steam, for manufacturing processes and heating. They also need electric power for motors, lighting, compressed air and air conditioning. Traditionally, these fundamental needs are met separately. Steam is produced with industrial boilers and electricity is purchased from a local utility company. However, these needs can be met at the same time with cogeneration, using the same heat source. Cogeneration is the concurrent production of electrical power and thermal energy from the same heat source. Large steam users commonly take advantage of cogeneration by using high pressure steam with a back pressure turbine to generate electricity, and extract lower pressure steam from the turbine exhaust for their process needs. This approach reduces their electric utility bills while still providing thermal energy for industrial processes. The result is also a more efficient process that uses less total heat and discharges less smoke up the stack. Newer technologies are making cogeneration opportunities available to smaller-sized thermal plants, and electric utility deregulation opportunities are causing many CEOs to seriously consider cogeneration in their manufacturing plants. Whether steam is created through cogeneration or separate generation, many opportunities exist to improve productivity in the distribution system, operation, and maintenance. These opportunities are captured by taking a systems approach, which is promoted by programs such as the Department of Energy's Steam Challenge.

  3. Potential failure of steam generator tubes following a station blackout

    SciTech Connect (OSTI)

    Ward, L.W.; Palmrose, D.E.

    1994-12-31

    The U.S. Nuclear Regulatory Commission is considering changes to pressurized water reactor (PWR) requirements relating to steam generator tube plugging and repair criteria, including leakage monitoring. The proposed changes are known as the alternate tube plugging criteria (APC) and are intended to permit PWRs to operate with through-wall cracks in steam generator tubes subject to meeting a specified limit on predicted primary to secondary leakage under accident conditions. To assess the consequences of the alternate plugging criteria, analyses were performed for a station blackout sequence in which the reactor core melts while the reactor coolant system (RCS) remains at high pressure. Evaluations were conducted to investigate the potential for tube failure with and without secondary system depressurization. The excessive heat coupled with the high-pressure differentials across the steam generator tubes could result in creep rupture failure of the tubes during a severe accident, which could lead to a radiological release directly to the environment. In order to assess the safety significance of the APC, it is important to identify the level of steam generator tube leakage that can occur without challenging the previous study conclusions that steam generator creep failure will not occur prior to a surge line or hot-leg failure. To assess the effect of leakage on steam generator tube integrity during a core melt sequence with the RCS at high pressure and the secondary side of the steam generators pressurized and depressurized, an analysis was performed for a core melt event resulting from an unmitigated station blackout to identify the total steamenerator and tube leakage flow rates that could induce tube ruptures prior to other RCS boudary faliures that could depressurize the RCS.

  4. Optimization of steam explosion pretreatment. Final report

    SciTech Connect (OSTI)

    Foody, P.

    1980-04-01

    Different operating conditions are required to optimize the yield from each of the various fractions in the substrate. Xylose recovery is maximized at short cooking times whereas maximum lignin recovery requires much longer cooking times. Peak glucose yield and rumen digestibility occur at intermediate times. If process conditions are set for maximum glucose yield we have achieved a yield of 68% of the theoretical, based on an average of a dozen substrates tested. Individual results ranged from 46 to 87%. If the process is optimized for maximum total sugars (i.e. glucose plus xylose) we have obtained an average yield of 60%, with a range of 31 to 75%. With rumen microflora, the average value of the in-vitro cellulose digestibility was 82%, with a range of 41 to 90%. The optimum operating conditions for total sugars are a pressure of 500 to 550 psig with a cooking time of 40 to 50 seconds and 35% starting moisture content. Particle size is not a significant factor, nor is pre-steaming or use of a constricting die in the gun nozzle. High quality lignin can be extracted with 80% yield. The Iotech lignin is very soluble, has a low molecular weight and is reactive. The unique properties of the lignin derive from the explosion at the end of the pretreatment. A lignin formaldehyde resin has been successfully formulated and tested. It represents a high value utilization of the lignin byproduct with immediate market potential. A detailed engineering design of the process gives an estimated operating cost of $7.50/OD ton of biomass. At this low cost, the Iotech process achieves many important pretreatment goals in a single step. The substrate has been sterilized; it has been pulverized into a powder; the cellulose has been accessible; and a highly reactive lignin fraction can be recovered and utilized.

  5. Method of preparing nitrogen containing semiconductor material

    DOE Patents [OSTI]

    Barber, Greg D.; Kurtz, Sarah R.

    2004-09-07

    A method of combining group III elements with group V elements that incorporates at least nitrogen from a nitrogen halide for use in semiconductors and in particular semiconductors in photovoltaic cells.

  6. Mechanistic models of oceanic nitrogen fixation

    E-Print Network [OSTI]

    Monteiro, Fanny

    2009-01-01

    Oceanic nitrogen fixation and biogeochemical interactions between the nitrogen, phosphorus and iron cycles have important implications for the control of primary production and carbon storage in the ocean. The biological ...

  7. BIOGEOCHEMISTRY LETTERS Chronic nitrogen additions suppress decomposition

    E-Print Network [OSTI]

    Templer, Pamela

    BIOGEOCHEMISTRY LETTERS Chronic nitrogen additions suppress decomposition and sequester soil carbon dioxide emis- sions, offsetting a substantial portion of greenhouse gas forcing of the climate system. Although a number of factors are responsible for this terrestrial carbon sink, atmospheric nitrogen

  8. Continuous Emissions Monitoring System Monitoring Plan for the Y-12 Steam Plant

    SciTech Connect (OSTI)

    2003-02-28

    The Oak Ridge Y-12 National Security Complex (Y-12), managed by BWXT, is submitting this Continuous Emissions Monitoring System (CEMS) Monitoring Plan in conformance with the requirements of Title 40 of the U.S. Code of Federal Regulations (CFR) Part 75. The state of Tennessee identified the Y-12 Steam Plant in Oak Ridge, Tennessee, as a non-electrical generation unit (EGU) nitrogen oxides (NO{sub x}) budget source as a result of the NO{sub x} State Implementation Plan (SIP) under the Tennessee Department of Environment and Conservation (TDEC) Rule 1200-3-27. Following this introduction, the monitoring plan contains the following sections: CEMS details, NO{sub x} emissions, and quality assurance (QA)/quality control (QC). The following information is included in the attachments: fuel and flue gas diagram, system layout, data flow diagrams, Electronic Monitoring Plan printouts, vendor information on coal and natural gas feed systems, and the Certification Test Protocol. The Y-12 Steam Plant consists of four Wickes boilers. Each is rated at a maximum heat input capacity of 296.8 MMBtu/hour or 250,000 lb/hour of 250-psig steam. Although pulverized coal is the principal fuel, each of the units can fire natural gas or a combination of coal and gas. Each unit is equipped with a Joy Manufacturing Company reverse air baghouse to control particulate emissions. Flue gases travel out of the baghouse, through an induced draft fan, then to one of two stacks. Boilers 1 and 2 exhaust through Stack 1. Boilers 3 and 4 exhaust through Stack 2. A dedicated CEMS will be installed in the ductwork of each boiler, downstream of the baghouse. The CEMS will be designed, built, installed, and started up by URS Group, Inc. (URS). Data acquisition and handling will be accomplished using a data acquisition and handling system (DAHS) designed, built, and programmed by Environmental Systems Corporation (ESC). The installed CEMS will continuously monitor NO{sub x}, flue gas flowrate, and carbon dioxide (CO{sub 2}). The CEMS will be utilized to report emissions from each unit for each ozone season starting May 1, 2003. Each boiler has independent coal and natural gas metering systems. Coal is fed to each boiler by belt-type coal feeders. Each boiler has two dedicated coal feeders. Natural gas may be burned along with coal for flame stability. The boilers may also be fired on natural gas alone. Orifice meters measure the natural gas flow to each boiler.

  9. Managing steam: An engineering guide to industrial, commercial, and utility systems

    SciTech Connect (OSTI)

    Makansi, J.

    1985-01-01

    This book is a guide to steam production, utilization, handling, transport, system optimization, and condensation and recovery. This book incudes a description of how steam, condensate, and hot water are used in various industrial, commercial, institutional, and utility sectors and explains how steam is generated and distributed. Waste-heat recovery, fluidized-bed boilers, and cogeneration systems and boiler control theory are discussed. The book also describes different types of valves, valve components, regulators, steam traps, and metering devices available for managing steam and condensate and discusses maintaining steam systems for optimum service and longer life.

