National Library of Energy BETA

Sample records for nitrogen oxide burner

  1. Simulation of Nitrogen Emissions in a Premixed Hydrogen Flame Stabilized on a Low Swirl Burner

    E-Print Network [OSTI]

    Bell, John B.

    Simulation of Nitrogen Emissions in a Premixed Hydrogen Flame Stabilized on a Low Swirl Burner J. B temperatures. Such flames can be stabilized in a low swirl burner configuration, for example, using a variety in the context of a laboratory-scale low swirl burner fueled with a lean hydrogen-air mixture at atmospheric

  2. Simulation of Nitrogen Emissions in a Low Swirl Burner J. B. Bell, M. S. Day, X. Gao, M. J. Lijewski

    E-Print Network [OSTI]

    Bell, John B.

    Simulation of Nitrogen Emissions in a Low Swirl Burner J. B. Bell, M. S. Day, X. Gao, M. J, 2010 Abstract We present simulations of a laboratory-scale low swirl burner fueled with hydrogen in a turbulent burner if the fuel mixture is enriched with H2 [8]. Hydrogen addition enhances the effective flame

  3. Reducing Nitrogen Oxide Emissions: 1996 Compliance with Title IV Limits

    Reports and Publications (EIA)

    1998-01-01

    The purpose of this article is to summarize the existing federal nitrogen oxide (Nox) regulations and the 1996 performance of the 239 Title IV generating units. It also reviews the basics of low-Nox burner technology and presents cost and performance data for retrofits at Title IV units.

  4. ARM - Oxides of Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendar NSA Related LinksOxides of Nitrogen Outreach Home

  5. Ultralean low swirl burner

    DOE Patents [OSTI]

    Cheng, R.K.

    1998-04-07

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame. 11 figs.

  6. Ultralean low swirl burner

    DOE Patents [OSTI]

    Cheng, Robert K. (Kensington, CA)

    1998-01-01

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame.

  7. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    DOE Patents [OSTI]

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

    2013-04-02

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  8. Nitrogen oxide delivery systems for biological media

    E-Print Network [OSTI]

    Skinn, Brian Thomas

    2012-01-01

    Elevated levels of nitric oxide (NO) in vivo are associated with a variety of cellular modifications thought to be mutagenic or carcinogenic. These processes are likely mediated by reactive nitrogen species (RNS) such as ...

  9. Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner

    SciTech Connect (OSTI)

    Hancock, R.D.; Bertagnolli, K.E.; Lucht, R.P.

    1997-05-01

    Coherent anti-Stokes Raman scattering (CARS) spectroscopy of diatomic nitrogen and hydrogen was used to measure flame temperatures in hydrogen/air flames produced using a nonpremixed, near-adiabatic, flat-flame Hencken burner. The CARS temperature measurements are compared with adiabatic flame temperatures calculated by the NASA-Lewis equilibrium code for equivalence ratios from 0.5--2.5. The nitrogen CARS temperatures are in excellent agreement with the equilibrium code calculations. Comparison of nitrogen CARS data and the equilibrium code calculations confirms that for sufficiently high flow rates the Hencken burner produces nearly adiabatic flames. Hydrogen CARS temperature measurements are compared to both nitrogen CARS temperature measurements and equilibrium code predictions in order to evaluate and improve the accuracy of hydrogen CARS as a temperature diagnostic tool. Hydrogen CARS temperatures for fuel-rich flames are on average 70 K ({approximately}3%) above the equilibrium code predictions and nitrogen CARS temperatures. The difference between temperatures measured using hydrogen and nitrogen CARS is probably due primarily to uncertainties in hydrogen linewidths and line-broadening mechanisms at these conditions.

  10. Startup burner

    DOE Patents [OSTI]

    Zhao, Jian Lian (Belmont, MA); Northrop, William F. (Ann Arbor, MI); Bosco, Timothy (Dallas, TX); Rizzo, Vincent (Norfolk, MA); Kim, Changsik (Lexington, MA)

    2009-08-18

    A startup burner for rapidly heating a catalyst in a reformer, as well as related methods and modules, is disclosed.

  11. Pulverized coal burner

    DOE Patents [OSTI]

    Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.

    1998-11-03

    A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.

  12. Pulverized coal burner

    DOE Patents [OSTI]

    Sivy, Jennifer L. (Alliance, OH); Rodgers, Larry W. (Canton, OH); Koslosy, John V. (Akron, OH); LaRue, Albert D. (Uniontown, OH); Kaufman, Keith C. (Canton, OH); Sarv, Hamid (Canton, OH)

    1998-01-01

    A burner having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO.sub.x burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO.sub.x back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing.

  13. RENEWABLES RESEARCH Boiler Burner Energy System Technology

    E-Print Network [OSTI]

    RENEWABLES RESEARCH Boiler Burner Energy System Technology (BBEST) for Firetube Boilers PIER, industrial combined heat and power (CHP) boiler burner energy system technology ("BBEST"). Their research (unrecuperated) with an ultra- low nitrous oxide (NOx) boiler burner for firetube boilers. The project goals

  14. Nitrogen oxides storage catalysts containing cobalt

    DOE Patents [OSTI]

    Lauterbach, Jochen (Newark, DE); Snively, Christopher M. (Clarks Summit, PA); Vijay, Rohit (Annandale, NJ); Hendershot, Reed (Breinigsville, PA); Feist, Ben (Newark, DE)

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  15. Nitrogen oxides emission trends in Monthly emission estimates of nitrogen oxides from space provide

    E-Print Network [OSTI]

    Haak, Hein

    Chapter 5 Nitrogen oxides emission trends in East Asia Abstract Monthly emission estimates present first results of a new emission estimation algorithm, specifically designed to use daily satellite observations of column concentrations for fast updates of emission estimates of short-lived atmospheric

  16. Burners and combustion apparatus for carbon nanomaterial production

    DOE Patents [OSTI]

    Alford, J. Michael (Lakewood, CO); Diener, Michael D. (Denver, CO); Nabity, James (Arvada, CO); Karpuk, Michael (Boulder, CO)

    2007-10-09

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  17. Burners and combustion apparatus for carbon nanomaterial production

    SciTech Connect (OSTI)

    Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

    2013-02-05

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  18. FLAT FLAME BURNER ANALYSES

    E-Print Network [OSTI]

    Pagni, P.J.

    2012-01-01

    in Edge Cooled F1at Flame Burners," Combust. Sci. and Tech.Subscripts w water b burner ambient, upstream bondary ufor publication FLAT FLAME BURNER ANALYSES P. J. Pagni, A.

  19. Method For Selective Catalytic Reduction Of Nitrogen Oxides

    DOE Patents [OSTI]

    Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  20. Method for selective catalytic reduction of nitrogen oxides

    DOE Patents [OSTI]

    Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  1. Nitrogen oxidizing in modeling of diesel engine operation

    SciTech Connect (OSTI)

    Kulakov, V.; Merker, G.

    1995-12-31

    A computer model of diesel engine operation based on the interconnected calculation of diesel fuel spray and the processes in the combustion chamber is extended for the calculation of Nitrogen oxidizing. A number of chemical reactions with O{sub 2}, O, N{sub 2}, N, NO, OH, H, H{sub 2} are included in the model.

  2. Introduction The reduction of nitrogen oxide emissions is

    E-Print Network [OSTI]

    Sandoghdar, Vahid

    is attained in a post-catalyst homogeneous combustion zone.This process leads to substantial reduction of NOxIntroduction The reduction of nitrogen oxide emissions is of great importance in practical emissions (typically NOx is produced exclusively from the gaseous (homogeneous) reaction path

  3. Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Robust Nitrogen OxideAmmonia Sensors for Vehicle On-board Emissions Control Robust Nitrogen OxideAmmonia Sensors for Vehicle On-board Emissions Control 2012 DOE Hydrogen and Fuel...

  4. Nitrogen oxides emission control options for coal-fired electric utility boilers

    SciTech Connect (OSTI)

    Ravi K. Srivastava; Robert E. Hall; Sikander Khan; Kevin Culligan; Bruce W. Lani

    2005-09-01

    Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at 150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/106 Btu. 106 refs., 6 figs., 6 tabs.

  5. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    DOE Patents [OSTI]

    Walker, Richard J. (Bethel Park, PA)

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  6. Nitrogen oxide abatement by distributed fuel addition

    SciTech Connect (OSTI)

    Wendt, J.O.L.; Mereb, J.B.

    1991-09-20

    Reburning is examined as a means of NO{sub x} destruction in a 17 kW down-fired pulverized coal combustor. In reburning, a secondary fuel is introduced downstream of the primary flame to produce a reducing zone, favorable to NO destruction, and air is introduced further downstream to complete the combustion. Emphasis is on natural gas reburning and a bituminous coal primary flame. A parametric examination of reburning employing a statistical experimental design, is conducted, complemented by detailed experiments. Mechanisms governing the inter-conversion of nitrogenous species in the fuel rich reburn zone is explored. The effect of reburning on N{sub 2}O emissions, the effect of primary flame mode (premixed and diffusion) and the effect of distributing the reburning fuel, are also investigated.

  7. Nitrogen doped zinc oxide thin film

    SciTech Connect (OSTI)

    Li, Sonny X.

    2003-12-15

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  8. Front Burner- Issue 14

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 14 addresses the 2013 National Cybersecurity Awareness Month (NCSAM) Campaign and Phishing Scams.

  9. Front Burner- Issue 15

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 15 addresses the DOE eSCRM Program and Secure Online Shopping.

  10. Rotary Burner Demonstration

    SciTech Connect (OSTI)

    Paul Flanagan

    2003-04-30

    The subject technology, the Calcpos Rotary Burner (CRB), is a burner that is proposed to reduce energy consumption and emission levels in comparison to currently available technology. burners are used throughout industry to produce the heat that is required during the refining process. Refineries seek to minimize the use of energy in refining while still meeting EPA regulations for emissions.

  11. Silane-propane ignitor/burner

    DOE Patents [OSTI]

    Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

    1983-05-26

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  12. Silane-propane ignitor/burner

    DOE Patents [OSTI]

    Hill, Richard W. (Livermore, CA); Skinner, Dewey F. (Livermore, CA); Thorsness, Charles B. (Livermore, CA)

    1985-01-01

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  13. Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions

    DOE Patents [OSTI]

    Apel, William A. (Idaho Falls, ID)

    1998-01-01

    A biofilter for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described.

  14. Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions

    DOE Patents [OSTI]

    Apel, W.A.

    1998-08-18

    A biofilter is described for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method is described of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described. 6 figs.

  15. Method for reducing nitrogen oxides in combustion effluents

    DOE Patents [OSTI]

    Zauderer, Bert (Merion Station, PA)

    2000-01-01

    Method for reducing nitrogen oxides (NO.sub.x) in the gas stream from the combustion of fossil fuels is disclosed. In a narrow gas temperature zone, NO.sub.x is converted to nitrogen by reaction with urea or ammonia with negligible remaining ammonia and other reaction pollutants. Specially designed injectors are used to introduce air atomized water droplets containing dissolved urea or ammonia into the gaseous combustion products in a manner that widely disperses the droplets exclusively in the optimum reaction temperature zone. The injector operates in a manner that forms droplet of a size that results in their vaporization exclusively in this optimum NO.sub.x -urea/ammonia reaction temperature zone. Also disclosed is a design of a system to effectively accomplish this injection.

  16. Catalyzed Ceramic Burner Material

    SciTech Connect (OSTI)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

  17. Method for combined removal of mercury and nitrogen oxides from off-gas streams

    DOE Patents [OSTI]

    Mendelsohn, Marshall H. (Downers Grove, IL); Livengood, C. David (Lockport, IL)

    2006-10-10

    A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

  18. Front Burner- Issue 18

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 18 addresses keeping kids safe on the Internet, cyber crime, and DOE Cyber awareness and training initiatives.

  19. Front Burner- Issue 13

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 13 contained a message from the Associate Chief Information Officer (ACIO) for Cybersecurity as well as a listing of recommended cybersecurity practices.

  20. The effects of nitrogen oxides on cytochrome P-450 mediated mixed-function oxidations in mammalian lung 

    E-Print Network [OSTI]

    Tucker, Leo Dean

    1979-01-01

    THE EFFECTS OF NITROGEN OXIDES ON CYTOCHROME P-450 MEDIATED MIXED-FUNCTION OXIDATIONS IN ~IAN IUNG A Thesis by LEO DEAN TUCKER, II Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 1979 Major Subject: Biology THE EFFECTS OF NITROGEN OXIDES ON CYTOCHROME P-450 MEDIATED MIXED-FUNCTION OXIDATIONS IN MAMMALIAN LUNG A Thesis by LEO DEAN TUCKER, II Approved as to style and content by...

  1. Technological modifications in the nitrogen oxides tradable permit program

    SciTech Connect (OSTI)

    Linn, J.

    2008-07-01

    Tradable permit programs allow firms greater flexibility in reducing emissions than command-and-control regulations and encourage firms to use low cost abatement options, including small-scale modifications to capital equipment. This paper shows that firms have extensively modified capital equipment in the Nitrogen Oxides Budget Trading Program, which covers power plants in the eastern United States. The empirical strategy uses geographic and temporal features of the program to estimate counterfactual emissions, finding that modifications have reduced emission rates by approximately 10-15 percent. The modifications would not have occurred under command-and-control regulation and have reduced regulatory costs.

  2. Combustor burner vanelets

    DOE Patents [OSTI]

    Lacy, Benjamin (Greer, SC); Varatharajan, Balachandar (Loveland, OH); Kraemer, Gilbert Otto (Greer, SC); Yilmaz, Ertan (Albany, NY); Zuo, Baifang (Simpsonville, SC)

    2012-02-14

    The present application provides a burner for use with a combustor of a gas turbine engine. The burner may include a center hub, a shroud, a pair of fuel vanes extending from the center hub to the shroud, and a vanelet extending from the center hub and/or the shroud and positioned between the pair of fuel vanes.

  3. Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia

    DOE Patents [OSTI]

    Pence, Dallas T. (Idaho Falls, ID); Thomas, Thomas R. (Idaho Falls, ID)

    1980-01-01

    Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

  4. Catalyst and method for reduction of nitrogen oxides

    DOE Patents [OSTI]

    Ott, Kevin C. (Los Alamos, NM)

    2008-05-27

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  5. Catalyst and method for reduction of nitrogen oxides

    DOE Patents [OSTI]

    Ott, Kevin C. (Los Alamos, NM)

    2008-08-19

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  6. Burner control system

    SciTech Connect (OSTI)

    Cade, P.J.

    1981-01-06

    A burner control apparatus for use with a furnace installation that has an operating control to produce a request for burner operation, a flame sensor to produce a signal when flame is present in the monitored combustion chamber, and one or more devices for control of ignition and/or fuel flow. The burner control apparatus comprises lockout apparatus for de-energizing the control apparatus, a control device for actuating the ignition and/or fuel control devices, and a timing circuit that provides four successive and partially overlapping timing intervals of precise relation, including a purge timing interval, a pilot ignition interval, and a main fuel ignition interval. The present invention further includes a burner control system which verifies the proper operation of certain sensors in a burner or furnace including particularly the air flow sensor. Additionally, the present system also prevents an attempt to ignite a burner if a condition is detected which indicates that the air flow sensor has been bypassed or wedged in the actuated position.

