National Library of Energy BETA

Sample records for nitrogen oxides carbon

  1. ARM - Oxides of Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendar NSA Related LinksOxides of Nitrogen Outreach Home

  2. Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions

    E-Print Network [OSTI]

    Millstein, Dev

    2009-01-01

    2005). Particulate emissions from construction activities.M. S. , (2000b). In-use emissions from heavy- duty dieseland nitrogen dioxide emissions from gasoline- and diesel-

  3. Next generation gas turbines will be required to produce low concentrations of pollutants such as oxides of nitrogen (NOx), carbon monoxide (CO), and soot. In order to design gas turbines which produce lower emissions it is essential

    E-Print Network [OSTI]

    Next generation gas turbines will be required to produce low concentrations of pollutants such as oxides of nitrogen (NOx), carbon monoxide (CO), and soot. In order to design gas turbines which produce

  4. Schematic structure of nitrogen-doped graphene showing carbon

    E-Print Network [OSTI]

    Gong, Jian Ru

    method for graphene doping, and is compatible with current complementary metal oxide semiconductor (CMOSSchematic structure of nitrogen- doped graphene showing carbon (gray) and nitrogen (blue) NPG Asia Materials research highlight | doi:10.1038/asiamat.2010.204 Published online 13 December 2010 Graphene

  5. Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions

    DOE Patents [OSTI]

    Apel, William A. (Idaho Falls, ID)

    1998-01-01

    A biofilter for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described.

  6. Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions

    DOE Patents [OSTI]

    Apel, W.A.

    1998-08-18

    A biofilter is described for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method is described of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described. 6 figs.

  7. The carbon footprint analysis of wastewater treatment plants and nitrous oxide emissions from full-scale biological nitrogen removal processes in Spain

    E-Print Network [OSTI]

    Xu, Xin, S.M. Massachusetts Institute of Technology

    2013-01-01

    This thesis presents a general model for the carbon footprint analysis of advanced wastewater treatment plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ...

  8. Nitrogen oxide delivery systems for biological media

    E-Print Network [OSTI]

    Skinn, Brian Thomas

    2012-01-01

    Elevated levels of nitric oxide (NO) in vivo are associated with a variety of cellular modifications thought to be mutagenic or carcinogenic. These processes are likely mediated by reactive nitrogen species (RNS) such as ...

  9. Preparation of nitrogen-doped carbon tubes

    DOE Patents [OSTI]

    Chung, Hoon Taek; Zelenay, Piotr

    2015-12-22

    A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.

  10. ORIGINAL ARTICLE Carbon and nitrogen fixation and

    E-Print Network [OSTI]

    Capone, Douglas G.

    capable of fixing both dinitrogen (N2) and carbon dioxide (CO2), deriving energy from oxygenicORIGINAL ARTICLE Carbon and nitrogen fixation and metabolite exchange in and between individual and was evenly allocated among vegetative cells, with the exception of the most remote vegetative cells between

  11. Worldwide organic soil carbon and nitrogen data

    SciTech Connect (OSTI)

    Zinke, P.J.; Stangenberger, A.G.; Post, W.M.; Emanual, W.R.; Olson, J.S.

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  12. Nitrogen oxides storage catalysts containing cobalt

    DOE Patents [OSTI]

    Lauterbach, Jochen (Newark, DE); Snively, Christopher M. (Clarks Summit, PA); Vijay, Rohit (Annandale, NJ); Hendershot, Reed (Breinigsville, PA); Feist, Ben (Newark, DE)

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  13. Nitrogen oxides emission trends in Monthly emission estimates of nitrogen oxides from space provide

    E-Print Network [OSTI]

    Haak, Hein

    Chapter 5 Nitrogen oxides emission trends in East Asia Abstract Monthly emission estimates present first results of a new emission estimation algorithm, specifically designed to use daily satellite observations of column concentrations for fast updates of emission estimates of short-lived atmospheric

  14. Breath is a mixture of nitrogen, oxygen, carbon dioxide, water

    E-Print Network [OSTI]

    12 SCIENCE Breath is a mixture of nitrogen, oxygen, carbon dioxide, water vapour, inert gases. On the basis of proton affinity, the major constituents of air and breath (nitrogen, oxygen, carbon dioxide, as the products of normal metabolism and those that have altered owing to disease, and are transported via

  15. ORIGINAL PAPER Influence of tree species on carbon and nitrogen

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and for carbon sequestration (Jandl et al. 2007). Soil acidification and carbon sequestration are influ- encedORIGINAL PAPER Influence of tree species on carbon and nitrogen transformation patterns in forest carbon release under broadleaved forest floors may explain this difference. Spruce forest floor exhibited

  16. Effect of nitrogen-containing groups on enhanced capacitive behaviors of multi-walled carbon nanotubes

    SciTech Connect (OSTI)

    Kim, Ji-Il; Park, Soo-Jin

    2011-08-15

    In this work, electrochemical properties of surface treated multi-walled carbon nanotubes (MWNTs) are studied in supercapacitors. Nitrogen and oxygen functional groups containing MWNTs are prepared by urea and acidic treatments, respectively. The surface properties of the MWNTs are confirmed by X-ray photoelectron spectroscopy (XPS) and zeta-potential measurements. The textural properties are characterized by N{sub 2} adsorption/desorption isotherm at 77 K using the BET eqaution, BJH method, and HK method. The electrochemical properties of the MWNTs are accumulated by cyclic voltammetry, impedance spectra, and charge-discharge cycling performance in 1 M H{sub 2}SO{sub 4} at room temperature. As a result, the functionalized MWNTs lead to an increase in capacitance as compared with pristine MWNTs. It suggests that the pyridinic and pyridinic-N-oxides nitrogen species have effects on the specific capacitance due to the positive charge, and thus an improved electron transfer at high current loads results, the most important functional groups affecting capacitive behaviors. - Graphical Abstract: The N{sub 1s} spectra of nitrogen functionalized multi-walled carbon nanotubes are measured by X-ray photoelectron spectroscopy. Highlights: > Facile method of increasing elemental composition of nitrogen functional groups on carbon materials. > Increased specific capacitance multi-walled carbon nanotubes (MWNTs) for electrode materials as high as general chemical activation process. > Enhanced capacitive behaviors via introducing pyridinic and pyridinic-N-oxides nitrogen species onto the MWNTs. > Improvement of electron transfer at high current loads.

  17. Method For Selective Catalytic Reduction Of Nitrogen Oxides

    DOE Patents [OSTI]

    Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  18. Method for selective catalytic reduction of nitrogen oxides

    DOE Patents [OSTI]

    Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  19. Energy loss characteristics of heavy ions in nitrogen, carbon dioxide, argon, hydrocarbon gases and tradescantia tissue

    E-Print Network [OSTI]

    Dennis, J A

    1971-01-01

    Energy loss characteristics of heavy ions in nitrogen, carbon dioxide, argon, hydrocarbon gases and tradescantia tissue

  20. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

    E-Print Network [OSTI]

    2009-01-01

    2009 P. E. Thornton et al. : Carbon-nitrogen interactionsregulate climate-carbon cycle feedbacks Monfray, P. ,T. H. : A global ocean carbon climatology: Results from

  1. Determination of carbon, nitrogen, and oxygen in high purity magnesium 

    E-Print Network [OSTI]

    Roche, Neil Gerard

    1981-01-01

    DETERMINATION OF CARBON, NITROGEN, AND OXYGEN IN HIGH PURITY MAGNESIUM A Thesis by NEIL GERARD ROCHE Submitted to the Graduate College of Texas A8cM University in partial i'ulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1981 Major Subject: Chemistry DETERMINATION OF CARBON, NITROGEN, AND OXYGEN IN HIGH PURITY MAGNESIUM A Thesis by NEIL GERARD ROCHE Approved as to style and content by: E. A. Schweikert (Chairman of Committee) G. J. Bastiaans (Member) L...

  2. Process for nitrogen oxides reduction with minimization of the production of other pollutants

    SciTech Connect (OSTI)

    Epperly, W.R.; O'Leary, J.H.; Sullivan, J.C.; Sprague, B.N.

    1990-02-20

    This patent describes a process for reducing the concentration of nitrogen oxides in an effluent while minimizing the production of other pollutants. It comprises: determining the condition of the effluent which exists at a location for introduction of a treatment agent; effecting a treatment regimen which comprises introducing a treatment agent comprising an ammonium salt of an organic acid having a carbon to nitrogen ratio of greater than 1:1 into the effluent to reduce the nitrogen oxides concentration in the effluent under the determined effluent conditions while minimizing the production of other pollutants; monitoring the condition of the effluent until a significant alteration in the condition of the effluent is observed; and adjusting the treatment regimen by varying at least one of the following parameters: dilution and introduction rate of the hydrocarbon treatment agent; composition of the hydrocarbon treatment agent; and relative presence of the components of the hydrocarbon treatment agent.

  3. Assessment of Oxidation in Carbon Foam 

    E-Print Network [OSTI]

    Lee, Seung Min

    2010-07-14

    Carbon foams exhibit numerous unique properties which are attractive for light weight applications such as aircraft and spacecraft as a tailorable material. Carbon foams, when exposed to air, oxidize at temperatures as low ...

  4. Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology

    SciTech Connect (OSTI)

    McGill, R.N.

    1998-08-04

    Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

  5. Nitrogen-doped and simultaneously reduced graphene oxide with superior dispersion as electrocatalysts for oxygen reduction reaction

    SciTech Connect (OSTI)

    Lee, Cheol-Ho; Yun, Jin-Mun; Lee, Sungho; Jo, Seong Mu; Yoo, Sung Jong; Cho, Eun Ae; Khil, Myung-Seob; Joh, Han-Ik

    2014-11-15

    Nitrogen doped graphene oxide (Nr-GO) with properties suitable for electrocatalysts is easily synthesized using phenylhydrazine as a reductant at relatively low temperature. The reducing agent removes various oxygen functional groups bonded to graphene oxide and simultaneously dope the nitrogen atoms bonded with phenyl group all over the basal planes and edge sites of the graphene. The Nr-GO exhibits remarkable electrocatalytic activities for oxygen reduction reaction compared to the commercial carbon black and graphene oxide due to the electronic modification of the graphene structure. In addition, Nr-GO shows excellent dispersibility in various solvent due to the dopant molecules.

  6. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries

    SciTech Connect (OSTI)

    Shao, Yuyan; Wang, Xiqing; Engelhard, Mark H.; Wang, Chong M.; Dai, Sheng; Liu, Jun; Yang, Zhenguo; Lin, Yuehe

    2010-03-22

    We demonstrate a novel electrode material?nitrogen-doped mesoporous carbon (NMC)?for vanadium redox flow batteries. Mesoporous carbon (MC) is prepared using a soft-template method and doped with nitrogen by heat-treating MC in NH3. NMC is characterized with X-ray photoelectron spectroscopy and transmission electron microscopy. The redox reaction of VO2+/VO2+ is characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic kinetics of the redox couple VO2+/VO2+ is significantly enhanced on NMC electrode compared with MC and graphite electrodes. The reversibility of the redox couple VO2+/VO2+ is greatly improved on NMC (0.61 for NMC vs. 0.34 for graphite). Nitrogen doping facilitates the electron transfer on the electrode/electrolyte interface for both oxidation and reduction processes. NMC is a promising electrode material for redox flow batteries.

  7. Reducing Nitrogen Oxide Emissions: 1996 Compliance with Title IV Limits

    Reports and Publications (EIA)

    1998-01-01

    The purpose of this article is to summarize the existing federal nitrogen oxide (Nox) regulations and the 1996 performance of the 239 Title IV generating units. It also reviews the basics of low-Nox burner technology and presents cost and performance data for retrofits at Title IV units.

  8. Nitrogen oxidizing in modeling of diesel engine operation

    SciTech Connect (OSTI)

    Kulakov, V.; Merker, G.

    1995-12-31

    A computer model of diesel engine operation based on the interconnected calculation of diesel fuel spray and the processes in the combustion chamber is extended for the calculation of Nitrogen oxidizing. A number of chemical reactions with O{sub 2}, O, N{sub 2}, N, NO, OH, H, H{sub 2} are included in the model.

  9. Introduction The reduction of nitrogen oxide emissions is

    E-Print Network [OSTI]

    Sandoghdar, Vahid

    is attained in a post-catalyst homogeneous combustion zone.This process leads to substantial reduction of NOxIntroduction The reduction of nitrogen oxide emissions is of great importance in practical emissions (typically NOx is produced exclusively from the gaseous (homogeneous) reaction path

  10. Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Robust Nitrogen OxideAmmonia Sensors for Vehicle On-board Emissions Control Robust Nitrogen OxideAmmonia Sensors for Vehicle On-board Emissions Control 2012 DOE Hydrogen and Fuel...

  11. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    DOE Patents [OSTI]

    Walker, Richard J. (Bethel Park, PA)

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  12. Nitrogen oxide abatement by distributed fuel addition

    SciTech Connect (OSTI)

    Wendt, J.O.L.; Mereb, J.B.

    1991-09-20

    Reburning is examined as a means of NO{sub x} destruction in a 17 kW down-fired pulverized coal combustor. In reburning, a secondary fuel is introduced downstream of the primary flame to produce a reducing zone, favorable to NO destruction, and air is introduced further downstream to complete the combustion. Emphasis is on natural gas reburning and a bituminous coal primary flame. A parametric examination of reburning employing a statistical experimental design, is conducted, complemented by detailed experiments. Mechanisms governing the inter-conversion of nitrogenous species in the fuel rich reburn zone is explored. The effect of reburning on N{sub 2}O emissions, the effect of primary flame mode (premixed and diffusion) and the effect of distributing the reburning fuel, are also investigated.

  13. Nitrogen doped zinc oxide thin film

    SciTech Connect (OSTI)

    Li, Sonny X.

    2003-12-15

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  14. Patterns of Carbon, Nitrogen and Phosphorus Dynamics in

    E-Print Network [OSTI]

    Moore, Tim

    Patterns of Carbon, Nitrogen and Phosphorus Dynamics in Decomposing Foliar Litter in Canadian Group 1 Department of Geography and Centre for Climate and Global Change Research, McGill University, Montre´al, Quebec, Canada; 2 Pacific Forestry Centre, Canadian Forest Service, Victoria, British Columbia

  15. CO2 enrichment increases carbon and nitrogen input from

    E-Print Network [OSTI]

    CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest Colleen2 Ecological Society of America, 2008 #12;#12;#12;#12;#12;+ [CO2] #12;+ Net primary production + [CO2] #12;+ Net primary production + [CO2] + C and N storage in biomass #12;+ Net primary production

  16. Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation

    E-Print Network [OSTI]

    Joo, Sang Hoon

    2011-01-01

    sensitivity The catalytic oxidation of carbon monoxide (CO)stabilizer. The catalytic activity of CO oxidation overintriguing catalytic behavior for CO oxidation 5-15 ; while

  17. Methods of detection and identificationoc carbon- and nitrogen-containing materials

    DOE Patents [OSTI]

    Karev, Alexander Ivanovich; Raevsky, Valery Georgievich; Dzhalivyan, Leonid Zavenovich; Brothers, Louis Joseph; Wilhide, Larry K

    2013-11-12

    Methods for detecting and identifying carbon- and/or nitrogen-containing materials are disclosed. The methods may comprise detection of photo-nuclear reaction products of nitrogen and carbon to detect and identify the carbon- and/or nitrogen-containing materials.

  18. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries

    SciTech Connect (OSTI)

    Dai, Sheng [ORNL; Shao, Yuyan [Pacific Northwest National Laboratory (PNNL); Wang, Xiqing [ORNL; Engelhard, Mark H [Pacific Northwest National Laboratory (PNNL); Wang, Congmin [ORNL; Liu, Jun [Pacific Northwest National Laboratory (PNNL); YANG, ZHENGUO [Pacific Northwest National Laboratory (PNNL); Lin, Yuehe [ORNL

    2010-01-01

    We demonstrate an excellent performance of nitrogen-doped mesoporous carbon (N-MPC) for energy storage in vanadium redox flow batteries. Mesoporous carbon (MPC) is prepared using a soft-template method and doped with nitrogen by heat-treating MPC in NH{sub 3}. N-MPC is characterized with X-ray photoelectron spectroscopy and transmission electron microscopy. The redox reaction of [VO]{sup 2+}/[VO{sub 2}]{sup +} is characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic kinetics of the redox couple [VO]{sup 2+}/[VO{sub 2}]{sup +} is significantly enhanced on N-MPC electrode compared with MPC and graphite electrodes. The reversibility of the redox couple [VO]{sup 2+}/[VO{sub 2}]{sup +} is greatly improved on N-MPC (0.61 for N-MPC vs. 0.34 for graphite), which is expected to increase the energystorage efficiency of redoxflowbatteries. Nitrogen doping facilitates the electron transfer on electrode/electrolyte interface for both oxidation and reduction processes. N-MPC is a promising material for redoxflowbatteries. This also opens up new and wider applications of nitrogen-doped carbon.

  19. Method for reducing nitrogen oxides in combustion effluents

    DOE Patents [OSTI]

    Zauderer, Bert (Merion Station, PA)

    2000-01-01

    Method for reducing nitrogen oxides (NO.sub.x) in the gas stream from the combustion of fossil fuels is disclosed. In a narrow gas temperature zone, NO.sub.x is converted to nitrogen by reaction with urea or ammonia with negligible remaining ammonia and other reaction pollutants. Specially designed injectors are used to introduce air atomized water droplets containing dissolved urea or ammonia into the gaseous combustion products in a manner that widely disperses the droplets exclusively in the optimum reaction temperature zone. The injector operates in a manner that forms droplet of a size that results in their vaporization exclusively in this optimum NO.sub.x -urea/ammonia reaction temperature zone. Also disclosed is a design of a system to effectively accomplish this injection.

  20. Method for combined removal of mercury and nitrogen oxides from off-gas streams

    DOE Patents [OSTI]

    Mendelsohn, Marshall H. (Downers Grove, IL); Livengood, C. David (Lockport, IL)

    2006-10-10

    A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

  1. The effects of nitrogen oxides on cytochrome P-450 mediated mixed-function oxidations in mammalian lung 

    E-Print Network [OSTI]

    Tucker, Leo Dean

    1979-01-01

    THE EFFECTS OF NITROGEN OXIDES ON CYTOCHROME P-450 MEDIATED MIXED-FUNCTION OXIDATIONS IN ~IAN IUNG A Thesis by LEO DEAN TUCKER, II Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 1979 Major Subject: Biology THE EFFECTS OF NITROGEN OXIDES ON CYTOCHROME P-450 MEDIATED MIXED-FUNCTION OXIDATIONS IN MAMMALIAN LUNG A Thesis by LEO DEAN TUCKER, II Approved as to style and content by...

  2. Technological modifications in the nitrogen oxides tradable permit program

    SciTech Connect (OSTI)

    Linn, J.

    2008-07-01

    Tradable permit programs allow firms greater flexibility in reducing emissions than command-and-control regulations and encourage firms to use low cost abatement options, including small-scale modifications to capital equipment. This paper shows that firms have extensively modified capital equipment in the Nitrogen Oxides Budget Trading Program, which covers power plants in the eastern United States. The empirical strategy uses geographic and temporal features of the program to estimate counterfactual emissions, finding that modifications have reduced emission rates by approximately 10-15 percent. The modifications would not have occurred under command-and-control regulation and have reduced regulatory costs.

  3. Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition

    SciTech Connect (OSTI)

    Lushington, Andrew; Liu, Jian; Tang, Yongji; Li, Ruying; Sun, Xueliang, E-mail: xsun@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2014-01-15

    The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10?wt. % ozone at temperatures of 150, 250, and 300?°C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTs was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O{sub 3} attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides.

  4. Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular

    E-Print Network [OSTI]

    Thomas, David D.

    Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence by examining the joint effects of carbon dioxide (CO2) enrichment, nitrogen (N) fertilization and plant. Increasing atmospheric carbon dioxide (CO2) influences plant water relations and often pref- erentially

  5. Nonlinear root-derived carbon sequestration across a gradient of nitrogen and phosphorous deposition

    E-Print Network [OSTI]

    Jackson, Robert B.

    Nonlinear root-derived carbon sequestration across a gradient of nitrogen and phosphorous sequestration of plant-carbon (C) inputs to soil may mitigate rising atmo- spheric carbon dioxide (CO2) concentrations and related climate change but how this sequestration will respond to anthropogenic nitrogen (N

  6. Efficient boron-carbon-nitrogen nanotube formation via combined laser-gas flow levitation

    DOE Patents [OSTI]

    Whitney, R Roy; Jordan, Kevin; Smith, Michael W

    2015-03-24

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  7. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

    E-Print Network [OSTI]

    Thornton, P. E.; Doney, S. C.; Lindsay, Keith; Moore, J. K.; Mahowald, N. M.; Randerson, J. T.; Fung, I.; Lamarque, J. F.; Feddema, Johannes J.

    2009-01-01

    Abstract. Inclusion of fundamental ecological interactions between carbon and nitrogen cycles in the land component of an atmosphere-ocean general circulation model (AOGCM) leads to decreased carbon uptake associated ...

  8. Permafrost carbon—climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-03-09

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon–nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost regionmore »is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. The future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.« less

  9. Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia

    DOE Patents [OSTI]

    Pence, Dallas T. (Idaho Falls, ID); Thomas, Thomas R. (Idaho Falls, ID)

    1980-01-01

    Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

  10. Catalyst and method for reduction of nitrogen oxides

    DOE Patents [OSTI]

    Ott, Kevin C. (Los Alamos, NM)

    2008-05-27

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  11. Catalyst and method for reduction of nitrogen oxides

    DOE Patents [OSTI]

    Ott, Kevin C. (Los Alamos, NM)

    2008-08-19

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  12. Device for detection and identification of carbon- and nitrogen-containing materials

    DOE Patents [OSTI]

    Karev, Alexander Ivanovich; Raevsky, Valery Georgievich; Dzhilavyan, Leonid Zavenovich; Laptev, Valery Dmitrievich; Pakhomov, Nikolay Ivanovich; Shvedunov, Vasily Ivanovich; Rykalin, Vladimir Ivanovich; Brothers, Louis Joseph; Wilhide, Larry K

    2014-03-25

    A device for detection and identification of carbon- and nitrogen-containing materials is described. In particular, the device performs the detection and identification of carbon- and nitrogen-containing materials by photo-nuclear detection. The device may comprise a race-track microtron, a breaking target, and a water-filled Cherenkov radiation counter.

  13. Modeling soil respiration based on carbon, nitrogen, and root mass across diverse Great Lake forests

    E-Print Network [OSTI]

    Chen, Jiquan

    . Introduction Linkages between atmospheric carbon dioxide and global thermal properties have forcedModeling soil respiration based on carbon, nitrogen, and root mass across diverse Great Lake the examination of biospheric carbon flows and pools. Variability in carbon storage or the net ecosystem exchange

  14. Contribution of gas phase oxidation of volatile organic compounds to atmospheric carbon monoxide levels in two areas of the United States

    E-Print Network [OSTI]

    Dabdub, Donald

    - house gas, but also the hydroperoxide radical (HO2). HO2 converts nitric oxide to nitrogen dioxideContribution of gas phase oxidation of volatile organic compounds to atmospheric carbon monoxide. Chen, K. Carmody, S. Vutukuru, and D. Dabdub (2007), Contribution of gas phase oxidation of volatile

  15. Theory of nitrogen doping of carbon nanoribbons: Edge effects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jiang, Jie; Turnbull, Joseph; Lu, Wenchang; Oak Ridge National Lab.; Boguslawski, Piotr; Univ. of Warsaw; Bernholc, J.; Oak Ridge National Lab.

    2012-01-01

    Nitrogen doping of a carbon nanoribbon is profoundly affected by its one-dimensional character, symmetry, and interaction with edge states. Using state-of-the-art ab initio calculations, including hybrid exact-exchange density functional theory, we find that, for N-doped zigzag ribbons, the electronic properties are strongly dependent upon sublattice effects due to the non-equivalence of the two sublattices. For armchair ribbons, N-doping effects are different depending upon the ribbon family: for families 2 and 0, the N-induced levels are in the conduction band, while for family 1 the N levels are in the gap. In zigzag nanoribbons, nitrogen close to the edge is amore »deep center, while in armchair nanoribbons its behavior is close to an effective-mass-like donor with the ionization energy dependent on the value of the band gap. In chiral nanoribbons, we find strong dependence of the impurity level and formation energy upon the edge position of the dopant, while such site-specificity is not manifested in the magnitude of the magnetization.« less

  16. Nitric OxideTriggered Remodeling of Chloroplast Bioenergetics and Thylakoid Proteins upon Nitrogen

    E-Print Network [OSTI]

    Nitric Oxide­Triggered Remodeling of Chloroplast Bioenergetics and Thylakoid Proteins upon Nitrogen droplets, but the accompanying changes in bioenergetics have been little studied so far. Here, we report

  17. Air Pollution Control Regulations: No.27- Control of Nitrogen Oxide Emissions (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations apply to stationary sources with the potential to emit 50 tons of nitrogen oxides (NOx) per year from all pollutant-emitting equipment or activities. The regulations describe...

  18. Nitrogen oxides emission control through reburning with biomass in coal-fired power plants 

    E-Print Network [OSTI]

    Arumugam, Senthilvasan

    2005-02-17

    Oxides of nitrogen from coal-fired power stations are considered to be major pollutants, and there is increasing concern for regulating air quality and offsetting the emissions generated from the use of energy. Reburning ...

  19. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A.; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH? gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g?¹), high electrical conductivity (1532S m?¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg?¹ at a current density of 1 A g?¹, and a capacitance of 261 F g?¹ was retained at 50 A g?¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorptionmore »fine-structure spectroscopy evidenced the recover of ?-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.« less

  20. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Youn, Hee-Chang [Yonsei Univ., Seoul (Republic of Korea); Bak, Seong-Min [Brookhaven National Lab. (BNL), Upton, NY (United States); Kim, Myeong-Seong [Yonsei Univ., Seoul (Republic of Korea); Jaye, Cherno [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Fischer, Daniel A. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Lee, Chang-Wook [Yonsei Univ., Seoul (Republic of Korea); Yang, Xiao-Qing [Brookhaven National Lab. (BNL), Upton, NY (United States); Roh, Kwang Chul [Korea Inst. of Ceramic Engineering and Technology, Seoul (Republic of Korea); Kim, Kwang-Bum [Yonsei Univ., Seoul (Republic of Korea)

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH? gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g?¹), high electrical conductivity (1532S m?¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg?¹ at a current density of 1 A g?¹, and a capacitance of 261 F g?¹ was retained at 50 A g?¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorption fine-structure spectroscopy evidenced the recover of ?-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.

  1. Zinc-catalyzed copolymerization of carbon dioxide and propylene oxide 

    E-Print Network [OSTI]

    Katsurao, Takumi

    1994-01-01

    The zinc-catalyzed copolymerization of carbon dioxide and propylene oxide, which is one of the promising reactions for the utilization of carbon dioxide, has been investigated from various aspects. Above all, considering ...

  2. Nitrogen Addition Increases Carbon Storage in Soils, But Not in Trees, in

    E-Print Network [OSTI]

    Templer, Pamela

    Nitrogen Addition Increases Carbon Storage in Soils, But Not in Trees, in an Eastern U.S. Deciduous, increasing carbon (C) capture from the atmosphere and possibly C sequestration in the woody biomass (Driscoll the effects of excess N deposition on carbon (C) and N cycling, we experimentally added N (as NH4NO3

  3. Zevenhoven & Kilpinen NITROGEN 18.1.2004 4-35 4.11 Chemistry of nitrogen oxides at atmospheric fluidized bed

    E-Print Network [OSTI]

    Zevenhoven, Ron

    oxide by air staging, and reduction of nitric oxide with char. In circulating fluidized bed combustion reactions between gas and particles become important, e.g., reduction of nitric oxide with char, which or noncatalytic. For example, the reduction of nitric oxide with char #12;Zevenhoven & Kilpinen NITROGEN 18

  4. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOE Patents [OSTI]

    Liu, W.; Flytzani-Stephanopoulos, M.

    1996-03-19

    A method and composition are disclosed for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdenum, copper, cobalt, manganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  5. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOE Patents [OSTI]

    Liu, Wei (Cambridge, MA); Flytzani-Stephanopoulos, Maria (Winchester, MA)

    1996-01-01

    A method and composition for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdnum, copper, cobalt, maganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  6. Nitrogen Dioxide Absorption and Sulfite Oxidation in Aqueous Sulfite

    E-Print Network [OSTI]

    Rochelle, Gary T.

    oxidation in limestone slurry scrubbing. Introduction Limestone (CaCO3) slurry scrubbing and lime (Ca

  7. Using stable isotopes to investigate interactions between the forest carbon and nitrogen cycles 

    E-Print Network [OSTI]

    Nair, Richard Kiran Francis

    2015-06-30

    Nitrogen (N) fertilization due to atmospheric deposition (NDEP ) may explain some of the net carbon (C) sink (0.6-0.7 Pg y-1) in temperate forests, but estimates of the additional C uptake due to atmospheric N additions ...

  8. Separation of Carbon Dioxide from Nitrogen and Water in Flue Gas Streams 

    E-Print Network [OSTI]

    Mera, Hilda 1989-

    2012-04-12

    coefficients of carbon dioxide, nitrogen, and water in MOFs. The metal-organic frameworks studied are copper trimesate (Cu-BTC), zinc terephthalate (IRMOF1), and MIL-47, which belongs to the Materials of the Institute Lavoisier series. Diffusion coefficients...

  9. Magnesium oxide inserts for the LECO Carbon Analyzer

    SciTech Connect (OSTI)

    Bagaasen, L.M.; Jensen, C.M.

    1991-01-16

    LECO carbon analysis of plutonium metal and plutonium oxide at the Rocky Flats Plant generates several hundred kilograms of high silica residues each year. The plutonium in these residues is difficult and expensive to recover using production dissolution processes. A magnesium oxide (MgO) insert has been developed that significantly lowers the plutonium recovery costs without adversely affecting accuracy of the carbon analysis.

  10. Rapid oxidation/stabilization technique for carbon foams, carbon fibers and C/C composites

    DOE Patents [OSTI]

    Tan, Seng; Tan, Cher-Dip

    2004-05-11

    An enhanced method for the post processing, i.e. oxidation or stabilization, of carbon materials including, but not limited to, carbon foams, carbon fibers, dense carbon-carbon composites, carbon/ceramic and carbon/metal composites, which method requires relatively very short and more effective such processing steps. The introduction of an "oxygen spill over catalyst" into the carbon precursor by blending with the carbon starting material or exposure of the carbon precursor to such a material supplies required oxygen at the atomic level and permits oxidation/stabilization of carbon materials in a fraction of the time and with a fraction of the energy normally required to accomplish such carbon processing steps. Carbon based foams, solids, composites and fiber products made utilizing this method are also described.

  11. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    SciTech Connect (OSTI)

    Jain, Atul; Yang, Xiaojuan; Kheshgi, Haroon; Mcguire, David; Post, Wilfred M

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources and sinks.

  12. Carbon and Nitrogen Cycling in Snow-Covered Environments

    E-Print Network [OSTI]

    Grogan, Paul

    snow cover through shading, wind sheltering, and interception. Changes in snow cover associated and nitrogen cycling. Introduction Approximately 60% of the terrestrial earth surface experiences seasonal snow

  13. Selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes

    SciTech Connect (OSTI)

    Martis, P.; Venugopal, B.R.; Delhalle, J.; Mekhalif, Z.

    2011-05-15

    A simple route to selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes (MWCNTs) using nickel acetylacetonate (NAA) was successfully achieved for the first time. The homogeneously decorated nanocrystals on MWCNTs were investigated for their structure and morphology by various techniques, such as powder X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, field emission scanning electron microscopy and thermogravimetric analysis. It was found that the size distributions of the nanocrystals on MWCNTs ranged from 8 to 15 nm and they were well resolved. The precursor, NAA, was effectively employed to impregnate the MWCNTs, which on calcination at suitable temperatures and in the presence of hydrogen and nitrogen atmosphere gave rise to nickel and nickel oxide nanocrystals, respectively. -- Graphical abstract: Nickel and nickel oxide nanocrystals were selectively and homogeneously decorated on multiwalled carbon nanotubes using nickel acetylacetonate, as a precursor in a simple and efficient route. Display Omitted Highlights: {yields} A simple route for decoration of nickel and nickel oxide nanocrystals on MWCNTs. {yields} Nickel acetylacetonate used as nickel source for the first time to impregnate on MWCNTs. {yields} Selective decoration was achieved by calcination in hydrogen and nitrogen atmospheres. {yields} The as-decorated nickel and nickel oxide nanocrystals are in the range of 8-15 nm.

  14. Catalytic oxidation of hydrocarbons and alcohols by carbon dioxide on oxide catalysts

    SciTech Connect (OSTI)

    Krylov, O.V. . N.N. Semenov Inst. of Chemical Physics); Mamedov, A.Kh.; Mirzabekova, S.R. . Yu.G. Mamedaliev Inst. of Petrochemical Processes)

    1995-02-01

    The great interest displayed lately in heterogeneous catalytic reactions of carbon dioxide is caused by two reasons: (1) the necessity to fight the greenhouse effect and (2) the exhaust of carbon raw material sources. Reactions of oxidative transformation of organic compounds of different classes (alkanes, alkenes, and alcohols) with a nontraditional oxidant, carbon dioxide, were studied on oxide catalysts Fe-O, Cr-O, Mn-O and on multicomponent systems based on manganese oxide. The supported manganese oxide catalysts are active, selective, and stable in conversion of the CH[sub 4] + CO[sub 2] mixture into synthesis gas and in oxidative dehydrogenation of C[sub 2] [minus] C[sub 7] hydrocarbons and the lower alcohols. Unlike metal catalysts manganese oxide based catalysts do not form a carbon layer during the reaction.

  15. CATALYTIC OXIDATION OF S(IV) ON ACTIVATED CARBON IN AQUEOUS SUSPENSION: KINETICS AND MECHANISM

    E-Print Network [OSTI]

    Brodzinsky, Richard

    2012-01-01

    and Mechanism for the Catalytic Oxidation of Sulfur Dioxidekinetic study of the catalytic oxidation on carbon particlesthe kinetics of the catalytic oxidation of sulfur dioxide on

  16. Stable carbon and nitrogen isotope enrichment in primate tissues

    E-Print Network [OSTI]

    Crowley, Brooke E.; Carter, Melinda L.; Karpanty, Sarah M.; Zihlman, Adrienne L.; Koch, Paul L.; Dominy, Nathaniel J.

    2010-01-01

    of sample treatment and diagenesis on the isotopic integrityHare PE (1986) Effects of diagenesis on strontium, carbon,

  17. Metal catalyzed copolymerization processes involving carbon oxides as substrates 

    E-Print Network [OSTI]

    Phelps, Andrea Lee

    2005-11-01

    Studies concerning two different copolymerization processes are detailed in this dissertation: propylene oxide/CO2 coupling to afford poly(propylene carbonate) and Nbutylaziridine/ CO coupling to afford poly-??-butylalanoid. ...

  18. Does the location of aircraft nitrogen oxide emissions affect their climate impact?

    E-Print Network [OSTI]

    Stevenson, David

    integrations: a base case, then variants with extra aircraft nitrogen oxide (NOx) emissions added to specific NOx emissions. NOx promotes tropospheric ozone (O3) production, but also stimulates methane (CH4 how important the emission location is in influencing the impact of aviation NOx on O3 and CH4. 2

  19. KINETICS, CATALYSIS, AND REACTION ENGINEERING Nonthermal Plasma Reactions of Dilute Nitrogen Oxide Mixtures

    E-Print Network [OSTI]

    Yeung, Man-Chung

    -type rate model, is found to capture the effect of power input, NOx composition, and residence time. An N for the conversion of nitrogen oxides,1,2,4-10 sulfur dioxide,11 and volatile organic car- bons.12 Despite its a mathematical model that captures transport and reac- tion rates. Such a model is needed to develop new

  20. Growth of tungsten oxide on carbon nanowalls templates

    SciTech Connect (OSTI)

    Wang, Hua; Su, Yan; Chen, Shuo; Quan, Xie

    2013-03-15

    Highlights: ? Tungsten oxide deposited on carbon nanowalls by hot filament chemical vapor deposition technique. ? This composite has two-dimensional uniform morphology with a crystalline structure of monoclinic tungsten trioxide. ? Surface photoelectric voltage measurements show that this product has photoresponse properties. - Abstract: In the present work we present a simple approach for coupling tungsten oxide with carbon nanowalls. The two-dimensional carbon nanowalls with open boundaries were grown using plasma enhanced hot filament chemical vapor deposition, and the subsequent tungsten oxide growth was performed in the same equipment by direct heating of a tungsten filament. The tungsten oxide coating is found to have uniform morphology with a crystalline structure of monoclinic tungsten trioxide. Surface photoelectric voltage measurements show that this product has photoresponse properties. The method of synthesis described here provides an operable route to the production of two-dimensional tungsten oxide nanocomposites.

  1. Thief carbon catalyst for oxidation of mercury in effluent stream

    DOE Patents [OSTI]

    Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

    2011-12-06

    A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

  2. Carbon-nitrogen bond-forming reactions in supercritical and expanded-liquid carbon dioxide media : green synthetic chemistry with multiscale reaction and phase behavior modeling

    E-Print Network [OSTI]

    Ciccolini, Rocco P

    2008-01-01

    The goal of this work was to develop a detailed understanding of carbon-nitrogen (C-N) bond-forming reactions of amines carried out in supercritical and expanded-liquid carbon dioxide (CO2) media. Key motivations behind ...

  3. Effect of carbon dioxide and nitrogen on the diffusivity of methane confined in nano-porous carbon aerogel

    SciTech Connect (OSTI)

    Mavila Chathoth, Suresh; He, Lilin; Mamontov, Eugene; Melnichenko, Yuri B

    2012-01-01

    The microscopic diffusivity of methane (CH{sub 4}) confined in nano-porous carbon aerogel was investigated as a function of added carbon dioxide (CO{sub 2}) and nitrogen (N{sub 2}) pressure using quasi-elastic neutron scattering (QENS). In the range of the external pressure of 1-2.5 MPa, the self-diffusivity of methane was found to increase with CO{sub 2} pressure and remain practically unchanged in the N{sub 2} environment. Increasing mobility of methane with CO{sub 2} pressure suggests that the adsorbed CH4 molecules become gradually replaced by CO{sub 2} on the surface of carbon aerogel pores, whereas the presence of N{sub 2} does not induce the replacement. The molecular mobility of the methane, with or without added carbon dioxide and nitrogen, is described by the unrestricted diffusion model, which is characteristic of methane compressed in small pores. On the other hand, both nitrogen and carbon dioxide molecules in carbon aerogel, when studied alone, with no methane present, follow a jump diffusion process, characteristic of the molecular mobility in the densified adsorbed layers on the surface of the aerogel pores.