  10. Downhole steam generator with improved preheating, combustion and protection features

    DOE Patents [OSTI]

    Fox, Ronald L. (Albuquerque, NM)

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein feedback preheater means are provided for the fuel and water before entering the combustor assembly. First, combustion gases are conducted from the combustion chamber to locations in proximity to the water and fuel supplies. Secondly, both hot combustion gases and steam are conducted from the borehole back to the water and fuel supply. The water used for conversion to steam is passed in a countercurrent manner through a plurality of annular water flow channels surrounding the combustion chamber. In this manner, the water is preheated, and the combustion chamber is cooled simultaneously, thereby minimizing thermal stresses and deterioration of the walls of the combustion chamber. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet of the combustor assembly. The outlet doors and fluid flow functions may be controlled by a diagnostic/control module. The module is positioned in the water flow channel to maintain a relatively constant, controlled temperature.

  11. Steam exit flow design for aft cavities of an airfoil

    DOE Patents [OSTI]

    Storey, James Michael (Clifton Park, NY); Tesh, Stephen William (Simpsonville, SC)

    2002-01-01

    Turbine stator vane segments have inner and outer walls with vanes extending therebetween. The inner and outer walls have impingement plates. Steam flowing into the outer wall passes through the impingement plate for impingement cooling of the outer wall surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. A skirt or flange structure is provided for shielding the steam cooling impingement holes adjacent the inner wall aerofoil fillet region of the nozzle from the steam flow exiting the aft nozzle cavities. Moreover, the gap between the flash rib boss and the cavity insert is controlled to minimize the flow of post impingement cooling media therebetween. This substantially confines outflow to that exiting via the return channels, thus furthermore minimizing flow in the vicinity of the aerofoil fillet region that may adversely affect impingement cooling thereof.

  12. Bore tube assembly for steam cooling a turbine rotor

    DOE Patents [OSTI]

    DeStefano, Thomas Daniel (Ballston Lake, NY); Wilson, Ian David (Clifton Park, NY)

    2002-01-01

    An axial bore tube assembly for a turbine is provided to supply cooling steam to hot gas components of the turbine wheels and return the spent cooling steam. A pair of inner and outer tubes define a steam supply passage concentric about an inner return passage. The forward ends of the tubes communicate with an end cap assembly having sets of peripheral holes communicating with first and second sets of radial tubes whereby cooling steam from the concentric passage is supplied through the end cap holes to radial tubes for cooling the buckets and return steam from the buckets is provided through the second set of radial tubes through a second set of openings of the end cap into the coaxial return passage. A radial-to-axial flow transitioning device, including anti-swirling vanes is provided in the end cap. A strut ring adjacent the aft end of the bore tube assembly permits axial and radial thermal expansion of the inner tube relative to the outer tube.

  13. Loss-of-feedwater, steam generator tube rupture, and steam line break experiments: Steam generator transient response test program: Interim report

    SciTech Connect (OSTI)

    Mendler, O.J.; Takeuchi, K.; Young, M.Y.

    1987-01-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results. Two LOF tests were analyzed in detail. Both tests were initiated from 100% power condition by shutting off the main feedwater flow. In LOF Test No. 1, the remaining boundary conditions were kept constant while in LOF Test No. 2, the power was rapidly reduced to 3%. The results show that the primary to secondary heat transfer becomes degraded when the collapsed water liquid level in the bundle region falls below approximately 50 inches. The SGTR test analyzed in detail - SGTR Test No. 2 - simulated the post-reactor-trip portion of the SGTR transient (T/sub prim/ = 560/sup 0/F). The transient was initiated by starting the SGTR flow injection and simultaneously shutting off the auxiliary feedwater. The water level rose and flooded the dryer to its mid-elevation by the end of the test. The primary carry-over was shown to be less than 0.4% of the tracer mass injected into the secondary side by the SGTR flow. SGTR Test No. 3 investigated the response of the intact steam generator. Reverse heat transfer and low heat flow conditions were simulated. The results have demonstrated the occurrence of temperature stratification in the secondary water which lasted for about 800 seconds.

  14. Effect of steam partial pressure on gasification rate and gas composition of product gas from catalytic steam gasification of HyperCoal

    SciTech Connect (OSTI)

    Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group

    2009-09-15

    HyperCoal was produced from coal by a solvent extraction method. The effect of the partial pressure of steam on the gasification rate and gas composition at temperatures of 600, 650, 700, and 750{sup o}C was examined. The gasification rate decreased with decreasing steam partial pressure. The reaction order with respect to steam partial pressure was between 0.2 and 0.5. The activation energy for the K{sub 2}CO{sub 3}-catalyzed HyperCoal gasification was independent of the steam partial pressure and was about 108 kJ/mol. The gas composition changed with steam partial pressure and H{sub 2} and CO{sub 2} decreased and CO increased with decreasing steam partial pressure. By changing the partial pressure of the steam, the H{sub 2}/CO ratio of the synthesis gas can be controlled. 18 refs., 7 figs., 2 tabs.

  15. Steam System Efficiency Optimized After J.R. Simplot Fertilizer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Food Processing Plant Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment Goodyear Tire Plant Gains Traction on Energy...

  16. Energy Savings Accomplished by Replacing Steam Ejectors with Electric Driven Vacuum Pumps in Crude Distillation Vacuum Towers 

    E-Print Network [OSTI]

    Nelson, R. E.

    1982-01-01

    The low cost of steam combined with the maintenance free operation of steam ejectors has assured their unquestioned use in providing the necessary vacuum for crude distillation vacuum towers. However, the cost of steam production has risen...

  17. Life assessment product catalog for boilers, steam pipes, and steam turbines

    SciTech Connect (OSTI)

    Hoffman, S. , Santa Clara, CA )

    1992-07-01

    Aging fossil power plants, escalating costs of new plant construction, and load growth rate uncertainties are motivating utilities to make the most effective use of critical components in existing power plants. To help meet this need, EPRI has refined existing methods and developed new methods of predicting the remaining life of key fossil plant components with greater accuracy and confidence. This report describes 16 EPRI products (guidelines, computer programs, and other tools) that apply these techniques to boiler tubes, boiler headers, steam lines, and turbine rotors, blades, and casings. Utility personnel, including plant engineers, maintenance supervisor, engineering department staff, plant operating staff, and performance engineers, can use these products to assess remaining component life, as well as to set cost-effective maintenance procedures, inspection schedules, and operating procedures.

  18. Steam Generator Group Project. Task 6. Channel head decontamination

    SciTech Connect (OSTI)

    Allen, R.P.; Clark, R.L.; Reece, W.D.

    1984-08-01

    The Steam Generator Group Project utilizes a retired-from-service pressurized-water-reactor steam generator as a test bed and source of specimens for research. An important preparatory step to primary side research activities was reduction of the radiation field in the steam generator channel head. This task report describes the channel head decontamination activities. Though not a programmatic research objective it was judged beneficial to explore the use of dilute reagent chemical decontamination techniques. These techniques presented potential for reduced personnel exposure and reduced secondary radwaste generation, over currently used abrasive blasting techniques. Two techniques with extensive laboratory research and vendors prepared to offer commercial application were tested, one on either side of the channel head. As indicated in the report, both techniques accomplished similar decontamination objectives. Neither technique damaged the generator channel head or tubing materials, as applied. This report provides details of the decontamination operations. Application system and operating conditions are described.

  19. Superalloys for ultra supercritical steam turbines--oxidation behavior

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2008-09-01

    Goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so called ultra-supercritical (USC) steam conditions. One of the important materials performance considerations is steam-side oxidation resistance. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism under USC conditions. A methodology to calculate Cr evaporation rates from chromia scales with cylindrical geometries was developed that allows for the effects of CrO2(OH)2 saturation within the gas phase. This approach was combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles as a function of exposure time and to predict the time until the alloy surface concentration of Cr reaches zero. This time is a rough prediction of the time until breakaway oxidation. A hypothetical superheater tube, steam pipe, and high pressure turbine steam path was examined. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. The predicted time until breakaway oxidation increases dramatically with decreases in temperature and total pressure. Possible mitigation techniques were discussed, including those used in solid oxide fuel cell metallic interconnects (lowering the activity of Cr in the oxide scale by adding Mn to the alloy), and thermal barrier coating use on high pressure turbine blades for both erosion and chromia evaporation protection.

