Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream  

DOE Patents (OSTI)

A process and system for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous The government of the United States of America has rights in this invention pursuant to Contract No. DE-AC21-88MC 23174 awarded by the U.S. Department of Energy.

Cohen, Mitchell R. (Troy, NY); Gal, Eli (Lititz, PA)

1993-01-01T23:59:59.000Z

2

Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream  

DOE Patents (OSTI)

A process and system are described for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous mixture.

Cohen, M.R.; Gal, E.

1993-04-13T23:59:59.000Z

3

Nitrogen Oxides Emission Control Options  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Nitrogen Oxides Emission Control Options for Coal-Fired Electric Utility Boilers Ravi K. Srivastava and Robert E. Hall U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Air Pollution Prevention and Control Division, Research Triangle Park, NC Sikander Khan and Kevin Culligan U.S. Environmental Protection Agency, Office of Air and Radiation, Clean Air Markets Division, Washington, DC Bruce W. Lani U.S. Department of Energy, National Energy Technology Laboratory, Environmental Projects Division, Pittsburgh, PA ABSTRACT Recent regulations have required reductions in emissions of nitrogen oxides (NO x ) from electric utility boilers. To comply with these regulatory requirements, it is increas- ingly important to implement state-of-the-art NO x con- trol technologies on coal-fired utility boilers. This paper reviews NO x control

4

nitrogen oxides | OpenEI  

Open Energy Info (EERE)

20 20 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279720 Varnish cache server nitrogen oxides Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago)

5

Nitrogen oxide delivery systems for biological media  

E-Print Network (OSTI)

Elevated levels of nitric oxide (NO) in vivo are associated with a variety of cellular modifications thought to be mutagenic or carcinogenic. These processes are likely mediated by reactive nitrogen species (RNS) such as ...

Skinn, Brian Thomas

2012-01-01T23:59:59.000Z

6

Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions  

E-Print Network (OSTI)

2005). Particulate emissions from construction activities.M. S. , (2000b). In-use emissions from heavy- duty dieseland nitrogen dioxide emissions from gasoline- and diesel-

Millstein, Dev

2009-01-01T23:59:59.000Z

7

METHOD OF FIXING NITROGEN FOR PRODUCING OXIDES OF NITROGEN  

DOE Patents (OSTI)

A method is described for fixing nitrogen from air by compressing the air, irradiating the compressed air in a nuclear reactor, cooling to remove NO/ sub 2/, compressing the cooled gas, further cooling to remove N/sub 2/O and recirculating the cooled compressed air to the reactor.

Harteck, P.; Dondes, S.

1959-08-01T23:59:59.000Z

8

Impact of Biodiesel on the Oxidation Kinetics and Morphology of Diesel Particulate  

DOE Green Energy (OSTI)

We compare the oxidation characteristics of four different diesel particulates generated with a modern light-duty engine. The four particulates represent engine fueling with conventional ultra-low sulfur diesel (ULSD), biodiesel, and two intermediate blends of these fuels. The comparisons discussed here are based on complementary measurements implemented in a laboratory micro-reactor, including temperature programmed desorption and oxidation, pulsed isothermal oxidation, and BET surface area. From these measurements we have derived models that are consistent with the observed oxidation reactivity differences. When accessible surface area effects are properly accounted for, the oxidation kinetics of the fixed carbon components were found to consistently exhibit an Arrhenius activation energy of 113 6 kJ/mol. Release of volatile carbon from the as-collected particulate appears to follow a temperaturedependent rate law.

Strzelec, Andrea [ORNL; Toops, Todd J [ORNL; Daw, C Stuart [ORNL

2011-01-01T23:59:59.000Z

9

Evolution of Nitrogen Oxide Chemistry in the Nocturnal Boundary Layer  

Science Conference Proceedings (OSTI)

The nocturnal cycle of nitrogen oxides in the atmospheric boundary layer is studied by means of a one-dimensional model. The model solves the conservation equations of momentum, entropy, total water content, and of five chemical species. The ...

S. Galmarini; P. G. Duynkerke; J. Vilà-Guerau de Arellano

1997-07-01T23:59:59.000Z

10

Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Pollution Control Regulations: No.27 - Control of Nitrogen Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide Emissions (Rhode Island) Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide Emissions (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations apply to stationary sources with the potential to emit 50 tons of nitrogen oxides (NOx) per year from all pollutant-emitting equipment or activities. The regulations describe possibilities for exemptions (i.e., for sources which have the potential to emit 50 tons but do not actually reach that level) and Reasonably Available Control

11

Method For Selective Catalytic Reduction Of Nitrogen Oxides  

DOE Patents (OSTI)

A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

2005-02-15T23:59:59.000Z

12

Method for selective catalytic reduction of nitrogen oxides  

DOE Patents (OSTI)

A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

2005-02-15T23:59:59.000Z

13

Nitrogen Oxide Emission Statements (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nitrogen Oxide Emission Statements (Ohio) Nitrogen Oxide Emission Statements (Ohio) Nitrogen Oxide Emission Statements (Ohio) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency requires any facility that emits 25 tons or more of NOx and/or 25 tons or more of VOC during the calendar year and is located in a county designated as nonattainment for the National Ambient Air Quality Standards for ozone submit emission statements. Any facility that is located in a county described above is exempt from these requirements. If NOx

14

Nitrogen oxide abatement by distributed fuel addition  

DOE Green Energy (OSTI)

Experiments were conducted to investigate the processes that influence the destruction of NO in the fuel rich stage of the reburning process. The objective is to gain a better understanding of the mechanisms that control the fate of coal nitrogen in the fuel rich zone of a combustion process. Time resolved profiles of temperature, major (CO{sub 2}, CO, H{sub 2}O, O{sub 2}, H{sub 2} and N{sub 2}), nitrogenous (NO, HCN and NH{sub 3}) and hydrocarbon (CH{sub 4} and C{sub 2}H{sub 2}) species were obtained for various reburning tests. A slow continuous source of HCN was observed in the reburn zone for most tests. HCN formation from NO + CH{sub i} reactions would partially explain this trend. It has been proposed in the past that these reactions would be fast (less than 0.1s) and the produced HCN would be short lived. However, evidence was provided in this study indicating that NO + CH{sub i} reactions might contribute to HCN formation at longer residence times in the reburn zone. Reactions of molecular nitrogen with hydrocarbon radicals were determined to be a significant source of HCN formation, especially as NO levels decreased in the reburn zone. The results of several tests would justify the exclusion of continued coal devolatilization in the reburn zone as a major source of HCN.

Wendt, J.O.L.; Mereb, J.B.

1989-11-20T23:59:59.000Z

15

Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases  

DOE Patents (OSTI)

A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.

Clay, David T. (Longview, WA); Lynn, Scott (Walnut Creek, CA)

1976-10-19T23:59:59.000Z

16

Nitrogen oxide abatement by distributed fuel addition  

Science Conference Proceedings (OSTI)

The research reported here is concerned with the application of secondary fuel addition, otherwise known as reburning, as a means of NO{sub x} destruction downstream of the primary flame zone in boilers. This paper consists of two parts: First, results from a statistically correct design of parametric experiments on a laboratory coal combustor are presented. These allow the effects of the most important variables to be isolated and identified. Second, mechanisms governing the inter-conversion and destruction of nitrogenous species in the fuel rich reburning zone of a laboratory coal combustor were explored, using fundamental kinetic arguments. The objective here was to extract models, which can be used to estimate reburning effectiveness in other, more practical combustion configurations. Emphasis is on the use of natural gas as the reburning fuel for a pulverized coal primary flame. Then, reburning mechanisms occur in two regimes; one in which fast reactions between NO and hydrocarbons are usually limited by mixing; the other in which reactions have slowed and in which known gas phase chemistry controls. For the latter regime, a simplified model based on detailed gas phase chemical kinetic mechanisms and known rate coefficients was able to predict temporal profiles of NO, NH{sub 3} and HCN. Reactions with hydrocarbons played important roles in both regimes and the Fenimore N{sub 2} fixation reactions limited reburning effectiveness at low primary NO values.

Wendt, J.O.L.; Mereb, J.B.

1990-08-27T23:59:59.000Z

17

Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions  

DOE Patents (OSTI)

A biofilter is described for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method is described of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described. 6 figs.

Apel, W.A.

1998-08-18T23:59:59.000Z

18

Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions  

DOE Patents (OSTI)

A biofilter for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described.

Apel, William A. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

19

Nitrogen and carbon oxides chemistry in the HRS retorting process  

Science Conference Proceedings (OSTI)

The HRS Oil Shale Retort process consists of a pyrolysis section which converts kerogen of the shale to liquid and gaseous products, and a combustion section which burns residual carbon on the shale to heat the process. Average gas concentrations of selected gas phase species were determined from data measured at several placed on the combustion system of the Lawrence Livermore National Laboratory Hot-Recycled-Solids Retort Pilot Plant for representative rich and lean shale runs. The data was measured on-line and in real time by on-line meters (CO{sub 2}, CO, O{sub 2}), mass spectrometry (CO{sub 2}, O{sub 2}, H{sub 2}O, NO, CH{sub 4}, SO{sub 2}, N{sub 2} and Ar), and Fourier transform infrared spectroscopy (CO{sub 2}, CO, H{sub 2}O, NO, N{sub 2}O, NO{sub 2}, CH{sub 4}, SO{sub 2}, NH{sub 3}, and HCN). For both the rich and leans shale runs, the Lift-Pipe Combustor (LFT) exhibited gas concentrations (sampled at the exit of the LFT) indicative of incomplete combustion and oxidation; the Delayed-Fall Combustor (DFC) exhibited gas concentrations (sampled at the annulus and the exit of the DFC) indicative of much more complete combustion and oxidation. The Fluidized-Bed Combustor exhibited gas concentrations which were controlled to a large extent by the injection atmosphere of the FBC. High levels of nitrogen oxides and low levels of CO were detected when full air injection was used, while high levels of CO and low levels of nitrogen-oxides were detected with partial N{sub 2} injection. Sequential sampling limitations and nitrogen balances are also discussed.

Reynolds, J.G.

1993-11-12T23:59:59.000Z

20

Method for reducing nitrogen oxides in combustion effluents  

DOE Patents (OSTI)

Method for reducing nitrogen oxides (NO.sub.x) in the gas stream from the combustion of fossil fuels is disclosed. In a narrow gas temperature zone, NO.sub.x is converted to nitrogen by reaction with urea or ammonia with negligible remaining ammonia and other reaction pollutants. Specially designed injectors are used to introduce air atomized water droplets containing dissolved urea or ammonia into the gaseous combustion products in a manner that widely disperses the droplets exclusively in the optimum reaction temperature zone. The injector operates in a manner that forms droplet of a size that results in their vaporization exclusively in this optimum NO.sub.x -urea/ammonia reaction temperature zone. Also disclosed is a design of a system to effectively accomplish this injection.

Zauderer, Bert (Merion Station, PA)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Method for combined removal of mercury and nitrogen oxides from off-gas streams  

DOE Patents (OSTI)

A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

Mendelsohn, Marshall H. (Downers Grove, IL); Livengood, C. David (Lockport, IL)

2006-10-10T23:59:59.000Z

22

Nitrogen Oxides (NOx), Why and How They are Controlled  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Quality EPA 456/F-99-006R Air Quality EPA 456/F-99-006R Environmental Protection Planning and Standards November 1999 Agency Research Triangle Park, NC 27711 Air EPA-456/F-99-006R November 1999 Nitrogen Oxides (NOx), Why and How They Are Controlled Prepared by Clean Air Technology Center (MD-12) Information Transfer and Program Integration Division Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711 ii DISCLAIMER This report has been reviewed by the Information Transfer and Program Integration Division of the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency and approved for publication. Approval does not signify that the contents of this report reflect the views and policies of the U.S. Environmental Protection Agency. Mention of trade

23

Nitrogen oxide emissions from coal fired MHD plants  

DOE Green Energy (OSTI)

In this topical report, the nitrogen oxide emission issues from a coal fired MHD steam combined cycle power plant are summarized, both from an experimental and theoretical/calculational viewpoint. The concept of staging the coal combustion to minimize NO{sub x} is described. The impact of NO{sub x} control design choices on electrical conductivity and overall plant efficiency are described. The results of the NO{sub x} measurements in over 3,000 hours of coal fired testing are summarized. A chemical kinetics model that was used to model the nooks decomposition is described. Finally, optimum design choices for a low nooks plant are discussed and it is shown that the MHD Steam Coal Fired Combined Cycle Power Plant can be designed to operate with nooks emissions less than 0.05 lbm/MMBTU.

Chapman, J.N. [ed.

1996-03-01T23:59:59.000Z

24

Improved Prediction of Nitrogen Oxides Using GRNN with K-Means Clustering and EDA  

Science Conference Proceedings (OSTI)

The current study presented a generalized regression neural network (GRNN) based approach to predict nitrogen oxides (NOx) emitted from coal-fired boiler. A novel 'multiple' smoothing parameters, which is different from the standard algorithm in which ... Keywords: GRNN, EDA, K-means Clustering, Nitrogen Oxides, Power plants

Ligang Zheng; Shuijun Yu; Wei Wang; Minggao Yu

2008-10-01T23:59:59.000Z

25

Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia  

DOE Patents (OSTI)

Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

Pence, Dallas T. (Idaho Falls, ID); Thomas, Thomas R. (Idaho Falls, ID)

1980-01-01T23:59:59.000Z

26

The influence of Fe catalysts on the release of nitrogen oxides during the gasification of nitrogen doped carbon-13 material  

E-Print Network (OSTI)

855 The influence of Fe catalysts on the release of nitrogen oxides during the gasification. (Received 12 June 19%; accepted in revised form 4 April 1997) Key Words - A. Char, B. gasification, the rapid devol- atilisation of the coal is accompanied by the ignition/gasification of the volatiles

Thomas, Mark

27

TCE degradation by methane-oxidizing cultures grown with various nitrogen sources  

SciTech Connect

Methane-oxidizing microorganisms exhibit great potential for vadose zone bioremediation. This paper reports the effects of supplying nitrogen as nitrate, ammonia, and molecular nitrogen on the growth, trichloroethylene (TCE) degradation capacity, and energy storage capacity of a mixed methane-oxidizing culture. Cells inoculated from a nitrate-supplied methane-oxidizing culture grew fastest while fixing atmospheric nitrogen when oxygen partial pressures were kept less than 8%. Cell growth and methane oxidation were more rapid for ammonia-supplied cells than for nitrate-supplied or nitrogen-fixing cells. However, nitrogen-fixing cells were capable of oxidizing TCE as efficiently as nitrate or ammonia-supplied cells, and they exhibited the highest TCE transformation capacity of all three cultures both with and without formate as an exogenous reducing energy source. The TCE product toxicity was not as pronounced for the nitrogen fixing cells as for the nitrate- or ammonia-supplied cells after exposure to high (20 mg/L) or low (2 mg/L) TCE concentrations. Energy storage in the form of poly-{beta}- hydroxybutyrate was 20% to 30% higher for nitrogen-fixing cells; increased energy storage may be responsible for the higher transformation capacity of nitrogen-fixing cells when no external reducing energy was available. 35 refs., 4 figs., 2 tabs.

Chu, K.H.; Alvarez-Cohen, L. [Univ. of California, Berkeley, CA (United States)

1996-01-01T23:59:59.000Z

28

Passive measurement of nitrogen oxides to assess traffic-related...  

NLE Websites -- All DOE Office Websites (Extended Search)

393-403 Date Published 012004 Keywords Freeways, nitrogen dioxide, Passive sampler, schools Abstract The East Bay Children's Respiratory Health Study is examining associations...

29

Removal of nitrogen oxides from a gas stream by using monatomic nitrogen induced by a pulsed arc  

DOE Green Energy (OSTI)

The effectiveness of N atoms, nitrogen, induced by a pulsed electric arc, in reducing nitric oxide (NO) and nitrogen dioxide (NO{sub 2}) was studied. Goal is reduction of nitrogen oxides (NO{sub x}) from automobile emissions by this alternative technique, which can be cost-effective and has the potential to reduce NO{sub x} in exhaust containing up to 10% oxygen. Initial tests with 100, 500, and 1,000 ppM NO in pure nitrogen have shown that a greater than 50% reduction of NO/NO{sub x} is readily achievable. At an NO concentration of 100 ppM, a greater than 90% NO/NO{sub x} reduction was recorded. Different flow rates of the monatomic nitrogen and the gas stream were tested. The flow rate of the monatomic nitrogen did not have a significant effect on the reduction efficiency, unlike the flow rate of the gas stream. The cross-sectional flow area of the gas stream was varied in order to assess whether the proximity of the gas stream to the arc would affect NO/NO{sub x} reduction. Results of the tests revealed that the smallest cross-sectional area had the best reduction, but also the highest chance of contacting the arc. The composition of the gas stream was also varied to elucidate the effects of N0{sub 2} and 0{sub 2} on the NO/NO{sub x} reduction efficiency. When N0{sub 2} and 0{sub 2} are present in the gas stream, both gases lower the reduction efficiency significantly by creating more NO or N0{sub 2}. Experiments are continuing to improve the reduction efficiency. The electrical power, a function of pulse frequency, voltage, and current, was treated as a key parameter in the investigation. The power consumption of the high-voltage purser apparatus for a 100-kW engine was estimated to be 3 kW.

Ng, H.K.; Novick, V.J.; Sekar, R.R. [Argonne National Lab., IL (United States); Pierucci, K.A. [Illinois Inst. of Tech., Chicago, IL (United States); Geise, M.F. [Notre Dame Univ., IN (United States)

1995-01-01T23:59:59.000Z

30

Combustor for fine particulate coal  

DOE Patents (OSTI)

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

Carlson, Larry W. (Oswego, IL)

1988-01-01T23:59:59.000Z

31

Combustor for fine particulate coal  

DOE Patents (OSTI)

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

Carlson, L.W.

1988-11-08T23:59:59.000Z

32

Combustor for fine particulate coal  

DOE Patents (OSTI)

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

Carlson, L.W.

1988-01-26T23:59:59.000Z

33

Electrical and physical characteristics of HfLaON-gated metal-oxide-semiconductor capacitors with various nitrogen concentration profiles  

Science Conference Proceedings (OSTI)

The comparative studies of electrical and physical characteristics of HfLaON-gated metal-oxide-semiconductor (MOS) capacitors with various nitrogen concentration profiles (NCPs) were investigated. Various NCPs in HfLaON gate dielectrics were adjusted ... Keywords: Charge trapping, Current-conduction, High-k dielectric, Metal-oxide-semiconductor (MOS), Nitrogen concentration profiles (NCPs)

Chin-Lung Cheng; Jeng-Haur Horng; Hung-Yang Tsai

2011-02-01T23:59:59.000Z

34

On the Ratio of Sulfur Dioxide to Nitrogen Oxides as an Indicator of Air Pollution Sources  

Science Conference Proceedings (OSTI)

The ratio of sulfur dioxide to nitrogen oxides (RSN = SO2/NOx) is one indicator of air pollution sources. The role of this ratio in source attribution is illustrated here for the Ashdod area, located in the southern coastal plain of Israel. The ...

Ronit Nirel; Uri Dayan

2001-07-01T23:59:59.000Z

35

Nitrogen oxide -- Sensors and systems for engine management  

DOE Green Energy (OSTI)

The goal of this Cooperative Research and Development (CRADA) effort is to further develop sensors and sensor systems in order to meet current and anticipated air emissions requirements due to the operation of Defense Program facilities and the emission standards imposed on new vehicles operating in this country. Specific objectives of this work are to be able to measure and control on-line and in real-time, emissions, engine operation, air-to-fuel intake ratios, and throttle/accelerator positions in future models of consumer automobiles. Sensor and application specific integrated circuit developments within Lockheed Martin Energy Systems are applicable to the monitoring and engine controls needed by General Motors. In the case of emissions sensors, base technology in thick/thin film sensors and optical systems will be further developed to address the combination of high temperature and accumulated deposits expected in the exhaust stream. Other technologies will also be explored to measure fuel-to-air ratios and technologies such as fiber optic and acoustic wave devices that are applicable to the combustion sensing on an individual base. Two non-contact rotary position sensors have been developed for use in control-by-wire throttle control applications. The two CRADA developed sensors consist of a non-contact, differential capacitance position transducer and a custom complementary metal oxide semiconductor (C-MOS) application specific integrated circuit (ASIC) suitable for use in both passenger and engine compartments.

Hiller, J.M.; Bryan, W.L. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Miller, C.E. [General Motors, Inc., Flint, MI (United States). A.C. Rochester Div.

1997-06-24T23:59:59.000Z

36

Biomass burning sources of nitrogen oxides, carbon monoxide, and non-methane hydrocarbons  

SciTech Connect

Biomass burning is an important source of many key tropospheric species, including aerosols, carbon dioxide (CO{sub 2}), nitrogen oxides (NO{sub {times}}=NO+NO{sub 2}), carbon monoxide (CO), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), methyl bromide (CH{sub 3}Br), ammonia (NH{sub 3}), non-methane hydrocarbons (NMHCs) and other species. These emissions and their subsequent products act as pollutants and affect greenhouse warming of the atmosphere. One important by-product of biomass burning is tropospheric ozone, which is a pollutant that also absorbs infrared radiation. Ozone is formed when CO, CH{sub 4}, and NMHCs react in the presence of NO{sub {times}} and sunlight. Ozone concentrations in tropical regions (where the bulk of biomass burning occurs) may increase due to biomass burning. Additionally, biomass burning can increase the concentration of nitric acid (HNO{sub 3}), a key component of acid rain.

Atherton, C.S.

1995-11-01T23:59:59.000Z

37

Material and system for catalytic reduction of nitrogen oxide in an exhaust stream of a combustion process  

DOE Patents (OSTI)

A catalytic material of activated hydrous metal oxide doped with platinum, palladium, or a combination of these, and optionally containing an alkali or alkaline earth metal, that is effective for NO.sub.X reduction in an oxidizing exhaust stream from a combustion process is disclosed. A device for reduction of nitrogen oxides in an exhaust stream, particularly an automotive exhaust stream, the device having a substrate coated with the activated noble-metal doped hydrous metal oxide of the invention is also provided.

Gardner, Timothy J. (Albuquerque, NM); Lott, Stephen E. (Edgewood, NM); Lockwood, Steven J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

38

DEVELOPMENT OF IMPROVED CATALYSTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES WITH HYDROCARBONS  

SciTech Connect

Significant work has been done by the investigators on the cerium oxide-copper oxide based sorbent/catalysts for the combined removal of sulfur and nitrogen oxides from the flue gases of stationary sources. Evaluation of these sorbents as catalysts for the selective reduction of NO{sub x} gave promising results with methane. Since the replacement of ammonia by methane is commercially very attractive, in this project, the effect of promoters on the activity and selectivity of copper oxide/cerium oxide-based catalysts and the reaction mechanism for the SCR with methane was investigated. Unpromoted and promoted catalysts were investigated for their SCR activity with methane in a microreactor setup and also, by the temperature-programmed desorption (TPD) technique. The results from the SCR experiments indicated that manganese is a more effective promoter than the other metals (Rh, Li, K, Na, Zn, and Sn) for the supported copper oxide-ceria catalysts under study. The effectiveness of the promoter increased with the increase in Ce/Cu ratio. Among the catalysts tested, the Cu1Ce3 catalyst promoted with 1 weight % Mn was found to be the best catalyst for the SCR of NO with methane. This catalyst was subjected to long-term testing at the facilities of our industrial partner TDA Research. TDA report indicated that the performance of this catalyst did not deteriorate during 100 hours of operation and the activity and selectivity of the catalyst was not affected by the presence of SO{sub 2}. The conversions obtained by TDA were significantly lower than those obtained at Hampton University due to the transport limitations on the reaction rate in the TDA reactor, in which 1/8th inch pellets were used while the Hampton University reactor contained 250-425-{micro}m catalyst particles. The selected catalyst was also tested at the TDA facilities with high-sulfur heavy oil as the reducing agent. Depending on the heavy oil flow rate, up to 100% NO conversions were obtained. The temperature programmed desorption studies a strong interaction between manganese and cerium. Presence of manganese not only enhanced the reduction rate of NO by methane, but also significantly improved the N{sub 2} selectivity. To increase the activity of the Mn-promoted catalyst, the manganese content of the catalyst need to be optimized and different methods of catalyst preparation and different reactor types need to be investigated to lower the transport limitations in the reactor.

Ates Akyurtlu; Jale F. Akyurtlu

2003-11-30T23:59:59.000Z

39

NETL: News Release - Projects Selected to Study Coal Plant Particulate  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2004 5, 2004 Projects Selected to Study Coal Plant Particulate Matter, Human Health PITTSBURGH, PA - The Department of Energy has selected three projects to help determine whether fine particulates emitted from coal-fired power plants affect human health, and which components of the particulates may be most problematic. Past studies have established that particulate matter smaller than 2.5 microns in diameter from all sources does affect human health, but there is scant information to provide a link between PM2.5 emitted specifically from coal plants and cardiac or respiratory health problems in humans. PM2.5 refers to particles-invisible to the eye-no more than 1/30th of the width of a human hair Coal plants emit only small quantities of "primary" PM2.5 (e.g., fly ash) because all plants have high-efficiency particulate-collection devices. However, coal plants are responsible for a great deal of "secondary" PM2.5, which forms in the atmosphere from emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx). Data collected in the new studies will be used to help design standards reviews and to devise strategies for controlling power plant emissions of PM2.5, SO2, and NOx.

40

Technology for the control of particulates and sulfur oxides by electrostatic techniques. Final report, Aug 85-Jul 90  

Science Conference Proceedings (OSTI)

The report summarizes research performed by Southern Research Institute on several aspects of the E-SOx Process, invented by EPA to jointly control particulate matter and SO2 in coal-fired boiler emissions by retrofitting an existing electrostatic precipitator (ESP), formerly used only for particulate removal. The report covers research on potential ESP sites for process application, process economics, characterization of process solid waste collected in the ESP, measurement and modeling of prechargers in the retrofitted ESP, and effectiveness of the process with respect to SO2 removal. Experiment results described in the report confirm original EPA laboratory work and were influential in the decision to proceed with a large pilot evaluation of E-SOx. Research emphasis was on ESP performance, under E-SOx conditions, to verify that this essential equipment process component could retain its primary function of particle removal at a level equal to removal prior to modifications necessary for E-SOx. Further research is suggested.

Dismukes, E.B.; Gooch, J.P.

1991-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Parameters affecting nitrogen oxides in a Coal-Fired Flow Facility system  

DOE Green Energy (OSTI)

The unusually high temperature in the primary combustor of the Coal-Fired Magnetohydrodynamics (MHD) power generation system causes much higher nitrogen oxides (NO{sub x}) to be produced than in a conventional coal fired generation system. In order to lower the NO{sub x} concentration to an acceptable level, it is important to know how parameters of the MM power generation system affect the NO{sub x} concentration. This thesis investigates those effects in the Coal-Fired Flow Facility (CFFF) at the University of Tennessee Space Institute under the contract of US Department Of Energy (DOE). With thermodynamic and kinetic computer codes, the theoretical studies were carried out on the parameters of the CFFF system. The results gathered from the computer codes were analyzed and compared with the experimental data collected during the LMF5J test. The thermodynamic and kinetic codes together modeled the NO.{sub x} behavior with reasonable accuracy while some inconsistencies happened at the secondary combustor inlet.

Lu, Xiaoliang

1996-03-01T23:59:59.000Z

42

Integrated assessment of the spatial variability of ozone impacts from emissions of nitrogen oxides  

Science Conference Proceedings (OSTI)

This paper examines the ozone (O{sub 3}) damages caused by nitrogen oxides (NOx) emissions in different locations around the Atlanta metropolitan area during a summer month. Ozone impacts are calculated using a new integrated assessment model that links pollution emissions to their chemical transformation, transport, population exposures, and effects on human health. It was found that increased NOx emissions in rural areas around Atlanta increase human exposure to ambient O{sub 3} twice as much as suburban emissions. However, increased NOx emissions in central city Atlanta actually reduce O{sub 3} exposures. For downtown emissions, the reduction in human exposures to O{sub 3} from titration by NO in the central city outweighs the effects from increased downwind O{sub 3}. The results indicate that the marginal damage from NOx emissions varies greatly across a metropolitan area. The results raise concerns if cap and trade regulations cause emissions to migrate toward higher marginal damage locations. 22 refs., 4 figs., 2 tabs.

Daniel Q. Tong; Nicholas Z. Muller; Denise L. Mauzerall; Robert O. Mendelsohn [Princeton University, Princeton, NJ (United States). Science, Technology and Environmental Policy Program, Woodrow Wilson School of Public and International Affairs

2006-03-01T23:59:59.000Z

43

Environmental considerations of selected energy-conserving manufacturing process options. Volume XVII. Nitrogen oxides summary report. Final report  

SciTech Connect

Arthur D. Little, Inc. undertook a study of the 'Environmental Consideration of Selected Energy-Conserving Manufacturing Process Options.' Some 80 industrial process options were examined in 13 industrial sectors. Results were published in 15 volumes, including a summary, industry prioritization report, and 13 industry oriented reports. The present report summarizes the information regarding nitrogen oxide pollutants in the 13 industry reports. Topics considered include the following: Processes and potential nitrogen oxide emissions--(Bases of calculations, NOx control methods, petroleum refining industry, cement industry, olefins industry, alumina and aluminum industry, glass industry, copper industry, fertilizer industry, ammonia, iron and steel, phosphorus/phosphoric acid, textile industry, pulp and paper industry, and chlor-alkali industry).

1979-07-01T23:59:59.000Z

44

On-farm Assessment of Nitrogen Fertilizer application to corn on Nitrous Oxide Emissions  

E-Print Network (OSTI)

in soils cropped to corn with varying N fertilization. Can.as affected by tillage, corn-soybean-alfalfa rotations, andsoil nitrogen mineralization for corn production in eastern

2009-01-01T23:59:59.000Z

45

Implementing a time- and location-differentiated cap-and-trade program : flexible nitrogen oxide abatement from power plants in the eastern United States  

E-Print Network (OSTI)

Studies suggest that timing and location of emissions can change the amount of ozone formed from a given amount of nitrogen oxide (NOx) by a factor of five (Mauzerall et al. 2005). Yet existing NOx cap-and-trade programs ...

Martin, Katherine C

2007-01-01T23:59:59.000Z

46

Observation-Based Assessment of the Impact of Nitrogen Oxides Emissions Reductions on Ozone Air Quality over the Eastern United States  

Science Conference Proceedings (OSTI)

Ozone is produced by chemical interactions involving nitrogen oxides (NOx) and volatile organic compounds in the presence of sunlight. At high concentrations, ground-level ozone has been shown to be harmful to human health and to the environment. ...

Edith Gégo; P. Steven Porter; Alice Gilliland; S. Trivikrama Rao

2007-07-01T23:59:59.000Z

47

A cost-effectiveness analysis of alternative ozone control strategies : flexible nitrogen oxide (NOx) abatement from power plants in the eastern United States  

E-Print Network (OSTI)

Ozone formation is a complex, non-linear process that depends on the atmospheric concentrations of its precursors, nitrogen oxide (NOx) and Volatile Organic Compounds (VOC), as well as on temperature and the available ...

Sun, Lin, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

48

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-01-01T23:59:59.000Z

49

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains a minimum of 92 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

50

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1997-05-01T23:59:59.000Z

51

Nitrogen oxides emission control through reburning with biomass in coal-fired power plants  

E-Print Network (OSTI)

Oxides of nitrogen from coal-fired power stations are considered to be major pollutants, and there is increasing concern for regulating air quality and offsetting the emissions generated from the use of energy. Reburning is an in-furnace, combustion control technology for NOx reduction. Another environmental issue that needs to be addressed is the rapidly growing feedlot industry in the United States. The production of biomass from one or more animal species is in excess of what can safely be applied to farmland in accordance with nutrient management plans and stockpiled waste poses economic and environmental liabilities. In the present study, the feasibility of using biomass as a reburn fuel in existing coal-fired power plants is considered. It is expected to utilize biomass as a low-cost, substitute fuel and an agent to control emission. The successful development of this technology will create environment-friendly, low cost fuel source for the power industry, provide means for an alternate method of disposal of biomass, and generate a possible revenue source for feedlot operators. In the present study, the effect of coal, cattle manure or feedlot biomass, and blends of biomass with coal on the ability to reduce NOx were investigated in the Texas A&M University 29.31 kW (100,000 Btu/h) reburning facility. The facility used a mixture of propane and ammonia to generate the 600 ppm NOx in the primary zone. The reburn fuel was injected using air. The stoichiometry tested were 1.00 to 1.20 in the reburn zone. Two types of injectors, circular jet and fan spray injectors, which produce different types of mixing within the reburn zone, were studied to find their effect on NOx emissions reduction. The flat spray injector performed better in all cases. With the injection of biomass as reburn fuel with circular jet injector the maximum NOx reduction was 29.9 % and with flat spray injector was 62.2 %. The mixing time was estimated in model set up as 936 and 407 ms. The maximum NOx reduction observed with coal was 14.4 % and with biomass it was 62.2 % and the reduction with blends lay between that of coal and biomass.

Arumugam, Senthilvasan

2004-12-01T23:59:59.000Z

52

Role of char during reburning of nitrogen oxides. First quarterly report, October 1, 1993--December 31, 1993  

SciTech Connect

Customarily, coal and lignite have not been considered viable reburning fuels for a number of reasons. NO reduction through homogeneous gas phase mechanisms is generally believed more important than the heterogeneous NO reduction on char; and coal devolatilization in the fuel rich environment generates only about 50% of the volatile hydrocarbon radicals than gaseous hydrocarbons under the same fuel-to-oxidant stoichiometry. In addition, the fuel nitrogen could result in additional nitrogen oxide emissions in the burnout stage. What has not been anticipated is the highly active nature of lignite char surface. First, it has been demonstrated in the literature that lignite char can be gasified by nitrogen oxide; second, the minerals in lignite char can catalyze the CO + NO and gasification reaction; and third, lignite char has a highly porous structure which is desirable for gas/solid reactions. The unique NO activity on char surface is expected to benefit the utilities which are involved in coal combustion and have to meet the stringent Clean Air Act Amendments of 1990. This program is aimed at a better understanding of the chemical and physical mechanisms involved in the reburning with chars. Char gasification rates will be measured with and without the presence of CO. Further, the rate of the char catalyzed CO + NO reaction will also be measured. Experiments have been conducted with a flow reactor which simulates the reburning stage. One bituminous coal and two lignites, one from North Dakota and the other from Mississippi, are used in these tasks. A unique component of this program is the use of the fractal concept in the estimations of these gas/solid reaction rates. The proposed program is designed to investigate the relative importance of these two reactions (char gasification and ash catalyzed CO + NO reactions) under reburning conditions.

Chen, Wei-Yin

1993-12-31T23:59:59.000Z

53

Method for removing heavy metal and nitrogen oxides from flue gas, device for removing heavy metal and nitrogen oxides from flue gas  

DOE Patents (OSTI)

A method for the simultaneous removal of oxides and heavy metals from a fluid is provided comprising combining the fluid with compounds containing alkali and sulfur to create a mixture; spray drying the mixture to create a vapor phase and a solid phase; and isolating the vapor phase from the solid phase. A device is also provided comprising a means for spray-drying flue gas with alkali-sulfide containing liquor at a temperature sufficient to cause the flue gas to react with the compounds so as to create a gaseous fraction and a solid fraction and a means for directing the gaseous fraction to a fabric filter.

Huang, Hann-Sheng; Livengood, Charles David

1997-12-01T23:59:59.000Z

54

Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 4: Diesel Particulate Filters -- Final Report  

DOE Green Energy (OSTI)

The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This is the fourth and final report for the DPF test program and covers the effect of diesel sulfur level on: a catalyzed diesel particulate filter (CDPF), and a continuously regenerating diesel particulate filter (CR-DPF).

DOE; ORNL; NREL; EMA; MECA

2000-01-15T23:59:59.000Z

55

On-farm Assessment of Nitrogen Fertilizer application to corn on Nitrous Oxide Emissions  

E-Print Network (OSTI)

mitigation of greenhouse gas emissions by agriculture. Nutr.1998. Nitrous oxide emission in three years as affected by2008. Soil-surface gas emissions. p.851-861. In: M.R. Carter

2009-01-01T23:59:59.000Z

56

Removal of oxides of nitrogen from gases in multi-stage coal combustion  

DOE Patents (OSTI)

Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

1996-12-31T23:59:59.000Z

57

Removal of oxides of nitrogen from gases in multi-stage coal combustion  

SciTech Connect

Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

Mollot, Darren J. (Morgantown, WV); Bonk, Donald L. (Louisville, OH); Dowdy, Thomas E. (Orlando, FL)

1998-01-01T23:59:59.000Z

58

Removal of oxides of nitrogen from gases in multi-stage coal combustion  

DOE Patents (OSTI)

Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.

Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

1998-01-13T23:59:59.000Z

59

Air Pollution Control Regulations: No.27 - Control of Nitrogen...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27 - Control of Nitrogen Oxide Emissions (Rhode Island) Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide Emissions (Rhode Island) Eligibility Commercial...

60

Method and system for the removal of oxides of nitrogen and sulfur from combustion processes  

DOE Patents (OSTI)

A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.

Walsh, John V. (Glendora, CA)

1987-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Zevenhoven & Kilpinen NITROGEN 13.4.2002 4-34 4.11 Chemistry of nitrogen oxides at atmospheric fluidized bed  

E-Print Network (OSTI)

to gain importance. These processes comprise combustion or gasification stages at elevated pressure in gasification processes 4.13.1 Formation of nitrogen species during gasification In gasification, a solid.3..0.4). One of the challenges met at developing the (pressurized) gasification technique called the IGCC

Laughlin, Robert B.

62

Zevenhoven & Kilpinen NITROGEN 18.1.2004 4-35 4.11 Chemistry of nitrogen oxides at atmospheric fluidized bed  

E-Print Network (OSTI)

. As the laughing gas in a burner #12;Zevenhoven & Kilpinen NITROGEN 18.1.2004 4-40 flame enters hot zones, or "combustion" in a fuel cell (+Chapter 2). Combustion of the gas in a gas turbine or engine may result, flame length and where hot/cold spots are), 3) inlet pressure/ temperature, 4) spark or fuel injection

Zevenhoven, Ron

63

Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Proto col for US Midwest Agriculture  

Science Conference Proceedings (OSTI)

Status: Published Citation: Millar, N; Robertson, GP; Grace, PR; Gehl, RJ; and Hoben, JP. 2010. Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Protocol for US Midwest Agriculture. In Journal of Mitigation and Adaptation Strategies for Global Change,Volume 15, Number 2, 2010, pp. 185-204. Link to Journal Publication: See Journal of Mitigation and Adaptation Strategies for Global Change.

2010-09-03T23:59:59.000Z

64

Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Redu ction Protocol for U.S. Midwest Agriculture  

Science Conference Proceedings (OSTI)

Status: Published Citation: Millar, N; Robertson, GP; Grace, PR; Gehl, RJ; and Hoben; JP. 2010. Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Protocol for U.S. Midwest Agriculture. In Mitigation and Adaptation Strategies for Global Change, Volume 15, Number 2, 2010, pp. 185-204. A peer-reviewed journal article that identifies, describes and analyzes socio-economic factors that may encourage or inhibit farmers from participat...

2009-12-17T23:59:59.000Z

65

Plasma Aftertreatment for Simultaneous Control of NOx and Particulates  

DOE Green Energy (OSTI)

Plasma reactors can be operated as a particulate trap or as a NO{sub x} converter. The soluble organic fraction (SOF) of the trapped particulates can be utilized for the oxidation of NO to NO{sub 2}. The NO{sub 2} can then be used to non-thermally oxidize the carbon fraction of the particulates. This paper examines the energy density required for oxidation of the SOF hydrocarbons and the fate of NO{sub 2} during the oxidation of the particulate carbon. The energy density required for complete oxidation of the SOF hydrocarbons is shown to be unacceptably large. The reaction of NO{sub 2} with carbon is shown to lead mainly to backconversion of NO{sub 2} to NO. These results suggest that the use of a catalyst in combination with the plasma will be required to efficiently reduce the NO{sub x} and oxidize the SOF hydrocarbons.

