Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nitrogen Oxides Emission Control Options  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nitrogen Nitrogen Oxides Emission Control Options for Coal-Fired Electric Utility Boilers Ravi K. Srivastava and Robert E. Hall U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Air Pollution Prevention and Control Division, Research Triangle Park, NC Sikander Khan and Kevin Culligan U.S. Environmental Protection Agency, Office of Air and Radiation, Clean Air Markets Division, Washington, DC Bruce W. Lani U.S. Department of Energy, National Energy Technology Laboratory, Environmental Projects Division, Pittsburgh, PA ABSTRACT Recent regulations have required reductions in emissions of nitrogen oxides (NO x ) from electric utility boilers. To comply with these regulatory requirements, it is increas- ingly important to implement state-of-the-art NO x con- trol technologies on coal-fired utility boilers. This paper reviews NO x control

2

Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide  

Broader source: Energy.gov (indexed) [DOE]

Air Pollution Control Regulations: No.27 - Control of Nitrogen Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide Emissions (Rhode Island) Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide Emissions (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations apply to stationary sources with the potential to emit 50 tons of nitrogen oxides (NOx) per year from all pollutant-emitting equipment or activities. The regulations describe possibilities for exemptions (i.e., for sources which have the potential to emit 50 tons but do not actually reach that level) and Reasonably Available Control

3

Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies  

E-Print Network [OSTI]

red power plants. Nitrogen dioxide (NO 2 ) is one of the sixeffects, including nitrogen dioxide (NO 2 ) and ground-levelgradually oxidized to nitrogen dioxide (NO 2 ) once emitted

Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

2007-01-01T23:59:59.000Z

4

Technology innovations and experience curves for nitrogen oxides control technologies  

SciTech Connect (OSTI)

This paper reviews the regulatory history for nitrogen oxides (NOx) pollutant emissions from stationary sources, primarily in coal-fired power plants. Nitrogen dioxide (NO{sub 2}) is one of the six criteria pollutants regulated by the 1970 Clean Air Act where National Ambient Air Quality Standards were established to protect public health and welfare. Patent data are used to show that in the cases of Japan, Germany, and the United States, innovations in NOx control technologies did not occur until stringent government regulations were in place, thus 'forcing' innovation. It is demonstrated that reductions in the capital and operation and maintenance (O&M) costs of new generations of high-efficiency NOx control technologies, selective catalytic reduction (SCR), are consistently associated with the increasing adoption of the control technology: the so-called learning-by-doing phenomena. The results show that as cumulative world coal-fired SCR capacity doubles, capital costs decline to {approximately} 86% and O&M costs to 58% of their original values. The observed changes in SCR technology reflect the impact of technological advance as well as other factors, such as market competition and economies of scale. 38 refs., 10 figs., 3 tabs.

Sonia Yeh; Edward S. Rubin; Margaret R. Taylor; David A. Hounshell [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Laboratory, Office of Research and Development,

2005-12-15T23:59:59.000Z

5

Nitrogen Oxides (NOx), Why and How They are Controlled  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Air Quality EPA 456/F-99-006R Air Quality EPA 456/F-99-006R Environmental Protection Planning and Standards November 1999 Agency Research Triangle Park, NC 27711 Air EPA-456/F-99-006R November 1999 Nitrogen Oxides (NOx), Why and How They Are Controlled Prepared by Clean Air Technology Center (MD-12) Information Transfer and Program Integration Division Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711 ii DISCLAIMER This report has been reviewed by the Information Transfer and Program Integration Division of the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency and approved for publication. Approval does not signify that the contents of this report reflect the views and policies of the U.S. Environmental Protection Agency. Mention of trade

6

Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies  

E-Print Network [OSTI]

air preheater interactions). SCR pro- cess improvements that1987; CS-5361s. 13. 13. SCR Projects Bid and Award Tracking;Catalytic Reduction (SCR) Control of NO x Emissions; SCR

Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

2007-01-01T23:59:59.000Z

7

Combustion method for simultaneous control of nitrogen oxides and products of incomplete combustion  

SciTech Connect (OSTI)

A method is described for combusting material with controlled generation of both nitrogen oxides and products of incomplete combustion comprising: (A) combusting material in a first combustion zone to produce gaseous exhaust containing products of incomplete combustion and products of complete combustion; (B) passing the gaseous exhaust from the first combustion zone into a second combustion zone having a width and an axial direction; (C) injecting through a lance with an orientation substantially parallel to said axial direction at least one stream of oxidant, without fuel, having a diameter less than 1/100 of the width of the second combustion zone and having an oxygen concentration of at least 30% into the second combustion zone at a high velocity of at least 300 feet per second; (D) aspirating products of incomplete combustion into the high velocity oxidant; (E) combusting products of incomplete combustion aspirated into the high velocity oxidant with high velocity oxidant within the second combustion zone to carry out a stable combustion by the mixing of the aspirated products of incomplete combustion with the high velocity oxidant; and (F) spreading out the combustion reaction by aspiration of products of complete combustion into the oxidant, said products of complete combustion also serving as a heat sink, to inhibit NO[sub x] formation.

Ho, Min-Da.

1993-05-25T23:59:59.000Z

8

THE NITROGEN OXIDES CONTROVERSY  

E-Print Network [OSTI]

including observed nitrogen dioxide," Pure App. Geophys.HN0 ) and probably nitrogen dioxide (N0 ) at a few parts perorganic molecule and nitrogen dioxide. Several examples

Johnston, Harold S.

2012-01-01T23:59:59.000Z

9

nitrogen oxides | OpenEI  

Open Energy Info (EERE)

20 20 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279720 Varnish cache server nitrogen oxides Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago)

10

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

Not Available

1991-11-01T23:59:59.000Z

11

Nitrogen oxide delivery systems for biological media  

E-Print Network [OSTI]

Elevated levels of nitric oxide (NO) in vivo are associated with a variety of cellular modifications thought to be mutagenic or carcinogenic. These processes are likely mediated by reactive nitrogen species (RNS) such as ...

Skinn, Brian Thomas

2012-01-01T23:59:59.000Z

12

Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers  

SciTech Connect (OSTI)

The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

NONE

2005-05-01T23:59:59.000Z

13

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO[sub x]) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO[sub x]) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO[sub x] to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO[sub 2] and SO[sub 3]. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U. S. coal.

Not Available

1992-08-01T23:59:59.000Z

14

Method and apparatus for nitrogen oxide determination  

DOE Patents [OSTI]

Method and apparatus for determining nitrogen oxide content in a high temperature process gas, which involves withdrawing a sample portion of a high temperature gas containing nitrogen oxide from a source to be analyzed. The sample portion is passed through a restrictive flow conduit, which may be a capillary or a restriction orifice. The restrictive flow conduit is heated to a temperature sufficient to maintain the flowing sample portion at an elevated temperature at least as great as the temperature of the high temperature gas source, to thereby provide that deposition of ammonium nitrate within the restrictive flow conduit cannot occur. The sample portion is then drawn into an aspirator device. A heated motive gas is passed to the aspirator device at a temperature at least as great as the temperature of the high temperature gas source. The motive gas is passed through the nozzle of the aspirator device under conditions sufficient to aspirate the heated sample portion through the restrictive flow conduit and produce a mixture of the sample portion in the motive gas at a dilution of the sample portion sufficient to provide that deposition of ammonium nitrate from the mixture cannot occur at reduced temperature. A portion of the cooled dilute mixture is then passed to analytical means capable of detecting nitric oxide.

Hohorst, Frederick A. (Idaho Falls, ID)

1990-01-01T23:59:59.000Z

15

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 6, October--December, 1991  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1992-02-01T23:59:59.000Z

16

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1992-02-01T23:59:59.000Z

17

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emissions from high-sulfur coal-fired boilers. Quarterly report No. 5, July--September 1991  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

Not Available

1991-11-01T23:59:59.000Z

18

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 2, October--December 1990  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide NO{sub x} control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

Not Available

1991-02-01T23:59:59.000Z

19

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide NO{sub x} control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

Not Available

1991-02-01T23:59:59.000Z

20

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 3, January--March 1991  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1991-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1991-07-01T23:59:59.000Z

22

Nitrogen oxides emission trends in Monthly emission estimates of nitrogen oxides from space provide  

E-Print Network [OSTI]

Chapter 5 Nitrogen oxides emission trends in East Asia Abstract Monthly emission estimates present first results of a new emission estimation algorithm, specifically designed to use daily satellite observations of column concentrations for fast updates of emission estimates of short-lived atmospheric

Haak, Hein

23

Nitrogen Control in Electric Arc Furnace Steelmaking by Direct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines...

24

Modeling of Nitrogen Oxides Emissions from CFB Combustion  

Science Journals Connector (OSTI)

In this work, a simplified description of combustion and nitrogen oxides chemistry was implemented in a 1.5D model framework with the aim to compare the results with ones earlier obtained with a detailed react...

S. Kallio; M. Keinonen

2010-01-01T23:59:59.000Z

25

Controlled CO preferential oxidation  

DOE Patents [OSTI]

Method is described for controlling the supply of air to a PROX (PReferential OXidation for CO cleanup) reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference there between correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference. 2 figs.

Meltser, M.A.; Hoch, M.M.

1997-06-10T23:59:59.000Z

26

Nitrogen Oxide Emission Statements (Ohio) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nitrogen Oxide Emission Statements (Ohio) Nitrogen Oxide Emission Statements (Ohio) Nitrogen Oxide Emission Statements (Ohio) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency requires any facility that emits 25 tons or more of NOx and/or 25 tons or more of VOC during the calendar year and is located in a county designated as nonattainment for the National Ambient Air Quality Standards for ozone submit emission statements. Any facility that is located in a county described above is exempt from these requirements. If NOx

27

Temperature and nutrient supply interact to control nitrogen fixation ...  

Science Journals Connector (OSTI)

Temperature and nutrient supply interact to control nitrogen fixation in oligotrophic streams: An experimental examination. Marcarelli, Amy M., Wayne A.

28

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 8, April--June, 1992  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U. S. coal.

Not Available

1992-08-01T23:59:59.000Z

29

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Fourth quarterly progress report  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

NONE

1992-12-31T23:59:59.000Z

30

Nitrogen doped zinc oxide thin film  

SciTech Connect (OSTI)

To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

Li, Sonny X.

2003-12-15T23:59:59.000Z

31

Photochemical doping of graphene oxide with nitrogen for photoluminescence enhancement  

SciTech Connect (OSTI)

Nitrogen-doped graphene oxide (NGO) was synthesized by irradiation of graphene oxide (GO) in NH{sub 3} atmosphere. NGO obtained by irradiation of GO for 10 min has high N content of 13.62 at. %. The photoluminescence (PL) properties of NGO were investigated. The results showed that compared with GO, NGO exhibits significant PL enhancement with a high enhancement ratio of approximately 1501.57%. It may attribute to the high content of amino-like N, which can effectively enhance PL of GO because of the amino conjugation effect.

Liu, Fuchi [Physics Department and Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China) [Physics Department and Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); College of Physics and Technology, Guangxi Normal University, Guilin 541004 (China); Tang, Nujiang; Tang, Tao; Liu, Yuan; Feng, Qian; Zhong, Wei; Du, Youwei [Physics Department and Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China)] [Physics Department and Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China)

2013-09-16T23:59:59.000Z

32

Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, first and second quarters 1994  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involve injecting ammonia into the flue gas generated from coal combustion in a boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The project is being conducted in the following three phases: permitting, environmental monitoring plan and preliminary engineering; detailed design engineering and construction; and operation, testing, disposition and final report. The project was in the operation and testing phase during this reporting period. Accomplishments for this period are described.

NONE

1995-11-01T23:59:59.000Z

33

Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions  

DOE Patents [OSTI]

A biofilter for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described.

Apel, William A. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

34

Assessment of soil nitrogen oxides emissions and implementation in LOTOS-EUROS  

E-Print Network [OSTI]

the formation and transport of nitrogen dioxide, ozone, particulate matter and other species throughout EuropeAssessment of soil nitrogen oxides emissions and implementation in LOTOS-EUROS Date 18 March 2013, climate and nitrogen availability. Nitrogen availability is in turn determined by N-deposition from

Haak, Hein

35

Method for reducing nitrogen oxides in combustion effluents  

DOE Patents [OSTI]

Method for reducing nitrogen oxides (NO.sub.x) in the gas stream from the combustion of fossil fuels is disclosed. In a narrow gas temperature zone, NO.sub.x is converted to nitrogen by reaction with urea or ammonia with negligible remaining ammonia and other reaction pollutants. Specially designed injectors are used to introduce air atomized water droplets containing dissolved urea or ammonia into the gaseous combustion products in a manner that widely disperses the droplets exclusively in the optimum reaction temperature zone. The injector operates in a manner that forms droplet of a size that results in their vaporization exclusively in this optimum NO.sub.x -urea/ammonia reaction temperature zone. Also disclosed is a design of a system to effectively accomplish this injection.

Zauderer, Bert (Merion Station, PA)

2000-01-01T23:59:59.000Z

36

EFFECT OF NITROGEN OXIDE PRETREATMENTS ON ENZYMATIC HYDROLYSIS OF CELLULOSE  

E-Print Network [OSTI]

oxygen react to give nitrogen dioxide, which rapidly reactsis simultaneous, the nitrogen dioxide formed reacts withaccomplished by absorbing nitrogen dioxide in water, usually

Borrevik, R.K.

2011-01-01T23:59:59.000Z

37

Method for combined removal of mercury and nitrogen oxides from off-gas streams  

DOE Patents [OSTI]

A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

Mendelsohn, Marshall H. (Downers Grove, IL); Livengood, C. David (Lockport, IL)

2006-10-10T23:59:59.000Z

38

Nitrogen oxide emissions from a kraft recovery furnace  

SciTech Connect (OSTI)

Nitrogen Oxide (NOx) emissions from a rebuilt kraft recovery furnace slightly exceeded the specified limit of 1.1 lb/ton (0.55 kg/metric ton) of black-liquor solids. Mill trials were undertaken to determine whether NOx emissions could be minimized by modifying furnace operation. NOx emissions increased when secondary air was shifted to tertiary ports. NOx emissions fell when the amounts of primary and total air were decreased, but this increased emissions of other pollutants. After demonstrating that best operation of the furnace could not meet the permit with an emissions limit that matched the furnace's performance at best operation.

Prouty, A.L.; Stuart, R.C. (James River Corp., Camas, WA (United States)); Caron, A.L. (NCASI West Coast Regional Office, Corvallis, OR (United States))

1993-01-01T23:59:59.000Z

39

Production of ozone and nitrogen oxides by laser filamentation  

SciTech Connect (OSTI)

We have experimentally measured that laser filaments in air generate up to 10{sup 14}, 3x10{sup 12}, and 3x10{sup 13} molecules of O{sub 3}, NO, and NO{sub 2}, respectively. The corresponding local concentrations in the filament active volume are 10{sup 16}, 3x10{sup 14}, and 3x10{sup 15} cm{sup -3}, and allows efficient oxidative chemistry of nitrogen, resulting in concentrations of HNO{sub 3} in the parts per million range. The latter forming binary clusters with water, our results provide a plausible pathway for the efficient nucleation recently observed in laser filaments.

Petit, Yannick; Henin, Stefano; Kasparian, Jerome; Wolf, Jean-Pierre [GAP Biophotonics, Universite de Geneve, 20 rue de l'Ecole de Medecine, CH1211 Geneve 4 (Switzerland)

2010-07-12T23:59:59.000Z

40

Reduction of nitrogen oxides in diesel exhaust: Prospects for use of synthesis gas  

Science Journals Connector (OSTI)

Already commercialized and some of the most promising technologies of nitrogen oxide reduction in automotive diesel exhaust are compared. The Boreskov Institute of Catalysis... x ...

V. A. Kirillov; E. I. Smirnov; Yu. I. Amosov; A. S. Bobrin…

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fuzzy predictive control for nitrogen removal in biological wastewater treatment  

E-Print Network [OSTI]

Fuzzy predictive control for nitrogen removal in biological wastewater treatment S. Marsili wastewater is too low, full denitrification is difficult to obtain and an additional source of organic carbon predictive control; wastewater treatment plant Introduction The problem of improving the nitrogen removal

42

Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia  

DOE Patents [OSTI]

Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

Pence, Dallas T. (Idaho Falls, ID); Thomas, Thomas R. (Idaho Falls, ID)

1980-01-01T23:59:59.000Z

43

Chromatographic Determination of Total Nitrogen Following the Kjeldahl Oxidation  

Science Journals Connector (OSTI)

......23745 (1986). 3. B.M. Jones, and C.G. Daughton. Chemiluminescence vs. Kjeldahl determination of nitrogen in oil shale retort waters and organo- nitrogen compounds. Anal. Chem. 57: 232025 (1985). 4. B.T. Croll, T. Tomlinson......

Serban Moldoveanu

1988-01-01T23:59:59.000Z

44

Method for Detection of Microorganisms That Produce Gaseous Nitrogen Oxides  

Science Journals Connector (OSTI)

...with 02-free nitrogen; the tubes were...dishes to reduce water evaporation...Detection of gas producers. Culture...conductivity detector; nitrogen was used as the...Low-pressure solubility of gases in liquid water. Chem. Rev...

Gary E. Jenneman; Anne D. Montgomery; Michael J. McInerney

1986-04-01T23:59:59.000Z

45

Methods of reducing emissions of nitrogen oxides at thermal power plants burning solid domestic waste  

Science Journals Connector (OSTI)

Essentially all the major methods of reducing the emissions of nitrogen oxides from flue gases employed in power generation have been tested on plants in Moscow which burn solid domestic waste for production of h...

A. N. Tugov; V. F. Moskvichev

2009-01-01T23:59:59.000Z

46

Calculation of the emission of nitrogen oxides in electric resistance heating furnaces  

Science Journals Connector (OSTI)

The present paper is devoted to the least studied topic in the field of use of modern electric heating equipment, namely, pollution of the atmosphere by nitrogen oxides and reduction of the intensity of this e...

A. V. Aksenov; V. A. Belyakov; Z. G. Sadykova

1998-02-01T23:59:59.000Z

47

Nitrogen-concentration control in GaNAs/AlGaAs quantum wells using nitrogen ?-doping technique  

SciTech Connect (OSTI)

GaNAs/Al{sub 0.35}Ga{sub 0.65}As multiple quantum wells (MQWs) with nitrogen ?-doping were fabricated on GaAs (100) substrates by plasma-assisted molecular beam epitaxy. High controllability of nitrogen-concentrations in the MQWs was achieved by tuning nitrogen ?-doping time. The maximum nitrogen concentration in the MQWs was 2.8%. The MQWs exhibit intense, narrow photoluminescence emission.

Mano, Takaaki; Jo, Masafumi; Kuroda, Takashi; Noda, Takeshi; Sugimoto, Yoshimasa; Sakuma, Yoshiki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Elborg, Martin; Sakoda, Kazuaki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan and Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan)

2014-05-15T23:59:59.000Z

48

Dissimilatory Metabolism of Nitrogen Oxides in Bacteria:Comparative Reconstruction of Transcriptional Networks  

SciTech Connect (OSTI)

Bacterial response to nitric oxide (NO) is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is diverse and involves FNR-like transcription factors HcpR, DNR and NnrR, two-component systems NarXL and NarQP, NO-responsive activator NorR, and nitrite sensitive repressor NsrR. Using comparative genomics approaches we predict DNA-binding signals for these transcriptional factors and describe corresponding regulons in available bacterial genomes. Within the FNR family of regulators, we observed a correlation of two specificity-determining amino acids and contacting bases in corresponding DNA signal. Highly conserved regulon HcpR for the hybrid cluster protein and some other redox enzymes is present in diverse anaerobic bacteria including Clostridia, Thermotogales and delta-proteobacteria. NnrR and DNR control denitrification in alpha- and beta-proteobacteria, respectively. Sigma-54-dependent NorR regulon found in some gamma- and beta-proteobacteria contains various enzymes involved in the NO detoxification. Repressor NsrR, which was previously known to control only nitrite reductase operon in Nitrosomonas spp., appears to be the master regulator of the nitric oxides metabolism not only in most gamma- and beta-proteobacteria (including well-studied species like Escherichia coli), but also in Gram-positive Bacillus and Streptomyces species. Positional analysis and comparison of regulatory regions of NO detoxification genes allows us to propose the candidate NsrR-binding signal. The most conserved member of the predicted NsrR regulon is the NO-detoxifying flavohemoglobin Hmp. In enterobacteria, the regulon includes also two nitrite-responsive loci, nipAB (hcp-hcr) and nipC(dnrN), thus confirming the identity of the effector, i.e., nitrite. The proposed NsrR regulons in Neisseria and some other species are extended to include denitrification genes. As the result, we demonstrate considerable interconnection between various nitrogen-oxides-responsive regulatory systems for the denitrification and NO detoxification genes and evolutionary plasticity of this transcriptional network.

Rodionov, Dmitry A.; Dubchak, Inna L.; Arkin, Adam P.; Alm, EricJ.; Gelfand, Mikhail S.

2005-09-01T23:59:59.000Z

49

Hydrogen and Nitrogen Control in Ladle and Casting Operations  

SciTech Connect (OSTI)

In recent years there has been an increasing demand to reduce and control the amount of dissolved gases in steel. Hydrogen and nitrogen are two of the most important gases which when dissolved in liquid steel affect its properties significantly. Several steelmaking additions have been investigated in this research for their effect on the hydrogen and nitrogen content of steels. It has been established that calcium hydroxide (hydrated lime) acts as a source of hydrogen. Carburizers, such as metallurgical coke, were found to result in no hydrogen pickup when added to liquid steel. Addition of petroleum coke, on the other hand, increased the hydrogen content of liquid steel. Ferroalloy such as medium carbon ferromanganese when added to the liquid iron was found to increase its nitrogen content, the increase being proportional to the amount of ferroalloy added. Similarly, addition of pitch coke, which had a significant nitrogen impurity, increased the nitrogen content of liquid iron. A mathematical model was developed to quantify the absorption of nitrogen and hydrogen from the air bubbles entrained during tapping of liquid steel. During the bottom stirring of liquid metal in a ladle, the inert gas escaping from the top displaces the slag layer and often forms an open eye. The absorption of atmospheric nitrogen through the spout eye was estimated for different slag thickness and gas flow rate. The ultimate goal of this research was to develop a comprehensive set of equations which could predict the nitrogen and hydrogen pickup from their various sources. Estimates of hydrogen and nitrogen pickup during the steel transfer operations such as tapping and ladle stirring and the predicted pickup from steelmaking additions were integrated into empirical equations. The comprehensive model is designed to predict the gas pickup under varying operating conditions such as the metal oxygen and sulfur content, the total tapping or stirring time, the stirring gas flow rate and the slag thickness. The model predictions are based on mathematical and empirical evidence which are derived from thermodynamic and kinetic fundamental principles.

Richard J. Fruehan; Siddhartha Misra

2005-01-15T23:59:59.000Z

50

Energy cost improvement of the nitrogen oxides synthesis in a low pressure plasma  

E-Print Network [OSTI]

of XIXth century, the synthesis of nitrogen oxides by an electric discharge through the air has been a microwave discharge. The total pressure is equal to 50 torr. The optimal value of energy consumption, equal with the industrial process used at present, and by 78 % in comparison with those obtained with a plasmajet arc

Paris-Sud XI, Université de

51

Nitrogen oxides reduction by staged combustion of LCV gas  

E-Print Network [OSTI]

to the high nitrogen content (1-2%) of the agricultural wastes, burning of the LCV gas derived from them can result in NO?emissions in excess of 2000 ppm. NO?emissions during combustion of LCV gas derived from gasification of cotton gin trash have been.... Wayne A. LePori for serving on my committee and for the advice and time he offer me. His experience on gasification and combustion of LCV gas was an invaluable source. I appreciate Dr. Mario A. Colaluca for serving on my committee and for his help...

Cabrera Sixto, Jose Manuel

2012-06-07T23:59:59.000Z

52

Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results  

SciTech Connect (OSTI)

This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program`s Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

1990-08-01T23:59:59.000Z

53

Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results  

SciTech Connect (OSTI)

This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

1990-08-01T23:59:59.000Z

54

Tunneling oxide engineering by ion implantation of nitrogen for 3D vertical silicon pillar SONOS flash memory  

Science Journals Connector (OSTI)

The electrical characteristics of silicon-oxide-nitride-oxide-silicon (SONOS) flash memory with a 3D vertical silicon pillar structure were studied. As an alternative method for the formation of the tunneling oxide, nitrogen ion implantation was applied to thermally grown pure silicon dioxide with a low energy (5 keV). The devices show significant improvement in the erase characteristics compared to conventional tunneling oxide. Secondary ion mass spectrometry was used to analyze the nitrogen distribution within tunnel oxide, and the improved erase properties can be attributed to the incorporation of about 4.8% nitrogen (2 × 1021 atoms/cm3) into the tunnel oxide formed by nitrogen ion implantation.

Jae-Sub Oh; Seong-Dong Yang; Sang-Youl Lee; Young-Su Kim; Min-Ho Kang; Sung-Kyu Lim; Hi-Deok Lee; Ga-Won Lee

2013-01-01T23:59:59.000Z

55

Oxidation of heterocyclic nitrogen yields to nitroheterocycles. [Nitrofurazans  

SciTech Connect (OSTI)

In the process of finding new routes to synthesize nitrofurazans the investigators compared the oxidation of a sulfilimide and a phosphine imine derived from 3-amino-4-(chlorophenyl)furazan (1). The sulfilimine, 3-(4-chlorophenyl)-4-dimethyl-sulfiliminofurazan (2), was prepared by treating 1 with dimethyl sulfide ditriflate. Oxidation of 1 with peroxytrifluoroacetic acid (ptfa) in dichloromethane gave a mixture that was chromatographed to give 3-(4-chlorophenyl)-4- nitro-furazan (5) in 11% yield and azoxy(4-chlorophenylfurazan) (6) in 32% yield. Under the same conditions, 2 gave a 96% yield of 5 with no trace of 6. Oxidation of diaminofurazan (7) with ptfa gives 3-amino-4-nitrofurazan (8), which was converted to the sulfilimine. Treatment of the sulfilimine with anhydrous ptfa in dichloromethane gave a solution that contained dimethyl sulfone according to /sup 13/C-NMR analysis, but no nitrocarbon could be detected. However, the /sup 14/N-NMR spectrum contained a very sharp singlet with a width at half-height of 19 Hz and a chemical shift almost identical to that of 5. Thus, it appears that we may have formed dinitrofurazan in solution, but we have not been able to isolate it in pure form as yet. 10 refs., 4 figs.

Coburn, M.D.

1985-01-01T23:59:59.000Z

56

Evaluation of oxides of nitrogen emissions for the purpose of their transient regulation from a direct injection diesel engine  

Science Journals Connector (OSTI)

The concept of defining a regulatory standard for the maximum allowable emissions of oxides of nitrogen (NOx) from a heavy-duty diesel engine on an instantaneous basis is presented. The significance of this concept from a regulatory point of view is the possibility to realise a steady brake specific NOx emissions result independent of the test schedule used. The emissions of oxides of nitrogen from a state-of-the-art direct injection diesel engine have been examined on an integral as well as on an instantaneous basis over the Federal Test Procedure as well as over several other arbitrary transient cycles generated for this study. Three candidate standards of specific NOx emissions have been evaluated on a real-time, continuous basis. These include brake power specific, fuel mass specific, and carbon dioxide mass specific NOx emissions. Retaining the stock engine control module, the carbon dioxide specific emissions of NOx have been shown to be the most uniform, varying only by about 30% of its mean value regardless of the test schedule or engine operation. The instantaneous fuel specific NOx emissions are shown to be relatively less invariant and the least steady are the brake power specific emissions with a coefficient of variation of up to 200%. Advancing injection timing has been shown to have a wide range of authority over the specific emissions of oxides of nitrogen regardless of the units used, when operating at full load in the vicinity of peak torque speeds. The carbon dioxide specific NOx emissions have shown a linear dependence on the power specific emissions, independent of the examined operating conditions. The trade-off between better brake thermal efficiency, lower exhaust gas temperature at advanced timing and lower NOx emissions has also been shown to be independent of the units of the specific standard used.

Yasser Yacoub; Chris Atkinson

2001-01-01T23:59:59.000Z

57

Fuzzy logic control of a nitrogen laser Siu-Chung Tam, MEMBER SPIE  

E-Print Network [OSTI]

Fuzzy logic control of a nitrogen laser Siu-Chung Tam, MEMBER SPIE Siong-Chai Tan Wah-Peng Neo Sze report on the use of a fuzzy logic control scheme to improve the stability of a pulsed nitrogen laser) and pulse width (PW). The performance of the fuzzy logic controller is compared with a decoupled two

Doran, Simon J.

58

Spatial and diurnal variability in reactive nitrogen oxide chemistry as reflected in the isotopic composition of atmospheric nitrate  

E-Print Network [OSTI]

exchange between gas-phase precursors and variability in reactive nitrogen sources. These findings product of NOx in the atmosphere. Due to its exceptionally high solubility in water, nitrate is rapidly deSpatial and diurnal variability in reactive nitrogen oxide chemistry as reflected in the isotopic

59

Nitrogen oxide stack sampling at the U.S. DOE Oak Ridge Y-12 Steam Plant  

SciTech Connect (OSTI)

On November 7, 1997, the EPA proposed a Nitrogen Oxides State Implementation Plan Call (NO{sub x} SIP Call) for 22 states in the Eastern US which included the state of Tennessee. This initial proposal was followed by proposed statewide NO{sub x} budgets in the May 11, 1998, Supplemental Notice of Proposed Rulemaking. In the development of the NO{sub x} SIP Call, EPA performed a number of air quality analyses and determined that NO{sub x} emissions from Tennessee should be reduced. Industrial boilers, turbines, stationary internal combustion engines, and cement manufacturing are the only non-electric generating unit sources for which reductions are assumed in the budget calculation. Emission reductions are required if specific source heat input capacity is greater than 250 million Btu per hour. The US Department of Energy (DOE) Oak Ridge Y-12 Steam Plant consists of four Wickes pulverized coal fired boilers each rated at a maximum heat input capacity of 298 million Btu per hour, and will therefore be impacted by these regulatory actions. Each boiler is equipped with two pulverizing mills. Coal or natural gas or a combination of these two fuels may be fired. This paper provides the results of NO{sub x} emission stack testing conducted June 15--21, 1999, on the Y-12 Steam Plant Boilers 1 and 2. Measurements of oxygen (O{sub 2}), carbon monoxide (CO), carbon dioxide (CO{sub 2}), and stack gas flow were also performed. Information gained from these stack tests will be used to determine NO{sub x} emission control strategies for the steam plant for compliance with future emission requirements resulting from the NO{sub x} SIP Call.

L.V. Gibson, jr.; M.P. Humphreys; J.M. Skinner

2000-03-01T23:59:59.000Z

60

KINETICS OF OXIDATION OF AQUEOUS SULFUR(IV) BY NITROGEN DIOXIDE YIN-NAN LEE AND STEPHEN E. SCHWARTZ  

E-Print Network [OSTI]

, reagent gas solubilities, mass trans- fer, stoichiometry, and reaction rate were not systematicallyKINETICS OF OXIDATION OF AQUEOUS SULFUR(IV) BY NITROGEN DIOXIDE YIN-NAN LEE AND STEPHEN E. SCHWARTZ for the oxidation of these compounds and their incorpo- ration into atmospheric liquid water are not fully

Schwartz, Stephen E.

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Direct deposition of aluminum oxide gate dielectric on graphene channel using nitrogen plasma treatment  

SciTech Connect (OSTI)

Deposition of high-quality dielectric on a graphene channel is an essential technology to overcome structural constraints for the development of nano-electronic devices. In this study, we investigated a method for directly depositing aluminum oxide (Al{sub 2}O{sub 3}) on a graphene channel through nitrogen plasma treatment. The deposited Al{sub 2}O{sub 3} thin film on graphene demonstrated excellent dielectric properties with negligible charge trapping and de-trapping in the gate insulator. A top-gate-structural graphene transistor was fabricated using Al{sub 2}O{sub 3} as the gate dielectric with nitrogen plasma treatment on graphene channel region, and exhibited p-type transistor characteristics.

Lim, Taekyung; Kim, Dongchool; Ju, Sanghyun [Department of Physics, Kyonggi University, Suwon, Gyeonggi-Do 443-760 (Korea, Republic of)

2013-07-01T23:59:59.000Z

62

Control of work function of graphene by plasma assisted nitrogen doping  

SciTech Connect (OSTI)

Nitrogen doping is expected to provide several intriguing properties to graphene. Nitrogen plasma treatment to defect-free and defective highly oriented pyrolytic graphite (HOPG) samples causes doping of nitrogen atom into the graphene layer. Nitrogen atoms are initially doped at a graphitic site (inside the graphene) for the defect-free HOPG, while doping to a pyridinic or a pyrrolic site (edge of the graphene) is dominant for the defective HOPG. The work function of graphene correlates strongly with the site and amount of doped nitrogen. Nitrogen atoms doped at a graphitic site lower the work function, while nitrogen atoms at a pyridinic or a pyrrolic site increase the work function. Control of plasma treatment time and the amount of initial defect could change the work function of graphite from 4.3?eV to 5.4?eV, which would open a way to tailor the nature of graphene for various industrial applications.

Akada, Keishi; Terasawa, Tomo-o; Imamura, Gaku; Obata, Seiji; Saiki, Koichiro, E-mail: saiki@k.u-tokyo.ac.jp [Department of Complexity Science and Engineering, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8561 (Japan)

2014-03-31T23:59:59.000Z

63

Chlorine activation indoors and outdoors via surface-mediated reactions of nitrogen oxides with hydrogen chloride.  

E-Print Network [OSTI]

complexes between nitrogen dioxide, nitric acid, nitrous1992) Indoor ozone and nitrogen dioxide: A potential pathwaybed of SiO 2 pellets. Nitrogen dioxide is introduced from a

2009-01-01T23:59:59.000Z

64

Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions  

E-Print Network [OSTI]

D. , (2008a). Carbonyl and nitrogen dioxide emissions fromstudy of indoor nitrogen dioxide levels and respiratoryand modeled nitrogen dioxide (NO 2 ) concentrations. All

Millstein, Dev

2009-01-01T23:59:59.000Z

65

Nitrogen oxide  

E-Print Network [OSTI]

quality regulations may not effectively target a large source of fine, organic particle pollutants that contribute to hazy skies and poor air quality over the Los Angeles region. See also:

Tropospheric Ozone

66

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Draft final report  

SciTech Connect (OSTI)

The primary goal of this project was to demonstrate the use of Selective Catalytic Reduction (SCR) to reduce NO{sub x} emissions from pulverized-coal utility boilers using medium- to high-sulfur US coal. The prototype SCR facility, built in and around the ductwork of Plant Crist Unit 5, consisted of three large SCR reactor units (Reactors A, B, and C), each with a design capacity of 5,000 standard cubic feet per minute (scfm) of flue gas, and six smaller reactors (Reactors D through J), each with a design capacity of 400 scfm of flue gas. The three large reactors contained commercially available SCR catalysts as offered by SCR catalyst suppliers. These reactors were coupled with small-scale air preheaters to evaluate (1) the long-term effects of SCR reaction chemistry on air preheater deposit formation and (2) the impact of these deposits on the performance of air preheaters. The small reactors were used to test additional varieties of commercially available catalysts. The demonstration project was organized into three phases: (1) Permitting, Environmental Monitoring Plan (EMP) Preparation, and Preliminary Engineering; (2) Detail Design Engineering and Construction; and (3) Operation, Testing, Disposition, and Final Report Preparation. Section 2 discusses the planned and actual EMP monitoring for gaseous, aqueous, and solid streams over the course of the SCR demonstration project; Section 3 summarizes sampling and analytical methods and discusses exceptions from the methods specified in the EMP; Section 4 presents and discusses the gas stream monitoring results; Section 5 presents and discusses the aqueous stream monitoring results; Section 6 presents and discusses the solid stream monitoring results; Section 7 discusses EMP-related quality assurance/quality control activities performed during the demonstration project; Section 8 summarizes compliance monitoring reporting activities; and Section 9 presents conclusions based on the EMP monitoring results.

NONE

1996-06-14T23:59:59.000Z

67

Field emission effects of nitrogenated carbon nanotubes on chlorination and oxidation  

SciTech Connect (OSTI)

With reference to our recent reports [Appl. Phys. Lett. 90, 192107 (2007); Appl. Phys. Lett. 91, 202102 (2007)] about the electronic structure of chlorine treated and oxygen-plasma treated nitrogenated carbon nanotubes (N-CNTs), here we studied the electron field emission effects on chlorination (N-CNT:Cl) and oxidation (N-CNT:O) of N-CNT. A high current density (J) of 15.0 mA/cm{sup 2} has been achieved on chlorination, whereas low J of 0.0052 mA/cm{sup 2} is observed on oxidation compared to J=1.3 mA/cm{sup 2} for untreated N-CNT at an applied electric field E{sub A} of {approx}1.9 V/{mu}m. The turn-on electric field (E{sub TO}) was {approx}0.875. The 1.25 V/{mu}m was achieved for N-CNT:Cl and N-CNT:O, respectively, with respect to E{sub TO}=1.0 V/{mu}m for untreated one. These findings are due to the formation of different bonds with carbon and nitrogen in the N-CNT during the process of chlorine (oxygen)-plasma treatment by the charge transfer, or else that changes the density of free charge carriers and hence enhances (reduces) the field emission properties of N-CNTs:Cl (N-CNTs:O)

Ray, S. C.; Palnitkar, U.; Pao, C. W.; Tsai, H. M.; Pong, W. F.; Lin, I-N. [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China); Papakonstantinou, P. [NRI, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, County Antrim BT37OQB, Northern Ireland (United Kingdom); Ganguly, Abhijit; Chen, L. C. [Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan (China); Chen, K. H. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China)

2008-09-15T23:59:59.000Z

68

Effectiveness of a Diesel Oxidation Catalyst (DOC) to control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Effectiveness of a Diesel Oxidation Catalyst (DOC) to control CO and hydrocarbon emissions from Reactivity Controlled Compression Ignition (RCCI) combustion Effectiveness of a...