  20. Method to prevent/mitigate steam explosions in casting pits

    DOE Patents [OSTI]

    Taleyarkhan, R.P.

    1996-12-24

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water. 3 figs.

  1. Method to prevent/mitigate steam explosions in casting pits

    DOE Patents [OSTI]

    Taleyarkhan, Rusi P. (Knoxville, TN)

    1996-01-01

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water.

  2. Steam Traps-The Oft Forgotten Energy Conservation Treasure 

    E-Print Network [OSTI]

    Pychewicz, F. S.

    1985-01-01

    of every steam system. It is common to find 10-60% of the team traps in any facility malfunctioning. The result ant waste can easily equal 5-15% of a plant' total steam generation with concomitant processing and safety problems from failed open... into the effective utilization of st l am traps and, hopefully, will serve as a guide or your energy saving efforts in this vital are CHAMPION The key to the success of an effective team trap program rests with a single individual the person selected...

  3. Hydrogen generation utilizing integrated CO2 removal with steam reforming

    DOE Patents [OSTI]

    Duraiswamy, Kandaswamy; Chellappa, Anand S

    2013-07-23

    A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

  4. Generating Electricity with your Steam System: Keys to Long Term Savings 

    E-Print Network [OSTI]

    Bullock, B.; Downing, A.

    2010-01-01

    The application of combined heat and power principals to existing plant steam systems can help produce electricity at more than twice efficiency of grid generated electricity. In this way, steam plant managers can realize substantial savings...

  5. Replace Pressure-Reducing Valves with Backpressure Turbogenerators - Steam Tip Sheet #20

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO steam tip sheet on replacing pressure-reducing valves provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  6. CO2 Reduction through Optimization of Steam Network in Petroleum Refineries: Evaluation of New Scenario 

    E-Print Network [OSTI]

    Manesh, M. H. K; Khodaie, H.; Amidpour, M.

    2008-01-01

    Steam network of petroleum refinery is energy intensive, and consequently contribute significantly to the greenhouse gases emissions. A simple model for the estimation of CO2 emissions associated with operation of steam network as encountered...

  7. Control Scheme Modifications Increase Efficiency of Steam Generation System at Exxon Mobil Gas Plant

    SciTech Connect (OSTI)

    2002-01-01

    This case study highlights control scheme modifications made to the steam system at ExxonMobil's Mary Ann Gas Plant in Mobile, Alabama, which improved steam flow efficiency and reduced energy costs.

  8. Three dimensional effects in analysis of PWR steam line break accident

    E-Print Network [OSTI]

    Tsai, Chon-Kwo

    A steam line break accident is one of the possible severe abnormal transients in a pressurized water reactor. It is required to present an analysis of a steam line break accident in the Final Safety Analysis Report (FSAR) ...

  9. Use a Vent Condenser to Recover Flash Steam Energy, Energy Tips...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Use a Vent Condenser to Recover Flash Steam Energy When the pressure of saturated condensate is reduced, a portion of the liquid "flashes" to low-pressure steam. Depending on the...

  10. Use Vapor Recompression to Recover Low-Pressure Waste - Steam Tip Sheet #11

    SciTech Connect (OSTI)

    None

    2012-01-31

    This revised AMO tip sheet on recovering low-pressure waste steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  11. The Passenger Steamboat Phoenix: An Archaeological Study of Early Steam Propulsion in North America 

    E-Print Network [OSTI]

    Schwarz, George 1977-

    2012-08-31

    The advent of steam contributed heavily to the economic transformation of early America, facilitating trade through the transportation of goods along the country’s lakes, rivers, and canals. Serious experimentation with steam navigation began...

  12. Energy Comparison Vacuum Producing Equipment - Mechanical Vacuum Pumps vs. Steam Ejectors 

    E-Print Network [OSTI]

    Foisy, E. C.; Munkittrick, M. T.

    1982-01-01

    vacuum on condensers, process reactors, or equipment and processes requiring subatmospheric conditions, has been to utilize steam ejectors. Due to the inherent operating inefficiency and wastefulness of the steam ejector, coupled with the rapidly...

  13. Case Study: Lessons Learned From Converting Electric Chillers to Steam Chillers in a Electric Deregulated Market. 

    E-Print Network [OSTI]

    Wohl, J.

    2001-01-01

    was that a flatter load profile due to steam cooling should allow better electric pricing from energy suppliers....

  14. Steam systems in industry: Energy use and energy efficiency improvement potentials

    E-Print Network [OSTI]

    Einstein, Dan; Worrell, Ernst; Khrushch, Marta

    2001-01-01

    Consumption for Steam production We had to establish a ‘new’ baseline for energy use by boilers because, firstly, the statistics

  15. An Algebraic Speci cation of the Steam-Boiler Control System

    E-Print Network [OSTI]

    Bidoit, Michel

    An Algebraic Speci#12;cation of the Steam-Boiler Control System Michel Bidoit 1 , Claude Chevenier describe how to derive an algebraic speci#12;cation of the Steam-Boiler Control System starting from to specify the detection of the steam-boiler fail- ures. Finally we discuss validation and veri#12;cation

  16. Assertional Specification and Verification using PVS of the Steam Boiler Control System

    E-Print Network [OSTI]

    Hooman, Jozef

    Assertional Specification and Verification using PVS of the Steam Boiler Control System Jan Vitt 1 of the steam boiler control system has been derived using a formal method based on assumption/commitment pairs Introduction The steam boiler control system, as described in chapter AS of this book, has been designed

  17. Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 20

    E-Print Network [OSTI]

    Lynch, Nancy

    Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 20 Proving Safety Properties of the Steam Boiler Controller Formal Methods for Industrial Applications: A Case Study system consisting of a continuous steam boiler and a discrete controller. Our model uses the Lynch

  18. Enhanced Oil Recovery through Steam Assisted Gravity Drainage January 22, 2014

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    Enhanced Oil Recovery through Steam Assisted Gravity Drainage January 22, 2014 A Comparative Study Of Continuous And Cyclic Steam Injection With Trapping Of Oil Phase Muhammad Adil Javed Summary of Thesis Enhanced oil recovery (EOR) through steam-assisted gravity drainage (SAGD) has become an important in

  19. Steam Production from Waste Stack Gases in a Carbon Black Plant 

    E-Print Network [OSTI]

    Istre, R. I.

    1981-01-01

    Waste stack gases from carbon black plant bag filters are used as fuel to produce superheated steam - G25 PSIG and 7500F. This steam is out into a steam header that serves Conoco plants in the Lake Charles, Louisiana area. Combustion of the waste...

  20. Further experimental studies of steam-propane injection to enhance recovery of Morichal oil 

    E-Print Network [OSTI]

    Ferguson,Mark Anthony

    2000-01-01

    In 1998-1999, experimental research was conducted by Goite at Texas A&M University into steam-propane injection to enhance oil recovery from the Morichal field, Venezuela. Goite's results showed that, compared with steam injection alone, steam-propane...

  1. Electric power generating plant having direct coupled steam and compressed air cycles

    DOE Patents [OSTI]

    Drost, Monte K. (Richland, WA)

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  2. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOE Patents [OSTI]

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  3. Revisiting the Steam-Boiler Case Study with LUTESS : Modeling for Automatic Test Generation

    E-Print Network [OSTI]

    Boyer, Edmond

    Revisiting the Steam-Boiler Case Study with LUTESS : Modeling for Automatic Test Generation. In this paper, we apply this modeling principle to a well known case study, the steam boiler problem which has model and to assess the difficulty of such a process in a realistic case study. The steam boiler case

  4. Re ning Abstract Machine Speci cations of the Steam Boiler Control to Well Documented

    E-Print Network [OSTI]

    Börger, Egon

    Re ning Abstract Machine Speci cations of the Steam Boiler Control to Well Documented Executable the steam boiler control speci cation problem to il- lustrate how the evolving algebra approach to the speci, in June 1995, to control the Karlsruhe steam boiler simulator satisfactorily. The abstract machines

  5. Experimental investigations of beet pulp drying in superheated steam under pressure

    SciTech Connect (OSTI)

    Urbaniec, K.; Malczewski, J. [Warsaw Univ. of Technology, Plock (Poland). Dept. of Process Equipment

    1997-10-01

    Beet pulp drying in superheated steam under pressure makes it possible to save energy in sugar factories. A new concept of a two-stage convective steam drier is presented. To obtain kinetic data on beet pulp drying, an experimental setup was built. Beet pulp samples were dried at steam pressure up to 4 bar and temperature up to 220 C.