Penetrante, B.M.; Brusasco, R.M.; Merritt, B.T.; Pitz, W.J.; Vogtlin, G.E.

1999-10-28T23:59:59.000Z

66

Non-thermal Aftertreatment of Particulates  

DOE Green Energy (OSTI)

Modern diesel passenger vehicles employing common rail, high speed direct injection engines are capable of matching the drivability of gasoline powered vehicles with the additional benefit of providing high torque at low engine speed [1]. The diesel engine also offers considerable fuel economy and CO2 emissions advantages. However, future emissions standards [2,3] present a significant challenge for the diesel engine, as its lean exhaust precludes the use of aftertreatment strategies employing 3- way catalytic converters, which operate under stoichiometric conditions. In recent years significant developments by diesel engine manufacturers have greatly reduced emissions of both particulates (PM) and oxides of nitrogen (NOx) [4,5]. However to achieve compliance with future legislative limits it has been suggested that an integrated approach involving a combination of engine modifications and aftertreatment technology [1] will be required. A relatively new approach to exhaust aftertreatment is the application of non-thermal plasma (NTP) or plasma catalyst hybrid systems. These have the potential for treatment of both NOx and PM emissions [6- 8]. The primary focus of recent plasma aftertreatment studies [9-12] has concentrated on the removal of NOx. It has been shown that by combining plasmas with catalysts it is possible to chemically reduce NOx. The most common approach is to use a 2- stage system relying upon the plasma oxidation of hydrocarbons to promote NO to NO2 conversion as a precursor to NO2 reduction over a catalyst. However, relatively little work has yet been published on the oxidation of PM by plasma [ 8,13]. Previous investigations [8] have reported that a suitably designed NTP reactor containing a packing material designed to filter and retain PM can effect the oxidation of PM in diesel exhausts at low temperatures. It has been suggested that the retained PM competes with hydrocarbons for O, and possibly OH, radicals. This is an important consideration in plasma - catalyst hybrid schemes for the removal of NOx employing an NO2 selective catalyst, as the oxidation of PM may deplete the key radicals necessary for NO to NO2 conversion. It was also suggested that where simultaneous NOx and PM removal are required, alternative catalyst formulations may be needed which may be selective to NO rather than NO2.

Thomas, S.E.

2000-08-20T23:59:59.000Z

67

X-Ray Absorption Characterization of Diesel Exhaust Particulates  

DOE Green Energy (OSTI)

We have characterized particulates from a 1993 11.1 Detroit Diesel Series 60 engine with electronic unit injectors operated using fuels with and without methylcyclopentadienyl manganese tricarbonyl (MMT) and overbased calcium sulfonate added. X-ray photoabsorption (XAS) spectroscopy was used to characterize the diesel particulates. Results reveal a mixture of primarily Mn-phosphate with some Mn-oxide, and Ca-sulfate on the surface of the filtered particulates from the diesel engine.

Nelson, A J; Ferreira, J L; Reynolds, J G; Roos, J W

1999-11-18T23:59:59.000Z

68

Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, nitrogen, and ammonia in contact with tank 241-SY-101 simulated waste  

DOE Green Energy (OSTI)

Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. Described in this report are the results of tests to evaluate the rates of thermal and combined thermal and radiolytic reactions involving flammable gases in the presence of Tank 241-SY-101 simulated waste. Flammable gases generated by the radiolysis of water and by the thermal and radiolytic decomposition of organic waste constituents may themselves participate in further reactions. Examples include the decomposition of nitrous oxide to yield nitrogen and oxygen, the reaction of nitrous oxide and hydrogen to produce nitrogen and water, and the reaction of nitrogen and hydrogen to produce ammonia. The composition of the gases trapped in bubbles in the wastes might therefore change continuously as a function of the time that the gas bubbles are retained.

Bryan, S.A.; Pederson, L.R.

1996-02-01T23:59:59.000Z

69

THE NITROGEN OXIDES CONTROVERSY  

E-Print Network (OSTI)

2 ) by far ultraviolet solar radiation (hv) 02 + hv (A solar radiation above the atmosphere.by Chapman concerning solar radiation above the atmosphere

Johnston, Harold S.

2012-01-01T23:59:59.000Z

70

Particulate Matter Standards (Ohio)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter of the law that establishes the Ohio Environmental Protection Agency sets the standards for particulate emissions from a variety of sources, including facilities that generate power. ...

71

Abatement of Air Pollution: The Clean Air Interstate Rule (CAIR) Nitrogen Oxides (Nox) Ozone Season Trading Program (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations may apply to fossil-fuel fired emission units, and describe nitrogen emission allocations that owners of such units must meet. The regulations also contain provisions for...

72

Effect of fresh green waste and green waste compost on mineral nitrogen, nitrous oxide and carbon dioxide from a Vertisol  

Science Conference Proceedings (OSTI)

Incorporation of organic waste amendments to a horticultural soil, prior to expected risk periods, could immobilise mineral N, ultimately reducing nitrogen (N) losses as nitrous oxide (N{sub 2}O) and leaching. Two organic waste amendments were selected, a fresh green waste (FGW) and green waste compost (GWC) as they had suitable biochemical attributes to initiate N immobilisation into the microbial biomass and organic N forms. These characteristics include a high C:N ratio (FGW 44:1, GWC 35:1), low total N (14%). Both products were applied at 3 t C/ha to a high N (plus N fertiliser) or low N (no fertiliser addition) Vertisol soil in PVC columns. Cumulative N{sub 2}O production over the 28 day incubation from the control soil was 1.5 mg/N{sub 2}O/m{sup 2}, and 11 mg/N{sub 2}O/m{sup 2} from the control + N. The N{sub 2}O emission decreased with GWC addition (P < 0.05) for the high N soil, reducing cumulative N{sub 2}O emissions by 38% by the conclusion of the incubation. Analysis of mineral N concentrations at 7, 14 and 28 days identified that both FGW and GWC induced microbial immobilisation of N in the first 7 days of incubation regardless of whether the soil environment was initially high or low in N; with the FGW immobilising up to 30% of available N. It is likely that the reduced mineral N due to N immobilisation led to a reduced substrate for N{sub 2}O production during the first week of the trial, when soil N{sub 2}O emissions peaked. An additional finding was that FGW + N did not decrease cumulative N{sub 2}O emissions compared to the control + N, potentially due to the fact that it stimulated microbial respiration resulting in anaerobic micro sites in the soil and ultimately N{sub 2}O production via denitrification. Therefore, both materials could be used as post harvest amendments in horticulture to minimise N loss through nitrate-N leaching in the risk periods between crop rotations. The mature GWC has potential to reduce N{sub 2}O, an important greenhouse gas.

Vaughan, Sarah M., E-mail: s.vaughan@uq.edu.au [School of Land, Crop and Food Sciences, University of Queensland, St. Lucia, QLD 4072 (Australia); Dalal, Ram C. [School of Land, Crop and Food Sciences, University of Queensland, St. Lucia, QLD 4072 (Australia); Department of Environment and Resource Management, 80 Meiers Rd., Indooroopilly, QLD 4068 (Australia); Harper, Stephen M. [Department of Employment, Economic Development and Innovation, Warrego Highway, Gatton, QLD 4343 (Australia); Menzies, Neal W. [School of Land, Crop and Food Sciences, University of Queensland, St. Lucia, QLD 4072 (Australia)

2011-08-15T23:59:59.000Z

73

Zinc Thiolate Reactivity toward Nitrogen Oxides: Insights into the Interaction of Zn[superscript 2+] with S-Nitrosothiols and Implications for Nitric Oxide Synthase  

E-Print Network (OSTI)

Zinc thiolate complexes containing N[subscript 2]S tridentate ligands were prepared to investigate their reactivity toward reactive nitrogen species, chemistry proposed to occur at the zinc tetracysteine thiolate site of ...

Kozhukh, Julia

74

Airborne particulate discriminator  

DOE Patents (OSTI)

A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

Creek, Kathryn Louise (San Diego, CA); Castro, Alonso (Santa Fe, NM); Gray, Perry Clayton (Los Alamos, NM)

2009-08-11T23:59:59.000Z

75

Nitrogen spark denoxer  

DOE Patents (OSTI)

A NO.sub.X control system for an internal combustion engine includes an oxygen enrichment device that produces oxygen and nitrogen enriched air. The nitrogen enriched air contains molecular nitrogen that is provided to a spark plug that is mounted in an exhaust outlet of an internal combustion engine. As the nitrogen enriched air is expelled at the spark gap of the spark plug, the nitrogen enriched air is exposed to a pulsating spark that is generated across the spark gap of the spark plug. The spark gap is elongated so that a sufficient amount of atomic nitrogen is produced and is injected into the exhaust of the internal combustion engine. The injection of the atomic nitrogen into the exhaust of the internal combustion engine causes the oxides of nitrogen to be reduced into nitrogen and oxygen such that the emissions from the engine will have acceptable levels of NO.sub.X. The oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

Ng, Henry K. (Naperville, IL); Novick, Vincent J. (Downers Grove, IL); Sekar, Ramanujam R. (Naperville, IL)

1997-01-01T23:59:59.000Z

76

Photochemical Oxidant Processes in the Presence of Dust: An Evaluation of the Impact of Dust on Particulate Nitrate and Ozone Formation  

Science Conference Proceedings (OSTI)

The influence of dust on the tropospheric photochemical oxidant cycle is studied through the use of a detailed coupled aerosol and gas-phase chemistry model. Dust is a significant component of the troposphere throughout Asia and provides a ...

Yang Zhang; Young Sunwoo; Veerabhadra Kotamarthi; Gregory R. Carmichael

1994-07-01T23:59:59.000Z

77

Method for dispersing catalyst onto particulate material  

DOE Patents (OSTI)

A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.

Utz, Bruce R. (Pittsburgh, PA); Cugini, Anthony V. (Pittsburgh, PA)

1992-01-01T23:59:59.000Z

78

PRODUCTION OF SHEET FROM PARTICULATE MATERIAL  

DOE Patents (OSTI)

A process is presented for forming coherent sheet material from particulate material such as granular or powdered metal, granular or powdered oxide, slurries, pastes, and plastic mixes which cohere under pressure. The primary object is to avoid the use of expensive and/ or short lived pressing tools, that is, dies and specially profiled rolls, and so to reduce the cost of the product and to prcvide in a simple manner for the making of the product in a variety of shapes or sizes. The sheet material is formed when the particulate material is laterally confined in a boundary material deformable in all lateral directions under axial pressure and then axially compressing the layer of particulate material together with the boundary material.

Blainey, A.

1959-05-12T23:59:59.000Z

79

Nitrogen oxide abatement by distributed fuel addition. Quarterly report No. 9, August 1, 1989--October 31, 1989  

DOE Green Energy (OSTI)

Experiments were conducted to investigate the processes that influence the destruction of NO in the fuel rich stage of the reburning process. The objective is to gain a better understanding of the mechanisms that control the fate of coal nitrogen in the fuel rich zone of a combustion process. Time resolved profiles of temperature, major (CO{sub 2}, CO, H{sub 2}O, O{sub 2}, H{sub 2} and N{sub 2}), nitrogenous (NO, HCN and NH{sub 3}) and hydrocarbon (CH{sub 4} and C{sub 2}H{sub 2}) species were obtained for various reburning tests. A slow continuous source of HCN was observed in the reburn zone for most tests. HCN formation from NO + CH{sub i} reactions would partially explain this trend. It has been proposed in the past that these reactions would be fast (less than 0.1s) and the produced HCN would be short lived. However, evidence was provided in this study indicating that NO + CH{sub i} reactions might contribute to HCN formation at longer residence times in the reburn zone. Reactions of molecular nitrogen with hydrocarbon radicals were determined to be a significant source of HCN formation, especially as NO levels decreased in the reburn zone. The results of several tests would justify the exclusion of continued coal devolatilization in the reburn zone as a major source of HCN.

Wendt, J.O.L.; Mereb, J.B.

1989-11-20T23:59:59.000Z

80

Evaluation of the Emission, Transport, and Deposition of Mercury, Arsenic, and Fine Particulate Matter From Coal-Based Power Plants in the Ohio River Valley  

NLE Websites -- All DOE Office Websites (Extended Search)

Kevin crist Kevin crist Principal Investigator Ohio University Research and Technology Center Athens, OH 45701 740-593-4751 cristk@ohiou.edu Environmental and Water Resources Evaluation of thE Emission, transport, and dEposition of mErcury, arsEnic, and finE particulatE mattEr from coal-BasEd powEr plants in thE ohio rivEr vallEy rEgion Background The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has established an aggressive research initiative to address the technical and scientific issues surrounding the impact of coal-based power systems on ambient levels of fine particulate matter (PM 2.5 ), nitrogen oxides (NO X ), mercury/air toxics, and acid gases. Regulatory drivers such as the 1990 Clean Air Act Amendments, the 1997 revised National Ambient Air Quality Standards, and the 2005 Clean Air

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions  

DOE Green Energy (OSTI)

The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

DOE; ORNL; NREL; EMA; MECA

1999-11-15T23:59:59.000Z

82

Structure, optical, and electrical properties of indium tin oxide thin films prepared by sputtering at room temperature and annealed in air or nitrogen  

Science Conference Proceedings (OSTI)

Indium tin oxide (ITO) thin films have been grown onto soda-lime glass substrates by sputtering at room temperature with various oxygen to argon partial pressure ratios. After deposition, the samples have been annealed at temperatures ranging from 100 to 500 degree sign C in nitrogen or in air. The structure, optical, and electrical characteristics of the ITO coatings have been analyzed as a function of the deposition and the annealing parameters by x-ray diffraction, spectrophotometry, and Hall effect measurements. It has been found that the as-grown amorphous layers crystallize in the cubic structure by heating above 200 degree sign C. Simultaneously, the visible optical transmittance increases and the electrical resistance decreases, in proportions that depend mainly on the sputtering conditions. The lowest resistivity values have been obtained by annealing at 400 degree sign C in nitrogen, where the highest carrier concentrations are achieved, related to oxygen vacancy creation. Some relationships between the analyzed properties have been established, showing the dependence of the cubic lattice distortion and the infrared optical characteristics on the carrier concentration.

Guillen, C.; Herrero, J. [Departamento de Energia, CIEMAT, Avda Complutense 22, 28040 Madrid (Spain)

2007-04-01T23:59:59.000Z

83

The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NOx) Emissions From Coal-Fired Boilers Demonstration Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NO ) Emissions From Coal-Fired Boilers X Demonstration Project: A DOE Assessment March 2000 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

84

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard  

Gasoline and Diesel Fuel Update (EIA)

3 3 ERRATA Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard July 2001 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This Service Report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Contacts This report was prepared by the Office of Integrated Analysis and Forecasting, Energy Information Adminis- tration. General questions concerning the report may be directed to Mary J. Hutzler (202/586-2222, mhutzler @eia.doe.gov), Director of the Office of Integrated Analysis and Forecasting, Scott B. Sitzer (202/586-2308,

85

Fluidizing device for solid particulates  

DOE Patents (OSTI)

A flexible whip or a system of whips with novel attachments is suspended in a hopper and is caused to impact against fibrous and irregularly shaped particulates in the hopper to fluidize the particulates and facilitate the flow of the particulates through the hopper. The invention provides for the flow of particulates at a substantially constant mass flow rate and uses a minimum of energy.

Diebold, J.P.; Scahill, J.W.

1984-06-27T23:59:59.000Z

86

Fluidizing device for solid particulates  

DOE Patents (OSTI)

A flexible whip or a system of whips with novel attachments is suspended in a hopper and is caused to impact against fibrous and irregularly shaped particulates in the hopper to fluidize the particulates and facilitate the flow of the particulates through the hopper. The invention provides for the flow of particulates at a substantially constant mass flow rate and uses a minimum of energy.

Diebold, James P. (Lakewood, CO); Scahill, John W. (Golden, CO)

1986-01-01T23:59:59.000Z

87

Nitrogen sorption  

DOE Patents (OSTI)

Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas. 5 figs.

Friesen, D.T.; Babcock, W.C.; Edlund, D.J.; Miller, W.K.

1996-05-14T23:59:59.000Z

88

Nitrogen sorption  

DOE Patents (OSTI)

Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Bend, OR); Miller, Warren K. (Bend, OR)

1993-01-01T23:59:59.000Z

89

Nitrogen sorption  

DOE Patents (OSTI)

Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Bend, OR); Miller, Warren K. (Bend, OR)

1996-01-01T23:59:59.000Z

90

Nitrogen sorption  

DOE Patents (OSTI)

Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

Friesen, D.T.; Babcock, W.C.; Edlund, D.J.; Miller, W.K.

1993-07-06T23:59:59.000Z

91

New chemistry with gold-nitrogen complexes: synthesis and characterization of tetra-, tri-, and dinuclear gold(I) amidinate complexes. Oxidative-addition to the dinuclear gold(I) amidinate  

E-Print Network (OSTI)

Nitrogen ligands have been little studied with gold(I) and almost no chemistry has been described using anionic bridging nitrogen ligands. This dissertation concerns the impact of the bridging ligands amidinate, ArNHC(H)NAr, on the chemistry of gold(I) and, in particular, the effect of substituents on the molecular arrangement. The electronic vs. steric effect of the substituents on the molecular arrangement of gold(I) amidinates complexes is studied in detail. Tetra-, tri-, and dinuclear gold(I) amidinate complexes are synthesized and characterized using X-ray diffraction. Spectroscopic and electrochemical studies of the amidinate complexes are described. Catalytic studies suggest that gold amidinates and related gold nitrogen complexes are the best catalyst precursors for CO oxidation on TiO2 surface reported to date (87% conversion). The dinuclear gold(I) amidinate complex with a Auâ ¦Au distance of 2.711(3) Ã is rare. To our knowledge, there is only one other example of a symmetrical dinuclear gold(I) nitrogen complex. Oxidative-addition reactions to the dinuclear gold(I) complex, [Au2(2,6-Me2-form)2] are studied in detail and result in the formation of gold(II) complexes. The gold(II) amidinate complexes are the first formed with nitrogen ligands. The complexes are stable at room temperature. Mixed ligand tetranuclear gold(I) clusters and tetranuclear mixed Au-Ag metal clusters of pyrazolate and amidinate ligands are synthesized and characterized using Xray diffraction.

Abdou, Hanan Elsayed

2006-05-01T23:59:59.000Z

92

Development of Nanofiller-Modulated Polymeric Oxygen Enrichment Membranes for Reduction of Nitrogen Oxides in Coal Combustion  

Science Conference Proceedings (OSTI)

North Carolina A&T State University in Greensboro, North Carolina, has undertaken this project to develop the knowledge and the material to improve the oxygen-enrichment polymer membrane, in order to provide high-grade oxygen-enriched streams for coal combustion and gasification applications. Both experimental and theoretical approaches were used in this project. The membranes evaluated thus far include single-walled carbon nano-tube, nano-fumed silica polydimethylsiloxane (PDMS), and zeolite-modulated polyimide membranes. To document the nanofiller-modulated polymer, molecular dynamics simulations have been conducted to calculate the theoretical oxygen molecular diffusion coefficient and nitrogen molecular coefficient inside single-walled carbon nano-tube PDMS membranes, in order to predict the effect of the nano-tubes on the gas-separation permeability. The team has performed permeation and diffusion experiments using polymers with nano-silica particles, nano-tubes, and zeolites as fillers; studied the influence of nano-fillers on the self diffusion, free volume, glass transition, oxygen diffusion and solubility, and perm-selectivity of oxygen in polymer membranes; developed molecular models of single-walled carbon nano-tube and nano-fumed silica PDMS membranes, and zeolites-modulated polyimide membranes. This project partially supported three graduate students (two finished degrees and one transferred to other institution). This project has resulted in two journal publications and additional publications will be prepared in the near future.

Jianzhong Lou; Shamsuddin Ilias

2010-12-31T23:59:59.000Z

93

Nitrogen oxide abatement by distributed fuel addition. Quarterly report No. 12, May 1, 1990--July 31, 1990  

Science Conference Proceedings (OSTI)

The research reported here is concerned with the application of secondary fuel addition, otherwise known as reburning, as a means of NO{sub x} destruction downstream of the primary flame zone in boilers. This paper consists of two parts: First, results from a statistically correct design of parametric experiments on a laboratory coal combustor are presented. These allow the effects of the most important variables to be isolated and identified. Second, mechanisms governing the inter-conversion and destruction of nitrogenous species in the fuel rich reburning zone of a laboratory coal combustor were explored, using fundamental kinetic arguments. The objective here was to extract models, which can be used to estimate reburning effectiveness in other, more practical combustion configurations. Emphasis is on the use of natural gas as the reburning fuel for a pulverized coal primary flame. Then, reburning mechanisms occur in two regimes; one in which fast reactions between NO and hydrocarbons are usually limited by mixing; the other in which reactions have slowed and in which known gas phase chemistry controls. For the latter regime, a simplified model based on detailed gas phase chemical kinetic mechanisms and known rate coefficients was able to predict temporal profiles of NO, NH{sub 3} and HCN. Reactions with hydrocarbons played important roles in both regimes and the Fenimore N{sub 2} fixation reactions limited reburning effectiveness at low primary NO values.

Wendt, J.O.L.; Mereb, J.B.

1990-08-27T23:59:59.000Z

94

Void/particulate detector  

DOE Patents (OSTI)

Apparatus for detecting voids and particulates in a flowing stream of fluid contained in a pipe may comprise: (a) a transducer for transmitting an ultrasonic signal into the stream, coupled to the pipe at a first location; (b) a second transducer for detecting the through-transmission of said signal, coupled to the pipe at a second location; (c) a third transducer for detecting the back-scattering of said signal, coupled to the pipe at a third location, said third location being upstream from said first location; (d) circuit means for normalizing the back-scattered signal from said third transducer to the through-transmitted signal from said second transducer; which normalized signal provides a measure of the voids and particulates flowing past said first location.

Claytor, T.N.; Karplus, H.B.

1983-09-26T23:59:59.000Z

95

Rigid particulate matter sensor  

DOE Patents (OSTI)

A sensor to detect particulate matter. The sensor includes a first rigid tube, a second rigid tube, a detection surface electrode, and a bias surface electrode. The second rigid tube is mounted substantially parallel to the first rigid tube. The detection surface electrode is disposed on an outer surface of the first rigid tube. The detection surface electrode is disposed to face the second rigid tube. The bias surface electrode is disposed on an outer surface of the second rigid tube. The bias surface electrode is disposed to face the detection surface electrode on the first rigid tube. An air gap exists between the detection surface electrode and the bias surface electrode to allow particulate matter within an exhaust stream to flow between the detection and bias surface electrodes.

Hall, Matthew (Austin, TX)

2011-02-22T23:59:59.000Z

96

Regenerable particulate filter  

DOE Patents (OSTI)

A method of making a three-dimensional lattice structure, such as a filter used to remove particulates from a gas stream, where the physical lattice structure is designed utilizing software simulation from pre-defined mass transfer and flow characteristics and the designed lattice structure is fabricated using a free-form fabrication manufacturing technique, where the periodic lattice structure is comprised of individual geometric elements.

Stuecker, John N. (Albuquerque, NM); Cesarano, III, Joseph (Albuquerque, NM); Miller, James E. (Albuquerque, NM)

2009-05-05T23:59:59.000Z

97

ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

2000-12-01T23:59:59.000Z

98

NICKEL SPECIATION OF URBAN PARTICULATE MATTER  

SciTech Connect

A four-step sequential Ni extraction method, summarized in Table AB-1, was evaluated for identifying and quantifying the Ni species occurring in urban total suspended particulate (TSP) matter and fine particulate matter (<10 {micro}m [PM{sub 10}] and <2.5 {micro}m [PM{sub 2.5}] in aerodynamic diameter). The extraction method was originally developed for quantifying soluble, sulfidic, elemental, and oxidic forms of Ni that may occur in industrial atmospheres. X-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) spectroscopy were used to evaluate the Ni species selectivity of the extraction method. Uncertainties in the chemical speciation of Ni in urban PM{sub 10} and PM{sub 2.5} greatly affect inhalation health risk estimates, primarily because of the large variability in acute, chronic, and cancer-causing effects for different Ni compounds.

Kevin C. Galbreath; Charlene R. Crocker; Carolyn M. Nyberg; Frank E. Huggins; Gerald P. Huffman

2003-10-01T23:59:59.000Z

99

Methods for making lithium vanadium oxide electrode materials  

DOE Patents (OSTI)

A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

Schutts, Scott M. (Menomonie, WI); Kinney, Robert J. (Woodbury, MN)

2000-01-01T23:59:59.000Z

100

An Introduction to Particulate Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

for Fiscal Year 2014. Title An Introduction to Particulate Matter Publication Type Book Chapter Year of Publication 2009 Authors Prisco, Joe, Rich Hill, Pam Lembke, D. Moore,...

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Dry Ice vs. Liquid Nitrogen Previous Video (Dry Ice vs. Liquid Nitrogen) Frostbite Theater Main Index Next Video (Shattering Pennies) Shattering Pennies Liquid Nitrogen Cooled...

102

Airborne Particulate Monitoring  

Science Conference Proceedings (OSTI)

... Measurement Science and Standards 4 Page 5. Coal fly ash (~10 µm) Iron-oxide particles from arc welding (~10 µm) ... Coal combustion • • • ...

2013-10-31T23:59:59.000Z

103

MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. An additional task was included in this project to evaluate mercury oxidation upstream of a dry scrubber by using mercury oxidants. This project demonstrated at the pilot-scale level a technology that provides a cost-effective technique to control mercury and, at the same time, greatly enhances fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution for improved fine particulate control combined with effective mercury control for a large segment of the U.S. utility industry as well as other industries.

Ye Zhuang; Stanley J. Miller

2005-05-01T23:59:59.000Z

104

Atmospheric ammonia and particulate inorganic nitrogen over the United States  

E-Print Network (OSTI)

We use in situ observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network, the Midwest Ammonia Monitoring Project, 11 surface site campaigns as well as Infrared Atmospheric Sounding ...

Heald, Colette L.

105

OpenEI - nitrogen oxides  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm4610 en Hourly Energy Emission Factors for Electricity Generation in the United States http:en.openei.orgdatasetsnode488...

106

The carbon footprint analysis of wastewater treatment plants and nitrous oxide emissions from full-scale biological nitrogen removal processes in Spain  

E-Print Network (OSTI)

This thesis presents a general model for the carbon footprint analysis of advanced wastewater treatment plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ...

Xu, Xin, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

107

High Efficiency Particulate Air Filters  

NLE Websites -- All DOE Office Websites (Extended Search)

High Efficiency Particulate Air (HEPA) Filters High Efficiency Particulate Air (HEPA) Filters Home Standards DOE Workshops Nuclear Air Cleaning Conference Proceedings Qualified Filter List News Items Related Sites HEPA Related Lessons Learned Contact Us HSS Logo High Efficiency Particulate Air Filters The HEPA Filter web site provides a forum for informing and reporting department-wide activities related to filtration and ventilation issues with special reference to the High Efficiency Particulate Air (HEPA) Filters' use, inspection, and testing. This site contains essentials of DOE HEPA filter test program, procedures, requirements and quality assurance aspects applicable to HEPA filters used in DOE facilities. This site contains information about the DOE-accepted Filter Test Facility and its management, operation and quality assuranceprogram.

108

Just the Basics: Particulate Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

is Particulate is Particulate Matter? One of the major components of air pollution is particulate matter, or PM. PM refers to airborne particles that include dust, dirt, soot, smoke, and liquid droplets. These particles can range in size from microscopic to large enough to be seen. PM is characterized by its size, with fine particles of less than 2.5 micrometers in size designated as PM 2.5 and coarser particles between 2.5 and 10 micrometers in size designated as PM 10 . PM arises from many sources, including combustion occurring in factories, power plants, cars, trucks, buses, trains, or wood fires; or through simple agitation of existing particulates by tilling of land, quarrying and stone-crushing, and off- road vehicular movement. Of particular interest is PM generated during diesel

109

Method for dispersing catalyst onto particulate material and product thereof  

DOE Patents (OSTI)

A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.

Utz, Bruce R. (Pittsburgh, PA); Cugini, Anthony V. (Pittsburgh, PA)

1992-01-01T23:59:59.000Z

110

Electrical diesel particulate filter (DPF) regeneration  

SciTech Connect

An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

Gonze, Eugene V; Ament, Frank

2013-12-31T23:59:59.000Z

111

Ash reduction system using electrically heated particulate matter filter  

DOE Patents (OSTI)

A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

2011-08-16T23:59:59.000Z

112

Nox control for high nitric oxide concentration flows through combustion-driven reduction  

DOE Patents (OSTI)

An improved method for removing nitrogen oxides from concentrated waste gas streams, in which nitrogen oxides are ignited with a carbonaceous material in the presence of substoichiometric quantities of a primary oxidant, such as air. Additionally, reductants may be ignited along with the nitrogen oxides, carbonaceous material and primary oxidant to achieve greater reduction of nitrogen oxides. A scrubber and regeneration system may also be included to generate a concentrated stream of nitrogen oxides from flue gases for reduction using this method.

Yeh, James T. (Bethel Park, PA); Ekmann, James M. (Bethel Park, PA); Pennline, Henry W. (Bethel Park, PA); Drummond, Charles J. (Churchill, PA)

1989-01-01T23:59:59.000Z

113

Electrochemical process for the preparation of nitrogen fertilizers  

DOE Patents (OSTI)

The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be solid.

Aulich, Ted R.; Olson, Edwin S.; Jiang, Junhua

2013-03-19T23:59:59.000Z

114

Hydrocarbon-enhanced particulate filter regeneration via microwave ignition  

DOE Patents (OSTI)

A regeneration method for a particulate filter includes estimating a quantity of particulate matter trapped within the particulate filter, comparing the quantity of particulate matter to a predetermined quantity, heating at least a portion of the particulate filter to a combustion temperature of the particulate matter, and introducing hydrocarbon fuel to the particulate filter. The hydrocarbon fuel facilitates combustion of the particulate matter to regenerate the particulate filter.

Gonze, Eugene V. (Pinckney, MI); Brown, David B. (Brighton, MI)

2010-02-02T23:59:59.000Z

115

Feasibility of plasma aftertreatment for simultaneous control of NOx and particulates  

DOE Green Energy (OSTI)

Plasma reactors can be operated as a particulate trap or as a NOx converter. Particulate trapping in a plasma reactor can be accomplished by electrostatic precipitation. The soluble organic fraction of the trapped particulates can be utilized for the hydrocarbon-enhanced oxidation of NO to NO2 . The NO2 can then be used to non-thermally oxidize the carbon fraction of the particulates. The oxidation of the carbon fraction by NO2 can lead to reduction of NOx or backconversion of NO2 to NO. This paper examines the hydrocarbon and electrical energy density requirements in a plasma for maximum NOx conversion in both heavy-duty and light-duty diesel engine exhaust. The energy density required for complete oxidation of hydrocarbons is also examined and shown to be much greater than that required for maximum NOx conversion. The reaction of NO2 with carbon is shown to lead mainly to backconversion of NO2 to NO. These results suggest that the combination of the plasma with a catalyst will be required to reduce the NOx and oxidize the hydrocarbons. The plasma reactor can be operated occasionally in the arc mode to thermally oxidize the carbon fraction of the particulates.

Brusasco, R M; Merritt, B T; Penetrante, B; Pitz, W J; Vogtlin, G E

1999-08-24T23:59:59.000Z

116

Atmospheric Nitrogen Fixation by Lightning  

Science Conference Proceedings (OSTI)

The production Of nitrogen oxides (NO and NO2) by lightning flashes has been computed from a model of gaseous molecular reactions occurring as heated lightning-channel air cools by mixing with surrounding ambient air. The effect of ozone (O3) on ...

R. D. Hill; R. G. Rinker; H. Dale Wilson

1980-01-01T23:59:59.000Z

117

Laser ablation-inductively coupled plasma-mass spectrometry: Examinations of the origins of polyatomic ions and advances in the sampling of particulates  

SciTech Connect

This dissertation provides a general introduction to Inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation (LA) sampling, with an examination of analytical challenges in the employment of this technique. It discusses the origin of metal oxide ions (MO+) in LA-ICP-MS, as well as the effect of introducing helium and nitrogen to the aerosol gas flow on the formation of these polyatomic interferences. It extends the study of polyatomic ions in LA-ICP-MS to metal argide (MAr+) species, an additional source of possible significant interferences in the spectrum. It describes the application of fs-LA-ICP-MS to the determination of uranium isotope ratios in particulate samples.

Witte, Travis

2011-11-30T23:59:59.000Z

118

Fluidizable particulate materials and methods of making same  

DOE Patents (OSTI)

The invention provides fluidizable, substantially spherical particulate material of improved attrition resistance having an average particle size from about 100 to about 400 microns useful as sorbents, catalysts, catalytic supports, specialty ceramics or the like. The particles are prepared by spray drying a slurry comprising inorganic starting materials and an organic binder. Exemplary inorganic starting materials include mixtures of zinc oxide with titanium dioxide, or with iron oxide, alumina or the like. Exemplary organic binders include polyvinyl alcohol, hydroxypropylemethyl cellulose, polyvinyl acetate and the like. The spray dried particles are heat treated at a first temperature wherein organic binder material is removed to thereby provide a porous structure to the particles, and thereafter the particles are calcined at a higher temperature to cause reaction of the inorganic starting materials and to thereby form the final inorganic particulate material.

Gupta, Raghubir P. (Durham, NC)

1999-01-01T23:59:59.000Z

119

Direct-energy-regenerated particulate trap technology. Final report  

DOE Green Energy (OSTI)

The objective of this CRADA between Lockheed Martin and Cummins Engine Company was to develop fiber-reinforced silicon carbide (SiC) composite materials for use as diesel engine particulate traps. Chemical vapor deposition techniques were used to partially densify and rigidize a thin fibrous substrate and produce the porous SiC- based filter. Microwave energy was used to directly couple to the deposited SiC to uniformly heat the filter and oxidize the collected carbon particulates. For commercial usage particulate traps must: (1) filter carbon particulates from a high temperature diesel exhaust at an acceptably low backpressure, (2) survive thousands of thermal transients due to regeneration or cleaning of the filter by oxidizing the collected carbon, (3) be durable and reliable over the expected life of the filter (300,000 miles or 10,000 hours), and (4) provide a low overall operating cost which is competitive with other filtering techniques. The development efforts performed as part of this CRADA have resulted in a very promising new technology for Cummins Engine Company. Ceramic fiber based filter papers were developed at Fleetguard, Inc., (a Cummins Subsidiary) and used to produce the spiral wound, corrugated filter cartridges. Optimized SiC coatings were developed at Lockheed Martin which couple with 2.45 GHz microwaves. Prototype particulate filter cartridges fabricated at Fleetguard and rigidized at Lockheed Martin performed well in single cylinder engine tests at Cummins. These prototype filters obtained filtering efficiencies greater than 80% at acceptably low backpressures and could be successfully headed and regenerated using a conventional in-home microwave oven.

Stinton, D.P.; Janney, M.A. [Oak Ridge National Lab., TN (United States); Yonushonis, T.M.; McDonald, A.C.; Wiczynski, P.D. [Cummins Engine Co., Inc., Columbus, IN (United States); Haberkamp, W.C. [Fleetguard, Inc. (United States)

1996-12-01T23:59:59.000Z

120

Removal of sulfur and nitrogen containing pollutants from discharge gases  

DOE Patents (OSTI)

Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

Joubert, James I. (Pittsburgh, PA)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Process for particulate removal from coal liquids  

DOE Patents (OSTI)

Suspended solid particulates are removed from liquefied coal products by first subjecting such products to hydroclone action for removal in the underflow of the larger size particulates, and then subjecting the overflow from said hydroclone action, comprising the residual finer particulates, to an electrostatic field in an electrofilter wherein such finer particulates are deposited in the bed of beads of dielectric material on said filter. The beads are periodically cleaned by backwashing to remove the accumulated solids.

Rappe, Gerald C. (Macungie, PA)

1983-01-01T23:59:59.000Z

122

Electro Catalytic Oxidation (ECO) Operation  

Science Conference Proceedings (OSTI)

The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large scale capture and sequestration projects. The objectives of this project were to prove at a commercial scale that ECO is capable of extended operations over a range of conditions, that it meets the reliability requirements of a typical utility, and that the fertilizer co-product can be consistently generated, providing ECO with an economic advantage over conventional technologies currently available. Further objectives of the project were to show that the ECO system provides flue gas that meets the inlet standards necessary for ECO{sub 2} to operate, and that the outlet CO{sub 2} and other constituents produced by the ECO{sub 2} pilot can meet Kinder-Morgan pipeline standards for purposes of sequestration. All project objectives are consistent with DOE's Pollution Control Innovations for Power Plants program goals.

Morgan Jones

2011-03-31T23:59:59.000Z

123

Removal of basic nitrogen compounds from hydrocarbon liquids  

DOE Patents (OSTI)

A method is provided for reducing the concentration of basic nitrogen compounds in hydrocarbonaceous feedstock fluids used in the refining industry by providing a solid particulate carbonaceous adsorbent/fuel material such as coal having active basic nitrogen complexing sites on the surface thereof and the coal with a hydrocarbonaceous feedstock containing basic nitrogen compounds to facilitate attraction of the basic nitrogen compounds to the complexing sites and the formation of complexes thereof on the surface of the coal. The adsorbent coal material and the complexes formed thereon are from the feedstock fluid to provide a hydrocarbonaceous fluid of reduced basic nitrogen compound concentration. The coal can then be used as fuel for boilers and the like.

Givens, Edwin N. (Bethlehem, PA); Hoover, David S. (New Tripoli, PA)

1985-01-01T23:59:59.000Z

124

Nitrogen Deposition Data Available  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Deposition Data Available This data set, prepared by Elizabeth Holland and colleagues, contains data for wet and dry nitrogen-species deposition for the United States and...

125

Liquid Nitrogen Ice Cream  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Nitrogen Ice Cream If you have access to liquid nitrogen and the proper safety equipment and training, try this in place of your normal cryogenics demonstration Download...

126

Diesel particulate filter with zoned resistive heater  

Science Conference Proceedings (OSTI)

A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

Gonze, Eugene V [Pinckney, MI

2011-03-08T23:59:59.000Z

127

Zone heated diesel particulate filter electrical connection  

DOE Patents (OSTI)

An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI)

2010-03-30T23:59:59.000Z

128

Methods of separating particulate residue streams  

SciTech Connect

A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Wright, Christopher T. (Idaho Falls, ID); Hess, J. Richard (Idaho Falls, ID)

2011-04-05T23:59:59.000Z

129

Electrically heated particulate filter using catalyst striping  

DOE Patents (OSTI)

An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating is applied to the PF that increases a temperature of the combustion of the particulates within the PF.

Gonze, Eugene V; Paratore, Jr., Michael J; Ament, Frank

2013-07-16T23:59:59.000Z

130

Development of A Microwave Assisted Particulate Filter Regeneration System  

DOE Green Energy (OSTI)

The need for active regeneration of diesel particulate filters and the advantages of microwave assisted regeneration are discussed. The current study has multiple objectives, which include developing a microwave assisted particulate filter regeneration system for future generation light-duty diesel applications, including PNGV type applications. A variable power 2.0 kW microwave system and a tuned waveguide were employed. Cavity geometry is being optimized with the aid of computational modeling and temperature measurements during microwave heating. A wall-flow ceramic-fiber filter with superior thermal shock resistance, high filtration efficiency, and high soot capacity was used. The microwave assisted particulate filter regeneration system has operated for more than 100 hours in an engine test-cell with a 5.9-liter diesel engine with automated split exhaust flow and by-pass flow capabilities. Filter regeneration was demonstrated using soot loads up to 10 g/liter and engine exhaust at idling flow rates as the oxygen source. A parametric study to determine the optimal combination of soot loading, oxidant flow rate, microwave power and heating time is underway. Preliminary experimental results are reported.