69

ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting Operations  

Broader source: Energy.gov [DOE]

In recent years there has been an increasing demand to reduce and control the amount of dissolved gases in steel. Hydrogen and nitrogen are two of the most important gases which when dissolved in liquid steel affect its properties significantly

70

DEVELOPMENT OF IMPROVED CATALYSTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES WITH HYDROCARBONS  

SciTech Connect (OSTI)

Significant work has been done by the investigators on the cerium oxide-copper oxide based sorbent/catalysts for the combined removal of sulfur and nitrogen oxides from the flue gases of stationary sources. A relatively wide temperature window was established for the use of alumina-supported cerium oxide-copper oxide mixtures as regenerable sorbents for SO{sub 2} removal. Preliminary evaluation of these sorbents as catalysts for the selective reduction of NO{sub x} gave promising results with ammonia, but indicated low selectivity when methane was used as the reductant. Since the replacement of ammonia by another reductant is commercially very attractive, in this project, four research components will be undertaken. The investigation of the reaction mechanism, the first component, will help in the selection of promoters to improve the catalytic activity and selectivity of the sorbents in the SCR with methane. This will result in new catalyst formulations (second component). If this research is successful, the combined SO{sub 2}-NO{sub x} removal process based on alumina-supported copper oxide-ceria sorbent/catalysts will become very attractive for commercial applications. The objective of the third component of the project is to develop an alternative SCR process using another inexpensive fuel, residual fuel oil, instead of natural gas. This innovative proposal is based on very scant evidence concerning the good performance of coked catalysts in the selective reduction of NO and if proven to work the process will certainly be commercially viable. The fourth component of the project involves our industrial partner TDA Research, and the objective is to evaluate long-term stability and durability of the prepared sorbent/catalysts. In the first year of the project, the catalysts were investigated by the temperature-programmed reduction (TPR) technique. The results from TPR indicated that the interaction with support appears to promote reduction at lower temperatures. Copper oxide in excess of monolayer coverage reduces at temperatures close to the reduction temperature of the unsupported copper oxide. Increased dispersion increases the support effect. Low activity of ceria in NO reduction may be due to its resistance to reduction at low temperatures.

Dr. Ates Akyurtlu; Dr. Jale F. Akyurtlu

2001-05-31T23:59:59.000Z

71

Eddy-covariance observations of the atmosphere-biosphere exchange of nitrogen oxides  

E-Print Network [OSTI]

and Kesselmeier, J. : Nitrogen dioxide (NO 2 ) uptake byM. : Leaf uptake of nitrogen dioxide (NO 2 ) in a tropicalMorikawa, H. : Atmospheric nitrogen dioxide gas is a plant

Min, Kyung-Eun

2012-01-01T23:59:59.000Z

72

Chemisorption of carbon monoxide and nitrogen oxides on highly dispersed technetium  

SciTech Connect (OSTI)

The purpose of this work is to study, in infrared spectroscopy, the surface compounds formed on adsorption of carbon monoxide and nitrogen oxides on Tc/SiO/sub 2/. The samples were prepared by soaking Aerosil with aqueous solution of ammonium pertechnetate containing 10 wt.% of Tc. Reduction with hydrogen to the metal was carried out at 700-800/sup 0/C. Results indicated that chemisorption of CO on highly dispersed technetium gives rise to a single type of linear and several types of multicentered adsorption forms. Occurrence of bridge form of adsorbed CO was also suggested on the basis of the data on chemisorption stoichiometry. Formation of a structure characterizable by absorption at 1790 cm/sup -1/ may indicate, only after protracted analysis, that the surface of the technetium introduced gradually suffers significant rearrangement facilitating formation of this type of complexes.

Serebryakova, N.V.; Sokolova, N.P.; Spitsyn, V.S.

1982-08-01T23:59:59.000Z

73

System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases  

DOE Patents [OSTI]

A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

Sobolevskiy, Anatoly; Rossin, Joseph A

2014-04-08T23:59:59.000Z

74

Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 2  

SciTech Connect (OSTI)

Oxidized oil shale from the combustor in the LLNL Hot-Recycled-Solids (HRS) oil shale retorting process has been found to be a catalyst for removing nitrogen oxides from laboratory gas streams using NH{sub 3} as a reductant. Oxidized Green River oil shale heated at 10{degree}C/min in an Ar/O{sub 2}/NO/NH{sub 3} mixture ({approximately}93%/6%/2000 ppM/4000 ppM) with a gas residence time of {approximately}0.6 sec removed NO between 250 and 500{degree}C, with maximum removal of 70% at {approximately}400{degree}C. Under isothermal conditions with the same gas mixture, the maximum NO removal was {approximately}64%. When CO{sub 2} was added to the gas mixture at {approximately}8%, the NO removal dropped to {approximately}50%. However, increasing the gas residence time to {approximately}1.2 sec, increased NO removal to 63%. Nitrogen balances of these experiments suggest selective catalytic reduction of NO is occurring using NH{sub 3} as the reductant. These results are not based on completely optimized process conditions, but indicate oxidized oil shale is an effective catalyst for NO removal from combustion gas streams using NH{sub 3} as the reductant. Parameters calculated for implementing oxidized oil shale for NO{sub x} remediation on the current HRS retort indicate an abatement device is practical to construct.

Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

1993-01-04T23:59:59.000Z

75

Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 2  

SciTech Connect (OSTI)

Oxidized oil shale from the combustor in the LLNL Hot-Recycled-Solids (HRS) oil shale retorting process has been found to be a catalyst for removing nitrogen oxides from laboratory gas streams using NH[sub 3] as a reductant. Oxidized Green River oil shale heated at 10[degree]C/min in an Ar/O[sub 2]/NO/NH[sub 3] mixture ([approximately]93%/6%/2000 ppM/4000 ppM) with a gas residence time of [approximately]0.6 sec removed NO between 250 and 500[degree]C, with maximum removal of 70% at [approximately]400[degree]C. Under isothermal conditions with the same gas mixture, the maximum NO removal was [approximately]64%. When CO[sub 2] was added to the gas mixture at [approximately]8%, the NO removal dropped to [approximately]50%. However, increasing the gas residence time to [approximately]1.2 sec, increased NO removal to 63%. Nitrogen balances of these experiments suggest selective catalytic reduction of NO is occurring using NH[sub 3] as the reductant. These results are not based on completely optimized process conditions, but indicate oxidized oil shale is an effective catalyst for NO removal from combustion gas streams using NH[sub 3] as the reductant. Parameters calculated for implementing oxidized oil shale for NO[sub x] remediation on the current HRS retort indicate an abatement device is practical to construct.

Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

1993-01-04T23:59:59.000Z

76

Removal of oxides of nitrogen from gases in multi-stage coal combustion  

DOE Patents [OSTI]

Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

Mollot, Darren J. (Morgantown, WV); Bonk, Donald L. (Louisville, OH); Dowdy, Thomas E. (Orlando, FL)

1998-01-01T23:59:59.000Z

77

Reducing the contribution of the power sector to ground-level ozone pollution : an assessment of time-differentiated pricing of nitrogen oxide emissions  

E-Print Network [OSTI]

Nitrogen oxide (NOx) is a prevalent air pollutant across the United States and a requisite precursor for tropospheric (ground-level) ozone formation. Both pollutants significantly impact human health and welfare, so National ...

Craig, Michael T. (Michael Timothy)

2014-01-01T23:59:59.000Z

78

Modeling of formaldehyde and nitrogen oxides from a proposed renewable energy biogas facility in Canada  

Science Journals Connector (OSTI)

The aim of this study was to use the CALPUFF modeling system an effective and reliable atmospheric modeling tool to predict the concentrations of formaldehyde (HCHO) and nitrogen oxides (NOx) released due to the combustion of biogas in the combined heat and power (CHP) engines from the Kawartha renewable energy generation facility at its proposed location in Ontario Canada. In this study HCHO and NOx were selected as the indicator and point source pollutants since they were the most significant products of biogas combustion emitted during the facility's normal operations (production of electricity and heat). The Lambert Conformal Conic projection coordinate system was implemented for the operation of the CALPUFF model. The proposed modeling scheme was coupled with both surface meteorological data (from 00:00 to 23:00) on an hourly basis and 12-h interval-based upper air meteorological data (from 00:00 to 12:00) to simulate the emission of these pollutants for the four seasonal Eastern Time meteorological conditions of winter (January 11–13 2013) spring (April 14–16 2013) summer (July 10–12 2013) and autumn (November 16–18 2013). The results from the CALPUFF dispersion model clearly demonstrated that the maximum 1-h average concentrations of both HCHO and NOx emitted from the combustion of biogas (composed of 60% CH4 and 40% CO2) in five CHP engines (operation load?=?100% maximum electricity generation capacity?=?9.8?MW) were found to be within the limits defined by Ontario Regulation 419/05.

2014-01-01T23:59:59.000Z

79

Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases  

E-Print Network [OSTI]

for Application in Solid Oxide Fuel Cells", (DoctoralImpedance of Solid Oxide Fuel Cell LSM/YSZ CompositeCathode materials of solid oxide fuel cells: a review”, J

Rheaume, Jonathan Michael

2010-01-01T23:59:59.000Z

80

Regenerative thermal oxidation and alternative technologies for VOC control  

SciTech Connect (OSTI)

Thermal oxidation technologies have been used successfully to control VOC`s for many years but the recent 1990 Clean Air Act Amendments have spurred improvements in the established processes and development of economic alternatives. The combination of the regulatory maze and confusion in the selection of the best technology for a particular application has created a potential nightmare for those companies facing a need to reduce their VOC EMISSIONS. The relative advantages and disadvantages of regenerative, recuperative and catalytic oxidizers will be reviewed, with an emphasis on the economic justification for regenerative thermal oxidation (RTO). Control efficiencies of more than 99% have been demonstrated for RTO`s on a multitude of industrial process exhaust streams. Lowest evaluated cost over a fifteen to twenty year effective equipment life is a key selection criteria. This paper describes the underlying principles of thermal oxidation, and discusses the applicability of these and other emerging technologies for VOC control.

Biedell, E.L. [REECQ, Somerville, NJ (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The effects of nitrogen oxides on cytochrome P-450 mediated mixed-function oxidations in mammalian lung  

E-Print Network [OSTI]

schema for toxic inhalation of NO2 10 General representation of the proposed steps involved in substrate hydroxylation by cyto- chrome P-450 mediated mixed-function oxida- tions 13 Schematic diagram of the Isolated and Per- fused Lung Apparatus 22... and biochemical functions of the lung is pre- sented in Table 1. This summary is followed by a schematic with a more complete representation of the toxic effects of N02 inhalation (Fig. 1). Nany of the biochemical effects of nitrogen dioxide on the lung...

Tucker, Leo Dean

2012-06-07T23:59:59.000Z

82

Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition  

SciTech Connect (OSTI)

Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2013-01-01T23:59:59.000Z

83

Chlorine activation indoors and outdoors via surface-mediated reactions of nitrogen oxides with hydrogen chloride  

Science Journals Connector (OSTI)

...also globally distributed, because NO formed in combustion processes is oxidized to NO2, HNO3, N2O5 and a variety of...also globally distributed, because NO formed in combustion processes is oxidized to NO(2), HNO(3), N(2)O...

Jonathan D. Raff; Bosiljka Njegic; Wayne L. Chang; Mark S. Gordon; Donald Dabdub; R. Benny Gerber; Barbara J. Finlayson-Pitts

2009-01-01T23:59:59.000Z

84

Process for combined control of mercury and nitric oxide.  

SciTech Connect (OSTI)

Continuing concern about the effects of mercury in the environment may lead to requirements for the control of mercury emissions from coal-fired power plants. If such controls are mandated, the use of existing flue-gas cleanup systems, such as wet scrubbers currently employed for flue-gas desulfurization, would be desirable, Such scrubbers have been shown to be effective for capturing oxidized forms of mercury, but cannot capture the very insoluble elemental mercury (Hg{sup 0}) that can form a significant fraction of the total emissions. At Argonne National Laboratory, we have proposed and tested a concept for enhancing removal of Hg{sup 0}, as well as nitric oxide, through introduction of an oxidizing agent into the flue gas upstream of a scrubber, which readily absorbs the soluble reaction products. Recently, we developed a new method for introducing the oxidizing agent into the flue-gas stream that dramatically improved reactant utilization. The oxidizing agent employed was NOXSORB{trademark}, which is a commercial product containing chloric acid and sodium chlorate. When a dilute solution of this agent was introduced into a gas stream containing Hg{sup 0} and other typical flue-gas species at 300 F, we found that about 100% of the mercury was removed from the gas phase and recovered in process liquids. At the same time, approximately 80% of the nitric oxide was removed. The effect of sulfur dioxide on this process was also investigated and the results showed that it slightly decreased the amount of Hg{sup 0} oxidized while appearing to increase the removal of nitric oxide from the gas phase. We are currently testing the effects of variations in NOXSORB{trademark} concentration, sulfur dioxide concentration, nitric oxide concentration, and reaction time (residence time). Preliminary economic projections based on the results to date indicate that the chemical cost for nitric oxide oxidation could be less than $5,000/ton removed, while for Hg{sup 0} oxidation it would be about $20,000/lb removed.

Livengood, C. D.; Mendelsohn, M. H.

1999-11-03T23:59:59.000Z

85

Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions  

E-Print Network [OSTI]

understand and control this air pollutant. The effectivenessair pollution time series requires long records of pollutant concentrations to control

Millstein, Dev

2009-01-01T23:59:59.000Z

86

Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 1  

SciTech Connect (OSTI)

Oxidized oil shale from the combustor in the LLNL hot recycle solids oil shale retorting process has been studied as a catalyst for removing nitrogen oxides from laboratory gas streams using NH{sub 3} as areductant. Combusted Green River oil shale heated at 10{degrees}C/min in an Ar/O{sub 2}/NO/NH{sub 3} mixture ({approximately}93%/6%/2000 ppm/4000 ppm) with a gas residence time of {approximately}0.6 sec exhibited NO removal between 250 and 500{degrees}C, with maximum removal of 70% at {approximately}400{degrees}C. Under isothermal conditions with the same gas mixture, the maximum NO removal was found to be {approximately}64%. When CO{sub 2} was added to the gas mixture at {approximately}8%, the NO removal dropped to {approximately}50%. However, increasing the gas residence time to {approximately}1.2 sec, increased NO removal to 63%. These results are not based on optimized process conditions, but indicate oxidized (combusted) oil shale is an effective catalyst for NO removal from combustion gas streams using NH{sub 3} as the reductant.

Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

1992-06-10T23:59:59.000Z

87

COMBUSTION SOURCES OF UNREGULATED GAS PHASE NITROGENEOUS SPECIES  

E-Print Network [OSTI]

OXIDES OF NITROGEN Nitrogen Dioxide (N0 2) Nitrous Oxide (NFigure 7. Emissions of nitrogen dioxide from gas turbines (by AiResearch(8)) . Nitrogen dioxide emissions from a

Matthews, Ronald D.

2013-01-01T23:59:59.000Z

88

Zevenhoven & Kilpinen NITROGEN 13.4.2002 4-1 Chapter 4 Nitrogen  

E-Print Network [OSTI]

of the nitric oxide is oxidized to nitrogen dioxide, so the environmental effects of emissions of bothZevenhoven & Kilpinen NITROGEN 13.4.2002 4-1 Chapter 4 Nitrogen 4.1 Introduction Probably the most damaging of the hazardous nitrogen compounds formed during combustion are nitric oxide (NO) and nitrogen

Laughlin, Robert B.

89

INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES  

SciTech Connect (OSTI)

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4}-air mixtures.

Ates Akyurtlu; Jale F. Akyurtlu

2000-04-10T23:59:59.000Z

90

INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES  

SciTech Connect (OSTI)

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded research of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4} air mixtures.

Ates Akyurtlu; Jale F. Akyurtlu

1999-11-30T23:59:59.000Z

91

Investigation of mixed metal sorbent/catalysts for the simultaneous removal of sulfur and nitrogen oxides  

SciTech Connect (OSTI)

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4}-air mixtures.

Akyurtlu, A.; Akyurtlu, J.F.

1999-03-31T23:59:59.000Z

92

Mechanical Spin Control of Nitrogen-Vacancy Centers in Diamond E. R. MacQuarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs*  

E-Print Network [OSTI]

Mechanical Spin Control of Nitrogen-Vacancy Centers in Diamond E. R. MacQuarrie, T. A. Gosavi, N. R 2013; published 27 November 2013) We demonstrate direct coupling between phonons and diamond nitrogen-vacancy fundamental interest as a potential mediator of spin-spin interactions [1,2]. Nitrogen-vacancy (NV) center

Afshari, Ehsan

93

Flow reactor experiments on the selective non-catalytic removal of nitrogen oxides  

E-Print Network [OSTI]

?CO, and H, O are initially present in exhaust stream [57]. .. . . . 42 Fig. 21 Fig. 22 Reaction path diagram for RAPRENOx process [63]. .. . Reduction of nitric oxide as a function of temperature, concentration of oxygen, carbon monoxide, and water... the influence of carbon monoxide [89]. . . . . . . . . 58 Fig. 28 Effect of residence time on the NOxOUT process as a function of temperature, NO(initial)=125ppm, 0-ratio of 4 [90]. .. . . . . . . . . . . . . . . 60 Fig. 29 Ammonia slip as a function...

Gentemann, Alexander M.G.

2001-01-01T23:59:59.000Z

94

Oxides Emissions from Coal-Fired Boilers TOPICAL REPORT NUMBER 14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reburning Technologies for the Control of Nitrogen Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers TOPICAL REPORT NUMBER 14 MAY 1999 TOPICAL REPORT NUMBER 14 A report on three projects conducted under separate cooperative agreements between: The U.S. Department of Energy and * The Babcock & Wilcox Company * Energy and Environmental Research Corporation * New York State Electric & Gas Corporation MAY 1999 Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers Cover image: Schematic of reburning technology Source: Energy and Environmental Research Corporation Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers Executive Summary ..................................................................................................

95

Method and system for the removal of oxides of nitrogen and sulfur from combustion processes  

DOE Patents [OSTI]

A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.

Walsh, John V. (Glendora, CA)

1987-12-15T23:59:59.000Z

96

Reducing nitrogen oxides emissions from the combustion of LCV gas staged firing  

E-Print Network [OSTI]

with cotton gin tr ash, one of the primary fuels under consider ation, r esulted in flue NO levels ranging from 650-B60 ng/J (1. 5-2. 0 lb/MBtu). The Texas Air Control Board (TACB) will issue a facility a permit to operate only if NOx emissions are within... NO Methods of NOx Control Methods of NOx control may be lumped into two cate- gories: flue gas treatment (FGT) and combustion modifica- tion. The different processes are described below. Flue Gas Tr eatment Most of the research on FGT to date has been...

Finch, Stanley Frank

2012-06-07T23:59:59.000Z

97

Chapter 10 - Regenerative catalytic oxidizer technology for VOC control  

Science Journals Connector (OSTI)

Publisher Summary The regenerative catalytic oxidizer (RCO) technology has evolved significantly as an efficient method to control volatile organic compounds. The RCO technology favors using oxide catalysts because it allows for easy compensation of lower activity by an increase in the catalyst amount or temperature. Heat transfer and accumulation properties of ceramic packing material strongly influence RCO performance. The rate of heat transfer affects the temperature gradients along the bed length that, in turn, determine the volume of material required to preheat the gas to the temperature of catalytic or thermal oxidation. During the catalyst operation, it gradually becomes less active and must be eventually replaced. The factors affecting the catalyst lifetime include high temperature, catalytic poisons, and masking agents. Compounds of halogens and sulfur are the most common catalyst poisons. Temperature control, poison tolerant catalysts, and gas-flow pretreatment are used to reduce the impact of catalyst deactivation. This chapter also presents the behavior of an RCO when the catalyst deactivates, and proposes strategies ensuring the required performance during the entire catalyst lifetime.

V.O. Strots; G.A. Bunimovich; C.R. Roach; Yu.Sh. Matros

2000-01-01T23:59:59.000Z

98

Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls and Implications for Global Emission  

E-Print Network [OSTI]

Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls and Implications for Global Emission Inventories J. David Felix,*, Emily M. Elliott, and Stephanie L. Shaw contributions, prior documentation of 15 N of various NOx emission sources is exceedingly limited

Elliott, Emily M.

99

Demonstration of Selective Catalytic Reduction Technology to Control Nitrogen Oxice Emissions From High-Sulfur, Coal-Fired Boilers: A DOE Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2000/1111 2000/1111 Demonstration of Selective Catalytic Reduction Technology to Control Nitrogen Oxide Emissions From High-Sulfur, Coal- Fired Boilers: A DOE Assessment August 1998 U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center Morgantown, WV/Pittsburgh, PA 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or respon- sibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

100

Unveiling and controlling the electronic structure of oxidized semiconductor surfaces: Crystalline oxidized InSb(100)(1 × 2)-O  

Science Journals Connector (OSTI)

The exothermic nature of oxidation causes nearly all semiconductor applications in various fields like electronics, medicine, photonics, and sensor technology to acquire an oxidized semiconductor surface part during the application manufacturing. The significance of understanding and controlling the atomic scale properties of oxidized semiconductor surfaces is expected to increase even further with the development of nanoscale semiconductor crystals. The nature of oxidized semiconductor layers is, however, hard to predict and characterize as they are usually buried and amorphous. To shed light on these issues, we pursue a different approach based on oxidized III-V semiconductor layers that are crystalline. We present a comprehensive characterization of oxidized crystalline InSb(100)(1×2)-O layers by ab initio calculations, photoelectron spectroscopy, scanning tunneling microscopy, and spectroscopy, and demonstrate the electronic band structures of different oxidized phases of the semiconductor, which elucidate the previous contradictory semiconductor-oxidation effects. At 0.5 monolayer (ML) oxidation, oxygen atoms tend to occupy subsurface Sb sites, leading to metallic states in the semiconductor band gap, which arise from top dimers. When the oxidation is increased to the 1.0–2.0 ML concentration, oxygen occupies also interstitial sites, and the insulating band structure without gap states is stabilized with unusual occupied In dangling bonds. In contrast, the 2.5–3.0 ML oxide phases undergo significant changes toward a less ordered structure. The findings suggest a methodology for manipulating the electronic structure of oxidized semiconductor layers.

J. J. K. Lång; M. P. J. Punkkinen; M. Tuominen; H.-P. Hedman; M. Vähä-Heikkilä; V. Polojärvi; J. Salmi; V.-M. Korpijärvi; K. Schulte; M. Kuzmin; R. Punkkinen; P. Laukkanen; M. Guina; K. Kokko

2014-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Nitrogen oxide removal processes for coal-fueled electric power generation  

SciTech Connect (OSTI)

There is a global trend requiring lower NO{sub x}, emissions from stationary combustion sources. When NO{sub x} is released into the atmosphere it contributes to photochemical smog and acid rain. Elevated ozone concentrations have been implicated in crop and forest damage, and adverse effects on human health. Several alternative technologies have been developed to reduce NO{sub x} emissions resulting from the combustion of coal. The alternatives, which range from combustion modifications, to addition of post-combustion systems, to use of alternate coal combustion technologies, provide different degrees of NO{sub x} reduction efficiency with different associated costs. Only by careful evaluation of site specific factors can the optimum technology for each application be chosen. This chapter will investigate the alternatives for NO{sub x} control for new, large utility steam generators using coal as a fuel.

Van Nieuwenhuizen, Wm.

1993-12-31T23:59:59.000Z

102

Robust control strategies for hybrid solid oxide fuel cell systems.  

E-Print Network [OSTI]

??Solid Oxide Fuel Cell (SOFC) systems are electrochemical energy conversion devices characterized by the use of solid oxide as the electrolyte. They operate at high… (more)

Mathew, Anju Ann

2010-01-01T23:59:59.000Z

103

Two Residues in the T-loop of GlnK Determine NifL-dependent Nitrogen Control of nif Gene Expression*  

E-Print Network [OSTI]

Two Residues in the T-loop of GlnK Determine NifL-dependent Nitrogen Control of nif Gene Expression NifL-mediated inhibition of NifA activity in response to the nitrogen status, and GlnB, when expressed heterologous system, in which K. pneumoniae nifLA is expressed in E. coli, to investigate the impor- tance

Merrick, Mike

104

Nitrogen Control in Electric Arc Furnace Steelmaking by DRI (TRP 0009)  

SciTech Connect (OSTI)

Nitrogen is difficult to remove in electric arc furnace (EAF) steelmaking, requiring the use of more energy in the oxygen steelmaking route to produce low-nitrogen steel. The objective of this work was to determine if the injection of directly reduced iron (DRI) fines into EAFs could reduce the nitrogen content by creating fine carbon monoxide bubbles that rinse nitrogen from the steel. The proposed work included physical and chemical characterization of DRI fines, pilot-scale injection into steel, and mathematical modeling to aid in scale-up of the process. Unfortunately, the pilot-scale injections were unsuccessful, but some full-scale data was obtained. Therefore, the original objectives were met, and presented in the form of recommendations to EAF steelmakers regarding: (1) The best composition and size of DRI fines to use; (2) The amount of DRI fines required to achieve a specific reduction in nitrogen content in the steel; and (3) The injection conditions. This information may be used by steelmakers in techno-economic assessments of the cost of reducing nitrogen with this technology.

Dr. Gordon A. Irons

2004-03-31T23:59:59.000Z

105

ARM - Oxides of Nitrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

dioxide and methane, but as you will see they are important contributors to the greenhouse effect. We hope you are getting an understanding of how important all these gases are...

106

Abatement of Air Pollution: The Clean Air Interstate Rule (CAIR) Nitrogen Oxides (Nox) Ozone Season Trading Program (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations may apply to fossil-fuel fired emission units, and describe nitrogen emission allocations that owners of such units must meet. The regulations also contain provisions for...

107

Plant and microbial controls on nitrogen retention and loss in a Humid Tropical Forest  

SciTech Connect (OSTI)

Humid tropical forests are generally characterized by the lack of nitrogen (N) limitation to net primary productivity, yet paradoxically have high potential for N loss. We conducted an intensive field experiment with {sup 15}NH{sub 4} and {sup 15}NO{sub 3} additions to highly weathered tropical forest soils to determine the relative importance of N retention and loss mechanisms. Over half of all the NH{sub 4}{sup +} produced from gross mineralization was rapidly converted to NO{sub 3}{sup -} during the process of gross nitrification. During the first 24 h plant roots took up 28 % of the N mineralized, dominantly as NH{sub 4}{sup +}, and were a greater sink for N than soil microbial biomass. Soil microbes were not a significant sink for added {sup 15}NH{sub 4}{sup +} or {sup 15}NO{sub 3}{sup -} during the first 24 hr, and only for {sup 15}NH{sub 4}{sup +} after 7 d. Patterns of microbial community composition, as determined by Terminal Restriction Fragment Length Polymorphism analysis, were weakly, but significantly correlated with nitrification and denitrification to N{sub 2}O. Rates of dissimilatory NO{sub 3}{sup -} reduction to NH{sub 4}{sup +} (DNRA) were high in this forest, accounting for up to 25 % of gross mineralization and 35 % of gross nitrification. DNRA was a major sink for NO{sub 3}{sup -} which may have contributed to the lower rates of N{sub 2}O and leaching losses. Despite considerable N conservation via DNRA and plant NH{sub 4}{sup +} uptake, the fate of approximately 45% of the NO{sub 3}{sup -} produced and 22% of the NH{sub 4}{sup +} produced were not measured in our fluxes, suggesting that other important pathways for N retention and loss (e.g., denitrification to N{sub 2}) are important in this system. The high proportion of mineralized N that was rapidly nitrified and the fates of that NO{sub 3}{sup -} highlight the key role of gross nitrification as a proximate control on N retention and loss in humid tropical forest soils. Furthermore, our results demonstrate the importance of the coupling between DNRA and plant uptake of NH{sub 4}{sup +} as a potential N conserving mechanism within tropical forests.

Templer, P.; Silver, W.; Pett-Ridge, J.; DeAngelis, K.M.; Firestone, M.K.

2009-09-15T23:59:59.000Z

108

NETL: Mercury Emissions Control Technologies - Oxidation of Mercury Across  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Fuels Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Fuels The objective of the proposed research is to assess the potential for the oxidation of mercury in flue gas across SCR catalysts in a coal fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. Results from the project will contribute to a greater understanding of mercury behavior across SCR catalysts. Additional tasks include: review existing pilot and field data on mercury oxidation across SCR catalysts and propose a mechanism for mercury oxidation and create a simple computer model for mercury oxidation based on the hypothetical mechanism. Related Papers and Publications: Final Report - December 31, 2004 [PDF-532KB]

109

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions Control  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

110

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions Control  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

111

Nanocomposites for nitrogen oxide emissions control in lean-burn engines  

E-Print Network [OSTI]

(cont.) reducing agent than propane in the SCR of NO. Pt-Rh/CuO/A1?O? nanocomposites capable of adsorbing SO? in oxygen-rich environment as metal sulfates and releasing SO? in reducing atmosphere were synthesized with ...

Pitukmanorom, Pemakorn, 1976-

2004-01-01T23:59:59.000Z

112

Field Demonstration of 0.2 Grams Per Horsepower-Hour (g/bhp-hr) Oxides of Nitrogen (NOx) Natural  

E-Print Network [OSTI]

: · Reducing health and environmental impacts from air pollution, and greenhouse gas emissions related pollution and greenhouse gas emissions beyond applicable standards, and that benefit natural gas ratepayers of nitrogen (NOx) emission standard of 0.20 g/bhp-hr for heavy duty engines to reduce levels of this critical

113

Solubility of carbon dioxide, nitrous oxide, ethane, and nitrogen in 1-butyl-1-methylpyrrolidinium and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate (eFAP) ionic liquids  

Science Journals Connector (OSTI)

The density and viscosity of the ionic liquids 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate [C1C4Pyrro][eFAP] and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate [P66614][eFAP] were measured as a function of temperature and pressure and as a function of temperature, respectively. These two ionic liquids are more viscous than those based in the same anion associated to imidazolium cations. The effect of the addition of water on the density and viscosity of [P66614][eFAP] was studied at pressures close to atmospheric and as a function of the temperature. This ionic liquid is only partially miscible with water, its solubility being of around X H 2 O = 0.2 in the range of (303 to 315) K. Experimental values of the solubility of carbon dioxide, nitrous oxide, ethane, and nitrogen were obtained as a function of temperature and at pressures close to atmospheric. Carbon dioxide and nitrous oxide are the more soluble gases with mole fraction solubilities up to 7 · 10?2. Ethane is four times and 1.3 times less soluble than carbon dioxide in [C1C4Pyrro][eFAP] and [P66614][eFAP], respectively. Nitrogen is one order of magnitude less soluble than the others gases in the two ionic liquids studied. In order to understand behavior of the different gases with these ionic liquids, the thermodynamic functions of solvation such as enthalpy and entropy were calculated from the variation of the Henry’s law constant with temperature. It is shown that the more favorable interactions of the gases with the ionic liquid explain the larger solubility of carbon dioxide and nitrous oxide in [C1C4Pyrro][eFAP]. In the case of [P66614][eFAP], it is the less favorable entropic contribution that explains the lower solubility of ethane in this ionic liquid.

S. Stevanovic; M.F. Costa Gomes

2013-01-01T23:59:59.000Z

114

Nitrite–dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo  

Science Journals Connector (OSTI)

...as a convenient method for calibration...1. Chemical NO production from nitrite and...Figure 4. Sequential production of the activated...interactions. Like hydrogen peroxide (H2O2...oxide protocols: methods in molecular biology...Nonenzymatic nitric oxide production in humans. Nitric...

2000-01-01T23:59:59.000Z

115

Control of differential strain during heating and cooling of mixed conducting metal oxide membranes  

DOE Patents [OSTI]

Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side and a permeate side, which method comprises controlling the differential strain between the oxidant feed side and the permeate side by varying either or both of the oxygen partial pressure and the total gas pressure on either or both of the oxidant feed side and the permeate side of the membrane while changing the temperature of the membrane from a first temperature to a second temperature.

Carolan, Michael Francis (Allentown, PA)

2007-12-25T23:59:59.000Z

116

Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell Applications1  

E-Print Network [OSTI]

Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell Ghosh3 , Huei Peng2 Abstract A fuel processor that reforms natural gas to hydrogen-rich mixture to feed of the hydrogen in the fuel processor is based on catalytic partial oxidation of the methane in the natural gas

Peng, Huei

117

ENS'05 Paris, France, 14-16 December 2005 CONTROL POROUS PATTERN OF ANODIC ALUMINUM OXIDE  

E-Print Network [OSTI]

ENS'05 Paris, France, 14-16 December 2005 CONTROL POROUS PATTERN OF ANODIC ALUMINUM OXIDE BY FOILS simpler, and low cost method to fabricate porous pattern of the anodic aluminum oxide (AAO) based applications such as sensors, optical devices, catalysts, and microfabricated fluidic devices. Anodic aluminum

Paris-Sud XI, Université de

118

Solid-Oxide Fuel Cell Stack System Identification and Control A Systematic Recipe  

E-Print Network [OSTI]

Solid-Oxide Fuel Cell Stack System Identification and Control A Systematic Recipe Borhan M of Engineering Colorado School of Mines, Golden, CO 80401 USA Solid-Oxide Fuel Cell (MIMO) Systems Are... fuel. Sanandaji, Tyrone L. Vincent, Andrew Colclasure, and Robert J. Kee Colorado Fuel Cell Center (CFCC) Division

Sanandaji, Borhan M.

119

Nitrogen Oxides in the Nocturnal Boundary Layer: Chemistry of Nitrous Acid (HONO) and the Nitrate Radical (N03)  

SciTech Connect (OSTI)

Summary Chemical processes occurring at night in the lowest part of the urban atmosphere, the so called nocturnal boundary layer (NBL), can influence the composition of the atmosphere during the night as well as the following day. They may impact the budgets of some of the most important pollutants, such as ozone and nitrogen oxides, as well as influence size and composition of particular matter. Few studies have thus far concentrated on the nocturnal chemistry of the urban NBL, most likely due to the strong influence of vertical transport and mixing, which requires the measurement of trace gas profiles instead of simple point observations. Motivated by our lack of observations and understanding of nocturnal chemistry, the focus of this project was the study of the vertical distribution of trace gases and the altitude dependence of nocturnal chemistry under polluted conditions through field observations and modeling studies. The analysis of three field experiments (TEXAQS, Houston, 2000; Phoenix Sunrise Ozone Experiment, 2001; NAPOX, Boston, 2002), two of which were performed in this project, showed that ozone concentrations typically increase with height in the lowest 150m, while NO2 typically decreases. NO3, the dominant nocturnal radical species, showed much higher concentrations in the upper part of the NBL, and was often not present at the ground. With the help of a one-dimensional chemical transport model, developed in this project, we found that the interaction of ground emissions of NOx and hydrocarbons, together with their vertical transport, is responsible for the vertical profiles. The dominant chemical reactions influencing ozone, NO2 and NO3 are the reaction of ozone and NO3 with freshly emitted NO. Sensitivity studies with our model showed that the magnitude of the trace gas gradients depend both on the emission rates and the vertical stability of the NBL. Observations and model analysis clearly show that nocturnal chemistry in urban areas is altitude dependent. Measurements at one altitude, for example at the ground, where most air quality monitoring stations are located, are not representative for the rest of the NBL. Our model also revealed that radical chemistry is, in general, altitude dependent at night. We distinguish three regions: an unreactive, NO rich, ground layer; an upper, O3 and NO3 dominated layer, and a reactive mixing layer, where RO2 radicals are mixed from aloft with NO from the ground. In this reactive layer an active radical chemistry and elevated OH radical levels can be found. The downward transport of N2O5 and HO2NO2, followed by their thermal decay, was also identified as a radical source in this layer. Our observations also gave insight into the formation of HONO in the NBL. Based on our field experiments we were able to show that the NO2 to HONO conversion was relative humidity dependent. While this fact was well known, we found that it is most likely the uptake of HONO onto surfaces which is R.H. dependent, rather than the NO2 to HONO conversion. This finding led to the proposal of a new NO2 to HONO conversion mechanism, which is based on solid physical chemical principles. Noteworthy is also the observation of enhanced NO2 to HONO conversion during a dust storm event in Phoenix. The final activity in our project investigated the influence of the urban canopy, i.e. building walls and surfaces, on nocturnal chemistry. For the first time the surface area of a city was determined based on a Geographical Information System database of the city of Santa Monica. The surface to volume areas found in this study showed that, in the 2 lower part of the NBL, buildings provide a much larger surface area than the aerosol. In addition, buildings take up a considerable amount of the volume near the ground. The expansion of our model and sensitivity studies based on the Santa Monica data revealed that the surface area of buildings considerably influences HONO levels in urban areas. The volume reduction leads to a decrease of O3 and an increase of NO2 near the ground due to the stronger impact o

Jochen Stutz

2005-05-24T23:59:59.000Z

120

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard  

Gasoline and Diesel Fuel Update (EIA)

3 3 ERRATA Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard July 2001 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This Service Report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Contacts This report was prepared by the Office of Integrated Analysis and Forecasting, Energy Information Adminis- tration. General questions concerning the report may be directed to Mary J. Hutzler (202/586-2222, mhutzler @eia.doe.gov), Director of the Office of Integrated Analysis and Forecasting, Scott B. Sitzer (202/586-2308,

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NOx) Emissions From Coal-Fired Boilers Demonstration Project: A DOE Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NO ) Emissions From Coal-Fired Boilers X Demonstration Project: A DOE Assessment March 2000 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

122

Regenerative catalytic oxidation  

SciTech Connect (OSTI)

Currently Regenerative Thermal Oxidizers (R.T.O.`s) are an accepted technology for the control of volatile organic compounds (VOC`s) and hazardous air pollutants (HAP`s). This control technology, when introduced, offered substantial reductions in operating costs, especially auxiliary fuel requirements when compared to existing control technologies such as recuperative thermal and recuperative catalytic oxidizers. While these savings still exist, there is a demand for control of new and/or hybrid technologies, one of which is Regenerative Catalytic Oxidizers (R.C.O.`s). This paper will explore the development of regenerative catalytic oxidation from the theoretical stage through pilot testing through a commercial installation. The operating cost of R.C.O.`s will be compared to R.T.O.`s to verify the savings that are achievable through the use of regenerative catalytic oxidation. In the development of this technology, which is a combination of two (2) existing technologies, R.T.O.`s and catalysis, a second hybrid technology was explored and pilot tested. This is a combination R.C.O. for VOC and HAP control and simultaneous SCR (Selective Catalytic Reduction) for NOx (Oxides of Nitrogen) control. Based on the pilot and full scale testing, both regenerative catalytic oxidizers and systems which combine R.C.O. with SCR for both VOC and NOx reduction are economically viable and are in fact commercially available. 6 figs., 2 tabs.