  6. Steam BestPractice Resources and Tools: "Old" News is "New" News! 

    E-Print Network [OSTI]

    Wright, A.; Hart, F.; Russell, C.; Jaber, D.

    2000-01-01

    system efficiency. The Steam BestPractice effort, a part of the DOE-OIT effort, has identified and documented an extensive group of steam system resources and tools to assist steam system users to improve their systems. This paper describes the "new" news...

  7. Downhole steam generator with improved preheating, combustion, and protection features

    DOE Patents [OSTI]

    Fox, R.L.

    1981-01-07

    For tertiary oil recovery, a downhole steam generator is designed which provides for efficient counterflow cooling of the combustion chamber walls and preheating of the fuel and water. Pressure-responsive doors are provided for closing and opening the outlet in response to flameout, thereby preventing flooding of the combustion chamber. (DLC)

  8. Mapping steam and water flow in petroleum reservoirs

    SciTech Connect (OSTI)

    Wilt, M.; Schenkel, C. [Lawrence Livermore National Lab., CA (United States); Daley, T.; Peterson, J.; Majer, E. [Lawrence Berkeley National Lab., CA (United States); Murer, A.S. [Mobil Exploration and Producing US (United States); Johnston, R.M. [SPE, CalResources LLC (United States); Klonsky, L. [Chevron USA Production Co. (United States)

    1996-11-01

    Over the past 5 years, we have applied high-resolution geophysical methods (crosswell seismic and electromagnetics (EM), and passive seismic) to map and characterize petroleum reservoirs in the San Joaquin Valley and to monitor changes during secondary recovery operations. The two techniques provide complementary information. Seismic data reveal the reservoir structure, whereas EM measurements are more sensitive to the pore fluid distribution. Seismic surveys at the south Belridge field were used to map fracture generation and monitor formation changes due to the onset of steam flooding. Early results show possible sensitivity to changes in gas saturation caused by the steam flooding. Crosswell EM surveys were applied at a shallow pilot at Lost Hills for reservoir characterization and steamflood monitoring. Images made from baselines data clearly show the distribution of the target oil sands; repeated surveys during the steam flood allowed us to identify the boundaries of the steam chest and to accurately predict breakthrough. Applications of the EM techniques in steel-cased wells are at an early stage, but preliminary results at Lost Hills show sensitivity to formation resistivity in a water-flood pilot. Finally, passive seismic surveys during hydrofracture operations measured events corelatable in frequency content and magnitude with the size and orientation of induced fractures.

  9. Steam Reforming of Low-Level Mixed Waste

    SciTech Connect (OSTI)

    1998-01-01

    Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  10. Cast Alloys for Advanced Ultra Supercritical Steam Turbines

    SciTech Connect (OSTI)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk,

    2010-05-01

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

  11. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    SciTech Connect (OSTI)

    Therkelesen, Peter; McKane, Aimee

    2013-05-01

    Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

  12. Downhole steam generator having a downhole oxidant compressor

    DOE Patents [OSTI]

    Fox, Ronald L. (Albuquerque, NM)

    1983-01-01

    Apparatus and method for generation of steam in a borehole for penetration into an earth formation wherein a downhole oxidant compressor is used to compress relatively low pressure (atmospheric) oxidant, such as air, to a relatively high pressure prior to mixing with fuel for combustion. The multi-stage compressor receives motive power through a shaft driven by a gas turbine powered by the hot expanding combustion gases. The main flow of compressed oxidant passes through a velocity increasing nozzle formed by a reduced central section of the compressor housing. An oxidant bypass feedpipe leading to peripheral oxidant injection nozzles of the combustion chamber are also provided. The downhole compressor allows effective steam generation in deep wells without need for high pressure surface compressors. Feedback preheater means are provided for preheating fuel in a preheat chamber. Preheating of the water occurs in both a water feed line running from aboveground and in a countercurrent water flow channel surrounding the combustor assembly. The countercurrent water flow channels advantageously serve to cool the combustion chamber wall. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet for closing and sealing the combustion chamber from entry of reservoir fluids in the event of a flameout.

  13. A better steam engine: Designing a distributed concentrating

    E-Print Network [OSTI]

    Kammen, Daniel M.

    A better steam engine: Designing a distributed concentrating solar combined heat and power (DCS the technical and socioenviroeconomic understanding of solar combined heat and power. This work will investigate Fluid Isentropic Fluid Dry Fluid [14] Aoun, B., 2009, Micro combined heat and power operating

  14. Halophilic Archaea determined from geothermal steam vent aerosols

    E-Print Network [OSTI]

    Kelley, Scott

    Halophilic Archaea determined from geothermal steam vent aerosols Dean G. Ellis, Richard W. Bizzoco Hydrothermal vents, known as `fumaroles', are ubiq- uitous features of geothermal areas. Although their geology contained halophilic Archaea closely related to the Haloarcula spp. found in non-geothermal salt mats

  15. Replacement of alloy 800H superheated steam line

    SciTech Connect (OSTI)

    Barbier, R.A.; Bullock, J.W. [Sterling Chemicals, Texas City, TX (United States)

    1996-07-01

    Sterling Chemicals utilizes alloy 800HT (UNS N08811) piping for superheated steam service in its styrene dehydrogenation unit. An engineering project to replace these lines was recently completed. Material acquisition, shop fabrication, inspection requirements, and field erection will be highlighted in this paper.

  16. Pebble Bed Boiling Water Reactor Concept With Superheated Steam

    SciTech Connect (OSTI)

    Tsiklauri, G.; Newman, D.; Meriwether, G.; Korolev, V. [Pacific Northwest National Laboratory, P.O. Box 999 Richland, WA 99352 (United States)

    2002-07-01

    An Advanced Nuclear Reactor concept is presented which extends Boiling Water Reactor technology with micro-fuel elements (MFE) and produces superheated steam. A nuclear plant with MFE is highly efficient and safe, due to ceramic-clad nuclear fuel. Water is used as both moderator and coolant. The fuel consists of spheres of about 1.5 mm diameter of UO{sub 2} with several external coatings of different carbonaceous materials. The outer coating of the particles is SiC, manufactured with chemical vapor disposition (CVD) technology. Endurance of the integrity of the SiC coating in water, air and steam has been demonstrated experimentally in Germany, Russia and Japan. This paper describes a result of a preliminary design and analysis of 3750 MWt (1500 MWe) plant with standard pressure of 16 MPa, which is widely achieved in the vessel of pressurized-water type reactors. The superheated steam outlet temperature of 550 deg. C elevates the steam cycle to high thermal efficiency of 42%. (authors)

  17. Method for cutting steam heat losses during cyclic steam injection of wells. Second quarterly report

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Midway-Sunset Field (CA) is the largest Heavy Oil field in California and steam injection methods have been successfully used for more than 30 years to produce the Heavy Oil from many of its unconsolidated sand reservoirs. In partnership with another DOE/ERIP grantee, our Company has acquired an 80 ac. lease in the SE part of this field, in order to demonstrate our respective technologies in the Monarch sand, of Miocene Age, which is one of the reservoirs targeted by the DOE Class 3 Oil Program. This reservoir contains a 13 API oil, which has a much higher market value, as a Refinery Feedstock, than the 5 to 8 API Vaca Tar, used only as road paving material. This makes it easier to justify the required investment in a vertical well equipped with two horizontal drainholes. The economic viability of such a project is likely to be enhanced if Congress approves the export to Japan of a portion of the 27 API (1% Sulfur) AK North Slope oil, which currently is landed in California in preference to lighter and sweeter Far East imported crudes. This is a major cause of the depressed prices for California Heavy Oil in local refineries, which have reduced the economic viability of all EOR methods, including steam injection, in California. Two proposals, for a Near-Term (3 y.) and for a Mid-Term (6 y.) project respectively, were jointly submitted to the DOE for Field Demonstration of the Partners` new technologies under the DOE Class 3 Oil Program. The previous design of a special casing joint for the Oxnard field well was reviewed and adapted to the use of existing Downhole Hardware components from three suppliers, instead of one. The cost of drilling and completion of a well equipped with two horizontal drainholes was re-evaluated for the conditions prevailing in the Midway Sunset field, which are more favorable than in the Oxnard field, leading to considerable reductions in drilling rig time and cost.