  4. Nitrogen oxide abatement by distributed fuel addition. Final report

    SciTech Connect (OSTI)

    Wendt, J.O.L.; Mereb, J.B.

    1991-09-20

    Reburning is examined as a means of NO{sub x} destruction in a 17 kW down-fired pulverized coal combustor. In reburning, a secondary fuel is introduced downstream of the primary flame to produce a reducing zone, favorable to NO destruction, and air is introduced further downstream to complete the combustion. Emphasis is on natural gas reburning and a bituminous coal primary flame. A parametric examination of reburning employing a statistical experimental design, is conducted, complemented by detailed experiments. Mechanisms governing the inter-conversion of nitrogenous species in the fuel rich reburn zone is explored. The effect of reburning on N{sub 2}O emissions, the effect of primary flame mode (premixed and diffusion) and the effect of distributing the reburning fuel, are also investigated.

  5. Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of

    E-Print Network [OSTI]

    Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation partitioning of carbon (C) to fine roots under elevated [CO2], especially deep in the soil profile, could alter soil C and nitrogen (N) cycling in forests. After more than 11 years of free-air CO2 enrichment

  6. Electrochemical process for the preparation of nitrogen fertilizers

    DOE Patents [OSTI]

    Aulich, Ted R.; Olson, Edwin S.; Jiang, Junhua

    2013-03-19

    The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be solid.

  7. Modeling to discern nitrogen fertilization impacts on carbon sequestration in a Pacific Northwest Douglas-fir

    E-Print Network [OSTI]

    Modeling to discern nitrogen fertilization impacts on carbon sequestration in a Pacific Northwest A R K J O H N S O N } *LREIS Institute of Geographic Sciences & Nature Resources Research, Chinese of Forestry, University of British Columbia, Vancouver, BC, Canada V6T 1Z4, zBiometeorology and Soil Physics

  8. Nitrogen cycling, plant biomass, and carbon dioxide evolution in a subsurface flow wetland 

    E-Print Network [OSTI]

    Lane, Jeffrey J

    2000-01-01

    ? volatilization likely was responsible for most of the nitrogen loss. The amount of CO? flux from the wetland was measured from the influent end to the effluent end. Carbon dioxide evolution decreased as water passed through the wetland. The average CO? flux level...

  9. Effet of Combined Nitrogen Dioxide and Carbon Nanoparticle Exposure on Lung Function During

    E-Print Network [OSTI]

    Boyer, Edmond

    Effet of Combined Nitrogen Dioxide and Carbon Nanoparticle Exposure on Lung Function During and Respiratory Medicine, Paediatric Lung Function Laboratory, Amiens University Hospital, Amiens, France, 3 and challenges in Borwn-Norway (BN) rat, in order to assess their interactions on lung function and airway

  10. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 The origins and concentrations of water, carbon, nitrogen and noble gases on Earth Bernard Marty (PSN) are still present in the mantle, presumably signing the sequestration of PSN gas at an early), and up to ~500 ppm C, both largely sequestrated in the solid Earth. This volatile content is equivalent

  11. Impact of Sulfur Oxides on Mercury Capture by Activated Carbon

    SciTech Connect (OSTI)

    Presto, A.A.; Granite, E.J.

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACI, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  12. Examining the coupling of carbon and nitrogen cycles in Southern Appalachian streams: Understanding the role of dissolved organic nitrogen

    SciTech Connect (OSTI)

    Lutz, Brian D [Duke University; Bernhardt, Emily [Duke University; Roberts, Brian [Louisiana Universities Marine Consortium; Mulholland, Patrick J [ORNL

    2011-01-01

    Although regional and global models of nitrogen (N) cycling typically focus on nitrate, dissolved organic nitrogen (DON) is the dominant form of nitrogen export from many watersheds and thus the dominant form of dissolved N in many streams. Our understanding of the processes controlling DON export from temperate forests is poor. In pristine systems, where biological N limitation is common, N contained in recalcitrant organic matter (OM) can dominate watershed N losses. This recalcitrant OM often has moderately constrained carbon:nitrogen (C:N) molar ratios ({approx}25-55) and therefore, greater DON losses should be observed in sites where there is greater total dissolved organic carbon (DOC) loss. In regions where anthropogenic N pollution is high, it has been suggested that increased inorganic N availability can reduce biological demand for organic N and therefore increase watershed DON losses. This would result in a positive correlation between inorganic and organic N concentrations across sites with varying N availability. In four repeated synoptic surveys of stream water chemistry from forested watersheds along an N loading gradient in the southern Appalachians, we found surprisingly little correlation between DON and DOC concentrations. Further, we found that DON concentrations were always significantly correlated with watershed N loading and stream water [NO{sub 3}{sup -}] but that the direction of this relationship was negative in three of the four surveys. The C:N molar ratio of dissolved organic matter (DOM) in streams draining watersheds with high N deposition was very high relative to other freshwaters. This finding, together with results from bioavailability assays in which we directly manipulated C and N availabilities, suggests that heterotrophic demand for labile C can increase as a result of dissolved inorganic N (DIN) loading, and that heterotrophs can preferentially remove N-rich molecules from DOM. These results are inconsistent with the two prevailing hypotheses that dominate interpretations of watershed DON loss. Therefore, we propose a new hypothesis, the indirect carbon control hypothesis, which recognizes that heterotrophic demand for N-rich DOM can keep stream water DON concentrations low when N is not limiting and heterotrophic demand for labile C is high.

  13. Synergistic enhancement of nitrogen and sulfur co-doped graphene with carbon nanospheres insertion for electrocatalytic oxygen reduction reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Min; Xin, Huolin L.; Wang, Jie; Wu, Zexing; Wang, Deli

    2015-03-13

    A nitrogen and sulfur co-doped graphene/carbon black (NSGCB) nanocomposite for the oxygen reduction reaction (ORR) was synthesized through a one-pot annealing of a precursor mixture containing graphene oxide, thiourea, and acidized carbon black (CB). The NSGCB showed excellent performance for the ORR with the onset and half-way potentials at 0.96 V and 0.81 V (vs. RHE), respectively. It is significantly improved over that of the catalysts derived from only graphene (0.90 V and 0.76 V) or carbon nanosphere (0.82 V and 0.74 V). The enhanced catalytic activity on the NSGCB electrode could be attributed to the synergistic effect of N/Smore »co-doping and the enlarged interlayer space resulted from the insertion of carbon nanosphere into the graphene sheets. The four-electron selectivity and the limiting current density of the NSGCB nanocomposite are comparable to that of the commercially Pt/C catalyst. Furthermore, the NSGCB nanocomposite was superior to Pt/C in terms of long-term durability and tolerance to methanol poisoning.« less

  14. Synergistic enhancement of nitrogen and sulfur co-doped graphene with carbon nanospheres insertion for electrocatalytic oxygen reduction reaction

    SciTech Connect (OSTI)

    Wu, Min [Huazhong Univ. of Science and Technology, Wuhan (China); Xin, Huolin L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, Jie [Huazhong Univ. of Science and Technology, Wuhan (China); Wu, Zexing [Huazhong Univ. of Science and Technology, Wuhan (China); Wang, Deli [Huazhong Univ. of Science and Technology, Wuhan (China)

    2015-01-01

    A nitrogen and sulfur co-doped graphene/carbon black (NSGCB) nanocomposite for the oxygen reduction reaction (ORR) was synthesized through a one-pot annealing of a precursor mixture containing graphene oxide, thiourea, and acidized carbon black (CB). The NSGCB showed excellent performance for the ORR with the onset and half-way potentials at 0.96 V and 0.81 V (vs. RHE), respectively. It is significantly improved over that of the catalysts derived from only graphene (0.90 V and 0.76 V) or carbon nanosphere (0.82 V and 0.74 V). The enhanced catalytic activity on the NSGCB electrode could be attributed to the synergistic effect of N/S co-doping and the enlarged interlayer space resulted from the insertion of carbon nanosphere into the graphene sheets. The four-electron selectivity and the limiting current density of the NSGCB nanocomposite are comparable to that of the commercially Pt/C catalyst. Furthermore, the NSGCB nanocomposite was superior to Pt/C in terms of long-term durability and tolerance to methanol poisoning.

  15. In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High Performance Supercapacitors

    SciTech Connect (OSTI)

    Jeon, Ju Won; Sharma, Ronish; Meduri, Praveen; Arey, Bruce W.; Schaef, Herbert T.; Lutkenhaus, Jodie; Lemmon, John P.; Thallapally, Praveen K.; Nandasiri, Manjula I.; McGrail, B. Peter; Nune, Satish K.

    2014-05-28

    Electrochemical performance of the existing state-of-the art capacitors is not very high, key scientific barrier is that its charge storage mechanism wholly depends on adsorption of electrolyte on electrode. We present a novel method for the synthesis of nitrogen -doped porous carbons and address the drawback by precisely controlling composition and surface area. Nitrogen-doped porous carbon was synthesized using a self-sacrificial template technique without any additional nitrogen and carbon sources. They exhibited exceptionally high capacitance (239 Fg-1) due to additional pseudocapacitance originating from doped nitrogen. Cycling tests showed no obvious capacitance decay even after 10,000 cycles, which meets the requirement of commercial supercapacitors. Our method is simple and highly efficient for the production of large quantities of nitrogen-doped porous carbons.

  16. Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation

    SciTech Connect (OSTI)

    Joo, Sang Hoon; Park, Jeong Y.; Renzas, J. Russell; Butcher, Derek R.; Huang, Wenyu; Somorjai, Gabor A.

    2010-04-04

    Carbon monoxide oxidation over ruthenium catalysts has shown an unusual catalytic behavior. Here we report a particle size effect on CO oxidation over Ru nanoparticle (NP) catalysts. Uniform Ru NPs with a tunable particle size from 2 to 6 nm were synthesized by a polyol reduction of Ru(acac){sub 3} precursor in the presence of poly(vinylpyrrolidone) stabilizer. The measurement of catalytic activity of CO oxidation over two-dimensional Ru NPs arrays under oxidizing reaction conditions (40 Torr CO and 100 Torr O{sub 2}) showed an activity dependence on the Ru NP size. The CO oxidation activity increases with NP size, and the 6 nm Ru NP catalyst shows 8-fold higher activity than the 2 nm catalysts. The results gained from this study will provide the scientific basis for future design of Ru-based oxidation catalysts.

  17. Process for nitrogen oxides reduction and minimization of the production of other pollutants

    SciTech Connect (OSTI)

    Epperly, W.R.; O'Leary, J.H.; Sullivan, J.C.

    1988-10-25

    This patent describes a process for reducing the concentration of nitrogen oxides in an effluent from the combustion of a carbonaceous fuel while minimizing the production of other pollutants. The process consists of: a. determining the condition of the effluent which exists at a location for introduction of a treatment agent; b. effecting a treatment regimen which comprises introducing a treatment agent into the effluent to treat the effluent to reduce the nitrogen oxides concentration in the effluent under the determined effluent conditions while minimizing the production of other pollutants; c. monitoring the condition of the effluent until a significant alteration in the condition of the effluent is observed; d. adjusting the treatment regimen by varying at least one of the following parameters: (i) dilution and introduction rate of the treatment agent; (ii) components of the treatment agent; and (iii) relative presence of treatment agent components, to effect an adjusted treatment regimen, wherein the adjusted treatment regimen reduces the nitrogen oxides concentration in the effluent under the altered effluent condition while minimizing the production of other pollutants.

  18. Process for nitrogen oxides reduction with minimization of the production of other pollutants

    SciTech Connect (OSTI)

    Epperly, W.R.; O'Leary, J.H.; Sullivan, J.C.; Sprague, B.N.

    1989-10-31

    This patent describes a process for reducing the concentration of nitrogen oxides in an effluent which is at a temperature below about 1450 {degrees}F while minimizing the production of other pollutants. The process comprising: determining the condition of the effluent which exists at a location for introduction of a treatment agent; effecting a treatment regimen which comprises introducing a treatment agent comprising a hydrocarbon into the effluent to reduce the nitrogen oxides concentration in the effluent under the determined effluent conditions while minimizing the production of other pollutants; monitoring the condition of the effluent until a significant alteration in the condition of the effluent is observed; adjusting the treatment regimen by varying at least one of the following parameters: dilution and introduction rate of the hydrocarbon treatment agent; composition of the hydrocarbon treatment agent; and relative presence of the components of the hydrocarbon treatment agent, to effect an adjusted treatment regimen. Wherein the adjusted treatment regimen operates under conditions effective to reduce the nitrogen oxides concentration in the effluent under the altered effluent conditions.

  19. Recovery of iron, carbon and zinc from steel plant waste oxides using the AISI-DOE postcombustion smelting technology

    SciTech Connect (OSTI)

    Sarma, B. [Praxair, Inc., Tarrytown, NY (United States); Downing, K.B. [Fluor Daniel, Greenville, SC (United States); Aukrust, E.

    1996-09-01

    This report describes a process to recover steel plant waste oxides to be used in the production of hot metal. The process flowsheet used at the pilot plant. Coal/coke breeze and iron ore pellets/waste oxides are charged into the smelting reactor. The waste oxides are either agglomerated into briquettes (1 inch) using a binder or micro-agglomerated into pellets (1/4 inch) without the use of a binder. The iron oxides dissolve in the slag and are reduced by carbon to produce molten iron. The gangue oxides present in the raw materials report to the slag. Coal charged to the smelter is both the fuel as well as the reductant. Carbon present in the waste oxides is also used as the fuel/reductant resulting in a decrease in the coal requirement. Oxygen is top blown through a central, water-cooled, dual circuit lance. Nitrogen is injected through tuyeres at the bottom of the reactor for stirring purposes. The hot metal and slag produced in the smelting reactor are tapped at regular intervals through a single taphole using a mudgun and drill system. The energy requirements of the process are provided by (i) the combustion of carbon to carbon monoxide, referred to as primary combustion and (ii) the combustion of CO and H{sub 2} to CO{sub 2} and H{sub 2}O, known as postcombustion.

  20. Pairing of Pentagonal and Heptagonal Carbon Rings in the Growth of Nanosize Carbon Spheres Synthesized by a Mixed-Valent Oxide-Catalytic Carbonization Process

    E-Print Network [OSTI]

    Wang, Zhong L.

    Synthesized by a Mixed-Valent Oxide-Catalytic Carbonization Process Z. L. Wang* and Z. C. Kang SchoolVed: August 29, 1996X Carbon spheres have been synthesized using a mixed-valent oxide-catalytic carbonization catalytic transition and/or rare earth metal oxides with mixed Valences had been placed. Decomposition of CH

  1. Structural response of oxidation resistant carbon-carbon composites 

    E-Print Network [OSTI]

    Ashley, Timothy Harold

    1996-01-01

    subjected to thermo-mechanical loading. The analytical models are compared to test data to verify the predictions of the lamina response. The material system studied is HITCO 2D CC137EH, highly inhibited, eight harness satin weave, RT42 CVD SiC coated carbon...

  2. Evaluation of Corona Reactors of Several Geometries for a Plasma Assisted Nitrogen Oxide Emission Reduction Device

    SciTech Connect (OSTI)

    Herling, Darrell R.; Smith, Monty R.; Hemingway, Mark D.; Goulette, David; Silvis, Thomas W.

    2000-08-09

    Proposed vehicle emissions regulations for the near future have prompted automotive manufactures and component suppliers to focus heavily on developing more efficient exhaust aftertreatment devices to lower emissions from spark and compression ignition engines. One of the primary pollutants from lean-burn engines, especially from diesels, are oxides of nitrogen (NOx). Current three-way catalytic converters will not have adequate performance to meet future emission reduction requirements. Therefore, there is a need for researchers and engineers to develop efficient exhaust aftertreatment devices that will reduce NOx emissions from lean-burn engines. These devices must have very high conversion of NOx gases, be unaffected by exhaust-gas impurity such as sulfur, and have minimal impact on vehicle operations and fuel economy. An effective technology for NOx control that is currently receiving a lot of attention is a non-thermal plasma system. This system is comprised of a two-stage corona generation device (plasma reactor) and reduction catalyst that reduces nitric oxide and nitrogen dioxide emissions to nitrogen.

  3. Accelerating the spin-up of the coupled carbon and nitrogen cycle model in CLM4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fang, Yilin; Liu, Chongxuan; Leung, Lai-Yung R.

    2015-03-24

    The commonly adopted biogeochemistry spin-up process in an Earth system model (ESM) is to run the model for hundreds to thousands of years subject to periodic atmospheric forcing to reach dynamic steady state of the carbon–nitrogen (CN) models. A variety of approaches have been proposed to reduce the computation time of the spin-up process. Significant improvement in computational efficiency has been made recently. However, a long simulation time is still required to reach the common convergence criteria of the coupled carbon–nitrogen model. A gradient projection method was proposed and used to further reduce the computation time after examining the trendmore »of the dominant carbon pools. The Community Land Model version 4 (CLM4) with a carbon and nitrogen component was used in this study. From point-scale simulations, we found that the method can reduce the computation time by 20–69% compared to one of the fastest approaches in the literature. We also found that the cyclic stability of total carbon for some cases differs from that of the periodic atmospheric forcing, and some cases even showed instability. Close examination showed that one case has a carbon periodicity much longer than that of the atmospheric forcing due to the annual fire disturbance that is longer than half a year. The rest was caused by the instability of water table calculation in the hydrology model of CLM4. The instability issue is resolved after we replaced the hydrology scheme in CLM4 with a flow model for variably saturated porous media.« less

  4. Accelerating the spin-up of the coupled carbon and nitrogen cycle model in CLM4

    SciTech Connect (OSTI)

    Fang, Yilin; Liu, Chongxuan; Leung, Lai-Yung R.

    2015-01-01

    The commonly adopted biogeochemistry spin-up process in an Earth system model (ESM) is to run the model for hundreds to thousands of years subject to periodic atmospheric forcing to reach dynamic steady state of the carbon–nitrogen (CN) models. A variety of approaches have been proposed to reduce the computation time of the spin-up process. Significant improvement in computational efficiency has been made recently. However, a long simulation time is still required to reach the common convergence criteria of the coupled carbon–nitrogen model. A gradient projection method was proposed and used to further reduce the computation time after examining the trend of the dominant carbon pools. The Community Land Model version 4 (CLM4) with a carbon and nitrogen component was used in this study. From point-scale simulations, we found that the method can reduce the computation time by 20–69% compared to one of the fastest approaches in the literature. We also found that the cyclic stability of total carbon for some cases differs from that of the periodic atmospheric forcing, and some cases even showed instability. Close examination showed that one case has a carbon periodicity much longer than that of the atmospheric forcing due to the annual fire disturbance that is longer than half a year. The rest was caused by the instability of water table calculation in the hydrology model of CLM4. The instability issue is resolved after we replaced the hydrology scheme in CLM4 with a flow model for variably saturated porous media.

  5. Reprocessing of Ices in Turbulent Protoplanetary Disks: Carbon and Nitrogen Chemistry

    E-Print Network [OSTI]

    Furuya, Kenji

    2014-01-01

    We study the influence of the turbulent transport on ice chemistry in protoplanetary disks, focusing on carbon and nitrogen bearing molecules. Chemical rate equations are solved with the diffusion term, mimicking the turbulent mixing in the vertical direction. Turbulence can bring ice-coated dust grains from the midplane to the warm irradiated disk surface, and the ice mantles are reprocessed by photoreactions, thermal desorption, and surface reactions. The upward transport decreases the abundance of methanol and ammonia ices at r reprocessing could explain the smaller abundances of carbon and nitrogen bearing molecules in cometary coma than those in low-mass protostellar envelopes. We also show the effect of mixing on the synthesis of complex organic molecules (COMs) are two ways: (1) transport of ices from the midplane to the disk surface and (2) transport of atomic hydrogen from the surface to the midplane. The fo...

  6. Characterization of the micropore structure of activated carbons by adsorptions of nitrogen and some hydrocarbons

    SciTech Connect (OSTI)

    Guezel, F. [Dicle Univ., Diyarbakir (Turkey). Dept. of Chemistry] [Dicle Univ., Diyarbakir (Turkey). Dept. of Chemistry

    1999-02-01

    In the present study the effects of the duration of carbonization and physical activation properties of activated carbon from vegetable materials were investigated. Peanut shells were used to obtain active carbon. These shells were activated chemically with ZnCl{sub 2} and/or CO{sub 2} for different times, and the micropore structures of these active carbons were studied by measuring the adsorption isotherms for nitrogen and some hydrocarbons such as benzene, n-butane, isobutane, 2,2-dimethylbutane, and isooctane. As the physical activation time was increased, the primary micropores, which were measured at 0.01 relative pressure, were reduced, and they were replaced by larger secondary and tertiary micropores which were measured at 0.15--0.01 and 0.30--0.15 relative pressures. The ratios of the mesopore volume to the micropore volume also increased as the duration of physical activation increased.

  7. Co-Al mixed metal oxides/carbon nanotubes nanocomposite prepared via a precursor route and enhanced catalytic property

    SciTech Connect (OSTI)

    Fan Guoli; Wang Hui; Xiang Xu; Li Feng

    2013-01-15

    The present work reported the synthesis of Co-Al mixed metal oxides/carbon nanotubes (CoAl-MMO/CNT) nanocomposite from Co-Al layered double hydroxide/CNTs composite precursor (CoAl-LDH/CNT). The materials were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), low temperature nitrogen adsorption-desorption experiments, thermogravimetric and differential thermal analyses (TG-DTA), Raman spectra and X-ray photoelectron spectroscopy (XPS). The results revealed that in CoAl-MMO/CNT nanocomposite, the nanoparticles of cobalt oxide (CoO) and Co-containing spinel-type complex metal oxides could be well-dispersed on the surface of CNTs, thus forming the heterostructure of CoAl-MMO and CNTs. Furthermore, as-synthesized CoAl-MMO/CNT nanocomposite was utilized as additives for catalytic thermal decomposition of ammonium perchlorate (AP). Compared to those for pure AP and CoAl-MMO, the peak temperature of AP decomposition for CoAl-MMO/CNT was significantly decreased, which is attributed to the novel heterostructure and synergistic effect of multi-component metal oxides of nanocomposite. - Graphical abstract: Hybrid Co-Al mixed metal oxides/carbon nanotubes nanocomposite showed the enhanced catalytic activity in the thermal decomposition of ammonium perchlorate, as compared to carbon nanotubes and pure Co-Al mixed metal oxides. Highlights: Black-Right-Pointing-Pointer Co-Al mixed metal oxides/carbon nanotubes nanocomposite was synthesized. Black-Right-Pointing-Pointer Co-Al mixed metal oxides consisted of cobalt oxide and Co-containing spinels. Black-Right-Pointing-Pointer Nanocomposite exhibited excellent catalytic activity for the decomposition of AP. Black-Right-Pointing-Pointer The superior catalytic property is related to novel heterostructure and composition.

  8. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOE Patents [OSTI]

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Xi Chu; Barnett, S.A.

    1998-03-10

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  9. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOE Patents [OSTI]

    Wong, Ming-Show (Northbrook, IL); Li, Dong (Evanston, IL); Chung, Yip-Wah (Wilmette, IL); Sproul, William D. (Palantine, IL); Chu, Xi (Evanston, IL); Barnett, Scott A. (Evanston, IL)

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  10. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOE Patents [OSTI]

    Wong, Ming-Show (Northbrook, IL); Li, Dong (Evanston, IL); Chung, Yin-Wah (Wilmette, IL); Sproul, William D. (Palantine, IL); Chu, Xi (Evanston, IL); Barnett, Scott A. (Evanston, IL)

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  11. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOE Patents [OSTI]

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Chu, X.; Barnett, S.A.

    1998-07-07

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  12. Spatial pattern and uncertainty of soil carbon and nitrogen in a subtropical savanna landscape in southern Texas 

    E-Print Network [OSTI]

    Liu, Feng

    2009-05-15

    Woody invasion into grasslands has been reported world-wide and has affected both the magnitude and spatial heterogeneity of soil carbon (C) and nitrogen (N). Since grasslands cover a large portion of the Earth's land ...

  13. EOS7C Version 1.0: TOUGH2 Module for Carbon Dioxide or Nitrogen in Natural Gas (Methane) Reservoirs

    E-Print Network [OSTI]

    Oldenburg, Curtis M.; Moridis, George J.; Spycher, Nicholas; Pruess, Karsten

    2004-01-01

    as cushion gas for natural gas storage, Energy&Fuels ,of CO 2 injection into natural gas reservoirs for carbonDioxide or Nitrogen in Natural Gas (Methane) Reservoirs

  14. Nitrogen Deposition: A Component of Global Change Analyses

    SciTech Connect (OSTI)

    Norby, Richard J.

    1997-12-31

    The global cycles of carbon and nitrogen are being perturbed by human activities that increase the transfer from large pools of nonreactive forms of the elements to reactive forms that are essential to the functioning of the terrestrial biosphere. The cycles are closely linked at all scales, and global change analyses must consider carbon and nitrogen cycles together. The increasing amount of nitrogen originating from fossil fuel combustion and deposited to terrestrial ecosystems as nitrogen oxides could increase the capacity of ecosystems to sequester carbon thereby removing some of the excess carbon dioxide from the atmosphere and slowing the development of greenhouse warming. Several global and ecosystem models have calculated the amount of carbon sequestration that can be attributed to nitrogen deposition based on assumptions about the allocation of nitrogen among ecosystem components with different carbon-nitrogen ratios. They support the premise that nitrogen deposition is responsible for a an increasing terrestrial carbon sink since industrialization began, but there are large uncertainties related to the continued capacity of ecosystems to retain exogenous nitrogen. Whether terrestrial ecosystems continue to sequester additional carbon will depend in part on their response to increasing atmospheric carbon dioxide concentrations, which is widely thought to be constrained by limited nitrogen availability. Ecosystem models generally support the conclusion that the responses of ecosystems to increasing concentrations of carbon dioxide will be larger, and the range of possible responses will be wider, in ecosystems with increased nitrogen inputs originating as atmospheric deposition.

  15. Combustion process and nitrogen oxides emission of Shenmu coal added with sodium acetate

    SciTech Connect (OSTI)

    Yang Weijuan; Zhou Junhu; Liu Maosheng; Zhou Zhijun; Liu Jianzhong; Cen Kefa

    2007-09-15

    Shenmu bituminous coal with 4% sodium acetate added was used to investigate the characteristics of combustion and nitrogen oxide (NOx) release in a fixed bed reactor heated by a tube furnace. The composition of the flue gas was analyzed to investigate the effects of sodium acetate on the combustion process and NOx emission. The experiments were carried out in a partial reductive atmosphere and a strong oxidative atmosphere. The O{sub 2} valley value in the partial reductive atmosphere was reduced by the added sodium acetate. Sodium acetate accelerated the combustion and shortened the combustion process. The experimental results showed that the emissions of NO, NO{sub 2}, and N{sub 2}O were affected by the reacting atmosphere and the combustion temperature. In the strong oxidative atmosphere, sodium acetate resulted in a slight NOx reduction. In the partial reductive atmosphere, sodium acetate reduced both the peak value of NO concentration and the total NO emission significantly. An over 30% NOx reduction efficiency was achieved at 900{sup o}C in the partial reductive atmosphere, which decreased with the increase in temperature. Sodium acetate was decomposed into hydrocarbon radicals and sodium hydroxide, which can both reduce NOx emissions due to their special reactions with the nitrogen component. 17 refs., 11 figs., 2 tabs.

  16. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOE Patents [OSTI]

    Mollot, Darren J. (Morgantown, WV); Bonk, Donald L. (Louisville, OH); Dowdy, Thomas E. (Orlando, FL)

    1998-01-01

    Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

  17. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOE Patents [OSTI]

    Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

    1998-01-13

    Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.

  18. A global comparison of carbon monoxide profiles and column amounts from Tropospheric Emission Spectrometer (TES)

    E-Print Network [OSTI]

    and anthropogenic incomplete combustion processes. In the presence of nitrogen oxides, carbon monoxide (COA global comparison of carbon monoxide profiles and column amounts from Tropospheric Emission compare carbon monoxide (CO) products from the Measurements of Pollution in the Troposphere (MOPITT

  19. Material and system for catalytic reduction of nitrogen oxide in an exhaust stream of a combustion process

    DOE Patents [OSTI]

    Gardner, Timothy J. (Albuquerque, NM); Lott, Stephen E. (Edgewood, NM); Lockwood, Steven J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

    1998-01-01

    A catalytic material of activated hydrous metal oxide doped with platinum, palladium, or a combination of these, and optionally containing an alkali or alkaline earth metal, that is effective for NO.sub.X reduction in an oxidizing exhaust stream from a combustion process is disclosed. A device for reduction of nitrogen oxides in an exhaust stream, particularly an automotive exhaust stream, the device having a substrate coated with the activated noble-metal doped hydrous metal oxide of the invention is also provided.

  20. Isotope Shifts in Beryllium-, Boron-, Carbon-, and Nitrogen-like Ions from Relativistic Configuration Interaction Calculations

    E-Print Network [OSTI]

    Nazé, C; Rynkun, P; Gaigalas, G; Godefroid, M; Jönsson, P

    2014-01-01

    Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wave functions that account for valence, core-valence and core-core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available.

  1. Carbon-based composite electrocatalysts for low temperature fuel cells

    DOE Patents [OSTI]

    Popov, Branko N. (Columbia, SC); Lee, Jog-Won (Columbia, SC); Subramanian, Nalini P. (Kennesaw, GA); Kumaraguru, Swaminatha P. (Honeoye Falls, NY); Colon-Mercado, Hector R. (Columbia, SC); Nallathambi, Vijayadurga (T-Nagar, IN); Li, Xuguang (Columbia, SC); Wu, Gang (West Columbia, SC)

    2009-12-08

    A process for synthesis of a catalyst is provided. The process includes providing a carbon precursor material, oxidizing the carbon precursor material whereby an oxygen functional group is introduced into the carbon precursor material, and adding a nitrogen functional group into the oxidized carbon precursor material.

  2. Oxygen reduction by lithium on model carbon and oxidized carbon structures

    SciTech Connect (OSTI)

    Xu, Ye [ORNL; Shelton Jr, William Allison [ORNL

    2011-01-01

    Li-air batteries have attracted substantial interest for their high theoretical specific energies, but the oxygen reduction reaction by Li (Li-ORR) that occurs at the carbon cathode remains poorly understood. Periodic density functional theory calculations have been performed to examine the Li-ORR on several model carbon structures, including the graphite(0001) basal plane, the (8,0) single-wall nanotube, the armchair-type edge, and a di-vacancy in the basal plane. The inertness of the basal plane limits the reversible potential of O{sub 2} reduction to 1.1 V, and slightly higher to 1.2 V on the curved nanotube. The armchair edge and di-vacancy are highly reactive and significantly oxidized at ambient conditions to various CO{sub x} groups, which are reduced by Li via redox mechanisms at 1.2-1.4 V. These CO{sub x} groups can also catalyze O{sub 2} reduction at up to 2.3 V (an overpotential of 0.4 V vs. the calculated equilibrium potential for bulk Li{sub 2}O{sub 2} formation) by chelating and stabilizing the LiO{sub 2} intermediate. The Li-ORR on graphitic carbon, if via concerted Li{sup +}/e{sup -} transfer and involving carbon, lithium, and oxygen only, is therefore expected to initiate with the smallest overpotential at under-coordinated carbon centers that are oxidized at ambient conditions.

  3. CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING

    E-Print Network [OSTI]

    CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING in strategies for climate protection. 1. Introduction Carbon sequestration has been highlighted recently concentration of carbon dioxide (CO2) in the atmo- sphere include sequestering carbon (C) in soils

  4. Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-12-08

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for themore »no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9–5.6, 6.4–12.0 and 0.9–2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  5. Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-08-28

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitude and distribution ofmore »US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  6. Ultraviolet pulsed laser irradiation of multi-walled carbon nanotubes in nitrogen atmosphere

    SciTech Connect (OSTI)

    Pérez del Pino, Ángel, E-mail: aperez@icmab.es; Cabana, Laura; Tobias, Gerard [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra (Spain); György, Enikö [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra (Spain); National Institute for Lasers, Plasma and Radiation Physics, P. O. Box MG 36, 76900 Bucharest V (Romania); Ballesteros, Belén [ICN2—Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain)

    2014-03-07

    Laser irradiation of randomly oriented multi-walled carbon nanotube (MWCNT) networks has been carried out using a pulsed Nd:YAG UV laser in nitrogen gas environment. The evolution of the MWCNT morphology and structure as a function of laser fluence and number of accumulated laser pulses has been studied using electron microscopies and Raman spectroscopy. The observed changes are discussed and correlated with thermal simulations. The obtained results indicate that laser irradiation induces very fast, high temperature thermal cycles in MWCNTs which produce the formation of different nanocarbon forms, such as nanodiamonds. Premelting processes have been observed in localized sites by irradiation at low number of laser pulses and low fluence values. The accumulation of laser pulses and the increase in the fluence cause the full melting and amorphization of MWCNTs. The observed structural changes differ from that of conventional high temperature annealing treatments of MWCNTs.

  7. Mineralization of Carbon and Nitrogen from Freeze-and Oven-Dried Plant Material Added to Soil

    E-Print Network [OSTI]

    Florida, University of

    Mineralization of Carbon and Nitrogen from Freeze- and Oven-Dried Plant Material Added to Soil K. K is a common procedure used in mineralization or decompositionstudies. A lab- oratory study was conducted the mineral content of the plant material compared to freeze drying. The total C and N was not significantly

  8. Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-

    E-Print Network [OSTI]

    Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser- based- strumentation Engineers. DOI: 10.1117/1.2747608 Keywords: breath analysis; nitric oxide; carbon dioxide sampling, NO is measured over time during exhalation. Offline sampling has the advantages of remote

  9. Development of carbon-metal oxide supercapacitors from sol-gel derived carbon-ruthenium xerogels

    SciTech Connect (OSTI)

    Lin, C.; Ritter, J.A.; Popov, B.N.

    1999-09-01

    There has been increasing interest in electrochemical capacitors as energy storage systems because of their high power density and long cycle life, compared to battery devices. According to the mechanism of energy storage, there are two types of electrochemical capacitors. One type is based on double layer (dl) formation due to charge separation, and the other type is based on a faradaic process due to redox reactions. Sol-gel derived high surface area carbon-ruthenium xerogels were prepared from carbonized resorcinol-formaldehyde resins containing an electrochemically active form of ruthenium oxide. The electrochemical capacitance of these materials increased with an increase in the ruthenium content indicating the presence of pseudocapacitance associated with the ruthenium oxide undergoing reversible faradaic redox reactions. A specific capacitance of 256 F/g (single electrode) was obtained from a carbon xerogel containing 14 wt% Ru, which corresponded to more than 50% utilization of the ruthenium. The double layer accounted for 40% of this capacitance. This material was also electrochemically stable, showing no change in a cyclic voltammogram for over 2,000 cycles.

  10. Electrochemical process for the preparation of nitrogen fertilizers

    DOE Patents [OSTI]

    Aulich, Ted R. (Grand Forks, ND); Olson, Edwin S. (Grand Forks, ND); Jiang, Junhua (Grand Forks, ND)

    2012-04-10

    The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia, at low temperature and pressure, preferably at ambient temperature and pressure, utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen or hydrogen equivalent. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be aqueous, non-aqueous, or solid.

  11. Parameters affecting nitrogen oxides in a Coal-Fired Flow Facility system

    SciTech Connect (OSTI)

    Lu, Xiaoliang

    1996-03-01

    The unusually high temperature in the primary combustor of the Coal-Fired Magnetohydrodynamics (MHD) power generation system causes much higher nitrogen oxides (NO{sub x}) to be produced than in a conventional coal fired generation system. In order to lower the NO{sub x} concentration to an acceptable level, it is important to know how parameters of the MM power generation system affect the NO{sub x} concentration. This thesis investigates those effects in the Coal-Fired Flow Facility (CFFF) at the University of Tennessee Space Institute under the contract of US Department Of Energy (DOE). With thermodynamic and kinetic computer codes, the theoretical studies were carried out on the parameters of the CFFF system. The results gathered from the computer codes were analyzed and compared with the experimental data collected during the LMF5J test. The thermodynamic and kinetic codes together modeled the NO.{sub x} behavior with reasonable accuracy while some inconsistencies happened at the secondary combustor inlet.

  12. Nitrogen oxides emission control options for coal-fired electric utility boilers

    SciTech Connect (OSTI)

    Ravi K. Srivastava; Robert E. Hall; Sikander Khan; Kevin Culligan; Bruce W. Lani

    2005-09-01

    Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at 150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/106 Btu. 106 refs., 6 figs., 6 tabs.

  13. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  14. Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 2

    SciTech Connect (OSTI)

    Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

    1993-01-04

    Oxidized oil shale from the combustor in the LLNL Hot-Recycled-Solids (HRS) oil shale retorting process has been found to be a catalyst for removing nitrogen oxides from laboratory gas streams using NH[sub 3] as a reductant. Oxidized Green River oil shale heated at 10[degree]C/min in an Ar/O[sub 2]/NO/NH[sub 3] mixture ([approximately]93%/6%/2000 ppM/4000 ppM) with a gas residence time of [approximately]0.6 sec removed NO between 250 and 500[degree]C, with maximum removal of 70% at [approximately]400[degree]C. Under isothermal conditions with the same gas mixture, the maximum NO removal was [approximately]64%. When CO[sub 2] was added to the gas mixture at [approximately]8%, the NO removal dropped to [approximately]50%. However, increasing the gas residence time to [approximately]1.2 sec, increased NO removal to 63%. Nitrogen balances of these experiments suggest selective catalytic reduction of NO is occurring using NH[sub 3] as the reductant. These results are not based on completely optimized process conditions, but indicate oxidized oil shale is an effective catalyst for NO removal from combustion gas streams using NH[sub 3] as the reductant. Parameters calculated for implementing oxidized oil shale for NO[sub x] remediation on the current HRS retort indicate an abatement device is practical to construct.