  7. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE's Clean Coal Technology Program Round II.

  8. Downhole burner systems and methods for heating subsurface formations

    DOE Patents [OSTI]

    Farmayan, Walter Farman (Houston, TX); Giles, Steven Paul (Damon, TX); Brignac, Jr., Joseph Phillip (Katy, TX); Munshi, Abdul Wahid (Houston, TX); Abbasi, Faraz (Sugarland, TX); Clomburg, Lloyd Anthony (Houston, TX); Anderson, Karl Gregory (Missouri City, TX); Tsai, Kuochen (Katy, TX); Siddoway, Mark Alan (Katy, TX)

    2011-05-31

    A gas burner assembly for heating a subsurface formation includes an oxidant conduit, a fuel conduit, and a plurality of oxidizers coupled to the oxidant conduit. At least one of the oxidizers includes a mix chamber for mixing fuel from the fuel conduit with oxidant from the oxidant conduit, an igniter, and a shield. The shield includes a plurality of openings in communication with the oxidant conduit. At least one flame stabilizer is coupled to the shield.

  9. Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology

    SciTech Connect (OSTI)

    McGill, R.N.

    1998-08-04

    Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

  10. Nitric OxideTriggered Remodeling of Chloroplast Bioenergetics and Thylakoid Proteins upon Nitrogen

    E-Print Network [OSTI]

    Nitric Oxide­Triggered Remodeling of Chloroplast Bioenergetics and Thylakoid Proteins upon Nitrogen droplets, but the accompanying changes in bioenergetics have been little studied so far. Here, we report

  11. Air Pollution Control Regulations: No.27- Control of Nitrogen Oxide Emissions (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations apply to stationary sources with the potential to emit 50 tons of nitrogen oxides (NOx) per year from all pollutant-emitting equipment or activities. The regulations describe...

  12. Nitrogen oxides emission control through reburning with biomass in coal-fired power plants 

    E-Print Network [OSTI]

    Arumugam, Senthilvasan

    2005-02-17

    Oxides of nitrogen from coal-fired power stations are considered to be major pollutants, and there is increasing concern for regulating air quality and offsetting the emissions generated from the use of energy. Reburning ...

  13. Zevenhoven & Kilpinen NITROGEN 18.1.2004 4-35 4.11 Chemistry of nitrogen oxides at atmospheric fluidized bed

    E-Print Network [OSTI]

    Zevenhoven, Ron

    oxide by air staging, and reduction of nitric oxide with char. In circulating fluidized bed combustion reactions between gas and particles become important, e.g., reduction of nitric oxide with char, which or noncatalytic. For example, the reduction of nitric oxide with char #12;Zevenhoven & Kilpinen NITROGEN 18

  14. Nitrogen Dioxide Absorption and Sulfite Oxidation in Aqueous Sulfite

    E-Print Network [OSTI]

    Rochelle, Gary T.

    oxidation in limestone slurry scrubbing. Introduction Limestone (CaCO3) slurry scrubbing and lime (Ca

  15. Dark matter burners

    E-Print Network [OSTI]

    Moskalenko, I V; Moskalenko, Igor V.; Wai, Lawrence L.

    2007-01-01

    We show that a star orbiting close enough to an adiabatically grown supermassive black hole (SMBH) can capture weakly interacting massive particles (WIMPs) at an extremely high rate. The stellar luminosity due to annihilation of captured WIMPs in the stellar core may be comparable to or even exceed the luminosity of the star due to thermonuclear burning. The model thus predicts the existence of unusual stars, essentially WIMP burners, in the vicinity of a SMBH. We find that the most efficient WIMP burners are stars with degenerate electron cores, e.g. white dwarfs (WDs); such WDs may have a very high surface temperature. If found, such stars would provide evidence for the existence of particle dark matter and can possibly be used to establish its density profile. On the other hand, the lack of such unusual stars may provide constraints on the WIMP density near the SMBH, as well as the WIMP-nucleus scattering and pair annihilation cross-sections.

  16. Dark matter burners

    E-Print Network [OSTI]

    Igor V. Moskalenko; Lawrence L. Wai

    2007-02-24

    We show that a star orbiting close enough to an adiabatically grown supermassive black hole (SMBH) can capture weakly interacting massive particles (WIMPs) at an extremely high rate. The stellar luminosity due to annihilation of captured WIMPs in the stellar core may be comparable to or even exceed the luminosity of the star due to thermonuclear burning. The model thus predicts the existence of unusual stars, essentially WIMP burners, in the vicinity of a SMBH. We find that the most efficient WIMP burners are stars with degenerate electron cores, e.g. white dwarfs (WDs); such WDs may have a very high surface temperature. If found, such stars would provide evidence for the existence of particle dark matter and can possibly be used to establish its density profile. On the other hand, the lack of such unusual stars may provide constraints on the WIMP density near the SMBH, as well as the WIMP-nucleus scattering and pair annihilation cross-sections.

  17. EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas

    Broader source: Energy.gov [DOE]

    The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower’s Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NOx control technologies.

  18. Rotary Burner Demonstration Fact Sheet

    SciTech Connect (OSTI)

    2003-07-01

    A new Calcpos rotary burner (CRB), eliminates electric motors, providing a simple, cost effective means of retrofitting existing fired heaters for energy and environmental reasons.

  19. Registration Form Florida's Certified Pile Burner Program

    E-Print Network [OSTI]

    Ma, Lena

    Registration Form ! Florida's Certified Pile Burner Program Tuesday, September 15, 2015 ! Polk! ! ! FFS Customer Number! ! #12;! ! Florida's Certified Pile Burner Training! Tuesday, September 15, 2015;! ! ! Florida's Certified Pile Burner Training! Frequently Asked Questions! ! Q: Why should I be a certified

  20. Cambridge Stratified Slot Burner Data

    E-Print Network [OSTI]

    Sweeney, Mark; Hochgreb, Simone; Barlow, Rob

    2010-09-23

    Stratified Slot Burner Operating Conditions: fs1,fs4,fs6 Axial Location z = 15 mm downstream of burner exit Distance from centreline (mm),Velocity (m/s),Turbulence Intensity (-) 0.5,3.7706,8.1882 1,3.7002,9.1183 1.5,3.5715,10.562 2,3.4403,11.638 2...

  1. TURBINE BURNERS: Engine Performance Improvements;

    E-Print Network [OSTI]

    Heydari, Payam

    the expansion through the turbine for turbojet , turbofan , and stationary - power gas - turbine engines. StudyTURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High/WEIGHT Range highly undesirable Desirable Not Good #12;TURBINE BURNER CONCEPT Turbine burning has advantage

  2. Development and validation of a combustion model for a fuel cell off-gas burner

    E-Print Network [OSTI]

    Collins, William Tristan

    2008-10-14

    Burner Details 164 C.1 Burner Inlet Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 C.2 Emission Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 List of References 173 List of Figures 1.1 SOFC... Steady Laminar Flamelet Model . . . . . . . . . . . . . . . . . . . . . . 16 SOFC Solid Oxide Fuel Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 UDF User De?ned Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73...

  3. Process for nitrogen oxides reduction with minimization of the production of other pollutants

    SciTech Connect (OSTI)

    Epperly, W.R.; O'Leary, J.H.; Sullivan, J.C.; Sprague, B.N.

    1990-02-20

    This patent describes a process for reducing the concentration of nitrogen oxides in an effluent while minimizing the production of other pollutants. It comprises: determining the condition of the effluent which exists at a location for introduction of a treatment agent; effecting a treatment regimen which comprises introducing a treatment agent comprising an ammonium salt of an organic acid having a carbon to nitrogen ratio of greater than 1:1 into the effluent to reduce the nitrogen oxides concentration in the effluent under the determined effluent conditions while minimizing the production of other pollutants; monitoring the condition of the effluent until a significant alteration in the condition of the effluent is observed; and adjusting the treatment regimen by varying at least one of the following parameters: dilution and introduction rate of the hydrocarbon treatment agent; composition of the hydrocarbon treatment agent; and relative presence of the components of the hydrocarbon treatment agent.

  4. Does the location of aircraft nitrogen oxide emissions affect their climate impact?

    E-Print Network [OSTI]

    Stevenson, David

    integrations: a base case, then variants with extra aircraft nitrogen oxide (NOx) emissions added to specific NOx emissions. NOx promotes tropospheric ozone (O3) production, but also stimulates methane (CH4 how important the emission location is in influencing the impact of aviation NOx on O3 and CH4. 2

  5. KINETICS, CATALYSIS, AND REACTION ENGINEERING Nonthermal Plasma Reactions of Dilute Nitrogen Oxide Mixtures

    E-Print Network [OSTI]

    Yeung, Man-Chung

    -type rate model, is found to capture the effect of power input, NOx composition, and residence time. An N for the conversion of nitrogen oxides,1,2,4-10 sulfur dioxide,11 and volatile organic car- bons.12 Despite its a mathematical model that captures transport and reac- tion rates. Such a model is needed to develop new

  6. Burner balancing Salem Harbor Station

    SciTech Connect (OSTI)

    Sload, A.W.; Dube, R.J.

    1995-12-31

    The traditional method of burner balancing is first to determine the fuel distribution, then to measure the economizer outlet excess oxygen distribution and to adjust the burners accordingly. Fuel distribution is typically measured by clean and dirty air probing. Coal pipe flow can then be adjusted, if necessary, through the use of coal pipe orificing or by other means. Primary air flow must be adjusted to meet the design criteria of the burner. Once coal pipe flow is balanced to within the desired criteria, secondary air flow to individual burners can be changed by adjusting windbox dampers, burner registers, shrouds or other devices in the secondary air stream. This paper discusses problems encountered in measuring excess O{sub 2} at the economizer outlet. It is important to recognize that O{sub 2} measurements at the economizer outlet, by themselves, can be very misleading. If measurement problems are suspected or encountered, an alternate approach similar to that described should be considered. The alternate method is not only useful for burner balancing but also can be used to help in calibrating the plant excess O{sub 2} instruments and provide an on line means of cross-checking excess air measurements. Balanced burners operate closer to their design stoichiometry, providing better NO{sub x} reduction. For Salem Harbor Station, this means a significant saving in urea consumption.

  7. Radial lean direct injection burner

    DOE Patents [OSTI]

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  8. Safety Topic: Bunsen Burners and Hotplates

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Topic: Bunsen Burners and Hotplates Justin Kleingartner Advisors: Bob Cohen Gareth McKinley #12;Bunsen Burners · Produces open flame used for heating, sterilization, and combustion · Utilizes desired flame #12;Bunsen Burners Procedures · PLACE the Bunsen burner away from any overhead shelving

  9. Nitrogen oxide abatement by distributed fuel addition. Final report

    SciTech Connect (OSTI)

    Wendt, J.O.L.; Mereb, J.B.

    1991-09-20

    Reburning is examined as a means of NO{sub x} destruction in a 17 kW down-fired pulverized coal combustor. In reburning, a secondary fuel is introduced downstream of the primary flame to produce a reducing zone, favorable to NO destruction, and air is introduced further downstream to complete the combustion. Emphasis is on natural gas reburning and a bituminous coal primary flame. A parametric examination of reburning employing a statistical experimental design, is conducted, complemented by detailed experiments. Mechanisms governing the inter-conversion of nitrogenous species in the fuel rich reburn zone is explored. The effect of reburning on N{sub 2}O emissions, the effect of primary flame mode (premixed and diffusion) and the effect of distributing the reburning fuel, are also investigated.

  10. Mechanical swirler for a low-NO.sub.x, weak-swirl burner

    DOE Patents [OSTI]

    Cheng, Robert K. (Kensington, CA); Yegian, Derek T. (Berkeley, CA)

    1999-01-01

    Disclosed is a mechanical swirler for generating diverging flow in lean premixed fuel burners. The swirler of the present invention includes a central passage with an entrance for accepting a feed gas, a flow balancing insert that introduces additional pressure drop beyond that occurring in the central passage in the absence of the flow balancing insert, and an exit aligned to direct the feed gas into a combustor. The swirler also has an annular passage about the central passage and including one or more vanes oriented to impart angular momentum to feed gas exiting the annular passage. The diverging flow generated by the swirler stabilizes lean combustion thus allowing for lower production of pollutants, particularly oxides of nitrogen.

  11. Mechanical swirler for a low-NO{sub x}, weak-swirl burner

    DOE Patents [OSTI]

    Cheng, R.K.; Yegian, D.T.

    1999-03-09

    Disclosed is a mechanical swirler for generating diverging flow in lean premixed fuel burners. The swirler of the present invention includes a central passage with an entrance for accepting a feed gas, a flow balancing insert that introduces additional pressure drop beyond that occurring in the central passage in the absence of the flow balancing insert, and an exit aligned to direct the feed gas into a combustor. The swirler also has an annular passage about the central passage and including one or more vanes oriented to impart angular momentum to feed gas exiting the annular passage. The diverging flow generated by the swirler stabilizes lean combustion thus allowing for lower production of pollutants, particularly oxides of nitrogen. 16 figs.

  12. COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER

    E-Print Network [OSTI]

    Chin, W.K.

    2010-01-01

    an Opposed Flow Diffusion Burner Environment Division Chinmodel furnaces, flat flame burners, flow reactors, shocktubes, single particle burners, and, no doubt, others have

  13. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, June--September 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE`s Clean Coal Technology Program Round II.

  14. Process for nitrogen oxides reduction and minimization of the production of other pollutants

    SciTech Connect (OSTI)

    Epperly, W.R.; O'Leary, J.H.; Sullivan, J.C.

    1988-10-25

    This patent describes a process for reducing the concentration of nitrogen oxides in an effluent from the combustion of a carbonaceous fuel while minimizing the production of other pollutants. The process consists of: a. determining the condition of the effluent which exists at a location for introduction of a treatment agent; b. effecting a treatment regimen which comprises introducing a treatment agent into the effluent to treat the effluent to reduce the nitrogen oxides concentration in the effluent under the determined effluent conditions while minimizing the production of other pollutants; c. monitoring the condition of the effluent until a significant alteration in the condition of the effluent is observed; d. adjusting the treatment regimen by varying at least one of the following parameters: (i) dilution and introduction rate of the treatment agent; (ii) components of the treatment agent; and (iii) relative presence of treatment agent components, to effect an adjusted treatment regimen, wherein the adjusted treatment regimen reduces the nitrogen oxides concentration in the effluent under the altered effluent condition while minimizing the production of other pollutants.

  15. Process for nitrogen oxides reduction with minimization of the production of other pollutants

    SciTech Connect (OSTI)

    Epperly, W.R.; O'Leary, J.H.; Sullivan, J.C.; Sprague, B.N.