  18. Practical aspects of steam injection processes: A handbook for independent operators

    SciTech Connect (OSTI)

    Sarathi, P.S.; Olsen, D.K.

    1992-10-01

    More than 80% of the total steam injection process operating costs are for the production of steam and the operation of surface and subsurface equipment. The proper design and operation of the surface equipment is of critical importance to the success of any steam injection operation. However, the published monographs on thermal recovery have attached very little importance to this aspect of thermal oil recovery; hence, a definite need exists for a comprehensive manual that places emphasis on steam injection field practices and problems. This handbook is an attempt to fulfill this need. This handbook explores the concept behind steam injection processes and discusses the information required to evaluate, design, and implement these processes in the field. The emphasis is on operational aspects and those factors that affect the technology and economics of oil recovery by steam. The first four chapters describe the screening criteria, engineering, and economics of steam injection operation as well as discussion of the steam injection fundamentals. The next four chapters begin by considering the treatment of the water used to generate steam and discuss in considerable detail the design, operation and problems of steam generations, distribution and steam quality determination. The subsurface aspects of steamflood operations are addressed in chapters 9 through 12. These include thermal well completion and cementing practices, insulated tubulars, and lifting equipment. The next two chapters are devoted to subsurface operational problems encountered with the use of steam. Briefly described in chapters 15 and 16 are the steam injection process surface production facilities, problems and practices. Chapter 17 discusses the importance of monitoring in a steam injection project. The environmental laws and issues of importance to steam injection operation are outlined in chapter 18.

  19. A simulation study of steam and steam-propane injection using a novel smart horizontal producer to enhance oil production 

    E-Print Network [OSTI]

    Sandoval Munoz, Jorge Eduardo

    2004-11-15

    in an increase of oil recovery to 35.4-32.6% OOIP at 150-300 BPDCWE. Fifth, with steam-propane injection, for both well systems, oil production acceleration increases with lower injection rates. Sixth, the second oil production peak in the vertical...

  20. High Pressure Superheater 1 (HPSH1) is the first heat exchange tube bank inside the Heat Recovery Steam Generator (HRSG) to encounter exhaust flue gas from the gas turbine of a Combined Cycle Power Plant. Steam

    E-Print Network [OSTI]

    Steam Generator (HRSG) to encounter exhaust flue gas from the gas turbine of a Combined Cycle Power Plant. Steam flowing through the HPSH1 gains heat from the flue gas prior to entering the steam turbine changes that occurred, especially in the steam temperature at the HPSH1 entry, and the different rates

  1. Nitrogen fixation method and apparatus

    DOE Patents [OSTI]

    Chen, Hao-Lin (Walnut Creek, CA)

    1983-01-01

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

  2. Nitrogen fixation method and apparatus

    DOE Patents [OSTI]

    Chen, H.L.

    1983-08-16

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O[sub 2]/cm promotes the formation of vibrationally excited N[sub 2]. Atomic oxygen interacts with vibrationally excited N[sub 2] at a much quicker rate than unexcited N[sub 2], greatly improving the rate at which NO is formed. 1 fig.

  3. Nitrogen Removal from Natural Gas

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report: AchievementsTemperatures Year 6 -FINALEnergy,Pacificdouble-betaNitrogen

  4. Methods for disassembling, replacing and assembling parts of a steam cooling system for a gas turbine

    DOE Patents [OSTI]

    Wilson, Ian D. (Mauldin, SC); Wesorick, Ronald R. (Albany, NY)

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows. The bore tube assembly, radial tubes, elbows, manifold segments and crossover tubes are removable from the turbine rotor and replaceable.

  5. Sandia Energy - Strategic Petroleum Reserve: Nitrogen Monitoring...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Petroleum Reserve: Nitrogen Monitoring & Integrity Testing of SW Louisiana Caverns Home Carbon Capture & Storage News News & Events Research & Capabilities Systems...

  6. CHILLING CONSIDERATIONS GLOBAL WARMING

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    , and manufacture goods; and move these items and people around using coal, oil or natural gas -- also known owned by the U.S. Department of Energy's Office of Science, which provides most of the Lab as fossil fuels. Fossil fuels are miracle substances: They have a high energy density per mass and volume

  7. ARM - Wind Chill Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical WesternWill There

  8. Foliar nitrogen dynamics and nitrogen resorption of a sandy shrub Salix gordejevii in northern China

    E-Print Network [OSTI]

    Foliar nitrogen dynamics and nitrogen resorption of a sandy shrub Salix gordejevii in northern Key words: Nitrogen, resorption efficiency, resorption proficiency, Salix gordejevii, senescence, soil and senescing leaves and N resorption in Salix gordejevii Chang, a sandy shrub in northern China, were studied

  9. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  10. The Engineered Approach to Energy and Maintenance Effective Steam Trapping 

    E-Print Network [OSTI]

    Krueger, R. G.; Wilt, G. W.

    1980-01-01

    .0420" 21.85 0.0935" 51.84 0.1440" 91.20 0.1910" 1.10 0.0210" 4.62 0.0430" 21.94 0.0937" 54.02 0.1470" 93.60 0.1935" 1.26 0.0225" 5.40 0.0465" 23.04 0.0960" 55.87 0.1495" 96.04 0.1960" 1.44 0.0240" 5.49 0.0469" 24.01 0.0980" 57.76 0.1520" 99.00 0... and effective trap consumes 1-2 Ibs./hr. steam just to functionally efficient. Energy operating targets function properly. An inverted bucket trap loses 2-4 should include an analysis of steam trapping practices Ibs./hr. and a thermodynamic disc trap 0.5-1 lbs...

  11. Oil shale retorting with steam and produced gas

    SciTech Connect (OSTI)

    Merrill, L.S. Jr.; Wheaton, L.D.

    1991-08-20

    This patent describes a process for retorting oil shale in a vertical retort. It comprises introducing particles of oil shale into the retort, the particles of oil shale having a minimum size such that the particles are retained on a screen having openings 1/4 inch in size; contacting the particles of oil shale with hot gas to heat the particles of oil shale to a state of pyrolysis, thereby producing retort off-gas; removing the off-gas from the retort; cooling the off-gas; removing oil from the cooled off-gas; separating recycle gas from the off-gas, the recycle gas comprising steam and produced gas, the steam being present in amount, by volume, of at least 50% of the recycle gas so as to increase the yield of sand oil; and heating the recycle gas to form the hot gas.

  12. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01

    Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

  13. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    SciTech Connect (OSTI)

    John Williams

    2011-03-30

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energy’s Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT®, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspen’s best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XT’s commercial success has been driven by it’s 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  14. Steam Balancing and Tuning for Multifamily Residential Buildings in Chicagoland

    SciTech Connect (OSTI)

    Choi, J.; Ludwig, P.; Brand, L.

    2012-08-01

    Older heating systems often suffer from mis-investment--multiple contractors upgrading parts of systems in inadequate or inappropriate ways that reduce system functionality and efficiency--or from a lack of proper maintenance. This technical report addresses these barriers to information, contractor resources, and cost-savings. Building off of previous research, CNT Energy conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam; system balancing.

  15. ExxonMobile Beaumont Chemical Plant Steam Integration Project 

    E-Print Network [OSTI]

    Long, T.

    2010-01-01

    changes, and other factors discussed herein (and in Item 1 of ExxonMobil?s latest report on Form 10-K). This material is not to be reproduced without the permission of Exxon Mobil Corporation. ExxonMobil Beaumont Chemical Plant Steam Integration Project... Industrial Energy Technology Conference ACC Energy Award ? Exceptional Merit May 20 ? 21, 2010 New Orleans, LA Terry L. Long 2 Beaumont Complex 3 Background ? The ExxonMobil Beaumont Complex is an integrated refining and petrochemical manufacturing...