  15. Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 2

    SciTech Connect (OSTI)

    Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

    1993-01-04

    Oxidized oil shale from the combustor in the LLNL Hot-Recycled-Solids (HRS) oil shale retorting process has been found to be a catalyst for removing nitrogen oxides from laboratory gas streams using NH{sub 3} as a reductant. Oxidized Green River oil shale heated at 10{degree}C/min in an Ar/O{sub 2}/NO/NH{sub 3} mixture ({approximately}93%/6%/2000 ppM/4000 ppM) with a gas residence time of {approximately}0.6 sec removed NO between 250 and 500{degree}C, with maximum removal of 70% at {approximately}400{degree}C. Under isothermal conditions with the same gas mixture, the maximum NO removal was {approximately}64%. When CO{sub 2} was added to the gas mixture at {approximately}8%, the NO removal dropped to {approximately}50%. However, increasing the gas residence time to {approximately}1.2 sec, increased NO removal to 63%. Nitrogen balances of these experiments suggest selective catalytic reduction of NO is occurring using NH{sub 3} as the reductant. These results are not based on completely optimized process conditions, but indicate oxidized oil shale is an effective catalyst for NO removal from combustion gas streams using NH{sub 3} as the reductant. Parameters calculated for implementing oxidized oil shale for NO{sub x} remediation on the current HRS retort indicate an abatement device is practical to construct.

  16. Nitrogen-doped cuprous oxide as a p-type hole-transporting layer in thin-film solar cells

    E-Print Network [OSTI]

    Nitrogen-doped cuprous oxide as a p-type hole- transporting layer in thin-film solar cells Yun Seog-transparent tunnel junction to a back-contact. We fabricate Cu2O-based heterojunction thin-film solar cells-factor and power conversion efficiency of the solar cells. Cu2O:N thin-films may also be useful in other

  17. Stochastic resonance in surface catalytic oxidation of carbon monoxide Lingfa Yang, Zhonghuai Hou, and Houwen Xina)

    E-Print Network [OSTI]

    Yang, Lingfa

    Stochastic resonance in surface catalytic oxidation of carbon monoxide Lingfa Yang, Zhonghuai Hou: catalytic oxidation on a single sur- face, by analysis of the behavior of a set of ordinary differ- ential help researchers to find SR in this system experimentally. II. REACTION MODEL The catalytic oxidation

  18. Reaction of uranium oxides with chlorine and carbon or carbon monoxide to prepare uranium chlorides

    SciTech Connect (OSTI)

    Haas, P.A.; Lee, D.D.; Mailen, J.C.

    1991-11-01

    The preferred preparation concept of uranium metal for feed to an AVLIS uranium enrichment process requires preparation of uranium tetrachloride (UCI{sub 4}) by reacting uranium oxides (UO{sub 2}/UO{sub 3}) and chlorine (Cl{sub 2}) in a molten chloride salt medium. UO{sub 2} is a very stable metal oxide; thus, the chemical conversion requires both a chlorinating agent and a reducing agent that gives an oxide product which is much more stable than the corresponding chloride. Experimental studies in a quartz reactor of 4-cm ID have demonstrated the practically of some chemical flow sheets. Experimentation has illustrated a sequence of results concerning the chemical flow sheets. Tests with a graphite block at 850{degrees}C demonstrated rapid reactions of Cl{sub 2} and evolution of carbon dioxide (CO{sub 2}) as a product. Use of carbon monoxide (CO) as the reducing agent also gave rapid reactions of Cl{sub 2} and formation of CO{sub 2} at lower temperatures, but the reduction reactions were slower than the chlorinations. Carbon powder in the molten salt melt gave higher rates of reduction and better steady state utilization of Cl{sub 2}. Addition of UO{sub 2} feed while chlorination was in progress greatly improved the operation by avoiding the plugging effects from high UO{sub 2} concentrations and the poor Cl{sub 2} utilizations from low UO{sub 2} concentrations. An UO{sub 3} feed gave undesirable effects while a feed of UO{sub 2}-C spheres was excellent. The UO{sub 2}-C spheres also gave good rates of reaction as a fixed bed without any molten chloride salt. Results with a larger reactor and a bottom condenser for volatilized uranium show collection of condensed uranium chlorides as a loose powder and chlorine utilizations of 95--98% at high feed rates. 14 refs., 7 figs., 14 tabs.

  19. Standard test method for carbon (total) in uranium oxide powders and pellets by direct combustion-infrared detection method

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    Standard test method for carbon (total) in uranium oxide powders and pellets by direct combustion-infrared detection method

  20. Reducing the contribution of the power sector to ground-level ozone pollution : an assessment of time-differentiated pricing of nitrogen oxide emissions

    E-Print Network [OSTI]

    Craig, Michael T. (Michael Timothy)

    2014-01-01

    Nitrogen oxide (NOx) is a prevalent air pollutant across the United States and a requisite precursor for tropospheric (ground-level) ozone formation. Both pollutants significantly impact human health and welfare, so National ...

  1. Implementing a time- and location-differentiated cap-and-trade program : flexible nitrogen oxide abatement from power plants in the eastern United States

    E-Print Network [OSTI]

    Martin, Katherine C

    2007-01-01

    Studies suggest that timing and location of emissions can change the amount of ozone formed from a given amount of nitrogen oxide (NOx) by a factor of five (Mauzerall et al. 2005). Yet existing NOx cap-and-trade programs ...

  2. A cost-effectiveness analysis of alternative ozone control strategies : flexible nitrogen oxide (NOx) abatement from power plants in the eastern United States

    E-Print Network [OSTI]

    Sun, Lin, S.M. Massachusetts Institute of Technology

    2009-01-01

    Ozone formation is a complex, non-linear process that depends on the atmospheric concentrations of its precursors, nitrogen oxide (NOx) and Volatile Organic Compounds (VOC), as well as on temperature and the available ...

  3. Purification of carbon nanotubes by dynamic oxidation in air Nikolay Dementev,a

    E-Print Network [OSTI]

    Borguet, Eric

    ) are nanometre-wide hollow carbon structures with exceptional mechanical and elec- tronic properties.1 such as oxygen, carbon dioxide, water vapor or ozone. A detailed overview of existing purification techniquesPurification of carbon nanotubes by dynamic oxidation in air Nikolay Dementev,a Sebastian Osswald

  4. Transparent and Conductive Carbon Nanotube Multilayer Thin Films Suitable as an Indium Tin Oxide Replacement 

    E-Print Network [OSTI]

    Park, Yong Tae

    2012-07-16

    of several methods for carbon nanotube film fabrication: (a) vacuum filtration, (b) air-spraying, (c) transfer printing, and (d) rod coating (reproduced from [91], [92], [37], and [42], respectively). .................................... 16 2.8 (a...) Graphene oxide structure. (b) Deposition of graphene oxide sheet by dip coating and an SEM image of deposited graphene oxide pieces (reproduced from [172]). (c) Photo reduction lithography approach for fabrication of patterns on (PDDA/Graphene Oxide...

  5. As carbon dioxide rises, food quality will decline without careful nitrogen management

    E-Print Network [OSTI]

    Bloom, Arnold J

    2009-01-01

    exposed to elevated carbon dioxide. Mean of 285 studies (and ambient (365 ppm) carbon dioxide atmospheres, in freeand ambient (366 ppm) carbon dioxide concentrations under

  6. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liang, J.; Qi, X.; Souza, L.; Luo, Y.

    2015-10-20

    Nitrogen (N) cycle has the potential to regulate climate change through its influence on carbon (C) sequestration. Although extensive researches have been done to explore whether or not progressive N limitation (PNL) occurs under CO2 enrichment, a comprehensive assessment of the processes that regulate PNL is still lacking. Here, we quantitatively synthesized the responses of all major processes and pools in terrestrial N cycle with meta-analysis of CO2 experimental data available in the literature. The results showed that CO2 enrichment significantly increased N sequestration in plant and litter pools but not in soil pool. Thus, the basis of PNL occurrencemore »partially exists. However, CO2 enrichment also significantly increased the N influx via biological N fixation, but decreased the N efflux via leaching. In addition, no general diminished CO2 fertilization effect on plant growth over time was observed. Overall, our analyses suggest that the extra N supply by the increased biological N fixation and decreased leaching may potentially alleviate PNL under elevated CO2 conditions. Moreover, our synthesis showed that CO2 enrichment increased soil ammonium (NH4+) but decreased nitrate (NO3-). The different responses of NH4+ and NO3-, and the consequent biological processes, may result in changes in soil microenvironment, community structures and above-belowground interactions, which could potentially affect the terrestrial biogeochemical cycles and the feedback to climate change.« less

  7. Consequences of Considering Carbon/Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle

    E-Print Network [OSTI]

    Sokolov, Andrei P.

    A number of observational studies indicate that carbon sequestration by terrestrial ecosystems in a world with an atmosphere richer in carbon dioxide and a warmer climate depends on the interactions between the carbon and ...

  8. Grassland carbon and nitrogen dynamics: effects of seasonal fire and clipping in a mixed-grass prairie of the southern great plains 

    E-Print Network [OSTI]

    Harris, Wylie Neal

    2006-08-16

    Plant production and soil microbial biomass (SMB) in grassland ecosystems are linked by flows of carbon (C) and nitrogen (N) between the two groups of organisms. In native mixed grasslands of the southern Great Plains, these cycles are strongly...

  9. Metal oxide coating of carbon supports for supercapacitor applications.

    SciTech Connect (OSTI)

    Boyle, Timothy J.; Tribby, Louis, J; Lakeman, Charles D. E.; Han, Sang M.; Lambert, Timothy N.; Fleig, Patrick F.

    2008-07-01

    The global market for wireless sensor networks in 2010 will be valued close to $10 B, or 200 M units. TPL, Inc. is a small Albuquerque based business that has positioned itself to be a leader in providing uninterruptible power supplies in this growing market with projected revenues expected to exceed $26 M in 5 years. This project focused on improving TPL, Inc.'s patent-pending EnerPak{trademark} device which converts small amounts of energy from the environment (e.g., vibrations, light or temperature differences) into electrical energy that can be used to charge small energy storage devices. A critical component of the EnerPak{trademark} is the supercapacitor that handles high power delivery for wireless communications; however, optimization and miniaturization of this critical component is required. This proposal aimed to produce prototype microsupercapacitors through the integration of novel materials and fabrication processes developed at New Mexico Technology Research Collaborative (NMTRC) member institutions. In particular, we focused on developing novel ruthenium oxide nanomaterials and placed them into carbon supports to significantly increase the energy density of the supercapacitor. These improvements were expected to reduce maintenance costs and expand the utility of the TPL, Inc.'s device, enabling New Mexico to become the leader in the growing global wireless power supply market. By dominating this niche, new customers were expected to be attracted to TPL, Inc. yielding new technical opportunities and increased job opportunities for New Mexico.

  10. Composite catalysts supported on modified carbon substrates and methods of making the same

    DOE Patents [OSTI]

    Popov, Branko N. (Columbia, SC); Subramanian, Nalini (Kennesaw, GA); Colon-Mercado, Hector R. (Columbia, SC)

    2009-11-17

    A method of producing a composite carbon catalyst is generally disclosed. The method includes oxidizing a carbon precursor (e.g., carbon black). Optionally, nitrogen functional groups can be added to the oxidized carbon precursor. Then, the oxidized carbon precursor is refluxed with a non-platinum transitional metal precursor in a solution. Finally, the solution is pyrolyzed at a temperature of at least about 500.degree. C.

  11. Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    1997-05-01

    The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    1996-01-01

    The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program`s Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  14. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  15. Carbon nanotube-induced preparation of vanadium oxide nanorods: Application as a catalyst for the partial oxidation of n-butane

    SciTech Connect (OSTI)

    Chen Xiaowei; Zhu Zhenping; Haevecker, Michael; Su Dangsheng . E-mail: dangsheng@fhi-berlin.mpg.de; Schloegl, Robert

    2007-02-15

    A vanadium oxide-carbon nanotube composite was prepared by solution-based hydrolysis of NH{sub 4}VO{sub 3} in the presence of carbon nanotubes. The carbon nanotubes induce the nucleation of the 1D vanadium oxide nanostructures, with the nuclei growing into long freestanding nanorods. The vanadium oxide nanorods with the lengths up to 20 {mu}m and the widths of 5-15 nm exhibit a well-ordered crystalline structure. Catalytic tests show that the composite with nanostructured vanadium oxide is active for the partial oxidation of n-butane to maleic anhydride at 300 deg. C.

  16. Nitrogenated porous carbon electrodes for supercapacitors Betzaida Batalla Garcia Stephanie L. Candelaria

    E-Print Network [OSTI]

    Cao, Guozhong

    . For example, ammonia borane has been added to carbon hydrogels during solvent exchange for hydrogen storage carbon) [1]. Some mecha- nisms that are known to enhance the conductivity and charge storage of carbon

  17. Oxygen Pathways and Carbon Dioxide Utilization in Methane Partial Oxidation in Ambient Temperature

    E-Print Network [OSTI]

    Mallinson, Richard

    Oxygen Pathways and Carbon Dioxide Utilization in Methane Partial Oxidation in Ambient Temperature and lower environmental impacts make this the carbon-based fuel of choice well into the twenty-first century chemicals.1 There is additional need for new technologies which can also allow recovery of the many remote

  18. Oxidation and decarburisation of high-carbon-chromium steel under charcoal protection

    E-Print Network [OSTI]

    Volinsky, Alex A.

    -carbon-chromium bearing steel is often annealed in a sealed pot with a small amount of charcoal without physically for the bearing steel is suggested. Keywords: Annealing, Oxidation, Decarburisation, Charcoal, Non of carbon steels during annealing in air at temperatures between 900 and 1200uC. Gong et al.4 investigated

  19. Carbon contamination and oxidation of Au surfaces under extreme ultraviolet radiation: An x-ray photoelectron spectroscopy study

    E-Print Network [OSTI]

    Harilal, S. S.

    Carbon contamination and oxidation of Au surfaces under extreme ultraviolet radiation: An x 2012) Extreme ultraviolet (EUV) radiation-induced carbon contamination and oxidation of Au surfaces modification during EUV exposure. XPS analysis showed that total carbon contamination (C 1s peak

  20. Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream

    DOE Patents [OSTI]

    Cohen, Mitchell R. (Troy, NY); Gal, Eli (Lititz, PA)

    1993-01-01

    A process and system for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous The government of the United States of America has rights in this invention pursuant to Contract No. DE-AC21-88MC 23174 awarded by the U.S. Department of Energy.

  1. Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream

    DOE Patents [OSTI]

    Cohen, M.R.; Gal, E.

    1993-04-13

    A process and system are described for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous mixture.

  2. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    E-Print Network [OSTI]

    Rheaume, Jonathan Michael

    2010-01-01

    LSCo for Solid Oxide Electrolyzer Anodes”, J. Electrochem.gas sensors. Batteries, electrolyzers, and gas sensors allmake a sensor or an electrolyzer. By reading an open circuit

  3. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems

    SciTech Connect (OSTI)

    Xu, Xiaofeng; Thornton, Peter E; Post, Wilfred M

    2013-01-01

    Soil microbes play a pivotal role in regulating land-atmosphere interactions; the soil microbial biomass carbon (C), nitrogen (N), phosphorus (P) and C:N:P stoichiometry are important regulators for soil biogeochemical processes; however, the current knowledge on magnitude, stoichiometry, storage, and spatial distribution of global soil microbial biomass C, N, and P is limited. In this study, 3087 pairs of data points were retrieved from 281 published papers and further used to summarize the magnitudes and stoichiometries of C, N, and P in soils and soil microbial biomass at global- and biome-levels. Finally, global stock and spatial distribution of microbial biomass C and N in 0-30 cm and 0-100 cm soil profiles were estimated. The results show that C, N, and P in soils and soil microbial biomass vary substantially across biomes; the fractions of soil nutrient C, N, and P in soil microbial biomass are 1.6% in a 95% confidence interval of (1.5%-1.6%), 2.9% in a 95% confidence interval of (2.8%-3.0%), and 4.4% in a 95% confidence interval of (3.9%-5.0%), respectively. The best estimates of C:N:P stoichiometries for soil nutrients and soil microbial biomass are 153:11:1, and 47:6:1, respectively, at global scale, and they vary in a wide range among biomes. Vertical distribution of soil microbial biomass follows the distribution of roots up to 1 m depth. The global stock of soil microbial biomass C and N were estimated to be 15.2 Pg C and 2.3 Pg N in the 0-30 cm soil profiles, and 21.2 Pg C and 3.2 Pg N in the 0-100 cm soil profiles. We did not estimate P in soil microbial biomass due to data shortage and insignificant correlation with soil total P and climate variables. The spatial patterns of soil microbial biomass C and N were consistent with those of soil organic C and total N, i.e. high density in northern high latitude, and low density in low latitudes and southern hemisphere.

  4. Measurement of the Cotton-Mouton effect in nitrogen, oxygen, carbon dioxide, argon, and krypton with the Q & A apparatus

    E-Print Network [OSTI]

    Hsien-Hao Mei; Wei-Tou Ni; Sheng-Jui Chen; Sheau-shi Pan

    2009-02-11

    Experiments for vacuum birefringence and vacuum dichroism have been set up with high-finesse high magnetic experimental apparatuses, which seem to be ideal for small gaseous Cotton-Mouton effect (CME) measurements. PVLAS Collaboration has measured CMEs in krypton, xenon and neon at the wavelength of 1064 nm. In this Letter, we report on our measurement of CMEs in nitrogen, oxygen, carbon dioxide, argon, and krypton at the same wavelength in a magnetic field B = 2.3 T at pressure P = 0.5-300 Torr and temperature T = 295-298 K. Our results agree with the PVLAS results in the common cases.

  5. Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen

    E-Print Network [OSTI]

    Alexander, Becky

    the onset of the Industrial Revolution due to increases in fossil fuel burning emissions [e.g., Lelieveld et-burning events in North America just prior to the Industrial Revolution significantly impacted the oxidation the Industrial Revolution, particularly when using paleo-oxidant data as a reference for model evaluation. INDEX

  6. Reduction of iron-oxide-carbon composites: part I. Estimation of the rate constants

    SciTech Connect (OSTI)

    Halder, S.; Fruehan, R.J. [Praxair Inc., Tonawanda, NY (United States). Technological Center

    2008-12-15

    A new ironmaking concept using iron-oxide-carbon composite pellets has been proposed, which involves the combination of a rotary hearth furnace (RHF) and an iron bath smelter. This part of the research focuses on studying the two primary chemical kinetic steps. Efforts have been made to experimentally measure the kinetics of the carbon gasification by CO{sub 2} and wustite reduction by CO by isolating them from the influence of heat- and mass-transport steps. A combined reaction model was used to interpret the experimental data and determine the rate constants. Results showed that the reduction is likely to be influenced by the chemical kinetics of both carbon oxidation and wustite reduction at the temperatures of interest. Devolatilized wood-charcoal was observed to be a far more reactive form of carbon in comparison to coal-char. Sintering of the iron-oxide at the high temperatures of interest was found to exert a considerable influence on the reactivity of wustite by virtue of altering the internal pore surface area available for the reaction. Sintering was found to be predominant for highly porous oxides and less of an influence on the denser ores. It was found using an indirect measurement technique that the rate constants for wustite reduction were higher for the porous iron-oxide than dense hematite ore at higher temperatures (> 1423 K). Such an indirect mode of measurement was used to minimize the influence of sintering of the porous oxide at these temperatures.

  7. SHORT COMMUNICATION Oxidation processes on conducting carbon additives

    E-Print Network [OSTI]

    Cui, Yi

    window Á Solid electrolyte interphase 1 Introduction Lithium-ion batteries are now used in a wide range of a more stable solid electrolyte interphase (SEI) [13, 14], becomes a challenge. Although the typical different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V

  8. Effects of doping single and double walled carbon nanotubes with nitrogen and boron

    E-Print Network [OSTI]

    Villalpando Paéz, Federico

    2006-01-01

    Controlling the diameter and chirality of carbon nanotubes to fine tune their electronic band gap will no longer be enough to satisfy the growing list of characteristics that future carbon nanotube applications are starting ...

  9. Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 1

    SciTech Connect (OSTI)

    Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

    1992-06-10

    Oxidized oil shale from the combustor in the LLNL hot recycle solids oil shale retorting process has been studied as a catalyst for removing nitrogen oxides from laboratory gas streams using NH{sub 3} as areductant. Combusted Green River oil shale heated at 10{degrees}C/min in an Ar/O{sub 2}/NO/NH{sub 3} mixture ({approximately}93%/6%/2000 ppm/4000 ppm) with a gas residence time of {approximately}0.6 sec exhibited NO removal between 250 and 500{degrees}C, with maximum removal of 70% at {approximately}400{degrees}C. Under isothermal conditions with the same gas mixture, the maximum NO removal was found to be {approximately}64%. When CO{sub 2} was added to the gas mixture at {approximately}8%, the NO removal dropped to {approximately}50%. However, increasing the gas residence time to {approximately}1.2 sec, increased NO removal to 63%. These results are not based on optimized process conditions, but indicate oxidized (combusted) oil shale is an effective catalyst for NO removal from combustion gas streams using NH{sub 3} as the reductant.

  10. Will Monetized Carbon Emission Reductions Buy Enhanced Building Operations? 

    E-Print Network [OSTI]

    Millhone, J.

    2007-01-01

    transportation arteries and thus are capable of measuring impacts from mobile sources as well as stationary sources. Monitoring is performed to measure the criteria pollutants (sulfur dioxide, carbon monoxide, oxides of nitrogen, lead, particulate matter.... Monitoring is performed to measure the criteria pollutants (sulfur dioxide, carbon monoxide, oxides of nitrogen, lead, particulate matter, and ozone) as well as meteorological parameters (wind speed, wind direction, wind direction variance, temperature, net...

  11. On-farm Assessment of Nitrogen Fertilizer application to corn on Nitrous Oxide Emissions

    E-Print Network [OSTI]

    2009-01-01

    mitigation of greenhouse gas emissions by agriculture. Nutr.1998. Nitrous oxide emission in three years as affected by2008. Soil-surface gas emissions. p.851-861. In: M.R. Carter

  12. Exfoliation of Graphite Oxide in Propylene Carbonate and Thermal

    E-Print Network [OSTI]

    as a "green" route to suspensions of RG-O.23 Direct thermal treatment at elevated tem- peratures provides of 5230 S/m. By adding tetraethylammonium tetrafluoroborate (TEA BF4) to the reduced graphene oxide

  13. Graphene Oxide as an Electrophile for Carbon Nucleophiles

    E-Print Network [OSTI]

    Swager, Timothy Manning

    The covalent, surface functionalization of graphene oxide with the malononitrile anion has been demonstrated. Once installed, these surface-bound “molecular lynchpins” can be chemically modified to increase the solubility ...

  14. Investigation of mixed metal sorbent/catalysts for the simultaneous removal of sulfur and nitrogen oxides

    SciTech Connect (OSTI)

    Akyurtlu, A.; Akyurtlu, J.F.

    1999-03-31

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4}-air mixtures.

  15. Impact of nitrogenous fertiliser-induced proton release on cultivated soils with contrasting carbonate contents

    E-Print Network [OSTI]

    Mailhes, Corinne

    carbonate contents: A column experiment Laure Gandois, Anne-Sophie Perrin, Anne Probst Universite´ de in car- bonated soils. Undisturbed soil columns containing different carbonate content were sampled includes leaching of NO3 to surface and ground water and eutrophication (e.g. Seitzinger and Kroeze, 1998

  16. Flow reactor experiments on the selective non-catalytic removal of nitrogen oxides 

    E-Print Network [OSTI]

    Gentemann, Alexander M.G.

    2001-01-01

    also found. Selective non-catalytic removal of nitric oxide using a water/urea solution was performed in a temperature range between 800 and 1300 K. Different combinations of simulated exhaust gas were tested, which contained various fractions of O?...

  17. Cylinder-averaged histories of nitrogen oxide in a D.I. diesel with simulated turbocharging

    SciTech Connect (OSTI)

    Donahue, R.J.; Borman, G.L.; Bower, G.R.

    1994-10-20

    An experimental study was conducted using the dumping technique (total cylinder sampling) to produce cylinder mass-averaged nitric oxide histories. Data were taken using a four stroke diesel research engine employing a quiescent chamber, high pressure direct ijection fuel system, and simulated turbocharging. Two fuels were used to determine fuel cetane number effects. Two loads were run, one at an equivalence ratio of 0.5 and the other at a ratio of 0.3. The engine speed was held constant at 1500 rpm. Under the turbocharged and retarded timing conditions of this study, nitric oxide was produced up to the point of about 85% mass burned. Two different models were used to simulate the engine mn conditions: the phenomenological Hiroyasu spray-combustion model, and the three dimensional, U.W.-ERO modified KIVA-lI computational fluid dynamic code. Both of the models predicted the correct nitric oxide trend. Although the modified KIVA-lI combustion model using Zeldovich kinetics correctly predicted the shapes of the nitric oxide histories, it did not predict the exhaust concentrations without arbitrary adjustment based on experimental values.

  18. Effect of additives on the reduction of nitrogen oxides using cyanuric acid 

    E-Print Network [OSTI]

    Standridge, Brad Lee

    1994-01-01

    The addition of cyanuric acid to hot exhaust flows has been shown in the past to selectively remove much of the nitric oxide (NO) emitted from combustion sources. Known as the RapreNOx process, this approach to pollution control does not require a...

  19. Selective Catalytic Oxidation of Hydrogen Sulfide on Activated Carbons Impregnated with Sodium Hydroxide

    SciTech Connect (OSTI)

    Schwartz, Viviane [ORNL; Baskova, Svetlana [ORNL; Armstrong, Timothy R. [ORNL

    2009-01-01

    Two activated carbons of different origin were impregnated with the solution of sodium hydroxide (NaOH) of various concentrations up to 10 wt %, and the effect of impregnation on the catalytic performance of the carbons was evaluated. The catalytic activity was analyzed in terms of the capacity of carbons for hydrogen sulfide (H2S) conversion and removal from hydrogen-rich fuel streams and the emission times of H2S and the products of its oxidation [e.g., sulfur dioxide (SO2) and carbonyl sulfide (COS)]. The results of impregnation showed a significant improvement in the catalytic activity of both carbons proportional to the amount of NaOH introduced. NaOH introduces hydroxyl groups (OH-) on the surface of the activated carbon that increase its surface reactivity and its interaction with sulfur-containing compounds.

  20. Hierarchical Network Architectures of Carbon Fiber Paper Supported Cobalt Oxide Nanonet for High-Capacity Pseudocapacitors

    E-Print Network [OSTI]

    Wang, Zhong L.

    Hierarchical Network Architectures of Carbon Fiber Paper Supported Cobalt Oxide Nanonet for High as an advantageous architecture for transparent electrodes in optoelectronic devices due primarily to high of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332

  1. Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY)

    1990-01-01

    The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed.

  2. Carbon monoxide oxidation on Rh(111): Velocity and angular distributions of the CO2 product

    E-Print Network [OSTI]

    Sibener, Steven

    Carbon monoxide oxidation on Rh(111): Velocity and angular distributions of the CO2 product J. I of surface temperature and oxygen coverage. Both the velocity and angular distributions are bimodal without first accommodating on the surface, the velocity, angular, and internal state distributions may

  3. PREFERENTIAL OXIDATION OF CARBON MONOXIDE IN A THIN-FILM CATALYTIC MICROREACTOR: ADVANTAGES AND LIMITATIONS

    E-Print Network [OSTI]

    Besser, Ronald S.

    PREFERENTIAL OXIDATION OF CARBON MONOXIDE IN A THIN-FILM CATALYTIC MICROREACTOR: ADVANTAGES stream after hydrocarbon fuel reforming and water-gas-shift reactions. This process, referred to as CO intermediate, which enhances the catalytic activity at temperatures below 200°C. With the same catalyst system

  4. Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1990-05-22

    The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed. 2 figs.

  5. Low-temperature magnetic properties of pelagic carbonates: Oxidation of biogenic magnetite and identification

    E-Print Network [OSTI]

    Utrecht, Universiteit

    -temperature magnetic measurements on biogenic magnetite-bearing sediments from the Southern Ocean (Ocean DrillingLow-temperature magnetic properties of pelagic carbonates: Oxidation of biogenic magnetite cells. We document a range of low-temperature magnetic properties, including reversible humped low

  6. Kinetics of the carbon monoxide oxidation reaction under microwave heating

    SciTech Connect (OSTI)

    Perry, W.L.; Katz, J.D.; Rees, D.; Paffett, M.T. [Los Alamos National Lab., NM (United States); Datye, A. [Univ. of New Mexico, Albuquerque, NM (United States)

    1996-06-01

    915 MHz microwave heating has been used to drive the CO oxidation reaction over Pd/Al{sub 2}O{sub 3} with out significantly affecting the reaction kinetics. As compared to an identical conventionally heated system, the activation energy, pre-exponential factor, and reaction order with respect to CO were unchanged. Temperature was measured using a thermocouple extrapolation technique. Microwave-induced thermal gradients were found to play a significant role in kinetic observations. The authors chose the CO oxidation reaction over a supported metal catalyst because the reaction kinetics are well known, and because of the diverse dielectric properties of the various elements in the system: CO is a polar molecule, O{sub 2} and CO{sub 2} are non-polar, Al{sub 2}O{sub 3} is a dielectric, and Pt and Pd are conductors.

  7. Molten carbonate fuel cell cathode with mixed oxide coating

    SciTech Connect (OSTI)

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  8. Predicting residential indoor concentrations of nitrogen dioxide, fine particulate matter, and elemental carbon using questionnaire and geographic information system based data

    E-Print Network [OSTI]

    Paciorek, Chris

    1 2 3 4 5 6 7 8 9 Predicting residential indoor concentrations of nitrogen dioxide, fine particulate matter, and elemental carbon using questionnaire and geographic information system based data Lisa Longwood Ave., Boston, MA 02115, USA Abstract Previous studies have identified associations between traffic

  9. CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forestinput from fine roots in a deciduous forest

    E-Print Network [OSTI]

    Post, Wilfred M.

    CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forestinput from fine roots in a deciduous forest · We assessed the effect of elevated [CO2] Contact: Richard J. Norby Research We assessed the effect of elevated [CO2] on production and mortality of short-lived fine

  10. INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES

    SciTech Connect (OSTI)

    Ates Akyurtlu; Jale F. Akyurtle

    2001-08-01

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}.

  11. Electro-catalytic oxidation device for removing carbon from a fuel reformate

    DOE Patents [OSTI]

    Liu, Di-Jia (Naperville, IL)

    2010-02-23

    An electro-catalytic oxidation device (ECOD) for the removal of contaminates, preferably carbonaceous materials, from an influent comprising an ECOD anode, an ECOD cathode, and an ECOD electrolyte. The ECOD anode is at a temperature whereby the contaminate collects on the surface of the ECOD anode as a buildup. The ECOD anode is electrically connected to the ECOD cathode, which consumes the buildup producing electricity and carbon dioxide. The ECOD anode is porous and chemically active to the electro-catalytic oxidation of the contaminate. The ECOD cathode is exposed to oxygen, and made of a material which promotes the electro-chemical reduction of oxygen to oxidized ions. The ECOD electrolyte is non-permeable to gas, electrically insulating and a conductor to oxidized. The ECOD anode is connected to the fuel reformer and the fuel cell. The ECOD electrolyte is between and in ionic contact with the ECOD anode and the ECOD cathode.

  12. Preparation and electrochemical properties of multiwalled carbon nanotubes-nickel oxide porous composite for supercapacitors

    SciTech Connect (OSTI)

    Zheng Yanzhen; Zhang Milin . E-mail: dhyzyz@yahoo.com.cn; Gao Peng

    2007-09-04

    Porous nickel oxide/multiwalled carbon nanotubes (NiO/MWNTs) composite material was synthesized using sodium dodecyl phenyl sulfate as a soft template and urea as hydrolysis-controlling agent. Scanning electron microscopy (SEM) results show that the as-prepared nickel oxide nanoflakes aggregate to form a submicron ball shape with a porous structure, and the MWNTs with entangled and cross-linked morphology are well dispersed in the porous nickel oxide. The composite shows an excellent cycle performance at a high current of 2 A g{sup -1} and keeps a capacitance retention of about 89% over 200 charge/discharge cycles. A specific capacitance approximate to 206 F g{sup -1} has been achieved with NiO/MWNTs (10 wt.%) in 2 M KOH electrolyte. The electrical conductivity and the active sites for redox reaction of nickel oxide are significantly improved due to the connection of nickel nanoflakes by the long entangled MWNTs.

  13. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    DOE Patents [OSTI]

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  14. Treatment of activated carbon to enhance catalytic activity for reduction of nitric oxide with ammonia

    SciTech Connect (OSTI)

    Ku, B.J.; Rhee, H.K. (Seoul National Univ. (Korea, Republic of). Dept. of Chemical Engineering); Lee, J.K.; Park, D. (Korea Inst. of Science and Technology, Seoul (Korea, Republic of))

    1994-11-01

    Catalytic activity of activated carbon treated with various techniques was examined in a fixed bed reactor for the reduction of nitric oxide with ammonia at 150 C. Activated carbon derived from coconut shell impregnated with an aqueous solution of ammonium sulfate, further treated with sulfuric acid, dried at 120 C, and then heated in an inert gas stream at 400 C, showed the highest catalytic activity within the range of experimental conditions. The enhancement of catalytic activity of modified activated carbon could be attributed to the increase in the amount of oxygen function groups which increased the adsorption site for ammonia. Catalytic activity of activated carbons depended on the surface area and the oxygen content as well.

  15. Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions

    E-Print Network [OSTI]

    Millstein, Dev

    2009-01-01

    E. , (2000). Spectral analysis of air pollutants. Part 1:time series and analyses of air quality model outputs will

  16. Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions

    E-Print Network [OSTI]

    Millstein, Dev

    2009-01-01

    3 Community Multiscale Air Quality (CMAQ) model aerosoland its role in regional air quality. Science, 311, 67-70.aerosol in Fresno, CA. J. Air Waste Manage. Assoc. , 56,

  17. Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions

    E-Print Network [OSTI]

    Millstein, Dev

    2009-01-01

    894-895. Harley, R. A. , Marr, L. C. , Lehner, J. K. , andAssoc. , 50, 1236-1250. Marr, L. C. , and Harley, R. A. , (Environ. , 36, 2327-2335. Marr, L. C. , and Harley, R.

  18. Method and apparatus for detecting the presence and thickness of carbon and oxide layers on EUV reflective surfaces

    DOE Patents [OSTI]

    Malinowski, Michael E.

    2005-01-25

    The characteristics of radiation that is reflected from carbon deposits and oxidation formations on highly reflective surfaces such as Mo/Si mirrors can be quantified and employed to detect and measure the presence of such impurities on optics. Specifically, it has been shown that carbon deposits on a Mo/Si multilayer mirror decreases the intensity of reflected HeNe laser (632.8 nm) light. In contrast, oxide layers formed on the mirror should cause an increase in HeNe power reflection. Both static measurements and real-time monitoring of carbon and oxide surface impurities on optical elements in lithography tools should be achievable.

  19. MINIMIZING NET CARBON DIOXIDE EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL/BIOMASS BLENDS

    SciTech Connect (OSTI)

    Robert Hurt; Todd Lang

    2001-06-25

    Solid fuels vary significantly with respect to the amount of CO{sub 2} directly produced per unit heating value. Elemental carbon is notably worse than other solid fuels in this regard, and since carbon (char) is an intermediate product of the combustion of almost all solid fuels, there is an opportunity to reduce specific CO{sub 2} emissions by reconfiguring processes to avoid char combustion wholly or in part. The primary goal of this one-year Innovative Concepts project is to make a fundamental thermodynamic assessment of three modes of solid fuel use: (1) combustion, (2) carbonization, and (3) oxidative pyrolysis, for a wide range of coal and alternative solid fuels. This period a large set of thermodynamic calculations were carried out to assess the potential of the three processes. The results show that the net carbon dioxide emissions and the relative ranking of the different processes depends greatly on the particular baseline fossil fuel being displaced by the new technology. As an example, in a baseline natural gas environment, it is thermodynamically more advantageous to carbonize biomass than to combust it, and even more advantageous to oxidatively pyrolyze the biomass.

  20. Electrical transport characteristics of DNA wrapped carbon nanotubes contacted to palladium and palladium oxide electrodes.

    SciTech Connect (OSTI)

    Dentinger, Paul M.; Leonard, Francois; Jones, Frank Eugene; Talin, Albert Alec

    2005-03-01

    DNA-wrapped carbon nanotubes (DNA-CNT) have generated attention due the ability to disperse cleanly into solution, and by the possibility of sorting nanotubes according to size and conductivity. In order to learn more about the effects of DNA on the electrical transport characteristics of single wall carbon nanotubes, we fabricate and test a series of devices consisting of DNA-wrapped CNTs placed across gold, palladium, and palladium oxide electrodes. In addition, we look at how DNA functionalized CNTs react to presence of hydrogen, which has previously been shown to affect the conductivity of CNTs when in contact with palladium.

  1. Catalytic Templating Approaches for Three-Dimensional Hollow Carbon/Graphene Oxide Nano-Architectures

    SciTech Connect (OSTI)

    Moon, Gun-Hee; Shin, Yongsoon; Choi, Daiwon; Arey, Bruce W.; Exarhos, Gregory J.; Wang, Chong M.; Choi, Wonyong; Liu, Jun

    2013-01-01

    We report a catalytic templating method to synthesize well-controlled, three-dimensional (3D) nano-architectures with graphene oxide sheets. The 3D composites are prepared via self-assembly of carbon, GO, and spherical alumina-coated silica (ACS) templates during a catalytic reaction porcess. By changing the GO content, we can systematically tune the architecture from layered composites to 3D hollow structures to microporous materials. The composites show a synergistic effect with significantly superior properties than either pure carbon or r-GO prepared with a significant enhancement to its capacitance at high current density.

  2. A Ni-Fe Layered Double Hydroxide-Carbon Nanotube Complex for Water Oxidation

    E-Print Network [OSTI]

    Gong, Ming; Wang, Hailiang; Liang, Yongye; Wu, Justin Zachary; Zhou, Jigang; Wang, Jian; Regier, Tom; Wei, Fei; Dai, Hongjie

    2013-01-01

    Highly active, durable and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions including water splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel iron layered double hydroxide nanoplates on mildly oxidized multi-walled carbon nanotubes. Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-layered double hydroxide. The nanoplates were covalently attached to a network of nanotubes, affording excellent electrical wiring to the nanoplates. The ultra-thin Ni-Fe layered double hydroxide nanoplates/carbon nanotube complex was found to exhibit unusually high electro-catalytic activity and stability for oxygen evolution and outperformed commercial precious metal Ir catalysts.

  3. Oxidation of activated carbon fibers: Effect on pore size, surface chemistry, and adsorption properties

    SciTech Connect (OSTI)

    Mangun, C.L.; Benak, K.R.; Daley, M.A.; Economy, J.