    1989-10-31

    This patent describes a process for reducing the concentration of nitrogen oxides in an effluent which is at a temperature below about 1450 {degrees}F while minimizing the production of other pollutants. The process comprising: determining the condition of the effluent which exists at a location for introduction of a treatment agent; effecting a treatment regimen which comprises introducing a treatment agent comprising a hydrocarbon into the effluent to reduce the nitrogen oxides concentration in the effluent under the determined effluent conditions while minimizing the production of other pollutants; monitoring the condition of the effluent until a significant alteration in the condition of the effluent is observed; adjusting the treatment regimen by varying at least one of the following parameters: dilution and introduction rate of the hydrocarbon treatment agent; composition of the hydrocarbon treatment agent; and relative presence of the components of the hydrocarbon treatment agent, to effect an adjusted treatment regimen. Wherein the adjusted treatment regimen operates under conditions effective to reduce the nitrogen oxides concentration in the effluent under the altered effluent conditions.

  16. Burner ignition system

    DOE Patents [OSTI]

    Carignan, Forest J. (Bedford, MA)

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  17. Criterion for burner design in thermal weed control 

    E-Print Network [OSTI]

    Gonzalez, Telca Marisa

    2001-01-01

    A covered infrared burner was designed and constructed so that it could be compared to an open-flame burner. Two covered burners, a high configuration and a low configuration, were constructed. A low configuration covered infrared burner, high...

  18. Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls and Implications for Global Emission

    E-Print Network [OSTI]

    Elliott, Emily M.

    burners limit the availability of oxygen to nitrogen in the fuel and have been employed in many EGU boilers. However, low NOx burners do not necessarily reduce NOx emissions sufficiently to meet stringent

  19. Evaluation of Corona Reactors of Several Geometries for a Plasma Assisted Nitrogen Oxide Emission Reduction Device

    SciTech Connect (OSTI)

    Herling, Darrell R.; Smith, Monty R.; Hemingway, Mark D.; Goulette, David; Silvis, Thomas W.

    2000-08-09

    Proposed vehicle emissions regulations for the near future have prompted automotive manufactures and component suppliers to focus heavily on developing more efficient exhaust aftertreatment devices to lower emissions from spark and compression ignition engines. One of the primary pollutants from lean-burn engines, especially from diesels, are oxides of nitrogen (NOx). Current three-way catalytic converters will not have adequate performance to meet future emission reduction requirements. Therefore, there is a need for researchers and engineers to develop efficient exhaust aftertreatment devices that will reduce NOx emissions from lean-burn engines. These devices must have very high conversion of NOx gases, be unaffected by exhaust-gas impurity such as sulfur, and have minimal impact on vehicle operations and fuel economy. An effective technology for NOx control that is currently receiving a lot of attention is a non-thermal plasma system. This system is comprised of a two-stage corona generation device (plasma reactor) and reduction catalyst that reduces nitric oxide and nitrogen dioxide emissions to nitrogen.

  20. Nitrogen-doped and simultaneously reduced graphene oxide with superior dispersion as electrocatalysts for oxygen reduction reaction

    SciTech Connect (OSTI)

    Lee, Cheol-Ho; Yun, Jin-Mun; Lee, Sungho; Jo, Seong Mu; Yoo, Sung Jong; Cho, Eun Ae; Khil, Myung-Seob; Joh, Han-Ik

    2014-11-15

    Nitrogen doped graphene oxide (Nr-GO) with properties suitable for electrocatalysts is easily synthesized using phenylhydrazine as a reductant at relatively low temperature. The reducing agent removes various oxygen functional groups bonded to graphene oxide and simultaneously dope the nitrogen atoms bonded with phenyl group all over the basal planes and edge sites of the graphene. The Nr-GO exhibits remarkable electrocatalytic activities for oxygen reduction reaction compared to the commercial carbon black and graphene oxide due to the electronic modification of the graphene structure. In addition, Nr-GO shows excellent dispersibility in various solvent due to the dopant molecules.

  1. Combustion process and nitrogen oxides emission of Shenmu coal added with sodium acetate

    SciTech Connect (OSTI)

    Yang Weijuan; Zhou Junhu; Liu Maosheng; Zhou Zhijun; Liu Jianzhong; Cen Kefa

    2007-09-15

    Shenmu bituminous coal with 4% sodium acetate added was used to investigate the characteristics of combustion and nitrogen oxide (NOx) release in a fixed bed reactor heated by a tube furnace. The composition of the flue gas was analyzed to investigate the effects of sodium acetate on the combustion process and NOx emission. The experiments were carried out in a partial reductive atmosphere and a strong oxidative atmosphere. The O{sub 2} valley value in the partial reductive atmosphere was reduced by the added sodium acetate. Sodium acetate accelerated the combustion and shortened the combustion process. The experimental results showed that the emissions of NO, NO{sub 2}, and N{sub 2}O were affected by the reacting atmosphere and the combustion temperature. In the strong oxidative atmosphere, sodium acetate resulted in a slight NOx reduction. In the partial reductive atmosphere, sodium acetate reduced both the peak value of NO concentration and the total NO emission significantly. An over 30% NOx reduction efficiency was achieved at 900{sup o}C in the partial reductive atmosphere, which decreased with the increase in temperature. Sodium acetate was decomposed into hydrocarbon radicals and sodium hydroxide, which can both reduce NOx emissions due to their special reactions with the nitrogen component. 17 refs., 11 figs., 2 tabs.

  2. Uniform-burning matrix burner

    DOE Patents [OSTI]

    Bohn, Mark S. (Golden, CO); Anselmo, Mark (Arvada, CO)

    2001-01-01

    Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

  3. Material and system for catalytic reduction of nitrogen oxide in an exhaust stream of a combustion process

    DOE Patents [OSTI]

    Gardner, Timothy J. (Albuquerque, NM); Lott, Stephen E. (Edgewood, NM); Lockwood, Steven J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

    1998-01-01

    A catalytic material of activated hydrous metal oxide doped with platinum, palladium, or a combination of these, and optionally containing an alkali or alkaline earth metal, that is effective for NO.sub.X reduction in an oxidizing exhaust stream from a combustion process is disclosed. A device for reduction of nitrogen oxides in an exhaust stream, particularly an automotive exhaust stream, the device having a substrate coated with the activated noble-metal doped hydrous metal oxide of the invention is also provided.

  4. Coleman Two Burner Stove The Coleman Matchlight 2-Burner Propane Stove is especially designed for outdoor

    E-Print Network [OSTI]

    Walker, Lawrence R.

    Coleman Two Burner Stove The Coleman Matchlight 2-Burner Propane Stove is especially designed-burner propane stove has a high-pressure regulator that ensures a constant flame regardless of weather propane stove has a removable nickel-chrome-plated grate that makes for easy cleaning. The aluminized

  5. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A.; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH? gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g?¹), high electrical conductivity (1532S m?¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg?¹ at a current density of 1 A g?¹, and a capacitance of 261 F g?¹ was retained at 50 A g?¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorptionmore »fine-structure spectroscopy evidenced the recover of ?-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.« less

  6. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Youn, Hee-Chang [Yonsei Univ., Seoul (Republic of Korea); Bak, Seong-Min [Brookhaven National Lab. (BNL), Upton, NY (United States); Kim, Myeong-Seong [Yonsei Univ., Seoul (Republic of Korea); Jaye, Cherno [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Fischer, Daniel A. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Lee, Chang-Wook [Yonsei Univ., Seoul (Republic of Korea); Yang, Xiao-Qing [Brookhaven National Lab. (BNL), Upton, NY (United States); Roh, Kwang Chul [Korea Inst. of Ceramic Engineering and Technology, Seoul (Republic of Korea); Kim, Kwang-Bum [Yonsei Univ., Seoul (Republic of Korea)

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH? gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g?¹), high electrical conductivity (1532S m?¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg?¹ at a current density of 1 A g?¹, and a capacitance of 261 F g?¹ was retained at 50 A g?¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorption fine-structure spectroscopy evidenced the recover of ?-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.

  7. Saving Energy and Reducing Emissions with Fuel-Flexible Burners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using the standard fuel injectors found in fuel oil burners. This project developed fuel-flexible burners operating on biomass-derived liquid fuels with low carbon emissions....

  8. Low-Emissions Burner Technology using Biomass-Derived Liquid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels This factsheet describes a project that...

  9. SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity...

    Office of Environmental Management (EM)

    Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste December 6, 2011 -...

  10. Porous radiant burners having increased radiant output

    DOE Patents [OSTI]

    Tong, Timothy W. (Tempe, AZ); Sathe, Sanjeev B. (Tempe, AZ); Peck, Robert E. (Tempe, AZ)

    1990-01-01

    Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

  11. Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-12-08

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for themore »no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9–5.6, 6.4–12.0 and 0.9–2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  12. Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-08-28

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitude and distribution ofmore »US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  13. Diesel fuel burner for diesel emissions control system

    DOE Patents [OSTI]

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  14. Study of fuel-nitrogen reactions in rich, premixed flames

    SciTech Connect (OSTI)

    Roby, R.J.

    1988-01-01

    The formation and removal of nitrogen-containing species involved in fuel-nitrogen reactions have been studied in atmospheric-pressure fuel-rich hydrogen/oxygen/argon flames. The fuel-nitrogen reaction mechanism was investigated by addition of ammonia, nitric oxide, or hydrogen cyanide alone or with various hydrocarbons to a base flame. Profiles of stable nitrogen species and hydroxyl radical were measured in the post-flame gases. Results show that an initial rapid decay of nitric oxide added to a hydrogen/oxygen/argon flame to approximately 60% of its initial value occurs within 1.0 mm of the burner surface (0.5 msec). The primary reaction for removal of nitric oxide was found to be H + NO + M = HNO + M. The reaction of nitric oxide with various hydrocarbons to form hydrogen cyanide was found to be first order in both the initial hydrocarbon concentration and the initial nitric oxide concentration. A kinetic model was developed that only partially predicts the results obtained. Analysis showed that, by varying the heat of formation of imidogen within the limits of its uncertainty, agreement between the calculations and the data could be improved for nitric oxide and nitrogen. However, the amine, nitrous oxide and hydrogen cyanide profiles were found not to be significantly affected. The significant discrepancy between the measured and calculated ammonia profiles is discussed in terms of the model predictions of both the ammonia formation and decay rates. The reaction: NM + H = N + H/sub 2/ is identified as a key rate-controlling step for removal of amine species in these flames. Evidence from the data and theoretical calculations suggests that the rate of this reaction at the current flame conditions may be as much as a factor of ten slower than the previously reported value.

  15. Parameters affecting nitrogen oxides in a Coal-Fired Flow Facility system

    SciTech Connect (OSTI)

    Lu, Xiaoliang

    1996-03-01

    The unusually high temperature in the primary combustor of the Coal-Fired Magnetohydrodynamics (MHD) power generation system causes much higher nitrogen oxides (NO{sub x}) to be produced than in a conventional coal fired generation system. In order to lower the NO{sub x} concentration to an acceptable level, it is important to know how parameters of the MM power generation system affect the NO{sub x} concentration. This thesis investigates those effects in the Coal-Fired Flow Facility (CFFF) at the University of Tennessee Space Institute under the contract of US Department Of Energy (DOE). With thermodynamic and kinetic computer codes, the theoretical studies were carried out on the parameters of the CFFF system. The results gathered from the computer codes were analyzed and compared with the experimental data collected during the LMF5J test. The thermodynamic and kinetic codes together modeled the NO.{sub x} behavior with reasonable accuracy while some inconsistencies happened at the secondary combustor inlet.

  16. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  17. Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 2

    SciTech Connect (OSTI)

    Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

    1993-01-04

    Oxidized oil shale from the combustor in the LLNL Hot-Recycled-Solids (HRS) oil shale retorting process has been found to be a catalyst for removing nitrogen oxides from laboratory gas streams using NH[sub 3] as a reductant. Oxidized Green River oil shale heated at 10[degree]C/min in an Ar/O[sub 2]/NO/NH[sub 3] mixture ([approximately]93%/6%/2000 ppM/4000 ppM) with a gas residence time of [approximately]0.6 sec removed NO between 250 and 500[degree]C, with maximum removal of 70% at [approximately]400[degree]C. Under isothermal conditions with the same gas mixture, the maximum NO removal was [approximately]64%. When CO[sub 2] was added to the gas mixture at [approximately]8%, the NO removal dropped to [approximately]50%. However, increasing the gas residence time to [approximately]1.2 sec, increased NO removal to 63%. Nitrogen balances of these experiments suggest selective catalytic reduction of NO is occurring using NH[sub 3] as the reductant. These results are not based on completely optimized process conditions, but indicate oxidized oil shale is an effective catalyst for NO removal from combustion gas streams using NH[sub 3] as the reductant. Parameters calculated for implementing oxidized oil shale for NO[sub x] remediation on the current HRS retort indicate an abatement device is practical to construct.

  18. Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 2

    SciTech Connect (OSTI)

    Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

    1993-01-04

    Oxidized oil shale from the combustor in the LLNL Hot-Recycled-Solids (HRS) oil shale retorting process has been found to be a catalyst for removing nitrogen oxides from laboratory gas streams using NH{sub 3} as a reductant. Oxidized Green River oil shale heated at 10{degree}C/min in an Ar/O{sub 2}/NO/NH{sub 3} mixture ({approximately}93%/6%/2000 ppM/4000 ppM) with a gas residence time of {approximately}0.6 sec removed NO between 250 and 500{degree}C, with maximum removal of 70% at {approximately}400{degree}C. Under isothermal conditions with the same gas mixture, the maximum NO removal was {approximately}64%. When CO{sub 2} was added to the gas mixture at {approximately}8%, the NO removal dropped to {approximately}50%. However, increasing the gas residence time to {approximately}1.2 sec, increased NO removal to 63%. Nitrogen balances of these experiments suggest selective catalytic reduction of NO is occurring using NH{sub 3} as the reductant. These results are not based on completely optimized process conditions, but indicate oxidized oil shale is an effective catalyst for NO removal from combustion gas streams using NH{sub 3} as the reductant. Parameters calculated for implementing oxidized oil shale for NO{sub x} remediation on the current HRS retort indicate an abatement device is practical to construct.

  19. Catalytic reactor with improved burner

    DOE Patents [OSTI]

    Faitani, Joseph J. (Hartford, CT); Austin, George W. (Glastonbury, CT); Chase, Terry J. (Somers, CT); Suljak, George T. (Vernon, CT); Misage, Robert J. (Manchester,all of, CT)

    1981-01-01

    To more uniformly distribute heat to the plurality of catalyst tubes in a catalytic reaction furnace, the burner disposed in the furnace above the tops of the tubes includes concentric primary and secondary annular fuel and air outlets. The fuel-air mixture from the primary outlet is directed towards the tubes adjacent the furnace wall, and the burning secondary fuel-air mixture is directed horizontally from the secondary outlet and a portion thereof is deflected downwardly by a slotted baffle toward the tubes in the center of the furnace while the remaining portion passes through the slotted baffle to another baffle disposed radially outwardly therefrom which deflects it downwardly in the vicinity of the tubes between those in the center and those near the wall of the furnace.