Popuri, Sriram

2001-08-05T23:59:59.000Z

131

Advanced particulate matter control apparatus and methods  

DOE Patents (OSTI)

Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

Miller, Stanley J. (Grand Forks, ND); Zhuang, Ye (Grand Forks, ND); Almlie, Jay C. (East Grand Forks, MN)

2012-01-10T23:59:59.000Z

132

Electrically heated particulate filter propagation support methods and systems  

Science Conference Proceedings (OSTI)

A control system that controls regeneration of a particulate filter is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate combustion of particulate matter in the particulate filter. A propagation module estimates a propagation status of the combustion of the particulate matter based on a combustion temperature. A temperature adjustment module controls the combustion temperature by selectively increasing a temperature of exhaust that passes through the particulate filter.

Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

2011-06-07T23:59:59.000Z

133

Engines - 3-D Animation Shows Complex Geometry of Diesel Particulates  

NLE Websites -- All DOE Office Websites (Extended Search)

3-D Animation Shows Complex Geometry of Diesel Particulates Diesel particulate matter has a very complex geometry Most studies have observed these three-dimensional structures in...

134

Air Pollution Control Regulations: No. 3 - Particulate Emissions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 - Particulate Emissions from Industrial Processes (Rhode Island) Air Pollution Control Regulations: No. 3 - Particulate Emissions from Industrial Processes (Rhode Island)...

135

Radiant zone heated particulate filter  

DOE Patents (OSTI)

A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

Gonze, Eugene V [Pinckney, MI

2011-12-27T23:59:59.000Z

136

Influence of fuel sulfur content on emissions from diesel engines equipped with oxidation catalysts.  

E-Print Network (OSTI)

??Diesel oxidation catalysts (DOCs) are a viable exhaust aftertreatment alternative for alleviating regulated exhaust emissions of hydrocarbon (HC), carbon monoxide (CO), and particulate matter (PM)… (more)

Evans, Jason Carter.

2000-01-01T23:59:59.000Z

137

Glossary Term - Liquid Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Lepton Previous Term (Lepton) Glossary Main Index Next Term (Mercury) Mercury Liquid Nitrogen Liquid nitrogen boils in a frying pan on a desk. The liquid state of the element...

138

Electrically heated particulate filter enhanced ignition strategy  

DOE Patents (OSTI)

An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating applied to at least one of the PF and the grid. A control module estimates a temperature of the grid and controls the engine to produce a desired exhaust product to increase the temperature of the grid.

Gonze, Eugene V; Paratore, Jr., Michael J

2012-10-23T23:59:59.000Z

139

Nitrogen control of chloroplast differentiation  

DOE Green Energy (OSTI)

This project is directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins functioning in energy transduction and carbon metabolism. Molecular analyses performed with Chlamydomonas reinhardtii grown in a continuous culture system such that ammonium concentration is maintained at a low steady-state concentration so as to limit cell division. As compared to chloroplasts from cells of non-limiting nitrogen provisions, chloroplasts of N-limited cells are profoundly chlorophyll-deficient but still assimilate carbon for deposition of as starch and as storage lipids. Chlorophyll deficiency arises by limiting accumulation of appropriate nuclear-encoded mRNAs of and by depressed rates of translation of chloroplast mRNAs for apoproteins of reaction centers. Chloroplast translational effects can be partially ascribed to diminished rates of chlorophyll biosynthesis in N-limited cells, but pigment levels are not determinants for expression of the nuclear light-harvesting protein genes. Consequently, other signals that are responsive to nitrogen availability mediate transcriptional or post-transcriptional processes for accumulation of the mRNAs for LHC apoproteins and other mRNAs whose abundance is dependent upon high nitrogen levels. Conversely, limited nitrogen availability promotes accumulation of other proteins involved in carbon metabolism and oxidative electron transport in chloroplasts. Hence, thylakoids of N-limited cells exhibit enhanced chlororespiratory activities wherein oxygen serves as the electron acceptor in a pathway that involves plastoquinone and other electron carrier proteins that remain to be thoroughly characterized. Ongoing and future studies are also outlined.

Schmidt, G.W.

1992-07-01T23:59:59.000Z

140

Microwave-Regenerated Diesel Exhaust Particulate Filter  

Science Conference Proceedings (OSTI)

Development of a microwave-regenerated particulate filter system has evolved from bench scale work to actual diesel engine experimentation. The filter system was initially evaluated on a stationary mounted 1.2-L diesel engine and was able to remove a significant amount of carbon particles from the exhaust. The ability of the microwave energy to regenerate or clean the filter was also demonstrated on this engine under idle conditions. Based on the 1.2-L experiments, improvements to the filter design and materials were implemented and the system was re-evaluated on a vehicle equipped with a 7.3-L diesel engine. The 7.3-L engine was selected to achieve heavy filter loading in a relatively short period of time. The purpose of these experiments was to evaluate filter-loading capacity, power requirements for regeneration, and filter regeneration efficiency. A more detailed evaluation of the filter was performed on a stationary mounted 1.9-L diesel engine. The effect of exhaust flow rate, loading, transients, and regeneration on filter efficiency was evaluated with this setup. In addition, gaseous exhaust emissions were investigated with and without an oxidation catalyst on the filter cartridge during loading and regeneration. (SAE Paper SAE-2001-01-0903 © 2001 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

Nixdorf, Richard D. (Industrial Ceramic Solution, LLC); Green, Johney Boyd; Story, John M.; Wagner, Robert M. (Oak Ridge National Laboratory)

2001-03-05T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Partial oxidation process for producing a stream of hot purified gas  

DOE Patents (OSTI)

A partial oxidation process for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H.sub.2, CO, CO.sub.2, H.sub.2 O, CH.sub.4, NH.sub.3, HCl, HF, H.sub.2 S, COS, N.sub.2, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N.sub.2 and H.sub.2. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000.degree. F.

Leininger, Thomas F. (Chino Hills, CA); Robin, Allen M. (Anaheim, CA); Wolfenbarger, James K. (Torrance, CA); Suggitt, Robert M. (Wappingers Falls, NY)

1995-01-01T23:59:59.000Z

142

Partial oxidation process for producing a stream of hot purified gas  

DOE Patents (OSTI)

A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

1995-03-28T23:59:59.000Z

143

An improved visualization of diesel particulate filter/  

E-Print Network (OSTI)

The prevalence of diesel particulate filters (DPF) is increasing as emissions standards worldwide evolve to match current technologies. Since the first application of DPFs in the 1980's, PM trapping effectiveness has ...

Boehm, Kevin (Kevin W.)

2011-01-01T23:59:59.000Z

144

New ESP additive controls particulates  

Science Conference Proceedings (OSTI)

This article reports that a conditioning agent enhanced precipitator performance after plant switched to low-sulfur coal. Firing low-sulfur coal at a power plant designed for medium- or high-sulfur coal will impact the downstream particulate control device. Since the performance of an electro-static precipitator (ESP) is a strong function of the sulfur content in the coal, switching to a low-sulfur coal will severely impact collection efficiency. Particle resistivity is the dominant parameter affecting the performance of an ESP. When the resistivity is too high, the ESP must be increased in size by a factor of two to three, resulting in proportionally increased capital and operating costs. Fly ash from low-sulfur coal is known to have a typical resistivity one or two orders of magnitude above that for ideal collection efficiency in a well-designed ESP. Therefore, when a utility burning a medium- or high-sulfur coal switches to a low-sulfur coal, the increase in particle resistivity resulting from the reduced SO{sub 3} concentration will lead to severe problems in the ESP. There have been many instances where utilities have switched from a high- to a low-sulfur coal, and the problems caused by the increased resistivity have had such a devastating effect on the performance of the ESP that emissions have increased by a factor of 10.

Durham, M.D.; Baldrey, K.E.; Bustard, C.J.; Martin, C.E.; Dharmarajan, N.N.

1997-06-01T23:59:59.000Z

145

Reading Comprehension - Liquid Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Nitrogen Liquid Nitrogen Nitrogen is the most common substance in Earth's _________ crust oceans atmosphere trees . In the Earth's atmosphere, nitrogen is a gas. The particles of a gas move very quickly. They run around and bounce into everyone and everything. The hotter a gas is, the _________ slower faster hotter colder the particles move. When a gas is _________ cooled warmed heated compressed , its particles slow down. If a gas is cooled enough, it can change from a gas to a liquid. For nitrogen, this happens at a very _________ strange warm low high temperature. If you want to change nitrogen from a gas to a liquid, you have to bring its temperature down to 77 Kelvin. That's 321 degrees below zero _________ Kelvin Celsius Centigrade Fahrenheit ! Liquid nitrogen looks like water, but it acts very differently. It

146

NETL: Control Technology: Advanced Hybrid Particulate Collector  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Hybrid Particulate Collector Advanced Hybrid Particulate Collector Under DOE-NETL sponsorship, the University of North Dakota, Energy and Environmental Research Center (UND-EERC) has developed a new concept in particulate control, called an advanced hybrid particulate collector (AHPC). In addition to DOE and the EERC, the project team includes W.L. Gore & Associates, Inc., Allied Environmental Technologies, Inc., and the Otter Tail Power Company. The AHPC utilizes both electrostatic collection and filtration in a unique geometric configuration that achieves ultrahigh particle collection with much less collection area than conventional particulate control devices. The primary technologies for state-of-the-art particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). A major limitation of ESPs is that the fractional penetration of 0.1- to 1.0-µm particles is typically at least an order of magnitude greater than for 10-µm particles, so a situation exists where the particles that are of greatest health concern are collected with the lowest efficiency. Fabric filters are currently considered to be the best available control technology for fine particles, but emissions are dependent on ash properties and typically increase if the air-to-cloth (A/C) ratio is increased. In addition, many fabrics cannot withstand the rigors of high-SO2 flue gases, which are typical for bituminous fuels. Fabric filters may also have problems with bag cleanability and high pressure drop, which has resulted in conservatively designed, large, costly baghouses.

147

Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B  

SciTech Connect

This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

NONE

1998-01-01T23:59:59.000Z

148

500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Technical progress report, fourth quarter, 1994, October 1994--December 1994  

Science Conference Proceedings (OSTI)

This quarterly report discusses the technical progress of an innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NOx combustion equipment through the collection and analysis of long-term emissions data. The project provides a stepwise evaluation of the following NOx reduction technologies: Advanced overfire air (AOFA), Low NOx burners (LNB), LNB with AOFA, and Advanced Digital Controls and Optimization Strategies. The project has completed the baseline, AOFA, LNB, and LNB+AOFA test segments, fulfilling all testing originally proposed to DOE. Analysis of the LNB long-term data collected show the full load NOx emission levels to be near 0.65 lb/MBtu. This NOx level represents a 48 percent reduction when compared to the baseline, full load value of 1.24 lb/MBtu. These reductions were sustainable over the long-term test period and were consistent over the entire load range. Full load, fly ash LOI values in the LNB configuration were near 8 percent compared to 5 percent for baseline. Results from the LNB+AOFA phase indicate that full load NOx emissions are approximately 0.40 lb/MBtu with a corresponding fly ash LOI value of near 8 percent. Although this NOx level represents a 67 percent reduction from baseline levels, a substantial portion of the incremental change in NOx emissions between the LNB and LNB+AOFA configurations was the result of operational changes and not the result of the AOFA system. Phase 4 of the project is now underway.

NONE

1995-09-01T23:59:59.000Z

149

500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1994, July 1994--September 1994  

Science Conference Proceedings (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NOx combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The project provides a stepwise evaluation of the following NOx reduction technologies: Advanced overfire air (AOFA), Low NOx burners (LNB), LNB, with AOFA, and Advanced Digital Controls and Optimization Strategies. Baseline, AOFA, LNB, and LNB plus AOFA test segments have been completed. Based on a preliminary analysis, approximately 17 percent of the incremental change in NOx emissions between the LNB and LNB+AOFA configurations is the result of AOFA, the balance of the NOx reduction resulting from other operational adjustments. Preliminary diagnostic testing was conducted during August and September. The purpose of these tests was to determine the emissions and performance characteristics of the unit prior to activation of the advanced control/optimization strategies. Short-term, full load NOx emissions were near 0.47 lb/MBtu, slightly higher than that seen during the LNB+AOFA test phase. Long-term NO{sub x} emissions for this quarter averaged near 0.41 lb/MBtu. Due to turbine problems, a four week outage has been planned for Hammond 4 starting October 1. Two on-line carbon-in-ash monitors are being installed at Hammond Unit 4 as part of the Wall-Fired Project. These monitors will be evaluated as to their accuracy, repeatability, reliability, and serviceability.

NONE

1995-09-01T23:59:59.000Z

150

Market Potential for Nitrogen Fertilizers Derived from the Electric Power Industry  

Science Conference Proceedings (OSTI)

This technology evaluation report describes the potential market for fertilizer materials derived from utility by-products from developing ammonia-based flue gas desulfurization (FGD) systems to control sulfur oxides (SOx) and nitrogen oxides (NOx).

2002-11-27T23:59:59.000Z

151

Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol  

DOE Patents (OSTI)

A process for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol.

Steinberg, Meyer (Melville, NY); Grohse, Edward W. (Port Jefferson, NY)

1995-01-01T23:59:59.000Z

152

Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol  

DOE Patents (OSTI)

A process is described for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol. 3 figs.

Steinberg, M.; Grohse, E.W.

1995-06-27T23:59:59.000Z

153

Advanced Hybrid Particulate Collector Project Management Plan  

SciTech Connect

As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

Miller, S.J.

1995-11-01T23:59:59.000Z

154

Nitrogen Fixation by Lightning  

Science Conference Proceedings (OSTI)

When some of the uncertainties associated with lightning are reviewed, it becomes difficult to support a large production of fixed nitrogen from the lightning shock wave.

G. A. Dawson

1980-01-01T23:59:59.000Z

155

Particulate hot gas stream cleanup technical issues  

Science Conference Proceedings (OSTI)

The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

Pontius, D.H.; Snyder, T.R.

1999-09-30T23:59:59.000Z

156

Particulate matter sensor with a heater  

DOE Patents (OSTI)

An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

Hall, Matthew (Austin, TX)

2011-08-16T23:59:59.000Z

157

Sulfur oxide adsorbents and emissions control  

DOE Patents (OSTI)

High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

Li, Liyu (Richland, WA); King, David L. (Richland, WA)

2006-12-26T23:59:59.000Z

158

Particulate Fouling of HVAC Heat Exchangers Jeffrey Alexander Siegel  

E-Print Network (OSTI)

Particulate Fouling of HVAC Heat Exchangers by Jeffrey Alexander Siegel B.S. (Swarthmore College.......................................................................................xv CHAPTER 1: PARTICULATE FOULING OF HVAC HEAT EXCHANGERS ....1 1.1 Introduction.......................................................................11 CHAPTER 2: MODELING PARTICLE DEPOSITION ON HVAC HEAT EXCHANGERS

Siegel, Jeffrey

159

OH-Initiated Heterogeneous Aging of Highly Oxidized Organic Aerosol  

E-Print Network (OSTI)

The oxidative evolution (“aging”) of organic species in the atmosphere is thought to have a major influence on the composition and properties of organic particulate matter but remains poorly understood, particularly for ...

Kessler, Sean Herbert

160

Microscopy investigations of ash and particulate matter accumulation in diesel particulate filter surface pores  

E-Print Network (OSTI)

There has been increased focus on the environmental impact of automobile emissions in recent years. These environmental concerns have resulted in the creation of more stringent particulate matter emissions regulations in ...

Beauboeuf, Daniel P

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Electrically heated particulate filter preparation methods and systems  

SciTech Connect

A control system that controls regeneration of a particulate filter is provided. The system generally includes a fuel control module that controls injection of fuel into exhaust that passes through the particulate filter. A regeneration module controls current to the particulate filter to initiate regeneration after the fuel has been injected into the exhaust.

Gonze, Eugene V [Pinckney, MI

2012-01-31T23:59:59.000Z

162

Next Generation Non-particulate Dry Nonwoven Pad for Chemical Warfare Agent Decontamination  

SciTech Connect

New, non-particulate decontamination materials promise to reduce both military and civilian casualties by enabling individuals to decontaminate themselves and their equipment within minutes of exposure to chemical warfare agents or other toxic materials. One of the most promising new materials has been developed using a needlepunching nonwoven process to construct a novel and non-particulate composite fabric of multiple layers, including an inner layer of activated carbon fabric, which is well-suited for the decontamination of both personnel and equipment. This paper describes the development of a composite nonwoven pad and compares efficacy test results for this pad with results from testing other decontamination systems. The efficacy of the dry nonwoven fabric pad was demonstrated specifically for decontamination of the chemical warfare blister agent bis(2-chloroethyl)sulfide (H or sulfur mustard). GC/MS results indicate that the composite fabric was capable of significantly reducing the vapor hazard from mustard liquid absorbed into the nonwoven dry fabric pad. The mustard adsorption efficiency of the nonwoven pad was significantly higher than particulate activated carbon (p=0.041) and was similar to the currently fielded US military M291 kit (p=0.952). The nonwoven pad has several advantages over other materials, especially its non-particulate, yet flexible, construction. This composite fabric was also shown to be chemically compatible with potential toxic and hazardous liquids, which span a range of hydrophilic and hydrophobic chemicals, including a concentrated acid, an organic solvent and a mild oxidant, bleach.

Ramkumar, S S; Love, A; Sata, U R; Koester, C J; Smith, W J; Keating, G A; Hobbs, L; Cox, S B; Lagna, W M; Kendall, R J

2008-05-01T23:59:59.000Z

163

Nitrogen Deposition Data Available  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Cycle Data Available The ORNL DAAC announces the release of a data set prepared by Elisabeth Holland and colleagues titled "Global N Cycle: Fluxes and N2O Mixing Ratios...

164

Nitrogen Trifluoride-Based Fluoride- Volatility Separations Process: Initial Studies  

SciTech Connect

This document describes the results of our investigations on the potential use of nitrogen trifluoride as the fluorinating and oxidizing agent in fluoride volatility-based used nuclear fuel reprocessing. The conceptual process uses differences in reaction temperatures between nitrogen trifluoride and fuel constituents that produce volatile fluorides to achieve separations and recover valuable constituents. We provide results from our thermodynamic evaluations, thermo-analytical experiments, kinetic models, and provide a preliminary process flowsheet. The evaluations found that nitrogen trifluoride can effectively produce volatile fluorides at different temperatures dependent on the fuel constituent.

McNamara, Bruce K.; Scheele, Randall D.; Casella, Andrew M.; Kozelisky, Anne E.

2011-09-28T23:59:59.000Z

165

Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate  

DOE Patents (OSTI)

The present invention relates to a method of removing of nitrogen monoxide from a nitrogen monoxide-containing gas which method comprises contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate complex. The NO absorption efficiency of ferrous urea-dithiocarbamate and ferrous diethanolamine-xanthate as a function of time, oxygen content and solution ph is presented. 3 figs., 1 tab.

Liu, D. Kwok-Keung; Chang, Shih-Ger

1987-08-25T23:59:59.000Z

166

Nitrogen-incorporation induced changes in the microstructure of nanocrystalline WO3 thin films  

SciTech Connect

Nitrogen doped tungsten oxide (WO3) films were grown by reactive magnetron sputter-deposition by varying the nitrogen content in the reactive gas mixture keeping the deposition temperature fixed at 400 C. The crystal structure, surface morphology, chemical composition, and electrical resistivity of nitrogen doped WO3 films were evaluated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and electrical conductivity measurements. The results indicate that the nitrogen-doping induced changes in the microstructure and electrical properties of WO3 films are significant. XRD measurements coupled with SEM analysis indicates that the increasing nitrogen content decreases the grain size and crystal quality. The nitrogen concentration increases from 0 at.% to 1.35 at.% with increasing nitrogen flow rate from 0 to 20 sccm. The corresponding dc electrical conductivity of the films had shown a decreasing trend with increasing nitrogen content.

Vemuri, Venkata Rama Sesha R.; Noor-A-Alam, M.; Gullapalli, Satya K.; Engelhard, Mark H.; Ramana, C.V.

2011-12-30T23:59:59.000Z

167

Spatial and temporal distributions of particulate matter and particulate organic carbon, Northeast Gulf of Mexico  

E-Print Network (OSTI)

The distribution of particulate matter (PM) and particulate organic carbon (POC) was determined during the Northeast Gulf of Mexico Chemical Oceanography and Hydro-graphy program (NEGOM). The hydrography and physical forcing functions were examined to explain particulate matter distribution. PM and POC were determined for discrete samples, and PM was also compared with in situ beam attenuation measure-ments in order to make estimations of continuous particle concentration profiles. Measurements were made three times per year for three years, during 1997-1998, 1998-1999, and 1999-2000, but only the first two years' worth of results are reported here. PM distributions vary seasonally and interannually. General patterns tend to be fairly consistent spatially and temporally during fall and spring, but intensity changes accord-ing to season. Differences present at the surface appear to be due mainly to riverine input of nutrients and particles from the several major rivers that flow into the northeastern Gulf of Mexico. Wind-forced circulation appears to be a minor influence on surface particulate distribution. Secondary eddies can have an effect upon distribution, as seen with an anticyclonic feature over the upper slope during Summer 1998 which entrained less saline, high particulate river water offshore. A similar effect was noted during Summer 1999, but to a lesser degree. A shelf edge current associated with anticyclonic flow seems to be a mechanism responsible for the appearance of nepheloid layers on the outer shelf.

Bernal, Christina Estefana

2001-01-01T23:59:59.000Z

168

Kinetic Model Development for the Combustion of Particulate Matter from Conventional and Soy Methyl Ester Diesel Fuels  

DOE Green Energy (OSTI)

The primary objective of this research has been to investigate how the oxidation characteristics of diesel particulate matter (PM) are affected by blending soy-based biodiesel fuel with conventional ultra low sulfur diesel (ULSD) fuel. PM produced in a light duty engine from different biodiesel-conventional fuel blends was subjected to a range of physical and chemical measurements in order to better understand the mechanisms by which fuel-related changes to oxidation reactivity are brought about. These observations were then incorporated into a kinetic model to predict PM oxidation. Nanostructure of the fixed carbon was investigated by HR-TEM and showed that particulates from biodiesel had a more open structure than particulates generated from conventional diesel fuel, which was confirmed by BET surface area measurements. Surface area evolution with extent of oxidation reaction was measured for PM from ULSD and biodiesel. Biodiesel particulate has a significantly larger surface area for the first 40% of conversion, at which point the samples become quite similar. Oxidation characteristics of nascent PM and the fixed carbon portion were measured by temperature programmed oxidation (TPO) and it was noted that increased biodiesel blending lowered the light-off temperature as well as the temperature where the peak rate of oxidation occurred. A shift in the oxidation profiles of all fuels was seen when the mobile carbon fraction was removed, leaving only the fixed carbon, however the trend in temperature advantage of the biofuel blending remained. The mobile carbon fraction was measured by temperature programmed desorption found to generally increase with increasing biodiesel blend level. The relative change in the light-off temperatures for the nascent and fixed carbon samples was found to be related to the fraction of mobile carbon. Effective Arrhenius parameters for fixed carbon oxidation were directly measured with isothermal, differential oxidation experiments. Normalizing the reaction rate to the total carbon surface area available for reaction allowed for the definition of a single reaction rate with constant activation energy (112.5 {+-} 5.8 kJ/mol) for the oxidation of PM, independent of its fuel source. A kinetic model incorporating the surface area dependence of fixed carbon oxidation rate and the impact of the mobile carbon fraction was constructed and validated against experimental data.

Strzelec, Andrea [ORNL

2009-12-01T23:59:59.000Z

169

Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development  

DOE Green Energy (OSTI)

The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial velocity component of exhaust moving down the filter inlet channel. Soot mass collected in this way would have a smaller impact on backpressure than soot forced into the flow restrictions deeper in the porous wall structure. This project has focused on the development of computational, analytical, and experimental techniques that are generally applicable to a wide variety of exhaust aftertreatment technologies. By helping to develop improved fundamental understanding pore-scale phenomena affecting filtration, soot oxidation, and NOX abatement, this cooperative research and development agreement (CRADA) has also assisted Dow Automotive in continuing development and commercialization of the ACM filter substrate. Over the course of this research project, ACM filters were successfully deployed on the Audi R10 TDI racecar which won the 24 Hours of LeMans endurance race in 2006, 2007, and 2008; and the 12 Hours of Sebring endurance race in 2006 and 2007. It would not have been possible for the R10 to compete in these traditionally gasoline-dominated events without reliable and effective exhaust particulate filtration. These successes demonstrated not only the performance of automotive diesel engines, but the efficacy of DPF technology as it was being deployed around the world to meet new emissions standards on consumer vehicles. During the course of this CRADA project, Dow Automotive commercialized their ACM DPF technology under the AERIFYTM DPF brand.

Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

2010-08-01T23:59:59.000Z

170

Argonne TTRDC - Engines - Emissions Control - Advanced Diesel Particulate  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Advanced Diesel Particulate Filtration Systems Development of Advanced Diesel Particulate Filtration Systems The U.S. Environmental Protection Agency regulations require that on-highway diesel vehicles have filtration systems to reduce tail-pipe soot emissions, known as particulate matter (PM). Diesel particulate filtration (DPF) systems are currently the most efficient at directly controlling PM. Argonne researchers, working with Corning, Inc., and Caterpillar, Inc., through a cooperative research and development agreement, are exploiting previously unavailable technology and research results on diesel PM filtration and regeneration processes, aiming to the technology transfer of advanced PM emission control to industry. Argonne's Research In operation of DPF systems, the filtration and regeneration of particulate emissions are the key processes to be controlled for high efficiency. Due to difficulties in accessing the micro-scaled structures of DPF membranes and monitoring particulate filtration and high-temperature thermal processes, however, research has been limited to macroscopic observation for the product.

171

Particulate Controls for Near-Zero Emissions Plants  

Science Conference Proceedings (OSTI)

This report discusses the ability of current and developing particulate control technologies to meet extremely low, continuous, particulate emission limits. Interest in this topic is due to concerns about the environmental impact of coal-fired power plants and the trend towards lower and lower particulate emission limits proposed by regulators and environmental groups. The report characterizes the capabilities of existing electrostatic precipitators (ESPs) and fabric filters (FFs) and identifies several ...

2008-03-27T23:59:59.000Z

172

Characterization of particulate matter deposited in diesel particulate filters: Visual and analytical approach in macro-, micro- and nano-scales  

Science Conference Proceedings (OSTI)

Multi-scale analytical investigations of particulate matter (soot and ash) of two loaded diesel particulate filters (DPF) from (a) a truck (DPF1) and (b) a passenger car (DPF2) reveal the following: in DPF1 (without fuel-borne additives), soot aggregates form an approximately 130-270 {mu}m thick, homogeneous porous cake with pronounced orientation. Soot aggregates consist of 15-30 nm large individual particles exhibiting relatively mature internal nanostructures, however, far from being graphite. Ash aggregates largely accumulate at the outlet part of DPF1, while minor amounts are deposited directly on the channel walls all along the filter length. They consist of crystalline phases with individual particles of sizes down to the nanoscale range. Chemically, the ash consists mainly of Mg, S, Ca, Zn and P, elements encountered in lubricating oil additives. In the passenger car DPF2 (with fuel-borne additives), soot aggregates form an approximately 200-500 {mu}m thick, inhomogeneous porous cake consisting of several superposed layers corresponding to different soot generations. The largest part of the soot cake is composed of unburned, oriented soot aggregates left behind despite repeated regenerations, while a small part constitutes a loose layer with randomly oriented aggregates, which was deposited last and has not seen any regeneration. Fe-oxide particles of micro- to nano-scale sizes, originating from the fuel-borne additive, are often dispersed within the part of the soot cake composed of the unburned soot leftovers. The individual soot nanoparticles in DPF2 are approximately 15-40 nm large and generally less mature than in the truck DPF1. The presence of soot leftovers in DPF2 indicates that the addition of fuel-borne material does not fully compensate for the temperatures needed for complete soot removal. Ash in DPF2 is filling up more than half of the filter volume (at the downstream part) and is dominated by Fe-oxide aggregates, due to the Fe-based fuel-borne additive, but otherwise its chemical composition reflects compounds of lubricating oil additives. (author)

Liati, Anthi; Dimopoulos Eggenschwiler, Panayotis [EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for I.C. Engines, Duebendorf (Switzerland)

2010-09-15T23:59:59.000Z

173

Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition  

SciTech Connect

Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2013-01-01T23:59:59.000Z

174

Air Pollution Control Regulations: No. 13 - Particulate Emissions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pollution Control Regulations: No. 13 - Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island) Air Pollution Control Regulations: No. 13...

175

TransForum v3n4 - Diesel Particulates  

NLE Websites -- All DOE Office Websites (Extended Search)

ZEROING IN ON DIESEL PARTICULATE EMISSIONS Thick clouds of soot particles no longer billow from new bus and truck exhaust pipes, thanks to today's advanced diesel engines, which...

176

Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust  

DOE Green Energy (OSTI)

The objective of this project was to measure and characterize particulate emissions from light-duty alternative fuel vehicles (AFVs) and equivalent gasoline-fueled vehicles. The project included emission testing of a fleet of 129 gasoline-fueled vehicles and 19 diesel vehicles. Particulate measurements were obtained over Federal Test Procedure and US06 cycles. Chemical characterization of the exhaust particulate was also performed. Overall, the particulate emissions from modern technology compressed natural gas and methanol vehicles were low, but were still comparable to those of similar technology gasoline vehicles.

Durbin, T. D.; Truex, T. J.; Norbeck, J. M. (Center for Environmental Research and Technology College of Engineering, University of California - Riverside, California)

1998-11-19T23:59:59.000Z

177

Performance evaluation of diesel particulate filters on heavy duty vehicles.  

E-Print Network (OSTI)

??Diesel particulate filters, or DPFs, are exhaust aftertreatment devices used to reduce exhaust emissions from diesel powered vehicles. Typical designs have a wall flow filter… (more)

Rosepiler, Stephen G.

2003-01-01T23:59:59.000Z

178

Transpiration Purging Access Probe for Particulate Laden or  

NLE Websites -- All DOE Office Websites (Extended Search)

need for sensors that tolerate dirty environments, research is currently active on the patent-pending technology "Transpiration Purging Access Probe for Particulate Laden or...

179

Effect of Biodiesel Blends on Diesel Particulate Filter Performance  

DOE Green Energy (OSTI)

Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

2006-11-01T23:59:59.000Z

180

Electrically heated particulate filter with reduced stress  

DOE Patents (OSTI)

A system comprises a particulate matter (PM) filter comprising an inlet for receiving exhaust gas. A zoned heater is arranged in the inlet and comprises a resistive heater comprising N zones, where N is an integer greater than one. Each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates others of the N zones.

Gonze, Eugene V.

2013-03-05T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Method for Determining Performance of Sulfur Oxide Adsorbents for Diesel Emission Control Using Online Measurement of SO2 and SO3 in the Effluent  

SciTech Connect

Upcoming regulations regarding diesel engine emissions require substantial reduction in particulate matter and nitrogen oxides through aftertreatment methods. Since sulfur oxides in the exhaust greatly reduce the performance of the aftertreatment system, a dedicated trap for removal of sulfur oxides has been considered. Most adsorbents are more effective in removing SO{sub 3} than SO{sub 2}; hence oxidation catalysts have been employed to maximize the concentration of SO{sub 3} in the effluent. Although SO{sub 2} concentrations are easily measured, SO3 is less easily quantified. As a result, the only figure of merit for the SOx trap performance has been total capacity, provided by post-characterization. In this paper we describe a chromatographic method for measurement of SO{sub 2} and SO{sub 3} adsorption in real time, which provides adsorbent performance data on breakthrough capacities and sulfur slip, especially important when operating at high space velocities. We also provide experimental measurements of break through capacities for SO{sub 2} and SO{sub 3} adsorption for some common metal oxide adsorbents using this analytical system.

Li, Liyu; King, David L.

2004-07-21T23:59:59.000Z

182

Comparison of five organic wastes regarding their behaviour during composting: Part 2, nitrogen dynamic  

Science Conference Proceedings (OSTI)

This paper aimed to compare household waste, separated pig solids, food waste, pig slaughterhouse sludge and green algae regarding processes ruling nitrogen dynamic during composting. For each waste, three composting simulations were performed in parallel in three similar reactors (300 L), each one under a constant aeration rate. The aeration flows applied were comprised between 100 and 1100 L/h. The initial waste and the compost were characterized through the measurements of their contents in dry matter, total carbon, Kjeldahl and total ammoniacal nitrogen, nitrite and nitrate. Kjeldahl and total ammoniacal nitrogen and nitrite and nitrate were measured in leachates and in condensates too. Ammonia and nitrous oxide emissions were monitored in continue. The cumulated emissions in ammonia and in nitrous oxide were given for each waste and at each aeration rate. The paper focused on process of ammonification and on transformations and transfer of total ammoniacal nitrogen. The parameters of nitrous oxide emissions were not investigated. The removal rate of total Kjeldahl nitrogen was shown being closely tied to the ammonification rate. Ammonification was modelled thanks to the calculation of the ratio of biodegradable carbon to organic nitrogen content of the biodegradable fraction. The wastes were shown to differ significantly regarding their ammonification ability. Nitrogen balances were calculated by subtracting nitrogen losses from nitrogen removed from material. Defaults in nitrogen balances were assumed to correspond to conversion of nitrate even nitrite into molecular nitrogen and then to the previous conversion by nitrification of total ammoniacal nitrogen. The pool of total ammoniacal nitrogen, i.e. total ammoniacal nitrogen initially contained in waste plus total ammoniacal nitrogen released by ammonification, was calculated for each experiment. Then, this pool was used as the referring amount in the calculation of the rates of accumulation, stripping and nitrification of total ammoniacal nitrogen. Separated pig solids were characterised by a high ability to accumulate total ammoniacal nitrogen. Whatever the waste, the striping rate depended mostly on the aeration rate and on the pool concentration in biofilm. The nitrification rate was observed as all the higher as the concentration in total ammoniacal nitrogen in the initial waste was low. Thus, household waste and green algae exhibited the highest nitrification rates. This result could mean that in case of low concentrations in total ammoniacal nitrogen, a nitrifying biomass was already developed and that this biomass consumed it. In contrast, in case of high concentrations, this could traduce some difficulties for nitrifying microorganisms to develop.

Guardia, A. de, E-mail: amaury.de-guardia@cemagref.f [Cemagref, UR GERE, 17 Avenue de Cucille, CS 64427, F-35044 Rennes (France); Universite Europeenne de Bretagne, F-35000 Rennes (France); Mallard, P.; Teglia, C.; Marin, A.; Le Pape, C.; Launay, M.; Benoist, J.C.; Petiot, C. [Cemagref, UR GERE, 17 Avenue de Cucille, CS 64427, F-35044 Rennes (France); Universite Europeenne de Bretagne, F-35000 Rennes (France)

2010-03-15T23:59:59.000Z

183

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen in a  

NLE Websites -- All DOE Office Websites (Extended Search)

Freeze Liquid Nitrogen! Freeze Liquid Nitrogen! Previous Video (Let's Freeze Liquid Nitrogen!) Frostbite Theater Main Index Next Video (Freeze the Rainbow!) Freeze the Rainbow! Liquid Nitrogen in a Microwave! What happens when the world's most beloved cryogenic liquid meets one of the most common household appliances? Find out when we try to microwave liquid nitrogen! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: A little while ago we received an email from Star of the Sea Catholic School in Virginia Beach, Virginia, asking what happens when you place liquid nitrogen in a microwave. Well, I just happen to have some liquid nitrogen! Steve: And I just happen to have a microwave!

184

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen and  

NLE Websites -- All DOE Office Websites (Extended Search)

Freeze the Rainbow! Freeze the Rainbow! Previous Video (Freeze the Rainbow!) Frostbite Theater Main Index Next Video (Liquid Nitrogen and Fire!) Liquid Nitrogen and Fire! Liquid Nitrogen and Antifreeze! What happens when the freezing power of liquid nitrogen meets the antifreezing power of ethylene glycol? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: What happens when the freezing power of liquid nitrogen... Steve: ...meets the antifreezing power of ethylene glycol! Joanna: While a mix of 70 percent ethylene glycol and 30 percent water doesn't freeze until 60 degrees below zero, it's still no match for liquid nitrogen. At 321 degrees below zero, liquid nitrogen easily freezes

185

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

1997-01-01T23:59:59.000Z

186

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

1997-09-23T23:59:59.000Z

187

Turn-on fluorescent probes for detecting nitric oxide in biology  

E-Print Network (OSTI)

Chapter 1. Investigating the Biological Roles of Nitric Oxide and Other Reactive Nitrogen Species Using Fluorescent Probes: This chapter presents an overview of recent progress in the field of reactive nitrogen species ...

McQuade, Lindsey Elizabeth, 1981-

2010-01-01T23:59:59.000Z

188

The biogeochemistry of marine nitrous oxide  

E-Print Network (OSTI)

Atmospheric nitrous oxide N?O concentrations have been rising steadily for the past century as a result of human activities. In particular, human perturbation of the nitrogen cycle has increased the N?O production rates ...

Frame, Caitlin H

2011-01-01T23:59:59.000Z

189

Discrete-element modeling of particulate aerosol flows  

Science Conference Proceedings (OSTI)

A multiple-time step computational approach is presented for efficient discrete-element modeling of aerosol flows containing adhesive solid particles. Adhesive aerosol particulates are found in numerous dust and smoke contamination problems, including ... Keywords: Aerosols, Aggregation, Particle adhesion, Particulate flow

J. S. Marshall

2009-03-01T23:59:59.000Z

190

Method for removing particulate matter from a gas stream  

DOE Patents (OSTI)

Particulate matter is removed from a stream of pressurized gas by directing the stream of gas upwardly through a bed of porous material, the porous bed being held in an open ended container and at least partially submerged in liquid. The passage of the gas through the porous bed sets up a circulation in the liquid which cleans the particulate matter from the bed.

Postma, Arlin K. (Benton City, WA)

1984-01-01T23:59:59.000Z

191

Process for off-gas particulate removal and apparatus therefor  

DOE Patents (OSTI)

In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector`s centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel`s wall in the form of a ``wavy film,`` while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs.

Carl, D.E.

1997-10-21T23:59:59.000Z

192

Final Report: Particulate Emissions Testing, Unit 1, Potomac River  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Report: Particulate Emissions Testing, Unit 1, Potomac River Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria, Virginia Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria, Virginia Docket No. EO-05-01: TRC Environmental Corporation (TRC) of Lowell, Massachusetts was retained by Mirant Potomac River, LLC (Mirant) to provide sampling and analytical support in completing a Particulate Emission Test of Unit 1 of the Potomac River generating facility. The Test Program at the Potomac facility involved the completion of two series of emissions tests for particulate matter (PM), the first during normal unit operation and the second with the injection of TRONA upstream of hot side ESP fields. All tests were completed while Unit 1 was operating at 90% of full load (84MW)

193

Impact of Biofuel Blending on Diesel Soot Oxidation: Implications for Aftertreatment  

SciTech Connect

Control strategies for diesel particulate filters (DPFs) remain one of the most important aspects of aftertreatment research and understanding the soot oxidation mechanism is key to controlling regeneration. Currently, most DPF models contain simple, first order heterogeneous reactions oxidation models with empirically fit parameters. This work improves the understanding of fundamental oxidation kinetics necessary to advance the capabilities of predictive modeling, by leading to better control over regeneration of the device. This study investigated the effects of blending soybean-derived biodiesel fuel on diesel particulate emissions under conventional combustion from a 1.7L direct injection, common rail diesel engine. Five biofuel blend levels were investigated and compared to conventional certification diesel for the nanostructure, surface chemistry and major constituents of the soluble organic fraction (SOF) of diesel particulate matter (PM), and the relationship between these properties and the particulate oxidation kinetics.