    1999-12-01

    Activated carbon fibers (ACFs) were oxidized using both aqueous and nonaqueous treatments. As much as 29 wt% oxygen can be incorporated onto the pore surface in the form of phenolic hydroxyl, quinine, and carboxylic acid groups. The effect of oxidation on the pore size, pore volume, and the pore surface chemistry was thoroughly examined. The average micropore size is typically affected very little by aqueous oxidation while the micropore volume and surface area decreases with such a treatment. In contrast, the micropore size and micropore volume both increase with oxidation in air. Oxidation of the fibers produces surface chemistries in the pore that provide for enhanced adsorption of basic (ammonia) and polar (acetone) molecules at ambient and nonambient temperatures. The adsorption capacity of the oxidized fibers for acetone is modestly better than the untreated ACFs while the adsorption capacity for ammonia can increase up to 30 times compared to untreated ACFs. The pore surface chemical makeup was analyzed using elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and X-ray photoelectron spectroscopy (XPS).

  4. Photochemical Oxidation of Dissolved Elemental Mercury by Carbonate Radicals in Water

    SciTech Connect (OSTI)

    He, Feng; Zhao, Wenrong; Liang, Liyuan; Gu, Baohua

    2014-01-01

    Photochemical oxidation of dissolved elemental mercury [Hg(0)] affects mercury chemical speciation and its transfer at the water-air interface in the aquatic environment. The mechanisms and factors that control Hg(0) photooxidation, however, are not completely understood, especially in natural freshwaters containing dissolved organic matter (DOM) and carbonate. Here, we evaluate Hg(0) photooxidation rates affected by various reactive ionic species [e.g., DOM, HCO3-, NO3-] and free radicals in a creek water and a phosphate buffer solution (pH=8) under simulated solar irradiation. We report a high Hg(0) photooxidation rate (k = 1.44 h-1) in the presence of both HCO3- and NO3-, whereas HCO3-, NO3-, or DOM alone increased the oxidation rate slightly (k = 0.1 0.17 h-1). Using scavengers and enhancers for singlet oxygen (1O2) and hydroxyl (HO ) radicals, as well as electron paramagnetic resonance spectroscopy, we identify that carbonate radicals (CO3 -) primarily drive the Hg(0) photooxidation, whereas addition of DOM resulted in a 2-fold decrease in Hg(0) oxidation. This study identifies an unrecognized pathway of Hg(0) photooxidation by CO3 - radicals and the inhibitory effect of DOM, which could be important in assessing Hg transformation and fate in water containing carbonate such as hard water and seawater.

  5. First Principles Prediction of Nitrogen-doped Carbon Nanotubes as a High-Performance Cathode for Li-S Batteries

    SciTech Connect (OSTI)

    Wang, Zhiguo; Niu, Xinyue; Xiao, Jie; Wang, Chong M.; Liu, Jun; Gao, Fei

    2013-07-16

    The insulating nature of sulfur and the solubility of the polysulfide in organic electrolyte are two main factors that limit the application of lithium sulfur (Li-S) battery systems. Enhancement of Li conductivity, identification of a strong adsorption agent of polysulfides and the improvement of the whole sulfur-based electrode are of great technological importance. The diffusion of Li atoms on the outer-wall, inner-wall and inter-wall spaces in nitrogen-doped double-walled carbon nanotubes (CNTs) and penetrations of Li and S atoms through the walls are studied using density functional theory. We find that N-doping does not alternate the diffusion behaviors of Li atoms throughout the CNTs, but the energy barrier for Li atoms to penetrate the wall is greatly decreased by N-doping (from ~9.0 eV to ~ 1.0 eV). On the other hand, the energy barrier for S atoms to penetrate the wall remains very high, which is caused by the formation of the chemical bonds between the S and nearby N atoms. The results indicate that Li atoms are able to diffuse freely, whereas S atoms can be encapsulated inside the N-doped CNTs, suggesting that the N-doped CNTs can be potentially used in high performance Li-S batteries.

  6. Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, nitrogen, and ammonia in contact with tank 241-SY-101 simulated waste

    SciTech Connect (OSTI)

    Bryan, S.A.; Pederson, L.R.

    1996-02-01

    Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. Described in this report are the results of tests to evaluate the rates of thermal and combined thermal and radiolytic reactions involving flammable gases in the presence of Tank 241-SY-101 simulated waste. Flammable gases generated by the radiolysis of water and by the thermal and radiolytic decomposition of organic waste constituents may themselves participate in further reactions. Examples include the decomposition of nitrous oxide to yield nitrogen and oxygen, the reaction of nitrous oxide and hydrogen to produce nitrogen and water, and the reaction of nitrogen and hydrogen to produce ammonia. The composition of the gases trapped in bubbles in the wastes might therefore change continuously as a function of the time that the gas bubbles are retained.

  7. BIOGEOCHEMISTRY LETTERS Chronic nitrogen additions suppress decomposition

    E-Print Network [OSTI]

    Templer, Pamela

    BIOGEOCHEMISTRY LETTERS Chronic nitrogen additions suppress decomposition and sequester soil carbon dioxide emis- sions, offsetting a substantial portion of greenhouse gas forcing of the climate system. Although a number of factors are responsible for this terrestrial carbon sink, atmospheric nitrogen

  8. Reduction of iron-oxide-carbon composites: part III. Shrinkage of composite pellets during reduction

    SciTech Connect (OSTI)

    Halder, S.; Fruehan, R.J. [Praxair Inc., Tonawanda, NY (United States). Praxair Technological Center

    2008-12-15

    This article involves the evaluation of the volume change of iron-oxide-carbon composite pellets and its implications on reduction kinetics under conditions prevalent in a rotary hearth furnace (RHF) that were simulated in the laboratory. The pellets, in general, were found to shrink considerably during the reduction due to the loss of carbon and oxygen from the system, sintering of the iron-oxide, and formation of a molten slag phase at localized regions inside the pellets due to the presence of binder and coal/wood-charcoal ash at the reduction temperatures. One of the shortcomings of the RHF ironmaking process has been the inability to use multiple layers of composite pellets because of the impediment in heat transport to the lower layers of a multilayer bed. However, pellet shrinkage was found to have a strong effect on the reduction kinetics by virtue of enhancing the external heat transport to the lower layers. The volume change of the different kinds of composite pellets was studied as a function of reduction temperature and time. The estimation of the change in the amount of external heat transport with varying pellet sizes for a particular layer of a multilayer bed was obtained by conducting heat-transfer tests using inert low-carbon steel spheres. It was found that if the pellets of the top layer of the bed shrink by 30 pct, the external heat transfer to the second layer increases by nearly 6 times.

  9. Emissions of nitrogen oxides from US urban areas: estimation from Ozone Monitoring Instrument retrievals for 2005-2014

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Z.; Streets, D. G.; de Foy, B.; Lamsal, L. N.; Duncan, B. N.; Xing, J.

    2015-05-28

    Satellite remote sensing of tropospheric nitrogen dioxide (NO2) can provide valuable information for estimating surface nitrogen oxides (NOx) emissions. Using an exponentially-modified Gaussian (EMG) method and taking into account the effect of wind on observed NO2 distributions, we estimate three-year moving-average emissions of summertime NOx from 35 US urban areas directly from NO2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following the conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NOx emissions from each urban area by applying the EMG method to OMI data with windmore »speeds greater than 3–5 m s-1. Meanwhile, we find that OMI NO2 observations under weak-wind conditions (i.e., -1) are qualitatively better correlated with the surface NOx source strength in comparison to all-wind OMI maps; and therefore we use them to calculate the satellite-observed NO2 burdens of urban areas and compare with NOx emission estimates. The EMG results show that OMI-derived NOx emissions are highly correlated (R > 0.93) with weak-wind OMI NO2 burdens as well as bottom-up NOx emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous, EMG-obtained, effective NO2 lifetimes (~3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO2 chemical lifetimes. In general, isolated urban areas with NOx emission intensities greater than ~ 2 Mg h-1 produce statistically significant weak-wind signals in three-year average OMI data. From 2005 to 2014, we estimate that total OMI-derived NOx emissions over all selected US urban areas decreased by 49%, consistent with reductions of 43, 47, 49, and 44% in the total bottom-up NOx emissions, the sum of weak-wind OMI NO2 columns, the total weak-wind OMI NO2 burdens, and the averaged NO2 concentrations, respectively, reflecting the success of NOx control programs for both mobile sources and power plants. The decrease rates of these NOx-related quantities are found to be faster (i.e., -6.8 to -9.3% yr-1) before 2010 and slower (i.e., -3.4 to -4.9% yr-1) after 2010. For individual urban areas, we calculate the R values of pair-wise trends among the OMI-derived and bottom-up NOx emissions, the weak-wind OMI NO2 burdens, and ground-based NO2 measurements; and high correlations are found for all urban areas (median R = 0.8), particularly large ones (R up to 0.97). The results of the current work indicate that using the EMG method and considering the wind effect, the OMI data allow for the estimation of NOx emissions from urban areas and the direct constraint of emission trends with reasonable accuracy.« less

  10. THE NITROGEN OXIDES CONTROVERSY

    E-Print Network [OSTI]

    Johnston, Harold S.

    2012-01-01

    OZONE-COLUMN REDUCTION FOR STA DA D NOx INPUT BY LIVERMOREof NOx perturbation, one could calculate ozone reductionscalculates a reduction of the ozone column by NOx injections

  11. Electrochemical investigation of polyhalide ion oxidation-reduction on carbon nanotube electrodes for redox flow batteries

    SciTech Connect (OSTI)

    Shao, Yuyan; Engelhard, Mark H.; Lin, Yuehe

    2009-10-01

    Polyhalide ions (Br-/BrCl2-) are an important redox couple for redox flow batteries. The oxidation-reduction behavior of polyhalide ions on a carbon nanotube (CNT) electrode has been investigated with cyclic voltammetry and electrochemical impedance spectroscopy. The onset oxidation potential of Br-/BrCl2- is negatively shifted by >100 mV, and the redox current peaks are greatly enhanced on a CNT electrode compared with that on the most widely-used graphite electrode. The reaction resistance of the redox couple (Br-/BrCl2-) is decreased on a CNT electrode. The redox reversibility is increased on a CNT electrode even though it still needs further improvement. CNT is a promising electrode material for redox flow batteries.

  12. Abatement of Air Pollution: The Clean Air Interstate Rule (CAIR) Nitrogen Oxides (Nox) Ozone Season Trading Program (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations may apply to fossil-fuel fired emission units, and describe nitrogen emission allocations that owners of such units must meet. The regulations also contain provisions for...

  13. Behavior of the Ru-bda water oxidation catalyst covalently anchored on glassy carbon electrodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Matheu, Roc; Francàs, Laia; Chernev, Petko; Ertem, Mehmed Z.; Batista, Victor; Haumann, Michael; Sala, Xavier; Llobet, Antoni

    2015-05-07

    Electrochemical reduction of the dizaonium complex, [RuII(bda)(NO)(N–N2)2]3+, 23+ (N–N22+ is 4-(pyridin-4-yl) benzenediazonium and bda2– is [2,2'-bipyridine]-6,6'-dicarboxylate), in acetone produces the covalent grafting of this molecular complex onto glassy carbon (GC) electrodes. Multiple cycling voltammetric experiments on the GC electrode generates hybrid materials labeled as GC-4, with the corresponding Ru-aqua complex anchored on the graphite surface. GC-4 has been characterized at pH = 7.0 by electrochemical techniques and X-ray absorption spectroscopy (XAS) and has been shown to act as an active catalyst for the oxidation of water to dioxygen. This new hybrid material has a lower catalytic performance than its counterpartmore »in homogeneous phase and progressively decomposes to form RuO2 at the electrode surface. The resulting metal oxide attached at the GC electrode surface, GC-RuO2, is a very fast and rugged heterogeneous water oxidation catalyst with TOFis of 300 s–1 and TONs >45000. The observed performance is comparable to the best electrocatalysts reported so far, at neutral pH.« less

  14. Emissions of nitrogen oxides from US urban areas: estimation from Ozone Monitoring Instrument retrievals for 2005-2014

    SciTech Connect (OSTI)

    Lu, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Streets, D. G. [Argonne National Lab. (ANL), Argonne, IL (United States); de Foy, B. [Saint Louis Univ., St. Louis, MO (United States)] (ORCID:0000000341509922); Lamsal, L. N. [Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, MD (United States); NASA Goddard Space Flight Center, Greenbelt, MD (United States); Duncan, B. N. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Xing, J. [US Environmental Protection Agency, Research Triangle Park, NC (United States)

    2015-01-01

    Satellite remote sensing of tropospheric nitrogen dioxide (NO2) can provide valuable information for estimating surface nitrogen oxides (NOx) emissions. Using an exponentially-modified Gaussian (EMG) method and taking into account the effect of wind on observed NO2 distributions, we estimate three-year moving-average emissions of summertime NOx from 35 US urban areas directly from NO2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following the conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NOx emissions from each urban area by applying the EMG method to OMI data with wind speeds greater than 3–5 m s-1. Meanwhile, we find that OMI NO2 observations under weak-wind conditions (i.e., < 3 m s-1) are qualitatively better correlated with the surface NOx source strength in comparison to all-wind OMI maps; and therefore we use them to calculate the satellite-observed NO2 burdens of urban areas and compare with NOx emission estimates. The EMG results show that OMI-derived NOx emissions are highly correlated (R > 0.93) with weak-wind OMI NO2 burdens as well as bottom-up NOx emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous, EMG-obtained, effective NO2 lifetimes (~3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO2 chemical lifetimes. In general, isolated urban areas with NOx emission intensities greater than ~ 2 Mg h-1 produce statistically significant weak-wind signals in three-year average OMI data. From 2005 to 2014, we estimate that total OMI-derived NOx emissions over all selected US urban areas decreased by 49%, consistent with reductions of 43, 47, 49, and 44% in the total bottom-up NOx emissions, the sum of weak-wind OMI NO2 columns, the total weak-wind OMI NO2 burdens, and the averaged NO2 concentrations, respectively, reflecting the success of NOx control programs for both mobile sources and power plants. The decrease rates of these NOx-related quantities are found to be faster (i.e., -6.8 to -9.3% yr-1) before 2010 and slower (i.e., -3.4 to -4.9% yr-1) after 2010. For individual urban areas, we calculate the R values of pair-wise trends among the OMI-derived and bottom-up NOx emissions, the weak-wind OMI NO2 burdens, and ground-based NO2 measurements; and high correlations are found for all urban areas (median R = 0.8), particularly large ones (R up to 0.97). The results of the current work indicate that using the EMG method and considering the wind effect, the OMI data allow for the estimation of NOx emissions from urban areas and the direct constraint of emission trends with reasonable accuracy.

  15. Final Report: The Impact of Carbonate on Surface Protonation, Electron Transfer and Crystallization Reactions in Iron Oxide Nanoparticles and Colloids

    SciTech Connect (OSTI)

    Dixon, David Adams [The University of Alabama

    2013-07-02

    This project addresses key issues of importance in the geochemical behavior of iron oxides and in the geochemical cycling of carbon and iron. For Fe, we are specifically studying the influence of carbonate on electron transfer reactions, solid phase transformations, and the binding of carbonate to reactive sites on the edges of particles. The emphasis on carbonate arises because it is widely present in the natural environment, is known to bind strongly to oxide surfaces, is reactive on the time scales of interest, and has a speciation driven by acid-base reactions. The geochemical behavior of carbonate strongly influences global climate change and CO{sub 2} sequestration technologies. Our goal is to answer key questions with regards to specific site binding, electron transfer reactions, and crystallization reactions of iron oxides that impact both the geochemical cycling of iron and CO{sub 2} species. Our work is focused on the molecular level description of carbonate chemistry in solution including the prediction of isotope fractionation factors. We have also done work on critical atmospheric species.

  16. Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination

    SciTech Connect (OSTI)

    Gallegos, María V.; Falco, Lorena R.; Peluso, Miguel A.; Sambeth, Jorge E.; Thomas, Horacio J.

    2013-06-15

    Highlights: • Manganese oxides were synthesized using spent batteries as raw materials. • Spent alkaline and zinc–carbon size AA batteries were used. • A biohydrometallurgical process was employed to bio-lixiviate batteries. • Manganese oxides were active in the oxidation of VOCs (ethanol and heptane). - Abstract: Manganese, in the form of oxide, was recovered from spent alkaline and zinc–carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO{sub 4} solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnO{sub x} synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn{sub 2}O{sub 3} in the EMO and the CMO samples, together with some Mn{sup 4+} cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn{sub 3}O{sub 4}. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200 °C, while heptane requires more than 400 °C. The CMO has the highest oxide selectivity to CO{sub 2}. The results show that manganese oxides obtained using spent alkaline and zinc–carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

  17. Catalytic Reduction of Nitrogen Oxides by Methane over Pd(110) S. M. Vesecky, J. Paul, and D. W. Goodman*

    E-Print Network [OSTI]

    Goodman, Wayne

    the reduction of NOx species and the oxidation of CO and volatile organic compounds (VOC's) produced in mobile involves the selective catalytic reduction (SCR) or NOx with NH3 4 Although this process is efficient concern. If too much methane is oxidized to CO2, the efficiency of the NOx reduction process will suffer

  18. Response of fine particulate matter to emission changes of oxides of nitrogen and anthropogenic volatile organic compounds in the eastern United States

    SciTech Connect (OSTI)

    Alexandra P. Tsimpidi; Vlassis A. Karydis; Spyros N. Pandis

    2008-11-15

    A three-dimensional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions) is used to investigate changes in fine particle (PM2.5) concentrations in response to 50% emissions changes of oxides of nitrogen (NOx) and anthropogenic volatile organic compounds (VOCs) during July 2001 and January 2002 in the eastern United States. The reduction of NOx emissions by 50% during the summer results in lower average oxidant levels and lowers PM2.5 (8% on average), mainly because of reductions of sulfate (9-11%), nitrate (45-58%), and ammonium (7-11%). The organic particulate matter (PM) slightly decreases in rural areas, whereas it increases in cities by a few percent when NOx is reduced. Reduction of NOx during winter causes an increase of the oxidant levels and a rather complicated response of the PM components, leading to small net changes. Sulfate increases (8-17%), nitrate decreases (18-42%), organic PM slightly increases, and ammonium either increases or decreases a little. The reduction of VOC emissions during the summer causes on average a small increase of the oxidant levels and a marginal increase in PM2.5. This small net change is due to increases in the inorganic components and decreases of the organic ones. Reduction of VOC emissions during winter results in a decrease of the oxidant levels and a 5-10% reduction of PM2.5 because of reductions in nitrate (4-19%), ammonium (4-10%), organic PM (12-14%), and small reductions in sulfate. Although sulfur dioxide (SO{sub 2}) reduction is the single most effective approach for sulfate control, the coupled decrease of SO{sub 2} and NOx emissions in both seasons is more effective in reducing total PM2.5 mass than the SO{sub 2} reduction alone. 34 refs., 7 figs., 1 tab.

  19. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, Wei; Bommier, Clement; Jian, Zelang; Li, Xin; Carter, Rich; Vail, Sean; Lu, Yuhao; Lee, Jong -Jan; Ji, Xiulei

    2015-02-04

    Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In this study, we discover that doping graphene oxide into sucrose, the precursor for hard carbon, can effectively reduce the specific surface area of hard carbon to as low as 5.4 m²/g. We further reveal that such doping can effectively prevent foaming during caramelization of sucrose and extend the pyrolysis burn-offmore »of sucrose caramel over a wider temperature range. Thus, the obtained low-surface-area hard carbon greatly improves the first-cycle Coulombic efficiency from 74% to 83% and delivers a very stable cyclic life with 95% of capacity retention after 200 cycles.« less

  20. Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate

    DOE Patents [OSTI]

    Liu, David K. (San Pablo, CA); Chang, Shih-Ger (El Cerrito, CA)

    1989-01-01

    A method of removing nitrogen monoxide from a nitrogen monoxide-containing gas, which method comprises: (a) contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate of the formula: ##STR1## wherein the water-soluble organic compound is selected from compounds of the formula: ##STR2## wherein: R is selected from hydrogen or an organic moiety having at least one polar functional group; Z is selected from oxygen, sulfur, or --N--A wherein N is nitrogen and A is hydrogen or lower alkyl having from one to four carbon atoms; and M is selected from hydrogen, sodium or potassium; and n is 1 or 2, in a contacting zone for a time and at a temperature effective to reduce the nitrogen monoxide. These mixtures are useful to provide an unexpensive method of removing NO from gases, thus reducing atmospheric pollution from flue gases.

  1. Nitrogen spark denoxer

    DOE Patents [OSTI]

    Ng, Henry K. (Naperville, IL); Novick, Vincent J. (Downers Grove, IL); Sekar, Ramanujam R. (Naperville, IL)

    1997-01-01

    A NO.sub.X control system for an internal combustion engine includes an oxygen enrichment device that produces oxygen and nitrogen enriched air. The nitrogen enriched air contains molecular nitrogen that is provided to a spark plug that is mounted in an exhaust outlet of an internal combustion engine. As the nitrogen enriched air is expelled at the spark gap of the spark plug, the nitrogen enriched air is exposed to a pulsating spark that is generated across the spark gap of the spark plug. The spark gap is elongated so that a sufficient amount of atomic nitrogen is produced and is injected into the exhaust of the internal combustion engine. The injection of the atomic nitrogen into the exhaust of the internal combustion engine causes the oxides of nitrogen to be reduced into nitrogen and oxygen such that the emissions from the engine will have acceptable levels of NO.sub.X. The oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

  2. Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices

    SciTech Connect (OSTI)

    Zanin, H.; Saito, E.; Ceragioli, H.J.; Baranauskas, V.; Corat, E.J.

    2014-01-01

    Graphical abstract: - Highlights: • Graphene nanosheets were produced onto wire rods. • RGO and VACNT-O were evaluated and compared as supercapacitor electrode. • RGO and VACNT-O have structural and electrochemical properties quite similars. • The materials present good specific capacitance, energy storage and power delivery. - Abstract: Reduced graphene oxide (RGO) and vertically aligned carbon nanotubes (VACNT) superhydrophilic films were prepared by chemical vapor deposition techniques for electrical energy storage investigations. These electrodes were characterized in terms of their material and electrochemical properties by scanning electron microscopy (SEM), surface wettability, Fourier transform infrared spectroscopy (FTIR), energy dispersive and Raman spectroscopies, cyclic voltammetry (CV) and galvanostatic charge–discharge. We observed several physical structural and electrochemical similarities between these carbon-based materials with particular attention to very good specific capacitance, ultra-high energy storage and fast power delivery. Our results showed that the main difference between specific capacitance values is attributed to pseudocapacitive contribution and high density of multiwall nanotubes tips. In this work we have tested a supercapacitor device using the VACNT electrodes.

  3. Carbon dioxide fixation by Metallosphaera yellowstonensis and acidothermophilic iron-oxidizing microbial communities from Yellowstone National Park

    SciTech Connect (OSTI)

    Jennings, Ryan; Whitmore, Laura M.; Moran, James J.; Kreuzer, Helen W.; Inskeep, William P.

    2014-05-01

    The fixation of inorganic carbon (as carbon dioxide) has been documented in all three domains of life and results in the biosynthesis of a diverse suite of organic compounds that support the growth of heterotrophic organisms. The primary aim of this study was to assess the importance of carbon dioxide fixation in high-temperature Fe(III)-oxide mat communities and in pure cultures of one of the dominant Fe(II)-oxidizing organisms (Metallosphaera yellowstonensis strain MK1) present in situ. Protein-encoding genes of the complete 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) carbon fixation pathway were identified in pure-cultures of M. yellowstonensis strain MK1. Metagenome sequencing from the same environments also revealed genes for the 3-HP/4-HB pathway belonging to M. yellowstonensis populations, as well as genes for a complete reductive TCA cycle from Hydrogenobaculum spp. (Aquificales). Stable isotope (13CO2) labeling was used to measure the fixation of CO2 by M. yellowstonensis strain MK1, and in ex situ assays containing live Fe(III)-oxide microbial mats. Results showed that M. yellowstonensis strain MK1 fixes CO2 via the 3-HP/4-HB pathway with a fractionation factor of ~ 2.5 ‰. Direct analysis of the 13C composition of dissolved inorganic C (DIC), dissolved organic C (DOC), landscape C and microbial mat C showed that mat C is comprised of both DIC and non-DIC sources. The estimated contribution of DIC carbon to biomass C (> ~ 35%) is reasonably consistent with the relative abundance of known chemolithoautotrophs and corresponding CO2 fixation pathways detected in metagenome sequence. The significance of DIC as a major source of carbon for Fe-oxide mat communities provides a foundation for examining microbial interactions in these systems that are dependent on the activity of autotrophic organisms such as Hydrogenobaculum and Metallosphaera spp.

  4. Oxidation resistant carbon-carbon composites: the effect of temperature dependent matrix material properties on laminate response 

    E-Print Network [OSTI]

    Romine, Paul Richard

    1994-01-01

    The structural analysis of carbon-carbon (C-C) composites is a research area of increasing importance. As the use of the materials expands towards more demanding aerospace applications, it is of critical importance to understand the laminate...

  5. High-performance carbon-nanotube-based complementary field-effect-transistors and integrated circuits with yttrium oxide

    SciTech Connect (OSTI)

    Liang, Shibo; Zhang, Zhiyong, E-mail: zyzhang@pku.edu.cn; Si, Jia; Zhong, Donglai; Peng, Lian-Mao, E-mail: lmpeng@pku.edu.cn [Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China)

    2014-08-11

    High-performance p-type carbon nanotube (CNT) transistors utilizing yttrium oxide as gate dielectric are presented by optimizing oxidization and annealing processes. Complementary metal-oxide-semiconductor (CMOS) field-effect-transistors (FETs) are then fabricated on CNTs, and the p- and n-type devices exhibit symmetrical high performances, especially with low threshold voltage near to zero. The corresponding CMOS CNT inverter is demonstrated to operate at an ultra-low supply voltage down to 0.2?V, while displaying sufficient voltage gain, high noise margin, and low power consumption. Yttrium oxide is proven to be a competitive gate dielectric for constructing high-performance CNT CMOS FETs and integrated circuits.

  6. Mechanistic models of oceanic nitrogen fixation

    E-Print Network [OSTI]

    Monteiro, Fanny

    2009-01-01

    Oceanic nitrogen fixation and biogeochemical interactions between the nitrogen, phosphorus and iron cycles have important implications for the control of primary production and carbon storage in the ocean. The biological ...

  7. KINETICS AND MECHANISM FOR THE CATALYTIC OXIDATION OF SULFUR DIOXIDE ON CARBON IN AQUEOUS SUSPENSIONS

    E-Print Network [OSTI]

    Brodzinsky, R.

    2012-01-01

    AND MECHANISM FOR THE CATALYTIC OXIDATION OF SULFUR DIOXIDEmechanism for the catalytic oxidation of in an aqueous sus1ECHANISf 1 1 FOR TilE CATALYTIC OXIDATION OF SULFUR DIOXIDE

  8. Amperometric Biosensors Based on Carbon Paste Electrodes Modified with Nanostructured Mixed-valence Manganese Oxides and Glucose Oxidase

    SciTech Connect (OSTI)

    Cui, Xiaoli; Liu, Guodong; Lin, Yuehe

    2005-06-01

    Nanostructured multivalent manganese oxides octahedral molecular sieve (OMS), including cryptomelane-type manganese oxides and todorokite-type manganese oxides, were synthesized and evaluated for chemical sensing and biosensing at low operating potential. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides are nanofibrous crystals with sub-nanometer open tunnels that provide a unique property for sensing applications. The electrochemical and electrocatalytic performance of OMS for the oxidation of H2O2 have been compared. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides can be used to fabricate sensitive H2O2 sensors. Amperometric glucose biosensors are constructed by bulk modification of carbon paste electrodes (CPEs) with glucose oxidase as a biocomponent and nanostructured OMS as a mediator. A Nafion thin film was applied as an immobilization/encapsulation and protective layer. The biosensors were evaluated as an amperometric glucose detector at phosphate buffer solution with a pH 7.4 at an operating potential of 0.3 V (vs. Ag/AgCl). The biosensor is characterized by a well-reproducible amperometric response, linear signal-to-glucose concentration range up to 3.5 mM and 1.75 mM, and detection limits (S/N = 3) of 0.1 mM and 0.05 mM for todorokite-type manganese oxide and cryptomelane-type manganese oxide modified electrodes, respectively. The biosensors based on OMS exhibit considerable good reproducibility and stability, and the construction and renewal are simple and inexpensive.

  9. The Ecological Society of America www.frontiersinecology.org Earth's atmosphere consists largely of nitrogen (N) in

    E-Print Network [OSTI]

    Templer, Pamela

    nitrogen oxides (NOx) and ammonia (NH3), to the atmosphere (eg Galloway et al. 2008). Both NOx and NH3 can of North America. Some of this N can stimulate carbon (C) storage in terrestrial ecosystems rates of ammonia emissions and deposition are expected to remain unchanged, projected declines

  10. Heterogeneous-phase reactions of nitrogen dioxide with vermiculite-supported magnesium oxide (as applied to the control of jet engine test cell emissions). Doctoral thesis

    SciTech Connect (OSTI)

    Kimm, L.T.

    1995-11-01

    Controlling nitrogen oxides (NOx) from a non-steady-state stationary source like a jet engine test cell (JETC) requires a method that is effective over a wide range of conditions. A heterogeneous, porous, high surface area sorbent material comprised of magnesium oxide powder attached to a vermiculite substrate has been commercially developed for this purpose. Data from extensive laboratory testing of this material in a packed-bed flow system are presented. NO2 removal efficiencies, kinetics, and proposed NO2 removal mechanisms over a range of representative JETC exhaust gas characteristics are described. Exhaust gas variables evaluated included: NO2 concentration, temperature, flow rate (retention time), oxygen content, and moisture content. Availability of water and oxygen were found to be important variables. It is probable that water is necessary for the conversion of MgO to Mg(OH)2, which is a more reactive compound having thermal stability over the range of temperatures evaluated. Gaseous oxygen serves to oxidize NO to NO2, the latter being more readily removed from the gas stream. The presence of oxygen also serves to offset thermal decomposition of NO2 or surface nitrite/nitrate. Effective `lifetime` and regenerability of the exposed sorbent material were also evaluated. NO2 removal efficiencies were found to greatly exceed those for NO, with a maximum value greater than 90 percent. The effective conversion of NO to NO2 is a crucial requirement for removal of the former. The reaction between NO2 and MgO-vermiculite is first-order with respect to NO2.

  11. Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. Progress report for FY97

    SciTech Connect (OSTI)

    Blake, D.M.; Bryant, D.L.; Reinsch, V.

    1997-09-30

    'The background for the project is briefly reviewed and the work done during the nine months since funding was received is documented. Work began in January, 1997. A post doctoral fellow joined the team in April. The major activities completed this fiscal year were: staffing the project, design of the experimental system, procurement of components, assembly of the system. preparation of the Safe Operating Procedure and ES and H compliance, pressure testing, establishing data collection and storage methodology, and catalyst preparation. Objective The objective of the project is to develop new chemistry for the removal of organic contaminants from supercritical carbon dioxide. This has application in processes used for continuous cleaning and extraction of parts and waste materials. A secondary objective is to increase the fundamental understanding of photocatalytic chemistry. Cleaning and extraction using supercritical carbon dioxide (scCO{sub 2}) can be applied to the solution of a wide range of environmental and pollution prevention problems in the DOE complex. Work is being done that explores scCO{sub 2} in applications ranging from cleaning contaminated soil to cleaning components constructed from plutonium. The rationale for use of scCO{sub 2} are based on the benign nature, availability and low cost, attractive solvent properties, and energy efficient separation of the extracted solute from the solvent by moderate temperature or pressure changes. To date, R and D has focussed on the methods and applications of the extraction steps of the process. Little has been done that addresses methods to polish the scCO{sub 2} for recycle in the cleaning or extraction operations. In many applications it will be desirable to reduce the level of contamination from that which would occur at steady state operation of a process. This proposal addresses chemistry to achieve that. This would be an alternative to removing a fraction of the contaminated scCO{sub 2} for disposal and using makeup scCO{sub 2}. A chemical polishing operation can reduce the release of CO{sub 2} from the process. It can also reduce the consumption of reagents that may be used in the process to enhance extraction and cleaning. A polishing operation will also reduce or avoid formation of an additional waste stream. Photocatalytic and other photochemical oxidation chemistry have not been investigated in scCO{sub 2}. The large base of information for these reactions in water, organic solvents, or air suggest that the chemistry will work in carbon dioxide. There are compelling reasons to believe that the properties of scCO{sub 2} should increase the performance of photocatalytic chemistry over that found in more conventional fluid phases.'

  12. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to an Unconfined Oxidizing Carbonate Aquifer

    SciTech Connect (OSTI)

    Wang, Guohui; Qafoku, Nikolla; Lawter, Amanda R.; Bowden, Mark E.; Harvey, Omar; Sullivan, E. C.; Brown, Christopher F.

    2015-07-15

    A series of batch and column experiments combined with solid phase characterization studies (i.e., quantitative x-ray diffraction and wet chemical extractions) were conducted to address a variety of scientific issues and evaluate the impacts of the potential leakage of carbon dioxide (CO2) from deep subsurface storage reservoirs. The main objective was to gain an understanding of how CO2 gas influences: 1) the aqueous phase pH; and 2) mobilization of major, minor, and trace elements from minerals present in an aquifer overlying potential CO2 sequestration subsurface repositories. Rocks and slightly weathered rocks representative of an unconfined, oxidizing carbonate aquifer within the continental US, i.e., the Edwards aquifer in Texas, were used in these studies. These materials were exposed to a CO2 gas stream or were leached with a CO2-saturated influent solution to simulate different CO2 gas leakage scenarios, and changes in aqueous phase pH and chemical composition were measured in the liquid samples collected at pre-determined experimental times (batch experiments) or continuously (column experiments). The results from the strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the Edward aquifer samples contain As, Cd, Pb, Cu, and occasionally Zn, which may potentially be mobilized from the solid to the aqueous phase during or after exposure to CO2. The results from the batch and column experiments confirmed the release of major chemical elements into the contacting aqueous phase (such as Ca, Mg, Ba, Sr, Si, Na, and K); the mobilization and possible rapid immobilization of minor elements (such as Fe, Al, and Mn), which are able to form highly reactive secondary phases; and sporadic mobilization of only low concentrations of trace elements (such as As, Cd, Pb, Cu, Zn, Mo, etc.). The results from this experimental research effort will help in developing a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption) in the aquifer sediments and will support site selection, risk assessment, policy-making, and public education efforts associated with geologic carbon sequestration.

  13. Process for producing organic products containing silicon, hydrogen, nitrogen, and carbon by the direct reaction between elemental silicon and organic amines and products formed thereby

    DOE Patents [OSTI]

    Pugar, E.A.; Morgan, P.E.D.

    1988-04-04

    A process is disclosed for producing, at a low temperature, a high purity organic reaction product consisting essentially of silicon, hydrogen, nitrogen, and carbon. The process comprises reacting together a particulate elemental high purity silicon with a high purity reactive amine reactant in a liquid state at a temperature of from about O/degree/C up to about 300/degree/C. A high purity silicon carbide/silicon nitride ceramic product can be formed from this intermediate product, if desired, by heating the intermediate product at a temperature of from about 1200-1700/degree/C for a period from about 15 minutes up to about 2 hours or the organic reaction product may be employed in other chemical uses.

  14. Synthesis of few-walled carbon nanotube-Rh nanoparticles by arc discharge: Effect of selective oxidation

    SciTech Connect (OSTI)

    Zhang Yanfeng

    2012-06-15

    Highly crystalline rhodium (Rh) nanoparticles supported on carbon nanotubes were prepared by selective oxidation method. Carbon nanotubes and FeRh nanoparticles were simultaneously generated in hydrogen arc plasma. The as-grown nanomaterials can be purified by heat treatment in open air and by soaking in HCl. X-ray diffraction and selected area electron diffraction results reveal that as-grown FeRh nanoparticles have a typical chemical CsCl-type structure which can be transformed into a face-centered cubic structure by thermal annealing in the purification process. The purification process is selective toward the removal of the amorphous carbon coating the nanoparticles, and transforms Fe to Fe{sub 2}O{sub 3}. Fe{sub 2}O{sub 3} can be easily dissolved in hydrochloric acid, leaving carbon nanotubes-Rh nanoparticles. Rh nanoparticles with diameters of 2-60 nm are deposited uniformly on the surface of the carbon nanotube bundles. This simple and selective chemistry offers a new process for synthesizing and controlling Fe content in carbon nanotube-FeRh nanoparticles. Highlights: Black-Right-Pointing-Pointer High-crystallinity CNTs and FeRh nanoparticles were simultaneously generated in arc plasma. Black-Right-Pointing-Pointer The diameter distribution of CNTs depends on different gases. Black-Right-Pointing-Pointer Heat treatment in open air and soaking in HCl can convert CNTs-FeRh to CNTs-Rh. Black-Right-Pointing-Pointer The selective oxidation mechanisms of metal nanoparticles and carbon materials differ.

  15. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of Nitrogen Oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1995

    SciTech Connect (OSTI)

    1996-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  16. INFLUENCE OF CARBON AND METAL OXIDE NANOMATERIALS ON AQUEOUS CONCENTRATIONS OF THE MUNITION CONSTITUENTS

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    -aluminum and multiwalled carbon nanotubes (MWCNTs) are incorporated into nano- thermites, energetics, and propellant

  17. Sandia Energy - Strategic Petroleum Reserve: Nitrogen Monitoring...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Petroleum Reserve: Nitrogen Monitoring & Integrity Testing of SW Louisiana Caverns Home Carbon Capture & Storage News News & Events Research & Capabilities Systems...

  18. Electrodeposited Manganese Oxides on Three-Dimensional Carbon Nanotube Substrate: Supercapacitive Behaviour in Aqueous and Organic Electrolytes

    SciTech Connect (OSTI)

    Nam,K.W.; Yang,X.

    2009-03-01

    Thin amorphous manganese oxide layers with a thickness of 3-5nm are electrodeposited on a carbon nanotube (CNT) film substrate that has a three-dimensional nanoporous structure (denoted asMnO2/CNT electrode). For the purpose of comparison, manganese oxide films are also electrodeposited on a flat Pt-coated Si wafer substrate (denoted as MnO2 film electrode). The pseudocapacitive properties of the MnO2 film and MnO2/CNT electrodes are examined in both aqueous electrolyte (1.0M KCl) and nonaqueousorganic electrolyte (1.0M LiClO4 in propylene carbonate). While both types of electrode showpseudocapacitive behaviour in the aqueous electrolyte, only the MnO2/CNT electrode does so in the organic electrolyte, due to its high oxide/electrolyte interfacial area and improved electron conduction through the CNT substrate. Compared with the MnO2 film electrode, the MnO2/CNT electrode shows a much higher specific capacitance and better high-rate capability, regardless of the electrolyte used.Use of the organic electrolyte results in a ?6 times higher specific energy compared with that obtained with the aqueous electrolyte, while maintaining a similar specific power. The construction of a threedimensional nanoporous network structure consisting of a thin oxide layer on a CNT film substrate at the nm scale and the use of an organic electrolyte are promising approaches to improving the specific energyof supercapacitors.