  16. Desulfurization of Texas lignite using steam and air 

    E-Print Network [OSTI]

    Stone, Robert Reginald

    1981-01-01

    in Coal Sulfur Removal From Coal By Pyrolysis EXPERIMENTAL METHOD Experimental Apparatus Experimental Procedure Analyses of the Products RESULTS AND DISCUSSION Temperature Effect Upon Desulfurization Pressure Effect Upon Desulfurization... . Treatment Composition Effect Pyrolysis Conditions vs. Addition of' Air V1 V111 ix 10 15 20 24 31 31 35 39 43 45 49 52 53 V11 TABLE OF CONTENTS (Continued) PAGE Pyrolysis Conditions vs. Addition of Steam and Air . . 53 Sulfur Removal...

  17. Screw Type Steam Compressors for Mechanical Vapor Recompression (MVR) Systems 

    E-Print Network [OSTI]

    Kawamura, K.; Apaloo, Thomas-L.

    1986-01-01

    hand, is not affected by such problem. No special mist separator is required and, at the same time, the wet or saturated vapor compression is possible, and does not affect the efficiency of the SSHP. (3) Stability of performance for a wide... COMPRESSORS FOR MECHANICAL VAPOR RECOMPRESSION (MVR) SYSTEMS K. KAWAMURA AND THOMAS-L. APALOO MYCOM CORPORATION, LOS ANGELES, CALIFORNIA MATSUDA, MAYEKAWA MFG. CO., TOKYO, JAPAN ABSTRACT In processes of evaporation, distillation or drying, steam...

  18. Technical evaluation: 300 Area steam line valve accident

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    On June 7, 1993, a journeyman power operator (JPO) was severely burned and later died as a result of the failure of a 6-in. valve that occurred when he attempted to open main steam supply (MSS) valve MSS-25 in the U-3 valve pit. The pit is located northwest of Building 331 in the 300 Area of the Hanford Site. Figure 1-1 shows a layout of the 300 Area steam piping system including the U-3 steam valve pit. Figure 1-2 shows a cutaway view of the approximately 10- by 13- by 16-ft-high valve pit with its various steam valves and connecting piping. Valve MSS-25, an 8-in. valve, is located at the bottom of the pit. The failed 6-in. valve was located at the top of the pit where it branched from the upper portion of the 8-in. line at the 8- by 8- by 6-in. tee and was then ``blanked off`` with a blind flange. The purpose of this technical evaluation was to determine the cause of the accident that led to the failure of the 6-in. valve. The probable cause for the 6-in. valve failure was determined by visual, nondestructive, and destructive examination of the failed valve and by metallurgical analysis of the fractured region of the valve. The cause of the accident was ultimately identified by correlating the observed failure mode to the most probable physical phenomenon. Thermal-hydraulic analyses, component stress analyses, and tests were performed to verify that the probable physical phenomenon could be reasonably expected to produce the failure in the valve that was observed.

  19. Investigation of thermal storage and steam generator issues

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    A review and evaluation of steam generator and thermal storage tank designs for commercial nitrate salt technology showed that the potential exists to procure both on a competitive basis from a number of qualified vendors. The report outlines the criteria for review and the results of the review, which was intended only to assess the feasibility of each design, not to make a comparison or select the best concept.

  20. Experimental study of oil yields and properties of light and medium Venezuelan crude oils under steam and steam-propane distillation 

    E-Print Network [OSTI]

    Plazas Garcia, Joyce Vivia

    2002-01-01

    Six experimental runs were carried out to study the yields for a light crude oil (34.2°API) and an intermediate crude oil (25.1°API) under steam distillation and steam-propane distillation. Yields, were measured at five temperatures, 110, 150, 200...

  1. Correcting Nitrogen Deficiencies in Cotton with Urea-Based Products 

    E-Print Network [OSTI]

    Livingston, Stephen; Stichler, Charles

    1995-11-22

    Correcting nitrogen deficiency is important for cotton plant growth. This publication explains nitrogen requirements, the problems associated with nitrogen deficiency, and ways to correct deficiencies using urea as a source ...

  2. Steam reforming of low-level mixed waste. Final report

    SciTech Connect (OSTI)

    1998-06-01

    ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  3. The Nitrogen-Nitride Anode.

    SciTech Connect (OSTI)

    Delnick, Frank M.

    2014-10-01

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  4. Eighth international congress on nitrogen fixation. Final program

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  5. Large scale steam valve test: Performance testing of large butterfly valves and full scale high flowrate steam testing

    SciTech Connect (OSTI)

    Meadows, J.B.; Robbins, G.E.; Roselius, D.G. [and others

    1995-05-01

    This report presents the results of the design testing of large (36-inch diameter) butterfly valves under high flow conditions. The two butterfly valves were pneumatically operated air-open, air-shut valves (termed valves 1 and 2). These butterfly valves were redesigned to improve their ability to function under high flow conditions. Concern was raised regarding the ability of the butterfly valves to function as required with high flow-induced torque imposed on the valve discs during high steam flow conditions. High flow testing was required to address the flow-induced torque concerns. The valve testing was done using a heavily instrumented piping system. This test program was called the Large Scale Steam Valve Test (LSSVT). The LSSVT program demonstrated that the redesigned valves operated satisfactorily under high flow conditions.

  6. High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests

    SciTech Connect (OSTI)

    Duffy, T.; Schneider, P.

    1996-01-01

    As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

  7. Nitrogen Fixation and Dentrification in Sediments of Eutrophic Mediterranean-Type Estuaries: Seasonal Patterns and Responses to Anthropogenic Nitrogen Inputs

    E-Print Network [OSTI]

    Kane, Tonya Lynn

    2012-01-01

    and mechanisms controlling sediment nitrogen fixation in aKane T & Fong P. 2007. Sediment nitrogen fixation in UpperKane T & Fong P. 2007. Sediment nitrogen fixation in Upper

  8. The Enbridge Consumers Gas "Steam Saver" Program ("As Found" Performance and Fuel Saving Projects from Audits of 30 Steam Plants) 

    E-Print Network [OSTI]

    Griffin, B.

    2000-01-01

    to implement energy efficiency programs in all markets. In 1997, Enbridge Consumers Gas introduced the "Steam Saver" 203 Enbridge Consumers Gas, Toronto, Ontario boiler plant audit which is aimed at large volume industrial and institutional customers... the Greater Toronto area, Ottawa, Eastern Ontario and the Niagara Penninsula. We have 1.4 million customers including 1200 Large Volume customers. In 1994, for the first time, the Ontario Energy Board required the two main gas utilities in this province...

  9. ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Nitrogen Control in Ladle and Casting Operations ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting Operations castingops.pdf More Documents & Publications...

  10. Nitrogen Control in Electric Arc Furnace Steelmaking by Direct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines...

  11. Superheated-steam test of ethylene propylene rubber cables using a simultaneous aging and accident environment

    SciTech Connect (OSTI)

    Bennett, P.R.; St. Clair, S.D.; Gilmore, T.W.

    1986-06-01

    The superheated-steam test exposed different ethylene propylene rubber (EPR) cables and insulation specimens to simultaneous aging and a 21-day simultaneous accident environment. In addition, some insulation specimens were exposed to five different aging conditions prior to the 21-day simultaneous accident simulation. The purpose of this superheated-steam test (a follow-on to the saturated-steam tests (NUREG/CR-3538)) was to: (1) examine electrical degradation of different configurations of EPR cables; (2) investigate differences between using superheated-steam or saturated-steam at the start of an accident simulation; (3) determine whether the aging technique used in the saturated-steam test induced artificial degradation; and (4) identify the constituents in EPR that affect moisture absorption.

  12. Dissociation and excitation coefficients of nitrogen molecules and nitrogen monoxide generation

    SciTech Connect (OSTI)

    Uhm, Han S.; Na, Young H.; Choi, Eun H.; Cho, Guangsup [Department of Electronic and Biological Physics, Kwangwoon University 447-1 Wolgye-Dong, Nowon-Gu, Seoul 137-701 (Korea, Republic of)] [Department of Electronic and Biological Physics, Kwangwoon University 447-1 Wolgye-Dong, Nowon-Gu, Seoul 137-701 (Korea, Republic of)

    2013-08-15

    The excitation coefficient ?{sub N2} is calculated for the excited metastable level of N{sub 2}(A{sub 3}?{sub u}{sup +}) in nitrogen molecules. In addition, the dissociation coefficient of nitrogen molecules is investigated by making use of the Boltzmann distribution of the electrons in atmospheric plasmas. The excitation and electron-impact dissociation coefficients of nitrogen molecules are analytically expressed in terms of the electron temperature T{sub e} for evaluations of the reactive oxygen and nitrogen species in atmospheric plasmas. As an application example of these coefficients, the nitrogen monoxide generation through a microwave torch is carried out for a development of medical tool. The nitrogen monoxide concentration from a microwave plasma-torch can be easily controlled by the nitrogen flow rate, mole fraction of the oxygen gas, and the microwave power. A simple analytic expression of the nitrogen monoxide concentration is obtained in terms of the oxygen molecular density and gas flow rate. The experimental data agree remarkably well with the theoretical results from the analytical expression. A microwave nitrogen-torch can easily provide an appropriate nitrogen monoxide concentration for the wound healings.