Strzelec, Andrea [ORNL; Toops, Todd J [ORNL; Lewis Sr, Samuel Arthur [ORNL; Daw, C Stuart [ORNL; Foster, David [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin; Vander Wal, Dr. Randy [NASA-Glenn Research Center, Cleveland

2009-01-01T23:59:59.000Z

194

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA); Bagheri, Reza (Bethlehem, PA)

1997-12-02T23:59:59.000Z

195

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figures.

McInnis, E.L.; Scharff, R.P.; Bauman, B.D.; Williams, M.A.

1995-01-17T23:59:59.000Z

196

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figs.

Bauman, B.D.; Williams, M.A.; Bagheri, R.

1997-12-02T23:59:59.000Z

197

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

McInnis, Edwin L. (Allentown, PA); Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA)

1996-04-09T23:59:59.000Z

198

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figs.

McInnis, E.L.; Bauman, B.D.; Williams, M.A.

1996-04-09T23:59:59.000Z

199

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

McInnis, Edwin L. (Allentown, PA); Scharff, Robert P. (Louisville, KY); Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA)

1995-01-01T23:59:59.000Z

200

Process for producing dispersed particulate composite materials  

DOE Patents (OSTI)

This invention is directed to a process for forming noninterwoven dispersed particulate composite products. In one case a composite multi-layer film product comprises a substantially noninterwoven multi-layer film having a plurality of discrete layers. This noninterwoven film comprises at least one discrete layer of a first material and at least one discrete layer of a second material. In another case the first and second materials are blended together with each other. In either case, the first material comprises a metalloid and the second material a metal compound. At least one component of a first material in one discrete layer undergoes a solid state displacement reaction with at least one component of a second material thereby producing the requisite noninterwoven composite film product. Preferably, the first material comprises silicon, the second material comprises Mo.sub.2 C, the third material comprises SiC and the fourth material comprises MoSi.sub.2.

Henager, Jr., Charles H. (Richland, WA); Hirth, John P. (Viola, ID)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Overlap zoned electrically heated particulate filter  

DOE Patents (OSTI)

A system includes a particulate matter (PM) filter that includes an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than or equal to one, and wherein the N zones and the M sub-zones are arranged in P layers, where P is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

Gonze, Eugene V [Pinckney, MI; Chapman, Mark R [Brighton, MI

2011-07-19T23:59:59.000Z

202

Development of Metal Substrate for Denox Catalysts and Particulate Trap  

DOE Green Energy (OSTI)

The objective of this project was to develop advanced metallic catalyst substrate materials and designs for use in off-highway applications. The new materials and designs will be used as catalyst substrates and diesel particulate traps. They will increase durability, reduce flow resistance, decrease time to light-off, and reduce cost relative to cordierite substrates. Metallic catalyst substrates are used extensively for diesel oxidation catalysts and have the potential to be used in other catalytic systems for diesel engines. Metallic substrates have many advantages over ceramic materials including improved durability and resistance to thermal shock and vibration. However, the cost is generally higher than cordierite. The most common foil material used for metallic substrates is FeCr Alloy, which is expensive and has temperature capabilities beyond what is necessary for diesel applications. The first task in the project was Identification and Testing of New Materials. In this task, several materials were analyzed to determine if a low cost substitute for FeCr Alloy was available or could be developed. Two materials were identified as having lower cost while showing no decrease in mechanical properties or oxidation resistance at the application temperatures. Also, the ability to fabricate these materials into a finished substrate was not compromised, and the ability to washcoat these materials was satisfactory. Therefore, both candidate materials were recommended for cost savings depending on which would be less expensive in production quantities. The second task dealt with the use of novel flow designs to improve the converter efficiency while possibly decreasing the size of the converter to reduce cost even more. A non-linear flow path was simulated to determine if there would be an increase in efficiency. From there, small samples were produced for bench testing. Bench tests showed that the use of non-linear channels significantly reduced the light-off temperature for diesel oxidation catalytic converters. Finally, the third task was to implement these materials and designs into a full-size converter. Hot shake testing of 13-inch diameter straight channel substrates showed no significant difference in durability between the current material and the two proposed materials. At the time that this program ended, preparations were being made for full-scale emissions testing of the new design converter for comparison to a traditional straight channel with equal catalyst loading.

Pollard, Michael; Habeger, Craig; Frary, Megan; Haines, Scott; Fluharty, Amy; Dakhoul, Youssef; Carr, Michael; Park, Paul; Stefanick, Matthew; DaCosta, Herbert; Balmer-Millar, M Lou; Readey, Michael; McCluskey, Philip

2005-12-31T23:59:59.000Z

203

Understanding Nitrogen Fixation  

DOE Green Energy (OSTI)

The purpose of our program is to explore fundamental chemistry relevant to the discovery of energy efficient methods for the conversion of atmospheric nitrogen (N{sub 2}) into more value-added nitrogen-containing organic molecules. Such transformations are key for domestic energy security and the reduction of fossil fuel dependencies. With DOE support, we have synthesized families of zirconium and hafnium dinitrogen complexes with elongated and activated N-N bonds that exhibit rich N{sub 2} functionalization chemistry. Having elucidated new methods for N-H bond formation from dihydrogen, C-H bonds and Broensted acids, we have since turned our attention to N-C bond construction. These reactions are particularly important for the synthesis of amines, heterocycles and hydrazines with a range of applications in the fine and commodity chemicals industries and as fuels. One recent highlight was the discovery of a new N{sub 2} cleavage reaction upon addition of carbon monoxide which resulted in the synthesis of an important fertilizer, oxamide, from the diatomics with the two strongest bonds in chemistry. Nitrogen-carbon bonds form the backbone of many important organic molecules, especially those used in the fertilizer and pharamaceutical industries. During the past year, we have continued our work in the synthesis of hydrazines of various substitution patterns, many of which are important precursors for heterocycles. In most instances, the direct functionalization of N{sub 2} offers a more efficient synthetic route than traditional organic methods. In addition, we have also discovered a unique CO-induced N{sub 2} bond cleavage reaction that simultaneously cleaves the N-N bond of the metal dinitrogen compound and assembles new C-C bond and two new N-C bonds. Treatment of the CO-functionalized core with weak Broensted acids liberated oxamide, H{sub 2}NC(O)C(O)NH{sub 2}, an important slow release fertilizer that is of interest to replace urea in many applications. The synthesis of ammonia, NH{sub 3}, from its elements, H{sub 2} and N{sub 2}, via the venerable Haber-Bosch process is one of the most significant technological achievements of the past century. Our research program seeks to discover new transition metal reagents and catalysts to disrupt the strong N {triple_bond} N bond in N{sub 2} and create new, fundamental chemical linkages for the construction of molecules with application as fuels, fertilizers and fine chemicals. With DOE support, our group has discovered a mild method for ammonia synthesis in solution as well as new methods for the construction of nitrogen-carbon bonds directly from N{sub 2}. Ideally these achievements will evolve into more efficient nitrogen fixation schemes that circumvent the high energy demands of industrial ammonia synthesis. Industrially, atmospheric nitrogen enters the synthetic cycle by the well-established Haber-Bosch process whereby N{sub 2} is hydrogenated to ammonia at high temperature and pressure. The commercialization of this reaction represents one of the greatest technological achievements of the 20th century as Haber-Bosch ammonia is responsible for supporting approximately 50% of the world's population and serves as the source of half of the nitrogen in the human body. The extreme reaction conditions required for an economical process have significant energy consequences, consuming 1% of the world's energy supply mostly in the form of pollution-intensive coal. Moreover, industrial H{sub 2} synthesis via the water gas shift reaction and the steam reforming of methane is fossil fuel intensive and produces CO{sub 2} as a byproduct. New synthetic methods that promote this thermodynamically favored transformation ({Delta}G{sup o} = -4.1 kcal/mol) under milder conditions or completely obviate it are therefore desirable. Most nitrogen-containing organic molecules are derived from ammonia (and hence rely on the Haber-Bosch and H{sub 2} synthesis processes) and direct synthesis from atmospheric nitrogen could, in principle, be more energy-efficient. This is particularly attractive giv

Paul J. Chirik

2012-05-25T23:59:59.000Z

204

Nitrogen fixation apparatus  

DOE Patents (OSTI)

A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

Chen, Hao-Lin (Walnut Creek, CA)

1984-01-01T23:59:59.000Z

205

Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions  

DOE Green Energy (OSTI)

A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

2008-11-25T23:59:59.000Z

206

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen and Fire!  

NLE Websites -- All DOE Office Websites (Extended Search)

Antifreeze! Antifreeze! Previous Video (Liquid Nitrogen and Antifreeze!) Frostbite Theater Main Index Next Video (Liquid Nitrogen and the Tea Kettle Mystery!) Liquid Nitrogen and the Tea Kettle Mystery! Liquid Nitrogen and Fire! A burning candle is placed in a container of liquid nitrogen! Filmed in front of a live studio audience. Well, they were live when we started... [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Steve: Now, then. I'm a little bit afraid to ask this next question because I think I already know the answer, but is anyone in here feeling a little... dangerous? You're willing to take a chance? Because I am willing to do an experiment they haven't let me do since 'The Incident.' Now, because of the danger, I cannot have a volunteer. I must do this on my

207

Nitrogen chiller acceptance test procedure  

SciTech Connect

This document includes the inspection and testing requirements for the Nitrogen Chiller unit. The Chiller will support the Rotary Mode core Sampling System during the summer. The Chiller cools the Nitrogen Purge Gas that is used when drilling in tank wastes to cool the drill bit.

Kostelnik, A.J.

1995-03-07T23:59:59.000Z

208

Mechanical Properties of Particulate Reinforced Aluminium Alloy Matrix Composite  

Science Conference Proceedings (OSTI)

This paper discusses the mechanical properties of Titanium Carbide (TiC) particulate reinforced aluminium-silicon alloy matrix composite. TiC particulate reinforced LM6 alloy matrix composites were fabricated by carbon dioxide sand molding process with different particulate weight fraction. Tensile strength, hardness and microstructure studies were conducted to determine the maximum load, tensile strength, modulus of elasticity and fracture surface analysis have been performed to characterize the morphological aspects of the test samples after tensile testing. Hardness values are measured for the TiC reinforced LM6 alloy composites and it has been found that it gradually increases with increased addition of the reinforcement phase. The tensile strength of the composites increased with the increase percentage of TiC particulate.

Sayuti, M. [Faculty of Engineering, Malikussaleh University of Lhokseumawe, 24300 Aceh (Indonesia); Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Sulaiman, S.; Baharudin, B. T. H. T.; Arifin, M. K. A. [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Suraya, S.; Vijayaram, T. R.

2011-01-17T23:59:59.000Z

209

JV Task 95-Particulate Control Consulting for Minnesota Ore Operations  

Science Conference Proceedings (OSTI)

The purpose of the project was to assist U.S. Steel in the evaluation, selection, planning, design, and testing of potential approaches to help meet U.S. Steel's goal for low-particulate matter emissions and regulatory compliance. The energy-intensive process for producing iron pellets includes treating the pellets in high-temperature kilns in which the iron is converted from magnetite to hematite. The kilns can be fired with either natural gas or a combination of gas and coal or biomass fuel and are equipped with wet venturi scrubbers for particulate control. Particulate measurements at the inlet and outlet of the scrubbers and analysis of size-fractionated particulate samples led to an understanding of the effect of process variables on the measured emissions and an approach to meet regulatory compliance.

Stanley Miller

2008-10-31T23:59:59.000Z

210

Ris-R-1053(EN) Particulate Air Pollution with  

E-Print Network (OSTI)

particulate matter in inner city air. The particle size distribution shows that 92 % of the mass of airborne91 F Main reaction pathways in non sulphur vulcanisation 94 G Flame atomic absorption spectrometer

211

A process for off-gas particulate removal  

DOE Patents (OSTI)

This paper describes an off-gas system for the removal of radioactive particulates from a melter for the vitrification of radioactive wastes to form glass waste forms. A diagram is provided.

Carl, D.E.

1998-04-01T23:59:59.000Z

212

State emissions limitations for boilers: particulate matter  

SciTech Connect

This document summarizes regulations applicable to boilers as reflected in current state and local air regulations. Not all of these regulations are officially part of Federally-approved State Implementation Plans (SIPs). Several regulations have only recently been adopted by the State and are now undergoing EPA review for incorporation into the SIP. Each summary also contains local regulations more stringent than the State rules. Most local regulations in this handbook are included in the State Implementation Plan. Site-specific emission limits (variances from State limits or limits more stringent than State limits) are not included in these summaries. Appendix A contains maps showing the location of Air Quality Control Regions or other districts by which several States regulate emissions. Appendix B contains a summary of National Ambient Air Quality Standards, which States are required to meet as a minimum. Appendix C contains a description and summary of Federal New Source Performance Standards. Appendix D contains formulas for conversion of emmissions limits expressed in one set of units to the most common units - No. PM/MMBtu. Appendix E contains Figure 2 of ASME APS-1, used for determining particulate emissions limits in some States.

Not Available

1980-01-01T23:59:59.000Z

213

Zone heated inlet ignited diesel particulate filter regeneration  

DOE Patents (OSTI)

An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that is disposed downstream of the engine and that filters particulates from the exhaust; and a grid that includes electrically resistive material that is segmented by non-conductive material into a plurality of zones and wherein the grid is applied to an exterior upstream surface of the PF.

Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

2012-06-26T23:59:59.000Z

214

NETL: Ambient Monitoring - Southern Fine Particulate Monitoring Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Southern Fine Particulate Monitoring Project (SRI) Southern Fine Particulate Monitoring Project (SRI) Southern Research Institute (SRI), Birmingham, AL, is operating a research station in North Birmingham for monitoring fine particulate matter (PM2.5) that exists in that part of the Deep South. The station will be a core PM2.5 mass monitoring and chemical speciation station in the nationwide EPA PM2.5 network. As such, it will be a complement and supplement to DOE-NETL's other ongoing projects for monitoring fine particulate matter in the upper Ohio River valley. Locating additional monitoring equipment in the Deep South will fill an important gap in the national particulate monitoring effort. The region's topography, weather patterns, and variety of emission sources may affect the chemical make-up and airborne transport of fine particles in ways that are different than in other parts of the country. The project's results will support DOE's comprehensive program to evaluate ambient fine particulate matter through better understanding of the chemical and physical properties of these materials.

215

Eighth international congress on nitrogen fixation  

DOE Green Energy (OSTI)

This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

Not Available

1990-01-01T23:59:59.000Z

216

Diesel particulate filter (DPF) regeneration by electrical heating of resistive coatings  

DOE Patents (OSTI)

An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is integrally formed in an upstream end of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

Williamson, Weldon S. (Malibu, CA); Gonze, Eugene V. (Pinckney, MI)

2008-12-30T23:59:59.000Z

217

Frostbite Theater - Liquid Nitrogen Experiments - Superconductors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Main Index Next Video (Cells vs. Liquid Nitrogen) Cells vs. Liquid Nitrogen Superconductors What happens when a magnet is placed on a superconductor? Play the video to find...

218

Frostbite Theater - Liquid Nitrogen Experiments - Instant Liquid Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Freezing Balloons! Freezing Balloons! Previous Video (Freezing Balloons!) Frostbite Theater Main Index Next Video (Shattering Flowers!) Shattering Flowers! Instant Liquid Nitrogen Balloon Party! Need a bunch of balloons blown-up quickly? Liquid nitrogen to the rescue! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: We've been making videos for a while now and we've learned that people like balloons and liquid nitrogen! Steve: So... Here you go! Balloon: Crackling... Balloon: Pop! Joanna: Ooh! Balloon: Pop! Balloon: Pop! Steve: If you'd like to know the science of what's going on behind this, please one of our first videos, "Liquid Nitrogen Experiments: The Balloon."

219

Controlling diesel NOx & PM emissions using fuel components and enhanced aftertreatment techniques: developing the next generation emission control system.  

E-Print Network (OSTI)

??The following research thesis focuses on methods of controlling nitrogen oxides (NO(X)) and particulate matter (PM) emissions emitted from a low temperature diesel exhaust. This… (more)

Gill, Simaranjit Singh

2012-01-01T23:59:59.000Z

220

NETL: News Release - Record Run by Solid Oxide Fuel Cell Comes...  

NLE Websites -- All DOE Office Websites (Extended Search)

the equivalent of 65 kilowatts of thermal energy in the form of hot water to the local district heating system. Air emissions from the unit - nitrogen oxides, sulfur oxides,...

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

It's Elemental - The Element Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Carbon Previous Element (Carbon) The Periodic Table of Elements Next Element (Oxygen) Oxygen The Element Nitrogen [Click for Isotope Data] 7 N Nitrogen 14.0067 Atomic Number: 7 Atomic Weight: 14.0067 Melting Point: 63.15 K (-210.00°C or -346.00°F) Boiling Point: 77.36 K (-195.79°C or -320.44°F) Density: 0.0012506 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 15 Group Name: Pnictogen What's in a name? From the Greek words nitron and genes, which together mean "saltpetre forming." Say what? Nitrogen is pronounced as NYE-treh-gen. History and Uses: Nitrogen was discovered by the Scottish physician Daniel Rutherford in 1772. It is the fifth most abundant element in the universe and makes up

222

COMBUSTION SOURCES OF NITROGEN COMPOUNDS  

E-Print Network (OSTI)

Rasmussen, R.A. (1976). Combustion as a source of nitrousx control for stationary combustion sources. Prog. Energy,CA, March 3-4, 1977 COMBUSTION SOURCES OF NITROGEN COMPOUNDS

Brown, Nancy J.

2011-01-01T23:59:59.000Z

223

Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency Studies Using Laboratory Generated Particles  

DOE Green Energy (OSTI)

Diesel offers higher fuel efficiency, but produces higher exhaust particulate matter. Diesel particulate filters are presently the most efficient means to reduce these emissions. These filters typically trap particles in two basic modes: at the beginning of the exposure cycle the particles are captured in the filter holes, and at longer times the particles form a "cake" on which particles are trapped. Eventually the "cake" removed by oxidation and the cycle is repeated. We have investigated the properties and behavior of two commonly used filters: silicon carbide (SiC) and cordierite (DuraTrap® RC) by exposing them to nearly-spherical ammonium sulfate particles. We show that the transition from deep bed filtration to "cake" filtration can easily be identified by recording the change in pressure across the filters as a function of exposure. We investigated performance of these filters as a function of flow rate and particle size. The filters trap small and large particles more efficiently than particles that are ~80 to 200 nm in aerodynamic diameter. A comparison between the experimental data and a simulation using incompressible lattice-Boltzmann model shows very good qualitative agreement, but the model overpredicts the filter’s trapping efficiency.

Yang, Juan; Stewart, Marc; Maupin, Gary D.; Herling, Darrell R.; Zelenyuk, Alla

2009-04-15T23:59:59.000Z

224

Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion  

DOE Green Energy (OSTI)

Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOX and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOX trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOX emissions downstream of the LNT. The pressure drop across the DPF was measured at a standard point (1500 rpm, 5.0 bar) before and after loading, and a P rise rate was determined for comparison between conventional and advanced combustion modes. Higher PM emissions in conventional combustion resulted in a higher rate of backpressure rise across the DPF at all of the load points leading to more frequent DPF regenerations and higher fuel penalty. The fuel penalty during conventional combustion was 4.2% compared with 3.1% for a mixture of conventional and advanced modes.

Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL

2009-01-01T23:59:59.000Z

225

Nitrogen removal from natural gas  

SciTech Connect

According to a 1991 Energy Information Administration estimate, U.S. reserves of natural gas are about 165 trillion cubic feet (TCF). To meet the long-term demand for natural gas, new gas fields from these reserves will have to be developed. Gas Research Institute studies reveal that 14% (or about 19 TCF) of known reserves in the United States are subquality due to high nitrogen content. Nitrogen-contaminated natural gas has a low Btu value and must be upgraded by removing the nitrogen. In response to the problem, the Department of Energy is seeking innovative, efficient nitrogen-removal methods. Membrane processes have been considered for natural gas denitrogenation. The challenge, not yet overcome, is to develop membranes with the required nitrogen/methane separation characteristics. Our calculations show that a methane-permeable membrane with a methane/nitrogen selectivity of 4 to 6 would make denitrogenation by a membrane process viable. The objective of Phase I of this project was to show that membranes with this target selectivity can be developed, and that the economics of the process based on these membranes would be competitive. Gas permeation measurements with membranes prepared from two rubbery polymers and a superglassy polymer showed that two of these materials had the target selectivity of 4 to 6 when operated at temperatures below - 20{degrees}C. An economic analysis showed that a process based on these membranes is competitive with other technologies for small streams containing less than 10% nitrogen. Hybrid designs combining membranes with other technologies are suitable for high-flow, higher-nitrogen-content streams.

1997-04-01T23:59:59.000Z

226

Ceramic filters for removal of particulates from hot gas streams  

Science Conference Proceedings (OSTI)

The primary goal is to demonstrate the performance of a new ceramic filter in removing particulate matter from hot gas streams produced in advanced coal conversion processes. The specific objectives are threefold: (1) Development of full size ceramic filters suitable for hot gas filtration; (2) Demonstration of ceramic filters in long term (ca. 1000 hrs) field trials; and (3) Development of full-scale hot gas filter system designs and costs. To date, field tests of the ceramic filter for particulate removal have been conducted at seven sites on a variety of gas streams and under a variety of test conditions. In general, the following performance characteristics have been observed: 1. Filtration face velocity (equivalent to an ``air to cloth ratio``) for flue gas tests is comparable to that for pulse jet bags operating at the same pressure drop. In hot gas tests, flow-pressure drop characteristics have been observed to be comparable to those for other ceramic filters. 2. Complete regeneration by a simple backpulse technique is achieved; i.e., no increase in clean filter resistance over repetitive cycles is observed. 3. No plugging of the filter passageways by badly caking particulates is observed. 4. Essentially complete particulate removal, including submicron particulate matter, is achieved.

Goldsmith, R.L.

1992-11-01T23:59:59.000Z

227

Ceramic filters for removal of particulates from hot gas streams  

Science Conference Proceedings (OSTI)

The primary goal is to demonstrate the performance of a new ceramic filter in removing particulate matter from hot gas streams produced in advanced coal conversion processes. The specific objectives are threefold: (1) Development of full size ceramic filters suitable for hot gas filtration; (2) Demonstration of ceramic filters in long term (ca. 1000 hrs) field trials; and (3) Development of full-scale hot gas filter system designs and costs. To date, field tests of the ceramic filter for particulate removal have been conducted at seven sites on a variety of gas streams and under a variety of test conditions. In general, the following performance characteristics have been observed: 1. Filtration face velocity (equivalent to an air to cloth ratio'') for flue gas tests is comparable to that for pulse jet bags operating at the same pressure drop. In hot gas tests, flow-pressure drop characteristics have been observed to be comparable to those for other ceramic filters. 2. Complete regeneration by a simple backpulse technique is achieved; i.e., no increase in clean filter resistance over repetitive cycles is observed. 3. No plugging of the filter passageways by badly caking particulates is observed. 4. Essentially complete particulate removal, including submicron particulate matter, is achieved.

Goldsmith, R.L.

1992-01-01T23:59:59.000Z

228

Oxides Emissions from Coal-Fired Boilers TOPICAL REPORT NUMBER 14  

NLE Websites -- All DOE Office Websites (Extended Search)

Reburning Technologies for the Control of Nitrogen Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers TOPICAL REPORT NUMBER 14 MAY 1999 TOPICAL REPORT NUMBER 14 A report on three projects conducted under separate cooperative agreements between: The U.S. Department of Energy and * The Babcock & Wilcox Company * Energy and Environmental Research Corporation * New York State Electric & Gas Corporation MAY 1999 Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers Cover image: Schematic of reburning technology Source: Energy and Environmental Research Corporation Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers Executive Summary ..................................................................................................

229

Contribution of organic carbon to wood smoke particulate matter absorption  

NLE Websites -- All DOE Office Websites (Extended Search)

Contribution of organic carbon to wood smoke particulate matter absorption Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation Title Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation Publication Type Journal Article Year of Publication 2012 Authors Kirchstetter, Thomas W., and Tracy L. Thatcher Journal Atmospheric Chemistry and Physics Volume 12 Pagination 6067-6072 Abstract A spectroscopic analysis of 115 wintertime partic- ulate matter samples collected in rural California shows that wood smoke absorbs solar radiation with a strong spectral se- lectivity. This is consistent with prior work that has demon- strated that organic carbon (OC), in addition to black car- bon (BC), appreciably absorbs solar radiation in the visible and ultraviolet spectral regions. We apportion light absorp-

230

Relationship between acid content of particulates and rainfall in Bangkok  

SciTech Connect

Rainfall at nine stations in Bangkok, Thailand, varied from pH 5.57 to 6.32, low values compared with cities in North America and Europe. Particulate acid content ranged from 5.38 to 10.15 micrograms per cu meter. Analysis for several ions showed that the concentration of sulfate was the controlling factor in acidity of rain. pH was reduced by 1 unit for each 9.09 micrograms per cu meter acid content of particulates according to a relationship derived in the study: pH = 6.87 - 0.11 (acidity of particulates in micrograms per cu meter). 13 references, 3 figures, 2 tables.

Khan, S.M.

1980-01-01T23:59:59.000Z

231

Fluidizing a mixture of particulate coal and char  

DOE Patents (OSTI)

Method of mixing particulate materials comprising contacting a primary source and a secondary source thereof whereby resulting mixture ensues; preferably at least one of the two sources has enough motion to insure good mixing and the particulate materials may be heat treated if desired. Apparatus for such mixing comprising an inlet for a primary source, a reactor communicating therewith, a feeding means for supplying a secondary source to the reactor, and an inlet for the secondary source. Feeding means is preferably adapted to supply fluidized materials.

Green, Norman W. (Pomona, CA)

1979-08-07T23:59:59.000Z

232

Research priorities for airborne particulates matter in the United States  

SciTech Connect

Despite substantial progress in reducing air pollution over the past 30 years, particulates remain a poorly understood health concern that requires further study. The article provides a brief overview of the work of an independent National Research Council (NRC) Committee on particulate matter (PM). It highlights the committee's process for developing during its deliberations. It reflects on the committee as a potential model to provide guidance on a broad research area in which findings may have significant policy implications. 13 refs., 1 fig., 1 tab.

Samet, J.; Wassle, R.; Holmes, K.J.; Abt, E.; Bakshi, K. [John Hopkins University (US). Bloomberg School of Public Health

2005-07-15T23:59:59.000Z

233

EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

4. Nitrous Oxide Emissions 4. Nitrous Oxide Emissions 4.1 Total emissions U.S. nitrous oxide emissions in 2009 were 4 MMTCO2e (1.7 percent) below their 2008 total (Table 22). Sources of U.S. nitrous oxide emissions include agriculture, energy use, industrial processes, and waste management (Figure 22). The largest source is agriculture (73 percent), and the majority of agricultural emissions result from nitrogen fertilization of agricultural soils (87 percent of the agriculture total) and management of animal waste (13 percent). U.S. nitrous oxide emissions rose from 1990 to 1994, fell from 1994 to 2002, and returned to an upward trajectory from 2003 to 2007, largely as a result of increased use of synthetic fertilizers. Fertilizers are the primary contributor of emissions from nitrogen fertilization of soils, which grew by more than 30 percent from

234

Increased Cytotoxicity of Oxidized Flame Soot  

NLE Websites -- All DOE Office Websites (Extended Search)

Increased Cytotoxicity of Oxidized Flame Soot Increased Cytotoxicity of Oxidized Flame Soot Title Increased Cytotoxicity of Oxidized Flame Soot Publication Type Journal Article Year of Publication 2012 Authors Holder, Amara L., Brietta J. Carter, Regine Goth-Goldstein, Donald Lucas, and Catherine P. Koshland Journal Atmospheric Pollution Research Volume 3 Start Page 25 Issue 1 Pagination 25-31 Date Published 01/2012 Keywords health effects, ozone, soot, toxicity Abstract Combustion-generated particles released into the atmosphere undergo reactions with oxidants, which can change the particles' physiochemical characteristics. In this work, we compare the physical and chemical properties and cellular response of particles fresh from a flame with those oxidized by ozone and nitrogen dioxide. The reaction with ozone and nitrogen dioxide does not significantly modify the physical characteristics of the particles (primary particle size, fractal dimension, and surface area). However, oxidation affects the chemical characteristics of the particles, creating more oxygen and nitrogen containing functional groups, and increases their hydrophilicity. In addition, oxidized soot generates more reactive oxygen species, as measured by the dithiothreitol (DTT) assay. Furthermore, oxidized soot is 1.5-2 times more toxic than soot that was not reacted with ozone, but the inflammatory response, measured by interleukin-8 (IL-8) secretion, is unchanged. These results imply that combustion-generated particles released into the atmosphere will have an increased toxicity on or after high ozone days.

235

Investigations of ash layer characteristics and ash distribution in a diesel particulate filter using novel lubricant additive tracers.  

E-Print Network (OSTI)

??Diesel particulate filters (DPF) are currently widely used in various applications as a means of collecting particulate matter in order to meet increasingly stringent particle… (more)

Morrow, Ryan (Ryan Michael)

2010-01-01T23:59:59.000Z

236

Electrically heated particulate matter filter with recessed inlet end plugs  

DOE Patents (OSTI)

A particulate matter (PM) filter includes filter walls having inlet ends and outlet ends. First adjacent pairs of the filter walls define inlet channels. Second adjacent pairs of the filter walls define outlet channels. Outlet end plugs are arranged in the inlet channels adjacent to the output ends. Inlet end plugs arranged in the outlet channels spaced from the inlet ends.

Gonze, Eugene V. (Pinckney, MI); Ament, Frank (Troy, MI)

2012-02-21T23:59:59.000Z

237

Guidelines for Particulate Control for Advanced SO2 Control Processes  

Science Conference Proceedings (OSTI)

To assist utilities in complying with Phase II of the Clean Air Act Amendments, this report delineates the effects of advanced SO2 control technologies on particulate control systems. This guide can prove invaluable to environmental engineers and planners who must select compatible systems and identify sound operating strategies for these technologies.

1994-12-30T23:59:59.000Z

238

Electrically heated particulate filter diagnostic systems and methods  

DOE Patents (OSTI)

A system that diagnoses regeneration of an electrically heated particulate filter is provided. The system generally includes a grid module that diagnoses a fault of the grid based on at least one of a current signal and a voltage signal. A diagnostic module at least one of sets a fault status and generates a warning signal based on the fault of the grid.

Gonze, Eugene V [Pinckney, MI

2009-09-29T23:59:59.000Z

239

Inductively heated particulate matter filter regeneration control system  

Science Conference Proceedings (OSTI)

A system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas, a downstream end and zones. The system also includes a heating element. A control module selectively activates the heating element to inductively heat one of the zones.

Gonze, Eugene V; Paratore Jr., Michael J; Kirby, Kevin W; Phelps, Amanda; Gregoire, Daniel J

2012-10-23T23:59:59.000Z

240

Economic Evaluation of Particulate Control Technologies: Volume 1: New Units  

Science Conference Proceedings (OSTI)

Baghouses (reverse-gas, shake-deflate, and pulse-jet) and electrostatic precipitators are the principal options for controlling particulate emissions at coal-fired power plants. This report provides the latest cost information and cost models for determining the capital and O&M costs of the two technologies for various design conditions in new units.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Electrically heated particulate filter regeneration methods and systems for hybrid vehicles  

DOE Patents (OSTI)

A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI)

2010-10-12T23:59:59.000Z

242

Corrosion and degradation of ceramic particulate filters in direct coal-fired turbine applications  

SciTech Connect

High-temperature ceramic filters show considerable promise for efficient particulate removal from coal combustion systems. Advanced coal utilization processes such as direct coal-fired turbines require particulate-free gas for successful operation. This paper describes the various ceramic particulate filters under development and reviews the degradation mechanisms expected when operated in coal combustion systems.

Sawyer, J. (Acurex Corp., Mountain View, CA (US)); Vass, R.J.; Brown, N.R.; Brown, J.J. (Center for Advanced Ceramic Materials, CIT TDC, Virginai Polytechnic Inst. and State Univ., Blacksburg, VA (US))

1991-10-01T23:59:59.000Z

243

Landscape level differences in soil carbon and nitrogen: implications for soil carbon sequestration  

SciTech Connect

The objective of this research was to understand how land cover and topography act, independently or together, as determinants of soil carbon and nitrogen storage over a complex terrain. Such information could help to direct land management for the purpose of carbon sequestration. Soils were sampled under different land covers and at different topographic positions on the mostly forested 14,000 ha Oak Ridge Reservation in Tennessee, USA. Most of the soil carbon stock, to a 40-cm soil depth, was found to reside in the surface 20 cm of mineral soil. Surface soil carbon and nitrogen stocks were partitioned into particulate ({ge}53 {micro}m) and mineral-associated organic matter (<53 {micro}m). Generally, soils under pasture had greater nitrogen availability, greater carbon and nitrogen stocks, and lower C:N ratios than soils under transitional vegetation and forests. The effects of topography were usually secondary to those of land cover. Because of greater soil carbon stocks, and greater allocation of soil carbon to mineral-associated organic matter (a long-term pool), we conclude that soil carbon sequestration, but not necessarily total ecosystem carbon storage, is greater under pastures than under forests. The implications of landscape-level variation in soil carbon and nitrogen for carbon sequestration are discussed at several different levels: (1) nitrogen limitations to soil carbon storage; (2) controls on soil carbon turnover as a result of litter chemistry and soil carbon partitioning; (3) residual effects of past land use history; and (4) statistical limitations to the quantification of soil carbon stocks.

Garten Jr, Charles T [ORNL; Ashwood, Tom L [ORNL

2002-12-01T23:59:59.000Z

244

Stanford Nitrogen Group | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stanford Nitrogen Group Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia to N2O gas, and combustion of a fuel (i.e. biogas) with N2O to recover energy. It's the first wastewater treatment process to recover energy from nitrogen. Wastewater treatment facilities experience dual financial pressures - rising energy costs and meeting increasingly stringent nitrogen discharge

245

Stanford Nitrogen Group | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stanford Nitrogen Group Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia to N2O gas, and combustion of a fuel (i.e. biogas) with N2O to recover energy. It's the first wastewater treatment process to recover energy from nitrogen. Wastewater treatment facilities experience dual financial pressures - rising energy costs and meeting increasingly stringent nitrogen discharge

246

Nucleation and Characteristics of Liquid Nitrogen  

Science Conference Proceedings (OSTI)

This paper describes experiments on a refrigerating catalyst?liquid nitrogen (LN)?in different cloud chambers and their results. The nucleation threshold temperature of liquid nitrogen is 0°C, and when the temperature less than ?2°C, the ice ...

Cao Xuecheng; Wang Weimin

1996-09-01T23:59:59.000Z

247

EFFECT OF NITROGEN OXIDE PRETREATMENTS ON ENZYMATIC HYDROLYSIS OF CELLULOSE  

E-Print Network (OSTI)

is needed. Besides petroleum, the only sources from whichdependence on petroleum as a fuel and chemical source. In

Borrevik, R.K.

2011-01-01T23:59:59.000Z

248

Power plant emissions of sulfur dioxide and nitrogen oxides ...  

U.S. Energy Information Administration (EIA)

Have a question, comment, or suggestion for a future article? Send your feedback to todayinenergy@eia.gov

249

Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies  

E-Print Network (OSTI)

x Abatement and Control. IEA Coal Research: London, UnitedM. Air Pollution Control Costs for Coal-Fired PowerStations; IEA Coal Research: London, UK, 1995. 25. Arrow, K.

Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

2007-01-01T23:59:59.000Z

250

Reducing Nitrogen Oxide Emissions: 1996 Compliance with Title IV Limits  

Reports and Publications (EIA)

The purpose of this article is to summarize the existing Federal Nox regulations and the 1996 performance of the 239 Title IV generating units. It also reviews the basics of low-Nox burner technology and presents cost and performance data for retrofits at Title IV units.

Information Center

1998-05-01T23:59:59.000Z

251

Power plant emissions of sulfur dioxide and nitrogen oxides ...  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel ... acid rain program in the eastern half of the United States. ... and settlements under the Clean Air Act's New Source Review ...

252

Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology  

DOE Green Energy (OSTI)

reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

McGill, R.N.

1998-08-04T23:59:59.000Z

253

Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies  

E-Print Network (OSTI)

Selective Catalytic Reduction (SCR) NOx Control; Prepared byNOx Removal Technologies. Volume 1. Selective Catalytic Reduction.

Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

2007-01-01T23:59:59.000Z

254

OXIDES OF NITROGEN: FORMATION AND CONTROL IN RESOURCE RECOVERY FACILITIES  

E-Print Network (OSTI)

or RDF. NOx reduction by use of catalytic reduction and ammonia injection are clearly impractical research in this area, so that we can understand the principles of NOx reduction sufficiently to fill our·lined in cinerator by Hiraoka [2] reveals a reduction from 150 ppm NOx to below 100 ppm NOx (at 12% O2) by using

Columbia University

255

OXIDES OF NITROGEN: FORMATION AND CONTROL IN RESOURCE RECOVERY FACILITIES  

E-Print Network (OSTI)

utilizing all of the known techniques for NOx reduction. To be precise, the NOx formed within the flame] and several others [6, 7] have suggested certain reduction methods which are consistent with NOx formation, not solid waste. The results of NOx reduction techniques in coal combustion should be applied with caution

Columbia University

256

Greatly reduces harmful nitrogen oxides in engine exhaust  

E-Print Network (OSTI)

or RDF. NOx reduction by use of catalytic reduction and ammonia injection are clearly impractical research in this area, so that we can understand the principles of NOx reduction sufficiently to fill our·lined in cinerator by Hiraoka [2] reveals a reduction from 150 ppm NOx to below 100 ppm NOx (at 12% O2) by using

257

Abatement of Air Pollution: Control of Nitrogen Oxides Emissions (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations may apply to reciprocating engines, fuel-burning equipment, or waste combusting equipment which are either attached to major stationary sources of NOx or have high potential NOx...

258

Power plant emissions of sulfur dioxide and nitrogen oxides ...  

U.S. Energy Information Administration (EIA)

State Energy Data System ... the program provided an economic incentive for coal-fired power plants to reduce emissions by installing pollution contro ...

259

Proposal to Designate an Emission Control Area for Nitrogen Oxides,  

E-Print Network (OSTI)

on a massive scale. These processes include catalytic reforming (to increase the octane number), catalytic

Hanson, Thomas

260

COMBUSTION SOURCES OF NITROGEN COMPOUNDS  

E-Print Network (OSTI)

Shale Derived Heavy Oil Coal Sarofim and Flagan (1976) Coal Liquids Coal-oil Slurry Heap (1978) Heap (1978) Heap (1978) Nitric oxide production

Brown, Nancy J.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor  

Science Conference Proceedings (OSTI)

This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

Scheele, Randall D.; Casella, Andrew M.

2010-09-28T23:59:59.000Z

262

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen Show!  