  19. Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    NONE

    2005-05-01

    The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

  20. Conductivity measurements of molten metal oxides and their evaluation in a Direct Carbon Fuel Cell (DCFC)

    E-Print Network [OSTI]

    Yarlagadda, Venkata Raviteja

    2011-09-08

    ABSTRACT Since Direct Carbon Fuel Cell (DCFC) technology is in a beginning stage, emphasis should be laid on addressing the fundamental aspects. A molten electrolyte is required to facilitate ionic contact between solid carbon fuel and electrolyte...

  1. Modeling analyses of the effects of changes in nitrogen oxides emissions from the electric power sector on ozone levels in the eastern United States

    SciTech Connect (OSTI)

    Edith Gego; Alice Gilliland; James Godowitch

    2008-04-15

    In this paper, we examine the changes in ambient ozone concentrations simulated by the Community Multiscale Air Quality (CMAQ) model for summer 2002 under three different nitrogen oxides (NOx) emission scenarios. Two emission scenarios represent best estimates of 2002 and 2004 emissions; they allow assessment of the impact of the NOx emissions reductions imposed on the utility sector by the NOx State Implementation Plan (SIP) Call. The third scenario represents a hypothetical rendering of what NOx emissions would have been in 2002 if no emission controls had been imposed on the utility sector. Examination of the modeled median and 95th percentile daily maximum 8-hr average ozone concentrations reveals that median ozone levels estimated for the 2004 emission scenario were less than those modeled for 2002 in the region most affected by the NOx SIP Call. Comparison of the 'no-control' with the '2002' scenario revealed that ozone concentrations would have been much higher in much of the eastern United States if the utility sector had not implemented NOx emission controls; exceptions occurred in the immediate vicinity of major point sources where increased NO titration tends to lower ozone levels. 13 refs., 8 figs., 2 tabs.

  2. Size-reduction of nanodiamonds via air oxidation

    E-Print Network [OSTI]

    Gaebel, T; Chen, J; Hemmer, P; Rabeau, J R

    2011-01-01

    Here we report the size reduction and effects on nitrogen-vacancy centres in nanodiamonds by air oxidation using a combined atomic force and confocal microscope. The average height reduction of individual crystals as measured by atomic force microscopy was 10.6 nm/h at 600 {\\deg}C air oxidation at atmospheric pressure. The oxidation process modified the surface including removal of non-diamond carbon and organic material which also led to a decrease in background fluorescence. During the course of the nanodiamond size reduction, we observed the annihilation of nitrogen-vacancy centres which provided important insight into the formation of colour centres in small crystals. In these unirradiated samples, the smallest nanodiamond still hosting a stable nitrogen-vacancy centre observed was 8 nm.

  3. Size-reduction of nanodiamonds via air oxidation

    E-Print Network [OSTI]

    T. Gaebel; C. Bradac; J. Chen; P. Hemmer; J. R. Rabeau

    2011-04-27

    Here we report the size reduction and effects on nitrogen-vacancy centres in nanodiamonds by air oxidation using a combined atomic force and confocal microscope. The average height reduction of individual crystals as measured by atomic force microscopy was 10.6 nm/h at 600 {\\deg}C air oxidation at atmospheric pressure. The oxidation process modified the surface including removal of non-diamond carbon and organic material which also led to a decrease in background fluorescence. During the course of the nanodiamond size reduction, we observed the annihilation of nitrogen-vacancy centres which provided important insight into the formation of colour centres in small crystals. In these unirradiated samples, the smallest nanodiamond still hosting a stable nitrogen-vacancy centre observed was 8 nm.

  4. Kinetics of hydrolysis and oxidation of carbon disulfide by hydrogen peroxide in alkaline medium and application to carbonyl sulfide

    SciTech Connect (OSTI)

    Adewuyi, Y.G.; Carmichael, G.R.

    1987-02-01

    Kinetic studies of the oxidation of carbon disulfide by hydrogen peroxide in alkaline medium were made spectrophotometrically. The reaction of CS/sub 2/ with OH/sup -/ ion was found to be rate controlling and proceeded by the formation of a dithiocarbonate complex. The major reaction product was sulfate with sulfur occurring as colloidal suspensions only at pH values less than 8. The formation of sulfate increased exponentially with time and was also found to be dependent on the rate of hydrolysis of CS/sub 2/. In addition, the production of sulfate showed large induction periods, suggesting either a complex mechanism or formation by secondary reactions. The results obtained for carbon disulfide were extended to carbonyl sulfide (OCS) oxidation in alkaline solutions. The removal of OCS (acid gas) from mixtures of gases by alkaline liquid absorbents (e.g. NaOH) and oxidation of subsequent solutions to sulfate is an important industrial practice. 42 references, 14 figures, 2 tables.

  5. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Bend, OR); Miller, Warren K. (Bend, OR)

    1993-01-01

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  6. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Bend, OR); Miller, Warren K. (Bend, OR)

    1996-01-01

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  7. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, D.T.; Babcock, W.C.; Edlund, D.J.; Miller, W.K.

    1996-05-14

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas. 5 figs.

  8. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, D.T.; Babcock, W.C.; Edlund, D.J.; Miller, W.K.

    1993-07-06

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  9. High surface area, electrically conductive nanocarbon-supported metal oxide

    DOE Patents [OSTI]

    Worsley, Marcus A; Han, Thomas Yong-Jin; Kuntz, Joshua D; Cervanted, Octavio; Gash, Alexander E; Baumann, Theodore F; Satcher, Jr., Joe H

    2014-03-04

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  10. NITROGEN ISOTOPES IN ASYMPTOTIC GIANT BRANCH CARBON STARS AND PRESOLAR SiC GRAINS: A CHALLENGE FOR STELLAR NUCLEOSYNTHESIS

    SciTech Connect (OSTI)

    Hedrosa, R. P.; Abia, C.; Dominguez, I.; Palmerini, S. [Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, E-18071 Granada (Spain); Busso, M. [Dipartimento di Fisica, Universita di Perugia, I-06123 Perugia (Italy); Cristallo, S.; Straniero, O. [INAF, Osservatorio di Collurania, I-64100 Teramo (Italy); Plez, B. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier II, CNRS, F-34095 Montpellier (France)

    2013-05-01

    Isotopic ratios of C, N, Si, and trace heavy elements in presolar SiC grains from meteorites provide crucial constraints to nucleosynthesis. A long-debated issue is the origin of the so-called A+B grains, as of yet no stellar progenitor thus far has been clearly identified on observational grounds. We report the first spectroscopic measurements of {sup 14}N/{sup 15}N ratios in Galactic carbon stars of different spectral types and show that J- and some SC-type stars might produce A+B grains, even for {sup 15}N enrichments previously attributed to novae. We also show that most mainstream grains are compatible with the composition of N-type stars, but in some cases might also descend from SC stars. From a theoretical point of view, no astrophysical scenario can explain the C and N isotopic ratios of SC-, J-, and N-type carbon stars together, as well as those of many grains produced by them. This poses urgent questions to stellar physics.

  11. Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation

    SciTech Connect (OSTI)

    Jiang, Liming; Fu, Honggang; Wang, Lei; Mu, Guang; Jiang, Baojiang; Zhou, Wei; Wang, Ruihong

    2014-01-01

    Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: • The WC/PC composite with high specific surface area was prepared by a simple way. • The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. • The current density for methanol electro-oxidation is as high as 595.93 A g{sup ?1} Pt. • The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. • The performance of Pt/WC/PC is superior to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 °C, exhibited a specific surface area (S{sub BET}) of 457.92 m{sup 2} g{sup ?1}. After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g{sup ?1} Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance.

  12. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: assessing the potential to improve crop yields and nutritional quality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yadav, Umesh P.; Ayre, Brian G.; Bush, Daniel R.

    2015-04-22

    The principal components of plant productivity and nutritional value, from the standpoint of modern agriculture, are the acquisition and partitioning of organic carbon (C) and nitrogen (N) compounds among the various organs of the plant. The flow of essential organic nutrients among the plant organ systems is mediated by its complex vascular system, and is driven by a series of transport steps including export from sites of primary assimilation, transport into and out of the phloem and xylem, and transport into the various import-dependent organs. Manipulating C and N partitioning to enhance yield of harvested organs is evident in the earliest crop domestication events and continues to be a goal for modern plant biology. Research on the biochemistry, molecular and cellular biology, and physiology of C and N partitioning has now matured to an extent that strategic manipulation of these transport systems through biotechnology are being attempted to improve movement from source to sink tissues in general, but also to target partitioning to specific organs. These nascent efforts are demonstrating the potential of applied biomass targeting but are also identifying interactions between essential nutrients that require further basic research. In this review, we summarize the key transport steps involved in C and N partitioning, and discuss various transgenic approaches for directly manipulating key C and N transporters involved. In addition, we propose several experiments that could enhance biomass accumulation in targeted organs while simultaneously testing current partitioning models.

  13. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: assessing the potential to improve crop yields and nutritional quality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yadav, Umesh P.; Ayre, Brian G.; Bush, Daniel R.

    2015-04-22

    The principal components of plant productivity and nutritional value, from the standpoint of modern agriculture, are the acquisition and partitioning of organic carbon (C) and nitrogen (N) compounds among the various organs of the plant. The flow of essential organic nutrients among the plant organ systems is mediated by its complex vascular system, and is driven by a series of transport steps including export from sites of primary assimilation, transport into and out of the phloem and xylem, and transport into the various import-dependent organs. Manipulating C and N partitioning to enhance yield of harvested organs is evident in themore »earliest crop domestication events and continues to be a goal for modern plant biology. Research on the biochemistry, molecular and cellular biology, and physiology of C and N partitioning has now matured to an extent that strategic manipulation of these transport systems through biotechnology are being attempted to improve movement from source to sink tissues in general, but also to target partitioning to specific organs. These nascent efforts are demonstrating the potential of applied biomass targeting but are also identifying interactions between essential nutrients that require further basic research. In this review, we summarize the key transport steps involved in C and N partitioning, and discuss various transgenic approaches for directly manipulating key C and N transporters involved. In addition, we propose several experiments that could enhance biomass accumulation in targeted organs while simultaneously testing current partitioning models.« less

  14. Chlorine activation indoors and outdoors via surface-mediated reactions of nitrogen

    E-Print Network [OSTI]

    Dabdub, Donald

    Chlorine activation indoors and outdoors via surface-mediated reactions of nitrogen oxides and indoor air. Oxides of nitrogen (NOy) are also globally distributed, because NO formed in combustion processes is oxidized to NO2, HNO3, N2O5 and a variety of other nitrogen oxides during transport. Deposition

  15. Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst on Lean Gasoline Engine

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Pihl, Josh A; Toops, Todd J; Thomas, John F; Parks, II, James E; West, Brian H

    2015-01-01

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.

  16. Nox control for high nitric oxide concentration flows through combustion-driven reduction

    DOE Patents [OSTI]

    Yeh, James T. (Bethel Park, PA); Ekmann, James M. (Bethel Park, PA); Pennline, Henry W. (Bethel Park, PA); Drummond, Charles J. (Churchill, PA)

    1989-01-01

    An improved method for removing nitrogen oxides from concentrated waste gas streams, in which nitrogen oxides are ignited with a carbonaceous material in the presence of substoichiometric quantities of a primary oxidant, such as air. Additionally, reductants may be ignited along with the nitrogen oxides, carbonaceous material and primary oxidant to achieve greater reduction of nitrogen oxides. A scrubber and regeneration system may also be included to generate a concentrated stream of nitrogen oxides from flue gases for reduction using this method.

  17. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    SciTech Connect (OSTI)

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min; Xing, Mingyou; Liu, Liegang; Yao, Ping

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 ?mol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.

  18. Variable carbon isotope fractionation expressed by aerobic CH4-oxidizing bacteria

    E-Print Network [OSTI]

    Chu, Kung-Hui "Bella"

    in biomass carbon isotopes is primarily due to differences in the fraction- ation effect at the formaldehyde in the production and consumption of CH4 oc- cur (e.g., Bergamaschi, 1997; Conrad et al., 1999; Avery and Martens

  19. Oxidative Degradation of Trichloroethylene Adsorbed on Active Carbons: Use of Microwave Energy 

    E-Print Network [OSTI]

    Varma, R.; Nandi, S. P.; Cleaveland, D.; Myles, K. M.; Vissers, D. R.; Nelson, P. A.

    1988-01-01

    carbon bed impreg nated with CuO and Cr203 and exposed to moist air. Experimental results indicated that free chlorine produced from TCE degradation is very strongly held by active carbon. In addition, hydrogen chloride was found in large... concentration in the exit gas. Generation of free chlorine may be avoided by using a chlorohydrocarbon and hydrocarbon mixture on such composition that the stoichiometry favors the pro duction of hydrogen chloride. The experimental results show promise...

  20. Toward Institutional Sustainability: A Nitrogen Footprint for the Marine Biological Maggie Notopoulos

    E-Print Network [OSTI]

    Vallino, Joseph J.

    impact on the environment. Many people have focused on improving their carbon footprint, or releaseToward Institutional Sustainability: A Nitrogen Footprint for the Marine Biological Laboratory is defined as the institution's nitrogen footprint. The Marine Biological Laboratory's nitrogen footprint

  1. Effect of Organic Capping Layers over Monodisperse Platinum Nanoparticles upon Activity for Ethylene Hydrogenation and Carbon Monoxide Oxidation

    E-Print Network [OSTI]

    Kuhn, John N.

    2010-01-01

    CO) oxidation (Figure 6) and the catalytic activity wascatalytic properties for ethylene hydrogenation and CO oxidation,catalytic properties using ethylene hydrogenation and CO oxidation,

  2. Eddy Covariance Fluxes of Nitrogen Oxides at Harvard Forest NOx deposition is important to both the biosphere and the atmosphere: the form of

    E-Print Network [OSTI]

    Current estimates indicate that fossil fuel combustion and soil microbial emissions are the largest by smaller contributions from biomass burning, lightning, ammonia oxidation, the ocean, and the stratosphere. Oxidation of natural and anthropogenic hydrocarbon emissions produces intermediate products

  3. Oxidation of Filled Carbon Nanotubes Inside a Transmission Electron Pedro M. F. J. Costa1*

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark Recently. A controlled flow of pure oxygen gas was used at pressures ranging from 4 to 12 mbar. Various sample grids were of (d) highlighting the faceted nature of the thick external wall. (f) High-resolution image of an oxide

  4. CATALYTIC OXIDATION OF S(IV) ON ACTIVATED CARBON IN AQUEOUS SUSPENSION: KINETICS AND MECHANISM

    E-Print Network [OSTI]

    Brodzinsky, Richard

    2012-01-01

    oxidation" data. A A A A o lo Cx o o.o3 ~% ex ex v 'O f() NN '-.A CUI e II v-4 /It [Cx] (g/L) XBL 806-10264 Figure 3.3y = rate = d[S(IV)]/dt + [Cx] and x = S(IV) concentration.

  5. Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide

    E-Print Network [OSTI]

    Popov, Branko N.

    as electrochemical capacitors in high-power applications [1]. The energy storage mechanism here is based on fast of Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 loadings of RuO2 on carbon have been synthesized by an electroless deposition process. Increase in RuO2

  6. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer

    SciTech Connect (OSTI)

    Bacon, Diana H. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Dai, Zhenxue [Los Alamos National Laboratory, Los Alamos, NM (United States); Zheng, Liange [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2014-12-31

    An important risk at CO2 storage sites is the potential for groundwater quality impacts. As part of a system to assess the potential for these impacts a geochemical scaling function has been developed, based on a detailed reactive transport model of CO2 and brine leakage into an unconfined, oxidizing carbonate aquifer. Stochastic simulations varying a number of geochemical parameters were used to generate a response surface predicting the volume of aquifer that would be impacted with respect to regulated contaminants. The brine was assumed to contain several trace metals and organic contaminants. Aquifer pH and TDS were influenced by CO2 leakage, while trace metal concentrations were most influenced by the brine concentrations rather than adsorption or desorption on calcite. Organic plume sizes were found to be strongly influenced by biodegradation.

  7. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bacon, Diana H.; Dai, Zhenxue; Zheng, Liange

    2014-12-31

    An important risk at CO2 storage sites is the potential for groundwater quality impacts. As part of a system to assess the potential for these impacts a geochemical scaling function has been developed, based on a detailed reactive transport model of CO2 and brine leakage into an unconfined, oxidizing carbonate aquifer. Stochastic simulations varying a number of geochemical parameters were used to generate a response surface predicting the volume of aquifer that would be impacted with respect to regulated contaminants. The brine was assumed to contain several trace metals and organic contaminants. Aquifer pH and TDS were influenced by CO2more »leakage, while trace metal concentrations were most influenced by the brine concentrations rather than adsorption or desorption on calcite. Organic plume sizes were found to be strongly influenced by biodegradation.« less

  8. Chemical changes in carbon Nanotube-Nickel/Nickel Oxide Core/Shell nanoparticle heterostructures treated at high temperatures

    SciTech Connect (OSTI)

    Chopra, Nitin; McWhinney, Hylton G.; Shi Wenwu

    2011-06-15

    Heterostructures composed of carbon nanotube (CNT) coated with Ni/NiO core/shell nanoparticles (denoted as CNC heterostructures) were synthesized in a wet-chemistry and single-step synthesis route involving direct nucleation of nanoparticles on CNT surface. Two different aspects of CNC heterostructures were studied here. First, it was observed that the nanoparticle coatings were more uniform on the as-produced and non-purified CNTs compared to purified (or acid treated) CNTs. These heterostructures were characterized using electron microscopy, Raman spectroscopy, and energy dispersive spectroscopy. Second, thermal stability of CNC heterostructures was studied by annealing them in N{sub 2}-rich (O{sub 2}-lean) environment between 125 and 750 deg. C for 1 h. A detailed X-ray photoelectron spectroscopy and Raman spectroscopy analysis was performed to evaluate the effects of annealing temperatures on chemical composition, phases, and stability of the heterostructures. It was observed that the CNTs present in the heterostructures completely decomposed and core Ni nanoparticle oxidized significantly between 600 and 750 deg. C. - Research Highlights: {yields} Heterostructures composed of CNTs coated with Ni/NiO core/shell nanoparticles. {yields} Poor nanoparticle coverage on purified CNT surface compared to non-purified CNTs. {yields} CNTs in heterostructures decompose between 600 and 750 deg. C in N{sub 2}-rich atmosphere. {yields} Metallic species in heterostructures were oxidized at higher temperatures.

  9. VOLUME 87, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 5 NOVEMBER 2001 Distinct Reaction Mechanisms in the Catalytic Oxidation of Carbon Monoxide on Rh(110)

    E-Print Network [OSTI]

    Hla, Saw-Wai

    Mechanisms in the Catalytic Oxidation of Carbon Monoxide on Rh(110): Scanning Tunneling Microscopy for catalytic oxidation of hydrogen on a platinum surface [3]. In the latter case, the two different mechanisms calculations, we identify the reaction mechanism for the oxidation of carbon monoxide to carbon dioxide

  10. Effects of pretreatment of coal by CO{sub 2} on nitric oxide emission and unburned carbon in various combustion environments

    SciTech Connect (OSTI)

    Gathitu, B.B.; Chen, W.Y. [University of Mississippi, University, MS (United States). Dept. of Chemical Engineering

    2009-12-15

    Polar solvents are known to swell coal, break hydrogen bonds in the macromolecular structure, and enhance coal liquefaction efficiencies. The effects of the pretreatment of coal using supercritical CO{sub 2} on its physical structure and combustion properties have been studied at the bench-scale level. Emphasis has been placed on NO reburning, NO emissions during air-fired and oxy-fired combustion, and loss on ignition (LOI). Pretreatment was found to increase porosity and to significantly alter the fuel nitrogen reaction pathways. Consequently, NO reduction during reburning using bituminous coal increased, and NO emissions during oxidation of lignite decreased. These two benefits were achieved without negative impacts on LOI.

  11. Photosynthesis, Nitrogen, Their Adjustment and its Effects on Ecosystem Carbon Gain at Elevated CO{sub 2}l. A Comparison of Loblolly and Ponderosa Pines

    SciTech Connect (OSTI)

    Ball, J. Timothy; Eichelmann, Hillar Y.; Tissue, David T.; Lewis, James D.; Picone, Johnn B.; Ross, Peter D.

    1996-12-01

    A functional understanding of terrestrial ecosystem carbon processes is essential for two reasons. First, carbon flow is a most fundamental aspects of ecosystem function as it mediates most of the energy flow in these systems. Second, carbon flow also mediates the majority of energy flow in the global economy and will do for the foreseeable future. The increased atmospheric carbon dioxide and its inevitable flow through global ecosystems will influence ecosystem processes. There is, of course, great interest in the potential of ecosystems to sequester some of the carbon being loaded into the atmosphere by economic activity.

  12. Removal of sulfur and nitrogen containing pollutants from discharge gases

    DOE Patents [OSTI]

    Joubert, James I. (Pittsburgh, PA)

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  13. Effect of ammonia plasma treatment on graphene oxide LB monolayers

    SciTech Connect (OSTI)

    Singh, Gulbagh; Botcha, V. Divakar; Narayanam, Pavan K.; Sutar, D. S.; Talwar, S. S.; Major, S. S.; Srinivasa, R. S.

    2013-02-05

    Graphene oxide monolayer sheets were transferred on Si and SiO{sub 2}/Si substrates by Langmuir-Blodgett technique and were exposed to ammonia plasma at room temperature. The monolayer character of both graphene oxide and plasma treated graphene oxide sheets were ascertained by atomic force microscopy. X-ray photoelectron spectroscopy and Raman spectroscopy revealed that ammonia plasma treatment results in enhancement of graphitic carbon content along with the incorporation of nitrogen. The conductivity of graphene oxide monolayers, which was in the range of 10{sup -6}-10{sup -7} S/cm, increased to 10{sup -2}-10{sup -3} S/cm after the ammonia plasma treatment. These results indicate that the graphene oxide was simultaneously reduced and N-doped during ammonia plasma treatment, without affecting the morphological stability of sheets.

  14. Development of a Spectroscopic Technique for Continuous Online Monitoring of Oxygen and Site-Specific Nitrogen Isotopic Composition of Atmospheric Nitrous Oxide

    E-Print Network [OSTI]

    Harris, Eliza

    Nitrous oxide is an important greenhouse gas and ozone-depleting-substance. Its sources are diffuse and poorly characterized, complicating efforts to understand anthropogenic impacts and develop mitigation policies. Online, ...

  15. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors

    SciTech Connect (OSTI)

    Wang, Wei; Guo, S.; Lee, I.; Ahmed, K.; Zhong, J.; Favors, Z.; Zaera, F.; Ozkan, M.; Ozkan, C. S

    2014-03-25

    In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO?) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO? nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g?¹, areal capacitance: 1.11 F cm?²) which leads to an exceptionally high energy density of 39.28 Wh kg?¹ and power density of 128.01 kW kg?¹. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications.

  16. System to continuously produce carbon fiber via microwave assisted plasma processing

    DOE Patents [OSTI]

    White, Terry L. (Knoxville, TN) [Knoxville, TN; Paulauskas, Felix L. (Knoxville, TN) [Knoxville, TN; Bigelow, Timothy S. (Knoxville, TN) [Knoxville, TN

    2010-11-02

    A system to continuously produce fully carbonized or graphitized carbon fibers using microwave-assisted plasma (MAP) processing comprises an elongated chamber in which a microwave plasma is excited in a selected gas atmosphere. Fiber is drawn continuously through the chamber, entering and exiting through openings designed to minimize in-leakage of air. There is a gradient of microwave power within the chamber with generally higher power near where the fiber exits and lower power near where the fiber enters. Polyacrylonitrile (PAN), pitch, or any other suitable organic/polymeric precursor fibers can be used as a feedstock for the inventive system. Oxidized or partially oxidized PAN or pitch or other polymeric fiber precursors are run continuously through a MAP reactor in an inert, non-oxidizing atmosphere to heat the fibers, drive off the unwanted elements such as oxygen, nitrogen, and hydrogen, and produce carbon or graphite fibers faster than conventionally produced carbon fibers.

  17. Exploring Oxidation of Half-Sandwich Rhodium Complexes: Oxygen Atom Insertion into the Rhodium-Carbon Bond of 2

    E-Print Network [OSTI]

    Jones, William D.

    -(2-pyridyl)phenol formed. Deactivation of the organometallic species, probably due to oxidative degradation

  18. DISSOLUTION OF METAL OXIDES AND SEPARATION OF URANIUM FROM LANTHANIDES AND ACTINIDES IN SUPERCRITICAL CARBON DIOXIDE

    SciTech Connect (OSTI)

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2013-10-01

    This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO2 modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO2 and counter current stripping columns is presented.

  19. Dissolution of metal oxides and separation of uranium from lanthanides and actinides in supercritical carbon dioxide

    SciTech Connect (OSTI)

    Quach, D.L.; Wai, C.M. [Department of Chemistry, University of Idaho, Moscow, Idaho 83844 (United States); Mincher, B.J. [Idaho National Lab, Idaho Falls, Idaho (United States)

    2013-07-01

    This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO{sub 2}) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO{sub 2} modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO{sub 2} modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO{sub 2} and counter current stripping columns is presented. (authors)

  20. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-02-03

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

  1. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-03

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

  2. Rules to Cut Carbon Emissions Also Reduce Other Air Pollutants A first-of-its-kind study released today by scientists at Syracuse and

    E-Print Network [OSTI]

    Mather, Patrick T.

    Rules to Cut Carbon Emissions Also Reduce Other Air Pollutants A first-of-its-kind study released emissions from power plants would provide an added bonus--reductions in other air pollutants that can make in power plant emissions of four other harmful air pollutants: fine particulate matter, nitrogen oxides

  3. SOOT-CATALYZED OXIDATION OF SULFUR DIOXIDE

    E-Print Network [OSTI]

    Chang, S.G.

    2010-01-01

    and T. Novakov, "Catalytic oxidation of S02 on carbon inThe mechanism of catalytic oxidation on activated carbon;of water in the catalytic oxidation of S02 on carbonaceous

  4. Investigation of mixed metal sorbent/catalysts for the simultaneous removal of sulfur and nitrogen oxides. Semiannual report, Apr 1, 1998--Oct 31, 1998

    SciTech Connect (OSTI)

    Dr. Ates Akyurtlu; Dr. Jale F. Akyurtlu

    1998-10-31

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823--900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4} air mixtures. The sorbents consisting of cerium oxide and copper oxide impregnated on alumina have been prepared and characterized. Their sulfation performance has been investigated in a TGA setup, studying mainly the effects of temperature and sorbent composition. The results of the sulfation experiments have been evaluated and presented in this report. A study to model the sulfation selectivity of the two constituents of the sorbents is also underway.

  5. Ternary Electrocatalysts for Oxidizing Ethanol to Carbon Dioxide: Making Ir Capable of Splitting C-C bond

    SciTech Connect (OSTI)

    Li, Meng; Cullen, David A; Sasaki, Kotaro; Marinkovic, N.; More, Karren Leslie; Adzic, Radoslav R.

    2013-01-01

    Splitting the C-C bond is the main obstacle to electroxidation of ethanol (EOR) to CO2. We recently demonstrated that the ternary PtRhSnO2 electrocatalyst can accomplish that reaction at room temperature with Rh having a unique capability to split the C-C bond. In this article we report the finding that Ir can be induced to split the C-C bond as a component of the ternary catalyst. We synthesized, characterized and compared the properties of several ternary electrocatalysts. Carbon-supported nanoparticle (NP) electrocatalysts comprising a SnO2 NP core decorated with multi-metallic nanoislands (MM = PtIr, PtRh, IrRh, PtIrRh) were prepared using a seeded growth approach. An array of characterization techniques were employed to establish the composition and architecture of the synthesized MM /SnO2 NPs, while electrochemical and in situ infrared reflection absorption spectroscopy studies elucidated trends in activity and the nature of the reaction intermediates and products. Both EOR reactivity and selectivity towards CO2 formation of several of these MM /SnO2/C electrocatalysts are significantly higher compared to conventional Pt/C and Pt/SnO2/C catalysts. We demonstrate that the PtIr/SnO2/C catalyst with high Ir content shows outstanding catalytic property with the most negative EOR onset potential and reasonably good selectivity towards ethanol complete oxidation to CO2. PtRh/SnO2/C catalysts with a moderate Rh content exhibit the highest EOR selectivity, as deduced from infrared studies.

  6. Diesel Particulate Oxidation Model: Combined Effects of Fixed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxidation Model: Combined Effects of Fixed & Volatile Carbon Diesel Particulate Oxidation Model: Combined Effects of Fixed & Volatile Carbon Poster presented at the 16th Directions...

  7. Role of added carbon in the transformation of surplus soil nitrate-nitrogen to organic forms in an intensively managed calcareous soil

    E-Print Network [OSTI]

    2009-01-01

    effect of carbon substrates. Soil Biol. Biochem. 36: Myroldof bacteria and fungi in nitrate assimilation in soil.Soil Biol. Biochem. 39: 1737-1743. Stange CF, Spott O, Apelt

  8. ROLE OF CARBON SOOT IN SULFATE FORMATION

    E-Print Network [OSTI]

    Novakov, T.

    2011-01-01

    and T. Novakov, "Catalytic oxidation of S02 on carbon inand T. Novakov, "Catalytic oxidation of SO2 on carbon inof water in the catalytic oxidation of SO2 on carbonaceous

  9. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    SciTech Connect (OSTI)

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  10. High surface area silicon carbide-coated carbon aerogel

    SciTech Connect (OSTI)

    Worsley, Marcus A; Kuntz, Joshua D; Baumann, Theodore F; Satcher, Jr, Joe H

    2014-01-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicone carbide, improved the thermal stability of the carbon aerogel.

  11. Near-ambient X-ray photoemission spectroscopy and kinetic approach to the mechanism of carbon monoxide oxidation over lanthanum substituted cobaltites

    SciTech Connect (OSTI)

    Hueso, J. L.; Martinez-Martinez, D.; Cabalerro, Alfonso; Gonzalez-Elipe, Agustin Rodriguez; Mun, Bongjin Simon; Salmeron, Miquel

    2009-07-31

    We have studied the oxidation of carbon monoxide over a lanthanum substituted perovskite (La0.5Sr0.5CoO3-d) catalyst prepared by spray pyrolysis. Under the assumption of a first-order kinetics mechanism for CO, it has been found that the activation energy barrier of the reaction changes from 80 to 40 kJ mol-1 at a threshold temperature of ca. 320 oC. In situ XPS near-ambient pressure ( 0.2 torr) shows that the gas phase oxygen concentration over the sample decreases sharply at ca. 300 oC. These two observations suggest that the oxidation of CO undergoes a change of mechanism at temperatures higher than 300 oC.

  12. Process for the production of hydrogen and carbonyl sulfide from hydrogen sulfide and carbon monoxide using a multi-metal oxide/sulfide catalyst

    SciTech Connect (OSTI)

    Jevnikar, M. G.; Kuch, Ph. L.

    1985-02-19

    Hydrogen and carbonyl sulfide are produced by a process comprising contacting gaseous hydrogen sulfide with gaseous carbon monoxide in the presence of a catalytic composition containing an oxide and/or sulfide of at least one of molybdenum, tungsten, iron, chromium and vanadium in combination with at least one promoter metal, e.g. a catalyst of the formula Cs Cu /SUB 0.2/ Zn /SUB 0.5/ Mn /SUB 0.5/ Sn /SUB 2.4/ Mo O /SUB x/ S /SUB y/ .

  13. New chemistry with gold-nitrogen complexes: synthesis and characterization of tetra-, tri-, and dinuclear gold(I) amidinate complexes. Oxidative-addition to the dinuclear gold(I) amidinate 

    E-Print Network [OSTI]

    Abdou, Hanan Elsayed

    2009-06-02

    Nitrogen ligands have been little studied with gold(I) and almost no chemistry has been described using anionic bridging nitrogen ligands. This dissertation concerns the impact of the bridging ligands amidinate, ArNHC(H)NAr, ...

  14. Carbon investment funds

    SciTech Connect (OSTI)

    2007-01-15

    The report is a study of the development of funds to invest in the purchase of carbon credits. It takes a look at the growing market for carbon credits, the rise of carbon investment funds, and the current state of carbon investing. Topics covered in the report include: Overview of climate change, greenhouse gases, and the Kyoto Protocols. Analysis of the alternatives for reducing carbon emissions including nitrous oxide reduction, coal mine methane capture and carbon capture and storage; Discussion of the different types of carbon credits; Discussion of the basics of carbon trading; Evaluation of the current status of carbon investing; and Profiles of 37 major carbon investment funds worldwide.

  15. Oxidation catalyst

    DOE Patents [OSTI]

    Ceyer, Sylvia T. (Cambridge, MA); Lahr, David L. (Cambridge, MA)

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  16. Novel carbons from Illinois coal for natural gas storage. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect (OSTI)

    Rostam-Abadi, M.; Sun, Jian; Lizzio, A.A. [Illinois State Geological Survey, Urbana, IL (United States); Fatemi, M. [Sperry Univac, St. Paul, MN (United States)

    1995-12-31

    The goal of this project is to develop a technology for producing microengineered adsorbent carbons from Illinois coal and to evaluate the potential application of these novel materials for storing natural gas for use in emerging low pressure, natural gas vehicles (NGV). The focus of the project is to design and engineer adsorbents that meet or exceed the performance and cost targets established for low-pressure natural gas storage materials. Potentially, about two million tons of adsorbent could be consumed in natural gas vehicles by year 2000. If successful, the results obtained in this project could lead to the use of Illinois coal in a sowing and profitable market that could exceed 6 million tons per year. During this reporting period, a series of experiments were made to evaluate the effect of coal pre-oxidation, coal pyrolysis, and char activation on the surface area development and methane adsorption capacity of activated carbons/chars made from IBC-102. The optimum production conditions were determined to be: coal oxidation in air at 225C, oxicoal (oxidized coal); devolatilization in nitrogen at 400C; and char gasification in 50% steam in nitrogen at 850C. Nitrogen BET surface areas of the carbon products ranged from 800--1100 m{sup 2}/g. Methane adsorption capacity of several Illinois coal derived chars and a 883 m{sup 2}/g commercial activated carbon were measured using a pressurized thermogaravimetric analyzer at pressures up to 500 psig. Methane adsorption capacity (g/g) of the chars were comparable to that of the commercial activated carbon manufactured by Calgon Carbon. It was determined that the pre-oxidation is a key processing step for producing activated char/carbon with high surface area and high methane adsorption capacity. The results to date are encouraging and warrant further research and development in tailored activated char from Illinois coal for natural gas storage.

  17. Low Temperature Deposition of Metal Oxide Thin Films in Supercritical Carbon Dioxide using Metal-organic Precursors

    E-Print Network [OSTI]

    Gougousi, Theodosia

    Semiconductor (CMOS) devices, [1,2] magnetic tunnel junctions, [3] and optical coatings.[4] Conventional such as electroplating, [6,7] electroless deposition, [8,9] and in supercritical carbon dioxide for the deposition

  18. Oxidation of atmospheric organic carbon : interconnecting volatile organic compounds, intermediate-volatility organic compounds, and organic aerosol

    E-Print Network [OSTI]

    Hunter, James Freeman

    2015-01-01

    .Organic molecules have many important roles in the atmosphere, acting as climate and biogeochemical forcers, and in some cases as toxic pollutants. The lifecycle of atmospheric organic carbon is extremely complex, with ...

  19. The Nitrogen-Nitride Anode.

    SciTech Connect (OSTI)

    Delnick, Frank M.

    2014-10-01

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  20. Identifying the Role of N-Heteroatom Location in the Activity of Metal Catalysts for Alcohol Oxidation

    SciTech Connect (OSTI)

    Chan-Thaw, Carine E. [Universita di Milano, Italy; Veith, Gabriel M [ORNL; Villa, Alberto [Universita di Milano, Italy; Prati, Laura [Universita di Milano, Italy

    2015-01-01

    This work focuses on understanding how the bonding of nitrogen heteroatoms contained on/in a activated carbon support influence the stability and reactivity of a supported Pd catalyst for the oxidation of alcohols in solution. The results show that simply adding N groups via solution chemistry is insufficient to improve catalytic properties. Instead a strongly bound N moiety is required to activate the catalyst and stabilize the metal particles.

  1. Fixation of nitrogen in the presence of water vapor

    DOE Patents [OSTI]

    Harteck, Paul (Santa Barbara, CA)

    1984-01-01

    A process for the fixation of nitrogen is disclosed which comprises combining a mixture of nitrogen, oxygen, metal oxide and water vapor, initially heating the combination to initiate a reaction which forms nitrate, but at a temperature and pressure range below the dissociation pressure of the nitrate. With or without the water component, the yield of fixed nitrogen is increased by the use of a Linde Molecular Sieve Catalyst.

  2. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics

    SciTech Connect (OSTI)

    Xu, Chonggang [Los Alamos National Laboratory (LANL); Fisher, Rosie [National Center for Atmospheric Research (NCAR); Wullschleger, Stan D [ORNL; Wilson, Cathy [Los Alamos National Laboratory (LANL); Cai, Michael [Los Alamos National Laboratory (LANL); McDowell, Nathan [Los Alamos National Laboratory (LANL)

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO{sub 2} concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO{sub 2} concentration, temperature, and radiation when evaluated against published data of V{sub c,max} (maximum carboxylation rate) and J{sub max} (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO{sub 2} concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks to climate in Earth system models.

  3. On-Road Emission Measurements of Reactive Nitrogen Compounds from

    E-Print Network [OSTI]

    Denver, University of

    - equippedvehiclesarenotbelievedtobesignificant(1).Oxides of nitrogen (NOx) emission rates from light-duty gasoline vehicles have been shown to be rapidly decreasing across the United States, but total NOx emissions are decreasing at a slower rate dueOn-Road Emission Measurements of Reactive Nitrogen Compounds from Three California Cities G A R Y

  4. Novel carbons from Illinois coal for natural gas storage. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Rostam-Abadi, M.; Sun, J.; Lizzio, A.A. [Illinois State Geological Survey, Champaign, IL (United States); Fatemi, M. [Amoco Research Center, Naperville, IL (United States)

    1994-12-31

    The goal of this project is to develop a technology for producing microengineered adsorbent carbons from Illinois coal and to evaluate the potential application of these novel materials for storing natural gas for use in emerging low pressure, natural gas vehicles (NGV). Potentially, about two million tons of adsorbent could be consumed in natural gas vehicles by year 2000. If successful, the results obtained in this project could lead to the use of Illinois coal in a growing and profitable market that could exceed 6 million tons per year. During this reporting period, a pyrolysis-gasification reactor system was designed and assembled. Four carbon samples were produced from a {minus}20+100 mesh size fraction of an Illinois Basin Coal (IBC-106) using a three-step process. The three steps were: coal oxidation in air at 250 C, oxicoal (oxidized coal) devolatilization in nitrogen at 425 C and char gasification in 50% steam-50% nitrogen at 860 C. These initial tests were designed to evaluate the effects of pre-oxidation on the surface properties of carbon products, and to determine optimum reaction time and process conditions to produce an activated carbon with high surface area. Nitrogen-BET surface areas of the carbon products ranged from 700--800 m{sup 2}/g. Work is in progress to further optimize reaction conditions in order to produce carbons with higher surface areas. A few screening tests were made with a pressurized thermogravimetric (PTGA) to evaluate the suitability of this instrument for obtaining methane adsorption isotherms at ambient temperature and pressures ranging from one to 30 atmospheres. The preliminary results indicate that PTGA can be used for both the adsorption kinetic and equilibrium studies.