Gribbon, S.T. [Engelhard Process Emission Systems, South Lyon, MI (United States)

1996-12-31T23:59:59.000Z

123

O{sub 2}-mediated oxidation of ferrous nitrosylated human serum heme-albumin is limited by nitrogen monoxide dissociation  

SciTech Connect (OSTI)

Research highlights: {yields} Human serum heme-albumin displays globin-like properties. {yields} O{sub 2}-mediated oxidation of ferrous nitrosylated human serum heme-albumin. {yields} Allosteric modulation of human serum heme-albumin reactivity. {yields} Rifampicin is an allosteric effector of human serum heme-albumin. {yields} Human serum heme-albumin is a ROS and NOS scavenger. -- Abstract: Human serum heme-albumin (HSA-heme-Fe) displays globin-like properties. Here, kinetics of O{sub 2}-mediated oxidation of ferrous nitrosylated HSA-heme-Fe (HSA-heme-Fe(II)-NO) is reported. Values of the first-order rate constants for O{sub 2}-mediated oxidation of HSA-heme-Fe(II)-NO (i.e., for ferric HSA-heme-Fe formation) and for NO dissociation from HSA-heme-Fe(II)-NO (i.e., for NO replacement by CO) are k = 9.8 x 10{sup -5} and 8.3 x 10{sup -4} s{sup -1}, and h = 1.3 x 10{sup -4} and 8.5 x 10{sup -4} s{sup -1}, in the absence and presence of rifampicin, respectively, at pH = 7.0 and T = 20.0 {sup o}C. The coincidence of values of k and h indicates that NO dissociation represents the rate limiting step of O{sub 2}-mediated oxidation of HSA-heme-Fe(II)-NO. Mixing HSA-heme-Fe(II)-NO with O{sub 2} does not lead to the formation of the transient adduct(s), but leads to the final ferric HSA-heme-Fe derivative. These results reflect the fast O{sub 2}-mediated oxidation of ferrous HSA-heme-Fe and highlight the role of drugs in modulating allosterically the heme-Fe-atom reactivity.

Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it [Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Via della Vasca Navale 79, I-00146 Roma (Italy) [Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Via della Vasca Navale 79, I-00146 Roma (Italy); National Institute for Infectious Diseases I.R.C.C.S. 'Lazzaro Spallanzani', Via Portuense 292, I-00149 Roma (Italy); Gullotta, Francesca; Gioia, Magda; Coletta, Massimo [Department of Experimental Medicine and Biochemical Sciences, University of Roma 'Tor Vergata', Via Montpellier 1, I-00133 Roma (Italy) [Department of Experimental Medicine and Biochemical Sciences, University of Roma 'Tor Vergata', Via Montpellier 1, I-00133 Roma (Italy); Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Piazza Umberto I 1, I-87100 Bari (Italy); Fasano, Mauro [Department of Structural and Functional Biology, and Center of Neuroscience, University of Insubria, Via Alberto da Giussano 12a, I-21052 Busto Arsizio, VA (Italy)] [Department of Structural and Functional Biology, and Center of Neuroscience, University of Insubria, Via Alberto da Giussano 12a, I-21052 Busto Arsizio, VA (Italy)

2011-03-04T23:59:59.000Z

124

Formation and control of fuel-nitrogen pollutants in catalytic combustion of coal-derived gases. Final report  

SciTech Connect (OSTI)

The objective of this program has been the elucidation of the mechanism of high temperature catalytic oxidation of coal-derived gases, including their individual constituents,and the effects of sulfur and nitrogen impurities. Detailed experimental data were obtained and a two-dimensional model is being developed and tested by comparison with the experimental data. When complete, the model can be used to optimize designs of catalytic combustors. The model at present includes axial and radial diffusion and gas and surface chemical reactions. Measured substrate temperatures are input in lieu of complete coupling of gas and solid energy conservation equations and radiative heat transfer. Axial and radial gas temperature and composition profiles inside a catalyst channel were computed and compared with experimental measurements at the catalyst outlet. Experimental investigations were made of carbon monoxide and medium-Btu gas combustion in the presence of platinum supported on a monolithic Cordierite substrate. Axial profiles of substrate temperature, gas temperature, and gas composition were determined at different gas velocities and equivalence ratios. The effects of H/sub 2/S and NH/sub 3/ in the medium-Btu gas were also investigated. Systems were proposed for making resonance absorption and Raman scattering measurements of gas temperature and/or species concentrations in a catalytic reactor. A new pulsed multipass Raman scattering technique for increasing photon yield from a scattering volume was developed.

Walsh, P. M.; Bruno, C.; Santavicca, D. A.; Bracco, F. V.

1980-02-01T23:59:59.000Z

125

Fertilizer and Nitrogen 1 billion tons of artificial nitrogen fertilizer used annually.  

E-Print Network [OSTI]

Fertilizer and Nitrogen 1 billion tons of artificial nitrogen fertilizer used annually. Emissions. (fertilizers that use nitric acid or ammonium bicarbonate result in emissions of nitrogen oxides, nitrous oxide, ammonia and carbon dioxide into the atmosphere.) ~Indirect: Phosphorus in excess causes eutrophication

Toohey, Darin W.

126

High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Tin dioxide nanoparticles on nitrogen doped graphene aerogel (SnO2-NGA) hybrid are synthesized by one-step hydrothermal method and successfully applied in lithium-ion batteries as a free-standing anode. The electrochemical performance of SnO2-NGA hybrid is investigated by galvanostatic charge–discharge cycling, rate capability test, cyclic voltammetry and electrochemical impedance spectroscopy. It is found that the SnO2-NGA hybrid with freestanding spongy-like structure exhibit remarkable lithium storage capacity (1100 mAh g?1 after 100 cycles), good cycling stability and high rate capability. The outstanding performance is attributed to the uniform SnO2 nanoparticles, unique spongy-like structure and N doping defect for Li+ diffusion.

Chunhui Tan; Jing Cao; Abdul Muqsit Khattak; Feipeng Cai; Bo Jiang; Gai Yang; Suqin Hu

2014-01-01T23:59:59.000Z

127

Nanotube Formation: Researchers Learn To Control The Dimensions Of Metal Oxide Nanotubes  

E-Print Network [OSTI]

Nanotube Formation: Researchers Learn To Control The Dimensions Of Metal Oxide Nanotubes ScienceDaily (Aug. 29, 2007) -- Moving beyond carbon nanotubes, researchers are developing insights-walled inorganic nanotubes could be useful in a range of nanotechnology applications that require precise control

Nair, Sankar

128

Producer Gas Composition and NOx Emissions from a Pilot-Scale Biomass Gasification and Combustion System Using Feedstock with Controlled Nitrogen Content  

Science Journals Connector (OSTI)

(2) Additionally, the biomass prices are generally high, as the biomass feedstocks are seasonal and there is lack of a large feed storage capability to control the price. ... Five different biomass feedstocks with varying nitrogen contents were tested. ... Five different biomass feedstocks were used in this study. ...

Sharan Sethuraman; Cuong Van Huynh; Song-Charng Kong

2011-01-25T23:59:59.000Z

129

Regenerative oxidizer recovers 85% fume control energy, saves $350,000 annually  

SciTech Connect (OSTI)

Expansion of production for carbofuran insecticides increased ventilation requirements for fume and odor control from 8,000 to 50,000 scfm at FMC Corporation's Middleport, NY plant. A seven-lobe, closed thermal regenerative oxidation system was installed with heat recovery of up to 90%. Performance, operation, and results of the regenerative oxidizer are described. Almost a million gallons of oil are conserved annually which is equivalent to about 90% of plant requirements for steam generation.

McElhinney, R.

1980-05-01T23:59:59.000Z

130

ESTABLISHING THE LINK BETWEEN AMMONIA EMISSION CONTROL AND MEASUREMENTS OF REDUCED NITROGEN  

E-Print Network [OSTI]

, Slovakia; 10 Swiss Agency for the Environment, Forest and Landscape (SAEFL), Air Pollution Control Division of Agroecology and Agriculture (FAL), Bern-Liebefeld, Switzerland; 14 Energie Centrum Nederland (ECN), Petten # Present address: Danish Institute of Agricultural Sciences, Research Centre Foulum, P.O. Box 50, DK-8830

Aneja, Viney P.

131

Synthesis of graphene with both high nitrogen content and high surface area by annealing composite of graphene oxide and g-C3N4  

Science Journals Connector (OSTI)

In this paper, we propose a facile, catalyst-free thermal annealing approach for synthesis of N-doping graphene (NG) using graphitic carbon nitride (g...3N4) as the nitrogen source. Graphene with nitrogen content...

Yurong Deng; Kewei Liu; Hongmei Cao…

2014-10-01T23:59:59.000Z

132

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Fourth quarterly technical progress report, [October--December, 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a U. S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, tests of the LNCFS Level III system were conducted to determine the effect that fuel fineness has on NOx emissions and unburned carbon levels. Results showed that changing the fineness of the fuel has almost no effect on NOx emissions; however, unburned carbon levels can be reduced significantly by increasing fuel fineness.

Not Available

1992-12-31T23:59:59.000Z

133

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

Not Available

1992-11-25T23:59:59.000Z

134

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, fourth quarter 1991  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-05-18T23:59:59.000Z

135

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-05-18T23:59:59.000Z

136

CONTROL-ORIENTED MODELING OF A SOLID-OXIDE FUEL CELL STACK USING AN LPV MODEL STRUCTURE  

E-Print Network [OSTI]

CONTROL-ORIENTED MODELING OF A SOLID-OXIDE FUEL CELL STACK USING AN LPV MODEL STRUCTURE Borhan M dynamic model of a solid oxide fuel cell stack. Using a detailed physical model as a starting point, we (usually air) on the cathode side. Solid-oxide fuel cells (SOFCs) utilize a ceramic oxygen-ion conducting

Sanandaji, Borhan M.

137

Nitrogen sorption  

DOE Patents [OSTI]

Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Bend, OR); Miller, Warren K. (Bend, OR)

1996-01-01T23:59:59.000Z

138

Nitrogen sorption  

DOE Patents [OSTI]

Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Bend, OR); Miller, Warren K. (Bend, OR)

1993-01-01T23:59:59.000Z

139

Nitrogen sorption  

DOE Patents [OSTI]

Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

Friesen, D.T.; Babcock, W.C.; Edlund, D.J.; Miller, W.K.

1993-07-06T23:59:59.000Z

140

Nitrogen sorption  

DOE Patents [OSTI]

Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas. 5 figs.

Friesen, D.T.; Babcock, W.C.; Edlund, D.J.; Miller, W.K.

1996-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Catalytic Reduction of Nitrogen Oxides by Methane over Pd(110) S. M. Vesecky, J. Paul, and D. W. Goodman*  

E-Print Network [OSTI]

emissions.1 The subfield of environ- mental catalysis concerned with air quality control involves and stationary sources2 There are many stationary sources of environmental gas phase pollutants. Methane is perhaps the largest pollutant by volume, emitted from sources such as livestock, gas wells, and landfills

Goodman, Wayne

142

Multilayer films of indium tin oxide/TiO2 codoped with vanadium and nitrogen for efficient photocatalytic water splitting  

Science Journals Connector (OSTI)

TiO22 films codoped with V cations and N anions were synthesised by RF-magnetron sputtering. The incorporation of V and N in TiO2 lattice produces isolated energy levels near the conduction and valence bands, respectively, causing an effective narrowing of the band gap to 2.5 eV. Recombination of photo-charges was reduced by depositing multilayer films of indium tin oxide (ITO)/V-N-codoped TiO2 with different numbers of bilayers. In multilayer structure, the generated photoelectrons, travelling into TiO2 film of limited thickness, rapidly enter the space charge interface of the ITO/TiO2 films from where they are instantaneously injected into the ITO layer and then removed towards the cathode. The synergic effects created by band narrowing and enhanced charge separation by using codoping and multilayer structure strategy in TiO2 generate higher photocurrent for water splitting under visible light which definitely exceeds that obtained by doping TiO2 with a single, V or N, element.

Z. El Koura; N. Patel; R. Edla; A. Miotello

2014-01-01T23:59:59.000Z

143

Distributed Porosity as a Control Parameter for Oxide Thermal Barriers Made by Physical Vapor Deposition  

E-Print Network [OSTI]

Anthony G. Evans* Materials Institute, Princeton University, Princeton, New Jersey 08544 Thermal barrier and generating new thermal resistance solutions, as appropri- ate. A continuum heat flow analysis is usedDistributed Porosity as a Control Parameter for Oxide Thermal Barriers Made by Physical Vapor

Wadley, Haydn

144

Personal and Ambient Air Pollution is Associated with Increased Exhaled Nitric Oxide in Children with Asthma  

E-Print Network [OSTI]

1994. Nitric oxide and nitrogen dioxide: Method 6014. In:Molecular mechanisms of nitrogen dioxide induced epithelialEC, OC), and 24-hr nitrogen dioxide. Ambient exposures

2006-01-01T23:59:59.000Z

145

The role of fuel in determining the high load limit of controlled auto-ignition engines  

E-Print Network [OSTI]

Controlled Auto-Ignition (CAI) engines have the potential to increase fuel economy while lowering nitrogen oxide and soot emissions. One hurdle that is currently being faced is the engine's inability to operate at high ...

Maria, Amir Gamal

2009-01-01T23:59:59.000Z

146

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, first quarter 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO{sub x} emissions for each day of long-term testing are presented. The average NO{sub x} emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO{sub x} combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

Not Available

1992-05-20T23:59:59.000Z

147

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO[sub x] emissions for each day of long-term testing are presented. The average NO[sub x] emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO[sub x] combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

Not Available

1992-05-20T23:59:59.000Z

148

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

Not Available

1992-11-25T23:59:59.000Z

149

6/4/2013 Page 1 of 12 Nitrogen Dioxide SOP Standard Operating Procedures  

E-Print Network [OSTI]

6/4/2013 Page 1 of 12 Nitrogen Dioxide SOP Standard Operating Procedures Nitrogen Dioxide and Nitric Oxide Print a copy and insert into your laboratory the precautions and safe handling procedures for the use of Nitrogen Dioxide

Cohen, Ronald C.

150

Nitrogen Fixation and Dentrification in Sediments of Eutrophic Mediterranean-Type Estuaries: Seasonal Patterns and Responses to Anthropogenic Nitrogen Inputs  

E-Print Network [OSTI]

and mechanisms controlling sediment nitrogen fixation in aKane T & Fong P. 2007. Sediment nitrogen fixation in UpperKane T & Fong P. 2007. Sediment nitrogen fixation in Upper

Kane, Tonya Lynn

2012-01-01T23:59:59.000Z

151

The carbon footprint analysis of wastewater treatment plants and nitrous oxide emissions from full-scale biological nitrogen removal processes in Spain  

E-Print Network [OSTI]

This thesis presents a general model for the carbon footprint analysis of advanced wastewater treatment plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ...

Xu, Xin, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

152

Importance of atmospheric inputs and Fe-oxides in controlling soil uranium budgets and behavior along a Hawaiian chronosequence  

E-Print Network [OSTI]

Importance of atmospheric inputs and Fe-oxides in controlling soil uranium budgets and behavior: D. Rickard Abstract A long-term budget of uranium calculated for a chronosequence of Hawaiian soils extractions on the same soils shows a strong association between Fe-oxides and uranium, especially

Derry, Louis A.

153

Electrochemical process for the preparation of nitrogen fertilizers  

DOE Patents [OSTI]

The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be solid.

Aulich, Ted R.; Olson, Edwin S.; Jiang, Junhua

2013-03-19T23:59:59.000Z

154

Energy Recovery Efficiency and Cost Analysis of VOC Thermal Oxidation Pollution Control Technology  

Science Journals Connector (OSTI)

Respective cost models were derived for recuperative thermal oxidizer (TO) and regenerative thermal oxidizer (RTO). ... In a thermal oxidation process, VOC-laden air is thermally treated (oxidized/decomposed) at temperatures about 730?850 °C. ... Choi and Yi(4) worked on the simulation and optimization of regenerative thermal oxidizers. ...

Aruna S. K. Warahena; Yew Khoy Chuah

2009-06-24T23:59:59.000Z

155

Kinetics and mechanisms of interactions of nitrogen and carbon monoxide with liquid niobium  

SciTech Connect (OSTI)

The kinetics and mechanisms of interactions of N{sub 2} and CO with liquid niobium were investigated in the temperature range of 2,700 to 3,000 K in samples levitated in N{sub 2}/Ar and CO/Ar streams. The nitrogen absorption and desorption processes were found to be second-order with respect to nitrogen concentration, indicating that the rate controlling step is either the adsorption of nitrogen molecules on the liquid surface or dissociation of absorbed nitrogen molecules into adsorbed atoms. The carbon and oxygen dissolution in liquid niobium from CO gas is an exothermic process and the solubilities of carbon and oxygen (C{sub Ce}, C{sub Oe} in at%) are related to the temperature and the partial pressure of CO. The reaction CO {yields} (C) + (O) along with the evaporation of niobium oxide takes place during C and O dissolution, whereas C and O desorption occurs via CO evolution only.

Park, H.G.

1990-01-01T23:59:59.000Z

156

Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength  

SciTech Connect (OSTI)

Graphical abstract: Highly controllable and green reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant. Self-assembly of the as-made CCG sheets results in a flexible CCG film, of which the tensile strength strongly depends on the deoxygenation degree of graphene sheets. - Highlights: • Graphene was synthesized by an effective and environmentally friendly approach. • We introduced a facile X-ray diffraction analysis method to investigate the reduction process from graphene oxide to graphene. • Flexible graphene films were prepared by self-assembly of the graphene sheets. • The strength of the graphene films depends on the reduction degree of graphene. - Abstract: Graphene film with high strength was fabricated by the assembly of graphene sheets derived from graphene oxide (GO) in an effective and environmentally friendly approach. Highly controllable reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant, in which the reduction process was monitored by XRD analysis and UV–vis absorption spectra. Self-assembly of the as-made CCG sheets results in a flexible CCG film. This method may open an avenue to the easy and scalable preparation of graphene film with high strength which has promising potentials in many fields where strong, flexible and electrically conductive films are highly demanded.

Wan, Wubo [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Zhao, Zongbin, E-mail: zbzhao@dlut.edu.cn [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Hu, Han [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Gogotsi, Yury [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Department of Materials Science and Engineering, and A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104 (United States); Qiu, Jieshan, E-mail: jqiu@dlut.edu.cn [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

2013-11-15T23:59:59.000Z

157

ODD NITROGEN PROCESSES  

E-Print Network [OSTI]

including observed nitrogen dioxide, Pure Appl. Geophys,Stratosphere Observation of Nitrogen Dioxide Rates of Ozoneby photolysis of nitrogen dioxide and regeneration of ozone:

Johnston, Harold S.

2013-01-01T23:59:59.000Z

158

Removal of sulfur and nitrogen containing pollutants from discharge gases  

DOE Patents [OSTI]

Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

Joubert, James I. (Pittsburgh, PA)

1986-01-01T23:59:59.000Z

159

Tropospheric Reactive Nitrogen Speciation, Deposition, and Chemistry at Harvard Forest  

E-Print Network [OSTI]

and absolute contributions of nitric acid (HNO3) and NOx (nitric oxide (NO) + nitrogen dioxide (NO2)) to totalTropospheric Reactive Nitrogen Speciation, Deposition, and Chemistry at Harvard Forest A thesis. Steven C. Wofsy Cassandra Volpe Horii Tropospheric Reactive Nitrogen Speciation, Deposition

160

Thermodynamic Analysis of the Possibility of Hydrogen Production by Oxidation of n-Butane, n-Pentane, and Carbon by Oxygen-Containing Nitrogen Compounds  

Science Journals Connector (OSTI)

A thermodynamic analysis is performed to study the reactions of hydrogen production by oxidation of hydrocarbons of natural gas ... analysis suggests the possibility of developing a new hydrogen production method

A. M. Alekseev; Z. V. Komova; L. L. Klinova…

2003-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Development of a Spectroscopic Technique for Continuous Online Monitoring of Oxygen and Site-Specific Nitrogen Isotopic Composition of Atmospheric Nitrous Oxide  

E-Print Network [OSTI]

Nitrous oxide is an important greenhouse gas and ozone-depleting-substance. Its sources are diffuse and poorly characterized, complicating efforts to understand anthropogenic impacts and develop mitigation policies. Online, ...

Harris, Eliza

162

Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control  

SciTech Connect (OSTI)

Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the Fe-zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of model based control design for integrated DPF-SCR aftertreatment systems.

Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

2011-04-20T23:59:59.000Z

163

Direct determination of organic and inorganic sulfur in coal by controlled oxidation  

SciTech Connect (OSTI)

The overall objective of this project is to develop an analytical method to directly measure the forms of organic sulfur in coal. The method will provide a route to monitor the effectiveness of coal preparation research directed toward removal of organic sulfur in coal. The approach involves subjecting diluted coal samples simultaneously to an oxygen flow and a linear increase in temperature. Distinctive sulfur dioxide evolution patterns are observed among coals of different rank and between raw and treated coals. Assignments have been made relating each specific sulfur dioxide evolution to the non-aromatic organic, aromatic organic, and inorganic sulfur present in coals and treated coals. Work is progressing on schedule to optimize experimental conditions and to improve the efficiency of the controlled-atmosphere programmed-temperature oxidation (CAPTO) method by developing a multiple sample instrumental system.

LaCount, R.B.

1992-01-01T23:59:59.000Z

164

Direct determination of organic and inorganic sulfur in coal by controlled oxidation  

SciTech Connect (OSTI)

The overall objective of this project is to develop an analytical method to directly measure the forms of organic sulfur in coal. The method will provide a route to monitor the effectiveness of coal preparation research directed toward removal of organic sulfur in coal. The approach involves subjecting diluted coal samples simultaneously to an oxygen flow and a linear increase in temperature. Distinctive sulfur dioxide evolution patterns are observed among coals of different rank and between raw and treated coals. Assignments have been made relating each specific sulfur dioxide evolution to the non-aromatic organic, aromatic organic, and inorganic sulfur present in coals and treated coals. Work is progressing on schedule to optimize experimental conditions and to improve the efficiency of the controlled-atmosphere programmed-temperature oxidation (CAPTO) method by developing a multiple sample instrumental system.

LaCount, R.B.

1992-12-31T23:59:59.000Z

165

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

Not Available

1992-02-03T23:59:59.000Z

166

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

Not Available

1992-02-03T23:59:59.000Z

167

Traffic-related air toxics and preterm birth: a population-based case-control study in Los Angeles County, California  

E-Print Network [OSTI]

of nitric oxide (NO), nitrogen dioxide (NO 2 ) and nitrogenmonoxide, NO 2 - nitrogen dioxide, O 3 - ozone, SO 2 -NO: nitric oxide; NO 2 : nitrogen dioxide; NO x : nitrogen

Wilhelm, Michelle; Ghosh, Jo Kay; Su, Jason; Cockburn, Myles; Jerrett, Michael; Ritz, Beate

2011-01-01T23:59:59.000Z

168

Investigation of mixed metal sorbent/catalysts for the simultaneous removal of sulfur and nitrogen oxides. Semiannual report, Apr 1, 1998--Oct 31, 1998  

SciTech Connect (OSTI)

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823--900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4} air mixtures. The sorbents consisting of cerium oxide and copper oxide impregnated on alumina have been prepared and characterized. Their sulfation performance has been investigated in a TGA setup, studying mainly the effects of temperature and sorbent composition. The results of the sulfation experiments have been evaluated and presented in this report. A study to model the sulfation selectivity of the two constituents of the sorbents is also underway.

Dr. Ates Akyurtlu; Dr. Jale F. Akyurtlu

1998-10-31T23:59:59.000Z

169

Aqueous biphasic plutonium oxide extraction process with pH and particle control  

DOE Patents [OSTI]

A method is described for simultaneously partitioning a metal oxide and silica from a material containing silica and the metal oxide, using a biphasic aqueous medium having immiscible salt and polymer phases. 2 figs.

Chaiko, D.J.; Mensah-Biney, R.

1997-04-29T23:59:59.000Z

170

Back-Trajectory Analysis and Source-Receptor Relationships: Particulate Matter and Nitrogen Isotopic Composition in  

E-Print Network [OSTI]

. The chemical components of these acids, including nitrogen oxides (NOx nitric acid [NO] nitrogen dioxide [NO2Back-Trajectory Analysis and Source-Receptor Relationships: Particulate Matter and Nitrogen- search suggests that this agricultural presence emits a significant portion of the state's nitrogen (i

Niyogi, Dev

171

Quantum-chemical investigation of the interaction of nitrogen and carbon monoxide molecules with the Lewis acid sites of aluminium oxide  

SciTech Connect (OSTI)

Within the framework of the cluster approximation, using covalent and ionic models of Lewis acid sites of aluminumoxide, their electronic structure, as well as that of complexes of nitrogen and carbon monoxide molecules with them, was calculated. It was shown that the Lewis acid sites, representing a truncated tetrahedron, exhibit stronger electron-acceptor properties than the corresponding sites in the form of a truncated octahedron. For both molecules, the linear form of adsorption is energetically more profitable than the T-shaped form. The results obtained by the nonempirical SCF MO LCAO method in the STO-3GF basis and by semiempirical methods in CNDO/2 and INDO approximatations, are qualitatively the same.

Senchenya, I.N.; Chuvylkin, N.D.; Kazanskii, V.B.

1986-11-01T23:59:59.000Z

172

Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support of HCCI Emission Control  

Broader source: Energy.gov [DOE]

Development of catalyst materials to facilitate the low-temperature oxidation of hydrocarbons and CO in homogeneous charge compression ignition (HCCI) emissions.

173

FACTORS CONTROLLING SYNTHESIS OF IRON OXIDE NANOPARTICLES AND THE EFFECT OF SURFACE CHARGE ON MAGNETIC HYPERTHERMIA.  

E-Print Network [OSTI]

??ABSTRACT Iron oxide nanoparticles (IONPs) have been widely studied in the theranostics application due to their promising magnetic properties, low cytotoxicity and attractive biocompatibility. Despite… (more)

Qi, Bin

2013-01-01T23:59:59.000Z

174

Lignite-based nitrogenous fertilizers  

SciTech Connect (OSTI)

A sample of lignite from Elbistan was oxidized by nitric acid in two stages, using relatively dilute acid in the first stage and concentrated acid in the second stage, and then the oxidized product was ammoniated so that a coal-based fertilizer could be produced. The experiments of all the stages were designed by a 1/2 X full factorial design. It was observed that base exchange capacity and nitrogen content of coal-based fertilizers produced in this work were as good as or better than those obtained by other investigators.

Baris, H.; Dincer, S.

1983-01-01T23:59:59.000Z

175

Selective catalytic reduction of nitrogen oxides by ammonia over Fe{sup 3+}-exchanged TiO{sub 2}-pillared clay catalysts  

SciTech Connect (OSTI)

Fe-exchanged TiO{sub 2}-pillared clay (PILC) catalysts were prepared and used for selective catalytic reduction (SCR) of NO{sub x} by ammonia. They were also characterized for surface area, pore size distribution, and by XRD, H{sub 2}-TPR, and FT-IR methods. The Fe-TiO{sub 2}-PILC catalysts showed high activities in the reduction of NO{sub x} by NH{sub 3} in the presence of excess oxygen. SO{sub 2} further increased the catalytic activities at above 350 C, whereas H{sub 2}O decreased the activity slightly. The catalysts were about twice as active as commercial-type V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} catalyst in the presence of H{sub 2}O and SO{sub 2}. Moreover, compared to the commercial catalyst, the Fe-TiO{sub 2}-PILC catalysts had higher N{sub 2}/N{sub 2}O product selectivities (e.g., 0--1% vs 9% N{sub 2}O at 400 C) and substantially lower activities (by 74--88%) for SO{sub 2} oxidation to SO{sub 3} under the same reaction conditions. The activity was further increased to over three times that of the vanadia-based catalyst when Ce was added. The high activity and low N{sub 2}O selectivity for the Fe-TiO{sub 2}-PILC catalysts were attributed to their low activity in the oxidation of ammonia, as compared with vanadia catalysts. XRD patterns of Fe-TiO{sub 2}-PILC were similar to those of TiO{sub 2}-PILC, showing no peaks due to iron oxide, even when the iron content reached 20.1%. The TPR results indicated that iron in the Fe-TiO{sub 2}-PILC catalysts with lower iron contents existed in the form of isolated Fe{sup 3+} ions. The activities of Fe-TiO{sub 2}-PILC catalysts were consistent with their surface acidities, which were identified by FT-IR of the NH{sub 3}-adsorbed samples. The enhancement of activities by H{sub 2}O + SO{sub 2} was attributed to the increase of surface acidity resulting from the formation of surface sulfate species of iron.

Long, R.Q.; Yang, R.T. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering] [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

1999-09-10T23:59:59.000Z

176

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, fourth quarter 1991  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-04-21T23:59:59.000Z

177

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, Second quarter 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (No{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-08-24T23:59:59.000Z

178

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, First quarter 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-12-31T23:59:59.000Z

179

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (No[sub x]) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO[sub x] combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO[sub x] burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-08-24T23:59:59.000Z

180

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Doped LaFeO3 as SOFC Catalysts: Control of Oxygen Mobility Oxidation Activity  

SciTech Connect (OSTI)

The bulk structure and surface properties of Fe-based perovskite-type oxides with the formula La{sub 0.6}Sr{sub 0.4}Co{sub y}Fe{sub 1-y}O{sub 3-{delta}} for y = 0.1, 0.2, and 0.3 have been investigated. The properties were found to strongly depend upon Co content, temperature, and environment. The materials were selected due to their potential use as solid oxide fuel cell cathodes. The intermediate Co loading formed oxygen vacancies most easily and several other properties including oxidation activity and surface sites showed a similar non-linear trend. Trends are related to a possible transition in electronic structure. Activity for oxidation of methane, oxygen storage and chemical compatibility was shown to be superior to that of the La{sub 0.6}Sr{sub 0.4}MnO{sub 3}.

N Lakshminarayanan; J Kuhn; S Rykov; J Millet; U Ozkan; T Rao; J Smedley; E Wang; E Muller; et al.

2011-12-31T23:59:59.000Z

182

The Nitrogen-Nitride Anode.  

SciTech Connect (OSTI)

Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

Delnick, Frank M.

2014-10-01T23:59:59.000Z

183

Gas-Phase Advanced Oxidation for Effective, Efficient in Situ Control of Pollution  

Science Journals Connector (OSTI)

The process uses ozone and UV-C light to produce in situ radicals to oxidize pollution, generating particles that are removed by a filter; ozone is removed using a MnO2 honeycomb catalyst. ... (22, 23) Catalytic and thermal oxidizers can be used effectively for treating high VOC levels (>1 g/m3) but require additional fuel when pollution is below the threshold needed to maintain operating temperature; these methods have relatively high costs for installation, operation, and maintenance. ... (24) Regenerative adsorption and cryotrapping remove VOCs but consume energy and are not suitable for wet gas streams. ...

Matthew S. Johnson; Elna J. K. Nilsson; Erik A. Svensson; Sarka Langer

2014-06-23T23:59:59.000Z

184

Economic Removal of Nitrogen from LNG  

Science Journals Connector (OSTI)

In recent years, economic factors have made transportation of natural gas in the form of LNG increasingly attractive. Shipping costs and heating value ... control necessitate specifications limiting the nitrogen ...

J-P. G. Jacks; J. C. McMillan

1978-01-01T23:59:59.000Z

185

E-Print Network 3.0 - atrbohd-mediated oxidative burst Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Extinction Brandon Lohman Summary: triggered by cosmic events. A high intensity gamma ray burst directed toward Earth may have irradiated our... of nitrogen oxides. These oxides...

186

CRAD, Radiological Controls- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Radiation Protection Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

187

500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect (OSTI)

The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO[sub x] burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulatecharacteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO[sub x] emission levels to be approximately 0.65 lb/MBtu. Flyash LOI values for the LNB configuration are approximately 8 percent at full-load. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. Abbreviated diagnostic tests for the LNB+AOFA configuration indicate that at 500 MWe, NO[sub x] emissions are approximately 0.55 lb/MBtu with corresponding flyash LOI values of approximately 11 percent. For comparison, the long-term full-load, baseline NO[sub x] emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB+AOFA configuration will be performed when the stackparticulate emissions issue is resolved. Testing of a process optimization package on Plant Hammond Unit 4 was performed during this quarter. The software was configured to minimize NO[sub x] emissions using total combustion air flow and advanced overfire air distribution as the controlled parameters. Preliminary results from this testing indicate that this package shows promise in reducing NO[sub x] emissions while maintaining or improving other boiler performance parameters.

Not Available

1992-01-01T23:59:59.000Z

188

Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation  

SciTech Connect (OSTI)

Neutrophilic Fe-oxidizing bacteria (FeOB) are often identified by their distinctive morphologies, such as the extracellular twisted ribbon-like stalks formed by Gallionella ferruginea or Mariprofundus ferrooxydans. Similar filaments preserved in silica are often identified as FeOB fossils in rocks. Although it is assumed that twisted iron stalks are indicative of FeOB, the stalk's metabolic role has not been established. To this end, we studied the marine FeOB M. ferrooxydans by light, X-ray and electron microscopy. Using time-lapse light microscopy, we observed cells excreting stalks during growth (averaging 2.2 {micro}m h(-1)). Scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy show that stalks are Fe(III)-rich, whereas cells are low in Fe. Transmission electron microscopy reveals that stalks are composed of several fibrils, which contain few-nanometer-sized iron oxyhydroxide crystals. Lepidocrocite crystals that nucleated on the fibril surface are much larger ({approx}100 nm), suggesting that mineral growth within fibrils is retarded, relative to sites surrounding fibrils. C and N 1s NEXAFS spectroscopy and fluorescence probing show that stalks primarily contain carboxyl-rich polysaccharides. On the basis of these results, we suggest a physiological model for Fe oxidation in which cells excrete oxidized Fe bound to organic polymers. These organic molecules retard mineral growth, preventing cell encrustation. This model describes an essential role for stalk formation in FeOB growth. We suggest that stalk-like morphologies observed in modern and ancient samples may be correlated confidently with the Fe-oxidizing metabolism as a robust biosignature.

Chan, Clara S; Fakra, Sirine C; Emerson, David; Fleming, Emily J; Edwards, Katrina J

2011-07-01T23:59:59.000Z

189

Functionalized Graphene Sheets as Molecular Templates for Controlled Nucleation and Self-Assembly of Metal Oxide-Graphene Nanocomposites  

SciTech Connect (OSTI)

Graphene sheets have been extensively studied as a key functional component of graphene-based nanocomposites for electronics, energy, catalysis,and sensing applications. However, fundamental understanding of the interfacial binding and nucleation processes at graphene surfaces remains lacking, and the range of controlled structures that can be produced are limited. Here, by using a combination of theoretical and experimental approaches, we demonstrate that functionalized graphene sheets (FGS) can function as a new class of molecular templates to direct nucleation and self-assembly and produce novel, three-dimensional nanocomposite materials. Two key aspects are demonstrated: First, the functional groups on FGS surface determine the nucleation energy, and thus control the nucleation sites and nucleation density, as well as the preferred crystalline phases. Second, FGS can function as a template to direct the self-assembly of surfactant micelles and produce ordered, mesoporous arrays of crystalline metal oxides and composites.

Li, Xiaolin; Qi, Wen N.; Mei, Donghai; Sushko, Maria L.; Aksay, Ilhan A.; Liu, Jun

2012-09-25T23:59:59.000Z

190

Dissociation and excitation coefficients of nitrogen molecules and nitrogen monoxide generation  

SciTech Connect (OSTI)

The excitation coefficient ?{sub N2} is calculated for the excited metastable level of N{sub 2}(A{sub 3}?{sub u}{sup +}) in nitrogen molecules. In addition, the dissociation coefficient of nitrogen molecules is investigated by making use of the Boltzmann distribution of the electrons in atmospheric plasmas. The excitation and electron-impact dissociation coefficients of nitrogen molecules are analytically expressed in terms of the electron temperature T{sub e} for evaluations of the reactive oxygen and nitrogen species in atmospheric plasmas. As an application example of these coefficients, the nitrogen monoxide generation through a microwave torch is carried out for a development of medical tool. The nitrogen monoxide concentration from a microwave plasma-torch can be easily controlled by the nitrogen flow rate, mole fraction of the oxygen gas, and the microwave power. A simple analytic expression of the nitrogen monoxide concentration is obtained in terms of the oxygen molecular density and gas flow rate. The experimental data agree remarkably well with the theoretical results from the analytical expression. A microwave nitrogen-torch can easily provide an appropriate nitrogen monoxide concentration for the wound healings.