NLE Websites -- All DOE Office Websites (Extended Search)

Insulators! Insulators! Previous Video (Insulators!) Frostbite Theater Main Index Next Video (Superconductors!) Superconductors! Liquid Nitrogen Show! All of your favorite liquid nitrogen experiments all in one place! Flowers! Balloons! Racquetballs! Nothing is safe! Just sit back, relax, and enjoy the show! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: Usually, every couple years, Jefferson Lab hosts an Open House. This is the one time the public and come and tour our accelerator and end stations. Steve: During the 2010 Open House, our cameraman snuck into one of the ongoing cryo shows that are held throughout the day. He missed half of it. So if you want to see the entire thing, check our website to see when the

263

Nitrogen control of chloroplast differentiation. Annual progress report  

DOE Green Energy (OSTI)

This project is directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins functioning in energy transduction and carbon metabolism. Molecular analyses performed with Chlamydomonas reinhardtii grown in a continuous culture system such that ammonium concentration is maintained at a low steady-state concentration so as to limit cell division. As compared to chloroplasts from cells of non-limiting nitrogen provisions, chloroplasts of N-limited cells are profoundly chlorophyll-deficient but still assimilate carbon for deposition of as starch and as storage lipids. Chlorophyll deficiency arises by limiting accumulation of appropriate nuclear-encoded mRNAs of and by depressed rates of translation of chloroplast mRNAs for apoproteins of reaction centers. Chloroplast translational effects can be partially ascribed to diminished rates of chlorophyll biosynthesis in N-limited cells, but pigment levels are not determinants for expression of the nuclear light-harvesting protein genes. Consequently, other signals that are responsive to nitrogen availability mediate transcriptional or post-transcriptional processes for accumulation of the mRNAs for LHC apoproteins and other mRNAs whose abundance is dependent upon high nitrogen levels. Conversely, limited nitrogen availability promotes accumulation of other proteins involved in carbon metabolism and oxidative electron transport in chloroplasts. Hence, thylakoids of N-limited cells exhibit enhanced chlororespiratory activities wherein oxygen serves as the electron acceptor in a pathway that involves plastoquinone and other electron carrier proteins that remain to be thoroughly characterized. Ongoing and future studies are also outlined.

Schmidt, G.W.

1992-07-01T23:59:59.000Z

264

Fly Ash and Mercury Oxidation/Chlorination Reactions  

Science Conference Proceedings (OSTI)

Mercury is a known pollutant that has detrimental effect on human health and environment. The anthropogenic emissions of mercury account for 10 to 30% of worldwide mercury emissions. There is a need to control/reduce anthropogenic mercury emissions. Many mercury control technologies are available but their effectiveness is dependent on the chemical form of mercury, because different chemical forms of mercury have different physical and chemical properties. Mercury leaves the boiler in its elemental form but goes through various transformations in the post-combustion zone. There is a need to understand how fly ash and flue gas composition affect speciation, partitioning, and reactions of mercury under the full range of post-combustion zone conditions. This knowledge can then be used to predict the chemical transformation of mercury (elemental, oxidized or particulate) in the post combustion zone and thus help with the control of mercury emissions from coal-burning power plants. To accomplish this goal present study was conducted using five coal fly ashes. These ashes were characterized and their catalytic activity was compared under selected reaction conditions in a fixed bed reactor. Based on the results from these fly ash experiments, three key components (carbon, iron oxide and calcium oxide) were chosen. These three components were then used to prepare model fly ashes. Silica/alumina was used as a base for these model fly ashes. One, two or three component model fly ashes were then prepared to investigate mercury transformation reactions. The third set of experiments was performed with CuO and CuCl2 catalysts to further understand the mercury oxidation process. Based on the results of these three studies the key components were predicted for different fly ash compositions under variety of flue gas conditions. A fixed bed reactor system was used to conduct this study. In all the experiments, the inlet concentration of Hg0(g) was maintained at 35 {micro}g/m3 using a diffusion tube as the source of Hg0(g). All experiments were conducted using 4% O2 in nitrogen mix as a reaction gas, and other reactants (HCl, H2O and SO2, NO2, Br2) were added as required. The fixed bed reactor was operated over a temperature range of 200 to 400 C. In each experiment, the reactor effluent was analyzed using the modified Ontario-Hydro method. After each experiment, fly ash particles were also analyzed for mercury. The results show that the ability of fly ash to adsorb and/or oxidize mercury is primarily dependent on its carbon, iron and calcium content. There can be either one or more than one key component at a particular temperature and flue gas condition. Surface area played a secondary role in effecting the mercury transformations when compared to the concentration of the key component in the fly ash. Amount of carbon and surface area played a key important role in the adsorption of mercury. Increased concentration of gases in the flue gas other than oxygen and nitrogen caused decreased the amount of mercury adsorbed on carbon surface. Mercury adsorption by iron oxide primarily depended on the crystalline structure of iron oxide. {alpha}-Iron oxide had no effect on mercury adsorption or oxidation under most of the flue gas conditions, but ?-iron oxide adsorbed mercury under most of the flue gas conditions. Bromine is a very good oxidizing agent for mercury. But in the presence of calcium oxide containing fly ashes, all the oxidized mercury would be reduced to elemental form. Among the catalysts, it was observed that presence of free lattice chlorine in the catalyst was very important for the oxidation of mercury. But instead of using the catalyst alone, using it along with carbon may better serve the purpose by providing the adsorption surface for mercury and also some extra surface area for the reaction to occur (especially for fly ashes with low surface area).

Sukh Sidhu; Patanjali Varanasi

2008-12-31T23:59:59.000Z

265

Microbial nitrogen transformation potential in surface run-off leachate from a tropical landfill  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Microbial nitrogen transformations can alleviate toxic ammonium discharge. Black-Right-Pointing-Pointer Aerobic ammonium oxidation was rate-limiting in Indonesian landfill leachate. Black-Right-Pointing-Pointer Organic nitrogen ammonification was most dominant. Black-Right-Pointing-Pointer Anaerobic nitrate reduction and ammonium oxidation potential were also high. Black-Right-Pointing-Pointer A two-stage aerobic-anaerobic nitrogen removal system needs to be implemented. - Abstract: Ammonium is one of the major toxic compounds and a critical long-term pollutant in landfill leachate. Leachate from the Jatibarang landfill in Semarang, Indonesia, contains ammonium in concentrations ranging from 376 to 929 mg N L{sup -1}. The objective of this study was to determine seasonal variation in the potential for organic nitrogen ammonification, aerobic nitrification, anaerobic nitrate reduction and anaerobic ammonium oxidation (anammox) at this landfilling site. Seasonal samples from leachate collection treatment ponds were used as an inoculum to feed synthetic media to determine potential rates of nitrogen transformations. Aerobic ammonium oxidation potential (<0.06 mg N L{sup -1} h{sup -1}) was more than a hundred times lower than the anaerobic nitrogen transformation processes and organic nitrogen ammonification, which were of the same order of magnitude. Anaerobic nitrate oxidation did not proceed beyond nitrite; isolates grown with nitrate as electron acceptor did not degrade nitrite further. Effects of season were only observed for aerobic nitrification and anammox, and were relatively minor: rates were up to three times higher in the dry season. To completely remove the excess ammonium from the leachate, we propose a two-stage treatment system to be implemented. Aeration in the first leachate pond would strongly contribute to aerobic ammonium oxidation to nitrate by providing the currently missing oxygen in the anaerobic leachate and allowing for the growth of ammonium oxidisers. In the second pond the remaining ammonium and produced nitrate can be converted by a combination of nitrate reduction to nitrite and anammox. Such optimization of microbial nitrogen transformations can contribute to alleviating the ammonium discharge to surface water draining the landfill.

Mangimbulude, Jubhar C. [Faculty of Biology, Universitas Kristen Satya Wacana, Jl Diponegoro 52-60, Salatiga 50711 (Indonesia); Straalen, Nico M. van [Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, NL-1081 HV, Amsterdam (Netherlands); Roeling, Wilfred F.M., E-mail: wilfred.roling@falw.vu.nl [Department of Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, NL-1081 HV, Amsterdam (Netherlands)

2012-01-15T23:59:59.000Z

266

Sulfur tolerance of selective partial oxidation of NO to NO2 in a plasma  

DOE Green Energy (OSTI)

Several catalytic aftertreatment technologies rely on the conversion of NO to NO2 to achieve efficient reduction of NOx and particulates in diesel exhaust. These technologies include the use of selective catalytic reduction of NOx with hydrocarbons, NOx adsorption, and continuously regenerated particulate trapping. These technologies require low sulfur fuel because the catalyst component that is active in converting NO to NO2 is also active in converting SO2 to SO3 . The SO3 leads t o increase in particulates and/or poison active sites on the catalyst. A non-thermal plasma can be used for the selective partial oxidation of NO to NO2 in the gas-phase under diesel engine exhaust conditions. This paper discusses how a non-thermal plasma can efficiently oxidize NO to NO2 without oxidizing SO2 to SO3 .

Penetrante, B; Brusasco, R M; Merritt, B T; Vogtlin, G E

1999-08-24T23:59:59.000Z

267

Particulate Characteristics for Varying Engine Operation in a Gasoline Spark Ignited, Direct Injection Engine  

SciTech Connect

The objective of this research is a detailed investigation of particulate sizing and number count from a direct-injection spark-ignited (DISI) engine at different operating conditions. The engine is a 549 [cc] single-cylinder, four valve engine with a flat-top piston, fueled by Tier II EEE. A baseline engine operating condition, with a low number of particulates, was established and repeatability at this condition was ascertained. This baseline condition is specified as 2000 rpm, 320 kPa IMEP, 280 [°bTDC] end of injection (EOI), and 25 [°bTDC] ignition timing. The particle size distributions were recorded for particle sizes between 7 and 289 [nm]. The baseline particle size distribution was relatively flat, around 1E6 [dN/dlogDp], for particle diameters between 7 and 100 [nm], before dropping off to decreasing numbers at larger diameters. Distributions resulting from a matrix of different engine conditions were recorded. These varied parameters include load, air-to-fuel ratio (A/F), spark timing, injection timing, fuel rail pressure, and oil and coolant temperatures. Most conditions resulted with uni-modal type distributions usually with an increase in magnitude of particles in comparison to the baseline, with the exception of lean operation with retarded ignition timing. Further investigation revealed high sensitivity of the particle number and size distribution to changes in the engine control parameters. There was also a high sensitivity of the particle size distributions to small variations in A/F, ignition timing, and EOI. Investigations revealed the possibility of emissions oxidation in the exhaust and engine combustion instability at later EOI timings which therefore ruled out late EOI as the benchmark condition. Attempts to develop this benchmark revealed engine sensitivity to A/F and ignition timing, especially at later EOI operation

Farron, Carrie; Matthias, Nick; Foster, David E.; Andrie, Mike; Krieger, Roger; Najt, Paul; Narayanaswamy, Kushal; Solomon, Arun; Zelenyuk, Alla

2011-04-12T23:59:59.000Z

268

CARBON SEQUESTRATION IN ALASKA'S BOREAL FOREST: PLANNING FOR RESILIENCE IN A CHANGING LANDSCAPE  

E-Print Network (OSTI)

results in emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), particulates, mercury, and other in emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), particulates, and mercury Figure 11: Gasification pressure than is found in post-combustion flue gases (Rosenberg et al., 2005). This pre- combustion

Ruess, Roger W.

269

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 3A, Low NO{sub x} burner tests  

SciTech Connect

This Phase 3A test report summarizes the testing activities and results for the third testing phase of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. Described in this report are the test plans, data measurements, and data analyses performed during the Phase 3A effort. The present report also contains sufficient background material to provide an understanding of the overall program scope, the relationship of Phase 3A to the overall program, the testing methodologies, testing procedures, and unit configuration. Results from 66 short-term tests indicate increasing NO{sub x} emissions over the load range ranging from 0.5 lb/MBtu at 300 NM to around 0.65 lb/MBtu at 480 MW. Fly ash loss-on-ignition (LOI) for these loads ranged from 5.4 to 8.6 percent. Long-term test results indicated high load (480 MW) NO{sub x} emissions of approximately 0.65 lb/MBtu. At the 300 MW mid load point, the emissions dropped to 0.47 lb/MBtu which is slightly lower than the 0.50 lb/MBtu shown for the short-term data. The annual and 30-day average achievable NO{sub x} emissions were determined to be 0.55 and 0.64 lb/MBtu, respectively, for the load scenario experienced during the Phase 3A, long-term test period. Based on the long-term test results for Phase 3A, at full-load the low NO{sub x} burners (LNB) retrofit resulted in a NO{sub x} reduction of 48 percent from baseline, while at 300 MW the reduction was approximately 50 percent. A series of tests was also conducted to evaluate the effects of various burner equipment settings and mill coal flow biasing on both NO{sub x} and LOI emissions.

Not Available

1993-03-15T23:59:59.000Z

270

Engines - Particulate Studies - Revealing the True Nature of Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Nanoparticle Research: Revealing the True Nature of Diesel Particulates Engine Nanoparticle Research: Revealing the True Nature of Diesel Particulates Thermophoretic sampling device Argonne's test engine with the thermophoretic sampling device attached. Nanostructure of graphitic diesel soot under high engine load A transmission electron microscope reveals the nanostructures of graphitic diesel soot sampled under high engine loads. Morphology of particles collected from diesel combustion with iso-paraffin-enriched fuel. Morphology of particles collected from diesel combution with iso-paraffin-enriched fuel. Amorphous soot particle collected from biodiesel combustion undera low-temperature condition. Amorphous soot particle collected from biodiesel combustion under low temperature conditions. Researchers have many ideas about how to reduce the soot produced by diesel

271

Particulate Contamination Within Fusion Devices and Complex (Dusty) Plasmas  

E-Print Network (OSTI)

Over the past decade, dust particulate contamination has increasingly become an area of concern within the fusion research community. In a burning plasma machine design like the International Thermonuclear Experimental Reactor (ITER), dust contamination presents problems for diagnostic integration and may contribute to tritium safety issues. Additionally due to ITER design, such dust contamination problems are projected to become of even greater concern due to dust/wall interactions and possible instabilities created within the plasma by such particulates. Since the dynamics of such dust can in general be explained employing a combination of the ion drag, Coulomb force, and ion pre-sheath drifts, recent research in complex (dusty) plasma physics often offers unique insights for this research area. This paper will discuss the possibility of how experimental observations of the dust and plasma parameters within a GEC rf Reference Cell might be employed to diagnose conditions within fusion reactors, hopefully pr...

Creel, J; Kong, J; Hyde, Truell W

2007-01-01T23:59:59.000Z

272

Source Apportionment of Airborne Particulate Matter using Inorganic and  

NLE Websites -- All DOE Office Websites (Extended Search)

Source Apportionment of Airborne Particulate Matter using Inorganic and Source Apportionment of Airborne Particulate Matter using Inorganic and Organic Species as Tracers Title Source Apportionment of Airborne Particulate Matter using Inorganic and Organic Species as Tracers Publication Type Journal Article Year of Publication 2012 Authors Wang, Yungang, Philip K. Hopke, X. Xia, Oliver V. Rattigan, David C. Chalupa, and M. J. Source Journal Atmospheric Environment Volume 55 Start Page 525 Pagination 525-532 Date Published 01/2012 Keywords source apportionment positive matrix factorization (pmf) particulate matter (pm) molecular markers (mm) aethalometer delta-c Abstract Source apportionment is typically performed on chemical composition data derived from particulate matter (PM) samples. However, many common sources no longer emit significant amounts of characteristic trace elements requiring the use of more comprehensive chemical characterization in order to fully resolve the PM sources. Positive matrix factorization (EPA PMF, version 4.1) was used to analyze 24-hr integrated molecular marker (MM), secondary inorganic ions, trace elements, carbonaceous species and light absorption data to investigate sources of PM2.5 in Rochester, New York between October 2009 and October 2010 to explore the role of specific MMs. An eight-factor solutionwas found for which the factors were identified as isoprene secondary organic aerosol (SOA), airborne soil, other SOA, diesel emissions, secondary sulfate, wood combustion, gasoline vehicle, and secondary nitrate contributing 6.9%, 12.8%, 3.7%, 7.8%, 45.5%, 9.1%, 7.9%, and 6.3% to the average PM2.5 concentration, respectively Concentrations of pentacosane, hexacosane, heptacosane, and octacosane in the gasoline vehicles factor were larger compared to diesel emissions. Aethalometer Delta-C was strongly associated with wood combustion. The compounds, n-heptacosanoic acid and n-octacosanoic acid, occasionally used in the past as tracers for road dust, were found to largely associate with SOA in this study. In comparison with a standard PMF analyses without MM, inclusion of themwas necessary to resolve SOA and wood combustion factors in urban areas.

273

Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, January 1, 1995--March 31, 1995  

DOE Green Energy (OSTI)

During this quarter, progress was made on the following tasks: TPD techniques were employed to study the reaction mechanism of the selective catalytic reduction of nitrogen oxide with ammonia over iron oxide pillared clay catalyst; and a sulfur dioxide resistant iron oxide/titanium oxide catalyst was developed.

Li, W.B.; Yang, R.T.

1995-12-01T23:59:59.000Z

274

OH-initiated heterogeneous aging of highly oxidized organic aerosol  

Science Conference Proceedings (OSTI)

The oxidative evolution (“aging”) of organic species in the atmosphere is thought to have a major influence on the composition and properties of organic particulate matter, but remains poorly understood, particularly for the most oxidized fraction of the aerosol. Here we measure the kinetics and products of the heterogeneous oxidation of highly oxidized organic aerosol, with an aim of better constraining such atmospheric aging processes. Submicron particles composed of model oxidized organics—1,2,3,4-butanetetracarboxylic acid (C{sub 8}H{sub 10}O{sub 8}), citric acid (C{sub 6}H{sub 8}O{sub 7}), tartaric acid (C{sub 4}H{sub 6}O{sub 6}), and Suwannee River fulvic acid—were oxidized by gas-phase OH in a flow reactor, and the masses and elemental composition of the particles were monitored as a function of OH exposure. In contrast to our previous studies of less-oxidized model systems (squalane, erythritol, and levoglucosan), particle mass did not decrease significantly with heterogeneous oxidation. Carbon content of the aerosol always decreased somewhat, but this mass loss was approximately balanced by an increase in oxygen content. The estimated reactive uptake coefficients of the reactions range from 0.37 to 0.51 and indicate that such transformations occur at rates corresponding to 1-2 weeks in the atmosphere, suggesting their importance in the atmospheric lifecycle of organic particulate matter.

Kessler, Sean H.; Nah, Theodora; Daumit, Kelly E.; Smith, Jared D.; Leone, Stephen R.; Kolb, Charles E.; Worsnop, Douglas R.; Wilson, Kevin R.; Kroll, Jesse H.

2011-12-05T23:59:59.000Z

275

Nitrogen fixation method and apparatus  

DOE Patents (OSTI)

A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O[sub 2]/cm promotes the formation of vibrationally excited N[sub 2]. Atomic oxygen interacts with vibrationally excited N[sub 2] at a much quicker rate than unexcited N[sub 2], greatly improving the rate at which NO is formed. 1 fig.

Chen, H.L.

1983-08-16T23:59:59.000Z

276

Nitrogen fixation method and apparatus  

DOE Patents (OSTI)

A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

Chen, Hao-Lin (Walnut Creek, CA)

1983-01-01T23:59:59.000Z

277

Stanford Nitrogen Group | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Innovation » Commercialization » National Science & Innovation » Innovation » Commercialization » National Clean Energy Business Plan Competition » Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia to N2O gas, and combustion of a fuel (i.e. biogas) with N2O to recover energy. It's the first wastewater treatment process to recover energy from nitrogen.

278

NO-assisted molecular-beam epitaxial growth of nitrogen substituted EuO  

Science Conference Proceedings (OSTI)

We have investigated a method for substituting oxygen with nitrogen in EuO thin films, which is based on molecular beam epitaxy distillation with NO gas as the oxidizer. By varying the NO gas pressure, we produce crystalline, epitaxial EuO{sub 1-x}N{sub x} films with good control over the films' nitrogen concentration. In situ x-ray photoemission spectroscopy reveals that nitrogen substitution is connected to the formation Eu{sup 3+}4f{sup 6} and a corresponding decrease in the number of Eu{sup 2+}4f{sup 7}, indicating that nitrogen is being incorporated in its 3{sup -} oxidation state. While small amounts of Eu{sup 3+} in over-oxidized Eu{sub 1-{delta}}O thin films lead to a drastic suppression of the ferromagnetism, the formation of Eu{sup 3+} in EuO{sub 1-x}N{sub x} still allows the ferromagnetic phase to exist with an unaffected T{sub c}, thus providing an ideal model system to study the interplay between the magnetic f{sup 7} (J = 7/2) and the non-magnetic f{sup 6} (J = 0) states close to the Fermi level.

Wicks, R. [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada); Altendorf, S. G.; Caspers, C.; Kierspel, H.; Sutarto, R. [II. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany); Tjeng, L. H. [II. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany); Max Planck Institute for Chemical Physics of Solids, 01187 Dresden (Germany); Damascelli, A. [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada); Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada)

2012-04-16T23:59:59.000Z

279

Long-term tillage, cropping sequence, and nitrogen fertilization effects on soil carbon and nitrogen dynamics  

E-Print Network (OSTI)

Management practices that may increase soil organic matter (SOM) storage include conservation tillage, especially no till (NT), enhanced cropping intensity, and fertilization. My objectives were to evaluate management effects on labile [soil microbial biomass (SMB) and mineralizable, particulate organic matter (POM), and hydrolyzable SOM] and slow (mineral-associated and resistant organic) C and N pools and turnover in continuous sorghum [Sorghum bicolor (L.) Moench.], wheat (Triticum aestivum L.), and soybean [Glycine max (L.) Merr.], sorghum-wheat/soybean, and wheat/soybean sequences under convent ional tillage (CT) and NT with and without N fertilization. A Weswood silty clay loam (fine, mixed, thermic Fluventic Ustochepts) in southern central Texas was sampled at three depth increments to a 30-cm depth after wheat, sorghum, and soybean harvesting. Soil organic C and total N showed similar responses to tillage, cropping sequence, and N fertilization following wheat, sorghum, and soybean. Most effects were observed in surface soils. NT significantly increased SOC. Nitrogen fertilization significantly increased SOC only under NT. Compared to NT or N addition, enhanced cropping intensity only slightly increased SOC. Estimates of C sequestration rates under NT indicated that SOC would reach a new equilibrium after 20 yr or less of imposition of this treatment. Labile pools were all significantly greater with NT than CT at 0 to 5 cm and decreased with depth. SMB, mineralizable C and N, POM, and hydrolyzable C were highly correlated with each other and SOC, but their slopes were significantly different, being lowest in mineralizable C and highest in hydrolyzable C. These results indicated that different methods determined various fractions of total SOC. Results from soil physical fractionation and 13C concentrations further supported these observations. Carbon turnover rates increased in the sequence: ROC < silt- and clayassociated C < microaggregate-C < POM-C. Long-term incubation showed that 4 to 5% of SOC was in active pools with mean residence time (MRT) of about 50 days, 50% of SOC was in slow pools with an average MRT of 12 years, and the remainder was in resistant pools with an assumed MRT of over 500 years.

Dou, Fugen

280

Nanosecond and femtosecond laser ablation of brass: Particulate and ICPMS measurements  

E-Print Network (OSTI)

Femtosecond Laser Ablation of Brass: Particulate and ICPMScompared for ablating brass alloys. All operating parametersby resolidi- fication of molten brass. Melting and splashing

Liu, C.; Mao, X.L.; Mao, S.; Zeng, X.; Greif, R.; Russo, R.E.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Exploring relationships between outdoor air particulate-associated  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring relationships between outdoor air particulate-associated Exploring relationships between outdoor air particulate-associated polycyclic aromatic hydrocarbon and PM2.5: A case study of benzo(a)pyrene in California metropolitan regions Title Exploring relationships between outdoor air particulate-associated polycyclic aromatic hydrocarbon and PM2.5: A case study of benzo(a)pyrene in California metropolitan regions Publication Type Journal Article LBNL Report Number LBNL-514E Year of Publication 2008 Authors Lobscheid, Agnes B., Thomas E. McKone, and D. A. Valleroc Journal Atmospheric Environment Volume 41 Start Page Chapter Pagination 5659-5672 Abstract Polycyclic aromatic hydrocarbons (PAHs) and particulate matter (PM) are co-pollutants emitted as by-products of combustion processes. Convincing evidence exists for PAHs as a primary toxic component of fine PM (PM2.5). Because PM2.5 is listed by the US EPA as a "Criteria Pollutant," it is monitored regularly at sites nationwide. In contrast, very limited data is available on measured ambient air concentrations of PAHs. However, between 1999-2001, ambient air concentrations of PM2.5 and benzo(a)pyrene (BaP) are available for California locations. We use multivariate linear regression models (MLRMs) to predict ambient air levels of BaP in four air basins based on reported PM2.5 concentrations and spatial, temporal and meteorological variables as variates. We obtain an R2 ranging from 0.57-0.72 among these basins. Significant variables (p<0.05) include the average daily PM2.5 concentration, wind speed, temperature and relative humidity, and the coastal distance as well as season, and holiday or weekend. Combining the data from all sites and using only these variables to estimate ambient BaP levels, we obtain an R2 of 0.55. These R2-values, combined with analysis of the residual error and cross validation using the PRESS-statistic, demonstrate the potential of our method to estimate reported outdoor air PAH exposure levels in metropolitan regions. These MLRMs provide a first step towards relating outdoor ambient PM2.5 and PAH concentrations for epidemiological studies when PAH measurements are unavailable, or limited in spatial coverage, based on publicly available meteorological and PM2.5 data

282

Modeling of Particulate Matter Emissions from Agricultural Operations  

E-Print Network (OSTI)

State Air Pollution Regulation Agencies (SAPRAs) issue and enforce permits that limit particulate matter emissions from all sources including layer and broiler facilities, cattle feedyards, dairies, cotton gins, and grain elevators. In this research, a process was developed to determine distances from emitting sources to where the estimated concentrations were less than the National Ambient Air Quality Standards (NAAQS). These distances are a function of emission rates and meteorological conditions. Different protocols were used to develop emission factors for cattle feedyards and layer houses. Dispersion modeling with American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was conducted to determine the emissions of particulate matter. These data were used to determine the distances from the sources to where the concentrations of particulate matter (PM) would be less than the NAAQS. The current air-permitting process requires that concentrations from a source do not exceed the NAAQS at the property line and beyond for the facility to be in compliance with its permit conditions. Emission factors for particulate matter less than 10 micrometers (PM10) were developed for cattle feedyards using a reverse modeling protocol and Tapered Element Oscillating Microbalance (TEOM) sampler data. Corrections were applied to the TEOM measurements to account for TEOM vs. filter-based low-volume (FBLV) sampler bias and over-sampling of PM10 pre-collectors. Invalid concentrations and dust peaks larger than mean ± 3 times the standard deviation were excluded from this study. AERMOD predictions of downwind concentrations at cotton gins were observed for compliance with 24-hour PM10 and PM2.5 NAAQS at property lines. The emissions from three cotton gins were analyzed at 50 m and 100 m distances. TEOM and FBLV samplers were used to collect 24-hour PM10 measurements inside a laying hen house. The distances to the property lines at which the emissions of PM10 were below the 24-hour average PM10 standards were estimated using AERMOD. The results suggested that the special use of the NAAQS for as the property-line concentration not to be exceeded, could be problematic to agriculture. Emission factors that were comparable of published emission factors were obtained in this study. Large distances to property lines were required when minimum flow rate recommendations were not considered. Emission factors that are representative of the emissions in a particular facility are essential; else facilities could be inappropriately regulated.

Bairy, Jnana 1988-

2013-05-01T23:59:59.000Z

283

Prospecting by sampling and analysis of airborne particulates and gases  

DOE Patents (OSTI)

A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.

Sehmel, G.A.

1984-05-01T23:59:59.000Z

284

Low exhaust temperature electrically heated particulate matter filter system  

DOE Patents (OSTI)

A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI); Bhatia, Garima (Bangalore, IN)

2012-02-14T23:59:59.000Z

285

Zoned electrical heater arranged in spaced relationship from particulate filter  

DOE Patents (OSTI)

A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

Gonze, Eugene V [Pinckney, MI

2011-11-15T23:59:59.000Z

286

Wireless zoned particulate matter filter regeneration control system  

DOE Patents (OSTI)

An assembly includes a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and multiple zones. An absorbing layer absorbs microwave energy in one of N frequency ranges and is arranged with the upstream end. N is an integer. A frequency selective filter has M frequency selective segments and receives microwave energy in the N frequency ranges. M is an integer. One of the M frequency selective segments permits passage of the microwave energy in one of the N frequency ranges and does not permit passage of microwave energy in the other of the N frequency ranges.

Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA

2011-10-04T23:59:59.000Z

287

Apparatus for removal of particulate matter from gas streams  

DOE Patents (OSTI)

An apparatus for the removal of particulate matter from the gaseous product stream of an entrained flow coal gasifier which apparatus includes an initial screen, an intermediate screen which is aligned with the direction of flow of the gaseous product stream and a final screen transversely disposed to the flow of gaseous product and which apparatus is capable of withstanding at least a pressure differential of about 10 psi (68.95 kPa) or greater at the temperatures of the gaseous product stream.

Smith, Peyton L. (Baton Rouge, LA); Morse, John C. (Baton Rouge, LA)

2000-01-01T23:59:59.000Z

288

MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR  

DOE Green Energy (OSTI)

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ADVANCED HYBRID{trademark} Filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

Stanley J. Miller; Ye Zhuang; Michelle R. Olderbak

2002-11-01T23:59:59.000Z

289

Electrically heated particulate filter with zoned exhaust flow control  

SciTech Connect

A system includes a particulate matter (PM) filter that includes X zones. An electrical heater includes Y heater segments that are associated with respective ones of the X zones. The electrical heater is arranged upstream from and proximate with the PM filter. A valve assembly includes Z sections that are associated with respective ones of the X zones. A control module adjusts flow through each of the Z sections during regeneration of the PM filter via control of the valve assembly. X, Y and Z are integers.

Gonze, Eugene V [Pinckney, MI

2012-06-26T23:59:59.000Z

290

Novel Concepts for Particulate Matter Control: 2013 Update  

Science Conference Proceedings (OSTI)

The latest regulatory challenge for U.S. utilities and the air pollution control industry is the Environmental Protection Agency’s (EPA) Mercury and Air Toxics Standards (MATS). For existing coal-fired generating units, a maximum particulate matter (PM) emissions rate of 0.030 lb/mmBtu (filterable component only) must be met in conjunction with HCl emissions standards (0.002 lb/mmBtu) and mercury emissions standards (1.2 lb/mmBtu for non-low-rank virgin coals). MATS standards are ...

2013-12-09T23:59:59.000Z

291

ENGINEERED PARTICULATES FOR CO-FIRING OF DIVERSE FEEDSTOCKS  

DOE Green Energy (OSTI)

The goal of this project is to develop a novel methodology for the formation of engineered particulates of energy-relevant material. Specifically, we aim to control interparticle cohesion in such a way as to generate macro-particles or agglomerates of several differing types of primary particles in specific proportions such that they would be of utility for co-firing applications. In Phase I of this project, we used a combination of experimentation and simulation to validate theoretically derived mixing/segregation rules for cohesive granular materials in static systems, flowing systems, and gas-solid systems.

Joseph J. McCarthy; Kunal Jain; Hongming Li; Deliang Shi

2004-03-01T23:59:59.000Z

292

Mercuty Control With The Advanced Hybrid Particulate Collector  

SciTech Connect

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak

2003-03-31T23:59:59.000Z

293

The Bevatron liquid nitrogen circulation system  

SciTech Connect

A nitrogen liquefier and computer controlled valving system have been added to the Bevatron cryoliner vacuum system to cut operating costs by reducing liquid nitrogen consumption. The computer and interface electronic systems, which control the temperatures of twenty-eight liquid nitrogen circuits, have been chosen and designed to operate in the Bevatron's pulsating magnetic field. The nitrogen exhaust is routed back to a liquefier, of about five kilowatt capacity, liquefied, and rerouted through the cooling circuits. A description of the system and operating results are presented.

Hunt, D.; Stover, G.

1987-03-01T23:59:59.000Z

294

Electrochemical process for the preparation of nitrogen ...  

Electrochemical process for the preparation of nitrogen fertilizers United States Patent. Patent Number: 8,152,988: Issued: April 10, 2012: Official Filing:

295

RELATIONSHIPS BETWEEN NITROGEN METABOLISM AND PHOTOSYNTHESIS  

E-Print Network (OSTI)

RG and JA Bassham, Photosynthesis by isolated chloroplasts.chloroplasts during photosynthesis. Plant Physiol ~0:22H-2?NITROGEN METABOLISM AND PHOTOSYNTHESIS James A. Bassham,

Bassham, James A.

2013-01-01T23:59:59.000Z

296

Multifunctional Oxides  

Science Conference Proceedings (OSTI)

3) Electric, ferroelectric, magnetic and photonic properties of oxides 4) Theoretical modeling of epitaxial growth, interfaces and microstructures 5) Composition ...

297

Oil shale oxidation at subretorting temperatures  

SciTech Connect

Green River oil shale was air oxidized at subretorting temperatures. Off gases consisting of nitrogen, oxygen, carbon monoxide, carbon dioxide, and water were monitored and quantitatively determined. A mathematical model of the oxidation reactions based on a shrinking core model has been developed. This model incorporates the chemical reaction of oxygen and the organic material in the oil shale as well as the diffusivity of the oxygen into the shale particle. Diffusivity appears to be rate limiting for the oxidation. Arrhenius type equations, which include a term for oil shale grade, have been derived for both the chemical reaction and the diffusivity.

Jacobson, I.A. Jr.

1980-06-01T23:59:59.000Z

298

Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress  

E-Print Network (OSTI)

Signaling pathway: Nrf2 MAPK NF-kB Genetic response:ARE AP NF-kB Mitochondrial perturbation PT pore Figure 4

Araujo, Jesus A; Nel, Andre E

2009-01-01T23:59:59.000Z

299

Crystal Structure and Characterization of Particulate Methane Monooxygenase from Methylocystis species Strain M  

SciTech Connect

Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria. Previous biochemical and structural studies of pMMO have focused on preparations from Methylococcus capsulatus (Bath) and Methylosinus trichosporium OB3b. A pMMO from a third organism, Methylocystis species strain M, has been isolated and characterized. Both membrane-bound and solubilized Methylocystis sp. strain M pMMO contain {approx}2 copper ions per 100 kDa protomer and exhibit copper-dependent propylene epoxidation activity. Spectroscopic data indicate that Methylocystis sp. strain M pMMO contains a mixture of Cu{sup I} and Cu{sup II}, of which the latter exhibits two distinct type 2 Cu{sup II} electron paramagnetic resonance (EPR) signals. Extended X-ray absorption fine structure (EXAFS) data are best fit with a mixture of Cu-O/N and Cu-Cu ligand environments with a Cu-Cu interaction at 2.52-2.64 {angstrom}. The crystal structure of Methylocystis sp. strain M pMMO was determined to 2.68 {angstrom} resolution and is the best quality pMMO structure obtained to date. It provides a revised model for the pmoA and pmoC subunits and has led to an improved model of M. capsulatus (Bath) pMMO. In these new structures, the intramembrane zinc/copper binding site has a different coordination environment from that in previous models.

Smith, Stephen M.; Rawat, Swati; Telser, Joshua; Hoffman, Brian M.; Stemmler, Timothy L.; Rosenzweig, Amy C. (WSU-MED); (NWU)

2012-02-08T23:59:59.000Z

300

ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2  

E-Print Network (OSTI)

to Elec (RDSF) MSW to Elec (Oil) Source Separation *Million~----------- MSW to Elec (Oil) Source Separation(2) *D.C.Oil Bituminous (Incineration) Coal Particulates Sulphur Oxide Carbon Monoxide Hydrocarbon Nitrogen Oxide Source:

Authors, Various

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Modifying Char Dustcake Pressure Drop Using Particulate Additives  

DOE Green Energy (OSTI)

Coal gasification produces residual particles of coal char, coal ash, and sorbent that are suspended in the fuel gas stream exiting the gasifier. In most cases, these particles (referred to, hereafter, simply as char) must be removed from the stream prior to sending the gas to a turbine, fuel cell, or other downstream device. Currently, the most common approach to cleaning the gas stream at high temperature and pressure is by filtering the particulate with a porous ceramic or metal filter. However, because these dusts frequently have small size distributions, irregular morphology, and high specific surface areas, they can have very high gas flow resistance resulting in hot-gas filter system operating problems. Typical of gasification chars, the hot-gas filter dustcakes produced at the Power Systems Development Facility (PSDF) during recent coal gasification tests have had very high flow resistance (Martin et al, 2002). The filter system has been able to successfully operate, but pressure drops have been high and filter cleaning must occur very frequently. In anticipation of this problem, a study was conducted to investigate ways of reducing dustcake pressure drop. This paper will discuss the efficacy of adding low-flow-resistance particulate matter to the high-flow-resistance char dustcake to reduce dustcake pressure drop. The study had two parts: a laboratory screening study and confirming field measurements at the PSDF.

Landham, C.; Dahlin, R.S.; Martin, R.A.; Guan, X.

2002-09-19T23:59:59.000Z

302

Cooler and particulate separator for an off-gas stack  

DOE Patents (OSTI)

This report describes an off-gas stack for a melter, furnace or reaction vessel comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes prevents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

Wright, G.T.

1991-04-08T23:59:59.000Z

303

Distributor means for charging particulate material into receptacles  

DOE Patents (OSTI)

Disclosed are receptacles, such as shaft furnaces illustrated by a blast furnace and an upright oil shale retort, embodying rotatable charge distributor means for distributing particulate charge material in the furnace, which charge distributor means can provide a high uniformity of distribution of various sizes of particles and also can provide and maintain a stock line of desired contour and heighth in the receptacle. The distributor means includes a hopper having rigidly fixed to it a plurality of downwardly extending chutes with lower discharge portions that discharge in concentric circular zones at the stock line. The distributor means includes a segmented portion at the juncture of the hopper and the chutes that divides the charge material discharged into the hopper in proportion to the area of the circular zone at the stock line that is fed by the chute. The distributor means embodies means for providing mass flow of the particulate charge material through the chutes to the stock line and for avoiding segregation between larger and smaller particles of charge material deposited at the stock line.

Greaves, Melvin J. (9995 Cliff Drive, Cleveland, OH 44102)

1977-06-14T23:59:59.000Z

304

Shock driven jamming and periodic fracture of particulate rafts  

E-Print Network (OSTI)

A tenuous monolayer of hydrophobic particles at the air-water interface often forms a scum or raft. When such a monolayer is disturbed by the localized introduction of a surfactant droplet, a radially divergent surfactant shock front emanates from the surfactant origin and packs the particles into a jammed, compact, annular band with a packing fraction that saturates at a peak packing fraction $\\phi^*$. As the resulting two-dimensional, disordered elastic band grows with time and is driven radially outwards by the surfactant, it fractures to form periodic triangular cracks with robust geometrical features. We find the number of cracks $N$ and the compaction band radius $R^*$ at fracture onset vary monotonically with the initial packing fraction ($\\phi_{init}$). However, its width $W^*$ is constant for all $\\phi_{init}$. A simple geometric theory that treats the compaction band as an elastic annulus, and accounts for mass conservation allows us to deduce that $N \\simeq 2\\pi R^*/W^* \\simeq 4\\pi \\phi_{RCP}/\\phi_{init}$, a result we verify both experimentally and numerically. We show the essential ingredients for this phenomenon are an initially low enough particulate packing fraction that allows surfactant driven advection to cause passive jamming and eventual fracture of the hydrophobic particulate interface.

M. M. Bandi; T. Tallinen; L. Mahadevan

2010-10-29T23:59:59.000Z

305

INSENSITIVE HIGH-NITROGEN COMPOUNDS  

DOE Green Energy (OSTI)

The conventional approach to developing energetic molecules is to chemically place one or more nitro groups onto a carbon skeleton, which is why the term ''nitration'' is synonymous to explosives preparation. The nitro group carries the oxygen that reacts with the skeletal carbon and hydrogen fuels, which in turn produces the heat and gaseous reaction products necessary for driving an explosive shock. These nitro-containing energetic molecules typically have heats of formation near zero and therefore most of the released energy is derived from the combustion process. Our investigation of the tetrazine, furazan and tetrazole ring systems has offered a different approach to explosives development, where a significant amount of the chemical potential energy is derived from their large positive heats of formation. Because these compounds often contain a large percentage of nitrogen atoms, they are usually regarded as high-nitrogen fuels or explosives. A general artifact of these high-nitrogen compounds is that they are less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine, several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. Some of the first compounds are 3,6-diamino-s-tetrazine-1,4-dioxide (LAX-112) and 3,6-dihydrazino-s-tetrazine (DHT). LAX-112 was once extensively studied as an insensitive explosive by Los Alamos; DHT is an example of a high-nitrogen explosive that relies entirely on its heat of formation for sustaining a detonation. Recent synthesis efforts have yielded an azo-s-tetrazine, 3,3'-azobis(6-amino-s-tetrazine) or DAAT, which has a very high positive heat of formation. The compounds, 4,4'-diamino-3,3'-azoxyfurazan (DAAF) and 4,4'-diamino-3,3'-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB--the standard of insensitive high explosives. The thermal stability of DAAzF is equal to that of hexanitrostilbene (HNS), yet it too is a better explosive performer. The recently discovered tetrazol derivative, 3,6-bis-(1H-1,2,3,4-tetrazol-5-ylamino)-s-tetrazine (BTATz) was measured to have exceptional positive heats of formation and to be insensitive to explosive initiation. Because of its high burn rate with low sensitivity to pressure, this material is of great interest to the propellant community.