  5. The nitrogen cycle and ecohydrology of seasonally dry grasslands

    E-Print Network [OSTI]

    Parolari, Anthony Joseph

    2013-01-01

    This thesis addresses the coupling of hydrologic and biogeochemical processes and, specifically, the organization of ecosystem traits with the water, carbon, and nitrogen cycles. Observations from a factorial irrigation- ...

  6. Final Technical Report "Catalytic Hydrogenation of Carbon Monoxide and Olefin Oxidation" Grant number : DE-FG02-86ER13615

    SciTech Connect (OSTI)

    Wayland, B.B.

    2009-08-31

    Title: Catalytic Hydrogenation of Carbon Monoxide and Olefin Oxidation Grant No. DE-FG02-86ER13615 PI: Wayland, B. B. (wayland@sas.upenn.edu) Abstract Development of new mechanistic strategies and catalyst materials for activation of CO, H2, CH4, C2H4, O2, and related substrates relevant to the conversion of carbon monoxide, alkanes, and alkenes to organic oxygenates are central objectives encompassed by this program. Design and synthesis of metal complexes that manifest reactivity patterns associated with potential pathways for the hydrogenation of carbon monoxide through metallo-formyl (M-CHO), dimetal ketone (M-C(O)-M), and dimetal dionyl (M-C(O)-C(O)-M) species is one major focus. Hydrocarbon oxidation using molecular oxygen is a central goal for methane activation and functionalization as well as regioselective oxidation of olefins. Discovery of new reactivity patterns and control of selectivity are pursued through designing new metal complexes and adjusting reaction conditions. Variation of reaction media promotes distinct reaction pathways that control both reaction rates and selectivities. Dimetalloradical diporphyrin complexes preorganize transition states for substrate reactions that involve two metal centers and manifest large rate increases over mono-metalloradical reactions of hydrogen, methane, and other small molecule substrates. Another broad goal and recurring theme of this program is to contribute to the thermodynamic database for a wide scope of organo-metal transformations in a range of reaction media. One of the most complete descriptions of equilibrium thermodynamics for organometallic reactions in water and methanol is emerging from the study of rhodium porphyrin substrate reactions in aqueous and alcoholic media. Water soluble group nine metalloporphyrins manifest remarkably versatile substrate reactivity in aqueous and alcoholic media which includes producing rhodium formyl (Rh-CHO) and hydroxy methyl (Rh-CH2OH) species. Exploratory directions for this program include expending new strategies for anti-Markovnikov addition of water, alcohols, and amines with olefins, developing catalytic reactions of CO to give formamides and formic esters, and evaluating the potential for coupling reactions of CO to produce organic building blocks.

  7. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Topical report, LNCFS Levels 1 and 3 test results

    SciTech Connect (OSTI)

    Not Available

    1993-08-17

    This report presents results from the third phase of an Innovative Clean Coal Technology (ICC-1) project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The purpose of this project was to study the NO{sub x} emissions characteristics of ABB Combustion Engineering`s (ABB CE) Low NO{sub x} Concentric Firing System (LNCFS) Levels I, II, and III. These technologies were installed and tested in a stepwise fashion at Gulf Power Company`s Plant Lansing Smith Unit 2. The objective of this report is to provide the results from Phase III. During that phase, Levels I and III of the ABB C-E Services Low NO{sub x} Concentric Firing System were tested. The LNCFS Level III technology includes separated overfire air, close coupled overfire air, clustered coal nozzles, flame attachment coal nozzle tips, and concentric firing. The LNCFS Level I was simulated by closing the separated overfire air nozzles of the LNCFS Level III system. Based upon long-term data, LNCFS Level HI reduced NO{sub x} emissions by 45 percent at full load. LOI levels with LNCFS Level III increased slightly, however, tests showed that LOI levels with LNCFS Level III were highly dependent upon coal fineness. After correcting for leakage air through the separated overfire air system, the simulated LNCFS Level I reduced NO{sub x} emissions by 37 percent. There was no increase in LOI with LNCFS Level I.

  8. Hard carbon nitride and method for preparing same

    DOE Patents [OSTI]

    Haller, Eugene E. (Berkeley, CA); Cohen, Marvin L. (Berkeley, CA); Hansen, William L. (Walnut Creek, CA)

    1992-01-01

    Novel crystalline .alpha. (silicon nitride-like)-carbon nitride and .beta. (silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate.

  9. Nitrogen fixation in peanut nodules during dark periods and detopped conditions with special reference to lipid bodies

    SciTech Connect (OSTI)

    Siddique, A.M.; Bal, A.K. (Memorial Univ. of Newfoundland, St. John's (Canada))

    1991-03-01

    The peanut plant (Arachis hypogaea L.), unlike other known legumes, can sustain nitrogen fixation when prolonged periods of darkness or detopping curtail the supply of photosynthate to the nodule. This ability to withstand photosynthate stress is attributed to the presence of lipid bodies in infected nodule cells. In both dark-treated and detopped plants, the lipid bodies show a gradual decrease in numbers, suggesting their utilization as a source of energy and carbon for nitrogen fixation. Lipolytic activity can be localized in the lipid bodies, and the existence of {beta}-oxidation pathway and glyoxylate cycle is shown by the release of {sup 14}CO{sub 2} from {sup 14}C lineoleoyl coenzyme A by the nodule homogenate.

  10. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1

    SciTech Connect (OSTI)

    Bacon, Diana H.

    2013-03-31

    The National Risk Assessment Partnership (NRAP) consists of 5 U.S DOE national laboratories collaborating to develop a framework for predicting the risks associated with carbon sequestration. The approach taken by NRAP is to divide the system into components, including injection target reservoirs, wellbores, natural pathways including faults and fractures, groundwater and the atmosphere. Next, develop a detailed, physics and chemistry-based model of each component. Using the results of the detailed models, develop efficient, simplified models, termed reduced order models (ROM) for each component. Finally, integrate the component ROMs into a system model that calculates risk profiles for the site. This report details the development of the Groundwater Geochemistry ROM for the Edwards Aquifer at PNNL. The Groundwater Geochemistry ROM for the Edwards Aquifer uses a Wellbore Leakage ROM developed at LANL as input. The detailed model, using the STOMP simulator, covers a 5x8 km area of the Edwards Aquifer near San Antonio, Texas. The model includes heterogeneous hydraulic properties, and equilibrium, kinetic and sorption reactions between groundwater, leaked CO2 gas, brine, and the aquifer carbonate and clay minerals. Latin Hypercube sampling was used to generate 1024 samples of input parameters. For each of these input samples, the STOMP simulator was used to predict the flux of CO2 to the atmosphere, and the volume, length and width of the aquifer where pH was less than the MCL standard, and TDS, arsenic, cadmium and lead exceeded MCL standards. In order to decouple the Wellbore Leakage ROM from the Groundwater Geochemistry ROM, the response surface was transformed to replace Wellbore Leakage ROM input parameters with instantaneous and cumulative CO2 and brine leakage rates. The most sensitive parameters proved to be the CO2 and brine leakage rates from the well, with equilibrium coefficients for calcite and dolomite, as well as the number of illite and kaolinite sorption sites proving to be of secondary importance. The Groundwater Geochemistry ROM was developed using nonlinear regression to fit the response surface with a quadratic polynomial. The goodness of fit was excellent for the CO2 flux to the atmosphere, and very good for predicting the volumes of groundwater exceeding the pH, TDS, As, Cd and Pb threshold values.

  11. Method of removing hydrogen sulfide from gases utilizing a zinc oxide sorbent and regenerating the sorbent

    DOE Patents [OSTI]

    Jalan, Vinod M. (Concord, MA); Frost, David G. (Maynard, MA)

    1984-01-01

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500.degree. C. to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent.

  12. Dispersion toughened silicon carbon ceramics

    DOE Patents [OSTI]

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  13. Covalent functionalization of metal oxide and carbon nanostructures with polyoctasilsesquioxane (POSS) and their incorporation in polymer composites

    SciTech Connect (OSTI)

    Gomathi, A.; Gopalakrishnan, K.; Rao, C.N.R.

    2010-12-15

    Polyoctasilsesquioxane (POSS) has been employed to covalently functionalize nanostructures of TiO{sub 2}, ZnO and Fe{sub 2}O{sub 3} as well as carbon nanotubes, nanodiamond and graphene to enable their dispersion in polar solvents. Covalent functionalization of these nanostructures with POSS has been established by electron microscopy, EDAX analysis and infrared spectroscopy. On heating the POSS-functionalized nanostructures, silica-coated nanostructures are obtained. POSS-functionalized nanoparticles of TiO{sub 2}, Fe{sub 2}O{sub 3} and graphite were utilized to prepare polymer-nanostructure composites based on PVA and nylon-6,6.

  14. Effect of Organic Capping Layers over Monodisperse Platinum Nanoparticles upon Activity for Ethylene Hydrogenation and Carbon Monoxide Oxidation

    SciTech Connect (OSTI)

    Kuhn, John N.; Tsung, Chia-Kuang; Huang, Wenyu; Somorjai, Gabor A.

    2009-03-24

    The influence of oleylamine (OA), trimethyl tetradecyl ammonium bromide (TTAB), and polyvinlypyrrolidone (PVP) capping agents upon the catalytic properties of Pt/silica catalysts was evaluated. Pt nanoparticles that were 1.5 nm in size were synthesized by the same procedure (ethylene glycol reduction under basic conditions) with the various capping agents added afterward for stabilization. Before examining catalytic properties for ethylene hydrogenation and CO oxidation, the Pt NPs were deposited onto mesoporous silica (SBA-15) supports and characterized by transmission electron microscopy (TEM), H{sub 2} chemisorption, and elemental analysis (ICP-MS). PVP- and TTAB-capped Pt yielded mass-normalized reaction rates that decreased with increasing pretreatment temperature, and this trend was attributed to the partial coverage of the Pt surface with decomposition products from the organic capping agent. Once normalized to the Pt surface area, similar intrinsic activities were obtained regardless of the pretreatment temperature, which indicated no influence on the nature of the active sites. Consequently, a chemical probe technique using intrinsic activity for ethylene hydrogenation was demonstrated as an acceptable method for estimating the metallic surface areas of Pt. Amine (OA) capping exhibited a detrimental influence on the catalytic properties as severe deactivation and low activity were observed for ethylene hydrogenation and CO oxidation, respectively. These results were consistent with amine groups being strong poisons for Pt surfaces, and revealed the need to consider the effects of capping agents on the catalytic properties.

  15. Zirconia-based potentiometric sensor using a pair of oxide electrodes for selective detection of carbon monoxide

    SciTech Connect (OSTI)

    Miura, Norio; Raisen, Takahisa; Lu, Geyu; Yamazoe, Noboru

    1997-07-01

    A high-performance solid-state compact gas sensor to detect CO has been needed for monitoring and controlling the combustion condition of gas appliances. By using a pair of oxide electrodes, a stabilized-zirconia-based sensor was developed for selective detection of CO at high temperature. Among the oxide pair examined, the combination of CdO and SnO{sub 2} was best suited for the electrode couple, giving quick and selective response to CO in air at 600 C. The 90% response and the 90% recovery times of the sensor to 200 ppm CO was as short as ca. 8 and 10 s, respectively, at 600 C. The EMF value was linearly related with the logarithm of CO concentration in the range of 20 to 4,000 ppm. Moreover, the cross-sensitivities to other gases, such as H{sub 2}, NO, NO{sub 2}, CO{sub 2}, O{sub 2}, and H{sub 2}O, were small or insignificant.

  16. Preparation of high nitrogen compound and materials therefrom

    DOE Patents [OSTI]

    Huynh, My Hang V. (Los Alamos, NM); Hiskey, Michael A. (Los Alamos, NM)

    2006-10-10

    The high-nitrogen compound of the formula ##STR00001## was prepared. Pyrolysis of the compound yields carbon nitrides C.sub.2N.sub.3 and C.sub.3N.sub.5. The carbon nitrides vary in their density, texture, and morphology.

  17. Near-ambient X-ray photoemission spectroscopy and kinetic approach to the mechanism of carbon monoxide oxidation over lanthanum substituted cobaltites

    E-Print Network [OSTI]

    Hueso, J. L.

    2010-01-01

    XPS measurements 2.3. Catalytic oxidation tests of CO 2.4.background [27] and [28]. 2.3. Catalytic oxidation testsof CO Catalytic oxidation experiments of CO were carried out

  18. Reduction of iron-oxide-carbon composites: part II. Rates of reduction of composite pellets in a rotary hearth furnace simulator

    SciTech Connect (OSTI)

    Halder, S.; Fruehan, R.J. [Praxair Inc., Tonawanda, NY (United States). Praxair Technological Center

    2008-12-15

    A new ironmaking concept is being proposed that involves the combination of a rotary hearth furnace (RHF) with an iron-bath smelter. The RHF makes use of iron-oxide-carbon composite pellets as the charge material and the final product is direct-reduced iron (DRI) in the solid or molten state. This part of the research includes the development of a reactor that simulated the heat transfer in an RHF. The external heat-transport and high heating rates were simulated by means of infrared (IR) emitting lamps. The reaction rates were measured by analyzing the off-gas and computing both the amount of CO and CO{sub 2} generated and the degree of reduction. The reduction times were found to be comparable to the residence times observed in industrial RHFs. Both artificial ferric oxide (PAH) and naturally occurring hematite and taconite ores were used as the sources of iron oxide. Coal char and devolatilized wood charcoal were the reductants. Wood charcoal appeared to be a faster reductant than coal char. However, in the PAH-containing pellets, the reverse was found to be true because of heat-transfer limitations. For the same type of reductant, hematite-containing pellets were observed to reduce faster than taconite-containing pellets because of the development of internal porosity due to cracking and fissure formation during the Fe2O{sub 3}-to-Fe3O{sub 4} transition. This is, however, absent during the reduction of taconite, which is primarily Fe3O{sub 4}. The PAH-wood-charcoal pellets were found to undergo a significant amount of swelling at low-temperature conditions, which impeded the external heat transport to the lower layers. If the average degree of reduction targeted in an RHF is reduced from 95 to approximately 70 pct by coupling the RHF with a bath smelter, the productivity of the RHF can be enhanced 1.5 to 2 times. The use of a two- or three-layer bed was found to be superior to that of a single layer, for higher productivities.

  19. Method and apparatus for preparation of spherical metal carbonates and lithium metal oxides for lithium rechargeable batteries

    DOE Patents [OSTI]

    Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

    2008-10-14

    A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling. Another aspect of the invention includes materials with the composition Li.sub.1+xNi.sub..alpha.Co.sub..beta.Mn.sub..gamma.M'.sub..delta.O.sub.yF- .sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti), where the x is between 0 and 0.2, the .alpha. between 0 and 1, the .beta. between 0 and 1, the .gamma. between 0 and 2, the .delta. between about 0 and about 0.2, the y is between 2 and 4, and the z is between 0 and 0.5.

  20. Fluidized-bed copper oxide process

    SciTech Connect (OSTI)

    Shah, P.P.; Takahashi, G.S.; Leshock, D.G.

    1991-10-14

    The fluidized-bed copper oxide process was developed to simultaneously remove sulfur dioxide and nitrogen oxide contaminants from the flue gas of coal-fired utility boilers. This dry and regenerable process uses a copper oxide sorbent in a fluidized-bed reactor. Contaminants are removed without generating waste material. (VC)

  1. Basic Engineering Research for D and D of R Reactor Storage Pond Sludge: Electrokinetics, Carbon Dioxide Extraction, and Supercritical Water Oxidation

    SciTech Connect (OSTI)

    Michael A. Matthews; David A. Bruce,; Thomas A. Davis; Mark C. Thies; John W. Weidner; Ralph E. White

    2002-04-01

    Large quantities of mixed low level waste (MLLW) that fall under the Toxic Substances Control Act (TSCA) exist and will continue to be generated during D and D operations at DOE sites across the country. The standard process for destruction of MLLW is incineration, which has an uncertain future. The extraction and destruction of PCBs from MLLW was the subject of this research Supercritical Fluid Extraction (SFE) with carbon dioxide with 5% ethanol as cosolvent and Supercritical Waster Oxidation (SCWO) were the processes studied in depth. The solid matrix for experimental extraction studies was Toxi-dry, a commonly used absorbent made from plant material. PCB surrogates were 1.2,4-trichlorobenzene (TCB) and 2-chlorobiphenyl (2CBP). Extraction pressures of 2,000 and 4,000 psi and temperatures of 40 and 80 C were studied. Higher extraction efficiencies were observed with cosolvent and at high temperature, but pressure little effect. SCWO treatment of the treatment of the PCB surrogates resulted in their destruction below detection limits.

  2. Modeling the Oxidative Capacity of the Atmosphere of the South Coast

    E-Print Network [OSTI]

    Dabdub, Donald

    of the complex chemistry involving volatile organic compounds (VOCs) and oxides of nitrogen (NOx ) nitrogen oxide (NO) + nitrogen dioxide (NO2))(1).O3 productionisinitiatedbyreactionsthatgenerate HOx radicals Air Basin of California (SoCAB). P(O3) indicates the rapid nature of O3 formation under peak

  3. Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes

    E-Print Network [OSTI]

    Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes Yonghoon Choi and Yang Wang Department of Geological Sciences, Florida State. Measurements of stable carbon isotopic ratios as well as carbon (C), nitrogen (N), and phosphorus (P) contents

  4. Bioengineering nitrogen acquisition in rice

    E-Print Network [OSTI]

    Kronzucker, Herbert J.

    gas prices caused the price of nitrogen fertilizer to nearly double.(7) Increased nitrogen use is also nitrogen application is not an ideal solution, partly from a cost perspective--in 2001, increased natural

  5. A physiological and morphological analysis of the effects of nitrogen supply on the relative growth rates of nine loblolly pine (Pinus taeda L.) clones 

    E-Print Network [OSTI]

    Stover, Corey Michael

    2006-08-16

    The influence of nitrogen supply on relationships of relative growth rate (RGR) to leaf physiology, structural and non-structural carbon partitioning, and nitrogen- and water-use efficiencies were examined in loblolly pine (Pinus taeda L.) clonal...

  6. Mechanism-Based Design of Green Oxidation Catalysts

    SciTech Connect (OSTI)

    Rybak-Akimova, Elena

    2015-03-16

    In modern era of scarce resources, developing chemical processes that can eventually generate useful materials and fuels from readily available, simple, cheap, renewable starting materials is of paramount importance. Small molecules, such as dioxygen, dinitrogen, water, or carbon dioxide, can be viewed as ideal sources of oxygen, nitrogen, or carbon atoms in synthetic applications. Living organisms perfected the art of utilizing small molecules in biosynthesis and in generating energy; photosynthesis, which couples carbohydrate synthesis from carbon dioxide with photocatalytic water splitting, is but one impressive example of possible catalytic processes. Small molecule activation in synthetic systems remains challenging, and current efforts are focused on developing catalytic reactions that can convert small molecules into useful building blocks for generating more complicated organic molecules, including fuels. Modeling nature is attractive in many respects, including the possibility to use non-toxic, earth-abundant metals in catalysis. Specific systems investigated in our work include biomimetic catalytic oxidations with dioxygen, hydrogen peroxide, and related oxygen atom donors. More recently, a new direction was been also pursued in the group, fixation of carbon dioxide with transition metal complexes. Mechanistic understanding of biomimetic metal-catalyzed oxidations is critical for the design of functional models of metalloenzymes, and ultimately for the rational synthesis of useful, selective and efficient oxidation catalysts utilizing dioxygen and hydrogen peroxide as terminal oxidants. All iron oxidases and oxygenases (both mononuclear and dinuclear) utilize metal-centered intermediates as reactive species in selective substrate oxidation. In contrast, free radical pathways (Fenton chemistry) are common for traditional inorganic iron compounds, producing hydroxyl radicals as very active, non-selective oxidants. Recent developments, however, changed this situation. Growing families of synthetic iron complexes that resemble active sites of metalloenzymes produce metal-based intermediates (rather than hydroxyl radicals) in reactions with oxygen donors. These complexes are very promising for selective oxygen and peroxide activation. In order to understand the mechanisms of metal-based small molecule activation, kinetically competent metal-oxygen intermediates must be identified. One of the grand challenges identified by the Department of Energy workshop "Catalysis for Energy" is understanding mechanisms and dynamics of catalyzed reactions. The research summarized herein focuses on detailed characterization of the formation and reactivity of various iron-peroxo- and iron-oxo intermediates that are involved in catalysis. Rates of rapid reactions were studied at low temperatures by a specialized technique termed cryogenic stopped-flow spectrophotometry. These measurements identified reaction conditions which favor the formation of catalytically competent oxidants. Chemical structures of reactive complexes was determined, and new, efficient catalysts for hydrocarbon oxidation were synthesized. Importantly, these catalysts are selective, they promote oxidation of hydrocarbons at a specific site. The catalysts are also efficient and robust, hundreds of cycles of substrate oxidation occur within minutes at room temperature. Furthermore, they enable utilization of environmentally friendly oxidants, such as hydrogen peroxide, which produces water as the only byproduct. Mechanistic insights uncovered the role of various acid-containing additives in catalytic oxidations. Proton delivery to the active catalytic sites facilitated oxidations, similarly to the catalytic pathways in metal-containing enzymes. Under certain conditions, two metals in one complex can act in concert, modeling the reactivity of a bacterial enzyme which converts methane into methanol. In related studies, a family of nickel complexes that react with carbon dioxide at the rates comparable to enzyme carbonic anhydrase, was discovered. Sequestration and che

  7. Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds

    E-Print Network [OSTI]

    Rondin, L; Slablab, A; Treussart, F; Bergonzo, P; Perruchas, S; Gacoin, T; Chaigneau, M; Chang, H -C; Jacques, V; Roch, J -F

    2010-01-01

    We present a study of the charge state conversion of single nitrogen-vacancy (NV) defects hosted in nanodiamonds whose size ranges from 10 nm to 100 nm. We first show that after irradiation and annealing of the nanodiamond powder, the proportion of negatively-charged NV- defects, with respect to its neutral counterpart NV0, decreases with the size of the nanoparticle. We propose a simple model based on a layer of electron traps located at the nanodiamond surface which is in good agreement with the statistics we recorded. By using thermal oxidation to remove the shell of amorphous carbon around the nanodiamonds, we achieve a significant increase of the proportion of NV- defects in approximately 10-nm nanodiamonds. These results demonstrate the importance of controlling the nanodiamond surface for the development of the numerous applications of NV centers which are made possible by their unique photostability and spin properties.

  8. Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds

    E-Print Network [OSTI]

    L. Rondin; G. Dantelle; A. Slablab; F. Grosshans; F. Treussart; P. Bergonzo; S. Perruchas; T. Gacoin; M. Chaigneau; H. -C. Chang; V. Jacques; J. -F. Roch

    2010-10-19

    We present a study of the charge state conversion of single nitrogen-vacancy (NV) defects hosted in nanodiamonds (NDs). We first show that the proportion of negatively-charged NV$^{-}$ defects, with respect to its neutral counterpart NV$^{0}$, decreases with the size of the ND. We then propose a simple model based on a layer of electron traps located at the ND surface which is in good agreement with the recorded statistics. By using thermal oxidation to remove the shell of amorphous carbon around the NDs, we demonstrate a significant increase of the proportion of NV$^{-}$ defects in 10-nm NDs. These results are invaluable for further understanding, control and use of the unique properties of negatively-charged NV defects in diamond

  9. Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate

    DOE Patents [OSTI]

    Liu, D. Kwok-Keung; Chang, Shih-Ger

    1987-08-25

    The present invention relates to a method of removing of nitrogen monoxide from a nitrogen monoxide-containing gas which method comprises contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate complex. The NO absorption efficiency of ferrous urea-dithiocarbamate and ferrous diethanolamine-xanthate as a function of time, oxygen content and solution ph is presented. 3 figs., 1 tab.

  10. Probing Hot Electron Flow Generated on Pt Nanoparticles with Au/TiO2 Schottky Diodes during Catalytic CO Oxidation

    E-Print Network [OSTI]

    Park, Jeong Y.

    2009-01-01

    Schottky Diodes during Catalytic CO Oxidation Jeong Y. Parkwere measured during catalytic CO oxidation at pressures ofexothermic catalytic carbon monoxide oxidation was directly

  11. Membrane-augmented cryogenic methane/nitrogen separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid (Menlo Park, CA)

    1997-01-01

    A membrane separation process combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C.sub.3+ hydrocarbons that might otherwise freeze and plug the cryogenic equipment.

  12. Membrane-augmented cryogenic methane/nitrogen separation

    DOE Patents [OSTI]

    Lokhandwala, K.

    1997-07-15

    A membrane separation process is described which is combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C{sub +2} hydrocarbons that might otherwise freeze and plug the cryogenic equipment. 10 figs.

  13. Nitrogen Trifluoride-Based Fluoride- Volatility Separations Process: Initial Studies

    SciTech Connect (OSTI)

    McNamara, Bruce K.; Scheele, Randall D.; Casella, Andrew M.; Kozelisky, Anne E.

    2011-09-28

    This document describes the results of our investigations on the potential use of nitrogen trifluoride as the fluorinating and oxidizing agent in fluoride volatility-based used nuclear fuel reprocessing. The conceptual process uses differences in reaction temperatures between nitrogen trifluoride and fuel constituents that produce volatile fluorides to achieve separations and recover valuable constituents. We provide results from our thermodynamic evaluations, thermo-analytical experiments, kinetic models, and provide a preliminary process flowsheet. The evaluations found that nitrogen trifluoride can effectively produce volatile fluorides at different temperatures dependent on the fuel constituent.

  14. Analysis of the relationship between H{sub 2}S removal capacity and surface properties of unimpregnated activated carbons

    SciTech Connect (OSTI)

    Adib, F.; Bagreev, A.; Bandosz, T.J.

    2000-02-15

    The H{sub 2}S breakthrough capacity was measured on two series of activated carbons of a coconut shell and a bituminous coal origins. To broaden the spectrum of surface features the samples were oxidized using nitric acid or ammonium persulfate under conditions chosen to preserve their pore structures. Then the carbons were characterized using Boehm titration, potentiometric titration, thermal analysis, temperature programmed desorption, sorption of nitrogen, and sorption of water. It was found that the choice of unimpregnated carbon for application as H{sub 2}S adsorbent should be made based on parameters of its acidity such as number of acidic groups, pH of surface, amount of surface groups oxygen, or weight loss associated to decomposition of surface oxygen species. The results obtained from the analyses of six unimpregnated carbon samples suggest that there are certain threshold values of these quantities which, when exceeded, have a dramatic effect on the H{sub 2}S breakthrough capacity.

  15. The biogeochemistry of marine nitrous oxide

    E-Print Network [OSTI]

    Frame, Caitlin H

    2011-01-01

    Atmospheric nitrous oxide N?O concentrations have been rising steadily for the past century as a result of human activities. In particular, human perturbation of the nitrogen cycle has increased the N?O production rates ...

  16. Turn-on fluorescent probes for detecting nitric oxide in biology

    E-Print Network [OSTI]

    McQuade, Lindsey Elizabeth, 1981-

    2010-01-01

    Chapter 1. Investigating the Biological Roles of Nitric Oxide and Other Reactive Nitrogen Species Using Fluorescent Probes: This chapter presents an overview of recent progress in the field of reactive nitrogen species ...

  17. THE ROLE OF SOOT PARTICLES AND NOx IN THE OXIDATION OF SO2 IN AQUEOUS SOLUTION: KINETICS, MECHANISM, AND IMPACT ON SULFATE AEROSOL FORMATION

    E-Print Network [OSTI]

    Chang, S.G.

    2013-01-01

    kinetic data for the catalytic oxidation of S02 by variousdata indicate that catalytic oxidation of S02 on carbon

  18. Study of fuel-nitrogen reactions in rich, premixed flames

    SciTech Connect (OSTI)

    Roby, R.J.

    1988-01-01

    The formation and removal of nitrogen-containing species involved in fuel-nitrogen reactions have been studied in atmospheric-pressure fuel-rich hydrogen/oxygen/argon flames. The fuel-nitrogen reaction mechanism was investigated by addition of ammonia, nitric oxide, or hydrogen cyanide alone or with various hydrocarbons to a base flame. Profiles of stable nitrogen species and hydroxyl radical were measured in the post-flame gases. Results show that an initial rapid decay of nitric oxide added to a hydrogen/oxygen/argon flame to approximately 60% of its initial value occurs within 1.0 mm of the burner surface (0.5 msec). The primary reaction for removal of nitric oxide was found to be H + NO + M = HNO + M. The reaction of nitric oxide with various hydrocarbons to form hydrogen cyanide was found to be first order in both the initial hydrocarbon concentration and the initial nitric oxide concentration. A kinetic model was developed that only partially predicts the results obtained. Analysis showed that, by varying the heat of formation of imidogen within the limits of its uncertainty, agreement between the calculations and the data could be improved for nitric oxide and nitrogen. However, the amine, nitrous oxide and hydrogen cyanide profiles were found not to be significantly affected. The significant discrepancy between the measured and calculated ammonia profiles is discussed in terms of the model predictions of both the ammonia formation and decay rates. The reaction: NM + H = N + H/sub 2/ is identified as a key rate-controlling step for removal of amine species in these flames. Evidence from the data and theoretical calculations suggests that the rate of this reaction at the current flame conditions may be as much as a factor of ten slower than the previously reported value.

  19. Method for hot pressing beryllium oxide articles

    DOE Patents [OSTI]

    Ballard, Ambrose H. (Oak Ridge, TN); Godfrey, Jr., Thomas G. (Oak Ridge, TN); Mowery, Erb H. (Clinton, TN)

    1988-01-01

    The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide-lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.

  20. Preparation of activated carbons with mesopores by use of organometallics

    SciTech Connect (OSTI)

    Yamada, Yoshio; Yoshizawa, Noriko; Furuta, Takeshi [National Institute for Resources and Environment, Tsukuba, Ibaraki (Japan)] [and others

    1996-12-31

    Activated carbons are commercially produced by steam or CO{sub 2} activation of coal, coconut shell and so on. In general the carbons obtained give pores with a broad range of distribution. The objective of this study was to prepare activated carbons from coal by use of various organometallic compounds. The carbons were evaluated for pore size by nitrogen adsorption experiments.

  1. Nitrogen is a deep acceptor in ZnO

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence bandmore »relative to the vacuum level.« less

  2. Protective effects of pulmonary epithelial lining fluid on oxidative stress and DNA single-strand breaks caused by ultrafine carbon black, ferrous sulphate and organic extract of diesel exhaust particles

    SciTech Connect (OSTI)

    Chuang, Hsiao-Chi [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China) [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Cheng, Yi-Ling; Lei, Yu-Chen [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China)] [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chang, Hui-Hsien [Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)] [Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Cheng, Tsun-Jen, E-mail: tcheng@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China) [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2013-02-01

    Pulmonary epithelial lining fluid (ELF) is the first substance to make contact with inhaled particulate matter (PM) and interacts chemically with PM components. The objective of this study was to determine the role of ELF in oxidative stress, DNA damage and the production of proinflammatory cytokines following physicochemical exposure to PM. Ultrafine carbon black (ufCB, 15 nm; a model carbonaceous core), ferrous sulphate (FeSO{sub 4}; a model transition metal) and a diesel exhaust particle (DEP) extract (a model organic compound) were used to examine the acellular oxidative potential of synthetic ELF and non-ELF systems. We compared the effects of exposure to ufCB, FeSO{sub 4} and DEP extract on human alveolar epithelial Type II (A549) cells to determine the levels of oxidative stress, DNA single-strand breaks and interleukin-8 (IL-8) production in ELF and non-ELF systems. The effects of ufCB and FeSO{sub 4} on the acellular oxidative potential, cellular oxidative stress and DNA single-strand breakage were mitigated significantly by the addition of ELF, whereas there was no decrease following treatment with the DEP extract. There was no significant effect on IL-8 production following exposure to samples that were suspended in ELF/non-ELF systems. The results of the present study indicate that ELF plays an important role in the initial defence against PM in the pulmonary environment. Experimental components, such as ufCB and FeSO{sub 4}, induced the production of oxidative stress and led to DNA single-strand breaks, which were moderately prevented by the addition of ELF. These findings suggest that ELF plays a protective role against PM-driven oxidative stress and DNA damage. -- Highlights: ? To determine the role of ELF in ROS, DNA damage and IL-8 after exposure to PM. ? ufCB, FeSO{sub 4} and DEP extract were used to examine the protective effects of ELF. ? PM-driven oxidative stress and DNA single-strand breakage were mitigated by ELF. ? The findings suggest that ELF has a protective role against PM. ? The synthetic ELF system could reduce the use of animals in PM-driven ROS testing.

  3. Exocyclic Carbons Adjacent to the N[superscript 6] of Adenine are Targets for Oxidation by the Escherichia coli Adaptive Response Protein AlkB

    E-Print Network [OSTI]

    Li, Deyu

    The DNA and RNA repair protein AlkB removes alkyl groups from nucleic acids by a unique iron- and ?-ketoglutarate-dependent oxidation strategy. When alkylated adenines are used as AlkB targets, earlier work suggests that ...

  4. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOE Patents [OSTI]

    Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  5. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  6. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  7. Thermal NF3 fluorination/oxidation of cobalt, yttrium, zirconium, and selected lanthanide oxides

    SciTech Connect (OSTI)

    Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.; Kozelisky, Anne E.; Neiner, Doinita

    2013-02-01

    This paper presents results of our continuing investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. This article focuses on fission products that do not have volatile fluorides or oxyfluorides at expected operations temperatures. Our thermodynamic calculations show that nitrogen trifluoride has the potential to completely fluorinate fission product oxides to their fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of cobalt, zirconium, and the lanthanides are fluorinated but do not form volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550°C. Our studies of gadolinium-doped commercial nuclear fuel indicate that nitrogen trifluoride can extract uranium from the non-volatile gadolinium.

  8. Incidence of High Nitrogen in Sintered Uranium Dioxide: A Case Study

    SciTech Connect (OSTI)

    Balakrishna, Palanki; Murty, B. Narasimha; Anuradha, M.; Yadav, R.B.; Jayaraj, R.N

    2005-05-15

    Nitrogen content, above the specified limit of 75 {mu}g(gU){sup -1}, was encountered in sintered uranium dioxide in the course of its manufacture. The cause was traced to the sintering process, wherein carbon, a degradation product of the die wall or admixed lubricant, was retained in the compact as a result of inadvertent reversal of gas flow in the sintering furnace. In the presence of carbon, the uranium dioxide reacted with nitrogen from the furnace atmosphere to form nitride. The compacts with high nitrogen were also those with low sintered density, arising from low green density. The low green density was due to filling problems of an inhomogeneous powder. The experiments carried out establish the causes of high nitrogen to be the carbon residue from lubricant when the UO{sub 2} is sintered in a cracked ammonia atmosphere.

  9. Nitrogen doping of chemical vapor deposition grown graphene on 4H-SiC (0001)

    SciTech Connect (OSTI)

    Urban, J. M.; Binder, J.; Wysmo?ek, A.; D?browski, P.; Strupi?ski, W.; Kopciuszy?ski, M.; Ja?ochowski, M.; Klusek, Z.

    2014-06-21

    We present optical, electrical, and structural properties of nitrogen-doped graphene grown on the Si face of 4H-SiC (0001) by chemical vapor deposition method using propane as the carbon precursor and N{sub 2} as the nitrogen source. The incorporation of nitrogen in the carbon lattice was confirmed by X-ray photoelectron spectroscopy. Angle-resolved photoemission spectroscopy shows carrier behavior characteristic for massless Dirac fermions and confirms the presence of a graphene monolayer in the investigated nitrogen-doped samples. The structural and electronic properties of the material were investigated by Raman spectroscopy. A systematical analysis of the graphene Raman spectra, including D, G, and 2D bands, was performed. In the case of nitrogen-doped samples, an electron concentration on the order of 5–10 × 10{sup 12}?cm{sup ?2} was estimated based upon Raman and Hall effect measurements and no clear dependence of the carrier concentration on nitrogen concentration used during growth was observed. This high electron concentration can be interpreted as both due to the presence of nitrogen in graphitic-like positions of the graphene lattice as well as to the interaction with the substrate. A greater intensity of the Raman D band and increased inhomogeneity, as well as decreased electron mobility, observed for nitrogen-doped samples, indicate the formation of defects and a modification of the growth process induced by nitrogen doping.

  10. Carbon films produced from ionic liquid carbon precursors

    DOE Patents [OSTI]

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  11. Vitiated ethane oxidation in a high-pressure flow reactor

    SciTech Connect (OSTI)

    Walters, K.M.; Bowman, C.T.

    2009-10-15

    Vitiated combustion processes offer the potential to improve the thermodynamic efficiency in hydrocarbon-fueled combustion systems, providing a subsequent decrease in energy-specific CO{sub 2} emissions along with a decrease in the emission levels of nitrogen oxides (NO{sub x}) and particulate matter. The present work comprises an experimental and modeling study of vitiated ethane oxidation in a high-pressure flow reactor, with pressures of 1-6 bar, O{sub 2} mole fractions of 3.5-7.0%, temperatures of 1075-1100 K and 15-18 mole.% H{sub 2}O. Time-history measurements of species are used to characterize the overall rate of reaction and track the fuel-carbon through intermediate and product species. A one-dimensional mixing-reacting model that accounts for partial oxidation during reactant mixing is used in conjunction with a detailed kinetic mechanism. Changes in competing pathways due to variations in pressure and O{sub 2} mole fraction give rise to the complex pressure dependence seen in the experiments. (author)

  12. Reduction of Metal Oxides by Microwave Heating of Multi-walled...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reduction of Metal Oxides by Microwave Heating of Multi-walled Carbon Nanotubes Microwave heating of a metal oxide in the presence of multi-walled carbon nanotubes may result in...