Uhm, Han S.; Na, Young H.; Choi, Eun H.; Cho, Guangsup [Department of Electronic and Biological Physics, Kwangwoon University 447-1 Wolgye-Dong, Nowon-Gu, Seoul 137-701 (Korea, Republic of)] [Department of Electronic and Biological Physics, Kwangwoon University 447-1 Wolgye-Dong, Nowon-Gu, Seoul 137-701 (Korea, Republic of)

2013-08-15T23:59:59.000Z

191

Nitrogen dioxide detection  

DOE Patents [OSTI]

Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

Sinha, Dipen N. (Los Alamos, NM); Agnew, Stephen F. (Los Alamos, NM); Christensen, William H. (Buena Park, CA)

1993-01-01T23:59:59.000Z

192

FEMP Technology Brief: Boiler Combustion Control and Monitoring System |  

Broader source: Energy.gov (indexed) [DOE]

Boiler Combustion Control and Monitoring Boiler Combustion Control and Monitoring System FEMP Technology Brief: Boiler Combustion Control and Monitoring System October 7, 2013 - 9:12am Addthis This composite photo shows technicians observing operation at the monitoring station and making subsequent fine adjustments on combustion system controls Technical staff are making boiler adjustments with the control and monitoring system. Photo courtesy of the Department of Defense's Environmental Security Technology Certification Program. Technology Description A novel combustion control system, along with gas sensors, sets the opening of fuel and air inlets based on flue-gas concentrations. Continuous feedback from measurements of oxygen, carbon monoxide, and nitrogen oxide concentrations enable the control system

193

Multivariable robust control of a simulated hybrid solid oxide fuel cell gas turbine plant.  

E-Print Network [OSTI]

??This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built… (more)

Tsai, Alex, 1973-

2007-01-01T23:59:59.000Z

194

Electrochemical process for the preparation of nitrogen fertilizers  

DOE Patents [OSTI]

The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia, at low temperature and pressure, preferably at ambient temperature and pressure, utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen or hydrogen equivalent. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be aqueous, non-aqueous, or solid.

Aulich, Ted R. (Grand Forks, ND); Olson, Edwin S. (Grand Forks, ND); Jiang, Junhua (Grand Forks, ND)

2012-04-10T23:59:59.000Z

195

Control of Oxygen Delamination in Solid Oxide Electrolyzer Cells via Modifying Operational Regime  

SciTech Connect (OSTI)

Possible modifications of operational regimes for solid oxide fuel cell (SOEC) devices for hydrogen production are discussed. It is shown that applying alternating current (AC) voltage pulses at a certain frequency range to SOECs could reduce oxygen delamination degradation in these devices and significantly increase their lifetime. This operational scheme provides wide possibilities to increase longevity of SOEC devices required for their use in commercial hydrogen production processes, without any significant modification of used materials and/or cell design. Developed simulation method possesses a broad generality and be employed in a number of other industrial processes.

Sergey N. Rashkeev; Michael V. Glazoff

2011-10-01T23:59:59.000Z

196

Reading Comprehension - Liquid Nitrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquid Nitrogen Liquid Nitrogen Nitrogen is the most common substance in Earth's _________ crust oceans atmosphere trees . In the Earth's atmosphere, nitrogen is a gas. The particles of a gas move very quickly. They run around and bounce into everyone and everything. The hotter a gas is, the _________ slower faster hotter colder the particles move. When a gas is _________ cooled warmed heated compressed , its particles slow down. If a gas is cooled enough, it can change from a gas to a liquid. For nitrogen, this happens at a very _________ strange warm low high temperature. If you want to change nitrogen from a gas to a liquid, you have to bring its temperature down to 77 Kelvin. That's 321 degrees below zero _________ Kelvin Celsius Centigrade Fahrenheit ! Liquid nitrogen looks like water, but it acts very differently. It

197

Advanced Experimental Analysis of Controls on Microbial Fe(III) Oxide Reduction - Final Report - 09/16/1996 - 03/16/2001  

SciTech Connect (OSTI)

Considering the broad influence that microbial Fe(III) oxide reduction can have on subsurface metal/organic contaminant biogeochemistry, understanding the mechanisms that control this process is critical for predicting the behavior and fate of these contaminants in anaerobic subsurface environments. Knowledge of the factors that influence the rates of growth and activity of Fe(III) oxide-reducing bacteria is critical for predicting (i.e., modeling) the long-term influence of these organisms on the fate of contaminants in the subsurface, and for effectively utilizing Fe(III) oxide reduction and associated geochemical affects for the purpose of subsurface metal/organic contamination bioremediation. This research project will refine existing models for microbiological and geochemical controls on Fe(III) oxide reduction, using laboratory reactor systems that mimic, to varying degrees, the physical and chemical conditions of the subsurface. Novel experimental methods for studying the kinetics of microbial Fe(III) oxide reduction and measuring growth rates of Fe(III) oxide-reducing bacteria will be developed. These new methodologies will be directly applicable to studies on subsurface contaminant transformations directly coupled to or influenced by microbial Fe(III) oxide reduction.

Roden, Eric E.

2001-03-16T23:59:59.000Z

198

Modeling Species Inhibition of NO oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control  

SciTech Connect (OSTI)

Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data.

Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

2010-09-15T23:59:59.000Z

199

The global nitrogen cycle in the twenty-first century  

Science Journals Connector (OSTI)

...better known than natural fixation, in part...industrial sources. The gases created are the oxidized...derived from the natural or anthropogenic...exchange between semi-natural vegetation and the...of the greenhouse gas nitrous oxide. Phil...2013 The nitrogen cascade from agricultural...

2013-01-01T23:59:59.000Z

200

Thermal Controls for the On-Site Transfer of Mixed Oxide Scrap  

SciTech Connect (OSTI)

Mixed oxide scrap consisting primarily of PuO{sub 2} and UO{sub 2} is stored in crimp-sealed product cans at Savannah River Site (SRS). The product cans are to be transported onsite to a processing facility for dissolution using an earlier version of the 9975 (prior to the redesigned drum closure) package called DDF-1. This paper compares the maximum plutonium temperatures inside the DDF-1 and the maximum temperatures when the product can is in a storage vault. The comparison shows that the maximum Pu temperature for low wattage cans are marginally higher during transport provided the drum packages are kept out of sunlight. At higher wattage the differences become significant. The application of this work is to provide guidance and an estimate of temperature sensitive chemical reactions during transport compared with storage.

Gupta, N.K.

2001-05-08T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Dual MRI T1 and T2(?) contrast with size-controlled iron oxide nanoparticles  

Science Journals Connector (OSTI)

Abstract Contrast-enhancing magnetic resonance mechanism, employing either positive or negative signal changes, has contrast-specific signal characteristics. Although highly sensitive, negative contrast typically decreases the resolution and spatial specificity of MRI, whereas positive contrast lacks a high contrast-to-noise ratio but offers high spatial accuracy. To overcome these individual limitations, dual-contrast acquisitions were performed using iron oxide nanoparticles and a pair of MRI acquisitions. Specifically, vascular signals in MR angiography were positively enhanced using ultrashort echo (UTE) acquisition, which provided highly resolved vessel structures with increased vessel/tissue contrast. In addition, fast low angle shot (FLASH) acquisition yielded strong negative vessel contrast, resulting in the higher number of discernible vessel branches than those obtained from the UTE method. Taken together, the high sensitivity of the negative contrast delineated ambiguous vessel regions, whereas the positive contrast effectively eliminated the false negative contrast areas (e.g., airways and bones), demonstrating the benefits of the dual-contrast method. From the Clinical Editor In this study, the MRI properties of iron oxide nanoparticles were studied in an animal model. These contrast agents are typically considered negative contrast materials, leading to signal loss on T2* weighted images, but they also have known T1 effects as well, which is lower than that of standard positive contrast agents (like gadolinium or manganese) but is still detectable. This dual property was utilized in this study, demonstrating high sensitivity of the negative contrast in delineating ambiguous vessel regions, whereas the positive contrast eliminated false negative contrast areas (areas giving rise to susceptibility effects).

Hoesu Jung; Bumwoo Park; Changkyung Lee; Junghun Cho; Jiyeon Suh; JangYeon Park; YoungRo Kim; Jeongkon Kim; Gyunggoo Cho; HyungJoon Cho

2014-01-01T23:59:59.000Z

202

Coal-fired power generation: Proven technologies and pollution control systems  

SciTech Connect (OSTI)

During the last two decades, significant advances have been made in the reduction of emissions from coal-fired power generating plants. New technologies include better understanding of the fundamentals of the formation and destruction of criteria pollutants in combustion processes (low nitrogen oxides burners) and improved methods for separating criteria pollutants from stack gases (FGD technology), as well as efficiency improvements in power plants (clean coal technologies). Future demand for more environmentally benign electric power, however, will lead to even more stringent controls of pollutants (sulphur dioxide and nitrogen oxides) and greenhouse gases such as carbon dioxide.

Balat, M. [University of Mah, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

203

Toward Active-Matrix Lab-On-A-Chip: Programmable Electrofluidic control Enaled by Arrayed Oxide Thin Film Transistors  

SciTech Connect (OSTI)

Agile micro- and nano-fluidic control is critical to numerous life science and chemical science synthesis as well as kinetic and thermodynamic studies. To this end, we have demonstrated the use of thin film transistor arrays as an active matrix addressing method to control an electrofluidic array. Because the active matrix method minimizes the number of control lines necessary (m + n lines for the m x n element array), the active matrix addressing method integrated with an electrofluidic platform can be a significant breakthrough for complex electrofluidic arrays (increased size or resolution) with enhanced function, agility and programmability. An amorphous indium gallium zinc oxide (a-IGZO) semiconductor active layer is used because of its high mobility of 1-15 cm{sup 2} V{sup -1} s{sup -1}, low-temperature processing and transparency for potential spectroscopy and imaging. Several electrofluidic functionalities are demonstrated using a simple 2 x 5 electrode array connected to a 2 x 5 IGZO thin film transistor array with the semiconductor channel width of 50 {mu}m and mobility of 6.3 cm{sup 2} V{sup -1} s{sup -1}. Additionally, using the TFT device characteristics, active matrix addressing schemes are discussed as the geometry of the electrode array can be tailored to act as a storage capacitor element. Finally, requisite material and device parameters are discussed in context with a VGA scale active matrix addressed electrofluidic platform.

Noh, Joo Hyon [University of Tennessee, Knoxville (UTK); Noh, Jiyong [University of Tennessee, Knoxville (UTK); Kreit, Eric [University of Cincinnati; Heikenfeld, Jason [University of Cincinnati; Rack, Philip D [ORNL

2012-01-01T23:59:59.000Z

204

Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant  

SciTech Connect (OSTI)

This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.

Tsai A, Banta L, Tucker D

2010-08-01T23:59:59.000Z

205

Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries  

Science Journals Connector (OSTI)

vanadium redox flow battery; nitrogen doping; carbon nanotubes; graphite felt ... Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery ... Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery ...

Shuangyin Wang; Xinsheng Zhao; Thomas Cochell; Arumugam Manthiram

2012-07-27T23:59:59.000Z

206

Feasibility study of solid oxide fuel cell engines integrated with sprinter gas turbines: Modeling, design and control  

Science Journals Connector (OSTI)

Abstract Conventional recuperating solid oxide fuel cell (SOFC)/gas turbine (GT) system suffers from its poor dynamic capability and load following performance. To meet the fast, safe and efficient load following requirements for mobile applications, a sprinter SOFC/GT system concept is proposed in this paper. In the proposed system, an SOFC stack operating at fairly constant temperature provides the baseline power with high efficiency while the fast dynamic capability of the GT-generator is fully explored for fast dynamic load following. System design and control studies have been conducted by using an SOFC/GT system model consisting of experimentally-verified component models. In particular, through analysis of the steady-state simulation results, an SOFC operation strategy is proposed to maintain fairly constant SOFC power (less than 2% power variation) and temperature (less than 2 K temperature variation) over the entire load range. A system design procedure well-suited to the proposed system has also been developed to help determining component sizes and the reference steady-state operation line. In addition, control analysis has been studied for both steady-state and transient operations. Simulation results suggest that the proposed system holds the promise to achieve fast and safe transient operations by taking full advantage of the fast dynamics of the GT-generator.

Zhenzhong Jia; Jing Sun; Herb Dobbs; Joel King

2015-01-01T23:59:59.000Z

207

Stress dependent oxidation of sputtered niobium and effects on superconductivity  

SciTech Connect (OSTI)

We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, T{sub c}. Niobium was sputter-deposited on silicon dioxide coated 150?mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400?MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb{sub 2}O{sub 5}, consumed the top 6–10?nm, we measure less than 1 at. % oxygen and nitrogen in the bulk of the films after the oxidation period. T{sub c} measurements using a SQUID magnetometer indicate that the tensile films maintained a T{sub c} approaching the dirty superconductive limit of 8.4?K after two years of oxidation while maintaining room temperature sheet resistance. This work demonstrates that control over niobium film stress during deposition can prevent bulk oxidation by limiting the vertical grain boundaries ability to oxidize, prolonging the superconductive properties of sputtered niobium when exposed to atmosphere.

David Henry, M., E-mail: mdhenry@sandia.gov; Wolfley, Steve; Monson, Todd; Clark, Blythe G.; Shaner, Eric; Jarecki, Robert [Sandia National Labs, MESA Fabrication Facility PO Box 5800 MS 1084, Albuquerque, New Mexico 87185-1084 (United States)

2014-02-28T23:59:59.000Z

208

NITROGEN REMOVAL FROM NATURAL GAS  

SciTech Connect (OSTI)

The objective of this project was to develop a membrane process for the denitrogenation of natural gas. Large proven reserves in the Lower-48 states cannot be produced because of the presence of nitrogen. To exploit these reserves, cost-effective, simple technology able to reduce the nitrogen content of the gas to 4-5% is required. Technology applicable to treatment of small gas streams (below 10 MMscfd) is particularly needed. In this project membranes that selectively permeate methane and reject nitrogen in the gas were developed. Preliminary calculations show that a membrane with a methane/nitrogen selectivity of 3 to 5 is required to make the process economically viable. A number of polymer materials likely to have the required selectivities were evaluated as composite membranes. Polyacetylenes such as poly(1-trimethylsilyl-1-propyne) [PTMSP] and poly(4-methyl-2-pentyne) [PMP] had high selectivities and fluxes, but membranes prepared from these polymers were not stable, showing decreasing flux and selectivity during tests lasting only a few hours. Parel, a poly(propylene oxide allyl glycidyl ether) had a selectivity of 3 at ambient temperatures and 4 or more at temperatures of {minus}20 C. However, Parel is no longer commercially available, and we were unable to find an equivalent material in the time available. Therefore, most of our experimental work focused on silicone rubber membranes, which have a selectivity of 2.5 at ambient temperatures, increasing to 3-4 at low temperatures. Silicone rubber composite membranes were evaluated in bench-scale module tests and with commercial-scale, 4-inch-diameter modules in a small pilot plant. Over six days of continuous operation at a feed gas temperature of {minus}5 to {minus}10 C, the membrane maintained a methane/nitrogen selectivity of about 3.3. Based on the pilot plant performance data, an analysis of the economic potential of the process was prepared. We conclude that a stand-alone membrane process is the lowest-cost technology for small gas streams containing less than 10% nitrogen. The membrane process can recover more than 60-70% of the hydrocarbon content of the gas at a cost of $0.60-0.70/Mscfd. The capital cost of the process is about $100-200/Mscf. A number of small operators appear to be ready to use the technology if these costs can be demonstrated in the field. A second, and perhaps better, application of the technology is to combine the membrane process with a cryogenic process to treat large gas streams containing 10-20% nitrogen. The combination process achieves significant synergies. The membrane process performs a bulk separation of the gas, after which the cryogenic process treats the membrane residue (nitrogen-enriched) gas to recover more methane. Overall, hydrocarbon recoveries are greater than 95%. The capital cost of the combination process is lower than that of either process used alone and the processing costs are in the range $0.30-0.40/Mscf. This operating cost would be attractive to many gas producers. MTR is collaborating with a producer of cryogenic systems to further develop the combination process. A number of innovations in membrane process designs were made during the project; four U.S. patents covering various aspects of the technology were filed and issued.

K.A. Lokhandwala; M.B. Ringer; T.T. Su; Z. He; I. Pinnau; J.G. Wijmans; A. Morisato; K. Amo; A. DaCosta; R.W. Baker; R. Olsen; H. Hassani; T. Rathkamp

1999-12-31T23:59:59.000Z

209

On the temperature dependence of organic reactivity, nitrogen oxides, ozone production, and the impact of emission controls in San Joaquin Valley, California  

E-Print Network [OSTI]

The San Joaquin Valley (SJV) experiences some of the worst ozone air quality in the US, frequently exceeding the California 8 h standard of 70.4 ppb. To improve our understanding of trends in the number of ozone violations ...

Pusede, S. E.

210

nitrogen metabolism in lakes i. measurement of nitrogen fixation with ...  

Science Journals Connector (OSTI)

the originally introduced nitrogen gas and the total amount of .... This is accom- of spontaneous O2 production, which .... free nitrogen been available; the cost of.

211

Large-Scale Mercury Control Technology Testing for Lignite-Fired Utilities - Oxidation Systems for Wet FGD  

SciTech Connect (OSTI)

Mercury (Hg) control technologies were evaluated at Minnkota Power Cooperative's Milton R. Young (MRY) Station Unit 2, a 450-MW lignite-fired cyclone unit near Center, North Dakota, and TXU Energy's Monticello Steam Electric Station (MoSES) Unit 3, a 793-MW lignite--Powder River Basin (PRB) subbituminous coal-fired unit near Mt. Pleasant, Texas. A cold-side electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber are used at MRY and MoSES for controlling particulate and sulfur dioxide (SO{sub 2}) emissions, respectively. Several approaches for significantly and cost-effectively oxidizing elemental mercury (Hg{sup 0}) in lignite combustion flue gases, followed by capture in an ESP and/or FGD scrubber were evaluated. The project team involved in performing the technical aspects of the project included Babcock & Wilcox, the Energy & Environmental Research Center (EERC), the Electric Power Research Institute, and URS Corporation. Calcium bromide (CaBr{sub 2}), calcium chloride (CaCl{sub 2}), magnesium chloride (MgCl{sub 2}), and a proprietary sorbent enhancement additive (SEA), hereafter referred to as SEA2, were added to the lignite feeds to enhance Hg capture in the ESP and/or wet FGD. In addition, powdered activated carbon (PAC) was injected upstream of the ESP at MRY Unit 2. The work involved establishing Hg concentrations and removal rates across existing ESP and FGD units, determining costs associated with a given Hg removal efficiency, quantifying the balance-of-plant impacts of the control technologies, and facilitating technology commercialization. The primary project goal was to achieve ESP-FGD Hg removal efficiencies of {ge}55% at MRY and MoSES for about a month.

Steven A. Benson; Michael J. Holmes; Donald P. McCollor; Jill M. Mackenzie; Charlene R. Crocker; Lingbu Kong; Kevin C. Galbreath

2007-03-31T23:59:59.000Z

212

Nitrous oxide emissions from wastewater treatment processes  

Science Journals Connector (OSTI)

...specific ammonia oxidation rate. Symbols represent...Research Council (ARC) for funding this...correlated to its ammonia oxidation rate. 51 Arp, D...1146/annurev.micro.61.080706.093449...1146/annurev.micro.61.080706.093449...2004 Anaerobic oxidation of inorganic nitrogen...

2012-01-01T23:59:59.000Z

213

Nitrogen Trifluoride-Based Fluoride- Volatility Separations Process: Initial Studies  

SciTech Connect (OSTI)

This document describes the results of our investigations on the potential use of nitrogen trifluoride as the fluorinating and oxidizing agent in fluoride volatility-based used nuclear fuel reprocessing. The conceptual process uses differences in reaction temperatures between nitrogen trifluoride and fuel constituents that produce volatile fluorides to achieve separations and recover valuable constituents. We provide results from our thermodynamic evaluations, thermo-analytical experiments, kinetic models, and provide a preliminary process flowsheet. The evaluations found that nitrogen trifluoride can effectively produce volatile fluorides at different temperatures dependent on the fuel constituent.

McNamara, Bruce K.; Scheele, Randall D.; Casella, Andrew M.; Kozelisky, Anne E.

2011-09-28T23:59:59.000Z

214

Rapid thermal oxidation of silicon in mixtures of oxygen and nitrous oxide  

SciTech Connect (OSTI)

Oxidation in nitrous oxide by conventional hot wall furnace processing and by rapid thermal oxidation (RTO) has been a subject of much interest in recent years. RTO is a fundamentally different process than furnace oxidation, however, and the full effects of this type of processing on the oxidation kinetics are not well understood. Oxidation of silicon by RTO at a variety of pressures, temperatures, and oxidation gas mixtures has been studied. Although at lower temperatures (< 850 C) the atmospheric pressure oxidation rate in nitrous oxide is very close to that in oxygen, at higher temperatures the oxidation rate in nitrous oxide is much lower than that in oxygen. At lower pressures in a RTO process, the oxidation rate in nitrous oxide is higher than that in oxygen. The effect of the nitrogen incorporated in the oxide acting as a diffusion barrier has been proposed as the mechanism of temperature dependence for atmospheric pressure oxidation in nitrous oxide. This does not explain the effects seen at lower pressure,s however, The authors propose that some of the intermediate species produced in the decomposition of nitrous oxide into molecular nitrogen, molecular oxygen, and nitric oxide play a role in the initial stages of oxidation by RTO in nitrous oxide.

Grant, J.M.; Karim, Z. [Sharp Microelectronics Technology, Inc., Camas, WA (United States)

1996-12-01T23:59:59.000Z

215

Nitrogen fixation method and apparatus  

DOE Patents [OSTI]

A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O[sub 2]/cm promotes the formation of vibrationally excited N[sub 2]. Atomic oxygen interacts with vibrationally excited N[sub 2] at a much quicker rate than unexcited N[sub 2], greatly improving the rate at which NO is formed. 1 fig.

Chen, H.L.

1983-08-16T23:59:59.000Z

216

Turn-on fluorescent probes for detecting nitric oxide in biology  

E-Print Network [OSTI]

Chapter 1. Investigating the Biological Roles of Nitric Oxide and Other Reactive Nitrogen Species Using Fluorescent Probes: This chapter presents an overview of recent progress in the field of reactive nitrogen species ...

McQuade, Lindsey Elizabeth, 1981-

2010-01-01T23:59:59.000Z

217

A Double-Blind Placebo-Controlled Randomized Clinical Trial With Magnesium Oxide to Reduce Intrafraction Prostate Motion for Prostate Cancer Radiotherapy  

SciTech Connect (OSTI)

Purpose: To investigate whether magnesium oxide during external-beam radiotherapy for prostate cancer reduces intrafraction prostate motion in a double-blind, placebo-controlled randomized trial. Methods and Materials: At the Department of Radiotherapy, prostate cancer patients scheduled for intensity-modulated radiotherapy (77 Gy in 35 fractions) using fiducial marker-based position verification were randomly assigned to receive magnesium oxide (500 mg twice a day) or placebo during radiotherapy. The primary outcome was the proportion of patients with clinically relevant intrafraction prostate motion, defined as the proportion of patients who demonstrated in {>=}50% of the fractions an intrafraction motion outside a range of 2 mm. Secondary outcome measures included quality of life and acute toxicity. Results: In total, 46 patients per treatment arm were enrolled. The primary endpoint did not show a statistically significant difference between the treatment arms with a percentage of patients with clinically relevant intrafraction motion of 83% in the magnesium oxide arm as compared with 80% in the placebo arm (p = 1.00). Concerning the secondary endpoints, exploratory analyses demonstrated a trend towards worsened quality of life and slightly more toxicity in the magnesium oxide arm than in the placebo arm; however, these differences were not statistically significant. Conclusions: Magnesium oxide is not effective in reducing the intrafraction prostate motion during external-beam radiotherapy, and therefore there is no indication to use it in clinical practice for this purpose.

Lips, Irene M., E-mail: i.m.lips@umcutrecht.nl [Department of Radiation Oncology, University Medical Center Utrecht, Utrecht (Netherlands); Gils, Carla H. van [Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht (Netherlands); Kotte, Alexis N.T.J. [Department of Radiation Oncology, University Medical Center Utrecht, Utrecht (Netherlands); Leerdam, Monique E. van [Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam (Netherlands); Franken, Stefan P.G.; Heide, Uulke A. van der; Vulpen, Marco van [Department of Radiation Oncology, University Medical Center Utrecht, Utrecht (Netherlands)

2012-06-01T23:59:59.000Z

218

Interactions of Fluorine Redistribution and Nitrogen Incorporation with Boron Diffusion in Silicon Dioxide  

E-Print Network [OSTI]

Interactions of Fluorine Redistribution and Nitrogen Incorporation with Boron Diffusion in Silicon Dioxide Mitra Navi and Scott Dunham Department of Electrical and Computer Engineering Boston University diffusion. Gate oxides were grown with nitrogen contents varying from 0 to 1.4%. A series of SIMS mea

Dunham, Scott

219

The development of control strategy for solid oxide fuel cell and micro gas turbine hybrid power system in ship application  

Science Journals Connector (OSTI)

A solid oxide fuel cell (SOFC) and micro gas turbine (MGT) hybrid power system is a newly developed and promising power technology for ship power systems. Compared to conventional power plants on commercial sh...

Jiqing He; Peilin Zhou; David Clelland

2014-12-01T23:59:59.000Z

220

Biogeochemical cycling in an organic-rich coastal marine basin. 5. Sedimentary nitrogen and phosphorus budgets based upon kinetic models, mass balances, and the stoichiometry of nutrient regeneration  

SciTech Connect (OSTI)

The rapid rates of sediment accumulation (approx.10-20 cm/yr) in the recently formed Cape Lookout Bight, North Carolina, have resulted in the deposition of approximately 157 moles of carbon, 14 moles of nitrogen and 1.3 moles of phosphorus, per square meter annually. The metabolism of the organic matter in these anoxic sediments is dominated by sulfate reduction and fermentation reactions. Sedimentary nitrogen and phosphorus budgets are estimated using 3 related approaches: 1) a kinetic model of solid phase diagenesis; 2) direct measurements of nutrient burial and regeneration; and 3) nutrient recycling rates estimated from annual rates of sulfate reduction and the SO/sub 4/:NH/sub 4/ and SO/sub 4/:PO/sub 4/ stoichiometry of nutrient regeneration. The mass balances derived agree reasonably well and indicate that approximately 30% of the total nitrogen and 15% of the total phosphorus deposited in these sediments are recycled. The mean residence time for recycled nutrients within the sediment is 4 to 6 months for nitrogen and 1.5 to 2 years for phosphorus. Nitrogen regeneration, like carbon, appears to be controlled by the microbially-mediated metabolism of labile organic matter. The greater asymmetry and lower percent turnover in phosphorus cycling is apparently due to changes in its solubility under oxidized and reduced conditions and selective regeneration prior to deposition.

Klump, J.V.; Martens, C.S.

1987-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The design of stable high nitrogen systems  

SciTech Connect (OSTI)

A general strategy for the design of high nitrogen systems with an adequate degree of stability has been elaborated. The design of nitro compounds in which terminal nitro groups are bonded to the chain of several heteroatoms is a specific case within the strategy. In the process of working out the strategy a number of new high nitrogen systems (dinitrazenic acid or dinitroamide HN{sub 3}O{sub 4} and its salts, nitrodiazene oxides RN{sub 3}O{sub 3} and tetrazine dioxides) were discovered. A new of new types of nitro compounds (bicyclo nitro-bis-hydroxylamine, nitrohydrazine, nitrohydroxylamine, sulfo-N-nitroimide and bis-N-nitroimide) were synthesized. This study opens new prospects in the field of the synthesis of high energy materials.

Tartakovsky, V.A. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Inst. of Organic Chemistry

1996-07-01T23:59:59.000Z

222

New chemistry with gold-nitrogen complexes: synthesis and characterization of tetra-, tri-, and dinuclear gold(I) amidinate complexes. Oxidative-addition to the dinuclear gold(I) amidinate  

E-Print Network [OSTI]

catalyst precursors for CO oxidation on TiO2 surface reported to date (87% conversion). The dinuclear gold(I) amidinate complex with a Auâ ¦Au distance of 2.711(3) Ã is rare. To our knowledge, there is only one other example of a symmetrical dinuclear gold...

Abdou, Hanan Elsayed

2009-06-02T23:59:59.000Z

223

E-Print Network 3.0 - anesthetic nitrous oxide Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

such concentrations of anesthetics are safe... ), hypoxemia (eg, nitrogen and carbon monoxide), addiction (eg, nitrous oxide), or health effects resulting... from chronic exposure...

224

E-Print Network 3.0 - attenuates oxidative damage Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Computer Technologies and Information Sciences 40 Charge-trapping properties of gate oxide grown on nitrogen-implanted silicon substrate Summary: Charge-trapping...

225

Phase control in the synthesis of yttrium oxide nano and micro-particles by flame spray pyrolysis  

E-Print Network [OSTI]

and Regulation The experiment uses hydrogen as the fuel gas and pure oxygen as a co-flow. Hydrogen (part no. HY 4.5, product grade-4.5 with 99.995% purity, supplier: Praxair) and Oxygen (part no. OX 2.6, product grade-2.6 with 99.6% purity, H 2 OPraxair) used are of industrial grade purity. Nitrogen (part no. NI 4.8, product grade-4.8 with 99.998% purity, supplier: Praxair) was used in the process to purge the supply lines with an inert gas to eliminate the potential hazard...

Mukundan, Mallika

2009-05-15T23:59:59.000Z

226

Viscosity Measurements on Nitrogen  

Science Journals Connector (OSTI)

Viscosity Measurements on Nitrogen ... (15)?Clarke, A. G.; Smith, E. B. Low-temperature viscosities and intermolecular forces of simple gases. ... The coupling also serves as a frictionless bearing for a slender rotating cylindrical body which is slowed down due to the viscous drag of the fluid surrounding the cylinder. ...

Daniel Seibt; Eckhard Vogel; Eckard Bich; Daniel Buttig; Egon Hassel

2006-01-11T23:59:59.000Z

227

ODD NITROGEN PROCESSES  

SciTech Connect (OSTI)

This chapter is in three parts. The first concerns interpretations that can be made from atmospheric observations regarding nitrogen compounds and ozone, the second reviews some predictions made by atmospheric models, and the third compares between certain model results and atmospheric measurements with an emphasis on detecting evidence of significant disagreements.

Johnston, Harold S.

1980-01-01T23:59:59.000Z

228

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Freeze the Rainbow! Freeze the Rainbow! Previous Video (Freeze the Rainbow!) Frostbite Theater Main Index Next Video (Liquid Nitrogen and Fire!) Liquid Nitrogen and Fire! Liquid Nitrogen and Antifreeze! What happens when the freezing power of liquid nitrogen meets the antifreezing power of ethylene glycol? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: What happens when the freezing power of liquid nitrogen... Steve: ...meets the antifreezing power of ethylene glycol! Joanna: While a mix of 70 percent ethylene glycol and 30 percent water doesn't freeze until 60 degrees below zero, it's still no match for liquid nitrogen. At 321 degrees below zero, liquid nitrogen easily freezes

229

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen in a  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Freeze Liquid Nitrogen! Freeze Liquid Nitrogen! Previous Video (Let's Freeze Liquid Nitrogen!) Frostbite Theater Main Index Next Video (Freeze the Rainbow!) Freeze the Rainbow! Liquid Nitrogen in a Microwave! What happens when the world's most beloved cryogenic liquid meets one of the most common household appliances? Find out when we try to microwave liquid nitrogen! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: A little while ago we received an email from Star of the Sea Catholic School in Virginia Beach, Virginia, asking what happens when you place liquid nitrogen in a microwave. Well, I just happen to have some liquid nitrogen! Steve: And I just happen to have a microwave!

230

Pro-oxidative and Antioxidative Controls and Signaling Modification of Polyphenolic Phytochemicals: Contribution to Health Promotion and Disease Prevention?  

Science Journals Connector (OSTI)

(72) Oxidized low-density lipoprotein (LDL) is a major constituent of atherogenic plaques on the vascular wall that induce macrophage foam cell formation and thrombotic activity. ... (127) An extraordinarily high concentration (250 ?M) of flavonoid (quercetin and fisetin) has been used to show that flavonoid can induce DNA damage and apoptosis. ...

Kai On Chu; Sun-On Chan; Chi Pui Pang; Chi Chiu Wang

2014-04-20T23:59:59.000Z

231

Methane/nitrogen separation process  

DOE Patents [OSTI]

A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

1997-09-23T23:59:59.000Z

232

Methane/nitrogen separation process  

DOE Patents [OSTI]

A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

1997-01-01T23:59:59.000Z

233

Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions  

DOE Patents [OSTI]

A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

2008-11-25T23:59:59.000Z

234

Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine  

SciTech Connect (OSTI)

Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

235

Correcting Nitrogen Deficiencies in Cotton with Urea-Based Products  

E-Print Network [OSTI]

control through aerial applicators and adding some foliar nitrogen to these products may provide enough nitrogen to keep the cotton growing through a temporary stress period. (Because of reduced uptake, it is possible that a nitrogen deficit can occur... been used on irrigated cotton in West Texas without leaf burn. (This equals 1.38 lb. N/gal. or 4.14 lb. N/3 gal./acre if aerial application is desired or must be used because fields are not accessible with ground equipment.) ?Feed-grade urea...

Livingston, Stephen; Stichler, Charles

1995-11-22T23:59:59.000Z

236

Novel, band-controlled metal oxide compositions for semiconductor-mediated photocatalytic splitting of water to produce H{sub 2}  

SciTech Connect (OSTI)

Semiconductor-mediated photo-catalytic dissociation of water offers a unique opportunity for the production of H{sub 2}, a sustainable source of energy. More efficient and chemically stable photo-catalysts, however, remain a vital requirement for commercial viability of this process. The recent research in my group has focused on the synthesis of several new metal oxide (MO) photo-catalysts, such as: LaInO{sub 3}, GaFeO{sub 3}, InVO{sub 4}, In{sub 2}TiO{sub 5} and nanotubular TiO{sub 2}. These samples of controlled grain morphology have been synthesized by using different synthesis protocols and with and without coating of a noble metal co-catalyst. The doping of an impurity, either at cationic or at anionic lattice site, has helped in the tailoring of band structure and making these oxides visible-light-sensitive. Our study has revealed that the surface characteristics, grain morphology, band structure, and doping-induced lattice imperfections control the photo-physical properties and overall photo-catalytic water splitting activity of these metal/MO composites [1-6]. We have demonstrated that, besides promoting certain charge-transfer steps, metal-semiconductor interfaces influence the adsorption of water molecules and their subsequent interaction with photo-generated electron-hole pair at the catalyst surface. The role played by the above-mentioned micro-structural properties in photo-catalytic water splitting process will be discussed.

Gupta, Narendra M. [Catalysis Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune - 411008 (India)

2013-02-05T23:59:59.000Z

237

Multidisciplinary Modeling, Control, and Optimization of a Solid Oxide Fuel Cell/Gas Turbine Hybrid Power System.  

E-Print Network [OSTI]

??This thesis describes a systematical study, including multidisciplinary modeling, simulation, control, and optimization, of a fuel cell - gas turbine hybrid power system that aims… (more)

Abbassi Baharanchi, Atid

2009-01-01T23:59:59.000Z

238

Ethanol diesel dual fuel clean combustion with FPGA enabled control  

Science Journals Connector (OSTI)

Sophisticated engine controls have progressively become vital enablers for implementing clean and efficient combustion. The low temperature combustion in diesel engines is a viable combustion mode that offers ultra-low nitrogen oxides and dry soot emissions, yet only feasible under tightly controlled operating conditions. In this work, the dual fuel application of ethanol and diesel is studied for clean and efficient combustion. A set of real-time controllers has been configured to control the common-rail pressure and injection events, in concert with the use of two fuels in a high compression ratio diesel engine. An improved control algorithm has been implemented into the field programmable gate array devices to promptly execute the injection commands of the port and direct injection events. Such reliable and prompt control of fuel injection has been identified as critical to safely enable simultaneously low nitrogen oxides and soot combustion, especially when excessive or inadequate rate of exhaust gas recirculation is imminent. High load clean combustion was achieved with the improved control system.

Xiaoye Han; Jimi Tjong; Graham T. Reader; Ming Zheng

2014-01-01T23:59:59.000Z

239

Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate  

DOE Patents [OSTI]

A method of removing nitrogen monoxide from a nitrogen monoxide-containing gas, which method comprises: (a) contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate of the formula: ##STR1## wherein the water-soluble organic compound is selected from compounds of the formula: ##STR2## wherein: R is selected from hydrogen or an organic moiety having at least one polar functional group; Z is selected from oxygen, sulfur, or --N--A wherein N is nitrogen and A is hydrogen or lower alkyl having from one to four carbon atoms; and M is selected from hydrogen, sodium or potassium; and n is 1 or 2, in a contacting zone for a time and at a temperature effective to reduce the nitrogen monoxide. These mixtures are useful to provide an unexpensive method of removing NO from gases, thus reducing atmospheric pollution from flue gases.

Liu, David K. (San Pablo, CA); Chang, Shih-Ger (El Cerrito, CA)

1989-01-01T23:59:59.000Z

240

TiO2 nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries  

Science Journals Connector (OSTI)

Anatase TiO2...nanoparticles in situ grown on nitrogen-doped, reduced graphene oxide (rGO) have been successfully synthesized ... as an anode material for the lithium ion battery. The nanosized TiO2 particles wer...

Dan Li; Dongqi Shi; Zongwen Liu; Huakun Liu…

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins  

E-Print Network [OSTI]

Selective translation of survival proteins is an important facet of the cellular stress response. We recently demonstrated that this translational control involves a stress-specific reprogramming of modified ribonucleosides ...

Chan, Clement T. Y.