D. CHAVEZ; ET AL

2001-03-01T23:59:59.000Z

306

NITROGEN K-SHELL PHOTOABSORPTION  

Science Conference Proceedings (OSTI)

Reliable atomic data have been computed for the spectral modeling of the nitrogen K lines, which may lead to useful astrophysical diagnostics. Data sets comprise valence and K-vacancy level energies, wavelengths, Einstein A-coefficients, radiative and Auger widths, and K-edge photoionization cross sections. An important issue is the lack of measurements that are usually employed to fine-tune calculations so as to attain spectroscopic accuracy. In order to estimate data quality, several atomic structure codes are used and extensive comparisons with previous theoretical data have been carried out. In the calculation of K photoabsorption with the Breit-Pauli R-matrix method, both radiation and Auger dampings, which cause the smearing of the K edge, are taken into account. This work is part of a wider project to compute atomic data in the X-ray regime to be included in the database of the popular XSTAR modeling code.

GarcIa, J. [Catholic University of America, IACS, Physics Department, Washington DC 20064 (United States); Kallman, T. R.; Witthoeft, M.; Behar, E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mendoza, C. [Centro de Fisica, IVIC, Caracas 1020A (Venezuela, Bolivarian Republic of); Palmeri, P.; Quinet, P. [Astrophysique et Spectroscopie, Universite de Mons, B-7000 Mons (Belgium); Bautista, M.A. [Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Klapisch, M. [ARTEP, Inc., Ellicott City, MD 21042 (United States)], E-mail: javier@milkyway.gsfc.nasa.gov, E-mail: michael.c.witthoeft@nasa.gov, E-mail: timothy.r.kallman@nasa.gov, E-mail: behar@milkyway.gsfc.nasa.gov, E-mail: claudio@ivic.ve, E-mail: palmeri@umons.ac.be, E-mail: quinet@umons.ac.be, E-mail: bautista@vt.edu, E-mail: marcel.klapisch.ctr@nrl.navy.mil

2009-12-01T23:59:59.000Z

307

Carbon and Nitrogen Dynamics in Agricultural Soils  

E-Print Network (OSTI)

Carbon and Nitrogen Dynamics in Agricultural Soils Model Applications at Different Scales in Time Print: SLU Service/Repro, Uppsala 2012 #12;Carbon and Nitrogen Dynamics in Agricultural Soils. Model Applications at Different Scales in Time and Space Abstract An understanding of soil organic carbon (C

308

Frostbite Theater - Liquid Nitrogen Experiments - Freezing Balloons!  

NLE Websites -- All DOE Office Websites (Extended Search)

Season Two Bloopers Season Two Bloopers Previous Video (Season Two Bloopers) Frostbite Theater Main Index Next Video (Instant Liquid Nitrogen Balloon Party!) Instant Liquid Nitrogen Balloon Party! Freezing Balloons! What happens when a balloon full of air is plunged into a container full of liquid nitrogen? Play the video to find out! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a container of liquid nitrogen! Steve: And this is a really big balloon! Joanna: Let's see what happens when we place the balloon in the liquid nitrogen! Steve: Okay! Wait! Wait! Wait! Wait! Wait! Isn't the balloon going to pop? Joanna: We'll see! Steve: Aw, man... Huh. Okay, so the balloon didn't pop. But, there's

309

Frostbite Theater - Liquid Nitrogen Experiments - Insulators!  

NLE Websites -- All DOE Office Websites (Extended Search)

Popping Film Canisters! Popping Film Canisters! Previous Video (Popping Film Canisters!) Frostbite Theater Main Index Next Video (Liquid Nitrogen Show!) Liquid Nitrogen Show! Insulators! Cups full of water are placed into bowls of liquid nitrogen! Which cup will insulate the best? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a container of liquid nitrogen! Steve: And these are two plastic cups! Joanna: Let's see which cup is the better insulator! Steve: Okay! So, um, how do we do that? Joanna: Well, we'll pour water into each of the cups and then we'll pour the liquid nitrogen into each of the bowls. If we then place the cup in the bowl, the heat from the water will try to pass through the cup into the

310

Visualizing Individual Nitrogen Dopants in Monolayer Graphene  

SciTech Connect

In monolayer graphene, substitutional doping during growth can be used to alter its electronic properties. We used scanning tunneling microscopy, Raman spectroscopy, x-ray spectroscopy, and first principles calculations to characterize individual nitrogen dopants in monolayer graphene grown on a copper substrate. Individual nitrogen atoms were incorporated as graphitic dopants, and a fraction of the extra electron on each nitrogen atom was delocalized into the graphene lattice. The electronic structure of nitrogen-doped graphene was strongly modified only within a few lattice spacings of the site of the nitrogen dopant. These findings show that chemical doping is a promising route to achieving high-quality graphene films with a large carrier concentration.

L Zhao; R He; K Rim; T Schiros; K Kim; H Zhou; C Gutierrez; S Chockalingam; C Arguello; et al.

2011-12-31T23:59:59.000Z

311

Numerical simulation of the impact and deposition of charged particulate droplets  

Science Conference Proceedings (OSTI)

This work addresses the impact and deposition of charged ''cluster-droplets'', comprised of particulates, on electrified surfaces. A direct numerical method is developed, based on an implicit, staggered, time-stepping scheme which separates the impulsive ... Keywords: Charged particulates, Clusters, Impact, Staggering scheme

T. I. Zohdi

2013-01-01T23:59:59.000Z

312

Fictitious boundary and moving mesh methods for the numerical simulation of rigid particulate flows  

Science Conference Proceedings (OSTI)

In this paper, we investigate the numerical simulation of particulate flows using a new moving mesh method combined with the multigrid fictitious boundary method (FBM) [S. Turek, D.C. Wan, L.S. Rivkind, The fictitious boundary method for the implicit ... Keywords: ALE, FEM, Fictitious boundary, Moving mesh, Multigrid, Particulate flows

Decheng Wan; Stefan Turek

2007-03-01T23:59:59.000Z

313

Determination of Adenosine Triphosphate on Marine Particulates:Synthesis of Methods for Use on OTEC Samples  

DOE Green Energy (OSTI)

Adenosine triphosphate (ATP) is an indicator of living biomass in marine particulates. This report details the method used by Lawrence Berkeley Laboratory to analyze particulate ATP in samples taken from oligotrophic, tropical ocean waters. It represents a synthesis of previously published methods.

Jones, Anthony T.; Hartwig, Eric O.

1982-08-01T23:59:59.000Z

314

Determination of adenosine triphosphate on marine particulates: synthesis of methods for use on OTEC samples  

DOE Green Energy (OSTI)

Adenosine triphosphate (ATP) is an indicator of living biomass in marine particulates. This report details the method used by Lawrence Berkeley Laboratory to analyze particulate ATP in samples taken from oligotrophic, tropical ocean waters. It represents a synthesis of previously published methods.

Jones, A.T.; Hartwig, E.O.

1982-08-01T23:59:59.000Z

315

Resistive heater geometry and regeneration method for a diesel particulate filter  

DOE Patents (OSTI)

One embodiment of the invention includes a diesel particulate filter comprising a first face and a second face; a bottom electrode layer formed over the first face of the diesel particulate filter; a middle resistive layer formed over a portion of the bottom electrode layer; and a top electrode layer formed over a portion of the middle resistive layer.

Phelps, Amanda (Malibu, CA); Kirby, Kevin W. (Calabasas Hills, CA); Gregoir, Daniel J. (Thousand Oaks, CA)

2011-10-25T23:59:59.000Z

316

SOURCE SIGNATURES OF FINE PARTICULATE MATTER FROM PETROLEUM REFINING AND FUEL USE  

DOE Green Energy (OSTI)

The molecular structure and microstructure of a suite of fine particulate matter (PM) samples produced by the combustion of residual fuel oil and diesel fuel were investigated by an array of analytical techniques. Some of the more important results are summarized below. Diesel PM (DPM): A small diesel engine test facility was used to generate a suite of diesel PM samples from different fuels under engine load and idle conditions. C XANES, {sup 13}C NMR, XRD, and TGA were in accord that the samples produced under engine load conditions contained more graphitic material than those produced under idle conditions, which contained a larger amount of unburned diesel fuel and lubricating oil. The difference was enhanced by the addition of 5% of oxygenated compounds to the reference fuel. Scanning transmission x-ray micro-spectroscopy (STXM) was able to distinguish particulate regions rich in C=C bonds from regions rich in C-H bonds with a resolution of {approx}50 nm. The former are representative of more graphitic regions and the latter of regions rich in unburned fuel and oil. The dominant microstructure observed by SEM and TEM consisted of complex chain-like structures of PM globules {approx}20-100 nm in mean diameter, with a high fractal dimension. High resolution TEM revealed that the graphitic part of the diesel soot consisted of onion-like structures made up of graphene layers. Typically 3-10 graphene layers make up the ''onion rings'', with the layer spacing decreasing as the number of layers increases. ROFA PM: Residual oil fly ash (ROFA) PM has been analyzed by a new approach that combines XAFS spectroscopy with selective leaching procedures. ROFA PM{sub 2.5} and PM{sub 2.5+} produced in combustion facilities at the U.S. EPA National Risk Management Research Laboratory (NRML) were analyzed by XAFS before and after leaching with water, acid (1N HCl), and pentane. Both water and acid leaching removed most of the metal sulfates, which were the dominant phase present for most metals (V, Ni, Zn, etc.). This allowed conclusive identification in the leaching residue of important secondary sulfide and oxide phases, including Ni sulfide, a toxic and carcinogenic phase observed in the leached PM{sub 2.5+} samples. Other significant secondary phases identified included V{sub 2}O{sub 4}, V sulfide, and NiFe{sub 2}O{sub 4}.

Gerald P. Huffman; Frank E. Huggins; Naresh Shah; Artur Braun; Yuanzhi Chen; J. David Robertson; Joseph Kyger; Adel F. Sarofim; Ronald J. Pugmire; Henk L.C. Meuzelaar; JoAnn Lighty

2003-07-31T23:59:59.000Z

317

Engineering analysis of fugitive particulate matter emissions from cattle feedyards  

E-Print Network (OSTI)

An engineering analysis of the fugitive particulate matter emissions from a feedyard is not simple. The presence of an evening dust peak in concentration measurements downwind of a feedyard complicates the calculation of an average 24-h emission flux for the feedyard. The evening dust peak is a recurring event that occurs during evening hours when particulate matter concentration measurements increase and decrease dramatically during a short period of time. The concentrations measured during the evening can be up to 8 times the concentrations measured throughout the rest of the day. There is a perception that these concentration increases are due to increases in cattle activity as the temperature decreases during the evening. The purpose of Objective 1 of this research was to quantify the changes in concentrations based on changes in meteorological conditions and/or cattle activity. Using ISCST3, a Gaussian-based EPAapproved dispersion model used to predict concentrations downwind of the feedyard , the results of this work indicate that up to 80% of the increase in concentrations can be attributed to changes in meteorological conditions (wind speed, stability class, and mixing height.)The total fugitive particulate matter emissions on a cattle feedyard are due to two sources: unpaved roads (vehicle traffic) and pen surfaces (cattle activity). Objective 2 of this research was to quantify the mass fraction of the concentration measurements that was due to unpaved road emissions (vehicle traffic). A recent finding by Wanjura et al. (2004) reported that as much as 80% of the concentrations measured after a rain event were due to unpaved road emissions. An engineering analysis of the potential of the unpaved road emissions versus the total feedyard emissions using ISCST3 suggests that it is possible for 70 to 80% of the concentration measurements to be attributed to unpaved road emissions. The purpose of Objective 3 was to demonstrate the science used by ISCST3 to predict concentrations downwind of an area source. Results from this study indicate that the ISCST3 model utilizes a form of the Gaussian line source algorithm to predict concentrations downwind of an area source.

Hamm, Lee Bradford

2005-12-01T23:59:59.000Z

318

Investigations of ash layer characteristics and ash distribution in a diesel particulate filter using novel lubricant additive tracers  

E-Print Network (OSTI)

Diesel particulate filters (DPF) are currently widely used in various applications as a means of collecting particulate matter in order to meet increasingly stringent particle emissions regulations. Over time, the DPF ...

Morrow, Ryan (Ryan Michael)

2010-01-01T23:59:59.000Z

319

Synergistic effects of lubricant additive chemistry on ash properties impacting diesel particulate filter flow resistance and catalyst performance  

E-Print Network (OSTI)

Diesel particulate filters (DPF) have seen widespread use in recent years in both on- and offroad applications as an effective means for meeting the increasingly stringent particulate emission regulations. Overtime, ...

Munnis, Sean (Sean Andrew)

2011-01-01T23:59:59.000Z

320

Multimedia Fate of Selenium and Boron at Coal-Fired Power Plants Equipped with Particulate and Wet FGD Controls  

Science Conference Proceedings (OSTI)

Given the current regulatory climate in the United States, a number of flue gas desulfurization (FGD) systemsas well as selective catalytic reduction (SCR) systemswill be installed at new and existing coal-fired power plants to remove sulfur dioxide (SO2) and nitrogen oxide (NOx). The multimedia fate of trace metals species in SCR/wet FGD systems is not well understood. Understanding and quantifying the amount of trace elements removed from the flue gas and distributed to the solid and aqueous streams is...

2008-12-19T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Eighth international congress on nitrogen fixation. Final program  

DOE Green Energy (OSTI)

This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

Not Available

1990-12-31T23:59:59.000Z

322

On-site generated nitrogen cuts cost of underbalanced drilling  

Science Conference Proceedings (OSTI)

The use of on-site generated nitrogen, instead of liquid nitrogen, has reduced the cost of drilling underbalanced horizontal wells in Canada and the western US. Because nitrogen is inert and inflammable, it is the preferred gas for underbalanced drilling. Nitrogen can be supplied for oil field use by three different methods: cryogenic liquid separation, pressure swing adsorption, and hollow fiber membranes. The selection of nitrogen supply from one of these methods depends on the cost of delivered nitrogen, the required flow rates and pressure, the required nitrogen purity, and the availability and reliability of the equipment for nitrogen generation. These three methods are described, as well as the required equipment.

Downey, R.A. [Energy Ingenuity Co., Englewood, CO (United States)

1997-02-24T23:59:59.000Z

323

AIR QUALITY: MERCURY, TRACE ELEMENTS, AND PARTICULATE MATTER CONFERENCE  

SciTech Connect

This final report summarizes the planning/preparation, facilitation, and outcome of the conference entitled ''Air Quality: Mercury, Trace Elements, and Particulate Matter'' that was held December 1-4, 1998, in McLean, Virginia (on the outskirts of Washington, DC). The goal of the conference was to bring together industry, government, and the research community to discuss the critical issue of how air quality can impact human health and the ecosystem, specifically hazardous air pollutants and fine airborne particles; available and developing control technologies; strategies and research needs; and an update on federal and state policy and regulations, related implementation issues, and the framework of the future.

John H. Pavlish; Steven A. Benson

1999-07-01T23:59:59.000Z

324

Particulate measurement issues in diesel exhausts using laser induced incandescence  

DOE Green Energy (OSTI)

A number of studies in the recent past have identified Laser Induced Incandescence (LII) as a versatile technique for in-flame measurement of soot concentrations. Recently, a number of researchers have focused their attention in adapting this technique to measure particulate in diesel exhausts. However the agreement with established physical sampling techniques, such as the EPA recommended filter paper collection method, was found to be less than ideal. This paper reports the efforts to adapt this technique for diesel exhaust characterization. Many of the factors affecting LII signal were identified through computer modeling. Parameters that could not be determined through such a model were determined experimentally following a parametric study. Subsequently, LII measurements were performed in the exhaust of a modified lab burner, with conditions close to that of diesel engine exhausts. Such measurements show excellent agreement with those performed using the standard filter paper collection technique.

Gupta, S. B.; Poola, R. B.; Sekar, R.

2000-07-03T23:59:59.000Z

325

TRANSIENT, REAL-TIME, PARTICULATE EMISSION MEASUREMENTS IN DIESEL ENGINES  

DOE Green Energy (OSTI)

This paper reports our efforts to develop an instrument, TG-1, to measure particulate emissions from diesel engines in real-time. TG-1 while based on laser-induced incandescence allows measurements at 10 Hz on typical engine exhausts. Using such an instrument, measurements were performed in the exhaust of a 1.7L Mercedes Benz engine coupled to a low inertia dynamometer. Comparative measurements performed under engine steady state conditions showed the instrument to agree within {+-}12% of measurements performed with an SMPS. Moreover, the instrument had far better time response and time resolution than a TEOM{reg_sign} 1105. Also, TG-1 appears to surpass the shortcomings of the TEOM instrument, i.e., of yielding negative values under certain engine conditions and, being sensitive to external vibration.

Gupta, S; Shih, J; Hillman, G; sekar, R; Graze, R; Shimpi, S; Martin, W; Pier, D

2003-08-24T23:59:59.000Z

326

ADVANCED HYBRID PARTICULATE COLLECTOR - PILOT-SCALE TESTING  

SciTech Connect

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed at the Energy and Environmental Research Center (EERC) with U.S. Department of Energy (DOE) funding. In addition to DOE and the EERC, the project team includes W.L. Gore and Associates, Inc., Allied Environmental Technologies, Inc., and the Big Stone power station. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique approach to develop a compact but highly efficient system. Filtration and electrostatics are employed in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. The objective of the AHPC is to provide >99.99% particulate collection efficiency for particle sizes from 0.01 to 50 {micro}m and be applicable for use with all U.S. coals at a lower cost than existing technologies. In previous field tests with the AHPC, some minor bag damage was observed that appeared to be caused by electrical effects. Extensive studies were then carried out to determine the reason for the bag damage and to find possible solutions without compromising AHPC performance. The best solution to prevent the bag damage was found to be perforated plates installed between the electrodes and the bags, which can block the electric field from the bag surface and intercept current to the bags. The perforated plates not only solve the bag damage problem, but also offer many other advantages such as operation at higher A/C (air-to-cloth) ratios, lower pressure drop, and an even more compact geometric arrangement. For this project, AHPC pilot-scale tests were carried out to understand the effect of the perforated plate configuration on bag protection and AHPC overall performance and to optimize the perforated plate design. Five different perforated plate configurations were evaluated in a coal combustion system. The AHPC performed extremely well even at a low current level (1.5-3.0 mA) and a low pulse trigger pressure of 6.5 in. W.C. (1.62 kPa), resulting in a bag-cleaning interval of over 40 min at an A/C ratio of 12 ft/min (3.7 m/min) for most of the test period. The longest bag-cleaning interval was 594 min, which is the best to date. The residual drag was reduced to the range from 0.25 to 0.35 in. H{sub 2}O/ft/min, showing an excellent bag-cleaning ability under the perforated plate configurations. The K{sub 2}C{sub i} at the current level of 3 mA was as low as 1.0, indicating excellent ESP performance. All the results are the best achieved to date.

Ye Zhuang; Stanley J. Miller; Michael E. Collings; Michelle R. Olderbak

2001-09-30T23:59:59.000Z

327

PII S0016-7037(01)00632-9 Preservation of particulate non-lithogenic uranium in marine sediments  

E-Print Network (OSTI)

PII S0016-7037(01)00632-9 Preservation of particulate non-lithogenic uranium in marine sediments in revised form March 26, 2001) Abstract--Particulate non-lithogenic uranium (PNU), excess U above detrital). This excess U is referred to as particulate non-lithogenic U (PNU). Uranium concentrations in the supernant

van Geen, Alexander

328

Effects of Chlorine and Other Flue Gas Parameters on Selective Catalytic Reduction Technology for Mercury Oxidation and Capture  

Science Conference Proceedings (OSTI)

Selective Catalytic Reduction (SCR) technologythe technology of choice for meeting stringent nitrogen oxides (NOx) emission limits for coal-fired electric generating plantshas potential for oxidizing mercury, which would provide enhanced removal in downstream systems. Catalyst behavior is relatively well understood for deNOx and SO2 oxidation, but less is known about mercury oxidation behavior. This test program was designed to determine general behavior of typical SCR catalysts on mercury oxidation and ...

2009-12-21T23:59:59.000Z

329

Comminution employing liquid nitrogen pretreatments  

SciTech Connect

The goal of this project is to develop a methodology that will lead to the establishment of an effective, efficient technique for ultrafine grinding of coal. We believe that the key to successful coal grinding is strongly dependent upon the change of the brittleness of coal under a freezing temperature pretreatment. Furthermore, a cryogenic grinding process may provide the basis for the development of advanced technologies involving the separation of the pyritic minerals from coal. Specific objectives of the program are to: determine the effect of low temperature pretreatments on the microfracture development along the coal/pyrite interface and on the fracture resistance (brittleness) of coal. Specifically, we intend to examine the effect of direct contact of coal with liquid nitrogen, dry ice, and dry-iced acetone. Also, we intend to study pyrite liberation as a result of these treatments; determine the fracture resistance of coal under different low temperature pretreatments; determine the relationships between the fracture resistance of coal and the effectiveness of a grinding process; determine the effect of the frozen coal grinding on the pyrite liberation; evaluate factors which might effect process design, scale-up, and economics; and make a first pass economic assessment of the process. 15 refs., 13 figs., 3 tabs.

Yen, S.C. (Southern Illinois Univ., Carbondale, IL (USA). Dept. of Civil Engineering and Mechanics); Hippo, E.J. (Southern Illinois Univ., Carbondale, IL (USA). Dept. of Mechanical Engineering and Energy Processes)

1990-11-01T23:59:59.000Z

330

Nitrogen Removal From Low Quality Natural Gas  

SciTech Connect

Natural gas provides more than one-fifth of all the primary energy used in the United States. It is especially important in the residential sector, where it supplies nearly half of all the energy consumed in U.S. homes. However, significant quantities of natural gas cannot be produced economically because its quality is too low to enter the pipeline transportation system without some type of processing, other than dehydration, to remove the undesired gas fraction. Such low-quality natural gas (LQNG) contains significant concentration or quantities of gas other than methane. These non- hydrocarbons are predominantly nitrogen, carbon dioxide, and hydrogen sulfide, but may also include other gaseous components. The nitrogen concentrations usually exceeds 4%. Nitrogen rejection is presently an expensive operation which can present uneconomic scenarios in the potential development of natural gas fields containing high nitrogen concentrations. The most reliable and widely used process for nitrogen rejection from natural gas consists of liquefying the feed stream using temperatures in the order of - 300{degrees}F and separating the nitrogen via fractionation. In order to reduce the gas temperature to this level, the gas is compressed, cooled by mullet-stream heat exchangers, and expanded to low pressure. Significant energy for compression and expensive materials of construction are required. Water and carbon dioxide concentrations must be reduced to levels required to prevent freezing. SRI`s proposed research involves screening new nitrogen selective absorbents and developing a more cost effective nitrogen removal process from natural gas using those compounds. The long-term objective of this project is to determine the technical and economical feasibility of a N{sub 2}2 removal concept based on complexation of molecular N{sub 2} with novel complexing agents. Successful development of a selective, reversible, and stable reagent with an appropriate combination of capacity and N{sub 2} absorption/desorption characteristics will allow selective separation of N{sub 2} from LQNG.

Alvarado, D.B.; Asaro, M.F.; Bomben, J.L.; Damle, A.S.; Bhown, A.S.

1997-10-01T23:59:59.000Z

331

A toolbox for calculating net anthropogenic nitrogen inputs (NANI)  

Science Conference Proceedings (OSTI)

The ''Net Anthropogenic Nitrogen Input'' (NANI) to a region represents an estimate of anthropogenic net nitrogen (N) fluxes across its boundaries, and is thus a measure of the effect of human activity on the regional nitrogen cycle. NANI accounts for ... Keywords: Anthropogenic, Nitrogen, Synthesis, Toolbox, Watershed

Bongghi Hong; Dennis P. Swaney; Robert W. Howarth

2011-05-01T23:59:59.000Z

332

Emission factors for ammonia and particulate matter from broiler Houses  

E-Print Network (OSTI)

Total suspended particulate (TSP) concentrations, ammonia (NH?) concentrations, and ventilation rates were measured in four commercial, tunnel ventilated broiler houses in June through December of 2000 in Brazos County, Texas. Particle size distributions were developed from TSP samplers collected and used to determine the mass fraction of PM?? in the TSP samples collected. Concentrations of TSP and ammonia measured were multiplied by the ventilation rates measured to obtain emission factors for PM?? and ammonia from tunnel ventilated commercial broiler houses. TSP and NH? concentrations ranged from 7,387 to 11,387 []g/m³ and 2.02 to 45 ppm, respectively. Ammonia concentration exhibited a correlation with the age of the birds. Mass median diameters (MMD) found using particle size analysis with a Coulter Counter Multisizer were between 24.0 and 26.7 mm aerodynamic equivalent diameter. MMD increased with bird age. The mass fraction of PM?? in the TSP samples was between 2.72% and 8.40% with a mean of 5.94%. Ventilation rates were measured between 0.58 and 89 m³/s. Ammonia emission rates varied from 38 to 2105 g/hr. TSP emission rates and PM?? emission rates ranged from 7.0 to 1673 g/hr 0.58 to 99 g/hr respectively. Emission rates for ammonia and particulate matter increased with the age of the birds. Error and sensitivity analysis was conducted using Monte Carlo simulation for the calculation of emission rates. Error for ammonia emission rates was 99 g/hr during tunnel ventilation and 6 g/hr during sidewall ventilation. Error for TSP emission rates was 79 g/hr and 11 g/hr for tunnel and sidewall ventilation respectively. Sensitivity analysis showed that ventilation rate measurements and measurement of ammonia concentration had the most effect on the emission rates. Emission factors of NH? and PM?? estimated for these buildings were 1.32 ± 0.472 g/bird and 22.8 ± 9.28 g/bird, respectively. These emission factors take into account the variation of PM?? and NH? concentrations and ventilation rates with the age of the birds.

Redwine, Jarah Suzanne

2001-01-01T23:59:59.000Z

333

Revolutionary systems for catalytic combustion and diesel catalytic particulate traps.  

DOE Green Energy (OSTI)

This report is a summary of an LDRD project completed for the development of materials and structures conducive to advancing the state of the art for catalyst supports and diesel particulate traps. An ancillary development for bio-medical bone scaffolding was also realized. Traditionally, a low-pressure drop catalyst support, such as a ceramic honeycomb monolith, is used for catalytic reactions that require high flow rates of gases at high-temperatures. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. ''Robocasting'' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low-pressure drops. These alternative 3-dimensional geometries may also provide a foundation for the development of self-regenerating supports capable of trapping and combusting soot particles from a diesel engine exhaust stream. This report describes the structures developed and characterizes the improved catalytic performance that can result. The results show that, relative to honeycomb monolith supports, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application. Practical applications include the combustion of natural gas for power generation, production of syngas, and hydrogen reforming reactions. The robocast lattice structures also show practicality for diesel particulate trapping. Preliminary results for trapping efficiency are reported as well as the development of electrically resistive lattices that can regenerate the structure by combusting the trapped soot. During this project an ancillary bio-medical application was discovered for lattices of hydroxyapatite. These structures show promise as bone scaffolds for the reparation of damaged bone. A case study depicting the manufacture of a customized device that fits into a damaged mandible is described.

Stuecker, John Nicholas; Witze, Peter O.; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

2004-12-01T23:59:59.000Z

334

Size-Resolved Density Measurements of Particulate Emissions from an Advanced Combustion Diesel Engine: Effect of Aggregate Morphology  

Science Conference Proceedings (OSTI)

We report the first in situ size-resolved density measurements of particles produced by premixed charge compression ignition (PCCI) and compare these with conventional diesel particles. The densities of size-classified particles were determined by measurements with a differential mobility analyzer (DMA) and an aerosol particle mass analyzer (APM). Particle masses of the different size classes were evaluated with a proposed DMA-APM response function for aggregates. Our results indicate that the effective densities of PCCI and conventional diesel particles were approximately the same for 50 and 100 nm electrical mobility diameters (0.9 and 0.6 g/cc, respectively), but the PCCI particle effective density (0.4 g/cc) was less than the conventional (0.5 g/cc) for 150 nm. The lowest effective particle densities were observed for exhaust gas recirculation (EGR) levels somewhat less than that required for PCCI operation. The inherent densities of conventional particles in the 50 and 100 nm size classes were 1.22 and 1.77 g/cc, which is in good agreement with Park et al. (2004). PCCI inherent particle densities for these same size classes were higher (1.27 and 2.10 g/cc), suggesting that there may have been additional adsorbed liquid hydrocarbons. For 150 nm particles, the inherent densities were nearly the same for PCCI and conventional particles at 2.20 g/cc. We expect that the lower effective density of PCCI particles may improve particulate emissions control with diesel particulate filters (DPFs). The presence of liquid hydrocarbons may also promote oxidation in DPFs.

Barone, Teresa L [ORNL; Storey, John Morse [ORNL; Prikhodko, Vitaly Y [ORNL; Parks, II, James E [ORNL

2011-01-01T23:59:59.000Z

335

Determination of the forms of nitrogen released in coal tar during rapid devolatilization. Semi-annual report, November 1, 1995--April 30, 1996  

SciTech Connect

Control of emissions of nitrogen oxides (NO{sub x}) from coal combustion systems is becoming a major design and retrofit consideration. Most NO{sub x} in coal combustion systems comes from nitrogen in the fuel, rather than from nitrogen in the air. Practical emission control strategies include burner design strategies (e.g., low NO{sub x} burners), overfire air, reburning, selective non-catalytic reduction (SNCR) using reduction agents such as NH{sub 3} or urea, and selective catalytic reduction (SCR). The order listed also reflects the order of increasing costs for implementation. It is therefore most economically desirable to perform burner modifications to reduce NO{sub x} emissions rather than other control measures. Low-NO{sub x} burners work on the principle that devolatilized nitrogen species will form N{sub 2} rather than NO{sub x} under locally fuel-rich conditions with sufficient residence time at appropriate temperatures. The amount and form of nitrogen released during devolatilization influence the degree of NO{sub x} reduction attainable using burner design strategies for a given coal. Nitrogen in the char following devolatilization is released by heterogeneous oxidation, and may not be controlled by aerodynamic burner modifications. The objectives of this work are to perform detailed chemical measurements of the nitrogen in coal, tar, and char.

Fletcher, T.H.

1996-04-30T23:59:59.000Z

336

Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Final report  

SciTech Connect

The overall objective of the project proposed was to evaluate the catalyst-coated fabric filter concept for effective control of NO{sub 2} and particulate emissions simultaneously. General goals included demonstrating high removal efficiency of NO{sub x} and particulate matter, acceptable bag and catalyst life, and that process economics show a significant cost savings in comparison to a commercial SCR process and conventional particulate control. Specific goals included the following: reduce NO{sub x} emissions to 60 ppM or less; demonstrate particulate removal efficiency of >99.5%; demonstrate a bag/catalyst life of >1 year; Control ammonia slip to <25 ppM; show that catalytic fabric filtration can achieve a 50% cost savings over conventional fabric filtration and SCR control technology; determine compatibility with S0{sub 2} removal systems; and show that the concept results in a nonhazardous waste product.

Weber, G.F.; Dunham, G.E.; Laudal, D.L.; Ness, S.R.; Schelkoph, G.L.

1994-08-01T23:59:59.000Z

337

The Relationship between Particulate Chemistry and Air Masses in Southern Indiana  

Science Conference Proceedings (OSTI)

The particulate characteristics of the surface layer of the atmosphere over a region of southwest Indiana were determined for forty-two 24-hour periods between September 1985 and April 1986. The water-soluble sulfate, chloride and sodium content ...

Richard H. Grant; William W. McFee

1989-03-01T23:59:59.000Z

338

On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines  

SciTech Connect

The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

Hall, Matt; Matthews, Ron

2011-09-30T23:59:59.000Z

339

Understanding the meteorological drivers of U.S. particulate matter concentrations in a changing climate  

Science Conference Proceedings (OSTI)

Particulate matter (PM) air pollution is a serious public health issue for the United States. While there is a growing body of evidence that climate change will partially counter the effectiveness of future precursor emission reductions to reduce ozone (O...

John P. Dawson; Bryan J. Bloomer; Darrell A. Winner; Christopher P. Weaver

340

Air Pollution Control Regulations: No. 3- Particulate Emissions from Industrial Processes (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations limit particulate emissions into the atmosphere by process weight per hour, where process weight is the total weight of all materials introduced into any specific process which...

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Passive regeneration : long-term effects on ash characteristics and diesel particulate filter performance  

E-Print Network (OSTI)

Diesel particulate filters (DPF) have seen widespread growth as an effective means for meeting increasingly rigorous particle emissions regulations. There is growing interest to exploit passive regeneration of DPFs to ...

Bahr, Michael J., Nav. E. (Michael James). Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

342

A Triple-Path Denuder Instrument for Ambient Particulate Sampling and Analysis  

Science Conference Proceedings (OSTI)

A field instrument for sampling sulfate and nitrate particulate matter in a controlled chemical environment has been constructed and field tested. The instrument contains HNO3 and NH3 denuders and an ambient air path, all connected by manifold to ...

Briant L. Davis; L. Ronald Johnson; Bryan J. Johnson; Robert J. Hammer

1988-02-01T23:59:59.000Z

343

Atmospheric particulate emissions from dry abrasive blasting using coal slag  

Science Conference Proceedings (OSTI)

Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. 40 refs., 5 figs., 2 tabs.

Bhaskar Kura; Kalpalatha Kambham; Sivaramakrishnan Sangameswaran; Sandhya Potana [University of New Orleans, New Orleans, LA (United States). Department of Civil and Environmental Engineering

2006-08-15T23:59:59.000Z

344

Discrete-element modeling of particulate aerosol flows  

Science Conference Proceedings (OSTI)

A multiple-time step computational approach is presented for efficient discrete-element modeling of aerosol flows containing adhesive solid particles. Adhesive aerosol particulates are found in numerous dust and smoke contamination problems, including smoke particle transport in the lungs, particle clogging of heat exchangers in construction vehicles, industrial nanoparticle transport and filtration systems, and dust fouling of electronic systems and MEMS components. Dust fouling of equipment is of particular concern for potential human occupation on dusty planets, such as Mars. The discrete-element method presented in this paper can be used for prediction of aggregate structure and breakup, for prediction of the effect of aggregate formation on the bulk fluid flow, and for prediction of the effects of small-scale flow features (e.g., due to surface roughness or MEMS patterning) on the aggregate formation. After presentation of the overall computational structure, the forces and torques acting on the particles resulting from fluid motion, particle-particle collision, and adhesion under van der Waals forces are reviewed. The effect of various parameters of normal collision and adhesion of two particles are examined in detail. The method is then used to examine aggregate formation and particle clogging in pipe and channel flow.

Marshall, J.S. [School of Engineering, University of Vermont, 33 Colchecter Avenue, Burlington, Vermont 05405 (United States)], E-mail: jeffm@cems.uvm.edu

2009-03-20T23:59:59.000Z

345

Thermo-Oxidation of Tokamak Carbon Dust  

Science Conference Proceedings (OSTI)

The oxidation of dust and flakes collected from the DIII-D tokamak, and various commercial dust specimens, has been measured at 350 ºC and 2.0 kPa O2 pressure. Following an initial small mass loss, most of the commercial dust specimens showed very little effect due to O2 exposure. Similarly, dust collected from underneath DIII-D tiles, which is thought to comprise largely Grafoil™ particulates, also showed little susceptibility to oxidation at this temperature. However, oxidation of the dust collected from tile surfaces has led to ~ 18% mass loss after 8 hours; thereafter, little change in mass was observed. This suggests that the surface dust includes some components of different composition and/or structure – possibly fragments of codeposited layers. The oxidation of codeposit flakes scraped form DIII-D upper divertor tiles showed an initial 25% loss in mass due to heating in vacuum, and the gradual loss of 30-38% mass during the subsequent 24 hours exposure to O2. This behavior is significantly different from that observed for the oxidation of thinner DIII-D codeposit specimens which were still adhered to tile surfaces, and this is thought to be related to the low deuterium content (D/C ~ 0.03 – 0.04) of the flakes.

J.W. Davis; B.W.N. Fitzpatrick; J.P. Sharpe; A.A. Haasz

2008-04-01T23:59:59.000Z

346

Optical backscatter probe for sensing particulate in a combustion gas stream  

SciTech Connect

A system for sensing particulate in a combustion gas stream is disclosed. The system transmits light into a combustion gas stream, and thereafter detects a portion of the transmitted light as scattered light in an amount corresponding to the amount of particulates in the emissions. Purge gas may be supplied adjacent the light supply and the detector to reduce particles in the emissions from coating or otherwise compromising the transmission of light into the emissions and recovery of scattered light from the emissions.

Parks, James E; Partridge, William P

2013-05-28T23:59:59.000Z

347

Nitrogen and phosphorus in the Finnish energy system, 1900-2003  

Science Conference Proceedings (OSTI)

In producing power, humans move the nutrients nitrogen (N) and phosphorus (P) from their long-term geological and biological stocks and release or emit them in soil, water, and the atmosphere. In Finland, peat combustion is an important driver of N and P fluxes from the environment to human economy. The flows of N and P in the Finnish energy system were quantified with partial substance flow analysis, and the driving forces of emissions of nitrogen oxides (NOx) were analyzed using the ImPACT model. In the year 2000 in Finland, 140,000 tonnes of nitrogen entered the energy system, mainly in peat and hard coal. Combustion released an estimated 66,000 tonnes of N as nitrogen oxides (NOx) and nitrous oxides (N{sub 2}O) and another 74,000 tonnes as elemental N{sub 2}. Most of the emissions were borne in traffic. At the same time, 6,000 tonnes of P was estimated to enter the Finnish energy system, mostly in peat and wood. Ash was mainly used in earth construction and disposed in landfills; thus negligible levels of P were recycled back to nature. During the twentieth century, fuel-borne input of N increased 20-fold, and of P 8-fold. In 1900-1950, the increasing use of hard coal slowly boosted N input, whereas wood fuels were the main carrier of P. Since 1970, the fluxes have been on the rise. NOx emissions leveled off in the 1980s, though, and then declined in conjunction with improvements in combustion technologies such as NOx removal (de-NOx) technologies in energy production and catalytic converters in cars.

Saikku, L.; Antikainen, R.; Kauppi, P.E. [University of Helsinki, Helsinki (Finland). Dept. of Biology & Environmental Science

2007-01-01T23:59:59.000Z

348

Nitrogen control of chloroplast development and differentiation  

DOE Green Energy (OSTI)

The growth and development of plants and photosynthetic microorganisms is commonly limited by the availability of nitrogen. Our work concerns understanding the mechanisms by which plants and algae that are subjected to nitrogen deprivation alter the composition of photosynthetic membranes and enzymes involved in photosynthetic carbon metabolism. Toward these ends, we study biosynthetic and gene expression processes in the unicellular green alga Chlamydomonas reinhardtii which is grown in an ammonium-limited continuous culture system. We have found that the expression of nuclear genes, including those encoding for light-harvesting proteins, are severely repressed in nitrogen-limited cells whereas, in general, chloroplast protein synthesis is attenuated primarily at the level of mRNA translation. Conversely, nitrogen deprivation appears to lead to enhanced synthesis of enzymes that are involved in starch and storage lipid deposition. In addition, as a possible means by which photosynthetic electron transport activities and ATP synthesis is sustained during chronic periods of nitrogen deprivation, thylakoid membranes become enriched with components for chlororespiration. Characterization of the chlororespiratory electron transport constituents, including cytochrome complexes and NAD(P)H dehydrogenase is a major current effort. Also, we are striving to isolate the genes encoding chlororespiration proteins toward determining how they and others that are strongly responsive to nutrient availability are regulated.