  13. Activated carbon aerogels

    SciTech Connect (OSTI)

    Hanzawa, Y.; Kaneko, K. [Chiba Univ. (Japan)] [Chiba Univ. (Japan); Pekala, R.W. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); Dresselhaus, M.S. [Massachusetts Inst. of Technology, Cambridge, MA (United States)] [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1996-12-25

    Activated carbon aerogels were obtained from the CO{sub 2} activation of the carbon aerogels. The adsorption isotherms of nitrogen on activated carbon aerogels at 77 K were measured and analyzed by the high-resolution {alpha}{sub s} plot to evaluate their porosities. The {alpha}{sub s} plot showed an upward deviation from linearity below {alpha}{sub s} = 0.5, suggesting that the presence of micropores becomes more predominant with the extent of the activation. Activation increased noticeably the pore volume and the surface area (the maximum value: 2600 m{sup 2}.g{sup -1}) without change of the basic network structure of primary particles. Activated carbon aerogels had a bimodal pore size distribution of uniform micropores and mesopores. 16 refs., 2 figs., 1 tab.

  14. Nitrogen isotope effects on glutamate decarboxylase from Escherichia coli

    SciTech Connect (OSTI)

    Abell, L.M.; O'Leary, M.H.

    1988-05-03

    The nitrogen isotope effect on the decarboxylation of glutamic acid by glutamate decarboxylase from Escherichia coli has been measured by comparison of the isotopic composition of the amino nitrogen of the product ..gamma..-aminobutyric acid isolated after 10-20% reaction with that of the starting glutamic acid. At pH 4.7, 37 /sup 0/C, the isotope effect is k/sup 14//k/sup 15/ = 0.9855 +/- 0.0006 when compared to unprotonated glutamic acid. Interpretation of this result requires knowledge of the equilibrium nitrogen isotope effect for Schiff base formation. This equilibrium isotope effect is K/sup 14//K/sup 15/ - 0.9824 for the formation of the unprotonated Schiff base between unprotonated valine and salicylaldehyde. Analysis of the nitrogen isotope effect on decarboxylation of glutamic acid and of the previously measured carbon isotope effect on this same reaction shows that decarboxylation and Schiff base formation are jointly rate limiting. The enzyme-bound Schiff base between glutamate and pyridoxal 5'-phosphate partitions approximately 2:1 between decarboxylation and return to the starting state. The nitrogen isotope effect also reveals that the Schiff base nitrogen is protonated in this intermediate.

  15. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide...

    Office of Scientific and Technical Information (OSTI)

    Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1 Citation Details...

  16. Incorporation effect of nanosized perovskite LaFe?.?Co?.?O? on the electrochemical activity of Pt nanoparticles-multi walled carbon nanotube composite toward methanol oxidation

    SciTech Connect (OSTI)

    Noroozifar, Meissam; Khorasani-Motlagh, Mozhgan; Khaleghian-Moghadam, Roghayeh; Ekrami-Kakhki, Mehri-Saddat; Shahraki, Mohammad

    2013-05-01

    Nanosized perovskite LaFe?.?Co?.?O? (LFCO) is synthesized through conventional co-precipitation method and characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques. The incorporation effect of the mentioned perovskite to catalytic activity of the PtNPs-MWCNTs-nafion (or -chitosan) catalyst toward methanol oxidation has been studied by cyclic voltammetry. Based on the electrochemical studies, all MWCNTs-PtNPs-nafion (or chitosan) and MWCNTs-PtNPs-LFCO-nafion (or chitosan) catalysts show a considerable activity for methanol oxidation. However, a synergistic effect is observed when LFCO is added to the catalyst by decreasing the poisoning rate of the Pt catalyst. - Graphical abstract: Nanosized perovskite LaFe?.?Co?.?O? is synthesized and characterized. The incorporation effect of the mentioned perovskite to catalytic activity of the PtNPS-MWCNTs-nafion (or -chitosan) catalyst toward methanol oxidation is studied. Highlights: • Nanocrystalline LaFe?.?Co?.?O? (LFCO) is prepared by a new simple co-precipitation method. • Effect of LFCO to catalytic activity of PtNPS for methanol oxidation is studied. • A synergistic effect is observed when LFCO is added to the Pt catalyst. • Oxygen of LFCO could be considered as active oxygen to remove CO intermediates.

  17. Morphology of the surface of technically pure titanium VT1-0 after electroexplosive carbonization with a weighed zirconium oxide powder sample and electron beam treatment

    SciTech Connect (OSTI)

    Sosnin, Kirill V.; Raykov, Sergey V.; Vaschuk, Ekaterina S.; Budovskikh, Evgenie A. Gromov, Victor E.; Ivanov, Yuri F.

    2014-11-14

    Titanium is carbonized by the electroexplosive method. Formation of a surface alloyed layer and a coating on the treated surface is established by the methods of transmission electron microscopy. The morphology and elemental composition of the alloyed layer are analyzed. A dependence of the structure of the modified layer subjected to electron gun treatment on the absorbed power density is revealed.

  18. A Model of Transient Thermal Transport Phenomena Applied to the Carbonation and Calcination of a Sorbent Particle for Calcium Oxide Looping CO2 Capture

    E-Print Network [OSTI]

    equations for the four species of the system and one conservation of energy equation. Conservation of mass looping is selected as the model cycle because of its suitability for solar-driven carbon dioxide capture cycles are found in important industrial applications, including thermal energy storage, chemical

  19. Catalysis by Confinement: Enthalpic Stabilization of NO Oxidation Transition States by Micropororous and Mesoporous Siliceous

    E-Print Network [OSTI]

    Iglesia, Enrique

    . INTRODUCTION The homogeneous oxidation of nitric oxide (NO) to nitrogen dioxide (NO2) with O2 as the oxidant transformation in selective catalytic NOx reduction (SCR) by NH3 on metal- exchanged zeolites7-11 and in NOxCatalysis by Confinement: Enthalpic Stabilization of NO Oxidation Transition States

  20. The export of carbon mediated by mesopelagic fishes in the northeast Pacific Ocean

    E-Print Network [OSTI]

    Davison, Peter Charles

    2011-01-01

    Chapter 4. Carbon export mediated by mesopelagic fishes inLandry, M.R. , 2001. Active export of carbon and nitrogen atthat control particle export and flux attenuation in the

  1. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)", "Sulfur dioxide (short tons)",3978753 "Nitrogen oxide (short tons)",2411564 "Carbon dioxide (thousand metric tons)",2172355 "Sulfur dioxide (lbsMWh)",2 "Nitrogen oxide...

  2. Nitrogen fixation apparatus

    DOE Patents [OSTI]

    Chen, Hao-Lin (Walnut Creek, CA)

    1984-01-01

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

  3. ARM - Measurement - Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Roomparticlecontent ARMgovMeasurementsNitrogen ARM Data

  4. Biomass Production and Nitrogen Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Peer Review WBS 4.2.2.10: Biomass Production and Nitrogen Recovery Date: March 23, 2015 Technology Area Review: Sustainability Principal Investigator: M. Cristina Negri...

  5. The response of soil CO2 ux to changes in atmospheric CO2, nitrogen supply and plant diversity

    E-Print Network [OSTI]

    Thomas, David D.

    The response of soil CO2 ¯ux to changes in atmospheric CO2, nitrogen supply and plant diversity J O. Paul, MN 55108 USA Abstract We measured soil CO2 ¯ux over 19 sampling periods that spanned two growing three major anthropogenic global changes: atmos- pheric carbon dioxide (CO2) concentration, nitrogen (N

  6. Hard carbon nitride and method for preparing same

    DOE Patents [OSTI]

    Haller, E.E.; Cohen, M.L.; Hansen, W.L.

    1992-05-05

    Novel crystalline [alpha](silicon nitride-like)-carbon nitride and [beta](silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate. 1 figure.

  7. ZIRCONIA-BASED MIXED POTENTIAL CARBON MONOXIDE/HYDROCARBON SENSORS WITH LANTHANUM MAGNESIUM OXIDE, AND TERBIUM-DOPED YTTRIUM STABILIZED ZIRCONIA ELECTRODES

    SciTech Connect (OSTI)

    E. L. BROSHA; R. MUKUNDAN; ET AL

    2000-10-01

    We have investigated the performance of dual metal oxide electrode mixed potential sensors in an engine-out, dynamometer environment. Sensors were fabricated by sputtering thin films of LaMnO{sub 3} and Tb-doped YSZ onto YSZ electrolyte. Au gauze held onto the metal oxide thin films with Au ink was used for current collection. The exhaust gas from a 4.8L, V8 engine operated in open loop, steady-state mode around stoichiometry at 1500 RPM and 50 Nm. The sensor showed a stable EMF response (with no hysteresis) to varying concentrations of total exhaust gas HC content. The sensor response was measured at 620 and 670 C and shows temperature behavior characteristic of mixed potential-type sensors. The results of these engine-dynamometer tests are encouraging; however, the limitations associated with Au current collection present the biggest impediment to automotive use.

  8. Fly Ash and Mercury Oxidation/Chlorination Reactions

    SciTech Connect (OSTI)

    Sukh Sidhu; Patanjali Varanasi

    2008-12-31

    Mercury is a known pollutant that has detrimental effect on human health and environment. The anthropogenic emissions of mercury account for 10 to 30% of worldwide mercury emissions. There is a need to control/reduce anthropogenic mercury emissions. Many mercury control technologies are available but their effectiveness is dependent on the chemical form of mercury, because different chemical forms of mercury have different physical and chemical properties. Mercury leaves the boiler in its elemental form but goes through various transformations in the post-combustion zone. There is a need to understand how fly ash and flue gas composition affect speciation, partitioning, and reactions of mercury under the full range of post-combustion zone conditions. This knowledge can then be used to predict the chemical transformation of mercury (elemental, oxidized or particulate) in the post combustion zone and thus help with the control of mercury emissions from coal-burning power plants. To accomplish this goal present study was conducted using five coal fly ashes. These ashes were characterized and their catalytic activity was compared under selected reaction conditions in a fixed bed reactor. Based on the results from these fly ash experiments, three key components (carbon, iron oxide and calcium oxide) were chosen. These three components were then used to prepare model fly ashes. Silica/alumina was used as a base for these model fly ashes. One, two or three component model fly ashes were then prepared to investigate mercury transformation reactions. The third set of experiments was performed with CuO and CuCl2 catalysts to further understand the mercury oxidation process. Based on the results of these three studies the key components were predicted for different fly ash compositions under variety of flue gas conditions. A fixed bed reactor system was used to conduct this study. In all the experiments, the inlet concentration of Hg0(g) was maintained at 35 {micro}g/m3 using a diffusion tube as the source of Hg0(g). All experiments were conducted using 4% O2 in nitrogen mix as a reaction gas, and other reactants (HCl, H2O and SO2, NO2, Br2) were added as required. The fixed bed reactor was operated over a temperature range of 200 to 400 C. In each experiment, the reactor effluent was analyzed using the modified Ontario-Hydro method. After each experiment, fly ash particles were also analyzed for mercury. The results show that the ability of fly ash to adsorb and/or oxidize mercury is primarily dependent on its carbon, iron and calcium content. There can be either one or more than one key component at a particular temperature and flue gas condition. Surface area played a secondary role in effecting the mercury transformations when compared to the concentration of the key component in the fly ash. Amount of carbon and surface area played a key important role in the adsorption of mercury. Increased concentration of gases in the flue gas other than oxygen and nitrogen caused decreased the amount of mercury adsorbed on carbon surface. Mercury adsorption by iron oxide primarily depended on the crystalline structure of iron oxide. {alpha}-Iron oxide had no effect on mercury adsorption or oxidation under most of the flue gas conditions, but ?-iron oxide adsorbed mercury under most of the flue gas conditions. Bromine is a very good oxidizing agent for mercury. But in the presence of calcium oxide containing fly ashes, all the oxidized mercury would be reduced to elemental form. Among the catalysts, it was observed that presence of free lattice chlorine in the catalyst was very important for the oxidation of mercury. But instead of using the catalyst alone, using it along with carbon may better serve the purpose by providing the adsorption surface for mercury and also some extra surface area for the reaction to occur (especially for fly ashes with low surface area).

  9. Controlled Multistep Purification of Single-Walled Carbon Nanotubes

    E-Print Network [OSTI]

    Wikswo, John

    Controlled Multistep Purification of Single-Walled Carbon Nanotubes Ya-Qiong Xu,,§ Haiqing Peng materials from raw single-walled carbon nanotubes (SWNTs) produced in the HiPco (high-pressure CO) process at increasing temperatures. To avoid catalytic oxidation by iron oxide of carbon nanotubes, the exposed

  10. Plasma gasification of coal in different oxidants

    SciTech Connect (OSTI)

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (USA)

    2008-12-15

    Oxidant selection is the highest priority for advanced coal gasification-process development. This paper presents comparative analysis of the Powder River Basin bituminous-coal gasification processes for entrained-flow plasma gasifier. Several oxidants, which might be employed for perspective commercial applications, have been chosen, including air, steam/carbon-dioxide blend, carbon dioxide, steam, steam/air, steam/oxygen, and oxygen. Synthesis gas composition, carbon gasification degree, specific power consumptions, and power efficiency for these processes were determined. The influence of the selected oxidant composition on the gasification-process main characteristics have been investigated.

  11. Method for the purification of noble gases, nitrogen and hydrogen

    DOE Patents [OSTI]

    Baker, John D. (Blackfoot, ID); Meikrantz, David H. (Idaho Falls, ID); Tuggle, Dale G. (Los Alamos, NM)

    1997-01-01

    A method and apparatus for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes.

  12. Method for the purification of noble gases, nitrogen and hydrogen

    DOE Patents [OSTI]

    Baker, J.D.; Meikrantz, D.H.; Tuggle, D.G.

    1997-09-23

    A method and apparatus are disclosed for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes. 15 figs.

  13. Eighth international congress on nitrogen fixation

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  14. The Synthesis of Megatubes: New Dinlensions in Carbon Materials

    E-Print Network [OSTI]

    Brown Jr., R. Malcolm

    , a transition metal catalyst, and a reactive third-body gas. We have named these structures carbon megatubes a significant amount of nitrogen atom incorporation into the graphite lattice. Subsequently, these nitrogen shown that nanotubes can be used in a wide range of applications such as gas storage devices, I circuit

  15. Indriect Measurement Of Nitrogen In A Mult-Component Natural Gas By Heating The Gas

    DOE Patents [OSTI]

    Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Torrance, CA)

    2004-06-22

    Methods of indirectly measuring the nitrogen concentration in a natural gas by heating the gas. In two embodiments, the heating energy is correlated to the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the diluent concentrations other than nitrogen (typically carbon dioxide) are known, the model equation can be solved for the nitrogen concentration.

  16. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide...

    Office of Scientific and Technical Information (OSTI)

    Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1 Bacon, Diana H. carbon...

  17. O2 Reduction on Graphite and Nitrogen-Doped Graphite: Experiment and Theory Reyimjan A. Sidik and Alfred B. Anderson*

    E-Print Network [OSTI]

    Popov, Branko N.

    toward NOx reduction.7,8 Others are oxidation catalysts.9 In the case of NOx oxidation and O2 reductionO2 Reduction on Graphite and Nitrogen-Doped Graphite: Experiment and Theory Reyimjan A. Sidik for reduction of approximately 0.5 V (SHE) compared to the onset potential of 0.2 V observed for untreated

  18. Polyacrylonitrile-based electrospun carbon paper for electrode applications

    E-Print Network [OSTI]

    Yang, Ying

    Polyacrylonitrile (PAN)-based carbon paper with fiber diameters of 200–300 nm was developed through hot-pressing, pre-oxidation, and carbonization of electrospun fiber mats. Changes in morphology, crystallinity, and surface ...

  19. Carbon Fiber and Clean Energy: 4 Uses for Industry | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber and Clean Energy: 4 Uses for Industry Carbon Fiber and Clean Energy: 4 Uses for Industry February 7, 2014 - 3:27pm Addthis Oxidized fibers move to a high temperature...

  20. Fly ash carbon passivation

    DOE Patents [OSTI]

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  1. Activated, coal-based carbon foam

    DOE Patents [OSTI]

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  2. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  3. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  4. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  5. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  6. COMBUSTION SOURCES OF NITROGEN COMPOUNDS

    E-Print Network [OSTI]

    Brown, Nancy J.

    2011-01-01

    Rasmussen, R.A. (1976). Combustion as a source of nitrousx control for stationary combustion sources. Prog. Energy,CA, March 3-4, 1977 COMBUSTION SOURCES OF NITROGEN COMPOUNDS

  7. Nitrogen Deposition in the Southern High Plains 

    E-Print Network [OSTI]

    Upadhyay, Jeetendra; Auvermann, Brent W.; Bush, K. Jack; Mukhtar, Saqib

    2008-02-11

    convert nitrogen into other chemical forms. Legume roots sustain rhizobia, the organisms capable of nitrogen fixation, a microbial process for con- verting nitrogen into ammonium (NH 4 ). Reactive nitrogen species (RNS) are nitrogen- bearing compounds... acid gas can dissolve as the ammonium ion (NH 4 +), where it may react with Sources Transport / Transformation Removal Effects Photochemistry Chemical Transformations Cloud Processes Vertical Mixing Prevailing Winds Dry DepositionWet Deposition...

  8. Carbon sequestration

    E-Print Network [OSTI]

    Carbon sequestration is the process of capture and long-term storage of atmospheric carbon dioxide (CO 2).[1] Carbon sequestration describes long-term storage of carbon dioxide or other forms of carbon to either mitigate or defer global warming and avoid ...

  9. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    SciTech Connect (OSTI)

    Scheele, Randall D.; Casella, Andrew M.

    2010-09-28

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  10. Oxygen minimization effects on nitrogen dioxide generation during oxyacetylene metal cutting 

    E-Print Network [OSTI]

    Clendenen, David Lee

    1981-01-01

    oxides lies in the characteristic remission of initial symptoms, such as cough and chest discomfort, for up to several hours prior to onset of acute, potentially lethal pulmonary edema. The generation rate of nitrogen oxides is dependent on many... tract w1th acute severity ranging from a revers1ble irritant coughing to potentially lethal pulmonary edema. ( The danger involved here lies 1n the sudden onset of pulmonary edema occurring an unpredictable length of time after exposure. Very little...

  11. Abatement of Air Pollution: Control of Nitrogen Oxides Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection These regulations may apply to reciprocating...

  12. EFFECT OF NITROGEN OXIDE PRETREATMENTS ON ENZYMATIC HYDROLYSIS OF CELLULOSE

    E-Print Network [OSTI]

    Borrevik, R.K.

    2011-01-01

    57) TO EXTRACTION WATER (6276) _________________________ ~~~focus this study on the extraction using water only, with noe followed by water leaching, then extraction for 11 hOl.lr

  13. Nitrogen oxide removal using diesel fuel and a catalyst

    DOE Patents [OSTI]

    Vogtlin, George E. (Fremont, CA); Goerz, David A. (Brentwood, CA); Hsiao, Mark (San Jose, CA); Merritt, Bernard T. (Livermore, CA); Penetrante, Bernie M. (San Ramon, CA); Reynolds, John G. (San Ramon, CA); Brusasco, Ray (Livermore, CA)

    2000-01-01

    Hydrocarbons, such as diesel fuel, are added to internal combustion engine exhaust to reduce exhaust NO.sub.x in the presence of a amphoteric catalyst support material. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbons.

  14. Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

    2007-01-01

    Selective Catalytic Reduction (SCR) NOx Control; Prepared byNOx Removal Technologies. Volume 1. Selective Catalytic Reduction.

  15. Persistent sensitivity of Asian aerosol to emissions of nitrogen oxides

    E-Print Network [OSTI]

    Kharol, S. K.

    We use a chemical transport model and its adjoint to examine the sensitivity of secondary inorganic aerosol formation to emissions of precursor trace gases from Asia. Sensitivity simulations indicate that secondary inorganic ...

  16. Nitrogen oxides reduction by staged combustion of LCV gas 

    E-Print Network [OSTI]

    Cabrera Sixto, Jose Manuel

    1990-01-01

    ); and the bottom (figure 4). The purpose of this design was to provide flexsMity to modify the CC. Figure 5 shows a sectional view of the cydone combustor designed. The dimensions in this drawing were calculated based on a CGT feeding rate in the gasifier... TABLES OF THE STATISTICAL ANALYSES Primary Equivalence Ratio Overall Equivalence Ratio Delay Time between Stages Inlet Reynolds Number Combustion Temperature F/A Ratio in Gasifier D COMPUTER PROGRAM USED IN THE CAMAC SYSTEM E EXAMPLE . 162 163...

  17. Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

    2007-01-01

    Pollution Control Costs for Coal-Fired Power Stations; IEAControl Options for Coal-Fired Electric Utility Boilers; J.for NO x Control on Coal-Fired Boilers; U.S. Environmen- tal

  18. Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

    2007-01-01

    x Control. Volume 1: Utility Boiler Applications; ElectricCoal-Fired Electric Utility Boilers; J. Air & Waste Manage.for NO x Control on Coal-Fired Boilers; U.S. Environmen- tal

  19. Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

    2007-01-01

    including issues of technology and cost un- certainties, areon NO x Control Technologies and Cost Effectiveness forand other factors on technology cost trends (hence, the

  20. Nitrogen-doped graphene as transparent counter electrode for efficient dye-sensitized solar cells

    SciTech Connect (OSTI)

    Wang, Guiqiang, E-mail: wgqiang123@163.com [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)] [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China); Fang, Yanyan; Lin, Yuan [Institute of Chemistry, Chinese Academy of Science, Beijing 100080 (China)] [Institute of Chemistry, Chinese Academy of Science, Beijing 100080 (China); Xing, Wei; Zhuo, Shuping [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)] [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ? NG sheets are prepared through a hydrothermal reduction of graphite oxide. ? The transparent NG counter electrodes of DSCs are fabricated at room temperature. ? Transparent NG electrode exhibits excellent catalytic activity for the reduction of I{sub 3}{sup ?}. ? The DSC with NG electrode achieves a comparable efficiency to that of the Pt-based cell. ? The efficiency of rear illumination is about 85% that of front illumination. -- Abstract: Nitrogen-doped graphene sheets are prepared through a hydrothermal reduction of graphite oxide in the presence of ammonia and applied to fabricate the transparent counter electrode of dye-sensitized solar cells. The atomic percentage of nitrogen in doped graphene sample is about 2.5%, and the nitrogen bonds display pyridine and pyrrole-like configurations. Cyclic voltammetry studies demonstrate a much higher electrocatalytic activity toward I{sup ?}/I{sub 3}{sup ?} redox reaction for nitrogen-doped graphene, as compared with pristine graphene. The dye-sensitized solar cell with this transparent nitrogen-doped graphene counter electrode shows conversion efficiencies of 6.12% and 5.23% corresponding to front-side and rear-side illumination, respectively. Meanwhile, the cell with a Pt counter electrode shows a conversion efficiency of 6.97% under the same experimental condition. These promising results highlight the potential application of nitrogen-doped graphene in cost-effective, transparent dye-sensitized solar cells.

  1. Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Parks, II, James E; Wagner, Robert M

    2013-01-01

    Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

  2. Extended Durability Testing of an External Fuel Processor for a Solid Oxide Fuel Cell (SOFC)

    SciTech Connect (OSTI)

    Mark Perna; Anant Upadhyayula; Mark Scotto

    2012-11-05

    Durability testing was performed on an external fuel processor (EFP) for a solid oxide fuel cell (SOFC) power plant. The EFP enables the SOFC to reach high system efficiency (electrical efficiency up to 60%) using pipeline natural gas and eliminates the need for large quantities of bottled gases. LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) is developing natural gas-fired SOFC power plants for stationary power applications. These power plants will greatly benefit the public by reducing the cost of electricity while reducing the amount of gaseous emissions of carbon dioxide, sulfur oxides, and nitrogen oxides compared to conventional power plants. The EFP uses pipeline natural gas and air to provide all the gas streams required by the SOFC power plant; specifically those needed for start-up, normal operation, and shutdown. It includes a natural gas desulfurizer, a synthesis-gas generator and a start-gas generator. The research in this project demonstrated that the EFP could meet its performance and durability targets. The data generated helped assess the impact of long-term operation on system performance and system hardware. The research also showed the negative impact of ambient weather (both hot and cold conditions) on system operation and performance.

  3. Palladium-Catalysed CH Activation of Aliphatic Amines! to give Strained Nitrogen Heterocycles !

    E-Print Network [OSTI]

    Jackson, Sophie

    Palladium-Catalysed C­H Activation of Aliphatic Amines! to give Strained Nitrogen Heterocycles. The University of Cambridge, Lensfield Road, Cambridge, CB2 1EW.! Palladium-Catalyzed C­H Activation Modes cyclopalladation complex N H palladium catalyst directed C­H activation oxidant C­Pd functionalization 4-membered

  4. What Happens to Nitrogen in Soils? 

    E-Print Network [OSTI]

    Provin, Tony; Hossner, L. R.

    2001-07-09

    35,000 tons of inert nitrogen gas (N 2 ). Most of the nitrogen found in soil originated as N 2 gas and nearly all the nitrogen in the atmosphere is N 2 gas. This inert nitrogen cannot be used by the plant until it is changed to ammonium (NH 4... + ) or nitrate (NO 3 - ) forms. Three important methods for changing nitrogen gas (N 2 ) to ammonium (NH 4 + ) are: a73 Free-living N 2 -fixing bacteria a73 N 2 -fixing bacteria in nodules on the roots of leguminous plants, and a73 Nitrogen fertilizer production...

  5. Bimetallic Cluster Provides a Higher Activity Electrocatalyst for Methanol Oxidation*

    E-Print Network [OSTI]

    Weidner, John W.

    Bimetallic Cluster Provides a Higher Activity Electrocatalyst for Methanol Oxidation* Brenda L:Ru nanoparticles on carbon (PtRu/C) for use as an electrocatalyst for methanol oxidation. This bimetallic carbonyl support particles. Cyclic voltammo- grams of methanol oxidation from the two catalysts showed

  6. CO2 enhancement of forest productivity constrained by limited nitrogen availability

    E-Print Network [OSTI]

    CO2 enhancement of forest productivity constrained by limited nitrogen availability Richard J for review May 9, 2010) Stimulation of terrestrial plant production by rising CO2 concentra- tion is projected to reduce the airborne fraction of anthropogenic CO2 emissions. Coupled climate­carbon cycle

  7. Carbonate thermochemical cycle for the production of hydrogen

    DOE Patents [OSTI]

    Collins, Jack L (Knoxville, TN) [Knoxville, TN; Dole, Leslie R (Knoxville, TN) [Knoxville, TN; Ferrada, Juan J (Knoxville, TN) [Knoxville, TN; Forsberg, Charles W (Oak Ridge, TN) [Oak Ridge, TN; Haire, Marvin J (Oak Ridge, TN) [Oak Ridge, TN; Hunt, Rodney D (Oak Ridge, TN) [Oak Ridge, TN; Lewis Jr., Benjamin E (Knoxville, TN) [Knoxville, TN; Wymer, Raymond G (Oak Ridge, TN) [Oak Ridge, TN

    2010-02-23

    The present invention is directed to a thermochemical method for the production of hydrogen from water. The method includes reacting a multi-valent metal oxide, water and a carbonate to produce an alkali metal-multi-valent metal oxide compound, carbon dioxide, and hydrogen.

  8. Carbonate Thermochemical Cycle for the Production of Hydrogen

    SciTech Connect (OSTI)

    Ferrada, Juan J [ORNL; Collins, Jack Lee [ORNL; Dole, Leslie Robert [ORNL; Forsberg, Charles W [ORNL; Haire, Marvin Jonathan [ORNL; Hunt, Rodney Dale [ORNL; Lewis Jr, Benjamin E [ORNL; Wymer, Raymond [ORNL; Ladd-Lively, Jennifer L [ORNL

    2009-01-01

    The present invention is directed to a thermochemical method for the production of hydrogen from water. The method includes reacting a multi-valent metal oxide, water and a carbonate to produce an alkali metal-multi-valent metal oxide compound, carbon dioxide, and hydrogen.

  9. Carbon Smackdown: Carbon Capture

    SciTech Connect (OSTI)

    Jeffrey Long

    2010-07-12

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  10. Carbon Smackdown: Carbon Capture

    ScienceCinema (OSTI)

    Jeffrey Long

    2010-09-01

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  11. Kinetic modeling of nitric oxide removal from exhaust gases by Selective Non-Catalytic Reduction 

    E-Print Network [OSTI]

    Chenanda, Cariappa Mudappa

    1993-01-01

    Selective Non-Catalytic Reduction is one of the most promising techniques for the removal of oxides of nitrogen from combustion exhaust gases. These techniques are based on the injection of certain compounds, such as cyanuric acid and ammonia...

  12. Method of preparing nitrogen containing semiconductor material

    DOE Patents [OSTI]

    Barber, Greg D.; Kurtz, Sarah R.

    2004-09-07

    A method of combining group III elements with group V elements that incorporates at least nitrogen from a nitrogen halide for use in semiconductors and in particular semiconductors in photovoltaic cells.

  13. Carbon cloth supported electrode

    DOE Patents [OSTI]

    Lu, Wen-Tong P. (Upper St. Clair, PA); Ammon, Robert L. (Baldwin both of, PA)

    1982-01-01

    A flow-by anode is disclosed made by preparing a liquid suspension of about to about 18% by weight solids, the solids comprising about 3.5 to about 8% of a powdered catalyst of platinum, palladium, palladium oxide, or mixtures thereof; about 60 to about 76% carbon powder (support) having a particle size less than about 20 m.mu.m and about 20 to about 33% of an inert binder having a particle size of less than about 500 m.mu.m. A sufficient amount of the suspension is poured over a carbon cloth to form a layer of solids about 0.01 to about 0.05 cm thick on the carbon cloth when the electrode is completed. A vacuum was applied to the opposite side of the carbon cloth to remove the liquid and the catalyst layer/cloth assembly is dried and compressed at about 10 to about 50 MPa's. The binder is then sintered in an inert atmosphere to complete the electrode. The electrode is used for the oxidation of sulfur dioxide in a sulfur based hybrid cycle for the decomposition of water.

  14. Effect of a Legume Cover Crop on Carbon Storage and Erosion in an Ultisol under Maize

    E-Print Network [OSTI]

    143 CHAPTER 10 Effect of a Legume Cover Crop on Carbon Storage and Erosion in an Ultisol under...........................................................................................145 10.2.3 Carbon and Nitrogen Determination, and Other Analyses......................................145 10.2.4 Determinations of Runoff, Soil Losses, and Eroded Carbon

  15. Changes in soil carbon and nitrogen associated with switchgrass production 

    E-Print Network [OSTI]

    Lobo Alonzo, Porfirio Jose

    2004-11-15

    Greater knowledge of the short- and long-term effects of biomass production practices on soil biological and chemical properties is needed to determine influences on sustainable land management. Soil samples under switchgrass (Panicum virgatum L...

  16. Worldwide organic soil carbon and nitrogen data (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the public from...

  17. Peer Reviewed Temporal Variation in Stable Carbon and Nitrogen

    E-Print Network [OSTI]

    Gillingham, Michael

    Columbia, Prince George, BC V2N 4Z9, Canada DOUGLAS C. HEARD,1 British Columbia Ministry of Environment, Prince George, BC V2N 1B3, Canada MICHAEL P. GILLINGHAM, Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada Abstract Animal diet

  18. Carbon cost of plant nitrogen acquisition: A mechanistic, globally applicable model of plant nitrogen uptake, retranslocation,

    E-Print Network [OSTI]

    Malhi, Yadvinder

    in the new generation of Earth system models that aim to describe the global N cycle. Citation: Fisher, J. B

  19. Carbon and Nitrogen Isotopic Signatures and Nitrogen Profile To Identify Adulteration in Organic Fertilizers

    E-Print Network [OSTI]

    Mazumder, Asit

    growth regulators such as hormones, livestock antibiotics, food additives, genetically modified organisms

  20. Long-term tillage, cropping sequence, and nitrogen fertilization effects on soil carbon and nitrogen dynamics 

    E-Print Network [OSTI]

    Dou, Fugen

    2006-08-16

    microbial biomass (SMB) and mineralizable, particulate organic matter (POM), and hydrolyzable SOM] and slow (mineral-associated and resistant organic) C and N pools and turnover in continuous sorghum [Sorghum bicolor (L.) Moench.], wheat (Triticum aestivum L...

  1. Carbon dioxide capture process with regenerable sorbents

    DOE Patents [OSTI]

    Pennline, Henry W. (Bethel Park, PA); Hoffman, James S. (Library, PA)

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  2. Gas permeability of carbon aerogels

    SciTech Connect (OSTI)

    Kong, F.; LeMay, J.D.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W. (Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States))

    1993-12-01

    Carbon aerogels are synthesized via the aqueous polycondensation of resorcinol with formaldehyde, followed by supercritical drying and subsequent pyrolysis at 1050 [degree]C. As a result of their interconnected porosity, ultrafine cell/pore size, and high surface area, carbon aerogels have many potential applications such as supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, the permeability of carbon aerogels was calculated from equations based upon Darcy's law. Our measurements show that carbon aerogels have permeabilities on the order of 10[sup [minus]12] to 10[sup [minus]10] cm[sup 2] over the density range from 0.05--0.44 g/cm[sup 3]. Like many other aerogel properties, the permeability of carbon aerogels follows a power law relationship with density, reflecting differences in the average mesopore size. Comparing the results from this study with the permeability of silica aerogels reported by other workers, we found that the permeability of aerogels is governed by a simple universal flow equation. This paper discusses the relationship between permeability, pore size, and density in carbon aerogels.

  3. Ethanol oxidation on metal oxide-supported platinum catalysts

    SciTech Connect (OSTI)

    L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

    2009-09-01

    Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.

  4. Nitrogen dioxide and respiratory illnesses in infants

    SciTech Connect (OSTI)

    Samet, J.M.; Lambert, W.E.; Skipper, B.J.; Cushing, A.H.; Hunt, W.C.; Young, S.A.; McLaren, L.C.; Schwab, M.; Spengler, J.D. )

    1993-11-01

    Nitrogen dioxide is an oxidant gas that contaminates outdoor air and indoor air in homes with unvented gas appliances. A prospective cohort study was carried out to test the hypothesis that residential exposure to NO2 increases incidence and severity of respiratory illnesses during the first 18 months of life. A cohort of 1,205 healthy infants from homes without smokers was enrolled. The daily occurrence of respiratory symptoms and illnesses was reported by the mothers every 2 wk. Illnesses with wheezing or wet cough were classified as lower respiratory tract. Indoor NO2 concentrations were serially measured with passive samplers place in the subjects' bedrooms. In stratified analyses, illness incidence rates did not consistently increase with exposure to NO2 or stove type. In multivariate analyses that adjusted for potential confounding factors, odds ratios were not significantly elevated for current or lagged NO2 exposures, or stove type. Illness duration, a measure of illness severity, was not associated with NO2 exposure. The findings can be extended to homes with gas stoves in regions of the United States where the outdoor air is not heavily polluted by NO2.

  5. Nitrogen-Doped Graphene and its Application in Electrochemical Biosensing

    SciTech Connect (OSTI)

    Wang, Ying; Shao, Yuyan; Matson, Dean W.; Li, Jinghong; Lin, Yuehe

    2010-05-05

    Chemical doping with foreign atoms is an effective method to intrinsically modify the properties of host materials. Among them, nitrogen (N) doping plays a critical role in regulating the electronic properties of carbon materials. Recently, graphene as a true 2-dimensional carbon material has shown fascinating applications in bioelectronics and biosensors. In this paper, we report a facile strategy to prepare N-doped graphene by using plasma treatment of pristine graphene synthesized via chemical method. Meanwhile, a possible schematic diagram has been proposed to detail the structure of N-doped graphene. By controlling the exposure time, N percentage in host grapheme can be regulated ranging from 0.11% to 1.35%. Moreover, the as prepared N-doped graphene has displayed high electrocatalytic activity to hydrogen peroxide and further been used for glucose biosensing with concentration as low as 0.01 mM in the presence of interferences.

  6. Electrolysis of Molten Iron Oxide with an Iridium Anode: The Role of Electrolyte Basicity

    E-Print Network [OSTI]

    Kim, Hojong

    Molten oxide electrolysis (MOE) is a carbon-free, electrochemical technique to decompose a metal oxide directly into liquid metal and oxygen gas. From an environmental perspective what makes MOE attractive is its ability ...

  7. Stability of Iridium Anode in Molten Oxide Electrolysis for Ironmaking: Influence of Slag Basicity

    E-Print Network [OSTI]

    Kim, Hojong

    Molten oxide electrolysis (MOE) is a carbon-neutral, electrochemical technique to decompose metal oxide directly into liquid metal and oxygen gas upon use of an inert anode. What sets MOE apart from other technologies is ...

  8. Non-destructive radiocarbon and stable isotopic analyses of archaeological materials using plasma oxidation 

    E-Print Network [OSTI]

    Steelman, Karen Lynn

    2005-11-01

    Plasma oxidation, an alternative to combustion, is shown to be a non-destructive method for obtaining radiocarbon dates on perishable organic artifacts. Electrically excited oxygen gently converts organic carbon to carbon dioxide. Radiocarbon...

  9. Method and apparatus for selective removal of carbon monoxide

    DOE Patents [OSTI]

    Borup, Rodney L. (East Rochester, NY); Skala, Glenn W. (Churchville, NY); Brundage, Mark A. (Pittsford, NY); LaBarge, William J. (Bay City, MI)

    2000-01-01

    There is provided a method and apparatus for treatment of a hydrogen-rich gas to reduce the carbon monoxide content thereof by reacting the carbon monoxide in the gas with an amount of oxygen sufficient to oxidize at least a portion of the carbon monoxide in the presence of a catalyst in a desired temperature range without substantial reaction of hydrogen. The catalyst is an iridium-based catalyst dispersed on, and supported on, a carrier. In the presence of the catalyst, carbon monoxide in a hydrogen-rich feed gas is selectively oxidized such that a product stream is produced with a very low carbon monoxide content.

  10. Method for making carbon super capacitor electrode materials

    DOE Patents [OSTI]

    Firsich, D.W.; Ingersoll, D.; Delnick, F.M.

    1998-07-07

    A method is described for making near-net-shape, monolithic carbon electrodes for energy storage devices. The method includes the controlled pyrolysis and activation of a pressed shape of methyl cellulose powder with pyrolysis being carried out in two stages; pre-oxidation, preferably in air at a temperature between 200--250 C, followed by carbonization under an inert atmosphere. An activation step to adjust the surface area of the carbon shape to a value desirable for the application being considered, including heating the carbon shape in an oxidizing atmosphere to a temperature of at least 300 C, follows carbonization. 1 fig.