242

EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

4. Nitrous Oxide Emissions 4. Nitrous Oxide Emissions 4.1 Total emissions U.S. nitrous oxide emissions in 2009 were 4 MMTCO2e (1.7 percent) below their 2008 total (Table 22). Sources of U.S. nitrous oxide emissions include agriculture, energy use, industrial processes, and waste management (Figure 22). The largest source is agriculture (73 percent), and the majority of agricultural emissions result from nitrogen fertilization of agricultural soils (87 percent of the agriculture total) and management of animal waste (13 percent). U.S. nitrous oxide emissions rose from 1990 to 1994, fell from 1994 to 2002, and returned to an upward trajectory from 2003 to 2007, largely as a result of increased use of synthetic fertilizers. Fertilizers are the primary contributor of emissions from nitrogen fertilization of soils, which grew by more than 30 percent from

243

Increased Cytotoxicity of Oxidized Flame Soot  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Increased Cytotoxicity of Oxidized Flame Soot Increased Cytotoxicity of Oxidized Flame Soot Title Increased Cytotoxicity of Oxidized Flame Soot Publication Type Journal Article Year of Publication 2012 Authors Holder, Amara L., Brietta J. Carter, Regine Goth-Goldstein, Donald Lucas, and Catherine P. Koshland Journal Atmospheric Pollution Research Volume 3 Start Page 25 Issue 1 Pagination 25-31 Date Published 01/2012 Keywords health effects, ozone, soot, toxicity Abstract Combustion-generated particles released into the atmosphere undergo reactions with oxidants, which can change the particles' physiochemical characteristics. In this work, we compare the physical and chemical properties and cellular response of particles fresh from a flame with those oxidized by ozone and nitrogen dioxide. The reaction with ozone and nitrogen dioxide does not significantly modify the physical characteristics of the particles (primary particle size, fractal dimension, and surface area). However, oxidation affects the chemical characteristics of the particles, creating more oxygen and nitrogen containing functional groups, and increases their hydrophilicity. In addition, oxidized soot generates more reactive oxygen species, as measured by the dithiothreitol (DTT) assay. Furthermore, oxidized soot is 1.5-2 times more toxic than soot that was not reacted with ozone, but the inflammatory response, measured by interleukin-8 (IL-8) secretion, is unchanged. These results imply that combustion-generated particles released into the atmosphere will have an increased toxicity on or after high ozone days.

244

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen and Fire!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Antifreeze! Antifreeze! Previous Video (Liquid Nitrogen and Antifreeze!) Frostbite Theater Main Index Next Video (Liquid Nitrogen and the Tea Kettle Mystery!) Liquid Nitrogen and the Tea Kettle Mystery! Liquid Nitrogen and Fire! A burning candle is placed in a container of liquid nitrogen! Filmed in front of a live studio audience. Well, they were live when we started... [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Steve: Now, then. I'm a little bit afraid to ask this next question because I think I already know the answer, but is anyone in here feeling a little... dangerous? You're willing to take a chance? Because I am willing to do an experiment they haven't let me do since 'The Incident.' Now, because of the danger, I cannot have a volunteer. I must do this on my

245

Remote-controlled NDA (nondestructive assay) systems for feed and product storage at an automated MOX (mixed oxide) facility  

SciTech Connect (OSTI)

Nondestructive assay (NDA) systems have been developed for use in an automated mixed oxide (MOX) fabrication facility. Unique features have been developed for the NDA systems to accommodate robotic sample handling and remote operation. In addition, the systems have been designed to obtain International Atomic Energy Agency inspection data without the need for an inspector at the facility at the time of the measurements. The equipment is being designed to operate continuously in an unattended mode with data storage for periods of up to one month. The two systems described in this paper include a canister counter for the assay of MOX powder at the input to the facility and a capsule counter for the assay of complete liquid-metal fast breeder reactor fuel assemblies at the output of the plant. The design, performance characteristics, and authentication of the two systems will be described. The data related to reliability, precision, and stability will be presented. 5 refs., 10 figs., 4 tabs.

Menlove, H.O.; Augustson, R.H.; Ohtani, T.; Seya, M.; Takahashi, S.; Abedin-Zadeh, R.; Hassan, B.; Napoli, S.

1989-01-01T23:59:59.000Z

246

Use of impure inert gases in the controlled heating and cooling of mixed conducting metal oxide materials  

DOE Patents [OSTI]

Method for processing an article comprising mixed conducting metal oxide material. The method comprises contacting the article with an oxygen-containing gas and either reducing the temperature of the oxygen-containing gas during a cooling period or increasing the temperature of the oxygen-containing gas during a heating period; during the cooling period, reducing the oxygen activity in the oxygen-containing gas during at least a portion of the cooling period and increasing the rate at which the temperature of the oxygen-containing gas is reduced during at least a portion of the cooling period; and during the heating period, increasing the oxygen activity in the oxygen-containing gas during at least a portion of the heating period and decreasing the rate at which the temperature of the oxygen-containing gas is increased during at least a portion of the heating period.

Carolan, Michael Francis (Allentown, PA); Bernhart, John Charles (Fleetwood, PA)

2012-08-21T23:59:59.000Z

247

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect (OSTI)

Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. The testing was performed at Southern Research's Catalyst Test Facility, a bench-scale reactor capable of simulating gas-phase reactions occurring in coal-fired utility pollution-control equipment. Three different SCR catalysts are currently being studied in this project - honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Methods and procedures for experimental testing continue to be developed to produce the highest quality mercury-oxidation data. Most experiments so far have focused on testing the catalysts in a simulated Powder River Basin (PRB) flue-gas environment, which contains lower sulfur and chlorine than produced by other coals. Future work to characterize flue gas simulations typically derived from low and high sulfur bituminous coal will be performed in a stepwise manner, to avoid the constant interruptions in testing that occur when leaks in the system are generated during temperature transitions. Specifically, chlorine concentration vs. mercury oxidation graph will be developed for each catalyst. The contributions of temperature and later sulfur will be investigated after this is complete. Also, last quarter's tests showed a potential linear relationship between SO3 conversion and mercury oxidation. As a result, SO3 samples will be taken more frequently to investigate each catalyst's ability to selectively oxidize mercury.

Alex J. Berry; Thomas K. Gale

2005-09-30T23:59:59.000Z

248

What Happens to Nitrogen in Soils?  

E-Print Network [OSTI]

This publication explains the chemistry of nitrogen, the processes by which nitrogen is added to and removed from the soil, and methods of preventing nitrogen losses on agricultural lands....

Provin, Tony; Hossner, L. R.

2001-07-09T23:59:59.000Z

249

Operation of staged membrane oxidation reactor systems  

SciTech Connect (OSTI)

A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

Repasky, John Michael

2012-10-16T23:59:59.000Z

250

Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications  

DOE Patents [OSTI]

An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

Poola, Ramesh B. (Woodridge, IL); Sekar, Ramanujam R. (Naperville, IL); Cole, Roger L. (Elmhurst, IL)

1997-01-01T23:59:59.000Z

251

Vehicle Technologies Office: Emission Control R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emission Control R&D Emission Control R&D The Vehicle Technologies Office (VTO) supports research and development of aftertreatment technologies to control advanced combustion engine exhaust emissions. All engines that enter the vehicle market must comply with the Environmental Protection Agency's emissions regulations. Harmful pollutants in these emissions include: Carbon monoxide Nitrogen oxides Unburned hydrocarbons Volatile organic compounds (VOCs) Particulate matter The energy required for emission control often reduces vehicle fuel economy and increases vehicle cost. VTO's Emission Control R&D focuses on developing efficient, durable, low-cost emission control systems that complement new combustion strategies while minimizing efficiency losses. VTO often leverages the national laboratories' unique capabilities and facilities to conduct this research.

252

Process for treating ammonia and nitrite containing waters to prevent nitric oxide emissions therefrom  

SciTech Connect (OSTI)

This patent describes a process for controlling the emission of nitrogen dioxide from, and the amount of one or more organisms, selected from the group consisting of fungi, algae and bacteria, growing in a system for handling a flow of condensate of steam, the condensate containing ammonia, ammonia precursors, or a mixture thereof. It comprises contacting the condensate in a substantially continuous manner with an amount of an oxidizing biocide which substantially prevents the emission of nitrogen dioxide from the condensate handling system but which does not substantially inhibit the growth of the organisms in the condensate handling system; and periodically contacting the condensate with an amount of a second biocide which substantially reduces the amount of the organisms.

Gallup, D.L.; Featherstone, J.L.

1991-07-16T23:59:59.000Z

253

Facile and controllable electrochemical reduction of graphene...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and controllable electrochemical reduction of graphene oxide and its applications. Facile and controllable electrochemical reduction of graphene oxide and its applications....

254

Investigation of formation of nitrogen compounds in coal combustion. Final report  

SciTech Connect (OSTI)

This is the final report on DOE contract number DE-AC21-80MC14061. It concerns the formation of nitrogen oxide from fuel-bound nitrogen during coal combustion. The work reported was divided into three tasks. They addressed problems of time-resolving pyrolysis rates of coal under simulated combustion conditions, the combustion of the tar that results from such pyrolysis, and theoretical modeling of the pyrolysis process. In all of these tasks, special attention was devoted to the fate of coal nitrogen. The first two tasks were performed by Exxon Research and Engineering Company. 49 references.

Blair, D.W.; Crane, I.D.; Wendt, J.O.L.

1983-10-01T23:59:59.000Z

255

Frostbite Theater - Liquid Nitrogen Experiments - Instant Liquid Nitrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Freezing Balloons! Freezing Balloons! Previous Video (Freezing Balloons!) Frostbite Theater Main Index Next Video (Shattering Flowers!) Shattering Flowers! Instant Liquid Nitrogen Balloon Party! Need a bunch of balloons blown-up quickly? Liquid nitrogen to the rescue! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: We've been making videos for a while now and we've learned that people like balloons and liquid nitrogen! Steve: So... Here you go! Balloon: Crackling... Balloon: Pop! Joanna: Ooh! Balloon: Pop! Balloon: Pop! Steve: If you'd like to know the science of what's going on behind this, please one of our first videos, "Liquid Nitrogen Experiments: The Balloon."

256

Control of nitric acid plant stack opacity during start-up and shutdown  

SciTech Connect (OSTI)

This patent describes an improvement in a process for the production of nitric acid wherein air and ammonia are mixed and combusted in an ammonia burner to produce an effluent containing nitrogen oxides. The effluent is cooled, condensed and separated into a liquid weak acid stream and gas stream. The liquid weak acid and vapor streams are fed into an absorber tower wherein they are countercurrently contacted with water to produce a nitric acid stream and an overhead with a reduced nitrogen oxides content. The overhead is combusted with a fuel in the presence of a catalyst in a catalytic combustor to produce a combustor exhaust, work expanded in an expander to recover energy and vented to the atmosphere as stack exhaust. The improvement involves controlling the opacity of the stack opacity during shutdown of the process.

Adams, J.B.; Gasper, J.A.; Stash, P.J.

1989-09-26T23:59:59.000Z

257

180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Technical progress report, Third quarter 1992  

SciTech Connect (OSTI)

The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. A target of achieving 50% NOx reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level 1 long-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

Not Available

1992-12-31T23:59:59.000Z

258

In situ nitrogen-doped graphene grown from polydimethylsiloxane by plasma enhanced chemical vapor deposition  

SciTech Connect (OSTI)

Due to its unique electronic properties and wide spectrum of promising applications, graphene has attracted much attention from scientists in various fields. Control and engineering of graphene’s semiconducting properties is considered to be the key of its applications in electronic devices. Here, we report a novel method to prepare in situ nitrogen-doped graphene by microwave plasma assisted chemical vapor deposition (CVD) using PDMS (Polydimethylsiloxane) as a solid carbon source. Based on this approach, the concentration of nitrogen-doping can be easily controlled via the flow rate of nitrogen during the CVD process. X-ray photoelectron spectroscopy results indicated that the nitrogen atoms doped into graphene lattice were mainly in the forms of pyridinic and pyrrolic structures. Moreover, first-principles calculations show that the incorporated nitrogen atoms can lead to p-type doping of graphene. This in situ approach provides a promising strategy to prepare graphene with controlled electronic properties.

Wang, Chundong; Zhou, Yungang; He, Lifang; Ng, Tsz-Wai; Hong, Guo; Wu, Qi-Hui; Gao, Fei; Lee, Chun-Sing; Zhang, Wenjun

2013-01-21T23:59:59.000Z

259

180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Technical progress report, First quarter 1991  

SciTech Connect (OSTI)

This project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 (LS-2) located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This quarterly update provides a description of the flow modeling study. This modeling effort centers on evaluating the in-furnace flow and mixing phenomena for the various low NOx firing systems being demonstrated at LS-2. Testing on the 1/12 scale model of the LS-2 boiler and the 1/6 scale model of the overfire air ductwork was completed. The test matrix included an analysis of the overfire air ductwork and three different boiler configurations. This report also contains results from the Phase 1 baseline tests. Data from the diagnostic, performance, and verification tests are presented. In addition, NOx emissions data and unit load profiles collected during long-term testing are reported. At the full load condition, the baseline NOx emission level at LS-2 is 0.62 lb/mBtu.

Not Available

1991-12-31T23:59:59.000Z

260

Light Intensity and the Nitrogen Hunger Period in the Manchu Soybean  

Science Journals Connector (OSTI)

...jars on a nitrogen-poor pit sand to which has been added an...hypothesis that an excessive carbo- hydrate balance in the plant is the...quantitative difference in the behavior of the controls in the two...these findings for theoretical phases of symbiotic nitrogen fixa...

E. B. Fred; P. W. Wilson; Orville Wyss

1938-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Do dams and levees impact nitrogen cycling? Simulating the effects of flood alterations on floodplain  

E-Print Network [OSTI]

Do dams and levees impact nitrogen cycling? Simulating the effects of flood alterations topography with a model of hydrology and nitrogen biogeochemistry to simulate floods of different magnitude a generalized floodplain biogeochemical model to determine whether dams and flood-control levees affect

Turner, Monica G.

262

It's Elemental - The Element Nitrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Carbon Previous Element (Carbon) The Periodic Table of Elements Next Element (Oxygen) Oxygen The Element Nitrogen [Click for Isotope Data] 7 N Nitrogen 14.0067 Atomic Number: 7 Atomic Weight: 14.0067 Melting Point: 63.15 K (-210.00°C or -346.00°F) Boiling Point: 77.36 K (-195.79°C or -320.44°F) Density: 0.0012506 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 15 Group Name: Pnictogen What's in a name? From the Greek words nitron and genes, which together mean "saltpetre forming." Say what? Nitrogen is pronounced as NYE-treh-gen. History and Uses: Nitrogen was discovered by the Scottish physician Daniel Rutherford in 1772. It is the fifth most abundant element in the universe and makes up

263

Hydrogen adsorption and anomalous electronic properties of nitrogen-doped graphene  

SciTech Connect (OSTI)

We investigate hydrogen adsorption effects on stabilities and electronic properties of nitrogen defects in graphene using first-principles electronic-structure calculations within the density-functional theory. We find that the adsorption of hydrogen atoms on the pyridine-type nitrogen defects in graphene becomes energetically favorable, whereas in the case of the substitutional nitrogen defect the hydrogen adsorption becomes unfavorable. We also find that a transition from p-type to n-type doping properties occurs by hydrogen adsorption on the pyridine-type defects, suggesting that even the carrier type is controllable in nitrogen-doped graphene.

Fujimoto, Yoshitaka, E-mail: fujimoto@stat.phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551 (Japan); Saito, Susumu [Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551 (Japan); International Research Center for Nanoscience and Quantum Physics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551 (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan)

2014-04-21T23:59:59.000Z

264

Nitrogen removal from natural gas  

SciTech Connect (OSTI)

According to a 1991 Energy Information Administration estimate, U.S. reserves of natural gas are about 165 trillion cubic feet (TCF). To meet the long-term demand for natural gas, new gas fields from these reserves will have to be developed. Gas Research Institute studies reveal that 14% (or about 19 TCF) of known reserves in the United States are subquality due to high nitrogen content. Nitrogen-contaminated natural gas has a low Btu value and must be upgraded by removing the nitrogen. In response to the problem, the Department of Energy is seeking innovative, efficient nitrogen-removal methods. Membrane processes have been considered for natural gas denitrogenation. The challenge, not yet overcome, is to develop membranes with the required nitrogen/methane separation characteristics. Our calculations show that a methane-permeable membrane with a methane/nitrogen selectivity of 4 to 6 would make denitrogenation by a membrane process viable. The objective of Phase I of this project was to show that membranes with this target selectivity can be developed, and that the economics of the process based on these membranes would be competitive. Gas permeation measurements with membranes prepared from two rubbery polymers and a superglassy polymer showed that two of these materials had the target selectivity of 4 to 6 when operated at temperatures below - 20{degrees}C. An economic analysis showed that a process based on these membranes is competitive with other technologies for small streams containing less than 10% nitrogen. Hybrid designs combining membranes with other technologies are suitable for high-flow, higher-nitrogen-content streams.

NONE

1997-04-01T23:59:59.000Z

265

Rational Catalyst Design Applied to Development of Advanced Oxidation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Rational Catalyst Design Applied to Development of Advanced Oxidation...

266

NITROGEN EVOLUTION AND SOOT FORMATION DURING SECONDARY COAL PYROLYSIS  

E-Print Network [OSTI]

NITROGEN EVOLUTION AND SOOT FORMATION DURING SECONDARY COAL PYROLYSIS by Haifeng Zhang DURING SECONDARY COAL PYROLYSIS Haifeng Zhang Department of Chemical Engineering Doctor of Philosophy Economical NOx control techniques used in pulverized coal furnaces, such as air/fuel staging, promote

Fletcher, Thomas H.

267

The global nitrogen cycle in the twenty-first century  

Science Journals Connector (OSTI)

...NO and NO2 from transport and industry, biomass combustion and reduced nitrogen as NH3 from the Haber-Bosch...emission comprises 30 Tg N from fossil fuel combustion, 5 Tg N from biomass combustion and 5 Tg N from soil NO emissions. Control...

2013-01-01T23:59:59.000Z

268

Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, January 1, 1995--March 31, 1995  

SciTech Connect (OSTI)

During this quarter, progress was made on the following tasks: TPD techniques were employed to study the reaction mechanism of the selective catalytic reduction of nitrogen oxide with ammonia over iron oxide pillared clay catalyst; and a sulfur dioxide resistant iron oxide/titanium oxide catalyst was developed.

Li, W.B.; Yang, R.T.

1995-12-01T23:59:59.000Z

269

Engineering shallow spins in diamond with nitrogen delta-doping  

SciTech Connect (OSTI)

We demonstrate nanometer-precision depth control of nitrogen-vacancy (NV) center creation near the surface of synthetic diamond using an in situ nitrogen delta-doping technique during plasma-enhanced chemical vapor deposition. Despite their proximity to the surface, doped NV centers with depths (d) ranging from 5 to 100 nm display long spin coherence times, T{sub 2} > 100 {mu}s at d = 5 nm and T{sub 2} > 600 {mu}s at d {>=} 50 nm. The consistently long spin coherence observed in such shallow NV centers enables applications such as atomic-scale external spin sensing and hybrid quantum architectures.

Ohno, Kenichi; Joseph Heremans, F.; Bassett, Lee C.; Myers, Bryan A.; Toyli, David M.; Bleszynski Jayich, Ania C.; Palmstrom, Christopher J.; Awschalom, David D. [Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106 (United States)

2012-08-20T23:59:59.000Z

270

Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor  

SciTech Connect (OSTI)

This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

Scheele, Randall D.; Casella, Andrew M.

2010-09-28T23:59:59.000Z

271

Metal Oxides  

Science Journals Connector (OSTI)

Metal oxides are the class of materials having the widest application in gas sensors. This chapter presents information related to the application of various metal oxides in gas sensors designed on different p...

Ghenadii Korotcenkov

2013-01-01T23:59:59.000Z

272

Nitrogen-doped graphene as transparent counter electrode for efficient dye-sensitized solar cells  

SciTech Connect (OSTI)

Graphical abstract: Display Omitted Highlights: ? NG sheets are prepared through a hydrothermal reduction of graphite oxide. ? The transparent NG counter electrodes of DSCs are fabricated at room temperature. ? Transparent NG electrode exhibits excellent catalytic activity for the reduction of I{sub 3}{sup ?}. ? The DSC with NG electrode achieves a comparable efficiency to that of the Pt-based cell. ? The efficiency of rear illumination is about 85% that of front illumination. -- Abstract: Nitrogen-doped graphene sheets are prepared through a hydrothermal reduction of graphite oxide in the presence of ammonia and applied to fabricate the transparent counter electrode of dye-sensitized solar cells. The atomic percentage of nitrogen in doped graphene sample is about 2.5%, and the nitrogen bonds display pyridine and pyrrole-like configurations. Cyclic voltammetry studies demonstrate a much higher electrocatalytic activity toward I{sup ?}/I{sub 3}{sup ?} redox reaction for nitrogen-doped graphene, as compared with pristine graphene. The dye-sensitized solar cell with this transparent nitrogen-doped graphene counter electrode shows conversion efficiencies of 6.12% and 5.23% corresponding to front-side and rear-side illumination, respectively. Meanwhile, the cell with a Pt counter electrode shows a conversion efficiency of 6.97% under the same experimental condition. These promising results highlight the potential application of nitrogen-doped graphene in cost-effective, transparent dye-sensitized solar cells.

Wang, Guiqiang, E-mail: wgqiang123@163.com [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)] [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China); Fang, Yanyan; Lin, Yuan [Institute of Chemistry, Chinese Academy of Science, Beijing 100080 (China)] [Institute of Chemistry, Chinese Academy of Science, Beijing 100080 (China); Xing, Wei; Zhuo, Shuping [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)] [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)

2012-12-15T23:59:59.000Z

273

Persistent sensitivity of Asian aerosol to emissions of nitrogen oxides  

E-Print Network [OSTI]

We use a chemical transport model and its adjoint to examine the sensitivity of secondary inorganic aerosol formation to emissions of precursor trace gases from Asia. Sensitivity simulations indicate that secondary inorganic ...

Kharol, S. K.

274

EFFECT OF NITROGEN OXIDE PRETREATMENTS ON ENZYMATIC HYDROLYSIS OF CELLULOSE  

E-Print Network [OSTI]

Bioconversion of Cellulose and Production of Ethanol," LBL-of Cellulose and the Production of Ethanol," LBL-6859,the cellulose is a major obstacle to hydrolysis. Ethanol The

Borrevik, R.K.

2011-01-01T23:59:59.000Z

275

EFFECT OF NITROGEN OXIDE PRETREATMENTS ON ENZYMATIC HYDROLYSIS OF CELLULOSE  

E-Print Network [OSTI]

Jerusalem, loR. Parkinson, Tappi, Meller, Holzforschung,L.L. Schaleger and D.L. Brink, Tappi, No.4, 65 ( 1978). N.I.Holocellulose in Wood," Tappi Standard T9 m-54. C.R.

Borrevik, R.K.

2011-01-01T23:59:59.000Z

276

Characterization of vanadate-dependent NADH oxidation stimulated by Saccharomyces cerevisiae plasma membranes.  

Science Journals Connector (OSTI)

...oxidation activity of yeast plasma membranes for molecular DH...vanadate-dependent nonenzymatic and plasma mem- DH. Each point is brane-stimulated...aFor nonenzymatic nitrogen atmosphere, but NADH oxidation resumed...consumption of oxygen during Plasma membrane- the oxidation of...

L A Minasi; G R Willsky

1991-01-01T23:59:59.000Z

277

NETL: Mercury Emissions Control Technologies - Preliminary Field Evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Preliminary Field Evaluation of Mercury Control Using Combustion Modifications Preliminary Field Evaluation of Mercury Control Using Combustion Modifications General Electric – Energy and Environmental Research Corporation is developing a new technology that reduces the cost of mercury removal from flue gas by combining it with carbon reduction in a burnout system and simultaneously controlling nitrogen oxides emissions. Data on mercury removal at Western Kentucky Electric’s Green Station will be obtained and used to assess options to improve the efficiency of mercury removal. These options will be further investigated in pilot-scale testing on a 300 kW combustor. Related Papers and Publications: Preliminary Field Evaluation of Hg Control Using Combustion Modifications [PDF-732KB] - Presented at the 2004 Electric Utilities Environmental Conference, Tucson, AZ - January 19-22, 2004.

278

Soil–plant nitrogen cycling modulated carbon exchanges in a western temperate conifer forest in Canada  

Science Journals Connector (OSTI)

Nitrogen controls, on the seasonal and inter-annual variability of net ecosystem productivity (NEP) in a western temperate conifer forest in British Columbia, Canada, were simulated by a coupled carbon and nitrogen (C&N) model. The model was developed by incorporating plant–soil nitrogen algorithms in the Carbon-Canadian Land Surface Scheme (C-CLASS). In the coupled C&N-CLASS, the maximum carboxylation rate of Rubisco (Vcmax) is determined non-linearly from the modelled leaf Rubisco-nitrogen, rather than being prescribed. Hence, variations in canopy assimilation and stomatal conductance are sensitive to leaf nitrogen status through the Rubisco enzyme. The plant–soil nitrogen cycle includes nitrogen pools from photosynthetic enzymes, leaves and roots, as well as organic and mineral reservoirs from soil, which are generated, exchanged, and lost by biological fixation, atmospheric deposition, fertilization, mineralization, nitrification, root uptake, denitrification, and leaching. Model output was compared with eddy covariance flux measurements made over a 5-year period (1998–2002). The model performed very well in simulating half-hourly and monthly mean NEP values for a range of environmental conditions observed during the 5 years. C&N-CLASS simulated NEP values were 274, 437, 354, 352 and 253 g C m?2 for 1998–2002, compared to observed NEP values of 269, 360, 381, 418 and 264 g C m?2, for the respective years. Compared to the default C-CLASS, the coupled C&N model showed improvements in simulating the seasonal and annual dynamics of carbon fluxes in this forest. The nitrogen transformation to soil organic forms, mineralization, plant nitrogen uptake and leaf Rubisco-nitrogen concentration patterns were strongly influenced by seasonal and annual temperature variations. In contrast, the impact of precipitation was insignificant on the overall forest nitrogen budget. The coupled C&N modelling framework will help to evaluate the impact of nitrogen cycle on terrestrial ecosystems and its feedbacks on Earth's climate system.

M. Altaf Arain; Fengming Yuan; T. Andrew Black

2006-01-01T23:59:59.000Z

279

Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 1  

SciTech Connect (OSTI)

The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim data report summarizes results as of August, 1999, on the status of the test programs being conducted on three technologies: lean-NO{sub x} catalysts, diesel particulate filters and diesel oxidation catalysts.

DOE; ORNL; NREL; EMA; MECA

1999-08-15T23:59:59.000Z

280

Development of an open loop fuzzy logic urea dosage controller for use with an SCR equipped HDD engine.  

E-Print Network [OSTI]

??Selective Catalytic Reduction (SCR) has been shown to be the most promising exhaust aftertreatment system for reducing oxides of nitrogen in near term in-use applications.… (more)

Adams, Theodore R. (Theodore Richard)

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Stanford Nitrogen Group | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Stanford Nitrogen Group Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia to N2O gas, and combustion of a fuel (i.e. biogas) with N2O to recover energy. It's the first wastewater treatment process to recover energy from nitrogen. Wastewater treatment facilities experience dual financial pressures - rising energy costs and meeting increasingly stringent nitrogen discharge

282

Stanford Nitrogen Group | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Stanford Nitrogen Group Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia to N2O gas, and combustion of a fuel (i.e. biogas) with N2O to recover energy. It's the first wastewater treatment process to recover energy from nitrogen. Wastewater treatment facilities experience dual financial pressures - rising energy costs and meeting increasingly stringent nitrogen discharge

283

IN THIS ISSUE Nitrogen on Cotton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  

E-Print Network [OSTI]

AGRONOMY NOTES July 2005 IN THIS ISSUE COTTON Nitrogen on Cotton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Protecting Cotton Squares and Blooms / University of Florida / Larry Arrington, Interim Dean. #12;2 Nitrogen on Cotton Now is the time to apply N

Watson, Craig A.

284

Identifying the Active Site in Nitrogen-Doped Graphene for the VO2+/VO2+ Redox Reaction  

Science Journals Connector (OSTI)

Nitrogen-doped graphene sheets (NGS), synthesized by annealing graphite oxide (GO) with urea at 700–1050 °C, were studied as positive electrodes in a vanadium redox flow battery. ... graphene sheets; nitrogen doping; [VO]2+/[VO2]+ couple reaction; redox flow battery ... (7) Among these energy storage technologies, the vanadium redox flow battery (VRFB) has been considered as a competitive and promising grid energy storage system for renewable energy due to its low cost, high efficiency, and good cycling stability. ...

Jutao Jin; Xiaogang Fu; Qiao Liu; Yanru Liu; Zhiyang Wei; Kexing Niu; Junyan Zhang

2013-05-06T23:59:59.000Z

285

Impacts of Atmospheric Anthropogenic Nitrogen on the  

E-Print Network [OSTI]

anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decreaseImpacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean R. A. Duce,1 * J. LaRoche,2 K quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about

Ward, Bess

286

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect (OSTI)

Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. The testing was performed at Southern Research's Catalyst Test Facility, a bench-scale reactor capable of simulating gas-phase reactions occurring in coal-fired utility pollution-control equipment. Three different SCR catalysts are currently being studied in this project--honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Methods and procedures for experimental testing continue to be developed to produce the highest quality mercury-oxidation data. During this past quarter, it was discovered that long periods (12 - 24 hours) are required to equilibrate the catalysts in the system. In addition, after the system has been equilibrated, operational changes to temperature, gas concentration, or flow rate shifts the equilibrium, and steady-state must be reestablished, which can require as much as twelve additional hours per condition change. In the last quarter of testing, it was shown that the inclusion of ammonia had a strong effect on the oxidation of mercury by SCR catalysts, both in the short-term (a transitional period of elemental and oxidized mercury off gassing) and the long-term (less steady-state mercury oxidation). All experiments so far have focused on testing the catalysts in a simulated Powder River Basin (PRB) flue-gas environment, which contains lower sulfur and chlorine than produced by other coals. In the next quarter, parametric testing will be expanded to include flue gases simulating power plants burning Midwestern and Eastern coals, which are higher in sulfur and chlorine. Also, the isolation of such gases as hydrogen chloride (HCl), ammonia (NH{sub 3}), and sulfur trioxide (SO{sub 3}) will be investigated. All of these efforts will be used to examine the kinetics of mercury oxidation across the SCR catalysts with respect to flue gas composition, temperature, and flow rate.

Jared W. Cannon; Thomas K. Gale

2005-06-30T23:59:59.000Z

287

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen Show!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Insulators! Insulators! Previous Video (Insulators!) Frostbite Theater Main Index Next Video (Superconductors!) Superconductors! Liquid Nitrogen Show! All of your favorite liquid nitrogen experiments all in one place! Flowers! Balloons! Racquetballs! Nothing is safe! Just sit back, relax, and enjoy the show! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: Usually, every couple years, Jefferson Lab hosts an Open House. This is the one time the public and come and tour our accelerator and end stations. Steve: During the 2010 Open House, our cameraman snuck into one of the ongoing cryo shows that are held throughout the day. He missed half of it. So if you want to see the entire thing, check our website to see when the

288

FUMIGATION, GROSS NITROGEN TRANSFORMATIONS, N-15, NITRATE, RATES, SOIL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FUMIGATION, GROSS NITROGEN TRANSFORMATIONS, N-15, FUMIGATION, GROSS NITROGEN TRANSFORMATIONS, N-15, NITRATE, RATES, SOIL 1909 Pushnik, J.C., R.S. Demaree, J.L.J. Houpis, W.B. Flory, S.M. Bauer, and P.D. Anderson. 1995. The effect of elevated carbon dioxide on a Sierra-Nevadan dominant species: Pinus ponderosa. Journal of Biogeography 22(2-3):249-254. The impact of increasing atmospheric CO2 has not been fully evaluated on western coniferous forest species. Two year old seedlings of Pinus ponderosa were grown in environmentally controlled chambers under increased CO2 conditions (525 mu L L(-1) and 700 mu L L(-1)) for 6 months. These trees exhibited morphological, physiological and biochemical alterations when compared to our controls (350 mu L L(- 1)). Analysis of whole plant biomass distribution has shown no

289

Control of air pollution emissions from municipal waste combustors  

SciTech Connect (OSTI)

The November 1990 Clear Air Act Amendments (CAAAs) directed EPA to establish municipal waste combustor (MWC) emissions limits for particulate matter, opacity, hydrogen chloride, sulfur dioxide, nitrogen oxides, carbon monoxide, dioxins, dibenzofurans, cadmium, lead, and mercury. Revised MWC air pollution regulations were subsequently proposed by EPA on September 20, 1994, and promulgated on December 19, 1995. The MWC emission limits were based on the application of maximum achievable control technology (MACT). This paper provides a brief overview of MWC technologies, a summary of EPA`s revised air pollution rules for MWCs, a review of current knowledge concerning formation and control of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, and a discussion of the behavior and control of mercury in MWC flue gases. 56 refs., 11 figs., 3 tabs.

Kolgroe, J.D. [Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Lab.; Licata, A. [Licata Energy and Environmental Consultants, Inc., Yonkers, NY (United States)

1996-09-01T23:59:59.000Z

290

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

1999-01-01T23:59:59.000Z

291

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

2001-01-01T23:59:59.000Z

292

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-17T23:59:59.000Z

293

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-24T23:59:59.000Z

294

Stanford Nitrogen Group | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Science & Innovation » Innovation » Commercialization » National Science & Innovation » Innovation » Commercialization » National Clean Energy Business Plan Competition » Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia to N2O gas, and combustion of a fuel (i.e. biogas) with N2O to recover energy. It's the first wastewater treatment process to recover energy from nitrogen.

295

Environmental biogeochemistry. V. 1: Carbon, nitrogen, phosphorus ...  

Science Journals Connector (OSTI)

V. 1: Carbon, nitrogen, phosphorus, sulfur and selenium cycles. V. 2: Metals transfer and ecological mass balances. Ann Arbor Sci. Publ., Inc., Ann. Arbor, Mich.

2000-01-06T23:59:59.000Z

296

Nitrogen Deposition in the Southern High Plains  

E-Print Network [OSTI]

Nitrogen Deposition in the Southern High Plains Nitrogen is necessary for life on earth, but getting too much of it can be harmful. Recent research in delicate alpine watersheds of the western United States has suggested that the amount... Nitrogen Deposition in the Southern High Plains Conservation of mass: It?s not just a good idea, it?s the law Nitrogen, along with every other element in nature, obeys certain physical laws. The first of those laws, the law of conservation of mass...

Upadhyay, Jeetendra; Auvermann, Brent W.; Bush, K. Jack; Mukhtar, Saqib

2008-02-11T23:59:59.000Z

297

The Abundance of Interstellar Nitrogen  

E-Print Network [OSTI]

Using the HST Goddard High Resolution Spectrograph (GHRS), we have obtained high S/N echelle observations of the weak interstellar N I 1160, 1161 A absorption doublet toward the stars Gamma Cas, Lambda Ori, Iota Ori, Kappa Ori, Delta Sco, and Kappa Sco. In combination with a previous GHRS measurement of N I toward Zeta Oph, these new observations yield a mean interstellar gas phase nitrogen abundance (per 10$^6$ H atoms) of 10$^6$ N/H = 75 +/- 4. There are no statistically significant variations in the measured N abundances from sightline to sightline and no evidence of density-dependent depletion from the gas-phase. Since N is not expected to be depleted much into dust grains in these diffuse sightlines, its gas-phase abundance should reflect the total interstellar abundance. Consequently, the GHRS observations imply that the abundance of interstellar nitrogen (gas plus grains) in the local Milky Way is about 80% of the solar system value of 10$^6$ N/H = 93 +/- 16. Although this interstellar abundance deficit is somewhat less than that recently found for oxygen and krypton with GHRS, the solar N abundance and the N I oscillator strengths are too uncertain to definitively rule out either a solar ISM N abundance or a 2/3 solar ISM N abundance similar to that of O and Kr.

David M. Meyer; Jason A. Cardelli; Ulysses J. Sofia

1997-10-15T23:59:59.000Z

298

Mechanisms of plant species impacts on ecosystem nitrogen cycling  

E-Print Network [OSTI]

, this microbial nitrogen loop is driven by plant-supplied carbon and provides a strong negative feedback through by an increase in the relative nitrogen content in decomposing litter and a much lower carbon-to-nitrogen ratio by a microbial nitrogen loop. Nitrogen is released from the soil organic matter and incorporated into microbial

Minnesota, University of

299

Using carbon adsorbents for removing nitrogen oxides and sulphur oxides from flue gases  

Science Journals Connector (OSTI)

The use of carbon adsorbents in industrial power engineering outside Russia is briefly reviewed and the results of our own experimental investigations, made in the laboratory and at a pilot commercial installation, are given. The proposal to use the described device in a KE-25-24-C industrial boiler is outlined.

A.I. Blokhin; A.N. Nikitin; A.O. Gabibov

2003-01-01T23:59:59.000Z

300

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EstablishmEnt EstablishmEnt of an EnvironmEntal Control tEChnology laboratory with a CirCulating fluidizEd-bEd Combustion systEm Description In response to President Bush's Clear Skies Initiative in 2002-a legislative proposal to control the emissions of nitrogen oxides (NO x ), sulfur dioxide (SO 2 ), and mercury (Hg) from power plants-the National Energy Technology Laboratory (NETL) organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified four high- priority research needs for controlling emissions from fossil-fueled power plants: multipollutant control, improved sorbents and catalysts, mercury monitoring and capture, and an improved understanding of the underlying combustion chemistry.