  20. Nitrogen-doped cuprous oxide as a p-type hole-transporting layer in thin-film solar cells

    E-Print Network [OSTI]

    Nitrogen-doped cuprous oxide as a p-type hole- transporting layer in thin-film solar cells Yun Seog-transparent tunnel junction to a back-contact. We fabricate Cu2O-based heterojunction thin-film solar cells-factor and power conversion efficiency of the solar cells. Cu2O:N thin-films may also be useful in other

  1. Reducing the contribution of the power sector to ground-level ozone pollution : an assessment of time-differentiated pricing of nitrogen oxide emissions

    E-Print Network [OSTI]

    Craig, Michael T. (Michael Timothy)

    2014-01-01

    Nitrogen oxide (NOx) is a prevalent air pollutant across the United States and a requisite precursor for tropospheric (ground-level) ozone formation. Both pollutants significantly impact human health and welfare, so National ...

  2. Implementing a time- and location-differentiated cap-and-trade program : flexible nitrogen oxide abatement from power plants in the eastern United States

    E-Print Network [OSTI]

    Martin, Katherine C

    2007-01-01

    Studies suggest that timing and location of emissions can change the amount of ozone formed from a given amount of nitrogen oxide (NOx) by a factor of five (Mauzerall et al. 2005). Yet existing NOx cap-and-trade programs ...

  3. A cost-effectiveness analysis of alternative ozone control strategies : flexible nitrogen oxide (NOx) abatement from power plants in the eastern United States

    E-Print Network [OSTI]

    Sun, Lin, S.M. Massachusetts Institute of Technology

    2009-01-01

    Ozone formation is a complex, non-linear process that depends on the atmospheric concentrations of its precursors, nitrogen oxide (NOx) and Volatile Organic Compounds (VOC), as well as on temperature and the available ...

  4. Reverberatory screen for a radiant burner

    DOE Patents [OSTI]

    Gray, Paul E. (North East, MD)

    1999-01-01

    The present invention relates to porous mat gas fired radiant burner panels utilizing improved reverberatory screens. The purpose of these screens is to boost the overall radiant output of the burner relative to a burner using no screen and the same fuel-air flow rates. In one embodiment, the reverberatory screen is fabricated from ceramic composite material, which can withstand higher operating temperatures than its metallic equivalent. In another embodiment the reverberatory screen is corrugated. The corrugations add stiffness which helps to resist creep and thermally induced distortions due to temperature or thermal expansion coefficient differences. As an added benefit, it has been unexpectedly discovered that the corrugations further increase the radiant efficiency of the burner. In a preferred embodiment, the reverberatory screen is both corrugated and made from ceramic composite material.

  5. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    E-Print Network [OSTI]

    Logue, Jennifer M.

    2014-01-01

    in Natural Gas Cooking Burners, LBNL Page 16 Palmes, E. D. ,from Natural Gas Cooking Burners: A Simulation- Basedin Natural Gas Cooking Burners, LBNL Page 1 Disclaimer This

  6. Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners

    E-Print Network [OSTI]

    Lobscheid, Agnes

    2012-01-01

    Natural Gas Cooking Burners   Agnes B.  Lobscheid 1,* , from Natural Gas Cooking Burners Agnes B. Lobscheid 1,* ,resulting from cooking burners and entry with outdoor air.

  7. Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions

    E-Print Network [OSTI]

    Millstein, Dev

    2009-01-01

    2005). Particulate emissions from construction activities.M. S. , (2000b). In-use emissions from heavy- duty dieseland nitrogen dioxide emissions from gasoline- and diesel-

  8. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to beh

  9. Method for reducing NOx during combustion of coal in a burner

    DOE Patents [OSTI]

    Zhou, Bing (Cranbury, NJ); Parasher, Sukesh (Lawrenceville, NJ); Hare, Jeffrey J. (Provo, UT); Harding, N. Stanley (North Salt Lake, UT); Black, Stephanie E. (Sandy, UT); Johnson, Kenneth R. (Highland, UT)

    2008-04-15

    An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

  10. CHP Integrated with Burners for Packaged Boilers

    SciTech Connect (OSTI)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial operation and has achieved all the performance goals.

  11. Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    1997-05-01

    The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    1996-01-01

    The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program`s Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  14. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  15. Sealed, nozzle-mix burners for silica deposition

    DOE Patents [OSTI]

    Adler, Meryle D. M.; Brown, John T.; Misra, Mahendra K.

    2003-07-08

    Burners (40) for producing fused silica boules are provided. The burners employ a tube-in-tube (301-306) design with flats (56, 50) on some of the tubes (305, 301) being used to limit the cross-sectional area of certain passages (206, 202) within the burner and/or to atomize a silicon-containing, liquid source material, such as OMCTS. To avoid the possibility of flashback, the burner has separate passages for fuel (205) and oxygen (204, 206), i.e., the burner employs nozzle mixing, rather than premixing, of the fuel and oxygen. The burners are installed in burner holes (26) formed in the crown (20) of a furnace and form a seal with those holes so that ambient air cannot be entrained into the furnace through the holes. An external air cooled jacket (60) can be used to hold the temperature of the burner below a prescribed upper limit, e.g., 400.degree. C.

  16. Ultra-Low NOx Premixed Industrial Burner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology licensed to Maxon Corporation and sold as the M-PAKT burner. Over 1408 burners estimated to reduce NOx by over 1.550 million pounds in 2011. Applications Can be...

  17. Upgrade Boilers with Energy-Efficient Burners, Energy Tips: STEAM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The purpose of the burner is to mix molecules of fuel with molecules of air. A boiler will run only as well as the burner performs. A poorly designed boiler with an...

  18. Low NO.sub.x burner system

    DOE Patents [OSTI]

    Kitto, Jr., John B. (North Canton, OH); Kleisley, Roger J. (Plain Twp., Stark County, OH); LaRue, Albert D. (Summit, OH); Latham, Chris E. (Knox Twp., Columbiana County, OH); Laursen, Thomas A. (Canton, OH)

    1993-01-01

    A low NO.sub.x burner system for a furnace having spaced apart front and rear walls, comprises a double row of cell burners on each of the front and rear walls. Each cell burner is either of the inverted type with a secondary air nozzle spaced vertically below a coal nozzle, or the non-inverted type where the coal nozzle is below the secondary air port. The inverted and non-inverted cells alternate or are provided in other specified patterns at least in the lower row of cells. A small percentage of the total air can be also provided through the hopper or hopper throat forming the bottom of the furnace, or through the boiler hopper side walls. A shallow angle impeller design also advances the purpose of the invention which is to reduce CO and H.sub.2 S admissions while maintaining low NO.sub.x generation.

  19. Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream

    DOE Patents [OSTI]

    Cohen, Mitchell R. (Troy, NY); Gal, Eli (Lititz, PA)

    1993-01-01

    A process and system for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous The government of the United States of America has rights in this invention pursuant to Contract No. DE-AC21-88MC 23174 awarded by the U.S. Department of Energy.

  20. Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream

    DOE Patents [OSTI]

    Cohen, M.R.; Gal, E.

    1993-04-13

    A process and system are described for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous mixture.

  1. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    E-Print Network [OSTI]

    Rheaume, Jonathan Michael

    2010-01-01

    LSCo for Solid Oxide Electrolyzer Anodes”, J. Electrochem.gas sensors. Batteries, electrolyzers, and gas sensors allmake a sensor or an electrolyzer. By reading an open circuit

  2. Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen

    E-Print Network [OSTI]

    Alexander, Becky

    the onset of the Industrial Revolution due to increases in fossil fuel burning emissions [e.g., Lelieveld et-burning events in North America just prior to the Industrial Revolution significantly impacted the oxidation the Industrial Revolution, particularly when using paleo-oxidant data as a reference for model evaluation. INDEX

  3. Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 1

    SciTech Connect (OSTI)

    Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

    1992-06-10

    Oxidized oil shale from the combustor in the LLNL hot recycle solids oil shale retorting process has been studied as a catalyst for removing nitrogen oxides from laboratory gas streams using NH{sub 3} as areductant. Combusted Green River oil shale heated at 10{degrees}C/min in an Ar/O{sub 2}/NO/NH{sub 3} mixture ({approximately}93%/6%/2000 ppm/4000 ppm) with a gas residence time of {approximately}0.6 sec exhibited NO removal between 250 and 500{degrees}C, with maximum removal of 70% at {approximately}400{degrees}C. Under isothermal conditions with the same gas mixture, the maximum NO removal was found to be {approximately}64%. When CO{sub 2} was added to the gas mixture at {approximately}8%, the NO removal dropped to {approximately}50%. However, increasing the gas residence time to {approximately}1.2 sec, increased NO removal to 63%. These results are not based on optimized process conditions, but indicate oxidized (combusted) oil shale is an effective catalyst for NO removal from combustion gas streams using NH{sub 3} as the reductant.

  4. On-farm Assessment of Nitrogen Fertilizer application to corn on Nitrous Oxide Emissions

    E-Print Network [OSTI]

    2009-01-01

    mitigation of greenhouse gas emissions by agriculture. Nutr.1998. Nitrous oxide emission in three years as affected by2008. Soil-surface gas emissions. p.851-861. In: M.R. Carter

  5. Investigation of mixed metal sorbent/catalysts for the simultaneous removal of sulfur and nitrogen oxides

    SciTech Connect (OSTI)

    Akyurtlu, A.; Akyurtlu, J.F.

    1999-03-31

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4}-air mixtures.

  6. Fuel burner and combustor assembly for a gas turbine engine

    DOE Patents [OSTI]

    Leto, Anthony (Franklin Lakes, NJ)

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  7. Refinery burner simulation design architecture summary.

    SciTech Connect (OSTI)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  8. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    SciTech Connect (OSTI)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  9. Coal-water mixture fuel burner

    DOE Patents [OSTI]

    Brown, T.D.; Reehl, D.P.; Walbert, G.F.

    1985-04-29

    The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

  10. Flow reactor experiments on the selective non-catalytic removal of nitrogen oxides 

    E-Print Network [OSTI]

    Gentemann, Alexander M.G.

    2001-01-01

    also found. Selective non-catalytic removal of nitric oxide using a water/urea solution was performed in a temperature range between 800 and 1300 K. Different combinations of simulated exhaust gas were tested, which contained various fractions of O?...

  11. Cylinder-averaged histories of nitrogen oxide in a D.I. diesel with simulated turbocharging

    SciTech Connect (OSTI)

    Donahue, R.J.; Borman, G.L.; Bower, G.R.

    1994-10-20

    An experimental study was conducted using the dumping technique (total cylinder sampling) to produce cylinder mass-averaged nitric oxide histories. Data were taken using a four stroke diesel research engine employing a quiescent chamber, high pressure direct ijection fuel system, and simulated turbocharging. Two fuels were used to determine fuel cetane number effects. Two loads were run, one at an equivalence ratio of 0.5 and the other at a ratio of 0.3. The engine speed was held constant at 1500 rpm. Under the turbocharged and retarded timing conditions of this study, nitric oxide was produced up to the point of about 85% mass burned. Two different models were used to simulate the engine mn conditions: the phenomenological Hiroyasu spray-combustion model, and the three dimensional, U.W.-ERO modified KIVA-lI computational fluid dynamic code. Both of the models predicted the correct nitric oxide trend. Although the modified KIVA-lI combustion model using Zeldovich kinetics correctly predicted the shapes of the nitric oxide histories, it did not predict the exhaust concentrations without arbitrary adjustment based on experimental values.

  12. Effect of additives on the reduction of nitrogen oxides using cyanuric acid 

    E-Print Network [OSTI]

    Standridge, Brad Lee

    1994-01-01

    The addition of cyanuric acid to hot exhaust flows has been shown in the past to selectively remove much of the nitric oxide (NO) emitted from combustion sources. Known as the RapreNOx process, this approach to pollution control does not require a...

  13. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOE Patents [OSTI]

    Mollot, Darren J. (Morgantown, WV); Bonk, Donald L. (Louisville, OH); Dowdy, Thomas E. (Orlando, FL)

    1998-01-01

    Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

  14. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOE Patents [OSTI]

    Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

    1998-01-13

    Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.

  15. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    SciTech Connect (OSTI)

    Cygan, David

    2006-12-28

    Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non-catalytic reduction. The FIR burner was previously demonstrated on firetube and watertube boilers, and these units are still operating at several industrial and commercial boiler sites in sizes ranging from 2.5 to 60 million Btu/h. This report covers the development of an innovative combustion system suitable for natural gas or coke-oven gas firing within the steel industry. The prototype FIR burner was evaluated on a 20 million Btu/h watertube boiler. Acceptable burner performance was obtained when firing natural gas and simulated coke-oven gas doped with ammonia. The laboratory data reveals a direct relationship between NOx formation and the ammonia concentration in the fuel. In addition, NOx formation increases as the primary stoichiometric ratio (PSR) increases. Representative ammonia concentrations, as documented in the steel industry, ranged from 200 to 500 vppm. When the laboratory burner/boiler was operated with 500 vppm ammonia in the fuel, NOx emissions ranged from 50 to 75 vppm. This, conservatively, is 75% less than state-of-the-art burner performance. When the burner is operated with 200 vppm ammonia in the fuel, the corresponding NOx emissions would range from 30 to 45 vppm, 84% less than present burner technology. During field evaluation on a 174 million Btu/h industrial prototype burner both natural gas and actual COG from on-site generation were tested. Despite the elevated hydrogen cyanide and ammonia content in the COG throughout the test program, the FIR burner showed an improvement over baseline emissions. At full load; 167 million Btu/h, NOx emissions were relatively low at 169 vppm. This represents a 30% reduction compared to baseline emissions not accounting for the higher hydrogen cyanide content in the COG. CO emissions remained below 20 vppm and were stable across the firing range. This represents a 68% reduction compared to baseline CO emissions. When firing natural gas, emissions were stable as firing rate increased over the range. At low fire; 45 million Btu/h, NOx emissions where 33 vppm and increased at full load; 144 million Btu

  16. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-06-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. The objective of this study is to quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO{sub 2} and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO{sub 2} were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%. The simulation model estimates that in homes using NGCBs without coincident use of venting range hoods, 62%, 9%, and 53% of occupants are routinely exposed to NO{sub 2}, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3000, and 20 ppb for NO{sub 2}, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

  17. INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES

    SciTech Connect (OSTI)

    Ates Akyurtlu; Jale F. Akyurtle

    2001-08-01

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}.