  13. z=0 z=0 z=0 Steam-turbin Condenser LP-pump

    E-Print Network [OSTI]

    Skogestad, Sigurd

    ¡ ¢£ ¤ ¥§¦ ¨ © ¥£ ¡ £ ¨ © ¦ ¦ ¡ £ ¨ © ¦ ¦ ¥ ¦ © © ¡ ¥ ¥ £ ¦ ¡ ! ¦ " ©# £ $ ¤ #12; 4 ¡ 3 @ ¢ 2 6 3 F 4 9 7 LC LC PC z=0 z=0 z=0 z=1 z=1 TC TC z=0 HP-pump Steam-turbin Condenser LP-pump Air compressor Deaerator HP-pump Steam-turbin Condenser LP-pump Air compressor Deaerator HP Combustor Fuel compressor Steam-turbine HP-valve valve LP- drum Evaporator #12; F 4 9 7 ¢ D ¡ 2 B@ 9 7 6

  14. Wireless Sensing, Monitoring and Optimization for Campus-Wide Steam Distribution

    SciTech Connect (OSTI)

    Olama, Mohammed M [ORNL; Allgood, Glenn O [ORNL; Kuruganti, Phani Teja [ORNL; Sukumar, Sreenivas R [ORNL; Woodworth, Ken [ORNL; Lake, Joe E [ORNL

    2011-11-01

    The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize energy delivery within the steam distribution system. Our approach leverages an integrated wireless sensor and real-time monitoring capability. We make real time state assessment on the steam trap health and steam flow estimate of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observing measurements of these sensors with state estimators for system health. Our assessments are based on a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps status. Experimental results show that the energy signature scheme has the potential to identify different steam trap states and it has sufficient sensitivity to estimate flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. We are able to present the steam flow and steam trap status, sensor readings, and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  15. Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass

    E-Print Network [OSTI]

    FAN, XIN

    2012-01-01

    raw materials for coal gasification, Catalysis today, 1997,during the co- gasification of coal and switchgrass, BiomassZ. , Zhu, H. , Steam gasification of coal char using alkali

  16. How to Calculate the True Cost of Steam | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators Steam Pressure Reduction: Opportunities and Issues Recover Heat from...

  17. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01

    Using Self-Sustained Hydro- Gasification." [0011] In aprocess, using a steam hydro-gasification reactor (SHR) thepyrolysis and hydro-gasification in a single step. This

  18. Development of a Fischer-Tropsch Gasoline Process for the Steam Hydrogasification Technology

    E-Print Network [OSTI]

    Li, Yang

    2013-01-01

    M. ,   et   al. ,   Gasoline  conversion:  reactivity  al. ,   Methanol   to   gasoline   over   zeolite   H-­?of a Fischer-Tropsch Gasoline Process for the Steam

  19. Development and Transient Analysis of a Helical-coil Steam Generator for High Temperature Reactors

    SciTech Connect (OSTI)

    Nathan V. Hoffer; Nolan A. Anderson; Piyush Sabharwall

    2011-08-01

    A high temperature gas-cooled reactor (HTGR) is under development by the Next Generation Nuclear Plant (NGNP) Project at the Idaho National Laboratory (INL). Its design emphasizes electrical power production which may potentially be coupled with process heat for hydrogen production and other industrial applications. NGNP is considering a helical-coil steam generator for the primary heat transport loop heat exchanger based on its increased heat transfer and compactness when compared to other steam generators. The safety and reliability of the helical-coil steam generator is currently under evaluation as part of the development of NGNP. Transients, such as loss of coolant accidents (LOCA), are of interest in evaluating the safety of steam generators. In this study, a complete steam generator inlet pipe break (double ended pipe break) LOCA was simulated by an exponential loss of primary side pressure. For this analysis, a model of the helical-coil steam generator was developed using RELAP5-3D, an INL inhouse systems analysis code. The steam generator model behaved normally during the transient simulating the complete steam generator inlet pipe break LOCA. Further analysis is required to comprehensively evaluate the safety and reliability of the helical-coil steam generator design in the NGNP setting.

  20. Considerations When Selecting a Condensing Economizer - Steam Tip Sheet #26B

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet is part of a series of tip sheets on how to optimize an industrial steam system.

  1. Use Low-Grade Waste Steam to Power Absorption Chillers, Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Use Low-Grade Waste Steam to Power Absorption Chillers Absorption chillers use heat, instead of mechanical energy, to provide cooling. The mechanical vapor compressor is replaced...

  2. ORNL provided a feasibility evaluation of EPA's plans to route purchased steam

    E-Print Network [OSTI]

    Pennycook, Steve

    engines, microturbines, steam turbines, fuel cells · CHP waste-heat-activated technologies -- generation offers extraordinary benefits in terms of energy efficiency and emissions reductions by optimizing

  3. Direct Steam Generation with Dish Concentrators Jos Zapata, Keith Lovegrove, John Pye and Greg Burgess

    E-Print Network [OSTI]

    to the receiver, and steam was allowed to vent off to atmosphere, while the dish was tracking the sun. Table 1

  4. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOE Patents [OSTI]

    Coruzzi, Gloria M. (New York, NY); Brears, Timothy (Durham, NC)

    2000-01-01

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  5. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOE Patents [OSTI]

    Coruzzi, Gloria M.; Brears, Timothy

    2005-03-08

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  6. Nitrogen oxide delivery systems for biological media

    E-Print Network [OSTI]

    Skinn, Brian Thomas

    2012-01-01

    Elevated levels of nitric oxide (NO) in vivo are associated with a variety of cellular modifications thought to be mutagenic or carcinogenic. These processes are likely mediated by reactive nitrogen species (RNS) such as ...

  7. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOE Patents [OSTI]

    Coruzzi, Gloria M. (New York, NY); Brears, Timothy (Durham, NC)

    1999-01-01

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  8. Once-through steam-generator sensitivity calculations

    SciTech Connect (OSTI)

    Steiner, J.L.; Siebe, D.A.

    1988-01-01

    A series of TRAC-PF1/MOD2 thermal-hydraulic calculations has been performed to determine the effect of uncertainties in modeling once through steam-generator (OTSG) secondary-side phenomena on the calculated behavior of Babcock and Wilcox power plants. The calculations were performed by varying parameters in correlations for the secondary-side phenomena. The parameters and transients were chosen to show the maximum expected sensitivity of the calculated results to the parameter variations. The parameters were then varied over a range representing the estimated uncertainty in the correlation. In this manner, the sensitivity if the calculated plant behavior to the modeling uncertainties was determined with a reasonable number of calculations. The sensitivity of calculated plant behavior to variations in interfacial heat-transfer in the OTSG secondaries was determined in a series of steam-generator overfill transient calculations. Calculations were performed for a main steam line break (MSLB) transient to quantify the sensitivity to variations in interfacial drag in the secondaries; the interfacial drag was varied in these calculations to indicate the effects of entrainment and de-entrainment processes, for which no specific models exist in the code. In addition to the transient calculations, a series of steady-state calculations was performed to determine the sensitivity of the OTSG primary-to-secondary heat transfer to the assumed fraction of tubes wetted by the auxiliary feedwater (AFW) injection. The plant model used for the sensitivity calculations was qualified by performing a benchmark calculation for a natural circulation test in the TMI-1 plant.