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Ab initio atomistic thermodynamics study of the early stages of Cu(100) oxidation  

E-Print Network [OSTI]

­3 catalytic conversion of nitrogen oxides,4 water-gas shift,5,6 and preventing CO poisoning in fuel cells.7 the nucleation limit of Cu2O, they are likely to exist due to kinetic hindrance. 1 #12;I. INTRODUCTION Oxidation

McGaughey, Alan

302

NETL: News Release - Novel Pollution Control Technology Recognized  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

November 17, 2005 November 17, 2005 Novel Pollution Control Technology Recognized NETL-funded Technology Honored for Chemical Engineering Achievement PITTSBURGH, PA - Praxair Inc.'s Oxygen Enhanced Combustion (OEC) system for controlling emissions of nitrogen oxides (NOx) was recently recognized as one of five 2005 finalists for Chemical Engineering magazine's prestigious Kirkpatrick Award for Chemical Engineering Achievement. The system was developed under the National Energy Technology Laboratory's Innovations for Existing Plants program, which advances technologies to improve the environmental performance of America's existing coal-fired power plants. MORE INFO Read June 26, 2002 TechLine Chemical Engineering magazine, published by Chemical Week Associates, grants the Kirkpatrick Award biennially to honor the most outstanding

303

Nutrient Management Module No. 3 Nitrogen Cycling,  

E-Print Network [OSTI]

, it is important to first understand the various transformations that N undergoes within the soil. Nitrogen Cycling to be the sum of ammonium and nitrate, although urea, a type of organic N, may also be plant available. Nitrogen a fraction) by dry yield (in lb/ac). It's useful to compare actual uptake rates to N fertilizer rates

Lawrence, Rick L.

304

NITROGEN ISOTOPES IN PALEOCLIMATE JULIAN P. SACHS  

E-Print Network [OSTI]

denitrification, the conversion of nitrate to N2 gas with its subsequent loss to the atmosphere (25-180 Tg N of atmospheric carbon dioxide, and is the precursor to petroleum deposits it is important to understand nitrogen of nitrogen is atmospheric dinitrogen gas (N2), consisting of 3.9 x 109 Tg N (Wada and Hattori, 1990

Sachs, Julian P.

305

Oxygen and Nitrogen Contamination During Arc Welding  

E-Print Network [OSTI]

) ) : ,- Oxygen and Nitrogen Contamination During Arc Welding T. W. Eagar Department of }faterials, mechanisms, and expected levels of oxygen and nitrogen contamination during gas tungsten arc, gas metal arc indicating the importance of dec9mposition of SiOz into silicon monoxide and oxygen are presented, indicating

Eagar, Thomas W.

306

Anaerobic Ammonium-Oxidizing Bacteria: Unique Microorganisms with Exceptional Properties  

Science Journals Connector (OSTI)

...membrane to the outer membrane to drive a number of outer membrane receptors...nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ...ammonium-oxidizing bacteria. ASM News 67 :456-463. 49. Kuypers...associated with global nitrogen gas production. Environ. Microbiol...

Laura van Niftrik; Mike S. M. Jetten

2012-09-01T23:59:59.000Z

307

Frostbite Theater - Liquid Nitrogen Experiments - Insulators!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Popping Film Canisters! Popping Film Canisters! Previous Video (Popping Film Canisters!) Frostbite Theater Main Index Next Video (Liquid Nitrogen Show!) Liquid Nitrogen Show! Insulators! Cups full of water are placed into bowls of liquid nitrogen! Which cup will insulate the best? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a container of liquid nitrogen! Steve: And these are two plastic cups! Joanna: Let's see which cup is the better insulator! Steve: Okay! So, um, how do we do that? Joanna: Well, we'll pour water into each of the cups and then we'll pour the liquid nitrogen into each of the bowls. If we then place the cup in the bowl, the heat from the water will try to pass through the cup into the

308

Frostbite Theater - Liquid Nitrogen Experiments - Freezing Balloons!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Season Two Bloopers Season Two Bloopers Previous Video (Season Two Bloopers) Frostbite Theater Main Index Next Video (Instant Liquid Nitrogen Balloon Party!) Instant Liquid Nitrogen Balloon Party! Freezing Balloons! What happens when a balloon full of air is plunged into a container full of liquid nitrogen? Play the video to find out! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a container of liquid nitrogen! Steve: And this is a really big balloon! Joanna: Let's see what happens when we place the balloon in the liquid nitrogen! Steve: Okay! Wait! Wait! Wait! Wait! Wait! Isn't the balloon going to pop? Joanna: We'll see! Steve: Aw, man... Huh. Okay, so the balloon didn't pop. But, there's

309

INSENSITIVE HIGH-NITROGEN COMPOUNDS  

SciTech Connect (OSTI)

The conventional approach to developing energetic molecules is to chemically place one or more nitro groups onto a carbon skeleton, which is why the term ''nitration'' is synonymous to explosives preparation. The nitro group carries the oxygen that reacts with the skeletal carbon and hydrogen fuels, which in turn produces the heat and gaseous reaction products necessary for driving an explosive shock. These nitro-containing energetic molecules typically have heats of formation near zero and therefore most of the released energy is derived from the combustion process. Our investigation of the tetrazine, furazan and tetrazole ring systems has offered a different approach to explosives development, where a significant amount of the chemical potential energy is derived from their large positive heats of formation. Because these compounds often contain a large percentage of nitrogen atoms, they are usually regarded as high-nitrogen fuels or explosives. A general artifact of these high-nitrogen compounds is that they are less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine, several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. Some of the first compounds are 3,6-diamino-s-tetrazine-1,4-dioxide (LAX-112) and 3,6-dihydrazino-s-tetrazine (DHT). LAX-112 was once extensively studied as an insensitive explosive by Los Alamos; DHT is an example of a high-nitrogen explosive that relies entirely on its heat of formation for sustaining a detonation. Recent synthesis efforts have yielded an azo-s-tetrazine, 3,3'-azobis(6-amino-s-tetrazine) or DAAT, which has a very high positive heat of formation. The compounds, 4,4'-diamino-3,3'-azoxyfurazan (DAAF) and 4,4'-diamino-3,3'-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB--the standard of insensitive high explosives. The thermal stability of DAAzF is equal to that of hexanitrostilbene (HNS), yet it too is a better explosive performer. The recently discovered tetrazol derivative, 3,6-bis-(1H-1,2,3,4-tetrazol-5-ylamino)-s-tetrazine (BTATz) was measured to have exceptional positive heats of formation and to be insensitive to explosive initiation. Because of its high burn rate with low sensitivity to pressure, this material is of great interest to the propellant community.

D. CHAVEZ; ET AL

2001-03-01T23:59:59.000Z

310

Tuning the work function of graphene by nitrogen plasma treatment with different radio-frequency powers  

SciTech Connect (OSTI)

Graphene prepared by the chemical vapor deposition method was treated with nitrogen plasma under different radio-frequency (rf) power conditions in order to experimentally study the change in the work function. Control of the rf power could change the work function of graphene from 4.91?eV to 4.37?eV. It is shown that the increased rf power may lead to the increased number of graphitic nitrogen, increasing the electron concentration, and shifting the Fermi level to higher energy. The ability to controllably tune the work function of graphene is essential for optimizing the efficiency of optoelectronic and electronic devices.

Zeng, Jian-Jhou; Lin, Yow-Jon, E-mail: rzr2390@yahoo.com.tw [Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan (China)

2014-06-09T23:59:59.000Z

311

Nitrogen-doped Graphene and Its Electrochemical Applications...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

doped Graphene and Its Electrochemical Applications. Nitrogen-doped Graphene and Its Electrochemical Applications. Abstract: Nitrogen-doped graphene (N-graphene) is obtained by...

312

Oxidation of Propane by Doped Nickel Oxides  

Science Journals Connector (OSTI)

... present study, however, indicate that in the absence of excess oxygen, direct oxidation of propane by the oxide lattice can occur.

D. W. McKEE

1964-04-11T23:59:59.000Z

313

Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO{sub 2} gas sensor applications  

SciTech Connect (OSTI)

Graphical abstract: Display Omitted Highlights: ? Mesoporous WO{sub 3} nanoplate monoliths were obtained by direct templating synthesis. ? Enable effective accession of the analytic molecules for the sensor applications. ? The WO{sub 3} sensor exhibited a high performance to NO{sub 2} gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxide (NO{sub 2}) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO{sub 2}. In addition, the developed sensor exhibited selective detection of low NO{sub 2} concentration in ammonia and ethanol at a low temperature of approximately 150 °C.

Hoa, Nguyen Duc, E-mail: ndhoa@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam); Duy, Nguyen Van [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam)] [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam); Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam)

2013-02-15T23:59:59.000Z

314

Reference electrode for strong oxidizing acid solutions  

DOE Patents [OSTI]

A reference electrode for the measurement of the oxidation-reduction potentials of solutions is especially suitable for oxidizing solutions such as highly concentrated and fuming nitric acids, the solutions of nitrogen oxides, N.sub.2 O.sub.4 and N.sub.2 O.sub.5, in nitric acids. The reference electrode is fabricated of entirely inert materials, has a half cell of Pt/Ce(IV)/Ce(III)/70 wt. % HNO.sub.3, and includes a double-junction design with an intermediate solution of 70 wt. % HNO.sub.3. The liquid junctions are made from Corning No. 7930 glass for low resistance and negligible solution leakage.

Rigdon, Lester P. (Livermore, CA); Harrar, Jackson E. (Castro Valley, CA); Bullock, Sr., Jack C. (Pleasanton, CA); McGuire, Raymond R. (Brentwood, CA)

1990-01-01T23:59:59.000Z

315

Nitrogen fixation by a methanogenic archaebacterium  

Science Journals Connector (OSTI)

... fixing microbial systems able to convert wastes which are low in combined nitrogen, including lignocellulose biomass substrates, industrial wastes and food process wastes such as ... substrates, industrial wastes and food process wastes such as whey, to CH4.

Patti A. Murray; Stephen H. Zinder

1984-11-15T23:59:59.000Z

316

Nitrogen Removal From Low Quality Natural Gas  

SciTech Connect (OSTI)

Natural gas provides more than one-fifth of all the primary energy used in the United States. It is especially important in the residential sector, where it supplies nearly half of all the energy consumed in U.S. homes. However, significant quantities of natural gas cannot be produced economically because its quality is too low to enter the pipeline transportation system without some type of processing, other than dehydration, to remove the undesired gas fraction. Such low-quality natural gas (LQNG) contains significant concentration or quantities of gas other than methane. These non- hydrocarbons are predominantly nitrogen, carbon dioxide, and hydrogen sulfide, but may also include other gaseous components. The nitrogen concentrations usually exceeds 4%. Nitrogen rejection is presently an expensive operation which can present uneconomic scenarios in the potential development of natural gas fields containing high nitrogen concentrations. The most reliable and widely used process for nitrogen rejection from natural gas consists of liquefying the feed stream using temperatures in the order of - 300{degrees}F and separating the nitrogen via fractionation. In order to reduce the gas temperature to this level, the gas is compressed, cooled by mullet-stream heat exchangers, and expanded to low pressure. Significant energy for compression and expensive materials of construction are required. Water and carbon dioxide concentrations must be reduced to levels required to prevent freezing. SRI`s proposed research involves screening new nitrogen selective absorbents and developing a more cost effective nitrogen removal process from natural gas using those compounds. The long-term objective of this project is to determine the technical and economical feasibility of a N{sub 2}2 removal concept based on complexation of molecular N{sub 2} with novel complexing agents. Successful development of a selective, reversible, and stable reagent with an appropriate combination of capacity and N{sub 2} absorption/desorption characteristics will allow selective separation of N{sub 2} from LQNG.

Alvarado, D.B.; Asaro, M.F.; Bomben, J.L.; Damle, A.S.; Bhown, A.S.

1997-10-01T23:59:59.000Z

317

Microfluidic Facility, Harvard Medical School LIQUID NITROGEN TANK HANDLING  

E-Print Network [OSTI]

Microfluidic Facility, Harvard Medical School LIQUID NITROGEN TANK HANDLING HMS microfluidics/microfabrication facility has one high pressure liquid nitrogen tank which supplies the nitrogen for some equipment normal operation. In case the liquid nitrogen tank is malfunctioning and requires to be shut down or replaced make

Paulsson, Johan

318

SHORT COMMUNICATION Nitrogen recovery from shrimp pond efuent  

E-Print Network [OSTI]

the water as ammonia (total ammonia nitrogen, TAN), through either direct excretion by animals or ammoni

Lorenzen, Kai

319

Bulk Power System Dynamics and Control -VII, August 19-24, 2007, Charleston, South Carolina, USA Dynamics of a Microgrid Supplied by Solid Oxide Fuel Cells1  

E-Print Network [OSTI]

. The results of an example in which two SOFC plants provide power to a microgrid are presented. The simulation1 Bulk Power System Dynamics and Control - VII, August 19-24, 2007, Charleston, South Carolina, USA, but is not concerned with the thermal dynamics. A DC-DC boost converter interfaces the SOFC stack to a DC bus, where

Hiskens, Ian A.

320

Controlling NOx to Obtain Offsets or Meet Compliance  

E-Print Network [OSTI]

monitored and regu lated a number of pollutants: lead, carbon monoxide, oxides of sulfur, oxides of nitrogen, ozone and PM-lO. The Clean Air Act Amendments increased the focus on these pollutants, mandating the reductions to specified limits. Title I...

Mincy, J. E.

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Nitrogen is a natural and necessary part of every healthy ecosystem, but too much nitrogen in our rivers,  

E-Print Network [OSTI]

), sewage treatment plants, and animal ma- nure. Once in water, nitrogen can change in chemical form

Torgersen, Christian

322

Inorganic Nitrogen Removal from Wastewater: Effect on Phytoplankton Growth in Coastal Marine Waters  

Science Journals Connector (OSTI)

...secondarily treated wastewater and controlling eutrophication...PRODUCTION FROM SEA BY RECYCLING HUMAN WASTES, BIOSCIENCE...nitrogen removal from wastewater: effect on phytoplankton...depending on the type of wastewater used, there may be...re-moval and waste recycling. JOEL C. GOLDMAN...

Joel C. Goldman; Kenneth R. Tenore; Helen I. Stanley

1973-06-01T23:59:59.000Z

323

Effect of Microstructure of Nitrogen-Doped Graphene on Oxygen Reduction Activity in Fuel Cells  

Science Journals Connector (OSTI)

Effect of Microstructure of Nitrogen-Doped Graphene on Oxygen Reduction Activity in Fuel Cells ... The optimized structures for OOH, OOH+ or O2 adsorption (ads) to graphene were obtained through structural optimization calculations. ... Thus, to optimize the catalytic performance, materials structures should be controlled to have small N doping clusters in combination with material defects. ...

Lipeng Zhang; Jianbing Niu; Liming Dai; Zhenhai Xia

2012-04-10T23:59:59.000Z

324

Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological  

E-Print Network [OSTI]

that control denitrifica- tion. Hydrological discharge regimes affect the degree of interaction of the water, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We measurements from a variety of US streams. These relations are used in the stream transport model

325

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect (OSTI)

Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. Three different SCR catalysts are currently being studied in this project--honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Future work to characterize flue gas simulations typically derived from low and high sulfur bituminous coal are being performed in a stepwise manner, to avoid the constant interruptions in testing that occur when leaks in the system are generated during temperature transitions. Specifically, chlorine concentration vs. mercury oxidation correlations will be developed for each catalyst. The contributions of temperature are also being investigated. SO2 oxidation is also being investigated for each test condition.

Thomas K. Gale

2005-12-31T23:59:59.000Z

326

Effect of ammonia plasma treatment on graphene oxide LB monolayers  

SciTech Connect (OSTI)

Graphene oxide monolayer sheets were transferred on Si and SiO{sub 2}/Si substrates by Langmuir-Blodgett technique and were exposed to ammonia plasma at room temperature. The monolayer character of both graphene oxide and plasma treated graphene oxide sheets were ascertained by atomic force microscopy. X-ray photoelectron spectroscopy and Raman spectroscopy revealed that ammonia plasma treatment results in enhancement of graphitic carbon content along with the incorporation of nitrogen. The conductivity of graphene oxide monolayers, which was in the range of 10{sup -6}-10{sup -7} S/cm, increased to 10{sup -2}-10{sup -3} S/cm after the ammonia plasma treatment. These results indicate that the graphene oxide was simultaneously reduced and N-doped during ammonia plasma treatment, without affecting the morphological stability of sheets.

Singh, Gulbagh; Botcha, V. Divakar; Narayanam, Pavan K.; Sutar, D. S.; Talwar, S. S.; Major, S. S. [Department of Physics, Indian Institute of Technology Bombay, Mumbai - 400076 (India); Srinivasa, R. S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai - 400076 (India)

2013-02-05T23:59:59.000Z

327

Characterization of Nitrogen use efficiency in sweet sorghum  

SciTech Connect (OSTI)

Sweet sorghum (Sorghum bicolor L. Moench) has the potential to augment the increasing demand for alternative fuels and for the production of input efficient, environmentally friendly bioenergy crops. Nitrogen (N) and water availability are considered two of the major limiting factors in crop growth. Nitrogen fertilization accounts for about 40% of the total production cost in sorghum. In cereals, including sorghum, the nitrogen use efficiency (NUE) from fertilizer is approximately 33% of the amount applied. There is therefore extensive concern in relation to the N that is not used by the plant, which is lost by leaching of nitrate, denitrification from the soil, and loss of ammonia to the atmosphere, all of which can have deleterious environmental effects. To improve the potential of sweet sorghum as a leading and cost effective bioenergy crop, the enhancement of NUE must be addressed. To this end, we have identified a sorghum line (SanChi San) that displays about 25% increase in NUE over other sorghum lines. As such, the overarching goal of this project is to employ three complementary strategies to enhance the ability of sweet sorghum to become an efficient nitrogen user. To achieve the project goal, we will pursue the following specific objectives: Objective 1: Phenotypic characterization of SanChi San/Ck60 RILs under low and moderate N-availability including biochemical profiles, vegetative growth and seed yield Objective 2: Conduct quantitative trait loci (QTL) analysis and marker identification for nitrogen use efficiency (NUE) in a grain sorghum RIL population. Objective 3: Identify novel candidate genes for NUE using proteomic and gene expression profiling comparisons of high- and low-NUE RILs. Candidate genes will be brought into the pipeline for transgenic manipulation of NUE This project will apply the latest genomics resources to discover genes controlling NUE, one of the most complex and economically important traits in cereal crops. As a result of the completion of the proposed work, we will have: 1) identified novel alleles in wild sorghum germplasm that is useful to improve both cultivated grain and sweet sorghum; 2) been able to select individuals plants that exhibit high NUE within a breeding population on the basis of these markers; 3) acquired essential information necessary to examine the roles of GS and GOGAT, AlaT, along with impact of transcription factor Dof1, on N assimilation in sweet sorghum; and 4) The information learned will provide new opportunities for improving NUE in sorghum and other cereals.

Dweikat, Ismail [University of Nebraska; Clemente, Thomas [University of Nebrask

2014-09-09T23:59:59.000Z

328

Nitrogen Deposition in the Southern High Plains Nitrogen is necessary for life on earth, but  

E-Print Network [OSTI]

to the environment. Dinitrogen contains two nitrogen atoms held together by one of nature's strongest chemical bonds in the environment include ammonia (NH3) and its related compounds, amines (NH2), nitrite (NO2) and nitrate (NO3 responsible for producing 500 million tons of nitrogen fertilizer each year, combines dinitro- gen

Mukhtar, Saqib

329

Nitrogen controlled iron catalyst phase during carbon nanotube growth  

E-Print Network [OSTI]

. *Corresponding author; email: bernhard.bayer@univie.ac.at 2 In order to unlock the full application potential of the exceptional electronic, thermal and mechanical properties of carbon nanotubes (CNTs), a scalable synthesis technique is required that also... -L’Hermite, and C. Reynaud, Appl. Phys. Lett. 85, 473 (2004). 34 K. Nishimura, N. Okazaki, L. Pan, and Y. Nakayama, Jpn. J. Appl. Phys. 43, L471 (2004). 35 C. Emmenegger, J.-M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Züttel, and L. Schlapbach...

Bayer, Bernhard C.; Baehtz, Carsten; Kidambi, Piran R.; Weatherup, Robert S.; Mangler, Clemens; Kotakoski, Jani; Goddard, Caroline J. L.; Caneva, Sabina; Cabrero-Vilatela, Andrea; Meyer, Jannik C.; Hofmann, Stephan

2014-01-01T23:59:59.000Z

330

Quantification and characterization of dissolved organic nitrogen in wastewater effluents by electrodialysis treatment followed by size-exclusion chromatography with nitrogen detection  

Science Journals Connector (OSTI)

Abstract Dissolved organic nitrogen (DON) can act as a precursor of nitrogenous disinfection byproducts during oxidative water treatment. Quantification and characterization of DON are still challenging for waters with high concentrations of dissolved inorganic nitrogen (DIN, including ammonia, nitrate and nitrite) relative to total dissolved nitrogen (TDN) due to the cumulative analytical errors of independently measured nitrogen species (i.e., DON = TDN ?  NO 2 ?  ?  NO 3 ?  ?  NH 4 + /NH3) and interference of DIN species to TDN quantification. In this study, a novel electrodialysis (ED)-based treatment for selective DIN removal was developed and optimized with respect to type of ion-exchange membrane, sample pH, and ED duration. The optimized ED method was then coupled with size-exclusion chromatography with organic carbon, UV, and nitrogen detection (SEC-OCD-ND) for advanced DON analysis in wastewater effluents. Among the tested ion-exchange membranes, the PC-AR anion- and CMT cation-exchange membranes showed the lowest DOC loss (1–7%) during ED treatment of a wastewater effluent at ambient pH (8.0). A good correlation was found between the decrease of the DIN/TDN ratio and conductivity. Therefore, conductivity has been adopted as a convenient way to determine the optimal duration of the ED treatment. In the pH range of 7.0–8.3, ED treatment of various wastewater effluents with the PC-AR/CMT membranes showed that the relative residual conductivity could be reduced to less than 0.50 (DIN removal >90%; DIN/TDN ratio ?0.60) with lower DOC losses (6%) than the previous dialysis and nanofiltration methods (DOC loss >10%). In addition, the ED method is shorter (0.5 h) than the previous methods (>1–24 h). The relative residual conductivity was further reduced to ?0.20 (DIN removal >95%; DIN/TDN ratio ?0.35) by increasing the ED duration to 0.7 h (DOC loss = 8%) for analysis by SEC-OCD-ND, which provided new information on distribution and ratio of organic carbon and nitrogen in different molecular weight fractions of effluent organic matter.

Kangmin Chon; Yunho Lee; Jacqueline Traber; Urs von Gunten

2013-01-01T23:59:59.000Z

331

Air Pollution Control Regulations: No. 41 - Nox Budget Trading Program  

Broader source: Energy.gov (indexed) [DOE]

41 - Nox Budget Trading 41 - Nox Budget Trading Program (Rhode Island) Air Pollution Control Regulations: No. 41 - Nox Budget Trading Program (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations establish a budget trading program for nitrogen oxide emissions, setting NOx budget units for generators and an NOx Allowance Tracking System to account for emissions. These regulations apply to units that serve generators with a nameplate capacity greater than 15 MWe and sell any amount of electricity, as well as to units that have a maximum

332

Effect of Nitrogen Additives on Flame Retardant Action of Tributyl Phosphate: Phosphorus – Nitrogen Synergism  

SciTech Connect (OSTI)

The effect of nitrogen additives like urea, guanidine carbonate and melamine formaldehyde on the flame retardant efficacy of tributyl phosphate (TBP) has been investigated. From the LOI tests on treated cotton it is clear that the nitrogen additives have synergistic action. Estimation of activation energy of decomposition of treated cotton indicated that nitrogen additives enhance the thermal stability during the burning process. SEM pictures of chars formed after LOI test showed the formation of protective polymeric coating on the surface. The surface of chars formed were evaluated using FTIR-ATR and XPS analysis which showed that the coating was composed of Phosphorus-Nitrogen-Oxygen containing species. Formation of this coating during the burning process could lead to the synergistic interaction of phosphorus and nitrogen. Based on the experimental data we have further proposed several reaction mechanisms which could contribute to synergistic action and formation of protective coating on the surface of char.

Gaan, Sabyasachi; Sun, Gang; Hutches, Katherine; Engelhard, Mark H.

2008-01-01T23:59:59.000Z

333

Time and location differentiated NOX control in competitive electricity markets using cap-and-trade mechanisms  

E-Print Network [OSTI]

Due to variations in weather and atmospheric chemistry, the timing and location of nitrogen oxide (NOX) reductions determine their effectiveness in reducing ground-level ozone, which adversely impacts human health. Electric ...

Martin, Katherine C.

2007-01-01T23:59:59.000Z

334

Semiconducting chalcogenide buffer layer for oxide heteroepitaxy on Si,,001...  

E-Print Network [OSTI]

controlled laminar growth of a crystalline transition metal oxide on Si 001 without SiOx or silicide/or silicides at the Si/oxide interface. Subnanometer buffer layers can prevent interface reac- tions while, also enables flexible strain relief. We observe nei- ther oxide nor silicide formation at the buried Si

Olmstead, Marjorie

335

Frostbite Theater - Liquid Nitrogen Experiments - Dry Ice vs. Liquid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Egg + Liquid Nitrogen + Time-lapse! Egg + Liquid Nitrogen + Time-lapse! Previous Video (Egg + Liquid Nitrogen + Time-lapse!) Frostbite Theater Main Index Next Video (Liquid Nitrogen Cooled Dry Ice in Water!) Liquid Nitrogen Cooled Dry Ice in Water! Dry Ice vs. Liquid Nitrogen! Dry ice is cold. Liquid nitrogen is cold, too. What happens when the two are mixed together? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: Have you ever wondered what happens when you mix dry ice and liquid nitrogen? Steve: Well, we just happen to have a chunk of dry ice left over from when we filmed 'How to Make a Cloud Chamber,' and here at Jefferson Lab, liquid nitrogen flows like water, so we're going to find out!

336

Short-range ordering of ion-implanted nitrogen atoms in SiC-graphene  

SciTech Connect (OSTI)

We perform a structural analysis of nitrogen-doped graphene on SiC(0001) prepared by ultra low-energy ion bombardment. Using scanning tunneling microscopy, we show that nitrogen atoms are incorporated almost exclusively as graphitic substitution in the graphene honeycomb lattice. With an irradiation energy of 25?eV and a fluence of approximately 5?×?10{sup 14?}cm{sup ?2}, we achieve a nitrogen content of around 1%. By quantitatively comparing the position of the N-atoms in the topography measurements with simulated random distributions, we find statistically significant short-range correlations. Consequently, we are able to show that the dopants arrange preferably at lattice sites given by the 6?×?6-reconstruction of the underlying substrate. This selective incorporation is most likely triggered by adsorbate layers present during the ion bombardment. This study identifies low-energy ion irradiation as a promising method for controlled doping in epitaxial graphene.

Willke, P.; Druga, T.; Wenderoth, M. [IV. Physikalisches Institut der Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Amani, J. A.; Weikert, S.; Hofsäss, H. [II. Physikalisches Institut der Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Thakur, S.; Maiti, K. [Department of Condensed Matter Physics and Materials' Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India)

2014-09-15T23:59:59.000Z

337

Availability of Nitrous Nitrogen to Plants.  

E-Print Network [OSTI]

V, .=DL ULL LI~C a~ailability 01 ILILKLL~: IIILIU~~I~ LU curn, l~aa, 8011 31LY3 1 27.3 .53 .I447 1 I 1 5: 1250 .I349 ic nitrogen ( 37.P' 1 -59 1 .2195 ru.. nv / 36.6 .57 1 .2086 I -2141 1 .O7b/ I 1. gm. nitrous nitrogen 30.2 1 .64 1 .I933 1... .12 -.01 ' .09 V1 -- I w 01 ---- I ------ el M - 1 --O6 X * ---- ------ U1 $ !z - --- i d $ --- - I -20 2 Y * F - I M 4 M .34 I --- .20 M .14 5 nitrogen --- --- -.02 .14 -.48 -.01 -12 .18 .OS...

Fraps, G. S. (George Stronach); Sterges, A. J.

1935-01-01T23:59:59.000Z

338

Asphalt Oxidation Kinetics and Pavement Oxidation Modeling  

E-Print Network [OSTI]

Most paved roads in the United States are surfaced with asphalt. These asphalt pavements suffer from fatigue cracking and thermal cracking, aggravated by the oxidation and hardening of asphalt. This negative impact of asphalt oxidation on pavement...

Jin, Xin

2012-07-16T23:59:59.000Z

339

E-Print Network 3.0 - additional nitrogen responses Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tons of nitrogen fertilizer each year, combines dinitro- gen... National Park (Colorado, USA): a response to anthropogenic nitrogen deposition." Geobiology 1... Nitrogen...

340

The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling  

E-Print Network [OSTI]

nitrogen mobilization and recycling in trees. Photosynthesisloci mapping for nitrogen recycling in rice. Journal ofNitrogen Assimilation and Recycling Stéphanie M. Bernard 1

Bernard, S.M.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

E-Print Network 3.0 - aerobic nitrogen cycle Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biological nitrogen fixation of gaseous nitrogen. The water cycle is important to ecosystem... and Nitrogen Cycles As ... Source: Barboza, Perry - Institute of Arctic Biology,...

342

Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 2: NO{sub x} Adsorber Catalysts  

SciTech Connect (OSTI)

The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report discusses the results of the DECSE test program that demonstrates the potential of NOx adsorber catalyst technology across the range of diesel engine operation with a fuel economy penalty less than 4%.

DOE; ORNL; NREL; EMA; MECA

1999-10-15T23:59:59.000Z

343

Optimizing hydrocarbon recoveries in nitrogen rejection units  

SciTech Connect (OSTI)

In order to address conceptual questions such as process selection and natural gas liquids plant integration, an understanding of the effects of several additional factors on nitrogen rejection unit design is important. These factors, which may influence optimum hydrocarbon recovery, installed compression, etc., include current and forecast values for natural gas and utilities, project life, plant size, feed gas composition and product specifications, feed pressure, and process variations. Prices, project life, and plant size are analyzed in detail and presented in terms of methane recoveries as a function of nitrogen content in the feed for both double and single column processes. Trends are qualitatively discussed for the remaining factors. 13 references.

Chesney, J.D.; Davis, R.A.; Hilton, M.F.; Vines, H.L.

1983-01-01T23:59:59.000Z

344

Enzymatic solubilization of nitrogenous constituents of carrots  

E-Print Network [OSTI]

of enzyme concentration upon nitrogen so1ubi 1i zed in carrot tops ( 10g dry weight) . Conditions of assay: pH = 3. 5, i ncubati on time = 20 hr, incubation temperature = 45'C. 24 hydrolysis. These data confirm earlier reports that -. 01% is the pro... roots and tops, a concentration of 1. 0% A-12-C at pH 3. 5 provided the maximum increase in soluble ni trogenous consti tuents . For car~ot roots, a concentration of 1. 0/ ficin at pH 4, 5 provided the maximum increase in soluble nitrogen. With carrot...

Curry, James Cannon

1971-01-01T23:59:59.000Z

345

Energy technology and emissions control for acid rain abatement in Asia  

SciTech Connect (OSTI)

After more than ten years of research, acid rain is a sufficiently serious problem in North America to warrant control action. The acid rain problem has become a threat to the Asian continent as well. Emissions of sulfur dioxide and nitrogen oxides are already high and announces plans for increases in coal use by countries in the region imply a major increase in emissions in the future. This will inevitably lead to greater incidence of acid rain and probably significant environmental damage in some locations. The purpose of this paper is to examine some of the issues relating to acid-rain-control technology in Asia and to suggest ways to include technology options in integrated simulation models of acid rain in Asia. 14 refs., 9 figs., 6 tabs. (FL)

Streets, D.G.

1990-01-01T23:59:59.000Z

346

Properties of nitrogen doped silicon films deposited by low pressure chemical vapour deposition from disilane and ammonia  

Science Journals Connector (OSTI)

Nitrogen doped silicon films have been deposited by low pressure chemical vapour deposition from disilane Si2H6 and ammonia NH3. Deposition kinetics is investigated, pointing out the influences of the deposition temperature, the total pressure and the gas flow rates. According to the Bruggeman theory, variations of the NH3/Si2H6 gaseous ratio allow for a wide range of the SiNx stoichiometry as well as a good control of the film nitrogen doping. The different behaviours of the nitrogen atom in silicon films are discussed and an overview of the nitrogen doped silicon physical properties (optical, mechanical and electrical) is proposed for the development of boron-doped polysilicon gates.

P Temple-Boyer; L Jalabert; E Couderc; E Scheid; P Fadel; B Rousset

2002-01-01T23:59:59.000Z

347

Chemistry control and corrosion mitigation of heat transfer salts for the fluoride salt reactor (FHR)  

SciTech Connect (OSTI)

The Molten Salt Reactor Experiment (MSRE) was a prototype nuclear reactor which operated from 1965 to 1969 at Oak Ridge National Laboratory. The MSRE used liquid fluoride salts as a heat transfer fluid and solvent for fluoride based {sup 235}U and {sup 233}U fuel. Extensive research was performed in order to optimize the removal of oxide and metal impurities from the reactor's heat transfer salt, 2LiF-BeF{sub 2} (FLiBe). This was done by sparging a mixture of anhydrous hydrofluoric acid and hydrogen gas through the FLiBe at elevated temperatures. The hydrofluoric acid reacted with oxides and hydroxides, fluorinating them while simultaneously releasing water vapor. Metal impurities such as iron and chromium were reduced by hydrogen gas and filtered out of the salt. By removing these impurities, the corrosion of reactor components was minimized. The Univ. of Wisconsin - Madison is currently researching a new chemical purification process for fluoride salts that make use of a less dangerous cleaning gas, nitrogen trifluoride. Nitrogen trifluoride has been predicted as a superior fluorinating agent for fluoride salts. These purified salts will subsequently be used for static and loop corrosion tests on a variety of reactor materials to ensure materials compatibility for the new FHR designs. Demonstration of chemistry control methodologies along with potential reduction in corrosion is essential for the use of a fluoride salts in a next generator nuclear reactor system. (authors)

Kelleher, B. C.; Sellers, S. R.; Anderson, M. H.; Sridharan, K.; Scheele, R. D. [Dept. of Engineering Physics, Univ.of Wisconsin - Madison, 1500 Engineering Drive, Madison, WI 53706 (United States)

2012-07-01T23:59:59.000Z

348

Biexciton emission from single isoelectronic traps formed by nitrogen-nitrogen pairs in GaAs  

SciTech Connect (OSTI)

We have studied photoluminescence (PL) from individual isoelectronic traps formed by nitrogen-nitrogen (NN) pairs in GaAs. Sharp emission lines due to exciton and biexciton were observed from individual isoelectronic traps in nitrogen atomic-layer doped (ALD) GaAs. The binding energy of biexciton bound to individual isoelectronic traps was approximately 8 meV. Both the exciton and biexciton luminescence lines show completely random polarization and no fine-structure splitting. These results are desirable to the application to the quantum cryptography used in the field of quantum information technology.

Takamiya, Kengo; Fukushima, Toshiyuki; Yagi, Shuhei; Hijikata, Yasuto; Yaguchi, Hiroyuki [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku , Saitama 338-8570 (Japan); Mochizuki, Toshimitsu; Yoshita, Masahiro; Akiyama, Hidefumi [Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Kuboya, Shigeyuki; Onabe, Kentaro [Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Katayama, Ryuji [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

2013-12-04T23:59:59.000Z

349

Mechanisms of synfuel degradation. 3. Interactive effects in nitrogen compound induced storage instability in shale derived diesel fuel  

SciTech Connect (OSTI)

Deterioration in fuel quality upon storage has been a continuing problem in the utilization of middle distillate fuels. For diesel fuels, instability is usually defined by the formation of insoluble sediments and gums and by the accumulation of hydroperoxides. Gravimetric accelerated storage stability tests conducted with model compounds as dopants in otherwise stable distillate fuels have demonstrated that oxidative condensation reactions of polar heterocycles are deleterious to stability. In particular, nitrogen containing aromatics (pyrroles, pyridines, indoles, etc.) appear to be very harmful.

Cooney, J.V.; Beal, E.J.; Beaver, B.D.

1986-01-01T23:59:59.000Z

350

Neutral nitrogen acceptors in ZnO: The {sup 67}Zn hyperfine interactions  

SciTech Connect (OSTI)

Electron paramagnetic resonance (EPR) is used to characterize the {sup 67}Zn hyperfine interactions associated with neutral nitrogen acceptors in zinc oxide. Data are obtained from an n-type bulk crystal grown by the seeded chemical vapor transport method. Singly ionized nitrogen acceptors (N{sup ?}) initially present in the crystal are converted to their paramagnetic neutral charge state (N{sup 0}) during exposure at low temperature to 442 or 633?nm laser light. The EPR signals from these N{sup 0} acceptors are best observed near 5?K. Nitrogen substitutes for oxygen ions and has four nearest-neighbor cations. The zinc ion along the [0001] direction is referred to as an axial neighbor and the three equivalent zinc ions in the basal plane are referred to as nonaxial neighbors. For axial neighbors, the {sup 67}Zn hyperfine parameters are A{sub ?}?=?37.0?MHz and A{sub ?}?=?8.4?MHz with the unique direction being [0001]. For nonaxial neighbors, the {sup 67}Zn parameters are A{sub 1}?=?14.5?MHz, A{sub 2}?=?18.3?MHz, and A{sub 3}?=?20.5?MHz with A{sub 3} along a [101{sup ¯}0] direction (i.e., in the basal plane toward the nitrogen) and A{sub 2} along the [0001] direction. These {sup 67}Zn results and the related {sup 14}N hyperfine parameters provide information about the distribution of unpaired spin density at substitutional neutral nitrogen acceptors in ZnO.

Golden, E. M.; Giles, N. C., E-mail: Nancy.Giles@afit.edu [Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433 (United States); Evans, S. M.; Halliburton, L. E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States)

2014-03-14T23:59:59.000Z

351

Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition  

SciTech Connect (OSTI)

The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10?wt. % ozone at temperatures of 150, 250, and 300?°C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTs was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O{sub 3} attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides.