  18. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    Ray Chamberland; Aku Raino; David Towle

    2006-09-30

    For more than two decades, ALSTOM Power Inc. (ALSTOM) has developed a range of low cost, in-furnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes ALSTOM's internally developed TFS 2000 firing system, and various enhancements to it developed in concert with the U.S. Department of Energy (DOE). As of 2004, more than 200 units representing approximately 75,000 MWe of domestic coal fired capacity have been retrofit with ALSTOM low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coals to 0.10 lb/MMBtu for subbituminous coals, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing (retrofit) boiler equipment. If enacted, proposed Clear Skies legislation will, by 2008, require an average, effective, domestic NOx emissions rate of 0.16 lb/MMBtu, which number will be reduced to 0.13 lb/MMBtu by 2018. Such levels represent a 60% and 67% reduction, respectively, from the effective 2000 level of 0.40 lb/MMBtu. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. In light of these needs, ALSTOM, in cooperation with the DOE, is developing an enhanced combustion, low NOx pulverized coal burner which, when integrated with ALSTOM's state-of-the-art, globally air staged low NOx firing systems, will provide a means to achieve less than 0.15 lb/MMBtu NOx at less than 3/4 the cost of an SCR with low to no impact on balance of plant issues when firing a high volatile bituminous coal. Such coals can be more economic to fire than subbituminous or Powder River Basin (PRB) coals, but are more problematic from a NOx control standpoint as existing firing system technologies do not provide a means to meet current or anticipated regulations absent the use of an SCR. The DOE/ALSTOM program performed large pilot scale combustion testing in ALSTOM's Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut. During this work, the near-field combustion environment was optimized to maximize NOx reduction while minimizing the impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down under globally reducing conditions. Initially, ALSTOM utilized computational fluid dynamic modeling to evaluate a series of burner and/or near field stoichiometry controls in order to screen promising design concepts in advance of the large pilot scale testing. The third and final test, to be executed, will utilize several variants of the best nozzle tip configuration and compare performance with 3 different coals. The fuels to be tested will cover a wide range of coals commonly fired at US utilities. The completion of this work will provide sufficient data to allow ALSTOM to design, construct, and demonstrate a commercial version of an enhanced combustion low NOx pulverized coal burner. A preliminary cost/performance analysis of the developed enhanced combustion low NOx burner applied to ALSTOM's state-of-the-art TFS 2000 firing system was performed to show that the burner enhancements is a cost effective means to reduce NOx.

  19. Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners

    E-Print Network [OSTI]

    Lobscheid, Agnes

    2012-01-01

    BC et al. (2009). Natural Gas Variability in California:to Pollutants  Emitted from Natural Gas Cooking Burners  Pollutants Emitted from Natural Gas Cooking Burners Agnes B.

  20. Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1

    E-Print Network [OSTI]

    Liu, Feng

    1 Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1 , D. Dunn-Rankin2 , F. Liu3 B, Irvine Abstract A review of turbine-burner research and some relevant background issues is presented. Previous work on thermal cycle analysis for augmentative combustion in the passages of the turbine

  1. Combined Heat and Power Integrated with Burners for Packaged Boilers

    SciTech Connect (OSTI)

    2010-10-01

    This factsheet describes a project that will seamlessly integrate a gas-fired simple-cycle 100 kWe microturbine with a new ultra-low NOx gas-fired burner to develop a CHP assembly called the Boiler Burner Energy System Technology.

  2. Residential oil burners with low input and two stages firing

    SciTech Connect (OSTI)

    Butcher, T.; Krajewski, R.; Leigh, R.

    1997-12-31

    The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

  3. Ceramic oxide powders and the formation thereof

    DOE Patents [OSTI]

    Katz, Joseph L. (Baltimore, MD); Hung, Cheng-Hung (Baltimore, MD)

    1993-01-01

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions.

  4. Ceramic oxide powders and the formation thereof

    DOE Patents [OSTI]

    Katz, J.L.; Chenghung Hung.

    1993-12-07

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions. 14 figures.

  5. Next generation gas turbines will be required to produce low concentrations of pollutants such as oxides of nitrogen (NOx), carbon monoxide (CO), and soot. In order to design gas turbines which produce lower emissions it is essential

    E-Print Network [OSTI]

    Next generation gas turbines will be required to produce low concentrations of pollutants such as oxides of nitrogen (NOx), carbon monoxide (CO), and soot. In order to design gas turbines which produce

  6. Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, nitrogen, and ammonia in contact with tank 241-SY-101 simulated waste

    SciTech Connect (OSTI)

    Bryan, S.A.; Pederson, L.R.

    1996-02-01

    Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. Described in this report are the results of tests to evaluate the rates of thermal and combined thermal and radiolytic reactions involving flammable gases in the presence of Tank 241-SY-101 simulated waste. Flammable gases generated by the radiolysis of water and by the thermal and radiolytic decomposition of organic waste constituents may themselves participate in further reactions. Examples include the decomposition of nitrous oxide to yield nitrogen and oxygen, the reaction of nitrous oxide and hydrogen to produce nitrogen and water, and the reaction of nitrogen and hydrogen to produce ammonia. The composition of the gases trapped in bubbles in the wastes might therefore change continuously as a function of the time that the gas bubbles are retained.

  7. Burner Designs and Controls for Variable Air Preheat Systems 

    E-Print Network [OSTI]

    Lied, C. R.

    1981-01-01

    This paper will deal with various ways of reducing fuel costs for direct fired furnaces. Burner design relating to existing furnaces, new furnaces designed to operate initially on cold air with the ability to add preheated air in the future...

  8. Emissions of nitrogen oxides from US urban areas: estimation from Ozone Monitoring Instrument retrievals for 2005-2014

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Z.; Streets, D. G.; de Foy, B.; Lamsal, L. N.; Duncan, B. N.; Xing, J.

    2015-05-28

    Satellite remote sensing of tropospheric nitrogen dioxide (NO2) can provide valuable information for estimating surface nitrogen oxides (NOx) emissions. Using an exponentially-modified Gaussian (EMG) method and taking into account the effect of wind on observed NO2 distributions, we estimate three-year moving-average emissions of summertime NOx from 35 US urban areas directly from NO2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following the conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NOx emissions from each urban area by applying the EMG method to OMI data with windmore »speeds greater than 3–5 m s-1. Meanwhile, we find that OMI NO2 observations under weak-wind conditions (i.e., -1) are qualitatively better correlated with the surface NOx source strength in comparison to all-wind OMI maps; and therefore we use them to calculate the satellite-observed NO2 burdens of urban areas and compare with NOx emission estimates. The EMG results show that OMI-derived NOx emissions are highly correlated (R > 0.93) with weak-wind OMI NO2 burdens as well as bottom-up NOx emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous, EMG-obtained, effective NO2 lifetimes (~3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO2 chemical lifetimes. In general, isolated urban areas with NOx emission intensities greater than ~ 2 Mg h-1 produce statistically significant weak-wind signals in three-year average OMI data. From 2005 to 2014, we estimate that total OMI-derived NOx emissions over all selected US urban areas decreased by 49%, consistent with reductions of 43, 47, 49, and 44% in the total bottom-up NOx emissions, the sum of weak-wind OMI NO2 columns, the total weak-wind OMI NO2 burdens, and the averaged NO2 concentrations, respectively, reflecting the success of NOx control programs for both mobile sources and power plants. The decrease rates of these NOx-related quantities are found to be faster (i.e., -6.8 to -9.3% yr-1) before 2010 and slower (i.e., -3.4 to -4.9% yr-1) after 2010. For individual urban areas, we calculate the R values of pair-wise trends among the OMI-derived and bottom-up NOx emissions, the weak-wind OMI NO2 burdens, and ground-based NO2 measurements; and high correlations are found for all urban areas (median R = 0.8), particularly large ones (R up to 0.97). The results of the current work indicate that using the EMG method and considering the wind effect, the OMI data allow for the estimation of NOx emissions from urban areas and the direct constraint of emission trends with reasonable accuracy.« less

  9. Advanced Petrochemical Process Heating with the Pyrocore Burner 

    E-Print Network [OSTI]

    Krill, W. V.; Minden, A. C.; Donaldson, L. W. Jr.

    1987-01-01

    PETROCHEMICAL PROCESS HEATING WITH THE PYROCORE BURNER WAYNE V. KRILL ANDREW C. MINDEN LESLIE W. DONALDSON, JR. Vice President Project Engineer Manager, Process Systems Research Alzeta Corporation Alzeta Corporation Gas Research Institute Santa Clara..., California Santa Clara, California Chicago, Illinois ABSTRACT Alzeta Corporation has developed various process heating applications using the Pyrocore burner. Applications to immersion fluid heating have been in use for several years. An advanced...

  10. THE NITROGEN OXIDES CONTROVERSY

    E-Print Network [OSTI]

    Johnston, Harold S.

    2012-01-01

    OZONE-COLUMN REDUCTION FOR STA DA D NOx INPUT BY LIVERMOREof NOx perturbation, one could calculate ozone reductionscalculates a reduction of the ozone column by NOx injections

  11. Advanced burner test reactor preconceptual design report.

    SciTech Connect (OSTI)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

  12. Abatement of Air Pollution: The Clean Air Interstate Rule (CAIR) Nitrogen Oxides (Nox) Ozone Season Trading Program (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations may apply to fossil-fuel fired emission units, and describe nitrogen emission allocations that owners of such units must meet. The regulations also contain provisions for...

  13. Dual-water mixture fuel burner

    DOE Patents [OSTI]

    Brown, Thomas D. (Finleyville, PA); Reehl, Douglas P. (Pittsburgh, PA); Walbert, Gary F. (Library, PA)

    1986-08-05

    A coal-water mixture (CWM) burner includes a conically shaped rotating cup into which fuel comprised of coal particles suspended in a slurry is introduced via a first, elongated inner tube coupled to a narrow first end portion of the cup. A second, elongated outer tube is coaxially positioned about the first tube and delivers steam to the narrow first end of the cup. The fuel delivery end of the inner first tube is provided with a helical slot on its lateral surface for directing the CWM onto the inner surface of the rotating cup in the form of a uniform, thin sheet which, under the influence of the cup's centrifugal force, flows toward a second, open, expanded end portion of the rotating cup positioned immediately adjacent to a combustion chamber. The steam delivered to the rotating cup wets its inner surface and inhibits the coal within the CWM from adhering to the rotating cup. A primary air source directs a high velocity air flow coaxially about the expanded discharge end of the rotating cup for applying a shear force to the CWM in atomizing the fuel mixture for improved combustion. A secondary air source directs secondary air into the combustion chamber adjacent to the outlet of the rotating cup at a desired pitch angle relative to the fuel mixture/steam flow to promote recirculation of hot combustion gases within the ignition zone for increased flame stability.

  14. Flex-flame burner and combustion method

    DOE Patents [OSTI]

    Soupos, Vasilios (Chicago, IL); Zelepouga, Serguei (Hoffman Estates, IL); Rue, David M. (Chicago, IL); Abbasi, Hamid A. (Naperville, IL)

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  15. Emissions of nitrogen oxides from US urban areas: estimation from Ozone Monitoring Instrument retrievals for 2005-2014

    SciTech Connect (OSTI)

    Lu, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Streets, D. G. [Argonne National Lab. (ANL), Argonne, IL (United States); de Foy, B. [Saint Louis Univ., St. Louis, MO (United States)] (ORCID:0000000341509922); Lamsal, L. N. [Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, MD (United States); NASA Goddard Space Flight Center, Greenbelt, MD (United States); Duncan, B. N. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Xing, J. [US Environmental Protection Agency, Research Triangle Park, NC (United States)

    2015-01-01

    Satellite remote sensing of tropospheric nitrogen dioxide (NO2) can provide valuable information for estimating surface nitrogen oxides (NOx) emissions. Using an exponentially-modified Gaussian (EMG) method and taking into account the effect of wind on observed NO2 distributions, we estimate three-year moving-average emissions of summertime NOx from 35 US urban areas directly from NO2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following the conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NOx emissions from each urban area by applying the EMG method to OMI data with wind speeds greater than 3–5 m s-1. Meanwhile, we find that OMI NO2 observations under weak-wind conditions (i.e., < 3 m s-1) are qualitatively better correlated with the surface NOx source strength in comparison to all-wind OMI maps; and therefore we use them to calculate the satellite-observed NO2 burdens of urban areas and compare with NOx emission estimates. The EMG results show that OMI-derived NOx emissions are highly correlated (R > 0.93) with weak-wind OMI NO2 burdens as well as bottom-up NOx emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous, EMG-obtained, effective NO2 lifetimes (~3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO2 chemical lifetimes. In general, isolated urban areas with NOx emission intensities greater than ~ 2 Mg h-1 produce statistically significant weak-wind signals in three-year average OMI data. From 2005 to 2014, we estimate that total OMI-derived NOx emissions over all selected US urban areas decreased by 49%, consistent with reductions of 43, 47, 49, and 44% in the total bottom-up NOx emissions, the sum of weak-wind OMI NO2 columns, the total weak-wind OMI NO2 burdens, and the averaged NO2 concentrations, respectively, reflecting the success of NOx control programs for both mobile sources and power plants. The decrease rates of these NOx-related quantities are found to be faster (i.e., -6.8 to -9.3% yr-1) before 2010 and slower (i.e., -3.4 to -4.9% yr-1) after 2010. For individual urban areas, we calculate the R values of pair-wise trends among the OMI-derived and bottom-up NOx emissions, the weak-wind OMI NO2 burdens, and ground-based NO2 measurements; and high correlations are found for all urban areas (median R = 0.8), particularly large ones (R up to 0.97). The results of the current work indicate that using the EMG method and considering the wind effect, the OMI data allow for the estimation of NOx emissions from urban areas and the direct constraint of emission trends with reasonable accuracy.

  16. Flame quality monitor system for fixed firing rate oil burners

    DOE Patents [OSTI]

    Butcher, Thomas A. (Pt. Jefferson, NY); Cerniglia, Philip (Moriches, NY)

    1992-01-01

    A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

  17. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  18. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    SciTech Connect (OSTI)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process. Computer simulations for coal: LB blends were performed by modifying an existing computer code to include the drying and phosphorus (P) oxidation models. The gasification studies revealed that there is bed agglomeration in the case of chicken litter biomass due to its higher alkaline oxide content in the ash. Finally, the results of the economic analysis show that considerable fuel cost savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings is reduced.

  19. Catalytic Reduction of Nitrogen Oxides by Methane over Pd(110) S. M. Vesecky, J. Paul, and D. W. Goodman*

    E-Print Network [OSTI]

    Goodman, Wayne

    the reduction of NOx species and the oxidation of CO and volatile organic compounds (VOC's) produced in mobile involves the selective catalytic reduction (SCR) or NOx with NH3 4 Although this process is efficient concern. If too much methane is oxidized to CO2, the efficiency of the NOx reduction process will suffer

  20. Numerical Modelling of a Pulse Combustion Burner: Limiting Conditions of Stable

    E-Print Network [OSTI]

    Vuik, Kees

    Numerical Modelling of a Pulse Combustion Burner: Limiting Conditions of Stable Operation P.A. van in the burner system. Self-sustained pulse combustion and high-intensity sound waves result if the system

  1. Turbine-Burner Model: Cavity Flameholding in a Converging, Turning Channel Flow

    E-Print Network [OSTI]

    Liu, Feng

    1 Turbine-Burner Model: Cavity Flameholding in a Converging, Turning Channel Flow Ben J. Colcord1 of California, Irvine Abstract A review of turbine-burner research and a discussion of some relevant background

  2. High Efficiency Burners by Retrofit - A Simple Inexpensive Way to Improve Combustion Efficiency 

    E-Print Network [OSTI]

    Rogers, W. T.