  9. PREDICTION OF OXIDE SCALE EXFOLIATION IN STEAM TUBES

    SciTech Connect (OSTI)

    Sabau, Adrian S; Wright, Ian G

    2010-01-01

    Numerical simulation results are presented for the prediction of the likelihood of oxide scale exfoliation from superheater tubes. The scenarios considered involved alloys T22, TP347H, and TP347HFG subjected to a simplified operating cycle in a power plant generating supercritical steam. The states of stress and strain of the oxides grown in steam were based solely on modeling the various phenomena experienced by superheater tubes during boiler operation, current understanding of the oxidation behavior of each alloy in steam, and consideration of operating parameters such as heat flux, tube dimensions, and boiler duty cycle. Interpretation of the evolution of strain in these scales, and the approach to conditions where scale failure (hence exfoliation) is expected, makes use of the type of Exfoliation Diagrams that incorporate various cracking and exfoliation criteria appropriate for the system considered. In these diagrams, the strain accumulation with time in an oxide is represented by a strain trajectory derived from the net strain resulting from oxide growth, differences in coefficients of thermal expansion among the components, and relaxation due to creep. It was found that an oxide growing on a tube subjected to routine boiler load cycling conditions attained relatively low values of net strain, indicating that oxide failure would not be expected to occur during normal boiler operation. However, during a boiler shut-down event, strains sufficient to exceed the scale failure criteria were developed after times reasonably in accord with plant experience, with the scales on the ferritic steel failing in tension, and those on the austenitic steels in compression. The results presented illustrate that using this approach to track the state of strain in the oxide scale through all phases of boiler operation, including transitions from full-to-low load and shut-down events, offers the possibility of identifying the phase(s) of boiler operation during which oxide failure is most likely to occur.

  10. Preparation of nitrogen-doped carbon tubes

    DOE Patents [OSTI]

    Chung, Hoon Taek; Zelenay, Piotr

    2015-12-22

    A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.

  11. Plant nitrogen regulatory P-PII genes

    DOE Patents [OSTI]

    Coruzzi, Gloria M. (New York, NY); Lam, Hon-Ming (Hong Kong, HK); Hsieh, Ming-Hsiun (Woodside, NY)

    2001-01-01

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the

  12. Turbine Steam Path Audits for Improved Performance and Profitability 

    E-Print Network [OSTI]

    Babson, P. E.

    1991-01-01

    in this area. Note that the control (first) stage, which controls the flow rate of steam entering the turbine, is quite sensitive to trailing-end thickness increase. 40 35; a: 30 U1 ? w D c 25 > '" f0- Ul 20 Cf) a " ?f .c 15 J U- t:. '" l.... The three curves shown are additive for the entire three casing electric utility unit selected for this example. A typical cogeneration unit would be represented by the LP (low pressure turbine) curve. These are . ~ 1 iI:;1//~ o~~~ o 5 10 15 20 25...

  13. Improved global efficiency in industrial applications with cogeneration steam turbines

    SciTech Connect (OSTI)

    Hassan, A.; Alsthom, G.

    1998-07-01

    This paper focuses on medium steam turbine in the range of 10--80 MW and their application in cogeneration plants. The author summarizes the different steps which have led to the TM concept: good efficiency; competitive price; short delivery time; operation flexibility; ease of integration in a cogeneration process. The second part of the document shows two examples of integration of these turbines in cogeneration processes; one for acrilonitril (ACN) and polypropylene plant in Spain and the second for a textile plant in Taiwan.

  14. Analysis of pure electrical and cogeneration steam power plants

    SciTech Connect (OSTI)

    Albar, A.F.

    1982-01-01

    General Electric's method of steam turbine performance was used with pure electrical and with cogeneration power plants at various flow rates. Comparisons were made for two cases: (1) the same amount of heat is added to each boiler and the amount of electrical power generated is compared; and (2) when each plant should produce the same amount of electric power and the amount of heat added to each boiler is compared. Cogeneration is energetically more efficient than pure electrical plant. Correlations for the dependence of heat rate, power generated, heat added to throttle flow ratio were obtained from this work.

  15. Steam Turbine Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

    2009-06-30

    The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in todayâ??s high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors, casings and valves, and to perform scale-up studies to establish a design basis for commercial scale components. A supplemental program funded by the Ohio Coal Development Office will undertake supporting tasks such as testing and trials using existing atmospheric, vacuum and developmental pressure furnaces to define specific metal casting techniques needed for producing commercial scale components.

  16. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01

    In this project, the ARIES Building America team collected apartment temperature data from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. Data was analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating in an effort to answer the question, "What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?" This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort.

  17. Covered Product Category: Commercial Steam Cookers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|ProgramsLakeDepartmentEnergy Air-CooledEnergySteam Cookers

  18. Geothermal Steam Act of 1970 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages Recent Changes AllGunneryDataGradient DataGeothermal Steam

  19. Effects of Nitrogen contamination in liquid Argon

    E-Print Network [OSTI]

    R. Acciarri; M. Antonello; B. Baibussinov; M. Baldo-Ceolin; P. Benetti; F. Calaprice; E. Calligarich; M. Cambiaghi; N. Canci; F. Carbonara; F. Cavanna; S. Centro; A. G. Cocco; F. Di Pompeo; G. Fiorillo; C. Galbiati; V. Gallo; L. Grandi; G. Meng; I. Modena; C. Montanari; O. Palamara; L. Pandola; F. Pietropaolo; G. L. Raselli; M. Roncadelli; M. Rossella; C. Rubbia; E. Segreto; A. M. Szelc; S. Ventura; C. Vignoli

    2008-04-08

    A dedicated test of the effects of Nitrogen contamination in liquid Argon has been performed at the INFN-Gran Sasso Laboratory (LNGS, Italy) within the WArP R&D program. A detector has been designed and assembled for this specific task and connected to a system for the injection of controlled amounts of gaseous Nitrogen into the liquid Argon. Purpose of the test is to detect the reduction of the Ar scintillation light emission as a function of the amount of the Nitrogen contaminant injected in the Argon volume. A wide concentration range, spanning from about 10^-1 ppm up to about 10^3 ppm, has been explored. Measurements have been done with electrons in the energy range of minimum ionizing particles (gamma-conversion from radioactive sources). Source spectra at different Nitrogen contaminations are analyzed, showing sensitive reduction of the scintillation yield at increasing concentrations. The rate constant of the light quenching process induced by Nitrogen in liquid Ar has been found to be k(N2)=0.11 micros^-1 ppm^-1. Direct PMT signals acquisition at high time resolution by fast Waveform recording allowed to extract with high precision the main characteristics of the scintillation light emission in pure and contaminated LAr. In particular, the decreasing behavior in lifetime and relative amplitude of the slow component is found to be appreciable from O(1 ppm) of Nitrogen concentrations.

  20. Incorporating supercritical steam turbines into molten-salt power tower plants : feasibility and performance.

    SciTech Connect (OSTI)

    Pacheco, James Edward; Wolf, Thorsten; Muley, Nishant

    2013-03-01

    Sandia National Laboratories and Siemens Energy, Inc., examined 14 different subcritical and supercritical steam cycles to determine if it is feasible to configure a molten-salt supercritical steam plant that has a capacity in the range of 150 to 200 MWe. The effects of main steam pressure and temperature, final feedwater temperature, and hot salt and cold salt return temperatures were determined on gross and half-net efficiencies. The main steam pressures ranged from 120 bar-a (subcritical) to 260 bar-a (supercritical). Hot salt temperatures of 566 and 600%C2%B0C were evaluated, which resulted in main steam temperatures of 553 and 580%C2%B0C, respectively. Also, the effects of final feedwater temperature (between 260 and 320%C2%B0C) were evaluated, which impacted the cold salt return temperature. The annual energy production and levelized cost of energy (LCOE) were calculated using the System Advisory Model on 165 MWe subcritical plants (baseline and advanced) and the most promising supercritical plants. It was concluded that the supercritical steam plants produced more annual energy than the baseline subcritical steam plant for the same-size heliostat field, receiver, and thermal storage system. Two supercritical steam plants had the highest annual performance and had nearly the same LCOE. Both operated at 230 bar-a main steam pressure. One was designed for a hot salt temperature of 600%C2%B0C and the other 565%C2%B0C. The LCOEs for these plants were about 10% lower than the baseline subcritical plant operating at 120 bar-a main steam pressure and a hot salt temperature of 565%C2%B0C. Based on the results of this study, it appears economically and technically feasible to incorporate supercritical steam turbines in molten-salt power tower plants.