Schmidt, G.W.

1991-12-01T23:59:59.000Z

349

Frostbite Theater - Liquid Nitrogen Experiments - Dry Ice vs. Liquid  

NLE Websites -- All DOE Office Websites (Extended Search)

Egg + Liquid Nitrogen + Time-lapse! Egg + Liquid Nitrogen + Time-lapse! Previous Video (Egg + Liquid Nitrogen + Time-lapse!) Frostbite Theater Main Index Next Video (Liquid Nitrogen Cooled Dry Ice in Water!) Liquid Nitrogen Cooled Dry Ice in Water! Dry Ice vs. Liquid Nitrogen! Dry ice is cold. Liquid nitrogen is cold, too. What happens when the two are mixed together? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: Have you ever wondered what happens when you mix dry ice and liquid nitrogen? Steve: Well, we just happen to have a chunk of dry ice left over from when we filmed 'How to Make a Cloud Chamber,' and here at Jefferson Lab, liquid nitrogen flows like water, so we're going to find out!

350

Nitrogen heat pipe for cryocooler thermal shunt  

SciTech Connect

A nitrogen heat pipe was designed, built and tested for the purpose of providing a thermal shunt between the two stages of a Gifford-McMahan (GM) cryocooler during cooldown. The nitrogen heat pipe has an operating temperature range between 63 and 123 K. While the heat pipe is in the temperature range during the system cooldown, it acts as a thermal shunt between the first and second stage of the cryocooler. The heat pipe increases the heat transfer to the first stage of the cryocooler, thereby reducing the cooldown time of the system. When the heat pipe temperature drops below the triple point, the nitrogen working fluid freezes, effectively stopping the heat pipe operation. A small heat leak between cryocooler stages remains because of axial conduction along the heat pipe wall. As long as the heat pipe remains below 63 K, the heat pipe remains inactive. Heat pipe performance limits were measured and the optimum fluid charge was determined.

Prenger, F.C.; Hill, D.D.; Daney, D.E.; Daugherty, M.A. [Los Alamos National Lab., NM (United States); Green, G.F.; Roth, E.W. [Naval Surface Warfare Center, Annapolis, MD (United States)

1995-09-01T23:59:59.000Z

351

Particulate control for coal-fueled diesel engine exhaust  

DOE Green Energy (OSTI)

The Core Separator is a cylindrical vessel having one tangential inlet and two outlets at the opposite end of the vessel. It contains an outlet for the clean flow and a second outlet for the recirculating flow. The solids-laden flue gas is introduced through a fan to the inlet of the Core Separator. Due to the swirling motion of the flow, solids move to the periphery as the central jet leaving the system through the central outlet is cleaned of particulates. The peripheral flow with most of the particles is exhausted to the cyclone and then recirculates back to the Core Separator by means of the fan. The processes of separation and solids collection are accomplished separately and in different components. The Core Separator cleans the flow discharged from the system and detains solids within the system If the Core Separator efficiency is high enough, particles cannot leave the system. They recirculate again and again until the cyclone finally collects them for removal. An analytical formula can be derived that defines the system performance. E = E{sub c}E{sub s}/1{minus}E{sub s}(1{minus}E{sub c}), where E, E{sub c}, and E{sub s} are the system, collector, and Core Separator partial separation efficiencies respectively. Examination of this equation shows that the system efficiency remains high even with poor performance in the collector, as long as the efficiency of the Core Separator is high. For example, if E{sub s} is 99% and E{sub c} is 30%, the system efficiency is 96.7%.

Smolensky, L.A.; Easom, B.H.

1993-11-01T23:59:59.000Z

352

Oxidation catalyst  

DOE Patents (OSTI)

The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

Ceyer, Sylvia T. (Cambridge, MA); Lahr, David L. (Cambridge, MA)

2010-11-09T23:59:59.000Z

353

Characterization of nitrogen compound types in hydrotreated Paraho shale oil  

DOE Green Energy (OSTI)

Results from the separation and characterization of nitrogen compound types in hydrotreated Paraho shale oil samples were obtained. Two samples of Paraho shale oil were hydrotreated by Chevron Research Company such that one sample contained about 0.05 wt. percent nitrogen and the other sample contained about 0.10 wt. percent nitrogen. A separation method concentrate specific nitrogen compound types was developed. Characterization of the nitrogen types was accomplished by infrared spectroscopy, mass spectrometry, potentiometric titration, and elemental analysis. The distribution of nitrogen compound types in both samples and in the Paraho crude shale oil is compared.

Holmes, S.A.; Latham, D.R.

1980-10-01T23:59:59.000Z

354

Modelling nitrogen leaching from overlapping urine patches  

Science Conference Proceedings (OSTI)

Urine depositions have been shown to be the main source of N leaching from grazing systems and thus it is important to consider them in simulation models. The inclusion of urine patches considerably increases the complexity of the model and this can ... Keywords: APSIM, Grazing system, Heterogeneity, Leaching, Nitrogen, Simulation modelling, Urine patches

R. Cichota; V. O. Snow; I. Vogeler

2013-03-01T23:59:59.000Z

355

Method for producing high carrier concentration p-Type transparent conducting oxides  

DOE Patents (OSTI)

A method for producing transparent p-type conducting oxide films without co-doping plasma enhancement or high temperature comprising: a) introducing a dialkyl metal at ambient temperature and a saturated pressure in a carrier gas into a low pressure deposition chamber, and b) introducing NO alone or with an oxidizer into the chamber under an environment sufficient to produce a metal-rich condition to enable NO decomposition and atomic nitrogen incorporation into the formed transparent metal conducting oxide.

Li, Xiaonan (Evergreen, CO); Yan, Yanfa (Littleton, CO); Coutts, Timothy J. (Golden, CO); Gessert, Timothy A. (Conifer, CO); Dehart, Clay M. (Westminster, CO)

2009-04-14T23:59:59.000Z

356

Nitrogen and Sulfur Requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on Cellulosic Substrates in Minimal Nutrient Media  

Science Conference Proceedings (OSTI)

Growth media for cellulolytic Clostridium thermocellum and Caldicellulosiruptor bescii bacteria usually contain excess nutrients that would increase costs for consolidated bioprocessing for biofuel production and create a waste stream with nitrogen, sulfur and phosphate. C. thermocellum was grown on crystalline cellulose with varying concentrations of nitrogen and sulfur compounds, and growth rate and alcohol production response curves were determined. Both bacteria assimilated sulfate in the presence of ascorbate reductant, increasing the ratio of oxidized to reduced fermentation products. From these results, a low ionic strength, defined minimal nutrient medium with decreased nitrogen, sulfur, phosphate and vitamin supplements was developed for the fermentation of cellobiose, cellulose and acid-pretreated Populus. Carbon and electron balance calculations indicate the unidentified residual fermentation products must include highly reduced molecules. Both bacterial populations were maintained in co-cultures with substrates containing xylan or hemicellulose in defined medium with sulfate and basal vitamin supplements.

Kridelbaugh, Donna M [ORNL; Nelson, Josh C [ORNL; Engle, Nancy L [ORNL; Tschaplinski, Timothy J [ORNL; Graham, David E [ORNL

2013-01-01T23:59:59.000Z

357

Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

358

Synergistic effects of lubricant additive chemistry on ash properties impacting diesel particulate filter flow resistance and catalyst performance.  

E-Print Network (OSTI)

??Diesel particulate filters (DPF) have seen widespread use in recent years in both on- and offroad applications as an effective means for meeting the increasingly… (more)

Munnis, Sean (Sean Andrew)

2011-01-01T23:59:59.000Z

359

Frostbite Theater - Liquid Oxygen vs. Liquid Nitrogen - Liquid Oxygen and  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells vs. Liquid Nitrogen! Cells vs. Liquid Nitrogen! Previous Video (Cells vs. Liquid Nitrogen!) Frostbite Theater Main Index Next Video (Paramagnetism) Paramagnetism Liquid Oxygen and Fire! What happens when nitrogen and oxygen are exposed to fire? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a test tube of liquid nitrogen! Steve: And this is a test tube of liquid oxygen! Joanna: Let's see what happens when nitrogen and oxygen are exposed to fire. Steve: Fire?! Joanna: Yeah! Steve: Really?! Joanna: Why not! Steve: Okay! Joanna: As nitrogen boils, it changes into nitrogen gas. Because it's so cold, it's denser than the air in the room. The test tube fills up with

360

Liquid absorbent solutions for separating nitrogen from natural gas  

DOE Patents (OSTI)

Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Redmond, OR); Lyon, David K. (Bend, OR); Miller, Warren K. (Bend, OR)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Probing Core-Hole Localization in Molecular Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Core-Hole Localization in Molecular Nitrogen Probing Core-Hole Localization in Molecular Nitrogen Print Wednesday, 25 February 2009 00:00 The behavior of the core hole...

362

DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY  

Science Conference Proceedings (OSTI)

The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

Tom Hrdlicka; William Swanson

2005-12-01T23:59:59.000Z

363

Plant Communities, Soil Carbon, and Soil Nitrogen Properties in a ...  

Science Conference Proceedings (OSTI)

Brye KR, Kucharik CJ (2003) Carbon and nitrogen sequestration in two prairie topochronosequences on contrasting soils in Southern. Wisconsin. American ...

364

NOx Solutions for Biodiesel: Final Report; Report 6 in a Series of 6  

DOE Green Energy (OSTI)

A number of studies have shown substantial particulate matter (PM) reductions for biodiesel, but also a significant increase in nitrogen oxides (NOx) emissions. This study examines a number of approaches for NOx reduction from biodiesel.

McCormick, R. L.; Alvarez, J. R.; Graboski, M. S.

2003-02-01T23:59:59.000Z

365

Catalysts for oxidation of mercury in flue gas  

DOE Patents (OSTI)

Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2010-08-17T23:59:59.000Z

366

NATURAL CONVECTION OF SUBCOOLED LIQUID NITROGEN IN A VERTICAL CAVITY  

E-Print Network (OSTI)

power transformer cooled by natural convection of subcooled liquid nitrogen. A liquid nitrogen bath temperature superconductor) power devices, such as HTS transformers, fault current limiters, and terminals of subcooled liquid nitrogen system for an HTS transformer, operating at around 65 K. This system consists

Chang, Ho-Myung

367

NITROGEN EVOLUTION AND SOOT FORMATION DURING SECONDARY COAL PYROLYSIS  

E-Print Network (OSTI)

reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions yields of the primary tar as a function of reactor temperature in coal [N]tar nitrogen content in tar or soot N nitrogen N2 molecular nitrogen NH3 ammonia NMR Nuclear

Fletcher, Thomas H.

368

Flow cytometric analysis of respiratory tract cells exposed to oil shale and silica particulates. [Hamsters  

SciTech Connect

Flow cytometric techniques were used to measure the cytological and biochemical damage to respiratory tract cells in animals exposed to particulates. Hamsters were exposed to raw and spent oil shale particulates and silica by intratracheal instillation. Exfoliated lung cells were obtained by sacrificing the animals and lavaging the respiratory tract posterior to the trachea with saline. Cell samples were fixed in ethanol and stained with mithramycin for fluorescence analysis of DNA content. DNA content distributions from hamsters exposed to spent oil shale and silica particulates showed atypical changes 28 to 35 days later. Cell counts and total numbers of macrophages, leukocytes, and epithelial cells in the lavage fluid also showed marked changes related to time after exposure.

Steinkamp, J.A.; Wilson, J.S.

1979-01-01T23:59:59.000Z

369

Apparatus for real-time airborne particulate radionuclide collection and analysis  

DOE Patents (OSTI)

An improved apparatus for collecting and analyzing an airborne particulate radionuclide having a filter mounted in a housing, the housing having an air inlet upstream of the filter and an air outlet downstream of the filter, wherein an air stream flows therethrough. The air inlet receives the air stream, the filter collects the airborne particulate radionuclide and permits a filtered air stream to pass through the air outlet. The improvement which permits real time counting is a gamma detecting germanium diode mounted downstream of the filter in the filtered air stream. The gamma detecting germanium diode is spaced apart from a downstream side of the filter a minimum distance for a substantially maximum counting detection while permitting substantially free air flow through the filter and uniform particulate radionuclide deposition on the filter.

Smart, John E. (West Richland, WA); Perkins, Richard W. (Richland, WA)

2001-01-01T23:59:59.000Z

370

A Neo-Rumsfeldian Framework for the Thermodynamics of Organic Particulate  

NLE Websites -- All DOE Office Websites (Extended Search)

A Neo-Rumsfeldian Framework for the Thermodynamics of Organic Particulate A Neo-Rumsfeldian Framework for the Thermodynamics of Organic Particulate Matter Formation in the Atmosphere: Successes and Challenges Speaker(s): James F. Pankow Date: March 6, 2008 - 12:00pm Location: 90-3122 James F. Pankow. The thermodynamic principles according to which organic particulate matter (OPM) forms in the atmosphere have become well identified because of research progress made since about the mid 1990s. These are, ahem, known knowns. However, many unknowns exist regarding the concentrations and chemical characteristics of the biogenic and anthropogenic compounds present in the atmosphere that are important in OPM formation. In this context, since we know what we need to know more about, these are, well, known unknowns. Other known important unknowns are

371

Imbibition dynamics of nano-particulate ink-jet drops on micro-porous media  

E-Print Network (OSTI)

Imbibition dynamics of nano-particulate ink-jet drops on micro-porous media Hsiao, W.-K., Hoath, S. D., Martin, G. D., Hutchings, I. M., Chilton, N. B. and Jones, S., Proc Nanotech 2011 Conference, Boston, June 2011. Imbibition dynamics... of nano-particulate ink-jet drops on micro-porous media W.-K. Hsiao*, S. D. Hoath*, G. D. Martin*, I. M. Hutchings*, N. B. Chilton** and S. Jones** *Department of Engineering, University of Cambridge Cambridge CB3 0FS, United Kingdom, wkh26@cam...

Hsiao, W.-K.; Hoath, S.D.; Martin, G.D.; Hutchings, I.M.; Chilton, N.B.; Jones, S.

372

Method for the Removal of Ultrafine Particulates from an Aqueous Suspension  

DOE Patents (OSTI)

A method of separating ultra-fine particulate from an aqueous suspension such as a process stream or a waste stream. The method involves the addition of alkali silicate and an organic gelling agent to a volume of liquid, from the respective process or waste stream, to form a gel. The gel then undergoes syneresis to remove water and soluble salts from the gel-containing the particulate, thus, forming a silica monolith. The silica monolith is then sintered to form a hard, nonporous waste form.

Chaiko, David J.; Kopasz, John P.; Ellison, Adam J.G.

1999-03-05T23:59:59.000Z

373

Striking nitrogen isotope anomaly in the Bencubbin and Weatherford meteorites  

SciTech Connect

The stony-iron meteorites Bencubbin and Weatherford contain nitrogen with a ratio of nitrogen-15 to nitrogen-14 larger than normal by as much as a factor of 2. The excess nitrogen-15 may be due either to a nucleosynthetic origin or to extreme isotopic fractionation. In the former case, it may reflect failure to homogenize nitrogen-15 produced in nova explosions. In the latter case, it may reflect chemical processing at temperatures below 40 K in a presolar molecular cloud. 34 references.

Prombo, C.A.; Clayton, R.N.

1985-11-01T23:59:59.000Z

374

A Mechanistic Investigation of Nitrogen Evolution and Corrosion with Oxy-Combustion  

SciTech Connect

A premixed, staged, down-fired, pulverized coal reactor and a flat flame burner were used to study the evolution of nitrogen in coal contrasting differences in air and oxy-combustion. In the premixed reactor, the oxidizer was staged to produce a fuel rich zone followed by a burnout zone. The initial nominal fuel rich zone stoichiometric ratio (S.R.) of 0.85 selected produced higher NO reductions in the fuel rich region under oxy-combustion conditions. Air was found to be capable of similar NO reductions when the fuel rich zone was at a much lower S.R. of 0.65. At a S.R. of 0.85, oxy-combustion was measured to have higher CO, unburned hydrocarbons, HCN and NH{sub 3} in the fuel rich region than air at the same S.R. There was no measured difference in the initial formation of NO. The data suggest devolatilization and initial NO formation is similar for the two oxidizers when flame temperatures are the same, but the higher CO{sub 2} leads to higher concentrations of CO and nitrogen reducing intermediates at a given equivalence ratio which increases the ability of the gas phase to reduce NO. These results are supported by flat flame burner experiments which show devolatilization of nitrogen from the coal and char to be similar for air and oxy-flame conditions at a given temperature. A model of premixed combustion containing devolatilization, char oxidation and detailed kinetics captures most of the trends seen in the data. The model suggests CO is high in oxy-combustion because of dissociation of CO{sub 2}. The model also predicts a fraction (up to 20%, dependent on S.R.) of NO in air combustion can be formed via thermal processes with the source being nitrogen from the air while in oxy-combustion equilibrium drives a reduction in NO of similar magnitude. The data confirm oxy-combustion is a superior oxidizer to air for NO control because NO reduction can be achieved at higher S.R. producing better char burnout in addition to NO from recirculated flue gas being reduced as it passes back through the flame.

Dale Tree; Andrew Mackrory; Thomas Fletcher

2008-12-31T23:59:59.000Z

375

Aqueous and gaseous nitrogen losses induced by fertilizer application  

Science Conference Proceedings (OSTI)

In recent years concern has grown over the contribution of nitrogen (N) fertilizer use to nitrate (NO{sub 3}{sup -}) water pollution and nitrous oxide (N{sub 2}O), nitric oxide (NO), and ammonia (NH{sub 3}) atmospheric pollution. Characterizing soil N effluxes is essential in developing a strategy to mitigate N leaching and emissions to the atmosphere. In this paper, a previously described and tested mechanistic N cycle model (TOUGHREACT-N) was successfully tested against additional observations of soil pH and N{sub 2}O emissions after fertilization and irrigation, and before plant emergence. We used TOUGHREACT-N to explain the significantly different N gas emissions and nitrate leaching rates resulting from the different N fertilizer types, application methods, and soil properties. The N{sub 2}O emissions from NH{sub 4}{sup +}-N fertilizer were higher than from urea and NO{sub 3}{sup -}-N fertilizers in coarse-textured soils. This difference increased with decreases in fertilization application rate and increases in soil buffering capacity. In contrast to methods used to estimate global terrestrial gas emissions, we found strongly non-linear N{sub 2}O emissions as a function of fertilizer application rate and soil calcite content. Speciation of predicted gas N flux into N{sub 2}O and N{sub 2} depended on pH, fertilizer form, and soil properties. Our results highlighted the need to derive emission and leaching factors that account for fertilizer type, application method, and soil properties.

Gu, C.; Maggi, F.; Riley, W.J.; Hornberger, G.M.; Xu, T.; Oldenburg, C.M.; Spycher, N.; Miller, N.L.; Venterea, R.T.; Steefel, C.

2009-01-15T23:59:59.000Z

376

NITROGEN -N2 MSDS (Document # 001040) PAGE 1 OF 10 MATERIAL SAFETY DATA SHEET  

E-Print Network (OSTI)

in an emergency? 1. PRODUCT IDENTIFICATION CHEMICAL NAME; CLASS: NITROGEN - N2 LIQUEFIED NITROGEN N2, (CryogenicNITROGEN - N2 MSDS (Document # 001040) PAGE 1 OF 10 MATERIAL SAFETY DATA SHEET Prepared to U ppm ppm ppm Nitrogen 7727-37-9 >99 % There are no specific exposure limits for Nitrogen. Nitrogen

Choi, Kyu Yong

377

The Study of Particulate Emissions of Engine Fuelled with Biodiesel-Diesel Blends Using Thermo-gravimetric Analysis  

Science Conference Proceedings (OSTI)

Particulate emissions of engine fuelled different proportions of Pistacia chinensis Bunge seed biodiesel-dieselblends were collected under different fuel supplying advance dangles and different operating conditions. The change of volatile organic fractions ... Keywords: Thermo-Gravimetric Analysis, Biodiesel, Engine, Particulate Emissions

Ma Zhihao; Zhang Xiaoyu; Wang Xin; Xu Bin; Wu Jian

2011-02-01T23:59:59.000Z

378

Nitrogen control of chloroplast differentiation. Final report  

DOE Green Energy (OSTI)

This project was directed toward understanding at the physiological, biochemical and molecular levels of how photosynthetic organisms adapt to long-term nitrogen-deficiency conditions is quite incomplete even though limitation of this nutrient is the most commonly restricts plant growth and development. For our work on this problem, the unicellular green alga, Chlamydomonas reinhardtii, was grown in continuous cultures in which steady-state levels of nitrogen can be precisely controlled. N-limited cells exhibit the classical symptoms of deficiency of this nutrient, chlorosis and slow growth rates, and respond to nitrogen provision by rapid greening and chloroplast differentiation. We have addressed three aspects of this problem: (1) the regulation of pigment synthesis; (2) control of expression of nuclear genes encoding photosynthetic proteins; (3) changes in metabolic and electron transport pathways that enable sustained CO{sub 2} fixation even though they cannot be readily converted into amino and nucleic acids. For the last, principle components are: (a) enhanced mitochondrial respiratory activity intimately associated with photosynthates, and (b) the occurrence in thylakoids of a supplemental electron transport pathway that facilitates reduction of the plastoquinone pool. Together, these distinguishing features of N-limited cells are likely to enable cell survival, especially under conditions of high irradiance stress.

Schmidt, G.W.

1998-05-01T23:59:59.000Z

379

Frostbite Theater - Liquid Nitrogen Experiments - Let's Freeze Liquid  

NLE Websites -- All DOE Office Websites (Extended Search)

Shattering Pennies! Shattering Pennies! Previous Video (Shattering Pennies!) Frostbite Theater Main Index Next Video (Liquid Nitrogen in a Microwave!) Liquid Nitrogen in a Microwave! Let's Freeze Liquid Nitrogen! By removing the hottest molecules, we're able to freeze liquid nitrogen! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: Today, we're going to freeze liquid nitrogen! Joanna and Steve: Yeah! Joanna: The obvious way to do this is to put the liquid nitrogen into something colder. Something that we have lots of around here! Something like... liquid helium! Steve: Yes! Joanna: Yeah, but we're not going to do that. Instead, we're going to freeze the nitrogen by removing the hottest molecules!

380

Frostbite Theater - Liquid Nitrogen Experiments - Freeze the Rainbow!  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Nitrogen in a Microwave! Liquid Nitrogen in a Microwave! Previous Video (Liquid Nitrogen in a Microwave!) Frostbite Theater Main Index Next Video (Liquid Nitrogen and Antifreeze!) Liquid Nitrogen and Antifreeze! Freeze the Rainbow! Starburst candy. They're fruity. They're chewy. They're delicious! But, can they survive taking a bath in liquid nitrogen? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: A student visiting Jefferson Lab from Huntington Middle School in Newport News, Virginia, asked what happens to a starburst if you put it in liquid nitrogen. Well, we're going to find out! Steve: At room temperature, starburst isn't really all that special. I can kind of squish it if I squeeze it hard enough and, if I drop it, nothing

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Frostbite Theater - Liquid Nitrogen Experiments - Giant Koosh Ball!  

NLE Websites -- All DOE Office Websites (Extended Search)

Let's Pour Liquid Nitrogen on the Floor! Let's Pour Liquid Nitrogen on the Floor! Previous Video (Let's Pour Liquid Nitrogen on the Floor!) Frostbite Theater Main Index Next Video (Egg + Liquid Nitrogen + Time-lapse!) Egg + Liquid Nitrogen + Time-lapse! Giant Koosh Ball! Sometimes, you just want to know what's going to happen! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! A while ago, I was at the mall and I saw this. And, the first thing that popped into my head was 'I wonder what would happen if we were to put this in liquid nitrogen?' Now, that's one thing I really love about science. If you have a question, you can, sometimes, do an experiment to find out what the answer is! Here at the Lab, we have a lot of liquid nitrogen, so that's

382

Development of Mercury Oxidation Catalyst for Enhanced Mercury Capture by Wet FGD  

Science Conference Proceedings (OSTI)

This document describes recent progress on a mercury control technology development program co-funded by EPRI, the U.S. Department of Energy’s National Energy Technology Laboratory (DOE-NETL), and several EPRI-member companies. The mercury control process under development uses catalysts installed downstream of the air heater and particulate control device to promote the oxidation of elemental mercury in flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) ...

2007-03-13T23:59:59.000Z

383

Effects of Emissions Reductions on Ozone Predictions by the Regional Oxidant Model during the July 1988 Episode  

Science Conference Proceedings (OSTI)

The U.S. Environmental Protection Agency Regional Oxidant Model, ROM2.2, was applied to a 2?10 July 1988 episode to test the regional episodic ozone response to different combinations of the across-the-board nitrogen oxides (NOx) and volatile ...

Shao-Hang Chu; William M. Cox

1995-03-01T23:59:59.000Z

384

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. Three different SCR catalysts are currently being studied in this project--honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Future work to characterize flue gas simulations typically derived from low and high sulfur bituminous coal are being performed in a stepwise manner, to avoid the constant interruptions in testing that occur when leaks in the system are generated during temperature transitions. Specifically, chlorine concentration vs. mercury oxidation correlations will be developed for each catalyst. The contributions of temperature are also being investigated. SO2 oxidation is also being investigated for each test condition.

Thomas K. Gale

2005-12-31T23:59:59.000Z

385

Published: December 12, 2011 r 2011 American Chemical Society 551 dx.doi.org/10.1021/es202392g |Environ. Sci. Technol. 2012, 46, 551558  

E-Print Network (OSTI)

emissions of particulate matter and oxides of nitrogen from heavy-duty diesel trucks. To accelerate fleet.5 years in May of 2010 with significant reductions in carbon monoxide (30%), oxides of nitrogen (48 emissions as a result of new, stoichiometrically combusted, liquefied natural gas powered trucks

Denver, University of

386

110K Bi-Sr-Ca-Cu-O superconductor oxide and method for making same  

DOE Patents (OSTI)

A superconductor is disclosed consisting of a sufficiently pure phase of the oxides of Bi, Sr, Ca, and Cu to exhibit a resistive zero near 110K resulting from the process of forming a mixture of Bi[sub 2]O[sub 3], SrCO[sub 3], CaCO[sub 3] and CuO into a particulate compact wherein the atom ratios are Bi[sub 2], Sr[sub 1.2-2.2], Ca[sub 1.8-2.4], Cu[sub 3]. Thereafter, heating the particulate compact rapidly in the presence of oxygen to an elevated temperature near the melting point of the oxides to form a sintered compact, and then maintaining the sintered compact at the elevated temperature for a prolonged period of time. The sintered compact is cooled and reground. Thereafter, the reground particulate material is compacted and heated in the presence of oxygen to an elevated temperature near the melting point of the oxide and maintained at the elevated temperature for a time sufficient to provide a sufficiently pure phase to exhibit a resistive zero near 110K. 7 figs.

Veal, B.W.; Downey, J.W.; Lam, D.J.; Paulikas, A.P.

1992-12-22T23:59:59.000Z

387

Continuous Emission Monitoring (CEM) System Application and Maintenance Guide  

Science Conference Proceedings (OSTI)

Large quantities of gases and particulate matter are emitted daily from industrial plants and fossil-fueled steam generating facilities. The gases include sulfur dioxide (SO2), the nitrogen oxides (NOx), and carbon dioxide (CO2). All of these gases affect the environment in some manner. Sulfur dioxide and the nitrogen oxides are precursors to acid rain. High levels of nitrogen oxides lead to the generation of photochemical smog, while carbon dioxide is implicated in climate change (global warming).

2003-12-31T23:59:59.000Z

388

Nitrogen saturation and soil N availability in a high-elevation spruce and fir forest  

Science Conference Proceedings (OSTI)

A field study was conducted during the summer of 1995 to gain abetter understanding of the causes of nitrate (NO{sub 3}-N) leaching and ongoing changes in soil nitrogen (N) availability in high-elevation (1524-2000 m) spruce (Picea rubens) and fir (Abies fraseri) forests of the Great Smoky Mountains National Park, Tennessee and North Carolina, U.S.A. Indicators of soil N availability (total soil N concentrations, extractable NH{sub 4}-N, extractable NO{sub 3}-N, and C/N ratios) were measured in Oa and A horizons at 33 study plots. Dynamic measures included potential net soil N mineralization determined in 12-week aerobic laboratory incubations at 22 C. Potential net nitrification in the A horizon was correlated (r = + 0.83, P < 0.001) with total soil n concentrations. mostmeasures of soil n availability did not exhibit significanttrends with elevation, but there were topographic differences. Potential net soil N mineralization and net nitrification in the A horizon were higher in coves than on ridges. Relative amounts of particulate and organomineral soil organic matter influenced potential net N mineralization and nitrification in the A horizon. Calculations indicate that soil N availability and NO{sub 3}-N leaching in high-elevation spruce and fir forests of the Great Smoky Mountains National Park will increase in response to regional warming.

Garten Jr, Charles T [ORNL

2000-06-01T23:59:59.000Z

389

2008-01-1748 An Analysis of Methods for Measuring Particulate Matter Mass  

E-Print Network (OSTI)

emission engine and was operated during testing with no exhaust aftertreatment devices. The engine of particulate emissions. This engine was operated under three conditions, with no aftertreatment, with a DPF as Engine 2 with the SCR aftertreatment device, the three mass measurement methods display comparable mass

Wu, Mingshen

390

Daily Simulation of Ozone and Fine Particulates over New York State: Findings and Challenges  

Science Conference Proceedings (OSTI)

This study investigates the potential utility of the application of a photochemical modeling system in providing simultaneous forecasts of ozone (O3) and fine particulate matter (PM2.5) over New York State. To this end, daily simulations from the ...

C. Hogrefe; W. Hao; K. Civerolo; J.-Y. Ku; G. Sistla; R. S. Gaza; L. Sedefian; K. Schere; A. Gilliland; R. Mathur

2007-07-01T23:59:59.000Z

391

Developments in the Processing and Properties of Particulate Al-Si ...  

Science Conference Proceedings (OSTI)

... of low to medium density particulates.32,33 A fundamental characteristic of this technique is ..... K.G. Satyanarayana, R.M. Pillai, and B.C. Pai, Handbook of Ceramics and .... Direct questions about this or any other JOM page to jom@tms. org.

392

Sieveless particle size distribution analysis of particulate materials through computer vision  

Science Conference Proceedings (OSTI)

This paper explores the inconsistency of ''length-based separation'' by mechanical sieving of particulate materials with standard sieves, which is the standard method of particle size distribution (PSD) analysis. We observed inconsistencies of length-based ... Keywords: Biomass sieve analysis, Dimension, Image processing, ImageJ plugin, Particle size distribution, Physical property

C. Igathinathane; L. O. Pordesimo; E. P. Columbus; W. D. Batchelor; S. Sokhansanj

2009-05-01T23:59:59.000Z

393

Estimating long term urban exposure to particulate matter and ozone in Europe  

Science Conference Proceedings (OSTI)

OFIS is a robust and efficient model for simulating the formation of photochemical pollutants in an urban plume. In this paper we present applications of the recent further development of OFIS for calculating both particulate matter and ozone concentrations. ... Keywords: Air quality model, Ozone exposure, PM exposure, Urban air pollution

Athanasios Arvanitis; Nicolas Moussiopoulos

2006-04-01T23:59:59.000Z

394

Synthesis and energetic properties of TAGDNAT: a new high-nitrogen material  

DOE Green Energy (OSTI)

This paper describes the synthesis and characterization of Bis-(triaminoguanidinium)3,3'-dinitro5,5'-azo-1,2,4-triazolate (TAGDNAT), a novel high-nitrogen molecule that derives its energy release from both a high heat of formation and intramolecular oxidation reactions. TAGDNAT shows promise as a propellant or explosive ingredient not only due to its high nitrogen content (66.35 wt%) but additionally due to its high hydrogen content (4.34 wt%). This new molecule has been characterized with respect to its morphology, sensitivity properties, explosive and combustion performance. The heat of formation of TAGDNAT was also experimentally determined. The results of these studies show that TAGDNAT has one of the gastest low-pressure burning rates (at 1000 PSI) we have yet measured, 6.79 cm/s at 100 p.s.i. (39% faster than triaminoguanidinium azotetrazolate (TAGzT), a comparable high-nitrogen/high-hydrogen material). Furthermore, its pressure sensitivity is 0.507, a 33% reduction compared to TAGzT.

Chavez, David E [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

395

Evolution of Photosynthesis and Biospheric Oxygenation Contingent Upon Nitrogen Fixation?  

E-Print Network (OSTI)

How photosynthesis by Precambrian cyanobacteria oxygenated Earth's biosphere remains incompletely understood. Here it is argued that the oxic transition, which took place between approximately 2.3 and 0.5 Gyr ago, required a great proliferation of cyanobacteria, and this in turn depended on their ability to fix nitrogen via the nitrogenase enzyme system. However, the ability to fix nitrogen was not a panacea, and the rate of biospheric oxygenation may still have been affected by nitrogen constraints on cyanobacterial expansion. Evidence is presented for why cyanobacteria probably have a great need for fixed nitrogen than other prokaryotes, underscoring the importance of their ability to fix nitrogen. The connection between nitrogen fixation and the evolution of photosynthesis is demonstrated by the similarities between nitrogenase and enzymes critical for the biosynthesis of (bacterio)chlorophyll. It is hypothesized that biospheric oxygenation would not have occurred if the emergence of cyanobacteria had not been preceded by the evolution of nitrogen fixation, and if these organisms had not also acquired the ability to fix nitrogen at the beginning of or very early in their history. The evolution of nitrogen fixation also appears to have been a precondition for the evolution of (bacterio)chlorophyll-based photosynthesis. Given that some form of chlorophyll is obligatory for true photosynthesis, and its light absorption and chemical properties make it a "universal pigment," it may be predicted that the evolution of nitrogen fixation and photosynthesis are also closely linked on other Earth- like planets.

John W. Grula

2006-05-12T23:59:59.000Z

396

Particulate Emissions from a Pre-Emissions Control Era Spark-Ignition Vehicle: A Historical Benchmark  

DOE Green Energy (OSTI)

This study examined the particulate emissions from a pre-emissions control era vehicle operated on both leaded and unleaded fuels for the purpose of establishing a historical benchmark. A pre-control vehicle was located that had been rebuilt with factory original parts to approximate an as-new vehicle prior to 1968. The vehicle had less than 20,000 miles on the rebuilt engine and exhaust. The vehicle underwent repeated FTP-75 tests to determine its regulated emissions, including particulate mass. Additionally, measurements of the particulate size distribution were made, as well as particulate lead concentration. These tests were conducted first with UTG96 certification fuel, followed by UTG96 doped with tetraethyl lead to approximate 1968 levels. Results of these tests, including transmission electron micrographs of individual particles from both the leaded and unleaded case are presented. The FTP composite PM emissions from this vehicle averaged 40.5 mg/mile using unleaded fuel. The results from the leaded fuel tests showed that the FTP composite PM emissions increased to an average of 139.5 mg/mile. Analysis of the particulate size distribution for both cases demonstrated that the mass-based size distribution of particles for this vehicle is heavily skewed towards the nano-particle range. The leaded-fuel tests showed a significant increase in mass concentration at the <0.1 micron size compared with the unleaded-fuel test case. The leaded-fuel tests produced lead emissions of nearly 0.04 g/mi, more than a 4-order-of-magnitude difference compared with unleaded-fuel results. Analysis of the size-fractionated PM samples showed that the lead PM emissions tended to be distributed in the 0.25 micron and smaller size range.

John M.E. Storey; C. Scott Sluder; Douglas A. Blom; Erin Higinbotham

2000-06-19T23:59:59.000Z

397

Worldwide organic soil carbon and nitrogen data  

Science Conference Proceedings (OSTI)

The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

1986-09-01T23:59:59.000Z

398

Final Report for DOE grant no. DE-FG02-04ER63883: Can soil genomics predict the impact of precipitation on nitrous oxide flux from soil  

SciTech Connect

Nitrous oxide is a potent greenhouse gas that is released by microorganisms in soil. However, the production of nitrous oxide in soil is highly variable and difficult to predict. Future climate change may have large impacts on nitrous oxide release through alteration of precipitation patterns. We analyzed DNA extracted from soil in order to uncover relationships between microbial processes, abundance of particular DNA sequences and net nitrous oxide fluxes from soil. Denitrification, a microbial process in which nitrate is used as an electron acceptor, correlated with nitrous oxide flux from soil. The abundance of ammonia oxidizing archaea correlated positively, but weakly, with nitrous oxide production in soil. The abundance of bacterial genes in soil was negatively correlated with gross nitrogen mineralization rates and nitrous oxide release from soil. We suggest that the most important control over nitrous oxide production in soil is the growth and death of microorganisms. When organisms are growing nitrogen is incorporated into their biomass and nitrous oxide flux is low. In contrast, when microorganisms die, due to predation or infection by viruses, inorganic nitrogen is released into the soil resulting in nitrous oxide release. Higher rates of precipitation increase access to microorganisms by predators or viruses through filling large soil pores with water and therefore can lead to large releases of nitrous oxide from soil. We developed a new technique, stable isotope probing with 18O-water, to study growth and mortality of microorganisms in soil.

Egbert Schwartz

2008-12-15T23:59:59.000Z

399

Evolution of Photosynthesis and Biospheric Oxygenation Contingent Upon Nitrogen Fixation?  

E-Print Network (OSTI)

How photosynthesis by Precambrian cyanobacteria oxygenated Earth's biosphere remains incompletely understood. Here it is argued that the oxic transition, which took place between approximately 2.3 and 0.5 Gyr ago, required a great proliferation of cyanobacteria, and this in turn depended on their ability to fix nitrogen via the nitrogenase enzyme system. However, the ability to fix nitrogen was not a panacea, and the rate of biospheric oxygenation may still have been affected by nitrogen constraints on cyanobacterial expansion. Evidence is presented for why cyanobacteria probably have a great need for fixed nitrogen than other prokaryotes, underscoring the importance of their ability to fix nitrogen. The connection between nitrogen fixation and the evolution of photosynthesis is demonstrated by the similarities between nitrogenase and enzymes critical for the biosynthesis of (bacterio)chlorophyll. It is hypothesized that biospheric oxygenation would not have occurred if the emergence of cyanobacteria had not ...

Grula, J W

2006-01-01T23:59:59.000Z

400

Relating hygroscopicity and composition of organic aerosol particulate matter  

SciTech Connect

A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f44). m/z 44 is due mostly to the ion fragment CO+2 for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfraujoch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation between the hygroscopicity of OA at subsaturated RH, as given by the hygroscopic growth factor (GF) or “*org” parameter, and f44 was determined and is given by *org=2.2×f44?0.13. This approximation can be further verified and refined as the database for AMS and HTDMA measurements is constantly being expanded around the world. The use of this approximation could introduce an important simplification in the parameterization of hygroscopicity of OA in atmospheric models, since 20 f44 is correlated with the photochemical age of an air mass.