Lushington, Andrew; Liu, Jian; Tang, Yongji; Li, Ruying; Sun, Xueliang, E-mail: xsun@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada)

2014-01-15T23:59:59.000Z

352

Frostbite Theater - Liquid Oxygen vs. Liquid Nitrogen - Liquid Oxygen and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cells vs. Liquid Nitrogen! Cells vs. Liquid Nitrogen! Previous Video (Cells vs. Liquid Nitrogen!) Frostbite Theater Main Index Next Video (Paramagnetism) Paramagnetism Liquid Oxygen and Fire! What happens when nitrogen and oxygen are exposed to fire? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a test tube of liquid nitrogen! Steve: And this is a test tube of liquid oxygen! Joanna: Let's see what happens when nitrogen and oxygen are exposed to fire. Steve: Fire?! Joanna: Yeah! Steve: Really?! Joanna: Why not! Steve: Okay! Joanna: As nitrogen boils, it changes into nitrogen gas. Because it's so cold, it's denser than the air in the room. The test tube fills up with

353

Liquid absorbent solutions for separating nitrogen from natural gas  

DOE Patents [OSTI]

Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Redmond, OR); Lyon, David K. (Bend, OR); Miller, Warren K. (Bend, OR)

2000-01-01T23:59:59.000Z

354

First Principles Prediction of Nitrogen-doped Carbon Nanotubes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

First Principles Prediction of Nitrogen-doped Carbon Nanotubes as a High-Performance Cathode for Li-S Batteries. First Principles Prediction of Nitrogen-doped Carbon Nanotubes as a...

355

Breath is a mixture of nitrogen, oxygen, carbon dioxide, water  

E-Print Network [OSTI]

12 SCIENCE Breath is a mixture of nitrogen, oxygen, carbon dioxide, water vapour, inert gases. On the basis of proton affinity, the major constituents of air and breath (nitrogen, oxygen, carbon dioxide

356

Nitrogen chemistry during oil shale pyrolysis  

SciTech Connect (OSTI)

Real time evolution of ammonia (NH{sub 3}) and hydrogen cyanide (HCN), two major nitrogen-containing volatiles evolved during oil shale pyrolysis, was measured by means of a mass spectrometer using chemical ionization and by infrared spectroscopy. While the on-line monitoring of NH{sub 3} in oil shale pyrolysis games was possible by both techniques, HCN measurements were only possible by IR. We studied one Green River Formation oil shale and one New Albany oil shale. The ammonia from the Green River oil shale showed one broad NH{sub 3} peak maximizing at a high temperature. For both oil shales, most NH{sub 3} evolves at temperatures above oil-evolving temperature. The important factors governing ammonia salts such as Buddingtonite in Green River oil shales, the distribution of nitrogen functional groups in kerogen, and the retorting conditions. The gas phase reactions, such as NH{sub 3} decomposition and HCN conversion reactions, also play an important role in the distribution of nitrogen volatiles, especially at high temperatures. Although pyrolysis studies of model compounds suggests the primary nitrogen product from kerogen pyrolysis to be HCN at high temperatures, we found only a trace amount of HCN at oil-evolving temperatures and none at high temperatures (T {gt} 600{degree}C). 24 refs., 6 figs., 2 tabs.

Oh, Myongsook S.; Crawford, R.W.; Foster, K.G.; Alcaraz, A.

1990-01-10T23:59:59.000Z

357

Introduction Air Quality and Nitrogen Dioxide  

E-Print Network [OSTI]

- Global update 2005. Primary sources of air pollutants include combustion products from power generationIntroduction Air Quality and Nitrogen Dioxide Air pollution can be defined as "the presence effects to man and/or the environment". (DEFRA) "Clean air is considered to be a basic requirement

358

groundwater nitrogen source identification and remediation  

E-Print Network [OSTI]

producer profits. This will, in turn, benefit water bodies in the area that receive stream baseflow fromgroundwater nitrogen source identification and remediation The Seymour Aquifer is a shallow aquifer water withdraws are used for irrigation while the cities of Vernon, Burk- burnett and Electra and many

359

OXYGEN ADSORPTION ON NITROGEN CONTAINING CARBON SURFACES  

E-Print Network [OSTI]

OXYGEN ADSORPTION ON NITROGEN CONTAINING CARBON SURFACES Alejandro Montoya, Jorge O. Gil, Fanor-rich site of the carbon basal plane of graphite and then, it dissociates into oxygen atoms.1,2 Oxygen atoms at the edge of the carbon surface can form covalent bonds with oxygen. These sites can chemisorb

Truong, Thanh N.

360

HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 NITROGEN #2NITROGEN #2  

E-Print Network [OSTI]

(BFB), (CFB) (BFB), (CFB) Fuel nitrogen content Excess air Air staging Limestone addition , - (BFB), (CFB) SO2 level SNCR ­ NH3 , - SNCR ­ urea SCR - Pressure , (but NO2 ) #12;HELSINKI

Zevenhoven, Ron

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Evolutionary tradeoffs can select against nitrogen fixation and thereby maintain nitrogen limitation  

E-Print Network [OSTI]

. evolutionary ecology model Biological nitrogen (N) fixation--the conversion of atmo- spheric N2 gas) but is equally important to explaining the paradox of N limitation. Unlike the successional question

Menge, Duncan

362

Core-level spectroscopy of thin oxides and oxynitrides  

SciTech Connect (OSTI)

Several spectroscopic methods are discussed that use core levels, such as photoelectron spectroscopy and absorption spectroscopy with photoelectron or fluorescence detection. Measurements are presented on the desorption of a chemical oxide and the growth of oxynitrides with N{sub 2}0 on Si(100). The stoichiometry is found to change strongly with thickness, from a nitrogen-terminated Si surface to a nearly-pure oxide in the outer region of 40--60 {Angstrom} films. Using a third generation synchrotron beam line a sensitivity of better than a tenth of a monolayer is achieved by a simple photocurrent measurement.

Himpsel, F.J.; Akatsu, H. [International Business Machines Corp., Yorktown Heights, NY (United States). Thomas J. Watson Research Center; Carlisle, J.A. [Lawrence Livermore National Lab., CA (United States)] [and others

1994-07-19T23:59:59.000Z

363

Vapour nucleation in a cryogenic–fluid–dissolved–nitrogen mixture during rapid depressurization  

Science Journals Connector (OSTI)

...the dissolved nitrogen comes out of the...effect of dissolved nitrogen was not addressed...non-condensable gas (nitrogen) in a cryogenic...g. superheated water or pure refrigerants...to estimate the solubility of nitrogen in...

1999-01-01T23:59:59.000Z

364

Nitrogen use in switchgrass grown for bioenergy across the USA  

E-Print Network [OSTI]

Nitrogen use in switchgrass grown for bioenergy across the USA V.N. Owens a , D.R. Viands b , H Available online 17 August 2013 Keywords: Nitrogen removal Switchgrass Bioenergy Nitrogen use efficiency as a forage, conservation, and bioenergy crop [1e5]. It offers a number of distinct benefits including broad

Pawlowski, Wojtek

365

Relation of Soil Nitrogen, Nitrification and Ammonification to Pot Experiments.  

E-Print Network [OSTI]

............................................ 6 Relation of the Crops to the Total Nitrogen of the Soil ........... 7 Relation of the Different Crops ................................. 8 Relation of Surface Soil to Subsoil ............................. 13 Acid Soils Compared with Non-Acid... of Production of Nitrates to the Results of the Pot Ex- periments ................................................ 21 Extensive Work ............................................ 24 Relation of Nitric Nitrogen to Nitrogen Removed by First Crop .... 24...

Fraps, G. S. (George Stronach)

1921-01-01T23:59:59.000Z

366

QuestionQuestion How does nitrogen deposition affect roadside  

E-Print Network [OSTI]

al. 2004. Concentrations of ammonia and nitrogen dioxide at roadside verges, and their contributionQuestionQuestion How does nitrogen deposition affect roadside plant community composition? 1. Is there a gradient of nitrogen deposition to freeway verges from traffic exhaust? 2. Are there other sources of N

Hall, Sharon J.

367

Simple approaches for measuring dry atmospheric nitrogen deposition to watersheds  

E-Print Network [OSTI]

'' and spatial variations of gaseous dry N deposition (i.e., nitrogen dioxide (NO2) and ammonia (NH3)), thoughSimple approaches for measuring dry atmospheric nitrogen deposition to watersheds Heather E. Golden the effects of atmospheric nitrogen (N) deposition on surface water quality requires accurate accounts

Elliott, Emily M.

368

A chronology of human understanding of the nitrogen cycle  

Science Journals Connector (OSTI)

...nitrogen and hydrogen gas [7,22,23...process surpassed natural N fixation [31...of the nitrogen cascade was proposed...terrestrial 104 118 --natural - - 30 50 50 170...consequences in the natural environment...2003 The nitrogen cascade. Bioscience 53...anthropogenic trace gases. In Interactions...

2013-01-01T23:59:59.000Z

369

How extensive are the impacts of nitrogen pollution in Great  

E-Print Network [OSTI]

the 1940s atmospheric nitrogen pollution has steadily increased, primarily as a consequence in the deposition of atmospheric nitrogen pollutants are likely to have contributed to improved forest productivityHow extensive are the impacts of nitrogen pollution in Great Britain's forests? Protecting our

370

Special Aspects of Nitrogen Fixation by Blue-Green Algae  

Science Journals Connector (OSTI)

...Aspects of Nitrogen Fixation by Blue-Green Algae Rosalie M. Cox P. Fay When carbon dioxide...required for nitrogen fixation in this alga. A ratio of pyruvate decarboxylation to...independent of photosynthesis in blue-green algae. Special aspects of nitrogen fixation...

1969-01-01T23:59:59.000Z

371

Chlororespiration: An adaptation to nitrogen deficiency in Chlamydomonas reinhardtii  

SciTech Connect (OSTI)

When grown under nitrogen limitation, pronounced chlororespiratory activity develops together with an altered composition of thylakoid membranes in Chlamydomonas reinhardtii. Relative to control cultures, the flash-inhibited, chlororespiration-dependent O{sub 2} consumption signal increases 10-fold. Also augmented is the light-sensitive respiratory activity responsible of the Kok effect, reflecting competitive inhibition of chlororespiratory electron transport by photosystem I. Fluoresscence measurements show that the thylakoid plastoquinone pool is extensively reduced in dark-adapted, N-limited cells. Thylakoids of N-limited cells have reduced amounts of cytochrome b{sub 6}, cytochrome f, and light-harvesting complexes. However, thylakoid-bound NADH-PQ oxidoreductase, with major subunits of 51 kDa and 17 kDa, is increased 7-fold and two novel cytochromes of 34 and 12.5 kDa are highly abundant. Thus, components of photosynthetic and chlororespiratory electron transport pathways are differentially regulated by N availability.

Peltier, G.; Schmidt, G.W. (Univ. of Georgia, Athens (United States))

1991-06-01T23:59:59.000Z

372

Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report  

SciTech Connect (OSTI)

This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

Not Available

2006-06-01T23:59:59.000Z

373

Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics  

SciTech Connect (OSTI)

Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO{sub 2} concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO{sub 2} concentration, temperature, and radiation when evaluated against published data of V{sub c,max} (maximum carboxylation rate) and J{sub max} (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO{sub 2} concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks to climate in Earth system models.

Xu, Chonggang [Los Alamos National Laboratory (LANL); Fisher, Rosie [National Center for Atmospheric Research (NCAR); Wullschleger, Stan D [ORNL; Wilson, Cathy [Los Alamos National Laboratory (LANL); Cai, Michael [Los Alamos National Laboratory (LANL); McDowell, Nathan [Los Alamos National Laboratory (LANL)

2012-01-01T23:59:59.000Z

374

All-optical high-resolution magnetic resonance using a nitrogen-vacancy spin in diamond  

E-Print Network [OSTI]

We propose an all-optical scheme to prolong the quantum coherence of a negatively charged nitrogen-vacancy (NV) center in diamond. Optical control of the NV spin suppresses energy fluctuations of the $^{3}\\text{A}_{2}$ ground states and forms an energy gap protected subspace. By optical control, the spectral linewidth of magnetic resonance is much narrower and the measurement of the frequencies of magnetic field sources has higher resolution. The optical control also improves the sensitivity of the magnetic field detection and can provide measurement of the directions of signal sources.

Zhen-Yu Wang; Jian-Ming Cai; Alex Retzker; Martin B. Plenio

2014-04-04T23:59:59.000Z

375

Oxidation of propylene over copper oxide catalysts  

E-Print Network [OSTI]

to the study of propylene oxidation. Dunlop (17) reported that small quantities of iron compounds substantially enhanced the catalytic activity of chromia-alumina catalysts with respect to propylene oxidation, Woodharn (72) has suggested that under... between 360 C and 430oC the rate of propane oxidation decreases as the teznperature is increased, and the rate of conversion to olefins, especially propylene, becomes progressively greater. Above 430 C the proportion of propane converted to ethylene in...

Billingsley, David Stuart

2012-06-07T23:59:59.000Z

376

Thermal treatment for VOC control  

SciTech Connect (OSTI)

Catalytic and thermal oxidation are well-established technologies for controlling volatile organic compounds (VOCs). Oxidation destroys pollutants, rather than capturing them. Oxidation units can destroy nearly 100% of VOC and toxic emissions targeted by the Clean Air Act Amendments of 1990--some systems attain destruction efficiencies over 99.99%. To assist in the design of these systems, an engineer will often look a/t the heat of combustion of the gas stream, along with the type of pollutant, to best determine the correct type of oxidation device to use. The paper discusses catalytic and thermal oxidation, energy recovery, and equipment for these processes.

Cloud, R.A. [Huntington Environmental Systems, Schaumburg, IL (United States)

1998-07-01T23:59:59.000Z

377

Frostbite Theater - Liquid Nitrogen Experiments - Freeze the Rainbow!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquid Nitrogen in a Microwave! Liquid Nitrogen in a Microwave! Previous Video (Liquid Nitrogen in a Microwave!) Frostbite Theater Main Index Next Video (Liquid Nitrogen and Antifreeze!) Liquid Nitrogen and Antifreeze! Freeze the Rainbow! Starburst candy. They're fruity. They're chewy. They're delicious! But, can they survive taking a bath in liquid nitrogen? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: A student visiting Jefferson Lab from Huntington Middle School in Newport News, Virginia, asked what happens to a starburst if you put it in liquid nitrogen. Well, we're going to find out! Steve: At room temperature, starburst isn't really all that special. I can kind of squish it if I squeeze it hard enough and, if I drop it, nothing

378

Frostbite Theater - Liquid Nitrogen Experiments - Giant Koosh Ball!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Let's Pour Liquid Nitrogen on the Floor! Let's Pour Liquid Nitrogen on the Floor! Previous Video (Let's Pour Liquid Nitrogen on the Floor!) Frostbite Theater Main Index Next Video (Egg + Liquid Nitrogen + Time-lapse!) Egg + Liquid Nitrogen + Time-lapse! Giant Koosh Ball! Sometimes, you just want to know what's going to happen! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! A while ago, I was at the mall and I saw this. And, the first thing that popped into my head was 'I wonder what would happen if we were to put this in liquid nitrogen?' Now, that's one thing I really love about science. If you have a question, you can, sometimes, do an experiment to find out what the answer is! Here at the Lab, we have a lot of liquid nitrogen, so that's

379

Frostbite Theater - Liquid Nitrogen Experiments - Let's Freeze Liquid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shattering Pennies! Shattering Pennies! Previous Video (Shattering Pennies!) Frostbite Theater Main Index Next Video (Liquid Nitrogen in a Microwave!) Liquid Nitrogen in a Microwave! Let's Freeze Liquid Nitrogen! By removing the hottest molecules, we're able to freeze liquid nitrogen! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: Today, we're going to freeze liquid nitrogen! Joanna and Steve: Yeah! Joanna: The obvious way to do this is to put the liquid nitrogen into something colder. Something that we have lots of around here! Something like... liquid helium! Steve: Yes! Joanna: Yeah, but we're not going to do that. Instead, we're going to freeze the nitrogen by removing the hottest molecules!

380

Functionalized Graphene Sheets as Molecular Templates for Controlled...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as Molecular Templates for Controlled Nucleation and Self-Assembly of Metal Oxide-Graphene Functionalized Graphene Sheets as Molecular Templates for Controlled Nucleation and...

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Synthesis and processing of monosized oxide powders  

DOE Patents [OSTI]

Uniform-size, high-purity, spherical oxide powders are formed by hydrolysis of alkoxide precursors in dilute alcoholic solutions. Under controlled conditions (concentrations of 0.03 to 0.2 M alkoxide and 0.2 to 1.5 M water, for example) oxide particles on the order of about 0.05 to 0.7 micron can be produced. Methods of doping such powders and forming sinterable compacts are also disclosed.

Barringer, Eric A. (Waltham, MA); Fegley, Jr., M. Bruce (Waban, MA); Bowen, H. Kent (Belmont, MA)

1985-01-01T23:59:59.000Z

382

Resolving single molecule structures with nitrogen-vacancy centers in diamond  

E-Print Network [OSTI]

We present two-dimensional nuclear magnetic resonance spectroscopy protocols based on nitrogen-vacancy (NV) centers in diamond as efficient quantum sensors of protein structure. Continuous microwave driving fields are used to achieve Hartmann-Hahn resonances between NV spin sensor and proximate nuclei for selective control of nuclear spins and measurement of their polarization. Our protocols take advantage of the strong coupling between the NV sensor and the nuclei, thus facilitating coherence control of nuclear spins and relax the requirement of nuclear spin polarization. We dramatically reduce the experimental effort by employing a singular value thresholding matrix completion algorithm from signal processing to regain the resolution of protein structure based on sub-sampled data from NV based single molecule nuclear magnetic resonance spectroscopy. As an illustration, we demonstrate the power of this approach by identifying the nitrogen-Hydrogen interaction peak in an Alanine spectrum based on merely 5% of the sample data.

Matthias Kost; Jianming Cai; Martin B. Plenio

2014-07-23T23:59:59.000Z

383

DISSOLUTION OF NEPTUNIUM OXIDE RESIDUES  

SciTech Connect (OSTI)

This report describes the development of a dissolution flowsheet for neptunium (Np) oxide (NpO{sub 2}) residues (i.e., various NpO{sub 2} sources, HB-Line glovebox sweepings, and Savannah River National Laboratory (SRNL) thermogravimetric analysis samples). Samples of each type of materials proposed for processing were dissolved in a closed laboratory apparatus and the rate and total quantity of off-gas were measured. Samples of the off-gas were also analyzed. The quantity and type of solids remaining (when visible) were determined after post-dissolution filtration of the solution. Recommended conditions for dissolution of the NpO{sub 2} residues are: Solution Matrix and Loading: {approx}50 g Np/L (750 g Np in 15 L of dissolver solution), using 8 M nitric acid (HNO{sub 3}), 0.025 M potassium fluoride (KF) at greater than 100 C for at least 3 hours. Off-gas: Analysis of the off-gas indicated nitric oxide (NO), nitrogen dioxide (NO{sub 2}) and nitrous oxide (N{sub 2}O) as the only identified components. No hydrogen (H{sub 2}) was detected. The molar ratio of off-gas produced per mole of Np dissolved ranged from 0.25 to 0.4 moles of gas per mole of Np dissolved. A peak off-gas rate of {approx}0.1 scfm/kg bulk oxide was observed. Residual Solids: Pure NpO{sub 2} dissolved with little or no residue with the proposed flowsheet but the NpCo and both sweepings samples left visible solid residue after dissolution. For the NpCo and Part II Sweepings samples the residue amounted to {approx}1% of the initial material, but for the Part I Sweepings sample, the residue amounted to {approx}8 % of the initial material. These residues contained primarily aluminum (Al) and silicon (Si) compounds that did not completely dissolve under the flowsheet conditions. The residues from both sweepings samples contained minor amounts of plutonium (Pu) particles. Overall, the undissolved Np and Pu particles in the residues were a very small fraction of the total solids.

Kyser, E

2009-01-12T23:59:59.000Z

384

Reactive magnetron sputtering of hard Si-B-C-N films with a high-temperature oxidation resistance  

SciTech Connect (OSTI)

Based on the results obtained for C-N and Si-C-N films, a systematic investigation of reactive magnetron sputtering of hard quaternary Si-B-C-N materials has been carried out. The Si-B-C-N films were deposited on p-type Si(100) substrates by dc magnetron co-sputtering using a single C-Si-B target (at a fixed 20% boron fraction in the target erosion area) in nitrogen-argon gas mixtures. Elemental compositions of the films, their surface bonding structure and mechanical properties, together with their oxidation resistance in air, were controlled by the Si fraction (5-75%) in the magnetron target erosion area, the Ar fraction (0-75%) in the gas mixture, the rf induced negative substrate bias voltage (from a floating potential to -500 V) and the substrate temperature (180-350 deg. C). The total pressure and the discharge current on the magnetron target were held constant at 0.5 Pa and 1 A, respectively. The energy and flux of ions bombarding the growing films were determined on the basis of the discharge characteristics measured for the rf discharge dominating in the deposition zone. Mass spectroscopy was used to show composition of the total ion fluxes onto the substrate and to explain differences between sputtering of carbon, silicon and boron from a composed target in nitrogen-argon discharges. The films, typically 1.0-2.4 {mu}m thick, possessing a density around 2.4 g cm{sup -3}, were found to be amorphous in nanostructure with a very smooth surface (R{sub a}{<=}0.8 nm) and good adhesion to substrates at a low compressive stress (1.0-1.6 GPa). They exhibited high hardness (up to 47 GPa) and elastic recovery (up to 88%), and extremely high oxidation resistance in air at elevated temperatures (up to a 1350 deg.C substrate limit)

Vlcek, Jaroslav; Potocky, Stepan; Cizek, Jiri; Houska, Jiri; Kormunda, Martin; Zeman, Petr; Perina, Vratislav; Zemek, Josef; Setsuhara, Yuichi; Konuma, Seiji [Department of Physics, University of West Bohemia, Univerzitni 22, 306 14 Plzen (Czech Republic); Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Rez near Prague (Czech Republic); Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53 Prague 6 (Czech Republic); Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kanagawa High-Technology Foundation, Kanagawa Science Park, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012 (Japan)

2005-11-15T23:59:59.000Z

385

NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES  

E-Print Network [OSTI]

nitrogen oxides, nitrogen dioxide, and  the number of (liquefied natural gas, nitrogen  dioxide, nitrogen oxides, nitrogen oxides, nitrogen dioxide, particle  number,  and 

Singer, Brett C.

2010-01-01T23:59:59.000Z

386

Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

A Solid Oxide Fuel Cell (SOFC) is typically composed of two porous electrodes, interposed between an electrolyte made of a particular solid oxide ceramic material. The system originates from the work of Nernst...

Nigel M. Sammes; Roberto Bove; Jakub Pusz

2006-01-01T23:59:59.000Z

387

Evolution of Photosynthesis and Biospheric Oxygenation Contingent Upon Nitrogen Fixation?  

E-Print Network [OSTI]

How photosynthesis by Precambrian cyanobacteria oxygenated Earth's biosphere remains incompletely understood. Here it is argued that the oxic transition, which took place between approximately 2.3 and 0.5 Gyr ago, required a great proliferation of cyanobacteria, and this in turn depended on their ability to fix nitrogen via the nitrogenase enzyme system. However, the ability to fix nitrogen was not a panacea, and the rate of biospheric oxygenation may still have been affected by nitrogen constraints on cyanobacterial expansion. Evidence is presented for why cyanobacteria probably have a great need for fixed nitrogen than other prokaryotes, underscoring the importance of their ability to fix nitrogen. The connection between nitrogen fixation and the evolution of photosynthesis is demonstrated by the similarities between nitrogenase and enzymes critical for the biosynthesis of (bacterio)chlorophyll. It is hypothesized that biospheric oxygenation would not have occurred if the emergence of cyanobacteria had not been preceded by the evolution of nitrogen fixation, and if these organisms had not also acquired the ability to fix nitrogen at the beginning of or very early in their history. The evolution of nitrogen fixation also appears to have been a precondition for the evolution of (bacterio)chlorophyll-based photosynthesis. Given that some form of chlorophyll is obligatory for true photosynthesis, and its light absorption and chemical properties make it a "universal pigment," it may be predicted that the evolution of nitrogen fixation and photosynthesis are also closely linked on other Earth- like planets.

John W. Grula

2006-05-12T23:59:59.000Z

388

Temperature Zonal Combustion Reactor for the 15-Nitrogen and 13-Carbon Isotopic Determination of Enriched Biosynthetic Materials  

Science Journals Connector (OSTI)

Temperature Zonal Combustion Reactor for the 15-Nitrogen and 13-Carbon Isotopic Determination of Enriched Biosynthetic Materials ... After the furnace controller had been reset from 250 °C (VHT) to 700 °C (combustion), the sample zone temperature increased at ?50 °C/min, which coincided with a pressure rise from 255 to 363 Torr (over some 8 min). ...

Michael May; John Kuo; Michael Gray; I. Knyazhansky; C. T. Tan

2010-03-31T23:59:59.000Z

389

Failure of ozone and nitrogen dioxide to enhance lung tumor development in hamsters  

SciTech Connect (OSTI)

We tested the hypothesis that the two common oxidant air pollutants, ozone and nitrogen dioxide, modulate the development of respiratory tract tumors in Syrian golden hamsters. The animals received subcutaneous injections of the carcinogen diethylnitrosamine (20 mg/kg) twice a week while being exposed continuously to an atmosphere of 0.8 parts per million (ppm)* of ozone or 15 ppm of nitrogen dioxide. Animals were killed 16 weeks or 24 to 32 weeks after the beginning of the treatment. Ozone delayed the appearance of tracheal tumors and reduced the incidence of tumors in the lung periphery. A suspected neuroendocrine differentiation of those lung tumors could not be established by immunocytochemistry due to overfixation of tissues. On the other hand, ozone seemed to mitigate development of hepatotoxic lesions mediated by diethylnitrosamine. In animals treated with diethylnitrosamine and exposed to nitrogen dioxide, fewer tracheal tumors and no lung tumors were found. Only a few lung tumors were produced in animals treated with diethylnitrosamine and kept in an atmosphere of 65% oxygen. The previously observed neuroendocrine nature of tumors induced by simultaneous exposure to diethylnitrosamine and hyperoxia could not be established because the long fixation of tissues precluded immunocytochemical stains. Animals treated with diethylnitrosamine and kept in filtered air while being housed in wire-mesh cages developed fewer lung tumors than animals given the same treatment and kept on conventional bedding in shoebox cages. Although all inhalants tested are known to produce substantial cell proliferation in the respiratory tract, it was not possible to document whether this would enhance lung tumor development. The role of the two common air pollutants, ozone and nitrogen dioxide, as possible additional risks in the pathogenesis of lung cancer in animals continues to remain uncertain.

Witschi, H.; Breider, M.A.; Schuller, H.M. (Univ. of California, Davis, CA (United States))

1993-09-01T23:59:59.000Z

390

Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes  

E-Print Network [OSTI]

nitric ox- ide (NO), nitrogen dioxide (NO 2 ), ammonia (NHNitric Oxide (NO) Nitrogen Dioxide (NO 2 ) Nitrogen Oxides (Nitric Oxide (NO) Nitrogen Dioxide (NO 2 ) Nitrogen Oxides (

2013-01-01T23:59:59.000Z

391

Towards closing the nitrogen flow in UK agriculture: An explorative study of integrated food and bioenergy production with increased nitrogen recirculation.  

E-Print Network [OSTI]

??Nitrogen is an essential growth factor in nature and for food production. It exists in many forms, including reactive nitrogen compounds available for plant uptake,… (more)

Skenhall, Sara Alongi

2011-01-01T23:59:59.000Z

392

Emission control cost-effectiveness of alternative-fuel vehicles  

SciTech Connect (OSTI)

Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

Wang, Q. [Argonne National Lab., IL (United States); Sperling, D.; Olmstead, J. [California Univ., Davis, CA (United States). Inst. of Transportation Studies

1993-06-14T23:59:59.000Z

393

On the Use of Thermal NF3 as the Fluorination and Oxidation Agent in Treatment of Used Nuclear Fuels  

SciTech Connect (OSTI)

This paper presents results of our investigation on the use of nitrogen trifluoride as the fluorination or fluorination/oxidation agent for use in a process for separating valuable constituents from used nuclear fuels by employing the volatility of many transition metal and actinide fluorides. Nitrogen trifluoride is less chemically and reactively hazardous than the hazardous and aggressive fluorinating agents used to prepare uranium hexafluoride and considered for fluoride volatility based nuclear fuels reprocessing. In addition, nitrogen trifluoride’s less aggressive character may be used to separate the volatile fluorides from used fuel and from themselves based on the fluorination reaction’s temperature sensitivity (thermal tunability) rather than relying on differences in sublimation/boiling temperature and sorbents. Our thermodynamic calculations found that nitrogen trifluoride has the potential to produce volatile fission product and actinide fluorides from candidate oxides and metals. Our simultaneous thermogravimetric and differential thermal analyses found that the oxides of lanthanum, cerium, rhodium, and plutonium fluorinated but did not form volatile fluorides and that depending on temperature volatile fluorides formed from the oxides of niobium, molybdenum, ruthenium, tellurium, uranium, and neptunium. We also demonstrated near-quantitative removal of uranium from plutonium in a mixed oxide.

Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.; Kozelisky, Anne E.

2012-05-01T23:59:59.000Z

394

Evolution of Photosynthesis and Biospheric Oxygenation Contingent Upon Nitrogen Fixation?  

E-Print Network [OSTI]

How photosynthesis by Precambrian cyanobacteria oxygenated Earth's biosphere remains incompletely understood. Here it is argued that the oxic transition, which took place between approximately 2.3 and 0.5 Gyr ago, required a great proliferation of cyanobacteria, and this in turn depended on their ability to fix nitrogen via the nitrogenase enzyme system. However, the ability to fix nitrogen was not a panacea, and the rate of biospheric oxygenation may still have been affected by nitrogen constraints on cyanobacterial expansion. Evidence is presented for why cyanobacteria probably have a great need for fixed nitrogen than other prokaryotes, underscoring the importance of their ability to fix nitrogen. The connection between nitrogen fixation and the evolution of photosynthesis is demonstrated by the similarities between nitrogenase and enzymes critical for the biosynthesis of (bacterio)chlorophyll. It is hypothesized that biospheric oxygenation would not have occurred if the emergence of cyanobacteria had not ...

Grula, J W

2006-01-01T23:59:59.000Z

395

NOx, SO{sub 3} in the spotlight at NETL's 2006 Environmental Controls conference  

SciTech Connect (OSTI)

As emissions caps drop, technological solutions must become increasingly effective and efficient. Researchers, equipment vendors, and plant operators are exploring alternatives to SCR and SNCR, with a view to reducing the overall costs of NOx reduction. They have also achieved 95% to 99% removal of SO{sub 3}, with no visible plume opacity. These topics were discussed at ECC 2006. The first conference session focussed on selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) control of nitrogen oxide emissions; the second session addressed the related issue of reducing stack emissions and flue gas concentrations of sulfur trioxide. The article summarises many papers presented. Summaries and/or full versions of all the papers mentioned, and others, are posted at www.netl.doe.gov/publications/proceedings/06/ecc/index.html. 2 figs.

Mann, A.N.; Makovsky, L.E.; Sarkus, T.A. [Technology and Management Services Inc. (United States)

2007-02-15T23:59:59.000Z

396

Strengthening of metallic alloys with nanometer-size oxide dispersions  

DOE Patents [OSTI]

Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

Flinn, John E. (Idaho Falls, ID); Kelly, Thomas F. (Madison, WI)

1999-01-01T23:59:59.000Z

397

Strengthening of metallic alloys with nanometer-size oxide dispersions  

DOE Patents [OSTI]

Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

Flinn, J.E.; Kelly, T.F.

1999-06-01T23:59:59.000Z

398

Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond  

E-Print Network [OSTI]

We present a beam-directed chemical technique for controlling the charge states of near-surface luminescence centers in semiconductors. Specifically, we fluorinate the surface of H-terminated diamond by electron beam irradiation in the presence of NF3 vapor. The fluorination treatment acts as a local chemical switch that alters the charge state of nitrogen-vacancy luminescence centers from the neutral to the negative state. The electron beam fluorination process is highly localized and can be used to control the emission spectrum of individual nanodiamonds and surface regions scanned by the electron beam

Shanley, Toby W; Aharonovich, Igor; Toth, Milos

2014-01-01T23:59:59.000Z

399

Increasing Price of Nitrogen Nitrogen fertilizer is often the largest contributor to the  

E-Print Network [OSTI]

events; the distribution of more than 5,700 publications; and access to web-based guidance on deep and associated costs. Since 2007, the importance of deep-soil testing for nitrogen management has been-sampling methods and procedures. Economic and Environmental Impact The economic impact of deep-soil testing

400

Effect of Nitrogen Additives on Flame Retardant Action of Tributyl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of tributyl phosphate (TBP) has been investigated. From the LOI tests on treated cotton it is clear that the nitrogen additives have synergistic action. Estimation of...

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nitrogen-Doped Graphene and its Application in Electrochemical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Doped Graphene and its Application in Electrochemical Biosensing. Nitrogen-Doped Graphene and its Application in Electrochemical Biosensing. Abstract: Chemical doping with foreign...

402

Flexible, integrated NGL recovery/nitrogen rejection systems  

SciTech Connect (OSTI)

As the oil and gas industry uses nitrogen to recover more of the expensive hydrocarbons below the ground, there is a need for gas processing facilities above the ground that can efficiently and effectively handle the nitrogen coproduced with the hydrocarbon stream. Some of the key general economic variables that must be considered when evaluating proposed nitrogen rejection projects are reviewed. This work discusses the design of the nitrogen/ natural gas processing facilities. It also reviews these process specific criteria and examines some pertinent examples of process design and equipment selection features, which provide the flexibility and integration required to meet the demands of these interrelated driving forces.

Browne, L.W.; Aberle, J.L.

1983-01-01T23:59:59.000Z

403

Absorption of Foliar-Applied Nitrogen by Cotton  

E-Print Network [OSTI]

wax, and nitrogen-15 absorption. Crop Science 37:807-811.water- deficit stress, and the absorption of foliar-appliedgrowth favorable for N absorption and translocation. Four

Oosterhuis, Derrick M

2009-01-01T23:59:59.000Z

404

Introduction Ammonium is the most reduced form of inorganic nitrogen  

E-Print Network [OSTI]

144 Introduction Ammonium is the most reduced form of inorganic nitrogen in seawater time. Uncertainties result from a com- bination of factors including: sample storage effects, contami

405

Thermal bubble behaviour in liquid nitrogen under electric fields.  

E-Print Network [OSTI]

??This thesis describes thermally induced bubble behaviour changes in liquid nitrogen (LN2) under electric fields. Cryogenic liquids such as LN2 have been used not only… (more)

Wang, Ping

2008-01-01T23:59:59.000Z

406

Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide  

E-Print Network [OSTI]

Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide Laboratory (PAL), Pohang 790-784, Republic of Korea ABSTRACT: The capacities of graphene oxide (GO) and reduced graphene oxide (rGO) films grown on silicon substrate to cause the aniline to azobenzene oxidation

Kim, Sehun

407

Interfacial material for solid oxide fuel cell  

DOE Patents [OSTI]

Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

Baozhen, Li (Essex Junction, VT); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

1999-01-01T23:59:59.000Z

408

Effect of nitrogen incorporation on improvement of leakage properties in high-k HfO{sub 2} capacitors treated by N{sub 2}-plasma  

SciTech Connect (OSTI)

The nitrogen incorporation into the HfO{sub 2} films with an EOT (equivalent oxide thickness) of 9 A was performed by N{sub 2}-plasma to improve the electrical properties. The dielectric properties and a leakage current characteristics of the capacitors were investigated as a function of plasma power and plasma treatment temperature. The dielectric constant of the capacitors is not influenced by nitrogen incorporation. The N{sub 2}-plasma treatment at 300 deg. C and 70 W exhibits the most effective influence on improvement of the leakage current characteristics. Leakage current density of the capacitors treated at 300 deg. C and 70 W exhibits a half order of magnitude lower than that without plasma treatment. Nitrogen incorporated into the HfO{sub 2} films possesses the intrinsic effect that drastically reduce the electron leakage current through HfO{sub 2} dielectrics by deactivating the V{sub O} (oxygen vacancy) related gap states.

Seong, Nak-Jin; Yoon, Soon-Gil; Yeom, Seung-Jin; Woo, Hyun-Kyung; Kil, Deok-Sin; Roh, Jae-Sung; Sohn, Hyun-Chul [Department of Materials Science and Engineering, Chungnam National University, Daeduk Science Town, 305-764, Daejon (Korea, Republic of); Hynix Semiconductor Inc., San 136-1 Ami-ri Bubal-eub Icheon-si Kyoungki-do, 467-701 (Korea, Republic of)

2005-09-26T23:59:59.000Z

409

Continuous improvement in nitrogen rejection unit design  

SciTech Connect (OSTI)

The design and fabrication of Nitrogen Rejection Units (NRU) has advanced considerably over the past 15 years. Improvements have been made in all aspects of producing an NRU plant and cold box. This paper presents the primary areas involved that have seen these improvements. (1) Process design: the two-column process has been superseded by an approach which utilizes multiple flash drums and one column. This leads to a smaller and lower cost cold box. With low nitrogen content feeds, the prefractionater recovers half the methane as a high pressure residue gas and reduces the cold box size. (2) Mechanical Design: improved software enables the design process to be more accurate, eliminate piping and equipment interferences, reduce the size of the box and save design time. (3) Manufacturing: the interfacing of the 3D software design tools and the manufacturing process enables the shop floor personnel to reduce the manufacturing time by 10%. All of these individual improvements have reduced the real cost of an NRU substantially over the past 15 years.

O`Brien, J.V. [Process Systems International, Inc., Westborough, MA (United States); Maloney, J.J. [Praxair, Inc., Tonawanda, NY (United States)

1997-12-31T23:59:59.000Z

410

Controlling Formaldehyde Emissions with Boiler Ash  

Science Journals Connector (OSTI)

Regenerative thermal (2) or catalytic (3) oxidizers are presently used to control HAPs and other VOCs. ... In another, methanol and other VOCs released from the manufacture of printed circuit boards were trapped and concentrated in activated carbon beds before being oxidized (11). ... The capital cost of a fluidized bed is much lower than that of a thermal oxidizer, and the cost of natural gas required to operate the oxidizer is removed. ...