    1980-01-01

    Existing direct fired process heaters and steam boilers can have their efficiencies remarkably improved, and thus cut the fuel bill, by conversion from conventional type natural draft burners to high intensity, "forced draft" type burners...

  3. Slurry burner for mixture of carbonaceous material and water

    DOE Patents [OSTI]

    Nodd, D.G.; Walker, R.J.

    1985-11-05

    The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

  4. Identifying Dark Matter Burners in the Galactic center

    E-Print Network [OSTI]

    Igor V. Moskalenko; Lawrence L. Wai

    2007-04-11

    If the supermassive black hole (SMBH) at the center of our Galaxy grew adiabatically, then a dense "spike" of dark matter is expected to have formed around it. Assuming that dark matter is composed primarily of weakly interacting massive particles (WIMPs), a star orbiting close enough to the SMBH can capture WIMPs at an extremely high rate. The stellar luminosity due to annihilation of captured WIMPs in the stellar core may be comparable to or even exceed the luminosity of the star due to thermonuclear burning. The model thus predicts the existence of unusual stars, i.e. "WIMP burners", in the vicinity of an adiabatically grown SMBH. We find that the most efficient WIMP burners are stars with degenerate electron cores, e.g. white dwarfs (WD) or degenerate cores with envelopes. If found, such stars would provide evidence for the existence of particle dark matter and could possibly be used to establish its density profile. In our previous paper we computed the luminosity from WIMP burning for a range of dark matter spike density profiles, degenerate core masses, and distances from the SMBH. Here we compare our results with the observed stars closest to the Galactic center and find that they could be consistent with WIMP burners in the form of degenerate cores with envelopes. We also cross-check the WIMP burner hypothesis with the EGRET observed flux of gamma-rays from the Galactic center, which imposes a constraint on the dark matter spike density profile and annihilation cross-section. We find that the EGRET data is consistent with the WIMP burner hypothesis. New high precision measurements by GLAST will confirm or set stringent limits on a dark matter spike at the Galactic center, which will in turn support or set stringent limits on the existence of WIMP burners at the Galactic center.

  5. CHP Integrated with Burners for Packaged Boilers- Fact Sheet, April 2014

    Broader source: Energy.gov [DOE]

    Fact sheet overviewing how this project will develop and integrate the Boiler Burner Energy System Technology (BBEST)

  6. Response of fine particulate matter to emission changes of oxides of nitrogen and anthropogenic volatile organic compounds in the eastern United States

    SciTech Connect (OSTI)

    Alexandra P. Tsimpidi; Vlassis A. Karydis; Spyros N. Pandis

    2008-11-15

    A three-dimensional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions) is used to investigate changes in fine particle (PM2.5) concentrations in response to 50% emissions changes of oxides of nitrogen (NOx) and anthropogenic volatile organic compounds (VOCs) during July 2001 and January 2002 in the eastern United States. The reduction of NOx emissions by 50% during the summer results in lower average oxidant levels and lowers PM2.5 (8% on average), mainly because of reductions of sulfate (9-11%), nitrate (45-58%), and ammonium (7-11%). The organic particulate matter (PM) slightly decreases in rural areas, whereas it increases in cities by a few percent when NOx is reduced. Reduction of NOx during winter causes an increase of the oxidant levels and a rather complicated response of the PM components, leading to small net changes. Sulfate increases (8-17%), nitrate decreases (18-42%), organic PM slightly increases, and ammonium either increases or decreases a little. The reduction of VOC emissions during the summer causes on average a small increase of the oxidant levels and a marginal increase in PM2.5. This small net change is due to increases in the inorganic components and decreases of the organic ones. Reduction of VOC emissions during winter results in a decrease of the oxidant levels and a 5-10% reduction of PM2.5 because of reductions in nitrate (4-19%), ammonium (4-10%), organic PM (12-14%), and small reductions in sulfate. Although sulfur dioxide (SO{sub 2}) reduction is the single most effective approach for sulfate control, the coupled decrease of SO{sub 2} and NOx emissions in both seasons is more effective in reducing total PM2.5 mass than the SO{sub 2} reduction alone. 34 refs., 7 figs., 1 tab.

  7. Advanced Burners and Combustion Controls for Industrial Heat Recovery Systems 

    E-Print Network [OSTI]

    Ferri, J. L.

    1988-01-01

    stream_source_info ESL-IE-88-09-52.pdf.txt stream_content_type text/plain stream_size 10271 Content-Encoding ISO-8859-1 stream_name ESL-IE-88-09-52.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ADVANCED BURNERS... AND COMBUSTION CONTROLS FOR INDUSTRIAL HEAT RECOVERY SYSTEMS J.L.FERRI GTE PRODUCTS CORPORATION TOWANDA, PA ABSTRACT When recuperators are installed on indus trial furnaces, burners and ratio control systems must continue to operate reliably under a...

  8. Development of quick repairing technique for ceramic burner in hot stove of blast furnace

    SciTech Connect (OSTI)

    Kondo, Atsushi; Doura, Kouji; Nakamura, Hirofumi [Sumitomo Metal Industries, Ltd., Wakayama (Japan). Wakayama Steel Works

    1997-12-31

    Refractories of ceramic burner in hot stoves at Wakayama No. 4 blast furnace were damaged. There are only three hot stoves, so repairing must be done in a short. Therefore, a quick repairing technique for ceramic burners has been developed, and two ceramic burners were repaired in just 48 hours.

  9. Modeling of Combustion in a Lamella Burner S. PARMENTIER, M. BRAACK, U. RIEDEL and J. WARNATZ

    E-Print Network [OSTI]

    Modeling of Combustion in a Lamella Burner S. PARMENTIER, M. BRAACK, U. RIEDEL and J. WARNATZ burner are performed to predict the temperature profile and the formation of carbon monoxide and nitric process are carried out. Key Word: combustion, modeling, lamella burner, optimization INTRODUCTION

  10. On the Similitude Between Lifted and Burner-Stabilized Triple Flames: A Numerical and Experimental Investigation

    E-Print Network [OSTI]

    Aggarwal, Suresh K.

    On the Similitude Between Lifted and Burner-Stabilized Triple Flames: A Numerical and Experimental first validate our simulations with detailed measurements in more tractable methane­air burner used for investigating the burner-stabilized flames. The similarities and differences between

  11. A=B: The Case for CAS and Research in High School Mathematics by Justin Burner

    E-Print Network [OSTI]

    Yong, Alexander

    A=B: The Case for CAS and Research in High School Mathematics by Justin Burner Having excelled. The implementation of these devices, however, has been overall lackluster. #12;Burner 2 These devices are primarily does that #12;Burner 3 actually do that?' " [Young 2009]. A basic understanding of computer languages

  12. Identifying Dark Matter Burners in the Galactic center Igor V. Moskalenko*1

    E-Print Network [OSTI]

    Moskalenko, Igor V.

    Identifying Dark Matter Burners in the Galactic center Igor V. Moskalenko*1 and Lawrence L. Wai, i.e. "WIMP burners", in the vicinity of an adiabatically grown SMBH. We find that the most efficient WIMP burners are stars with degenerate electron cores, e.g. white dwarfs (WD) or degenerate cores

  13. Core design studies for advanced burner test reactor.

    SciTech Connect (OSTI)

    Yang, W. S.; Kim, T. K.; Hill, R. N.; Nuclear Engineering Division

    2008-01-01

    The U.S. government announced in February 2006 the Global Nuclear Energy Partnership (GNEP) to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. The advanced burner reactor (ABR) based on a fast spectrum is one of the three major technologies to be demonstrated in GNEP. In FY06, a pre-conceptual design study was performed to develop an advanced burner test reactor (ABTR) that supports development of a prototype full-scale ABR, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR were (1) to demonstrate reactor-based transmutation of transuranics (TRU) as part of an advanced fuel cycle, (2) to qualify the TRU-containing fuels and advanced structural materials needed for a full-scale ABR, (3) to support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. Based on these objectives, core design and fuel cycle studies were performed to develop ABTR core designs, which can accommodate the expected changes of the TRU feed and the conversion ratio. Various option and trade-off studies were performed to determine the appropriate power level and conversion ratio. Both ternary metal alloy (U-TRU-10Zr) and mixed oxide (UO{sub 2}-TRUO{sub 2}) fuel forms have been considered with TRU feeds from weapons-grade plutonium (WG-Pu) and TRU recovered from light water reactor spent fuel (LWR-SF). Reactor performances were evaluated in detail including equilibrium cycle core parameters, mass flow, power distribution, kinetic parameters, reactivity feedback coefficient, reactivity control requirements and shutdown margins, and spent fuel characteristics. Trade-off studies on power level suggested that about 250 MWt is a reasonable compromise to allow a low project cost, at the same time providing a reasonable prototypic irradiation environment for demonstrating TRU-based fuels. Preliminary design studies showed that it is feasible to design the ABTR to accommodate a wide range of conversion ratio (CR) by employing different assembly designs. The TRU enrichments required for various conversion ratios and the irradiation database suggested a phased approach with initial startup using conventional enrichment plutonium-based fuel and gradual transitioning to full core loading of transmutation fuel after its qualification phase (resulting in {approx}0.6 CR). The low CR transmutation fuel tests can be accommodated in the designated test assemblies, and if fully developed, core conversion to low CR fuel can be envisioned. Reference ABTR core designs with a rated power of 250 MWt were developed for ternary metal alloy and mixed oxide fuels based on WG-Pu feed. The reference core contains 54 driver, 6 test fuel, and 3 test material assemblies. For the startup core designs, the calculated TRU conversion ratio is 0.65 for the metal fuel core and 0.64 for the oxide fuel core. Both the metal and oxide cores show good performances. The metal fuel core requires an average TRU enrichment of 18.8% and yields a reactivity swing of 1.2 %{Delta}k over the 4-month cycle. The core average flux level is {approx}2.4 x 10{sup 15} n/cm{sup 2}s, and test assembly flux level is {approx}2.8 x 10{sup 15} n/cm{sup 2}s. Compared to the metal fuel core, the lower density oxide fuel core requires an average TRU enrichment of 21.8%, which results in a 780 kg TRU loading (as compared to 732 kg for metal) despite a {approx}9% smaller heavy metal inventory. The lower heavy metal inventory increases the burnup reactivity swing by {approx}10% and reduces the flux levels by {approx}8%. Alternative designs were also studied for a LWR-SF TRU feed and a low conversion ratio, including the recycle of the ABTR spent fuel TRU. The lower fissile contents of the LWR-SF TRU relative to the WG-Pu TRU significantly increase the required TRU enrichment of the startup cores to maintain the same cycle length. The even lower fissile fraction of the ABTR spent fuel TRU furt

  14. Nitrogen spark denoxer

    DOE Patents [OSTI]

    Ng, Henry K. (Naperville, IL); Novick, Vincent J. (Downers Grove, IL); Sekar, Ramanujam R. (Naperville, IL)

    1997-01-01

    A NO.sub.X control system for an internal combustion engine includes an oxygen enrichment device that produces oxygen and nitrogen enriched air. The nitrogen enriched air contains molecular nitrogen that is provided to a spark plug that is mounted in an exhaust outlet of an internal combustion engine. As the nitrogen enriched air is expelled at the spark gap of the spark plug, the nitrogen enriched air is exposed to a pulsating spark that is generated across the spark gap of the spark plug. The spark gap is elongated so that a sufficient amount of atomic nitrogen is produced and is injected into the exhaust of the internal combustion engine. The injection of the atomic nitrogen into the exhaust of the internal combustion engine causes the oxides of nitrogen to be reduced into nitrogen and oxygen such that the emissions from the engine will have acceptable levels of NO.sub.X. The oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

  15. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect (OSTI)

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.

  16. Study of the Effects of Ambient Conditions Upon the Performance of Fan Powered, Infrared Natural Gas Burners

    SciTech Connect (OSTI)

    Clark Atlanta University

    2002-12-02

    The objective of this investigation was to characterize the operation of a fan-powered, infrared burner (IR burner) at various gas compositions and ambient conditions, develop numerical model to simulate the burner performances, and provide design guidelines for appliances containing PIR burners for satisfactory performance.

  17. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    SciTech Connect (OSTI)

    Jon Carmack; Kemal O. Pasamehmetoglu; David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  18. Controlled pilot oxidizer for a gas turbine combustor

    DOE Patents [OSTI]

    Laster, Walter R. (Oviedo, FL); Bandaru, Ramarao V. (Greer, SC)

    2010-07-13

    A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

  19. Heterogeneous-phase reactions of nitrogen dioxide with vermiculite-supported magnesium oxide (as applied to the control of jet engine test cell emissions). Doctoral thesis

    SciTech Connect (OSTI)

    Kimm, L.T.

    1995-11-01

    Controlling nitrogen oxides (NOx) from a non-steady-state stationary source like a jet engine test cell (JETC) requires a method that is effective over a wide range of conditions. A heterogeneous, porous, high surface area sorbent material comprised of magnesium oxide powder attached to a vermiculite substrate has been commercially developed for this purpose. Data from extensive laboratory testing of this material in a packed-bed flow system are presented. NO2 removal efficiencies, kinetics, and proposed NO2 removal mechanisms over a range of representative JETC exhaust gas characteristics are described. Exhaust gas variables evaluated included: NO2 concentration, temperature, flow rate (retention time), oxygen content, and moisture content. Availability of water and oxygen were found to be important variables. It is probable that water is necessary for the conversion of MgO to Mg(OH)2, which is a more reactive compound having thermal stability over the range of temperatures evaluated. Gaseous oxygen serves to oxidize NO to NO2, the latter being more readily removed from the gas stream. The presence of oxygen also serves to offset thermal decomposition of NO2 or surface nitrite/nitrate. Effective `lifetime` and regenerability of the exposed sorbent material were also evaluated. NO2 removal efficiencies were found to greatly exceed those for NO, with a maximum value greater than 90 percent. The effective conversion of NO to NO2 is a crucial requirement for removal of the former. The reaction between NO2 and MgO-vermiculite is first-order with respect to NO2.

  20. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of Nitrogen Oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1995

    SciTech Connect (OSTI)

    1996-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  1. Saving work to a CD-R using the Optical CD Drive (CD Burner) The new Workstations in the Knowledge Common are equipped with CD Burners

    E-Print Network [OSTI]

    Machel, Hans

    Saving work to a CD-R using the Optical CD Drive (CD Burner) The new Workstations in the Knowledge Common are equipped with CD Burners and when you insert a CD (whether CD-R or CD-RW) into the drive

  2. The Zero Age Main Sequence of WIMP burners

    E-Print Network [OSTI]

    Fairbairn, Malcolm; Edsjo, Joakim

    2008-01-01

    We modify a stellar structure code to estimate the effect upon the main sequence of the accretion of weakly interacting dark matter onto stars and its subsequent annihilation. The effect upon the stars depends upon whether the energy generation rate from dark matter annihilation is large enough to shut off the nuclear burning in the star. Main sequence WIMP burners look much like protostars moving on the Hayashi track, although they are in principle completely stable. We make some brief comments about where such stars could be found, how they might be observed and more detailed simulations which are currently in progress. Finally we comment on whether or not it is possible to link the paradoxically young OB stars found at the galactic centre with WIMP burners.