  11. Method for making carbon super capacitor electrode materials

    DOE Patents [OSTI]

    Firsich, David W. (Dayton, OH); Ingersoll, David (Albuquerque, NM); Delnick, Frank M. (Dexter, MI)

    1998-01-01

    A method for making near-net-shape, monolithic carbon electrodes for energy storage devices. The method includes the controlled pyrolysis and activation of a pressed shape of methyl cellulose powder with pyrolysis being carried out in two stages; pre-oxidation, preferably in air at a temperature between 200.degree.-250.degree. C., followed by carbonization under an inert atmosphere. An activation step to adjust the surface area of the carbon shape to a value desirable for the application being considered, including heating the carbon shape in an oxidizing atmosphere to a temperature of at least 300.degree. C., follows carbonization.

  12. Multi-stage combustion using nitrogen-enriched air

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  13. A crossover design study to evaluate the effectiveness of appliance inspection and servicing for lowering indoor nitrogen dioxide concentrations

    SciTech Connect (OSTI)

    Colome, S.D. ); Billick, I.H. ); Baker, P.E.; Beals, S.A.; Rubio, S.A.; Cunningham, S.J. ); Wilson, A.L. )

    1988-01-01

    Some researchers have suggested that natural gas appliances are significant contributors to indoor air pollution. Indoor unvented combustion appliances, such as gas-fired ranges, unvented space heaters, and portable kerosene space heaters, have been associated with a wide variety of pollutants, including carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO{sub 2}), sulfur dioxide (SO{sub 2}), formaldehyde (HCHO), and respirable particles. Previous indoor air quality studies have demonstrated that indoor NO{sub 2} concentrations often exceed outdoor ambient levels when gas- burning appliances are used. Cooking with gas has been the focus of many of these studies, although other unvented appliances, such as space-heaters, have also been associated with elevated NO{sub 2} concentrations. Some epidemiologic studies of exposure to NO{sub 2} in homes with gas ranges have indicated a higher prevalence of respiratory symptoms and illness. However, other studies contradicted these findings and failed to show any significant effects associated with gas cooking.

  14. On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds

    SciTech Connect (OSTI)

    Bandosz, T.J.; Petit, C. [CUNY City College, New York, NY (United States). Dept. of Chemistry

    2009-10-15

    Ammonia adsorption was studied under dynamic conditions, at room temperature, on activated carbons of different origins (coal-based, wood-based and coconut-shell-based carbons) before and after their impregnation with various inorganic compounds including metal chlorides, metal oxides and polycations. The role of humidity was evaluated by running tests in both dry and moist conditions. Adsorbents were analyzed before and after exposure to ammonia by thermal analyses, sorption of nitrogen, potentiometric titration, X-ray diffraction and FTIR spectroscopy. Results of breakthrough tests show significant differences in terms of adsorption capacity depending on the parent carbon, the impregnates and the experimental conditions. It is found that surface chemistry governs ammonia adsorption on the impregnated carbons. More precisely, it was demonstrated that a proper combination of the surface pH, the strength, type and amount of functional groups present on the adsorbents' surface is a key point in ammonia uptake. Water can have either positive or negative effects on the performance of adsorbents. It can enhance NH{sub 3} adsorption capacity since it favors ammonia dissolution and thus enables reaction between ammonium ions and carboxylic groups from the carbons' surface. On the other hand, water can also reduce the performance from the strength of adsorption standpoint. It promotes dissolution of ammonia and that ammonia is first removed from the system when the adsorbent bed is purged with air. Ammonia, besides adsorption by van der Waals forces and dissolution in water, is also retained on the surface via reactive mechanisms such as acid-base reactions (Bronsted and Lewis) or complexation. Depending on the materials used and the experimental conditions, 6-47% ammonia adsorbed is strongly retained on the surface even when the bed is purged with air.

  15. PM PEM’s Pre-Measurement Allowance – On-Road Evaluation and Investigation

    E-Print Network [OSTI]

    Durbin, T; Jung, H; Cocker III, D R; Johnson, K

    2009-01-01

    hydrocarbons NTE.Not-to-exceed NO x .nitrogen oxides OC organic carbon PEMS .portable emissions measurement

  16. Carbon Dynamics in Aquatic Ecosystems in Response to Elevated Atmospheric CO2 and Altered Nutrients Availability

    E-Print Network [OSTI]

    Song, Chao

    2011-04-26

    Aquatic ecosystems will experience altered inorganic carbon, nitrogen and phosphorous availability in the future due to elevated atmospheric CO2, stronger stratification and anthropogenic activities. Despite its importance in modulating global...

  17. The Effect of Simulated Barium Carbonate Waste Stream on the Hydration of Composite Cement Systems

    E-Print Network [OSTI]

    Sheffield, University of

    of spent uranium oxide fuel and passed through a caustic scrubber producing a sodium carbonate waste form. In the Thermal Oxide Reprocessing Plant (THORP) at BNFL, Sellafield, CO2 is released during the dissolution

  18. Fact #576: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel

    Broader source: Energy.gov [DOE]

    The amount of carbon dioxide released into the atmosphere by a vehicle is primarily determined by the carbon content of the fuel. However, there is a small portion of the fuel that is not oxidized...

  19. Nitrogen fixation method and apparatus

    DOE Patents [OSTI]

    Chen, Hao-Lin (Walnut Creek, CA)

    1983-01-01

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

  20. Nitrogen fixation method and apparatus

    DOE Patents [OSTI]

    Chen, H.L.

    1983-08-16

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O[sub 2]/cm promotes the formation of vibrationally excited N[sub 2]. Atomic oxygen interacts with vibrationally excited N[sub 2] at a much quicker rate than unexcited N[sub 2], greatly improving the rate at which NO is formed. 1 fig.

  1. Nitrogen Removal from Natural Gas

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report: AchievementsTemperatures Year 6 -FINALEnergy,Pacificdouble-betaNitrogen

  2. CVD Growth of Carbon Nanostructures from Zirconia: Mechanisms and a Method for Enhancing Yield

    E-Print Network [OSTI]

    Kudo, Akira

    By excluding metals from synthesis, growth of carbon nanostructures via unreduced oxide nanoparticle catalysts offers wide technological potential. We report new observations of the mechanisms underlying chemical vapor ...

  3. Kinetic study of the oxidation of n-butane on vanadium oxide supported on Al/Mg mixed oxide

    SciTech Connect (OSTI)

    Dejoz, A.; Vazquez, I.; Nieto, J.M.L.; Melo, F.

    1997-07-01

    The reaction kinetics of the oxidative dehydrogenation (ODH) of n-butane over vanadia supported on a heat-treated Mg/Al hydrotalcite (37.3 wt % of V{sub 2}O{sub 5}) was investigated by both linear and nonlinear regression techniques. A reaction network including the formation of butenes (1-, 2-cis-, and 2-trans-butene), butadiene, and carbon oxides by parallel and consecutive reactions, at low and high n-butane conversions, has been proposed. Langmuir-Hinshelwood (LH) models can be used as suitable models which allows reproduction of the global kinetic behavior, although differences between oxydehydrogenation and deep oxidation reactions have been observed. Thus, the formation of oxydehydrogenation products can be described by a LH equation considering a dissociative adsorption of oxygen while the formation of carbon oxides is described by a LH equation with a nondissociative adsorption of oxygen. Two different mechanisms operate on the catalyst: (i) a redox mechanism responsible of the formation of olefins and diolefins and associated to vanadium species, which is initiated by a hydrogen abstraction; (ii) a radical mechanism responsible of the formation of carbon oxides from n-butane and butenes and associated to vanadium-free sites of the support. On the other hand, the selectivity to oxydehydrogenation products increases with the reaction temperature. This catalytic performance can be explained taking into account the low reducibility of V{sup 5+}-sites and the higher apparent activation energies of the oxydehydrogenation reactions with respect to deep oxidation reactions.

  4. Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel Engine 

    E-Print Network [OSTI]

    Song, Hoseok

    2012-07-16

    Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It beneficially reduces regulated emission gases, but increases NOx (nitric oxide and nitrogen dioxide) Thus, the increase in NOx is the ...

  5. Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum)

    SciTech Connect (OSTI)

    Garten Jr, Charles T [ORNL

    2012-01-01

    Abstract. A simple, multi-compartment model was developed to predict soil carbon sequestration beneath switchgrass (Panicum virgatum) plantations in the southeastern United States. Soil carbon sequestration is an important component of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was included for the purpose of model parameterization and five model-based experiments were conducted to predict how changes in environment (temperature) or crop management (cultivar, fertilization, and harvest efficiency) might affect soil carbon storage and nitrogen losses. Predictions of soil carbon sequestration were most sensitive to changes in annual biomass production, the ratio of belowground to aboveground biomass production, and temperature. Predictions of ecosystem nitrogen loss were most sensitive to changes in annual biomass production, the soil C/N ratio, and nitrogen remobilization efficiency (i.e., nitrogen cycling within the plant). Model-based experiments indicated that 1) soil carbon sequestration can be highly site specific depending on initial soil carbon stocks, temperature, and the amount of annual nitrogen fertilization, 2) response curves describing switchgrass yield as a function of annual nitrogen fertilization were important to model predictions, 3) plant improvements leading to greater belowground partitioning of biomass could increase soil carbon sequestration, 4) improvements in harvest efficiency have no indicated effects on soil carbon and nitrogen, but improve cumulative biomass yield, and 5) plant improvements that reduce organic matter decomposition rates could also increase soil carbon sequestration, even though the latter may not be consistent with desired improvements in plant tissue chemistry to maximize yields of cellulosic ethanol.

  6. High surface area, high permeability carbon monoliths

    SciTech Connect (OSTI)

    Lagasse, R.R.; Schroeder, J.L. [Sandia National Labs., Albuquerque, NM (United States). Organic Materials Processing Dept.

    1994-12-31

    The goal of this work is to prepare carbon monoliths having precisely tailored pore size distribution. Prior studies have demonstrated that poly(acrylonitrile) can be processed into a precursor having tailored macropore structure. Since the macropores were preserved during pyrolysis, this synthetic process provided a route to porous carbon having macropores with size =0.1 to 10{mu}m. No micropores of size <2 nm could be detected in the carbon, however, by nitrogen adsorption. In the present work, the authors have processed a different polymer, poly(vinylidene chloride) into a macroporous precursor, Pyrolysis produced carbon monoliths having macropores derived from the polymer precursor as well as extensive microporosity produced during the pyrolysis of the polymer. One of these carbons had BET surface area of 1,050 m{sup 2}/g and about 1.2 cc/g total pore volume, with about 1/3 of the total pore volume in micropores and the remainder in 1{mu}m macropores. No mesopores in the intermediate size range could be detected by nitrogen adsorption. Carbon materials having high surface area as well as micron size pores have potential applications as electrodes for double layer supercapacitors containing liquid electrolyte, or as efficient media for performing chemical separations.

  7. Method for making carbon films

    DOE Patents [OSTI]

    Tan, Ming X. (Livermore, CA)

    1999-01-01

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  8. Method for making carbon films

    DOE Patents [OSTI]

    Tan, M.X.

    1999-07-29

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

  9. Non-carbon induction furnace

    DOE Patents [OSTI]

    Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

    1984-01-06

    The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  10. Carbon-free induction furnace

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Masters, David R. (Knoxville, TN); Pfeiler, William A. (Norris, TN)

    1985-01-01

    An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  11. Cathode preparation method for molten carbonate fuel cell

    DOE Patents [OSTI]

    Smith, James L. (Lemont, IL); Sim, James W. (Evergreen Park, IL); Kucera, Eugenia H. (Downers Grove, IL)

    1988-01-01

    A method of preparing a porous cathode structure for use in a molten carbonate fuel cell begins by providing a porous integral plaque of sintered nickel oxide particles. The nickel oxide plaque can be obtained by oxidizing a sintered plaque of nickel metal or by compacting and sintering finely divided nickel oxide particles to the desired pore structure. The porous sintered nickel oxide plaque is contacted with a lithium salt for a sufficient time to lithiate the nickel oxide structure and thus enhance its electronic conductivity. The lithiation can be carried out either within an operating fuel cell or prior to assembling the plaque as a cathode within the fuel cell.

  12. Foliar nitrogen dynamics and nitrogen resorption of a sandy shrub Salix gordejevii in northern China

    E-Print Network [OSTI]

    Foliar nitrogen dynamics and nitrogen resorption of a sandy shrub Salix gordejevii in northern Key words: Nitrogen, resorption efficiency, resorption proficiency, Salix gordejevii, senescence, soil and senescing leaves and N resorption in Salix gordejevii Chang, a sandy shrub in northern China, were studied

  13. Life cycle inventory analysis of regenerative thermal oxidation of air emissions from oriented strand board facilities in Minnesota - a perspective of global climate change

    SciTech Connect (OSTI)

    Nicholson, W.J.

    1997-12-31

    Life cycle inventory analysis has been applied to the prospective operation of regenerative thermal oxidation (RTO) technology at oriented strand board plants at Bemidji (Line 1) and Cook, Minnesota. The net system destruction of VOC`s and carbon monoxide, and at Cook a small quantity of particulate, has a very high environmental price in terms of energy and water use, global warming potential, sulfur and nitrogen oxide emissions, solids discharged to water, and solid waste deposited in landfills. The benefit of VOC destruction is identified as minor in terms of ground level ozone at best and possibly slightly detrimental. Recognition of environmental tradeoffs associated with proposed system changes is critical to sound decision-making. There are more conventional ways to address carbon monoxide emissions than combustion in RTO`s. In an environment in which global warming is a concern, fuel supplemental combustion for environmental control does not appear warranted. Consideration of non-combustion approaches to address air emission issues at the two operations is recommended. 1 ref., 5 tabs.

  14. Correcting Nitrogen Deficiencies in Cotton with Urea-Based Products 

    E-Print Network [OSTI]

    Livingston, Stephen; Stichler, Charles

    1995-11-22

    Correcting nitrogen deficiency is important for cotton plant growth. This publication explains nitrogen requirements, the problems associated with nitrogen deficiency, and ways to correct deficiencies using urea as a source ...

  15. CMOS Integrated Carbon Nanotube Sensor

    SciTech Connect (OSTI)

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A. [Grupo MEMS, Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S. [Dpto. de Ing. Electrica y de Computadoras, Universidad Nacional del Sur, Bahia Blanca (Argentina); Buffa, F. A. [INTEMA Facultad de Ingenieria, Universidad Nacional de Mar del Plata, Mar del Plata (Argentina)

    2009-05-23

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  16. A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells

    SciTech Connect (OSTI)

    Young, Alan; Colbow, Vesna; Harvey, David; Rogers, Erin; Wessel, Silvia

    2013-01-01

    The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stress test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.

  17. Structure and Reactivity of Surface Oxides on Pt(110) during Catalytic CO Oxidation

    SciTech Connect (OSTI)

    Ackermann, M.D.; Pedersen, T.M.; Hammer, B.; Hendriksen, B.L.M.; Bobaru, S.C.; Frenken, J.W.M.; Robach, O.; Quiros, C.

    2005-12-16

    We present the first structure determination by surface x-ray diffraction during the restructuring of a model catalyst under reaction conditions, i.e., at high pressure and high temperature, and correlate the restructuring with a change in catalytic activity. We have analyzed the Pt(110) surface during CO oxidation at pressures up to 0.5 bar and temperatures up to 625 K. Depending on the O{sub 2}/CO pressure ratio, we find three well-defined structures: namely, (i) the bulk-terminated Pt(110) surface, (ii) a thin, commensurate oxide, and (iii) a thin, incommensurate oxide. The commensurate oxide only appears under reaction conditions, i.e., when both O{sub 2} and CO are present and at sufficiently high temperatures. Density functional theory calculations indicate that the commensurate oxide is stabilized by carbonate ions (CO{sub 3}{sup 2-}). Both oxides have a substantially higher catalytic activity than the bulk-terminated Pt surface.

  18. Method for producing high carrier concentration p-Type transparent conducting oxides

    DOE Patents [OSTI]

    Li, Xiaonan (Evergreen, CO); Yan, Yanfa (Littleton, CO); Coutts, Timothy J. (Golden, CO); Gessert, Timothy A. (Conifer, CO); Dehart, Clay M. (Westminster, CO)

    2009-04-14

    A method for producing transparent p-type conducting oxide films without co-doping plasma enhancement or high temperature comprising: a) introducing a dialkyl metal at ambient temperature and a saturated pressure in a carrier gas into a low pressure deposition chamber, and b) introducing NO alone or with an oxidizer into the chamber under an environment sufficient to produce a metal-rich condition to enable NO decomposition and atomic nitrogen incorporation into the formed transparent metal conducting oxide.

  19. Functional and inflammatory alterations in the lung following exposure of rats to nitrogen mustard

    SciTech Connect (OSTI)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Patel, Kinal J., E-mail: kinalv5@gmail.com [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Shen, Jianliang, E-mail: jianliangs@gmail.com [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Reimer, David, E-mail: reimerd@las.rutgers.edu [Laboratory Animal Services, Rutgers University, Piscataway, NJ (United States); Gow, Andrew J., E-mail: gow@rci.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States)

    2011-01-01

    Nitrogen mustard is a vesicant that causes damage to the respiratory tract. In these studies, we characterized the acute effects of nitrogen mustard on lung structure, inflammatory mediator expression, and pulmonary function, with the goal of identifying mediators potentially involved in toxicity. Treatment of rats (male Wistar, 200-225 g) with nitrogen mustard (mechlorethamine hydrochloride, i.t., 0.25 mg/kg) resulted in marked histological changes in the respiratory tract, including necrotizing bronchiolitis, thickening of alveolar septa, and inflammation which was evident within 24 h. This was associated with increases in bronchoalveolar lavage protein and cells, confirming injury to alveolar epithelial regions of the lung. Nitrogen mustard administration also resulted in increased expression of inducible nitric oxide synthase and cyclooxygenase-2, pro-inflammatory proteins implicated in lung injury, in alveolar macrophages and alveolar and bronchial epithelial cells. Expression of connective tissue growth factor and matrix metalloproteinase-9, mediators regulating extracellular matrix turnover was also increased, suggesting that pathways leading to chronic lung disease are initiated early in the pathogenic process. Following nitrogen mustard exposure, alterations in lung mechanics and function were also observed. These included decreases in baseline static compliance, end-tidal volume and airway resistance, and a pronounced loss of methacholine responsiveness in resistance, tissue damping and elastance. Taken together, these data demonstrate that nitrogen mustard induces rapid structural and inflammatory changes in the lung which are associated with altered lung functioning. Understanding the nature of the injury induced by nitrogen mustard and related analogs may aid in the development of efficacious therapies for treatment of pulmonary injury resulting from exposure to vesicants.

  20. Preparation and characterization of graphene oxide Dmitriy A. Dikin1

    E-Print Network [OSTI]

    LETTERS Preparation and characterization of graphene oxide paper Dmitriy A. Dikin1 , Sasha for fuel cell and structural composite applications12­15 . Here we report the preparation and characterization of graphene oxide paper, a free-standing carbon- based membrane material made by flow

  1. A Carbon Corrosion Model to Evaluate the Effect of Steady State and Transient Operation of a Polymer Electrolyte Membrane Fuel Cell

    E-Print Network [OSTI]

    Pandy, Arun; Gummalla, Mallika; Atrazhev, Vadim V; Kuzminyh, Nikolay Yu; Sultanov, Vadim I; Burlatsky, Sergei F

    2014-01-01

    A carbon corrosion model is developed based on the formation of surface oxides on carbon and platinum of the polymer electrolyte membrane fuel cell electrode. The model predicts the rate of carbon corrosion under potential hold and potential cycling conditions. The model includes the interaction of carbon surface oxides with transient species like OH radicals to explain observed carbon corrosion trends under normal PEM fuel cell operating conditions. The model prediction agrees qualitatively with the experimental data supporting the hypothesis that the interplay of surface oxide formation on carbon and platinum is the primary driver of carbon corrosion.

  2. Eighth international congress on nitrogen fixation. Final program

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  3. Solid oxide electrochemical reactor science.

    SciTech Connect (OSTI)

    Sullivan, Neal P.; Stechel, Ellen Beth; Moyer, Connor J.; Ambrosini, Andrea; Key, Robert J.

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  4. Graphene Oxide Thin Films for Flexible Nonvolatile Memory Applications

    E-Print Network [OSTI]

    ,12 binary tran- sition metal oxides (such as NiO,13-15 TiO2,16-18 and ZnO19 ), and even Fe3O4 nanoparticle assemblies.20 Fullerenes, carbon nanotubes, and graphene-based ma- terials have attracted attention as future nonvolatile memory elements.21 Suspended and crossed carbon nanotubes in an array configuration yielded

  5. Cellulosic emissions (kg of pollutant per km2 county area) -...

    Open Energy Info (EERE)

    Cellulosic emissions (kg of pollutant per km2 county area) Data reflects projected air emissions of nitrogen oxides (NOX), ammonia (NH3), carbon monoxide (CO), sulfur oxide (SOX),...

  6. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    SciTech Connect (OSTI)

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2004-11-30

    A monitoring program to measure treatment effects on above ground, and below ground carbon and nitrogen pools for the planting areas is being conducted. The collection of soil and tissue samples from both the 2003 and 2004 plantings is complete and are currently being processed in the laboratory. Detailed studies have been initiated to address specific questions pertaining to carbon cycling. Examinations of decomposition and heterotropic respiration on carbon cycling in the reforestation plots were continued during this reporting period. A whole-tree harvesting method was employed to evaluate carbon accumulation as a function of time on the mined site. The trees were extracted from the sites and separated into the following components: foliage, stems, branches, and roots.

  7. Nitrogen Fixation and Dentrification in Sediments of Eutrophic Mediterranean-Type Estuaries: Seasonal Patterns and Responses to Anthropogenic Nitrogen Inputs

    E-Print Network [OSTI]

    Kane, Tonya Lynn

    2012-01-01

    and mechanisms controlling sediment nitrogen fixation in aKane T & Fong P. 2007. Sediment nitrogen fixation in UpperKane T & Fong P. 2007. Sediment nitrogen fixation in Upper

  8. Low-Potential Stable NADH Detection at Carbon-Nanotube-Modified Glassy Carbon Electrodes

    SciTech Connect (OSTI)

    Musameh, Mustafa; Wang, Joseph; Merkoci, Arben; Lin, Yuehe )

    2002-11-22

    Carbon-nanotube (CNT) modified glassy-carbon electrodes exhibiting strong and stable electrocatalytic response toward NADH are described. A substantial (490 mV) decrease in the overvoltage of the NADH oxidation reaction (compared to ordinary carbon electrodes) is observed using single-wall and multi-wall carbon-nanotube coatings, with oxidation starting at ca.?0.05V (vs. Ag/AgCl; pH 7.4). Furthermore, the NADH amperometric response of the coated electrodes is extremely stable, with 96 and 90% of the initial activity remaining after 60min stirring of 2x10-4M and 5x10-3M NADH solutions, respectively (compared to 20 and 14% at the bare surface). The CNT-coated electrodes thus allow highly-sensitive, low-potential, stable amperometric sensing. Such ability of carbon-nanotubes to promote the NADH electron-transfer reaction suggests great promise for dehydrogenase-based amperometric biosensors.

  9. ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Nitrogen Control in Ladle and Casting Operations ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting Operations castingops.pdf More Documents & Publications...

  10. Nitrogen Control in Electric Arc Furnace Steelmaking by Direct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines...

  11. Prediction of the Three-Phase Coexistence Conditions of Pure Methane and Carbon Dioxide Hydrates Using Molecular Dynamics Simulations 

    E-Print Network [OSTI]

    Costandy, Joseph GN

    2015-06-12

    different molecules can form hydrates when mixed with water at relatively low temperatures and high pressures, including methane, ethane, propane, iso-butane, carbon dioxide, nitrogen and hydrogen. The accurate prediction of thermodynamic properties...

  12. Low Carbon Footprint and Ultra Low NOx Boilers through Efficiency Gain 

    E-Print Network [OSTI]

    Benz, R,; Staedter, M.

    2008-01-01

    -1 Low Carbon Footprint and Ultra Low NOx Boilers through Efficiency Gain Robert Benz Marcel Staedter President Project Manager... / Low Carbon, Ultra Low NOx through Efficiency Gain where y denotes the mole fraction of excess oxygen. The presence of nitrogen and excess oxygen radicals in this hot combustion environment promotes the formation...

  13. Atomic Layer Deposition on Suspended Single-Walled Carbon Nanotubes via

    E-Print Network [OSTI]

    , and mechanical properties of the nanotubes. Atomic layer deposition (ALD) on single-walled carbon nanotubesAtomic Layer Deposition on Suspended Single-Walled Carbon Nanotubes via Gas-Phase Noncovalent, 2005; Revised Manuscript Received February 6, 2006 ABSTRACT Alternating exposures of nitrogen dioxide

  14. Adsorption configurations of two nitrogen atoms on graphene

    SciTech Connect (OSTI)

    Rani, Babita, E-mail: babitabaghla15@gmail.com [Department of Physics, Punjabi University, Patiala- 147 002 and Department of Physics, Panjab University, Chandigarh- 160 014 (India); Jindal, V. K.; Dharamvir, Keya [Department of Physics, Panjab University, Chandigarh- 160 014 (India)

    2014-04-24

    We present calculations for different possible configurations of two nitrogen adatoms on graphene using the code VASP, based on Density Functional Theory (DFT). Two N atoms adsorbed on the graphene sheet can share a bond in two ways. They take positions either just above two adjacent carbon atoms or they form a bridge across opposite bonds of a hexagon in the graphene sheet. Both these configurations result into structural distortion of the sheet. Another stable configuration involving two N atoms consists of an N{sub 2} molecule which is physisorbed at a distance 3.69 Å on the graphene sheet. Two N atoms can also be adsorbed on alternate bridge sites of neighbouring hexagons of graphene. This configuration again leads to distortion of the sheet in perpendicular direction.

  15. Dissociation and excitation coefficients of nitrogen molecules and nitrogen monoxide generation

    SciTech Connect (OSTI)

    Uhm, Han S.; Na, Young H.; Choi, Eun H.; Cho, Guangsup [Department of Electronic and Biological Physics, Kwangwoon University 447-1 Wolgye-Dong, Nowon-Gu, Seoul 137-701 (Korea, Republic of)] [Department of Electronic and Biological Physics, Kwangwoon University 447-1 Wolgye-Dong, Nowon-Gu, Seoul 137-701 (Korea, Republic of)

    2013-08-15

    The excitation coefficient ?{sub N2} is calculated for the excited metastable level of N{sub 2}(A{sub 3}?{sub u}{sup +}) in nitrogen molecules. In addition, the dissociation coefficient of nitrogen molecules is investigated by making use of the Boltzmann distribution of the electrons in atmospheric plasmas. The excitation and electron-impact dissociation coefficients of nitrogen molecules are analytically expressed in terms of the electron temperature T{sub e} for evaluations of the reactive oxygen and nitrogen species in atmospheric plasmas. As an application example of these coefficients, the nitrogen monoxide generation through a microwave torch is carried out for a development of medical tool. The nitrogen monoxide concentration from a microwave plasma-torch can be easily controlled by the nitrogen flow rate, mole fraction of the oxygen gas, and the microwave power. A simple analytic expression of the nitrogen monoxide concentration is obtained in terms of the oxygen molecular density and gas flow rate. The experimental data agree remarkably well with the theoretical results from the analytical expression. A microwave nitrogen-torch can easily provide an appropriate nitrogen monoxide concentration for the wound healings.

  16. Indirect Measurement Of Nitrogen In A Multi-Component Gas By Measuring The Speed Of Sound At Two States Of The Gas.

    DOE Patents [OSTI]

    Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Torrance, CA)

    2004-10-12

    A methods of indirectly measuring the nitrogen concentration in a gas mixture. The molecular weight of the gas is modeled as a function of the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the speed of sound in the gas is measured at two states and diluent concentrations other than nitrogen (typically carbon dioxide) are known, two equations for molecular weight can be equated and solved for the nitrogen concentration in the gas mixture.

  17. Carbon dioxide effects research and assessment program: flux of organic carbon by rivers to the oceans. [Lead abstract

    SciTech Connect (OSTI)

    1981-04-01

    Separate abstracts were prepared for the 15 papers presented in this workshop report. The state of knowledge about the role of rivers in the transport, storage and oxidation of carbon is the subject of this report. (KRM)

  18. Carbon Fiber

    SciTech Connect (OSTI)

    McGetrick, Lee

    2014-04-17

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  19. Carbon Fiber

    ScienceCinema (OSTI)

    McGetrick, Lee

    2014-07-23

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  20. Carbon Sequestration

    SciTech Connect (OSTI)

    2013-05-06

    Carbon Sequestration- the process of capturing the CO2 released by the burning of fossil fuels and storing it deep withing the Earth, trapped by a non-porous layer of rock.

  1. Methane-related authigenic carbonates from the Black Sea: geochemical characterisation and relation to seeping fluids

    E-Print Network [OSTI]

    Mazzini, Adriano

    Methane-related authigenic carbonates from the Black Sea: geochemical characterisation and relation of carbon derived from the anaerobic oxidation of methane (AOM), the oxidation of organic matter and from sea water. Methane is the dominant component among other hydrocarbon gases in these sediments. Its

  2. Formation of Carbon Nanostructures in Cobalt- and Nickel-Doped Carbon Aerogels

    SciTech Connect (OSTI)

    Fu, R; Baumann, T F; Cronin, S; Dresselhaus, G; Dresselhaus, M; Satcher, Jr., J H

    2004-11-09

    We have prepared carbon aerogels (CAs) doped with cobalt or nickel through sol-gel polymerization of formaldehyde with the potassium salt of 2,4-dihydroxybenzoic acid, followed by ion-exchange with M(NO{sub 3}){sub 2} (where M = Co{sup 2+} or Ni{sup 2+}), supercritical drying with liquid CO{sub 2} and carbonization at temperatures between 400 C and 1050 C under an N{sub 2} atmosphere. The nanostructures of these metal-doped carbon aerogels were characterized by elemental analysis, nitrogen adsorption, high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Metallic nickel and cobalt nanoparticles are generated during the carbonization process at about 400 C and 450 C, respectively, forming nanoparticles that are {approx}4 nm in diameter. The sizes and size dispersion of the metal particles increase with increasing carbonization temperatures for both materials. The carbon frameworks of the Ni- and Co-doped aerogels carbonized below 600 C mainly consist of interconnected carbon particles with a size of 15 to 30 nm. When the samples are pyrolyzed at 1050 C, the growth of graphitic nanoribbons with different curvatures is observed in the Ni and Co-doped carbon aerogel materials. The distance of graphite layers in the nanoribbons is about 0.38 nm. These metal-doped CAs retain the overall open cell structure of metal-free CAs, exhibiting high surface areas and pore diameters in the micro and mesoporic region.

  3. Genomics Mechanisms of Carbon Allocation and Partitioning in Poplar

    SciTech Connect (OSTI)

    Kirst, Matias; Peter, Gary; Martin, Timothy

    2009-07-30

    The genetic control of carbon allocation and partitioning in woody perennial plants is poorly understood despite its importance for carbon sequestration. It is also unclear how environmental cues such as nitrogen availability impact the genes that regulate growth, and biomass allocation and wood composition in trees. To address these questions we phenotyped 396 clonally replicated genotypes of an interspecific pseudo-backcross pedigree of Populus for wood composition and biomass traits in above and below ground organs. The loci that regulate growth, carbon allocation and partitioning under two nitrogen conditions were identified, defining the contribution of environmental cues to their genetic control. Fifty-seven quantitative trait loci (QTL) were identified for twenty traits analyzed. The majority of QTL are specific to one of the two nitrogen treatments, demonstrating significant nitrogen-dependent genetic control. A highly significant genetic correlation was observed between plant growth and lignin/cellulose composition, and QTL co-localization identified the genomic position of potential pleiotropic regulators. Gene expression analysis of all poplar genes was also characterized in differentiating xylem, whole-roots and developing leaves of 192 of the segregating population. By integrating the QTL and gene expression information we identified genes that regulate carbon partitioning and several biomass growth related properties. The work developed in this project resulted in the publication of three book chapters, four scientific articles (three others currently in preparation), 17 presentations in international conferences and two provisional patent applications.

  4. Stabilization of 13 C-Carbon and Immobilization of 15

    E-Print Network [OSTI]

    van Kessel, Chris

    Stabilization of 13 C-Carbon and Immobilization of 15 N-Nitrogen from Rice Straw in Humic Fractions management practices may affect soil C sequestration potential and the supply of nutrients to crops. A field sequestration po-poration reduced residue 15 N loss but increased residue 13 C loss com- tential

  5. Catalyst Additives to Enhance Mercury Oxidation and Capture

    SciTech Connect (OSTI)

    Thomas K. Gale

    2005-12-31

    Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. Three different SCR catalysts are currently being studied in this project--honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Future work to characterize flue gas simulations typically derived from low and high sulfur bituminous coal are being performed in a stepwise manner, to avoid the constant interruptions in testing that occur when leaks in the system are generated during temperature transitions. Specifically, chlorine concentration vs. mercury oxidation correlations will be developed for each catalyst. The contributions of temperature are also being investigated. SO2 oxidation is also being investigated for each test condition.

  6. Electronic structure of graphene oxide and reduced graphene oxide monolayers

    SciTech Connect (OSTI)

    Sutar, D. S.; Singh, Gulbagh; Divakar Botcha, V.

    2012-09-03

    Graphene oxide (GO) monolayers obtained by Langmuir Blodgett route and suitably treated to obtain reduced graphene oxide (RGO) monolayers were studied by photoelectron spectroscopy. Upon reduction of GO to form RGO C1s x-ray photoelectron spectra showed increase in graphitic carbon content, while ultraviolet photoelectron spectra showed increase in intensity corresponding to C2p-{pi} electrons ({approx}3.5 eV). X-ray excited Auger transitions C(KVV) and plasmon energy loss of C1s photoelectrons have been analyzed to elucidate the valence band structure. The effective number of ({pi}+{sigma}) electrons as obtained from energy loss spectra was found to increase by {approx}28% on reduction of GO.

  7. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    SciTech Connect (OSTI)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  8. Summary We examined the effects of elevated carbon diox-ide concentration ([CO2]) on the relationship between light-sat-

    E-Print Network [OSTI]

    DeLucia, Evan H.

    carbon dioxide con- centration ([CO2]) increase in complexity, from single plants in pots to intactSummary We examined the effects of elevated carbon diox- ide concentration ([CO2 to showastrongstimulationof photosynthesisbyelevated[CO2]. Keywords: elevated CO2, foliar nitrogen, Free Air Carbon En

  9. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOE Patents [OSTI]

    Coruzzi, Gloria M. (New York, NY); Brears, Timothy (Durham, NC)

    2000-01-01

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  10. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOE Patents [OSTI]

    Coruzzi, Gloria M.; Brears, Timothy

    2005-03-08

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  11. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOE Patents [OSTI]

    Coruzzi, Gloria M. (New York, NY); Brears, Timothy (Durham, NC)

    1999-01-01

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  12. Plant nitrogen regulatory P-PII genes

    DOE Patents [OSTI]

    Coruzzi, Gloria M. (New York, NY); Lam, Hon-Ming (Hong Kong, HK); Hsieh, Ming-Hsiun (Woodside, NY)

    2001-01-01

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the

  13. Effects of Nitrogen contamination in liquid Argon

    E-Print Network [OSTI]

    R. Acciarri; M. Antonello; B. Baibussinov; M. Baldo-Ceolin; P. Benetti; F. Calaprice; E. Calligarich; M. Cambiaghi; N. Canci; F. Carbonara; F. Cavanna; S. Centro; A. G. Cocco; F. Di Pompeo; G. Fiorillo; C. Galbiati; V. Gallo; L. Grandi; G. Meng; I. Modena; C. Montanari; O. Palamara; L. Pandola; F. Pietropaolo; G. L. Raselli; M. Roncadelli; M. Rossella; C. Rubbia; E. Segreto; A. M. Szelc; S. Ventura; C. Vignoli

    2008-04-08

    A dedicated test of the effects of Nitrogen contamination in liquid Argon has been performed at the INFN-Gran Sasso Laboratory (LNGS, Italy) within the WArP R&D program. A detector has been designed and assembled for this specific task and connected to a system for the injection of controlled amounts of gaseous Nitrogen into the liquid Argon. Purpose of the test is to detect the reduction of the Ar scintillation light emission as a function of the amount of the Nitrogen contaminant injected in the Argon volume. A wide concentration range, spanning from about 10^-1 ppm up to about 10^3 ppm, has been explored. Measurements have been done with electrons in the energy range of minimum ionizing particles (gamma-conversion from radioactive sources). Source spectra at different Nitrogen contaminations are analyzed, showing sensitive reduction of the scintillation yield at increasing concentrations. The rate constant of the light quenching process induced by Nitrogen in liquid Ar has been found to be k(N2)=0.11 micros^-1 ppm^-1. Direct PMT signals acquisition at high time resolution by fast Waveform recording allowed to extract with high precision the main characteristics of the scintillation light emission in pure and contaminated LAr. In particular, the decreasing behavior in lifetime and relative amplitude of the slow component is found to be appreciable from O(1 ppm) of Nitrogen concentrations.

  14. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  15. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  16. Carbon particles

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA)

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  17. Carbon supercapacitors

    SciTech Connect (OSTI)

    Delnick, F.M.

    1993-11-01

    Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

  18. Carbon monoxide sensor for PEM fuel cell systems Christopher T. Holta,*

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    monoxide can lead to poisoning of platinum electrocatalysts used in the fuel cells [1,2]. The reforming are converted to hydrogen and carbon mon- oxide by reactions with air (partial oxidation), with water (steam. In the third step, the gas mixture is reacted with air over a preferential oxidation (PROX) catalyst, so

  19. Coupling of CO_(2) and CS_(2) with Novel Oxiranes: Polycarbonate vs. Cyclic Carbonate Production 

    E-Print Network [OSTI]

    Wilson, Stephanie Jo

    2013-07-09

    ,2-butylene oxide, and styrene oxide with CO_(2) utilizing (salen)CrCl/nBu_(4)NCl to yield their corresponding cyclic carbonates. Additionally, the metal-free backbiting of the singly-coupled styrene oxide/CO_(2) intermediate was simulated utilizing...

  20. Oregon Subduction Zone: Venting, Fauna, and Carbonates

    E-Print Network [OSTI]

    Goldfinger, Chris

    . The animals use meth- ane as an energy and food source in symbiosis with microorganisms. Oxidized methane, are associated with venting sites of cool fluids located on a fault-bend antidline at a water depth of2036 meters. The distribution of animals and carbonates suggests up-dip migration of fluids from both shallow and deep sources