Jennifer Cowan; Malyuba Abu-Daabes; Sujit Banerjee

2005-06-02T23:59:59.000Z

411

Oxidation Resistant Graphite Studies  

SciTech Connect (OSTI)

The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

W. Windes; R. Smith

2014-07-01T23:59:59.000Z

412

METAL OXIDE NANOPARTICLES  

SciTech Connect (OSTI)

This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

2007-10-01T23:59:59.000Z

413

Solubility of Nitrogen in Water at High Pressures and Temperatures  

Science Journals Connector (OSTI)

Gas Solubility Measurement and Modeling for the Nitrogen + Water System from 274.18 K to 363.02 K ... Two recent events allow a more detailed picture of the solubility of hydrogen, nitrogen, oxygen, and the noble gases in water to be given, than could have been given even a year ago. ...

John B. Goodman; Norman W. Krase

1931-01-01T23:59:59.000Z

414

Prediction of nitric oxide concentrations during inflammation and carcinogenesis  

E-Print Network [OSTI]

Nitric oxide is a biological messenger which is synthesized enzymatically throughout the body and which has numerous physiological functions, including roles in blood pressure control, regulation of clotting, and ...

Chin, Melanie Pei-Heng

2010-01-01T23:59:59.000Z

415

A PROTEOMIC STUDY OF OXIDATIVE STRESS IN ALCOHOLIC LIVER DISEASE  

E-Print Network [OSTI]

to oxidative stress with tert-butyl hydroperoxide (TBHP) contained 17% less carbonylated proteins than the non-fat loaded control. Mass spectrometric analysis of carbonylated proteins indicated that known classical markers of protein carbonylation (e...

Newton, Billy W.

2010-01-16T23:59:59.000Z

416

Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas Experiment III (SAGE III)  

E-Print Network [OSTI]

Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas extinction. We retrieve ozone and nitrogen dioxide number densities and aerosol extinction from transmission), Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas Experiment III

417

Effects of elevated CO2 , nitrogen deposition, and decreased species diversity on foliar fungal plant disease  

E-Print Network [OSTI]

. Keywords: biodiversity, ecosystem, elevated carbon dioxide, nitrogen enrichment, parasites, plant pathogensEffects of elevated CO2 , nitrogen deposition, and decreased species diversity on foliar fungal Three components of global change, elevated CO2 , nitrogen addition, and decreased plant species

Crews, Stephen

418

Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular  

E-Print Network [OSTI]

Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence by examining the joint effects of carbon dioxide (CO2) enrichment, nitrogen (N) fertilization and plant, community composition, grassland, niche partitioning hypothesis, nitrogen fertilization, plant richness

Minnesota, University of

419

Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular  

E-Print Network [OSTI]

Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence by examining the joint effects of carbon dioxide (CO2) enrichment, nitrogen (N) fertilization and plant enrichment, community composition, grassland, niche partitioning hypothesis, nitrogen fertilization, plant

Minnesota, University of

420

Satellite observations of ozone and nitrogen dioxide: from retrievals to emission estimates  

E-Print Network [OSTI]

Satellite observations of ozone and nitrogen dioxide: from retrievals to emission estimates #12 Satellite observations of ozone and nitrogen dioxide: from retrievals to emission es- timates / by Bas Subject headings: satellite retrieval / nitrogen dioxide / ozone / air pollution / emis- sion estimates

Haak, Hein

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Atmospheric input of nitrogen to the coastal region of southeastern Texas  

E-Print Network [OSTI]

inorganic nitrogen (DIN; NH4+, N03-), and dissolved organic nitrogen (DON) were measured in rainwater collected at three sampling sites (College Station, Houston, and Galveston, Texas). Dry deposition rate of nitrogen species was also measured...

Shon, Zang-Ho

2012-06-07T23:59:59.000Z

422

Questions and Answers - Is there anything colder than liquid nitrogen?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How cold is liquid nitrogen? How cold is liquid nitrogen? Previous Question (How cold is liquid nitrogen?) Questions and Answers Main Index Next Question (If you jumped into a pool of liquid oxygen, would your body instantly crystallize?) If you jumped into a pool of liquid oxygen,would your body instantly crystallize? Is there anything colder than liquid nitrogen? Yes, there are things colder than liquid nitrogen, like most of the Universe! I assume, though, that you mean things on the Earth. There actually is an entire branch of science called cryogenics that deals with really cold things. Generally the science of cryogenics is when the temperature goes below that which we can reach with conventional refrigeration equipment, around 250 degrees (Fahrenheit) below zero. Many

423

Frostbite Theater - Liquid Nitrogen Experiments - Popping Film Canisters!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploding Rubber Stopper! Exploding Rubber Stopper! Previous Video (Exploding Rubber Stopper!) Frostbite Theater Main Index Next Video (Insulators!) Insulators! Popping Film Canisters! What happens when liquid nitrogen is trapped inside a sealed container? Play the video to find out! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a container of liquid nitrogen! Steve: And these are a bunch of film canisters! Joanna: Let's see what happens when we trap the liquid nitrogen in the film canisters! Steve: Okay! Now the room, and everything in it, is way too hot for the liquid nitrogen to stay as a liquid. As soon as the liquid nitrogen touches anything in the room, it boils and changes into a gas.

424

Process for separating nitrogen from methane using microchannel process technology  

DOE Patents [OSTI]

The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

Tonkovich, Anna Lee (Marysville, OH); Qiu, Dongming (Dublin, OH); Dritz, Terence Andrew (Worthington, OH); Neagle, Paul (Westerville, OH); Litt, Robert Dwayne (Westerville, OH); Arora, Ravi (Dublin, OH); Lamont, Michael Jay (Hilliard, OH); Pagnotto, Kristina M. (Cincinnati, OH)

2007-07-31T23:59:59.000Z

425

Nitrogen dioxide and respiratory illness in children. Part II: Assessment of exposure to nitrogen dioxide  

SciTech Connect (OSTI)

Repeated measurements of nitrogen dioxide were obtained from 1988 to 1991 in the homes of 1,205 infants living in Albuquerque, NM. Passive diffusion samplers were used to obtain a series of two-week integrated measurements from the home of each infant for use in a cohort study of the relation of residential exposure to nitrogen dioxide and respiratory illnesses. Information on stove use and time spent inside the residence was collected at two-week and two-month intervals, respectively. During the winter, in the bedrooms of homes with gas cooking stoves, mean nitrogen dioxide concentrations were 21 parts per billion (ppb); mean concentrations in the living room and kitchen were 29 ppb and 34 ppb, respectively. In homes with electric cooking stoves, the mean bedroom concentration was 7 ppb during the winter. Lower indoor concentrations were observed during the summer in homes with both gas and electric stoves. On average, infants spent approximately 12.3 hours per day in their bedrooms, 7.3 hours in the living rooms, 35 minutes in the kitchens, and 3.8 hours out of their homes. (As a condition of participation, none of the infants spent more than 20 hours per week in day care outside of their homes). The mean time infants spent in the kitchen during cooking was approximately nine minutes per day. We tested whether exposures of infants living in homes with gas stoves could be reasonably estimated by measurements in the bedroom in comparison with time-weighted average concentrations based on time-activity data and simultaneous nitrogen dioxide measurements in the kitchen, living room, and bedroom. In 1,937 two-week intervals from 587 infants, 90% of time-weighted exposure (on the three-level classification used in this study) estimates were in agreement with estimates based on bedroom concentrations alone.

Lambert, W.E.; Samet, J.M.; Hunt, W.C.; Skipper, B.J.; Schwab, M.; Spengler, J.D. (Univ. of New Mexico Medical Center, Albuquerque (United States))

1993-06-01T23:59:59.000Z

426

Response of photosynthesis and nitrogen nutrition in Juglans nigra L. with different nitrogen fertilizers Michael Nicodemus and Douglass F. Jacobs  

E-Print Network [OSTI]

Response of photosynthesis and nitrogen nutrition in Juglans nigra L. with different nitrogen INTRODUCTION N fertilization has been shown to positively affect photosynthesis in most studies N fertilization and photosynthesis is largely due to ribulose-1,5-biphosphate carboxylase (RUBISCO

427

PHYSICAL REVIEW B 86, 245429 (2012) Ab initio atomistic thermodynamics study of the early stages of Cu(100) oxidation  

E-Print Network [OSTI]

- cluding methane synthesis,1­3 catalytic conversion of nitrogen oxides,4 water-gas shift,5,6 and preventing for oxygen chemical potentials below the nucleation limit of Cu2O, they are likely to exist due to kinetic

McGaughey, Alan

428

Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas...

429

E-Print Network 3.0 - aerobic nitrogen fixation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Mathematics 85 Nitrogen isotope dynamics of the Cariaco Basin, Venezuela Robert C. Thunell,1 Summary: . In recent budgets of oceanic fixed nitrogen, N2...

430

Faraday rotation spectroscopy of nitrogen dioxide based on a widely tunable external cavity quantum cascade laser  

E-Print Network [OSTI]

Faraday rotation spectroscopy of nitrogen dioxide based on a widely tunable external cavity quantum: Faraday Rotation Spectroscopy, external-cavity quantum cascade laser, nitrogen dioxide, trace

431

E-Print Network 3.0 - and-or nitrogen fixative Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

show the importance of atmospheric iron deposition for nitrogen fixation across the Pacific Ocean Summary: Nitrogen (N) fixation by specialized microorganisms (diazotrophs)...

432

E-Print Network 3.0 - atmospheric nitrogen loads Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and in the water running down tree trunks. We investigated how nitrogen pollution affected which... how well the species could recover from high levels of nitrogen exposure....

433

E-Print Network 3.0 - alpha-induced atmospheric nitrogen Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and in the water running down tree trunks. We investigated how nitrogen pollution affected which... how well the species could recover from high levels of nitrogen exposure....

434

Stabilized chromium oxide film  

DOE Patents [OSTI]

Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

Garwin, Edward L. (Los Altos, CA); Nyaiesh, Ali R. (Palo Alto, CA)

1988-01-01T23:59:59.000Z

435

Stabilized chromium oxide film  

DOE Patents [OSTI]

Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

Nyaiesh, A.R.; Garwin, E.L.

1986-08-04T23:59:59.000Z

436

Ethylene Oxide Explosions  

Science Journals Connector (OSTI)

... THE occasional occurrence of ethylene oxide explosions during the fumigation of dried fruit has led us to undertake a detailed ... yielded results somewhat like those for acetaldehyde1,2.. Cool flames can be initiated in ethylene oxide – air mixtures in the neighbourhood of 330° C. at atmospheric pressure. ...

J. H. BURGOYNE; F. A. BURDEN

1948-07-31T23:59:59.000Z

437

Aging of Iron (Hydr)oxides by Heat Treatment and Effects on Heavy  

E-Print Network [OSTI]

)oxides are used to remove heavy metals from wastewater and in the treatment of air pollution control residuesAging of Iron (Hydr)oxides by Heat Treatment and Effects on Heavy Metal Binding M E T T E A . S Ã? R generated in waste incineration. In this study, iron oxides containing heavy metals (e.g., Pb, Hg, Cr

Frenkel, Anatoly

438

Eddy-covariance observations of the atmosphere-biosphere exchange of nitrogen oxides  

E-Print Network [OSTI]

from the mean of vertical wind speed and concentration.observed between vertical wind speed and temperature sincethe cospectral density of vertical wind speed and NO X as

Min, Kyung-Eun

2012-01-01T23:59:59.000Z

439

Chlorine activation indoors and outdoors via surface-mediated reactions of nitrogen oxides with hydrogen chloride  

Science Journals Connector (OSTI)

...photochemically active gases. Particularly surprising...in medieval churches in Cyprus . Atmos Environ 41 : 9018...of inorganic chlorine gases other than hydrogen chloride...from anthropogenic and natural sources: Reactive chlorine...Christian TJ ( 2009 ) Trace gas and particle emissions from domestic...

Jonathan D. Raff; Bosiljka Njegic; Wayne L. Chang; Mark S. Gordon; Donald Dabdub; R. Benny Gerber; Barbara J. Finlayson-Pitts

2009-01-01T23:59:59.000Z

440

Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases  

E-Print Network [OSTI]

green sheet, (3) smoothing surface by chemically inducing reflow using a solvent,solvents comprised circa 35% of the weight of the feedstock materials for the green

Rheaume, Jonathan Michael

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Designing of SCR systems for reducing nitrogen oxide in diesel engines  

Science Journals Connector (OSTI)

SCR technology is the main strategy being pursued in order to comply with future NOx limits on the European, US and Japanese passenger car markets. Apart from a sound base of experience, the optimum design of SCR...

Rolf Kaiser; Klaus Rusch

2007-12-01T23:59:59.000Z

442

Satellite constraints of nitrogen oxide (NOx) emissions from India based on OMI observations and WRFChem simulations  

E-Print Network [OSTI]

; Ghude et al., 2008]. Thermal power plants are the largest consumer of coal in India [Garg et al., 2001 and WRFChem simulations Sachin D. Ghude,1,2 Gabriele G. Pfister,2 Chinmay Jena,1 R.J. van der A,3 Louisa K tropospheric NO2 column retrievals over the Indian region, with tropospheric NO2 columns simulated

Haak, Hein

443

Application of satellite observations for identifying regions of dominant sources of nitrogen oxides over the  

E-Print Network [OSTI]

with the growth in oil and coal consumption in India. The OMI-derived surface NO2 mixing ratios are indirectly are formed mostly by combustion processes (e.g., power plants, vehicles, fires) and to a lesser extent by natural sources (e.g., soils, lightning), play a key role in tropospheric chemistry. They lead to ozone

444

Effect of additives on the reduction of nitrogen oxides using cyanuric acid  

E-Print Network [OSTI]

1. Cylinder Concentrations of Flow Constituents. . . . . 16 Table 2. Maximum Output and Use of Flow ControHers. . . . 17 Table 3. Manufacturers and Purity Levels of Four Liquid Additives. . . . 30 Table 4. Nominal Inlet Concentrations of Simulated... OF THE EXPERIMENT Experimental Apparatus Species Calibration . Liquid Additive Mixture Preparation. Baseline Testing Additive Testing . . Data Acquisition and Reduction. RESULTS AND DISCUSSION Baseline Case . . Hydrogen . Methane. . . Ethylene...

Standridge, Brad Lee

2012-06-07T23:59:59.000Z

445

Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases  

E-Print Network [OSTI]

the unfired ceramic sample during thermal processing steps.ceramic samples were affixed to 4” silicon “handle” wafers using the following bonding agents: thermal

Rheaume, Jonathan Michael

2010-01-01T23:59:59.000Z

446

Production of a nitrogeneous humic fertilizer by the oxidation-ammoniation of lignite  

SciTech Connect (OSTI)

Two lignite samples were oxidised with HNO/sub 3/ (20% wt) at 75 C and treated afterwards with NH/sub 3/ in a fluidised-bed reactor in a temperature range 100-375 C. The effects of temperature, NH/sub 3/ flow rate, and reaction time on the total N/sub 2/ content of the product are reported. The product contained 7-13% wt of total N/sub 2/ which increased as the ammoniation temperature increased. Soil nitrification measurements of the N/sub 2/-enriched lignites showed that the maximum conversion to nitrates and rate of nitrification are exhibited by the product obtained at the lowest ammoniation temperature, i.e. 100 C. Maximum conversion to nitrates at that temperature was 45%, which compares well with similar products such as ammoniated peat (35%) and ammonium nitrohumates (45%).

Coca, J.

1984-12-01T23:59:59.000Z

447

Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions  

E-Print Network [OSTI]

Measurements of total nitrate and ammonia were made during the Pittsburgh Air Quality Study using a steam

Millstein, Dev

2009-01-01T23:59:59.000Z

448

Does the location of aircraft nitrogen oxide emissions affect their climate impact?  

E-Print Network [OSTI]

approximately balancing the IRF associated with aviation CO2 emissions (28 mWm�2 yr (TgNO2)�1 ). The overall climate impact of global aviation is often represented by a simple multiplier for CO2 emissions­3% of global anthropogenic CO2 emissions [Lee et al., 2009], yet these emissions fall outside the remit

449

Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem  

E-Print Network [OSTI]

Soil-moisture use by mixed conifer forest in a summer-drynitri?cation in a conifer forest soil as measured by 15 Nautotrophic AOB in mixed-conifer forest soils in the San

Jordan, F L; Cantera, JJL; Fenn, M E; Stein, L Y

2005-01-01T23:59:59.000Z

450

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...  

Broader source: Energy.gov (indexed) [DOE]

* 53% NO x sensors that meet stringent vehicle requirements are not available: a) Cost (Complex sensors compared to the automotive sensor) b) Sensitivity (Need 5ppm or...

451

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...  

Broader source: Energy.gov (indexed) [DOE]

complete NO x sensors that meet stringent vehicle requirements are not available: a) Cost (Complex sensors compared to the automotive sensor) b) Sensitivity (Need 5ppm or...

452

Influence of solid fuel on the carbon-monoxide and nitrogen-oxide emissions on sintering  

SciTech Connect (OSTI)

Laboratory and industrial research now underway at the sintering plant of AO Mittal Steel Temirtau is focusing on the preparation of fuel of optimal granulometric composition, the replacement of coke fines, and the adaptation of fuel-input technology so as to reduce fuel consumption and toxic emissions without loss of sinter quality.

M.F. Vitushchenko; N.L. Tatarkin; A.I. Kuznetsov; A.E. Vilkov [AO Mittal Steel Temirtau, Temirtau (Kazakhstan)

2007-07-01T23:59:59.000Z

453

Novel Denitrifying Bacterium Ochrobactrum anthropi YD50.2 Tolerates High Levels of Reactive Nitrogen Oxides  

Science Journals Connector (OSTI)

...was replaced with argon gas by purging for 15 min...production was analyzed by gas chromatography as described...to easily visualize N2 bubbles generated by denitrification...exopolysaccharide in activated sludge. Bioresour. Technol...production in high-strength wastewater. Water Res...

Yuki Doi; Naoki Takaya; Noboru Takizawa

2009-06-19T23:59:59.000Z

454

Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions  

E-Print Network [OSTI]

include fossil fuel combustion and biomass burning, and inlocations, residential combustion of biomass and coal for

Millstein, Dev

2009-01-01T23:59:59.000Z

455

Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions  

E-Print Network [OSTI]

3 Community Multiscale Air Quality (CMAQ) model aerosoland its role in regional air quality. Science, 311, 67-70.In United-States Air-Quality Studies. Atmos. Environ. , 27,

Millstein, Dev

2009-01-01T23:59:59.000Z

456

Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases  

E-Print Network [OSTI]

122 Table 22. Equivalent circuit model resistances for NOof the resistance elements of the equivalent circuit offersOver time, the resistance values of the equivalent circuit

Rheaume, Jonathan Michael

2010-01-01T23:59:59.000Z

457

16 - Ultra-low nitrogen oxides (NOx) emissions combustion in gas turbine systems  

Science Journals Connector (OSTI)

Abstract: The historical development of gas turbine low \\{NOx\\} combustion from the pioneering NASA work in the early 1970s to the present generation of ultra-low \\{NOx\\} industrial gas turbine combustors is reviewed. The principles of operation of single digit ultra-low \\{NOx\\} gas turbine combustion for industrial applications are outlined. The review shows the potential has been demonstrated by several investigators using different flame stabilizers for \\{NOx\\} to be reduced to 1 ppm at 1700 K, 2 ppm at 1800 K and 3–4 ppm at 1900 K with no influence of operating pressure and with a practical operating flame stability margin. Under these conditions it is shown that no thermal \\{NOx\\} should occur and all the \\{NOx\\} is formed by the prompt \\{NOx\\} mechanisms. The elimination of thermal \\{NOx\\} makes the \\{NOx\\} emissions independent of residence time or reference velocity and independent of pressure. Also there is no influence of air inlet temperature for the same flame temperature. Where legislation requires emissions to be as low as can be achieved, emissions below 4 ppm in production engines are current technology and this review shows the potential to get even lower than this in the future.

G.E. Andrews

2013-01-01T23:59:59.000Z

458

Photoinduced Surface Oxidation and Its Effect on the Exciton Dynamics of CdSe Quantum Dots  

SciTech Connect (OSTI)

With increased interest in semiconductor nanoparticles for use in quantum dot solar cells there comes a need to understand the long-term photostability of such materials. Colloidal CdSe quantum dots (QDs) were suspended in toluene and stored in combinations of light/dark and N{sub 2}/O{sub 2} to simulate four possible benchtop storage environments. CdSe QDs stored in a dark, oxygen-free environment were observed to better retain their optical properties over the course of 90 days. The excited state lifetimes, determined through femtosecond transient absorption spectroscopy, of air-equilibrated samples exposed to light exhibit a decrease in average lifetime (0.81 ns) when compared to samples stored in a nitrogen/dark environment (8.3 ns). A photoetching technique commonly used for controlled reduction of QD size was found to induce energetic trap states to CdSe QDs and accelerate the rate of electron-hole recombination. X-ray absorption near edge structure (XANES) analysis confirms surface oxidation, the extent of which is shown to be dependent on the thickness of the ligand shell.

Hines, Douglas A.; Becker, Matthew A.; Kamat, Prashant V. (Notre)

2012-11-14T23:59:59.000Z

459

Oxidative Degradation of Monoethanolamine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxidative Degradation of Monoethanolamine Oxidative Degradation of Monoethanolamine Susan Chi Gary T. Rochelle* (gtr@che.utexas.edu, 512-471-7230) The University of Texas at Austin Department of Chemical Engineering Austin, Texas 78712 Prepared for presentation at the First National Conference on Carbon Sequestration, Washington, DC, May 14-17, 2001 Abstract Oxidative degradation of monoethanolamine (MEA) was studied under typical absorber condition of 55°C. The rate of evolution of NH 3 , which was indicative of the overall rate of degradation, was measured continuously in a batch system sparged with air. Dissolved iron from 0.0001 mM to 1 mM yields oxidation rates from 0.37 to 2 mM/hr in MEA solutions loaded with 0.4 mole CO 2 / mole MEA. Ethylenediaminetetraacetic acid (EDTA) and N,N-bis(2- hydroxyethyl)glycine effectively decrease the rate of oxidation in the presence of iron by 40 to

460

New high-nitrogen energetic materials for gas generators in space ordnance  

SciTech Connect (OSTI)

High-nitrogen nitroheterocyclic energetic compounds are used as explosives, propellants, and gas generants when safe, thermally stable, cool-burning energetic materials are desired. A series of compounds are compared for sensitivity properties and calculated burn performance. Thermodynamic equilibrium calculations by NASA/Lewis rocket propellant and Blake gun propellant codes gave flame temperatures, average molecular weight, and identity of the equilibrium burn products for ambient, rocket, and gun pressure environments. These compounds were subjected to calculations both as monopropellants and as 50/50 weight ratio mixtures with ammonium nitrate (AN). Special attention was paid to calculated toxic products such as carbon monoxide and hydrogen cyanide, and how these were affected by the addition of an oxidizer AN. Several compounds were noted for further calculations of a formulation ad experimental evaluation.

Campbell, M.S.; Lee, Kien-Yin; Hiskey, M.A.

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Decomposition and nitrogen dynamics of fine roots of Norway spruce (Picea abies (L.) Karst) at different sites  

Science Journals Connector (OSTI)

Long-term decomposition and nitrogen dynamics of Norway spruce finest (energy content and nitrogen concentration was determined. After...

Krista Lõhmus; Mari Ivask

1995-01-01T23:59:59.000Z

462

Decomposition and nitrogen dynamics of fine roots of Norway spruce (Picea abies (L.) Karst.) at different sites  

Science Journals Connector (OSTI)

Long-term decomposition and nitrogen dynamics of Norway spruce finest (energy content and nitrogen concentration was determined. After...

Krista Lõhmus; Mari Ivask

463

Clean Nanotube Unzipping by Abrupt Thermal Expansion of Molecular Nitrogen: Graphene Nanoribbons with Atomically Smooth Edges  

SciTech Connect (OSTI)

We report a novel physicochemical route to produce highly crystalline nitrogen-doped graphene nanoribbons. The technique consists of an abrupt N2 gas expansion within the hollow core of nitrogen-doped multiwalled carbon nanotubes (CNx-MWNTs) when exposed to a fast thermal shock. The multiwalled nanotube unzipping mechanism is rationalized using molecular dynamics and density functional theory simulations, which highlight the importance of open-ended nanotubes in promoting the efficient introduction of N2 molecules by capillary action within tubes and surface defects, thus triggering an efficient and atomically smooth unzipping. The so-produced nanoribbons could be few-layered (from graphene bilayer onward) and could exhibit both crystalline zigzag and armchair edges. In contrast to methods developed previously, our technique presents various advantages: (1) the tubes are not heavily oxidized; (2) the method yields sharp atomic edges within the resulting nanoribbons; (3) the technique could be scaled up for the bulk production of crystalline nanoribbons from available MWNT sources; and (4) this route could eventually be used to unzip other types of carbon nanotubes or intercalated layered materials such as BN, MoS2, WS2, etc.

Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Terrones, M. [Universidad Carlos III, Madrid, Spain; Endo, M [Shinshu University; Munoz-Sandoval, Emilio [IPICyT; Kim, Y A [Shinshu University; Morelos-Bomez, Aaron [Shinshu University; Vega-Diaz, Sofia [Shinshu University

2012-01-01T23:59:59.000Z

464

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect (OSTI)

Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. Three different SCR catalysts are being studied. These are honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts are manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Test methods and experimental procedures were developed for current and future testing. The methods and procedures equalize factors influencing mercury adsorption and oxidation (surface area, catalyst activity, and pore structure) that normally differ for each catalyst type. Initial testing was performed to determine the time necessary for each catalyst to reach surface-adsorption equilibrium. In addition, the fraction of Hg oxidized by each of the SCR catalyst types is being investigated, for a given amount of catalyst and flow rate of mercury and flue gas. The next major effort will be to examine the kinetics of mercury oxidation across the SCR catalysts with respect to changes in mercury concentration and with respect to HCl concentration. Hg-sorption equilibrium times will also be investigated with respect to ammonia concentration in the simulated flue gas.

Jared W. Cannon; Thomas K. Gale

2004-12-31T23:59:59.000Z

465

Direct electrochemical reduction of metal-oxides  

DOE Patents [OSTI]

A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

Redey, Laszlo I. (Downers Grove, IL); Gourishankar, Karthick (Downers Grove, IL)

2003-01-01T23:59:59.000Z

466

Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate  

DOE Patents [OSTI]

A process for growing a crystalline oxide epitaxially upon the surface of a Group IV semiconductor, as well as a structure constructed by the process, is described. The semiconductor can be germanium or silicon, and the crystalline oxide can generally be represented by the formula (AO).sub.n (A'BO.sub.3).sub.m in which "n" and "m" are non-negative integer repeats of planes of the alkaline earth oxides or the alkaline earth-containing perovskite oxides. With atomic level control of interfacial thermodynamics in a multicomponent semiconductor/oxide system, a highly perfect interface between a semiconductor and a crystalline oxide can be obtained.

McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN); Chisholm, Matthew F. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

467

Stanford Nitrogen Group | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Radiator Labs Columbia University Radiator Labs developed a low-cost, easily installed radiator retrofit that converts radiator heating systems into a controlled-zoned system,...

468

NETL: News Release - DOE Selects Five NOx-Control Projects to Combat Acid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

November 5, 2004 November 5, 2004 DOE Selects Five NOx-Control Projects to Combat Acid Rain and Smog Industry Partners to Focus on Reducing Emissions While Cutting Energy Costs PITTSBURGH, PA - Continuing efforts to cut acid rain and smog-producing nitrogen oxides (NOx) have prompted the U.S. Department of Energy to partner with industry experts to develop advanced NOx-control technologies. With the selection of five new NOx-control projects, the Energy Department continues as a leader in developing advanced technologies to achieve environmental compliance for the nation's fleet of coal-fired power plants. Although today's NOx-control workhorses, such as low-NOx burners and selective catalytic reduction (SCR), have been successfully deployed to address existing regulations, proposed regulations will require deeper cuts in NOx emissions, at a greater number of generating facilities. Many of the smaller affected plants will not be able to cost-effectively use today's technologies; these are the focus of the advanced technologies selected in this announcement.

469

Phase-Transfer-Catalyzed Oxidations  

Science Journals Connector (OSTI)

Phase-transfer catalysis (PTC) offers many excellent opportunities for conducting oxidation reactions using inexpensive primary oxidants such as oxygen, sodium hypochlorite, hydrogen peroxide, electrooxidation...

Charles M. Starks; Charles L. Liotta; Marc E. Halpern

1994-01-01T23:59:59.000Z

470

Nitrogen-doped Graphene and Its Electrochemical Applications  

SciTech Connect (OSTI)

Nitrogen-doped graphene (N-graphene) is obtained by exposing graphene to nitrogen plasma. N-graphene exhibits much higher electrocatalytic activity toward oxygen reduction and H2O2 reduction than graphene, and much higher durability and selectivity than the widely-used expensive Pt. The excellent electrochemical performance of N-graphene is attributed to nitrogen functional groups and the specific properties of graphene. This indicates that N-graphene is promising for applications in electrochemical energy devices (fuel cells, metal-air batteries) and biosensors.

Shao, Yuyan; Zhang, Sheng; Engelhard, Mark H.; Li, Guosheng; Shao, Guocheng; Wang, Yong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

2010-06-04T23:59:59.000Z

471

Release of Fuel-Bound Nitrogen during Biomass Gasification  

Science Journals Connector (OSTI)

Gasification of four biomass feedstocks (leucaena, sawdust, bagasse, and banagrass) with significantly different fuel-bound nitrogen (FBN) content was investigated to determine the effects of operational parameters and nitrogen content of biomass on the partitioning of FBN among nitrogenous gas species. ... The present study attempts to clarify the effects of gasification conditions and fuel on the release and evolution of biomass FBN through parallel experiments utilizing four different biomass feedstocks having significantly different FBN contents. ... Four types of biomass feedstocks were used in the experimentsleucaena, sawdust, bagasse, and banagrass. ...

Jiachun Zhou; Stephen M. Masutani; Darren M. Ishimura; Scott Q. Turn; Charles M. Kinoshita

2000-01-29T23:59:59.000Z

472

Interval Methods for Sensitivity-Based Model-Predictive Control of  

E-Print Network [OSTI]

Interval Methods for Sensitivity-Based Model-Predictive Control of Solid Oxide Fuel Cell Systems and experiment for the thermal subprocess of a high-temperature solid oxide fuel cell system. Keywords: Interval analysis, model-predictive control, sensitivity analysis, tracking control, solid oxide fuel cells AMS

Kearfott, R. Baker

473

Integrated Dry NOx/SO2 Emissions Control System, A DOE Assessment  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round III, the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System (IDECS), as described in a Report to Congress (U.S. Department of Energy 1991). The desire to reduce emissions of nitrogen oxides (NO, nitric oxide, and NO{sub 2}, nitrogen dioxide, collectively referred to as NO{sub x}) and sulfur dioxide (SO{sub 2}) by up to 70 percent at a minimum capital expenditure, while limiting waste production to dry solids that can be handled by conventional ash-removal equipment, prompted Public Service Company of Colorado (PSCC) to submit the proposal for the IDECS project. In March 1991, PSCC entered into a cooperative agreement with DOE to conduct the study. The project was sited at PSCC's Arapahoe Steam Electric Generating Station in Denver, Colorado. The purpose of this CCT project was to demonstrate the reduction of NO{sub x} and SO{sub 2} emissions by installing a combination of existing and emerging technologies, which were expected to work synergistically to reduce emissions. The technologies were low-NO{sub x} burners (LNBS), overfire air (OFA), and selective noncatalytic reduction (SNCR) for NO{sub x} reduction; and dry sorbent injection (DSI), both with and without flue-gas humidification (FGH), for SO{sub 2} reduction. DOE provided 50 percent of the total project funding of $26.2 million.

National Energy Technology Laboratory

2001-10-01T23:59:59.000Z

474

Operation of mixed conducting metal oxide membrane systems under transient conditions  

DOE Patents [OSTI]

Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side, an oxidant feed surface, a permeate side, and a permeate surface, which method comprises controlling the differential strain between the permeate surface and the oxidant feed surface at a value below a selected maximum value by varying the oxygen partial pressure on either or both of the oxidant feed side and the permeate side of the membrane.

Carolan, Michael Francis (Allentown, PA)

2008-12-23T23:59:59.000Z

475

Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample  

SciTech Connect (OSTI)

We show that the orientation of nitrogen-vacancy (NV) defects in diamond can be efficiently controlled through chemical vapor deposition growth on a (111)-oriented diamond substrate. More precisely, we demonstrate that spontaneously generated NV defects are oriented with a ?97% probability along the [111] axis, corresponding to the most appealing orientation among the four possible crystallographic axes. Such a nearly perfect preferential orientation is explained by analyzing the diamond growth mechanism on a (111)-oriented substrate and could be extended to other types of defects. This work is a significant step towards the design of optimized diamond samples for quantum information and sensing applications.

Lesik, M.; Roch, J.-F. [Laboratoire Aimé Cotton, CNRS, Université Paris-Sud and Ecole Normale Supérieure de Cachan, 91405 Orsay (France); Tetienne, J.-P.; Jacques, V., E-mail: vjacques@ens-cachan.fr [Laboratoire Aimé Cotton, CNRS, Université Paris-Sud and Ecole Normale Supérieure de Cachan, 91405 Orsay (France); Laboratoire de Photonique Quantique et Moléculaire, Ecole Normale Supérieure de Cachan and CNRS UMR 8537, 94235 Cachan (France); Tallaire, A., E-mail: alexandre.tallaire@lspm.cnrs.fr; Achard, J.; Mille, V.; Gicquel, A. [Laboratoire des Sciences des Procédés et des Matériaux, CNRS and Université Paris 13, 93340 Villetaneuse (France)

2014-03-17T23:59:59.000Z

476

Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations  

SciTech Connect (OSTI)

Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.

Bollmann, Annette [Miami University, Oxford, OH; Sedlacek, Christopher J [Miami University, Oxford, OH; Laanbroek, Hendrikus J [Netherlands Institute of Ecology (NIOO-KNAW); Suwa, Yuichi [Chuo University, Tokyo, Japan; Stein, Lisa Y [University of California, Riverside; Klotz, Martin G [University of Louisville, Louisville; Arp, D J [Oregon State University; Sayavedra-Soto, LA [Oregon State University; Lu, Megan [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Pennacchio, Len [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Szeto, Ernest [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL)

2013-01-01T23:59:59.000Z

477

It's Elemental - Isotopes of the Element Nitrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Carbon Previous Element (Carbon) The Periodic Table of Elements Next Element (Oxygen) Oxygen Isotopes of the Element Nitrogen [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 14 99.636% STABLE 15 0.364% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 10 No Data Available Proton Emission 100.00% 11 5.49×10-22 seconds Proton Emission 100.00% 12 11.000 milliseconds Electron Capture 100.00% 13 9.965 minutes Electron Capture 100.00% 14 STABLE - - 15 STABLE - - 16 7.13 seconds Beta-minus Decay 100.00% Beta-minus Decay with delayed Alpha Decay 1.2×10-3 % 17 4.173 seconds Beta-minus Decay 100.00%

478

SOLID OXIDE PLANAR AND TUBULAR SOLID OXIDE FUEL  

E-Print Network [OSTI]

SOLID OXIDE PLANAR AND TUBULAR SOLID OXIDE FUEL CELLS Dynamic Simulation Approach Modular Approach · Parallel planes: PSOFC · Other: combustor, reformer Solid Oxide Fuel Cell Electrochemistry Cell Reactions · Slow pressure transients #12;Fuel Cell Assumptions · H2 electrochemically oxidized only · CO consumed

Mease, Kenneth D.

479

A method for carbon oxide concentration evaluation in high-temperature combustion processes  

Science Journals Connector (OSTI)

A method for evaluating carbon oxide concentration in high-temperature combustion processes is presented. The paper offers an optimizing control problem for fuel combustion process using a stabilizing regulatory controller, which affects the fuel/air ...

K. E. Arystanbaev, A. T. Apsemetov

2014-04-01T23:59:59.000Z

480

Frostbite Theater - Liquid Nitrogen Experiments - The Flying Ring!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquid Nitrogen and the Tea Kettle Mystery! Liquid Nitrogen and the Tea Kettle Mystery! Previous Video (Liquid Nitrogen and the Tea Kettle Mystery!) Frostbite Theater Main Index Next Video (Pewter Bells) Pewter Bells The Flying Ring! A copper ring leaps off an electromagnet when it's turned on. What happens when the ring's resistance is lowered using liquid nitrogen? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is an AC powered electromagnet. And this is a copper ring. When I place the copper ring on the electromagnet and turn it on, the magnet's changing magnetic field will induce an electric current in the copper ring. The current in the ring will then create it's own magnetic

Note: This page contains sample records for the topic "nitrogen oxide control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Frostbite Theater - Liquid Nitrogen Experiments - Let's Pour Liquid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shattering Flowers! Shattering Flowers! Previous Video (Shattering Flowers!) Frostbite Theater Main Index Next Video (Giant Koosh Ball!) Giant Koosh Ball! Let's Pour Liquid Nitrogen on the Floor! Liquid nitrogen?! On the floor?! Who's going to clean that mess up?! See what really happens when one of the world's most beloved cryogenic liquids comes into contact with a room temperature floor. [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: From time to time, we spill a little liquid nitrogen! The reaction we sometimes get is.... Shannon: Did they just pour LIQUID NITROGEN on the FLOOR?!?! Joanna: Yes. Yes we did. Steve: One thing people seem to have a problem with is the mess that liquid

482

Nitrogen expander cycles for large capacity liquefaction of natural gas  

SciTech Connect (OSTI)

Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun [Hong Ik University, Department of Mechanical Engineering, Seoul, 121-791 (Korea, Republic of); Choe, Kun Hyung [Korea Gas Corporation, Incheon, 406-130 (Korea, Republic of)

2014-01-29T23:59:59.000Z

483