  3. The zero age main sequence of WIMP burners

    SciTech Connect (OSTI)

    Fairbairn, Malcolm; Scott, Pat; Edsjoe, Joakim

    2008-02-15

    We modify a stellar structure code to estimate the effect upon the main sequence of the accretion of weakly-interacting dark matter onto stars and its subsequent annihilation. The effect upon the stars depends upon whether the energy generation rate from dark matter annihilation is large enough to shut off the nuclear burning in the star. Main sequence weakly-interacting massive particles (WIMP) burners look much like proto-stars moving on the Hayashi track, although they are in principle completely stable. We make some brief comments about where such stars could be found, how they might be observed and more detailed simulations which are currently in progress. Finally we comment on whether or not it is possible to link the paradoxically hot, young stars found at the galactic center with WIMP burners.

  4. The Zero Age Main Sequence of WIMP burners

    E-Print Network [OSTI]

    Malcolm Fairbairn; Pat Scott; Joakim Edsjo

    2008-03-03

    We modify a stellar structure code to estimate the effect upon the main sequence of the accretion of weakly interacting dark matter onto stars and its subsequent annihilation. The effect upon the stars depends upon whether the energy generation rate from dark matter annihilation is large enough to shut off the nuclear burning in the star. Main sequence WIMP burners look much like protostars moving on the Hayashi track, although they are in principle completely stable. We make some brief comments about where such stars could be found, how they might be observed and more detailed simulations which are currently in progress. Finally we comment on whether or not it is possible to link the paradoxically young OB stars found at the galactic centre with WIMP burners.

  5. NUMERICAL SIMULATION OF NATURAL GAS-SWIRL BURNER

    SciTech Connect (OSTI)

    Ala Qubbaj

    2005-03-01

    A numerical simulation of a turbulent natural gas jet diffusion flame at a Reynolds number of 9000 in a swirling air stream is presented. The numerical computations were carried out using the commercially available software package CFDRC. The instantaneous chemistry model was used as the reaction model. The thermal, composition, flow (velocity), as well as stream function fields for both the baseline and air-swirling flames were numerically simulated in the near-burner region, where most of the mixing and reactions occur. The results were useful to interpret the effects of swirl in enhancing the mixing rates in the combustion zone as well as in stabilizing the flame. The results showed the generation of two recirculating regimes induced by the swirling air stream, which account for such effects. The present investigation will be used as a benchmark study of swirl flow combustion analysis as a step in developing an enhanced swirl-cascade burner technology.

  6. Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    NONE

    2005-05-01

    The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

  7. Flow Field Results of the Cambridge Stratified Swirl Burner Using Laser Doppler Anemometer

    E-Print Network [OSTI]

    Zhou, Ruigang; Sweeney, Mark; Hochgreb, Simone

    2012-06-08

    /plain; charset=UTF-8 Turbulence Parameters for Non-Reacting conditions of Cambridge Stratified Swirl Burner Ruigang Zhou 1. Abstract The turbulence parameters of non-reacting conditions of Cambridge Stratified Swirl Burner are of interest... to the community studying the burner. The LDA data [2] was used to calculate key turbulence parameters in axial, radial and tangential directions as well as the total velocity component. This report presents the data processing routines and results...

  8. Modeling analyses of the effects of changes in nitrogen oxides emissions from the electric power sector on ozone levels in the eastern United States

    SciTech Connect (OSTI)

    Edith Gego; Alice Gilliland; James Godowitch

    2008-04-15

    In this paper, we examine the changes in ambient ozone concentrations simulated by the Community Multiscale Air Quality (CMAQ) model for summer 2002 under three different nitrogen oxides (NOx) emission scenarios. Two emission scenarios represent best estimates of 2002 and 2004 emissions; they allow assessment of the impact of the NOx emissions reductions imposed on the utility sector by the NOx State Implementation Plan (SIP) Call. The third scenario represents a hypothetical rendering of what NOx emissions would have been in 2002 if no emission controls had been imposed on the utility sector. Examination of the modeled median and 95th percentile daily maximum 8-hr average ozone concentrations reveals that median ozone levels estimated for the 2004 emission scenario were less than those modeled for 2002 in the region most affected by the NOx SIP Call. Comparison of the 'no-control' with the '2002' scenario revealed that ozone concentrations would have been much higher in much of the eastern United States if the utility sector had not implemented NOx emission controls; exceptions occurred in the immediate vicinity of major point sources where increased NO titration tends to lower ozone levels. 13 refs., 8 figs., 2 tabs.

  9. Microgravity Laminar Diffusion Flame In A Perpendicular Fuel And Oxidizer Streams Configuration 

    E-Print Network [OSTI]

    Brahmi, Lynda; Vietoris, Thomas; Rouvreau, Sebastien; Joulain, Pierre; David, L; Torero, Jose L

    2005-01-01

    Fuel is injected through a porous flat plate perpendicular to a stream of oxidizer flowing parallel to the surface of the burner for regimes corresponding to fire scenario in spacecrafts. Particle Image Velocimetry is ...

  10. 01-12-1998 - Bench Top FIre Involving Use of Alcohol and Burner...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1998 - Bench Top FIre Involving Use of Alcohol and Burner Document Number: NA Effective Date: 011998 File (public): 01-12-1998...

  11. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    E-Print Network [OSTI]

    Logue, Jennifer M.

    2014-01-01

    P. Sullivan (2009). Natural Gas Variability in California:Singer (2012). Impact of Natural Gas Appliances on PollutantPollutant Exposures in Natural Gas Cooking Burners, LBNL

  12. Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners

    E-Print Network [OSTI]

    Lobscheid, Agnes

    2012-01-01

    natural gas cooking burners without venting (kitchen exhaust systems) commonly leads to residential NO 2 concentrations that exceed ambient air quality

  13. Flame-synthesis limits and self-catalytic behavior of carbon nanotubes using a double-faced wall stagnation flow burner

    SciTech Connect (OSTI)

    Woo, S.K.; Hong, Y.T.; Kwon, O.C.

    2009-10-15

    Flame-synthesis limits of carbon nanotubes (CNTs) are measured using a double-faced wall stagnation flow (DWSF) burner that shows potential in mass production of CNTs. With nitrogen-diluted premixed ethylene-air flames established on the nickel-coated stainless steel double-faced plate wall, the limits of CNT formation are determined using field-emission scanning and transmission electron microscopies and Raman spectroscopy. Also, self-catalytic behavior of the synthesized CNTs is evaluated using the DWSF burner with a CNT-deposited stainless steel double-faced plate wall. Results show narrow fuel-equivalence ratio limits of multi-walled CNT (MWCNT)-synthesis at high flame stretch rates and substantially extended limits at low flame stretch rates. This implies that the synthesis limits are very sensitive to the fuel-equivalence ratio variation for the high stretch rate conditions, yielding a lot of impurities and soot rather than MWCNTs. The enhanced ratio of tube inner diameter to wall thickness of the MWCNTs synthesized using a CNT self-catalytic flame-synthesis process is observed, indicating that the quality of metal-catalytic, flame-synthesized MWCNTs can be much improved via the process. Thus, using a DWSF burner with the CNT self-catalytic process has potential in mass production of MWCNTs with improved quality. (author)

  14. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Bend, OR); Miller, Warren K. (Bend, OR)

    1993-01-01

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  15. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Bend, OR); Miller, Warren K. (Bend, OR)

    1996-01-01

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  16. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, D.T.; Babcock, W.C.; Edlund, D.J.; Miller, W.K.

    1996-05-14

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas. 5 figs.

  17. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, D.T.; Babcock, W.C.; Edlund, D.J.; Miller, W.K.

    1993-07-06

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  18. Slurry burner for mixture of carbonaceous material and water

    DOE Patents [OSTI]

    Nodd, Dennis G. (West Mifflin, PA); Walker, Richard J. (Bethel Park, PA)

    1987-01-01

    A carbonaceous material-water slurry burner includes a high pressure tip-emulsion atomizer for directing a carbonaceous material-water slurry into a combustion chamber for burning therein without requiring a support fuel or oxygen enrichment of the combustion air. Introduction of the carbonaceous material-water slurry under pressure forces it through a fixed atomizer wherein the slurry is reduced to small droplets by mixing with an atomizing air flow and directed into the combustion chamber. The atomizer includes a swirler located immediately adjacent to where the fuel slurry is introduced into the combustion chamber and which has a single center channel through which the carbonaceous material-water slurry flows into a plurality of diverging channels continuous with the center channel from which the slurry exits the swirler immediately adjacent to an aperture in the combustion chamber. The swirler includes a plurality of slots around its periphery extending the length thereof through which the atomizing air flows and by means of which the atomizing air is deflected so as to exert a maximum shear force upon the carbonaceous material-water slurry as it exits the swirler and enters the combustion chamber. A circulating coolant system or boiler feed water is provided around the periphery of the burner along the length thereof to regulate burner operating temperature, eliminate atomizer plugging, and inhibit the generation of sparklers, thus increasing combustion efficiency. A secondary air source directs heated air into the combustion chamber to promote recirculation of the hot combustion gases within the combustion chamber.

  19. The Structure of Triple Flames Stabilized on a Slot Burner RICCARDO AZZONI, STEFANO RATTI, SURESH K. AGGARWAL, and

    E-Print Network [OSTI]

    Aggarwal, Suresh K.

    The Structure of Triple Flames Stabilized on a Slot Burner RICCARDO AZZONI, STEFANO RATTI, SURESH K, not clearly understood. Herein, laminar triple flames stabilized on a Wolfhard-Parker slot burner

  20. Development, Application and Performance of Venturi Register L. E. A. Burner System for Firing Oil and Gas Fuels 

    E-Print Network [OSTI]

    Cawte, A. D.

    1979-01-01

    as CEA Combustion, Ltd., to develop a more efficient suspended - flame burner. Subsequently, the CEGB (Central Electric Generating Board) in Great Britain developed standards for register type burners installed in fossil fuel fired electric generating...

  1. Development of a Low NOx Burner System for Coal Fired Power Plants Using Coal and Biomass Blends 

    E-Print Network [OSTI]

    Gomez, Patsky O.

    2010-01-16

    The low NOx burner (LNB) is the most cost effective technology used in coal-fired power plants to reduce NOx. Conventional (unstaged) burners use primary air for transporting particles and swirling secondary air to create recirculation of hot gases...

  2. Experimental and numerical analysis of isothermal turbulent flows in interacting low NOx burners in coal-fired furnaces 

    E-Print Network [OSTI]

    Cvoro, Valentina

    Coal firing power stations represent the second largest source of global NOx emissions. The current practice of predicting likely exit NOx levels from multi-burner furnaces on the basis of single burner test rig data has ...

  3. Chlorine activation indoors and outdoors via surface-mediated reactions of nitrogen

    E-Print Network [OSTI]

    Dabdub, Donald

    Chlorine activation indoors and outdoors via surface-mediated reactions of nitrogen oxides and indoor air. Oxides of nitrogen (NOy) are also globally distributed, because NO formed in combustion processes is oxidized to NO2, HNO3, N2O5 and a variety of other nitrogen oxides during transport. Deposition

  4. Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst on Lean Gasoline Engine

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Pihl, Josh A; Toops, Todd J; Thomas, John F; Parks, II, James E; West, Brian H

    2015-01-01

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.

  5. Nox control for high nitric oxide concentration flows through combustion-driven reduction

    DOE Patents [OSTI]

    Yeh, James T. (Bethel Park, PA); Ekmann, James M. (Bethel Park, PA); Pennline, Henry W. (Bethel Park, PA); Drummond, Charles J. (Churchill, PA)

    1989-01-01

    An improved method for removing nitrogen oxides from concentrated waste gas streams, in which nitrogen oxides are ignited with a carbonaceous material in the presence of substoichiometric quantities of a primary oxidant, such as air. Additionally, reductants may be ignited along with the nitrogen oxides, carbonaceous material and primary oxidant to achieve greater reduction of nitrogen oxides. A scrubber and regeneration system may also be included to generate a concentrated stream of nitrogen oxides from flue gases for reduction using this method.

  6. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    SciTech Connect (OSTI)

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  7. First archeointensity determinations on Maya incense burners from Palenque temples, Mexico: New data to constrain the Mesoamerica secular

    E-Print Network [OSTI]

    Demouchy, Sylvie

    First archeointensity determinations on Maya incense burners from Palenque temples, Mexico: New Keywords: archeointensity secular variation Palenque incense burner a b s t r a c t We present archeointensity data carried out on pieces of incense burners from the ancient Maya city of Palenque, Chiapas

  8. Aalborg Universitet Coal-firing and biomass-firing in a 150kW swirl stabilized burner flow reactor

    E-Print Network [OSTI]

    Berning, Torsten

    Aalborg Universitet Coal-firing and biomass-firing in a 150kW swirl stabilized burner flow reactor). Coal-firing and biomass-firing in a 150kW swirl stabilized burner flow reactor. Poster session-fired boiler could be far more challenging beca se b rner aerod namicsmore challenging, because burner

  9. Identifying Dark Matter Burners in the Galactic center

    E-Print Network [OSTI]

    Moskalenko, Igor V

    2007-01-01

    If the supermassive black hole (SMBH) at the center of our Galaxy grew adiabatically, then a dense "spike" of dark matter is expected to have formed around it. Assuming that dark matter is composed primarily of weakly interacting massive particles (WIMPs), a star orbiting close enough to the SMBH can capture WIMPs at an extremely high rate. The stellar luminosity due to annihilation of captured WIMPs in the stellar core may be comparable to or even exceed the luminosity of the star due to thermonuclear burning. The model thus predicts the existence of unusual stars, i.e. "WIMP burners", in the vicinity of an adiabatically grown SMBH. We find that the most efficient WIMP burners are stars with degenerate electron cores, e.g. white dwarfs (WD) or degenerate cores with envelopes. If found, such stars would provide evidence for the existence of particle dark matter and could possibly be used to establish its density profile. In our previous paper we computed the luminosity from WIMP burning for a range of dark ma...

  10. Simulation of Nitrogen Emissions in a Premixed Hydrogen Flame Stabilized on a Low Swirl Burner

    E-Print Network [OSTI]

    Bell, John B.