Duplissy, J.; DeCarlo, Peter F.; Dommen, J.; Alfarra, M. R.; Metzger, A.; Barmpadimos, I.; Prevot, A. S. H.; Weingartner, E.; Tritscher, Torsten; Gysel, Martin; Aiken, Allison; Jimenez, J. L.; Canagaratna, M. R.; Worsnop, Douglas R.; Collins, Donald R.; Tomlinson, Jason M.; Baltensperger, Urs

2011-02-10T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Lipid Oxidation Pathways  

Science Conference Proceedings (OSTI)

This book reviews state-of-the-art developments in the understanding of the oxidation of lipids and its connection with the oxidation of other biological molecules such as proteins and starch. Lipid Oxidation Pathways Hardback Books Health - Nutrition -

402

Program on Technology Innovation: Water Quality Trading Program for Nitrogen  

Science Conference Proceedings (OSTI)

Anthropogenic releases of nitrogen have greatly increased environmental fluxes of biologically available nitrogen and contributed to serious ecological problems, such as algal blooms that cause waters to become severely depleted of oxygen. Power plant sources of nitrogen include NOx air emissions, the ammonia required for the Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) systems that are used for NOx reduction, and the ammonia used for SOx control and ash pond condition...

2007-05-15T23:59:59.000Z

403

Selective methane oxidation over promoted oxide catalysts  

DOE Green Energy (OSTI)

Objective was to selectively oxidize methane to C{sub 2} hydrocarbons and to oxygenates, in particular formaldehyde and methanol, in high space time yields under relatively mild reaction conditions. Results in this document are reported under the headings: methane oxidation over silica, methane oxidation over Sr/La{sub 2}O{sub 3} catalysts, and oxidative coupling of methane over sulfate-doped Sr/La{sub 2}O{sub 3} catalysts. 24 refs, 10 figs, 4 tabs.

Klier, K.; Herman, R.G.

1993-12-31T23:59:59.000Z

404

COMBUSTION SOURCES OF UNREGULATED GAS PHASE NITROGENEOUS SPECIES  

E-Print Network (OSTI)

Nitrogeneous Species in Gas Turbine Exhaust, from Conkle, et82) Percent of Organic Gas Turbine Emissions which containnitrogen dioxide from gas turbines (from the data presented

Matthews, Ronald D.

2013-01-01T23:59:59.000Z

405

Numerical Simulation of Carbon and Nitrogen Profiles Produced by ...  

Science Conference Proceedings (OSTI)

In advance of the nitrogen diffusion zone the carbon concentration is as high as 10 at. pct. ... Discovery of Efficient Metal-Organic Frameworks for CO2 Capture.

406

Method for the purification of noble gases, nitrogen and hydrogen ...  

... methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more ...

407

Why sequence functional metagenomics of methane and nitrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

functional metagenomics of methane and nitrogen cycles in freshwater lakes? Methane is a more potent greenhouse gas than carbon dioxide, but it is also a potential source of...

408

Modeling nitrogen cycling in forested watersheds of Chesapeake Bay  

Science Conference Proceedings (OSTI)

The Chesapeake Bay Agreement calls for a 40% reduction of controllable phosphorus and nitrogen to the tidal Bay by the year 2000. To accomplish this goal the Chesapeake Bay Program needs accurate estimates of nutrient loadings, including atmospheric deposition, from various land uses. The literature was reviewed on forest nitrogen pools and fluxes, and nitrogen data from research catchments in the Chesapeake Basin were identified. The structure of a nitrogen module for forests is recommended for the Chesapeake Bay Watershed Model along with the possible functional forms for fluxes.

Hunsaker, C.T.; Garten, C.T.; Mulholland, P.J.

1995-03-01T23:59:59.000Z

409

Recovery of nitrogen and light hydrocarbons from polyalkene ...  

Recovery of nitrogen and light hydrocarbons from polyalkene purge gas United States Patent. Patent Number: 6,576,043: Issued: June 10, 2003: Official Filing:

410

Probing Core-Hole Localization in Molecular Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Core-Hole Localization in Molecular Nitrogen Print The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with...

411

Multi-stage combustion using nitrogen-enriched air - Energy ...  

Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and ...

412

Nitrogen removal from natural gas using two types of membranes ...  

A process for treating natural gas or other methane-rich gas to remove excess nitrogen. The invention relies on two-stage membrane separation, using ...

413

Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control  

SciTech Connect

The device described in this report will simultaneously remove particulates, SO{sub 2} and NO{sub x} from the combustion gases of coal combustors. The device is configured as a cross-flow filter. The gas flows from the inlet passages to orthogonally oriented discharge channels via thin, multilayered porous walls. Flue gas enters from both the front and back of the device. With the left wall of the filter sealed, gas discharges from the right side of the device. The key to combined physical (fly ash) and chemical (SO{sub 2}/NO{sub x}) cleaning is to utilize chemical active sorbent-catalysts (e.g., metal oxides) in the layered walls of the filter. This quarter, the NO{sub x} reduction activity of three sorbent-catalyst materials was tested over a temperature range from 200 to 500{degree}C. We were primarily interested in the sorbent-catalyst NO{sub x} reduction performance at 400{degree}C because this appears to be a minimum temperature for acceptable sulfur capture with these sorbents. the tradeoff between sulfur capture and NO{sub x} reduction performance for these sorbent-catalysts is clear: sulfation improves with higher temperatures (e.g., 400--600{degree}C) while NO{sub x} reduction improves at lower temperatures (e.g., 200--300{degree}C). Sorbent-catalyst materials included: Cu-7Al-O; Cu-Ce-O; and CeO{sub 2}. 7 refs., 7 figs., 4 tabs.

Not Available

1990-11-01T23:59:59.000Z

414

Effects of humidity and temperature on the conversion of SO/sub 2/ to particulate sulfate and sulfite. Final report  

SciTech Connect

Effects of humidity and temperature on SO/sub 2/ conversion to particulate sulfate and sulfite in relation to heterogeneous conversion in droplets and on particle surfaces; homogeneous conversion in the gas phase; and gas-to-particle conversion are discussed. Theoretical quantitative expressions for some effects are derived and order-of-magnitude calculations are given. Detailed conclusions and comparisons regarding the effects of temperature and humidity on specific oxidation paths. Major conclusions documented are: rates of SO/sub 2/ to SO/sub 4//sup =/ converison in aqueous droplets are generally negatively correlated with temperature and positively correlated with relative humidity (particularly at high relative humidity); the rates of SO/sub 2/ to SO/sub 4//sup =/ conversion on reactive surfaces can be either positively correlated with relative humidity or unaffected by relative humidity, and can have a negative, a positive, or a zero correlation with temperture; the homogeneous photooxidation is considerably less sensitive to temperature than is the heterogeneous conversion. (The photooxidation of SO/sub 2/ is expected to be positively correlated with temperature, but the correlation will be weaker in clean air than in polluted air, the positive dependence of SO/sub 2/ photooxidation on humidity will be weaker in polluted air containing NMHC than in clean air); the specific conversion paths have rates with highly different sensitivities to relative humidity and temperature. Thus, a given conversion path can become more or less significant relative to other paths as relative humidity and temperature vary. This suggests that temperature and relative humidity variations can be major causes of the temporal and spatial variations in the rate and yield of conversion and in the type of sulfate produced, which in turn determine the extent of adverse environmental effects. 228 references, 1 figure, 28 tables.

Freiberg, J.E.

1983-11-01T23:59:59.000Z

415

The use of mathematical modeling and pilot plant testing to develop a new biological phosphorus and nitrogen removal process  

Science Conference Proceedings (OSTI)

A mechanistic mathematical model for carbon oxidation, nitrogen removal, and enhanced biological phosphorus removal was used to develop the Step Bio-P process, a new biological phosphorus and nitrogen removal process with a step-feed configuration. A 9,000-L pilot plant with diurnally varying influent process loading rates was operated to verify the model results and to optimize the Step Bio-P process for application at the lethbridge, Alberta, Canada, wastewater treatment plant. The pilot plant was operated for 10 months. An automatic on-line data acquisition system with multiple sampling and metering points for dissolved oxygen, mixed liquor suspended solids, ammonia-nitrogen, nitrate-nitrogen, ortho-phosphate, and flow rates was used. A sampling program to obtain off-line data was carried out to verify the information from the on-line system and monitor additional parameters. The on-line and off-line data were used to recalibrate the model, which was used as an experimental design and process optimization tool.

Nolasco, D.A.; Daigger, G.T.; Stafford, D.R.; Kaupp, D.M.; Stephenson, J.P.

1998-09-01T23:59:59.000Z

416

Using Factor Analysis to Attribute Health Impacts to Particulate Pollution Sources1  

NLE Websites -- All DOE Office Websites (Extended Search)

Factor Analysis to Attribute Health Impacts to Particulate Factor Analysis to Attribute Health Impacts to Particulate Pollution Sources 1 Thomas Grahame U. S. Department of Energy Washington, DC George Hidy Envair/Aerochem Placitas, NM ABSTRACT Laden et al. (2000) recently reported results of applying factor analysis to data taken in six cities from1979 to1988, identifying airborne particle sources potentially affecting daily mortality. These authors sought relationships between source groups and risk measures using source tracer elements, Se (coal combustion), Pb (light duty motor vehicle sources), and Si (crustal--soil dispersion). Combined data analyses of this kind may overlook the complexity of source contributions, which have common tracer elements. In one of the cities, Boston for example, the authors found coal combustion

417

Apparatus and method for removing particulate deposits from high temperature filters  

DOE Patents (OSTI)

A combustion of a fuel-air mixture is used to provide a high-temperature and high-pressure pulse of gaseous combustion products for the back-flush cleaning of ceramic filter elements contained in a barrier filter system and utilized to separate particulates from particulate-laden process gases at high temperature and high pressure. The volume of gaseous combustion products provided by the combustion of the fuel-air mixture is preferably divided into a plurality of streams each passing through a sonic orifice and conveyed to the open end of each filter element as a high pressure pulse which passes through the filter elements and dislodges dust cake supported on a surface of the filter element.

Nakaishi, Curtis V. (Morgantown, WV); Holcombe, Norman T. (McMurray, PA); Micheli, Paul L. (Morgantown, WV)

1992-01-01T23:59:59.000Z

418

Apparatus and method for removing particulate deposits from high temperature filters  

DOE Patents (OSTI)

The combustion of a fuel-air mixture is used to provide a high-temperature and high-pressure pulse of gaseous combustion products for the back-flush cleaning of ceramic filter elements contained in a barrier filter system and utilized to separate particulates from particulate-laden process gases at high temperature and high pressure. The volume of gaseous combustion products provided by the combustion of the fuel-air mixture is preferably divided into a plurality of streams each passing through a sonic orifice and conveyed to the open end of each filter element as a high pressure pulse which passes through the filter elements and dislodges dust cake supported on a surface of the filter element.

Nakaishi, C.V.; Holcombe, N.T.; Micheli, P.L.

1992-12-31T23:59:59.000Z

419

Method of producing particulate-reinforced composites and composties produced thereby  

Science Conference Proceedings (OSTI)

A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intenisty acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaciton products comprise a solide particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particles-reinforced composite materials produced by such a process.

Han, Qingyou; Liu, Zhiwei

2013-12-24T23:59:59.000Z

420

Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control  

SciTech Connect

This report describes a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

Benedek, K. (Little (Arthur D.), Inc., Cambridge, MA (United States)); Flytzani-Stephanopoulos, M. (Massachusetts Inst. of Tech., Cambridge, MA (United States))

1991-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Cross-flow filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control  

SciTech Connect

This report describes a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

Not Available

1990-05-01T23:59:59.000Z

422

The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description  

Science Conference Proceedings (OSTI)

This work describes the algorithms used for the fully automated retrieval of profiles of particulate extinction coefficients from the attenuated backscatter data acquired by the lidar on board the Cloud-Aerosol Lidar Infrared Pathfinder Satellite ...

Stuart A. Young; Mark A. Vaughan

2009-06-01T23:59:59.000Z

423

Microscale Quantification of the Absorption by Dissolved and Particulate Material in Coastal Waters with an ac-9  

Science Conference Proceedings (OSTI)

Measuring coastal and oceanic absorption coefficients of dissolved and particulate matter in the visible domain usually requires a methodology for amplifying the natural signal because conventional spectrophotometers lack the necessary ...

Michael S. Twardowski; James M. Sullivan; Percy L. Donaghay; J. Ronald V. Zaneveld

1999-06-01T23:59:59.000Z

424

Use of time- and chemically resolved particulate data to characterize the  

NLE Websites -- All DOE Office Websites (Extended Search)

Use of time- and chemically resolved particulate data to characterize the Use of time- and chemically resolved particulate data to characterize the infiltration of outdoor PM2.5 into a residence in the San Joaquin Valley Title Use of time- and chemically resolved particulate data to characterize the infiltration of outdoor PM2.5 into a residence in the San Joaquin Valley Publication Type Journal Article Year of Publication 2003 Authors Lunden, Melissa M., Tracy L. Thatcher, Susanne V. Hering, and Nancy J. Brown Journal Environmental Science and Technology Volume 37 Start Page Chapter Pagination 4724-4732 Date Published October 15, 2003 Abstract Recent studies associate particulate air pollution with adverse health effects. The indoor exposure to particles of outdoor origin is not well characterized, particularly for individual chemical species. In response to this, a field study in an unoccupied, single-story residence in Clovis, California was conducted. Real-time particle monitors were used both outdoors and indoors to quantity PM2.5 nitrate, sulfate, and carbon. The aggregate of the highly time-resolved sulfate data, as well as averages of these data, was fit using a time-averaged form of the infiltration equation, resulting in reasonable values for the penetration coefficient and deposition velocity. In contrast, individual values of the indoor/outdoor ratio can vary significantly from that predicted by the model for time scales ranging from a few minutes to several hours. Measured indoor ammonium nitrate levels were typically significantly lower than expected based solely on penetration and deposition losses. The additional reduction is due to the transformation of ammonium nitrate into ammonia and nitric acid gases indoors, which are subsequently lost by deposition and sorption to indoor surfaces. This result illustrates that exposure assessments based on total outdoor particle mass can obscure the actual causal relationships for indoor exposures

425

5-Year Research Plan on Fine Particulate Matter in the Atmosphere  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology Laboratory Five Year Research Plan on Fine Particulate Matter in the Atmosphere FY2001-FY2005 NETL PM Research Program Ambient Sampling & Analysis Control Technology R&D Source Characterization Predictive Modeling -iii- TABLE OF CONTENTS Page I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B. Outlook for PM and the Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 II. OVERVIEW OF THE PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 A. Program Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 B. Current Program Highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1. The Upper Ohio River Valley Project (UORVP) . . . . . . . . . . . . . . . . . . 13

426

Development of Optical Technologies for Monitoring Moisture and Particulate in Geothermal Steam  

SciTech Connect

The results of an investigation directed at evaluating the feasibility of using optical measurements for the real-time monitoring moisture and particulate in geothermal steam is described. The measurements exploit new technologies that have been developed for the telecommunications industry and includes new solid state laser devices, large-bandwidth, high-sensitivity detectors and low loss optical fiber compo-nents. In particular, the design, fabrication, and in-plant testing of an optical steam monitor for the detection of moisture is presented. The measurement principle is based upon the selective absorption of infrared energy in response to the presence of moisture. Typically, two wavelengths are used in the measurements: a wavelength that is strongly absorbed by water and a reference wavelength that is minimally influenced by water and steam which serves as a reference to correct for particulate or droplet scattering. The two wavelengths are chosen to be as close as possible in order to more effectively correct for scattering effects. The basic instrumentation platform developed for the in-situ monitoring of steam moisture can be modified and used to perform other measurements of interest to plant operators. An upgrade that will allow the instrument to be used for the sensitive detection of particulate in process streams has been investigated. The new monitor design involves the use of laser diodes that are much less sensitive to water and water vapor and more sensitive to scattering phenomena, as well as new processing techniques to recover these signals. The design reduces the averaging time and sampling volume, while increasing the laser probe power, enhancing particulate detection sensitivity. The design concept and initial laboratory experiments with this system are also reported.

J. K. Partin

2006-08-01T23:59:59.000Z

427

Mass transfer within electrostatic precipitators: in-flight adsorption of mercury by charged suspended particulates  

Science Conference Proceedings (OSTI)

Electrostatic precipitation is the dominant method of particulate control used for coal combustion, and varying degrees of mercury capture and transformation have been reported across ESPs. Nevertheless, the fate of gas-phase mercury within an ESP remains poorly understood. The present analysis focuses on the gas-particle mass transfer that occurs within a charged aerosol in an ESP. As a necessary step in gas-phase mercury adsorption or transformation, gas-particle mass transfer - particularly in configurations other than fixed beds - has received far less attention than studies of adsorption kinetics. Our previous analysis showed that only a small fraction of gas-phase mercury entering an ESP is likely to be adsorbed by collected particulate matter on the plate electrodes. The present simplified analysis provides insight into gas-particle mass transfer within an ESP under two limiting conditions: laminar and turbulent fluid flows. The analysis reveals that during the process of particulate collection, gas-particle mass transfer can be quite high, easily exceeding the mass transfer to ESP plate electrodes in most cases. Decreasing particle size, increasing particle mass loading, and increasing temperature all result in increased gas-particle mass transfer. The analysis predicts significantly greater gas-particle mass transfer in the laminar limit than in the turbulent limit; however, the differences become negligible under conditions where other factors, such as total mass of suspended particulates, are the controlling mass transfer parameters. Results are compared to selected pilot- and full-scale sorbent injection data. 41 refs., 5 figs.

Herek L. Clack [Illinois Institute of Technology, Chicago, IL (United States). Department of Mechanical, Materials and Aerospace Engineering

2006-06-01T23:59:59.000Z

428

Impacts of Particulate Matter on Human Health: An Updated Summary of EPRI Research  

Science Conference Proceedings (OSTI)

Hundreds of toxicological and epidemiological studies have been conducted over the past 20 years to better understand the effects of particulate matter (PM), and air pollution in general, on human health. Examples of environmental regulations and policies driven by these health concerns include the Environmental Protection Agency's (EPA's) National Ambient Air Quality Standards (NAAQS), as well as State Implementation Plans (SIPs) and multi-pollutant control legislation. EPRI's PM/Health Research Program...

2007-12-19T23:59:59.000Z

429

A Quantitative Aerosol Generator Designed for Particulate Matter (PM) Continuous Emissions Monitoring Systems (CEMS) Calibration  

Science Conference Proceedings (OSTI)

A growing number of utilities are required to continuously monitor particulate matter (PM) emissions using continuous emissions monitoring systems (CEMS). Currently, simultaneous EPA manual reference method tests (EPA Reference Method 5) must be used to calibrate and audit these PM CEMS following EPA Performance Specification 11 guidelines (PS-11). These calibrations are not only difficult, time consuming, and expensive to perform, but are particularly onerous because they require the utility to modify p...

2009-12-22T23:59:59.000Z

430

Grooved impactor and inertial trap for sampling inhalable particulate matter. [Patents  

DOE Patents (OSTI)

An inertial trap and grooved impactor for providing a sharp cutoff for particles over 15 microns from entering an inhalable particulate sampler is disclosed. The impactor head has a tapered surface and is provided with V-shaped grooves. The tapered surface functions for reducing particle blow-off or reentrainment while the grooves prevent particle bounce. Water droplets and any resuspended material over the 15 micron size are collected by the inertial trap and deposited in a reservoir associated with the impactor.

Loo, B.W.

1982-02-23T23:59:59.000Z

431

Particulate Control Device (PCD) Testing at the Power Systems Development Facility, Wilsonville, Alabama  

Science Conference Proceedings (OSTI)

One of the U.S. Department of Energy`s (DOE`s) objectives overseen by the Morgantown Energy Technology Center (METC) is to test systems and components for advanced coal-based power generation systems, including integrated gasification combined cycle (IGCC), pressurized fluidized-bed combustion (PFBC), and integrated gasification/fuel cell (IGFC) systems. Stringent particulate requirements for fuel gas for both combustion turbines and fuel cells that are integral to these systems. Particulates erode and chemically attack the blade surfaces in turbines, and cause blinding of the electrodes in fuel cells. Filtration of the hot, high-pressure, gasified coal is required to protect these units. Filtration can be accomplished by first cooling the gas, but the system efficiency is reduced. High-temperature, high-pressure, particulate control devices (PCDs) need to be developed to achieve high efficiency and to extend the lifetime of downstream components to acceptable levels. Demonstration of practical high-temperature PCDs is crucial to the evolution of advanced, high-efficiency, coal-based power generation systems. The intent at the Power Systems Development Facility (PSDF) is to establish a flexible test facility that can be used to (1) develop advanced power system components, such as high-temperature, high-pressure PCDs; (2) evaluate advanced power system configurations and (3) assess the integration and control issues of these advanced power systems.

Longanbach, J.R.

1995-12-01T23:59:59.000Z

432

Particulate matter emissions from combustion of wood in district heating applications  

Science Conference Proceedings (OSTI)

The utilization of wood biomass to generate district heat and power in communities that have access to this energy source is increasing. In this paper the effect of wood fuel properties, combustion condition, and flue gas cleaning system on variation in the amount and formation of particles in the flue gas of typical district heating wood boilers are discussed based on the literature survey. Direct measurements of particulate matter (PM) emissions from wood boilers with district heating applications are reviewed and presented. Finally, recommendations are given regarding the selection of wood fuel, combustion system condition, and flue gas cleaning system in district heating systems in order to meet stringent air quality standards. It is concluded that utilization of high quality wood fuel, such as wood pellets produced from natural, uncontaminated stem wood, would generate the least PM emissions compared to other wood fuel types. Particulate matter emissions from grate burners equipped with electrostatic precipitators when using wood pellets can be well below stringent regulatory emission limit such as particulate emission limit of Metro Vancouver, Canada.

Ghafghazi, S. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Bi, X.T. [University of British Columbia, Vancouver; Melin, Staffan [Delta Research Corporation

2011-01-01T23:59:59.000Z

433

Measurements of particulate matter concentrations at a landfill site (Crete, Greece)  

Science Conference Proceedings (OSTI)

Large amounts of solid waste are disposed in landfills and the potential of particulate matter (PM) emissions into the atmosphere is significant. Particulate matter emissions in landfills are the result of resuspension from the disposed waste and other activities such as mechanical recycling and composting, waste unloading and sorting, the process of coating residues and waste transport by trucks. Measurements of ambient levels of inhalable particulate matter (PM{sub 10}) were performed in a landfill site located at Chania (Crete, Greece). Elevated PM{sub 10} concentrations were measured in the landfill site during several landfill operations. It was observed that the meteorological conditions (mainly wind velocity and temperature) influence considerably the PM{sub 10} concentrations. Comparison between the PM{sub 10} concentrations at the landfill and at a PM{sub 10} background site indicates the influence of the landfill activities on local concentrations at the landfill. No correlation was observed between the measurements at the landfill and the background sites. Finally, specific preventing measures are proposed to control the PM concentrations in landfills.

Chalvatzaki, E.; Kopanakis, I. [Department of Environmental Engineering, Technical University of Crete, Chania 73100, Crete (Greece); Kontaksakis, M. [Municipal Company of Solid Waste Management, Chania 73100, Crete (Greece); Glytsos, T.; Kalogerakis, N. [Department of Environmental Engineering, Technical University of Crete, Chania 73100, Crete (Greece); Lazaridis, M., E-mail: lazaridi@mred.tuc.g [Department of Environmental Engineering, Technical University of Crete, Chania 73100, Crete (Greece)

2010-11-15T23:59:59.000Z

434

Spectroscopic detection of nitrogen concentrations in sagebrush  

SciTech Connect

The ability to estimate foliar nitrogen (N) in semi-arid landscapes can yield information on nutritional status and improve our limited understanding of controls on canopy photosynthesis. We examined two spectroscopic methods for estimating sagebrush dried leaf and live shrub N content: first derivative reflectance (FDR) and continuum removal. Both methods used partial least squares (PLS) regression to select wavebands most significantly correlated with N concentrations in the samples. Sagebrush dried leaf spectra produced PLS models (R2 = 0.76–0.86) that could predict N concentrations within the dataset more accurately than PLS models generated from live shrub spectra (R2 = 0.41–0.63). Inclusion of wavelengths associated with leaf water in the FDR transformations appeared to improve regression results. Findings are encouraging and warrant further exploration into sagebrush reflectance spectra to characterize N concentrations.

J. J. MITCHELL; N. F. GLENN; T.T. SANKEY; D. R. DERRYBERRY; R. C. HRUSKA; M. O. Anderson

2012-07-01T23:59:59.000Z

435

Carbon and Nitrogen Dynamics of Temperate and Subarctic Heath  

E-Print Network (OSTI)

Carbon and Nitrogen Dynamics of Temperate and Subarctic Heath Ecosystems with Emphasis on Cold-season cycling of carbon and nitrogen in temperate and subarctic heath ecosystems. Over the last three years, I spend many hours introducing me to modeling carbon exchange, thank you. Also thanks to Karina Clemmensen

436

Nitrogen modification of highly porous carbon for improved supercapacitor performance  

E-Print Network (OSTI)

Nitrogen modification of highly porous carbon for improved supercapacitor performance Stephanie L for supercapacitor applications. Surface modification increases the amount of nitrogen by four times when compared elements in highly porous carbon used for electric double-layer supercapacitors.1 These elements modify

Cao, Guozhong

437

Program on Technology Innovation: Developing Technologies for the Direct Measurement of Particulate Mass Emissions from Flue Gases  

Science Conference Proceedings (OSTI)

This report examines the current status of continuous particulate monitoring systems. It addresses the recent advent of new monitoring systems and the role of miniaturization and microelectromechanical systems (MEMS) in particulate monitor development. It examines sensors and monitoring systems in other fields of application, such as ambient, indoor, process, and clean room monitoring. Many of these methods are particle counting and particle sizing methods, meant for monitoring low particle concentration...

2010-12-07T23:59:59.000Z

438

Evaluation of ceramic filters for high-temperature/high-pressure fine particulate control. Final report Dec 75-Jun 76  

SciTech Connect

High temperature gas turbines used to generate electric power require gas streams virtually free of particulate matter. Gas streams from high temperature, high pressure coal processes, such as low Btu gasification and pressurized fluidized bed combustion, require considerable particulate removal. In order to maintain high thermal efficiency the particulate clean-up must be done at the high temperatures of the process. Many new concepts for fine particulate control at elevated temperatures are presently being proposed. One such concept utilizes ceramic membrane filters. The report gives results of a study to analyze and evaluate ceramic membrane filters as a new, fine particulate (<3 um) control concept for high-temperature (approx. 900/sup 0/C), high-pressure processes. Several ceramic filters were identified as potential candidates for fine particulate removal. There does not seem to be any inherent material limitation to high-temperature operation; however, no evidence of high-temperature filter application was found. The filters typically are 2-6 mm thick, cylindrical, and available with various pore sizes, increasing upward from 0.5 um. These elements may be suitable for fine particulate control in hot gas streams. The most promising, although undeveloped, idea for a ceramic filter is to use ceramic honeycomb monoliths similar to those available for catalyst supports and heat exchangers. The walls of the monoliths are about 0.2-0.4 mm thick and of varying pore size and porosity. Geometric configurations are available which would force the gas to flow through the membrane walls. Pressure losses would be very small relative to those of standard ceramic filter elements. The application of ceramic monoliths to high-temperature fine particulate control appears very promising. It is strongly recommended that this concept be investigated further.

Poe, G.G.; Evans, R.M.; Bonnett, W.S.; Waterland, L.R.

1977-02-01T23:59:59.000Z

439

Questions and Answers - Is there anything colder than liquid nitrogen?  

NLE Websites -- All DOE Office Websites (Extended Search)

How cold is liquid nitrogen? How cold is liquid nitrogen? Previous Question (How cold is liquid nitrogen?) Questions and Answers Main Index Next Question (If you jumped into a pool of liquid oxygen, would your body instantly crystallize?) If you jumped into a pool of liquid oxygen,would your body instantly crystallize? Is there anything colder than liquid nitrogen? Yes, there are things colder than liquid nitrogen, like most of the Universe! I assume, though, that you mean things on the Earth. There actually is an entire branch of science called cryogenics that deals with really cold things. Generally the science of cryogenics is when the temperature goes below that which we can reach with conventional refrigeration equipment, around 250 degrees (Fahrenheit) below zero. Many

440

Frostbite Theater - Liquid Nitrogen Experiments - Popping Film Canisters!  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploding Rubber Stopper! Exploding Rubber Stopper! Previous Video (Exploding Rubber Stopper!) Frostbite Theater Main Index Next Video (Insulators!) Insulators! Popping Film Canisters! What happens when liquid nitrogen is trapped inside a sealed container? Play the video to find out! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a container of liquid nitrogen! Steve: And these are a bunch of film canisters! Joanna: Let's see what happens when we trap the liquid nitrogen in the film canisters! Steve: Okay! Now the room, and everything in it, is way too hot for the liquid nitrogen to stay as a liquid. As soon as the liquid nitrogen touches anything in the room, it boils and changes into a gas.

Note: This page contains sample records for the topic "nitrogen oxides particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Safety evaluation for packaging (onsite) nitrogen trailers propane tanks  

SciTech Connect

The purpose of the Safety Evaluation for Packaging (SEP) is the evaluation and authorization of the onsite transport of propane tanks that are mounted on the Lockheed Martin Hanford Corporation Characterization Project`s nitrogen trailers. This SEP authorizes onsite transport of the nitrogen trailers, including the propane tanks, until May 31, 1998. The three nitrogen trailers (HO-64-4966, HO-64-4968, and HO-64-5170) are rated for 1,361 kg (30,000 lb) and are equipped with tandem axles and pintel hitches. Permanently mounted on each trailer is a 5,678 L (1,500 gal) cryogenic dewar that is filled with nitrogen, and a propane fired water bath vaporizer system, and a 454 L (1 20 gal) propane tank. The nitrogen trailer system is operated only when it is disconnected from the tow vehicle and is leveled and stabilized. When the trailers are transported, the propane tanks are isolated via closed supply valves.

Ferrell, P.C.

1998-01-28T23:59:59.000Z

442

Process for separating nitrogen from methane using microchannel process technology  

DOE Patents (OSTI)

The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

Tonkovich, Anna Lee (Marysville, OH); Qiu, Dongming (Dublin, OH); Dritz, Terence Andrew (Worthington, OH); Neagle, Paul (Westerville, OH); Litt, Robert Dwayne (Westerville, OH); Arora, Ravi (Dublin, OH); Lamont, Michael Jay (Hilliard, OH); Pagnotto, Kristina M. (Cincinnati, OH)

2007-07-31T23:59:59.000Z

443

Photo-oxidation catalysts  

DOE Patents (OSTI)

Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

Pitts, J. Roland (Lakewood, CO); Liu, Ping (Irvine, CA); Smith, R. Davis (Golden, CO)

2009-07-14T23:59:59.000Z

444

Effect of nitrogen incorporation on improvement of leakage properties in high-k HfO{sub 2} capacitors treated by N{sub 2}-plasma  

Science Conference Proceedings (OSTI)

The nitrogen incorporation into the HfO{sub 2} films with an EOT (equivalent oxide thickness) of 9 A was performed by N{sub 2}-plasma to improve the electrical properties. The dielectric properties and a leakage current characteristics of the capacitors were investigated as a function of plasma power and plasma treatment temperature. The dielectric constant of the capacitors is not influenced by nitrogen incorporation. The N{sub 2}-plasma treatment at 300 deg. C and 70 W exhibits the most effective influence on improvement of the leakage current characteristics. Leakage current density of the capacitors treated at 300 deg. C and 70 W exhibits a half order of magnitude lower than that without plasma treatment. Nitrogen incorporated into the HfO{sub 2} films possesses the intrinsic effect that drastically reduce the electron leakage current through HfO{sub 2} dielectrics by deactivating the V{sub O} (oxygen vacancy) related gap states.

Seong, Nak-Jin; Yoon, Soon-Gil; Yeom, Seung-Jin; Woo, Hyun-Kyung; Kil, Deok-Sin; Roh, Jae-Sung; Sohn, Hyun-Chul [Department of Materials Science and Engineering, Chungnam National University, Daeduk Science Town, 305-764, Daejon (Korea, Republic of); Hynix Semiconductor Inc., San 136-1 Ami-ri Bubal-eub Icheon-si Kyoungki-do, 467-701 (Korea, Republic of)

2005-09-26T23:59:59.000Z

445

Effects of soil substrate and nitrogen fertilizer on biomass production of  

E-Print Network (OSTI)

Effects of soil substrate and nitrogen fertilizer on biomass production of Acacia senegal;Effects of soil substrate and nitrogen fertilizer on biomass production of Acacia senegal and Acacia, biomass allocation, fertilizer, growth rate, nitrogen, soil substrate Sveriges lantbruksuniversitet

446

Multifunctional Oxides: Multifunctional Oxides: Synthesis and ...  

Science Conference Proceedings (OSTI)

Using Ultrafast Optical Spectroscopy to Explore Magneoelectric Coupling in Multiferroic Oxide Heterostructures: Y-M Sheu1; S. Trugman1; L Yan1; C-P Chuu 1; ...

447

Asphalt Oxidation Kinetics and Pavement Oxidation Modeling  

E-Print Network (OSTI)

Most paved roads in the United States are surfaced with asphalt. These asphalt pavements suffer from fatigue cracking and thermal cracking, aggravated by the oxidation and hardening of asphalt. This negative impact of asphalt oxidation on pavement performance has not been considered adequately in pavement design. Part of the reason is that the process of asphalt oxidation in pavement is not well understood. This work focused on understanding the asphalt oxidation kinetics and on developing pavement oxidation model that predicts asphalt oxidation and hardening in pavement under environmental conditions. A number of asphalts were studied in laboratory condition. Based on kinetics data, a fast-rate ? constant-rate asphalt oxidation kinetics model was developed to describe the early nonlinear fast-rate aging period and the later constant-rate period of asphalt oxidation. Furthermore, reaction kinetics parameters for the fast-rate and constant-rate reactions were empirically correlated, leading to a simplified model. And the experimental effort and time to obtain these kinetics parameters were significantly reduced. Furthermore, to investigate the mechanism of asphalt oxidation, two antioxidants were studied on their effectiveness. Asphalt oxidation was not significantly affected. It was found that evaluation of antioxidant effectiveness based on viscosity only is not reliable. The asphalt oxidation kinetics model was incorporated into the pavement oxidation model that predicts asphalt oxidation in pavement. The pavement oxidation model mimics the oxidation process of asphalt in real mixture at pavement temperatures. A new parameter, diffusion depth, defined the oxygen diffusion region in the mastic. A field calibration factor accounted for the factors not considered in the model such as the effect of small aggregate particles on oxygen diffusion. Carbonyl area and viscosity of binders recovered from field cores of three pavements in Texas were measured and were used for model calibration and validation. Results demonstrated that the proposed model estimates carbonyl growth over time in pavement, layer-by-layer, quite well. Finally, this work can be useful for incorporating asphalt oxidation into a pavement design method that can predict pavement performance with time and for making strategic decisions such as optimal time for maintenance treatments.

Jin, Xin

2012-05-01T23:59:59.000Z

448

DISSOLUTION OF NEPTUNIUM OXIDE RESIDUES  

Science Conference Proceedings (OSTI)

This report describes the development of a dissolution flowsheet for neptunium (Np) oxide (NpO{sub 2}) residues (i.e., various NpO{sub 2} sources, HB-Line glovebox sweepings, and Savannah River National Laboratory (SRNL) thermogravimetric analysis samples). Samples of each type of materials proposed for processing were dissolved in a closed laboratory apparatus and the rate and total quantity of off-gas were measured. Samples of the off-gas were also analyzed. The quantity and type of solids remaining (when visible) were determined after post-dissolution filtration of the solution. Recommended conditions for dissolution of the NpO{sub 2} residues are: Solution Matrix and Loading: {approx}50 g Np/L (750 g Np in 15 L of dissolver solution), using 8 M nitric acid (HNO{sub 3}), 0.025 M potassium fluoride (KF) at greater than 100 C for at least 3 hours. Off-gas: Analysis of the off-gas indicated nitric oxide (NO), nitrogen dioxide (NO{sub 2}) and nitrous oxide (N{sub 2}O) as the only identified components. No hydrogen (H{sub 2}) was detected. The molar ratio of off-gas produced per mole of Np dissolved ranged from 0.25 to 0.4 moles of gas per mole of Np dissolved. A peak off-gas rate of {approx}0.1 scfm/kg bulk oxide was observed. Residual Solids: Pure NpO{sub 2} dissolved with little or no residue with the proposed flowsheet but the NpCo and both sweepings samples left visible solid residue after dissolution. For the NpCo and Part II Sweepings samples the residue amounted to {approx}1% of the initial material, but for the Part I Sweepings sample, the residue amounted to {approx}8 % of the initial material. These residues contained primarily aluminum (Al) and silicon (Si) compounds that did not completely dissolve under the flowsheet conditions. The residues from both sweepings samples contained minor amounts of plutonium (Pu) particles. Overall, the undissolved Np and Pu particles in the residues were a very small fraction of the total solids.

Kyser, E

2009-01-12T23:59:59.000Z

449

Nitrogen-Doped Graphitic Nanoribbons: Synthesis, Characterization and Transport  

SciTech Connect

Nitrogen-doped graphitic nanoribbons (Nx-GNRs), synthesized by chemical vapor deposition (CVD) using pyrazine as a nitrogen precursor, are reported for the first time. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) reveal that the synthesized materials are formed by multi-layered corrugated graphitic nanoribbons (GNRs) which in most cases exhibit the formation of curved graphene edges (loops). This suggests that during growth, nitrogen atoms promote loop formation; undoped GNRs do not form loops at their edges. Transport measurements on individual pure carbon GNRs exhibit a linear I-V (current-voltage) behavior, whereas Nx-GNRs show reduced current responses following a semiconducting-like behavior, which becomes more prominent for high nitrogen concentrations. To better understand the experimental findings, electron density of states (DOS), quantum conductance for nitrogen doped zigzag and armchair single-layer GNRs are calculated for different N doping concentrations using Density Functional Theory (DFT) and non-equilibrium Green functions. These calculations confirm the crucial role of nitrogen atoms in the transport properties, confirming that the nonlinear I-V curves are due to the presence of nitrogen atoms within the Nx-GNRs lattice that act as scattering sites. These characteristic Nx-GNRs transport could be advantageous in the fabrication of electronic devices including sensors in which metal-like undoped GNRs are unsuitable.

Jia, Xiaoting [Massachusetts Institute of Technology (MIT); Dresselhaus, M [Massachusetts Institute of Technology (MIT); Cruz Silva, Eduardo [ORNL; Munoz-Sandoval, E [Instituto de Microelectronica de Madrid (CNM, CSIC); Sumpter, Bobby G [ORNL; Terrones Maldonado, Humberto [ORNL; Terrones Maldonado, Humberto [ORNL; Lopez, Florentino [IPICyT

2013-01-01T23:59:59.000Z

450

METHANE AND NITROGEN ABUNDANCES ON PLUTO AND ERIS  

SciTech Connect

We present spectra of Eris from the MMT 6.5 m Telescope and Red Channel Spectrograph (5700-9800 A, 5 A pixel{sup -1}) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 m Telescope and Boller and Chivens Spectrograph (7100-9400 A, 2 A pixel{sup -1}) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich, and comparing methane bands in our Eris and Pluto spectra and methane bands in our laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are {approx}10% and {approx}90% and Pluto's bulk methane and nitrogen abundances are {approx}3% and {approx}97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon-rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 {mu}m band is seen in spectra of Pluto and Triton.

Tegler, S. C.; Cornelison, D. M.; Abernathy, M. R.; Bovyn, M. J.; Burt, J. A.; Evans, D. E.; Maleszewski, C. K.; Thompson, Z. [Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86011 (United States); Grundy, W. M. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Romanishin, W. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Vilas, F., E-mail: Stephen.Tegler@nau.ed, E-mail: David.Cornelison@nau.ed, E-mail: W.Grundy@lowell.ed, E-mail: wjr@nhn.ou.ed, E-mail: fvilas@mmto.or [MMT Observatory, University of Arizona, Tucson, AZ 85721 (United States)

2010-12-10T23:59:59.000Z

451

Oxidation of Mercury in Products of Coal Combustion  

SciTech Connect

Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materi