    Abstract There is considerable interest in developing fuel-flexible, low emissions turbines for power generation. One ap- proach is based on burning a variety of lean premixed fuels with relatively low flame concentration and a corresponding in- crease in local flame temperature just downstream. In turn, these regions

  11. The carbon footprint analysis of wastewater treatment plants and nitrous oxide emissions from full-scale biological nitrogen removal processes in Spain

    E-Print Network [OSTI]

    Xu, Xin, S.M. Massachusetts Institute of Technology

    2013-01-01

    This thesis presents a general model for the carbon footprint analysis of advanced wastewater treatment plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ...

  12. Eddy Covariance Fluxes of Nitrogen Oxides at Harvard Forest NOx deposition is important to both the biosphere and the atmosphere: the form of

    E-Print Network [OSTI]

    Current estimates indicate that fossil fuel combustion and soil microbial emissions are the largest by smaller contributions from biomass burning, lightning, ammonia oxidation, the ocean, and the stratosphere. Oxidation of natural and anthropogenic hydrocarbon emissions produces intermediate products

  13. Optimization of burners for firing solid fuel and natural gas for boilers with impact pulverizers

    SciTech Connect (OSTI)

    G.T. Levit; V.Ya. Itskovich; A.K. Solov'ev (and others) [ORGRES Company (Russian Federation)

    2003-01-15

    The design of a burner with preliminary mixing of fuel and air for alternate or joint firing of coal and natural gas on a boiler is described. The burner provides steady ignition and economical combustion of coal, low emission of NOx in both operating modes, and possesses an ejecting effect sufficient for operation of pulverizing systems with a shaft mill under pressure. The downward inclination of the burners makes it possible to control the position of the flame in the furnace and the temperature of the superheated steam.

  14. Variable firing rate power burner for high efficiency gas furnaces. Final report

    SciTech Connect (OSTI)

    Fuller, H.H.; Demler, R.L.; Poulin, E.

    1980-02-01

    One method for increasing the efficiency of residential furnaces and boilers is to retrofit a burner capable of firing rate (FR) modulation. While maximum FR is still attainable, the average FR is significantly lower, resulting in more effective heat exchanger performance. Equally important is the capability for continuous firing at a very low rate (simmering) which eliminates off-cycle loss, a heavy contributor to inefficiency. Additional performance can be gained by reducing the excess air required by a burner. Based on its previous experience, Foster-Miller Associates, Inc. has designed and tested a low excess air (about 15%) variable firing rate (VFR) burner. The theory of operation and the construction of the test burner are described. Test results are given along with a conclusion/recommendation. A Phase II plan is outlined which suggests methods and steps for fabrication and field testing of a number of prototype units.

  15. The effects of moisture and particle size of feedlot biomass on co-firing burner performance 

    E-Print Network [OSTI]

    Chen, Chen-Jung

    2001-01-01

    based fuels. For coal fired power plants located around feedlots where cattle are raised, the renewable biomass is the cattle manure, called feedlot biomass (FB). Thus coal could be mixed with feedlot biomass and then fired in existing boiler burners...

  16. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Work on process design and LNS Burner design was deferred during this period, pending a reassessment of the project by TransAlta prior to commencement of Budget Period II, and only limited Balance of Plant engineering work was done.

  17. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    SciTech Connect (OSTI)

    2010-07-01

    The University of Alabama will develop fuel-flexible, low-emissions burner technology for the metal processing industry that is capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as a substitute for natural gas. By replacing a fossil fuel with biomass fuels, this new burner will enable a reduction in energy consumption and greenhouse gas emissions and an increase in fuel flexibility.

  18. Low No sub x /SO sub x burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative's (SIPC's) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC's Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner's SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  19. Electrochemical process for the preparation of nitrogen fertilizers

    DOE Patents [OSTI]

    Aulich, Ted R.; Olson, Edwin S.; Jiang, Junhua

    2013-03-19

    The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be solid.

  20. Preliminary safety evaluation of the advanced burner test reactor.

    SciTech Connect (OSTI)

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  1. Removal of sulfur and nitrogen containing pollutants from discharge gases

    DOE Patents [OSTI]

    Joubert, James I. (Pittsburgh, PA)

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  2. Development of a Spectroscopic Technique for Continuous Online Monitoring of Oxygen and Site-Specific Nitrogen Isotopic Composition of Atmospheric Nitrous Oxide

    E-Print Network [OSTI]

    Harris, Eliza

    Nitrous oxide is an important greenhouse gas and ozone-depleting-substance. Its sources are diffuse and poorly characterized, complicating efforts to understand anthropogenic impacts and develop mitigation policies. Online, ...

  3. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-02-03

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

  4. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-03

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

  5. Counterflow diffusion flame synthesis of ceramic oxide powders

    DOE Patents [OSTI]

    Katz, J.L.; Miquel, P.F.

    1997-07-22

    Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity. 24 figs.

  6. Counterflow diffusion flame synthesis of ceramic oxide powders

    DOE Patents [OSTI]

    Katz, Joseph L. (Baltimore, MD); Miquel, Philippe F. (Towson, MD)

    1997-01-01

    Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity.

  7. Investigation of mixed metal sorbent/catalysts for the simultaneous removal of sulfur and nitrogen oxides. Semiannual report, Apr 1, 1998--Oct 31, 1998

    SciTech Connect (OSTI)

    Dr. Ates Akyurtlu; Dr. Jale F. Akyurtlu

    1998-10-31

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823--900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4} air mixtures. The sorbents consisting of cerium oxide and copper oxide impregnated on alumina have been prepared and characterized. Their sulfation performance has been investigated in a TGA setup, studying mainly the effects of temperature and sorbent composition. The results of the sulfation experiments have been evaluated and presented in this report. A study to model the sulfation selectivity of the two constituents of the sorbents is also underway.

  8. Gas-phase and catalytic combustion in heat-recirculating burners Jeongmin Ahn, Craig Eastwood, Lars Sitzki* and Paul D. Ronney

    E-Print Network [OSTI]

    1 Gas-phase and catalytic combustion in heat-recirculating burners Jeongmin Ahn, Craig Eastwood title: Extinction limits in excess enthalpy burners To be published in Proceedings of the Combustion-phase and catalytic combustion in heat-recirculating burners Jeongmin Ahn, Craig Eastwood, Lars Sitzki* and Paul D

  9. Preliminary core design studies for the advanced burner reactor over a wide range of conversion ratios.

    SciTech Connect (OSTI)

    Hoffman, E. A.; Yang, W. S.; Hill, R. N.; Nuclear Engineering Division

    2008-05-05

    A consistent set of designs for 1000 MWt commercial-scale sodium-cooled Advance Burner Reactors (ABR) have been developed for both metal and oxide-fueled cores with conversion ratios from breakeven (CR=1.0) to fertile-free (CR=0.0). These designs are expected to satisfy thermal and irradiation damage limits based on the currently available data. The very low conversion ratio designs require fuel that is beyond the current fuel database, which is anticipated to be qualified by and for the Advanced Burned Test Reactor. Safety and kinetic parameters were calculated, but a safety analysis was not performed. Development of these designs was required to achieve the primary goal of this study, which was to generate representative fuel cycle mass flows for system studies of ABRs as part of the Global Nuclear Energy Partnership (GNEP). There are slight variations with conversion ratio but the basic ABR configuration consists of 144 fuel assemblies and between 9 and 22 primary control assemblies for both the metal and oxide-fueled cores. Preliminary design studies indicated that it is feasible to design the ABR to accommodate a wide range of conversion ratio by employing different assembly designs and including sufficient control assemblies to accommodate the large reactivity swing at low conversion ratios. The assemblies are designed to fit within the same geometry, but the size and number of fuel pins within each assembly are significantly different in order to achieve the target conversion ratio while still satisfying thermal limits. Current irradiation experience would allow for a conversion ratio of somewhat below 0.75. The fuel qualification for the first ABR should expand this experience to allow for much lower conversion ratios and higher bunrups. The current designs were based on assumptions about the performance of high and very high enrichment fuel, which results in significant uncertainty about the details of the designs. However, the basic fuel cycle performance trends such as conversion ratio and mass flow parameters are less sensitive to these parameters and the current results should provide a good basis for static and dynamic system analysis. The conversion ratio is fundamentally a ratio of the macroscopic cross section of U-238 capture to that of TRU fission. Since the microscopic cross sections only change moderately with fuel design and isotopic concentration for the fast reactor, a specific conversion ratio requires a specific enrichment. The approximate average charge enrichment (TRU/HM) is 14%, 21%, 33%, 56%, and 100% for conversion ratios of 1.0, 0.75, 0.50, 0.25, and 0.0 for the metal-fueled cores. The approximate average charge enrichment is 17%, 25%, 38%, 60%, and 100% for conversion ratios of 1.0, 0.75, 0.50, 0.25, and 0.0 for the oxide-fueled core. For the split batch cores, the maximum enrichment will be somewhat higher. For both the metal and oxide-fueled cores, the reactivity feedback coefficients and kinetics parameters seem reasonable. The maximum single control assembly reactivity faults may be too large for the low conversion ratio designs. The average reactivity of the primary control assemblies was increased, which may cause the maximum reactivity of the central control assembly to be excessive. The values of the reactivity coefficients and kinetics parameters show that some values appear to improve significantly at lower conversion ratios while others appear far less favorable. Detailed safety analysis is required to determine if these designs have adequate safety margins or if appropriate design modifications are required. Detailed system analysis data has been generated for both metal and oxide-fueled core designs over the entire range of potential burner reactors. Additional data has been calculated for a few alternative fuel cycles. The systems data has been summarized in this report and the detailed data will be provided to the systems analysis team so that static and dynamic system analyses can be performed.

  10. Cover and startup gas supply system for solid oxide fuel cell generator

    DOE Patents [OSTI]

    Singh, Prabhakar (Export, PA); George, Raymond A. (Pittsburgh, PA)

    1999-01-01

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

  11. Cover and startup gas supply system for solid oxide fuel cell generator

    DOE Patents [OSTI]

    Singh, P.; George, R.A.

    1999-07-27

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

  12. Establishing criteria for the design of a combination parallel and cross-flaming covered burner 

    E-Print Network [OSTI]

    Stark, Christopher Charles

    2003-01-01

    A burner was designed and constructed to combine weed control practices of parallel and cross-flaming with the technology of covers and insulation. It involved two covers designed to be placed on the sides of a crop row. The flame under the covers...

  13. Performance of a small scale boiler burner in the firing of fuel blends 

    E-Print Network [OSTI]

    Frazzitta, Stephen

    1993-01-01

    of the feedlot manure. A small scale boiler burner facility has been constructed to simulate a utility class boiler. Experiments were conducted with coal only and then for coal/feedlot manure. Three types of feedlot manure are examined; raw feedlot manure...

  14. Measurement and analysis of heating of paper with gas-fired infrared burner 

    E-Print Network [OSTI]

    Husain, Abdullah Nadir

    2000-01-01

    . Gas-fired IR heaters produce combustion on the burner surface by ignition of a pre-mixed air and fuel streams. The combustion raises the surface temperature to ranges of 800-1,100°C to emit radiation, mainly in the medium IR range, which has a...

  15. Design and Evaluation of a High Temperature Burner Duct Recuperator System 

    E-Print Network [OSTI]

    Parks, W. P.; DeBellis, C. L.; Kneidel, K.

    1988-01-01

    "The Babcock & Wilcox Company (B&W) has completed a program to design, construct, install, and field test a ceramic-based high-temperature burner-duct-recuperator (HTBDR) in an industrial setting. The unit was capable of operating in corrosive, high...

  16. TURBULENT COMBUSTION MODELING OF COAL:BIOMASS BLENDS IN A SWIRL BURNER I -PRELIMINARY RESULTS

    E-Print Network [OSTI]

    Daripa, Prabir

    coal or by ex- haust clean up technology. For the power plants, the simplest solution is the preventive- ity well into the 21st century. This dependency on coal calls for better technologies to reduceTURBULENT COMBUSTION MODELING OF COAL:BIOMASS BLENDS IN A SWIRL BURNER I - PRELIMINARY RESULTS

  17. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    SciTech Connect (OSTI)

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  18. Low No{sub x}/SO{sub x} burner retrofit for utility cyclone boilers. Baseline test report: Issue A

    SciTech Connect (OSTI)

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative`s (SIPC`s) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC`s Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner`s SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  19. New chemistry with gold-nitrogen complexes: synthesis and characterization of tetra-, tri-, and dinuclear gold(I) amidinate complexes. Oxidative-addition to the dinuclear gold(I) amidinate 

    E-Print Network [OSTI]

    Abdou, Hanan Elsayed

    2009-06-02

    Nitrogen ligands have been little studied with gold(I) and almost no chemistry has been described using anionic bridging nitrogen ligands. This dissertation concerns the impact of the bridging ligands amidinate, ArNHC(H)NAr, ...

  20. A Tool for the Spectral Analysis of the Laser Doppler Anemometer Data of the Cambridge Stratified Swirl Burner

    E-Print Network [OSTI]

    Zhou, Ruigang; Balusamy, Saravanan; Hochgreb, Simone

    2012-06-08

    A series of flow fields generated by a turbulent methane/air stratified swirl burner are investigated using laser Doppler anemometer (LDA). The LDA provides flow field measurements with comparatively high temporal resolutions. However, processing...

  1. The Nitrogen-Nitride Anode.

    SciTech Connect (OSTI)

    Delnick, Frank M.

    2014-10-01

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  2. Evaluation of Fluid Conduction and Mixing within a Subassembly of the Actinide Burner Test Reactor

    SciTech Connect (OSTI)

    Cliff B. Davis

    2007-09-01

    The RELAP5-3D code is being considered as a thermal-hydraulic system code to support the development of the sodium-cooled Actinide Burner Test Reactor as part of the Global Nuclear Energy Partnership. An evaluation was performed to determine whether the control system could be used to simulate the effects of non-convective mechanisms of heat transport in the fluid, including axial and radial heat conduction and subchannel mixing, that are not currently represented with internal code models. The evaluation also determined the relative importance of axial and radial heat conduction and fluid mixing on peak cladding temperature for a wide range of steady conditions and during a representative loss-of-flow transient. The evaluation was performed using a RELAP5-3D model of a subassembly in the Experimental Breeder Reactor-II, which was used as a surrogate for the Actinide Burner Test Reactor.

  3. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  4. Fixation of nitrogen in the presence of water vapor

    DOE Patents [OSTI]

    Harteck, Paul (Santa Barbara, CA)

    1984-01-01

    A process for the fixation of nitrogen is disclosed which comprises combining a mixture of nitrogen, oxygen, metal oxide and water vapor, initially heating the combination to initiate a reaction which forms nitrate, but at a temperature and pressure range below the dissociation pressure of the nitrate. With or without the water component, the yield of fixed nitrogen is increased by the use of a Linde Molecular Sieve Catalyst.

  5. On-Road Emission Measurements of Reactive Nitrogen Compounds from

    E-Print Network [OSTI]

    Denver, University of

    - equippedvehiclesarenotbelievedtobesignificant(1).Oxides of nitrogen (NOx) emission rates from light-duty gasoline vehicles have been shown to be rapidly decreasing across the United States, but total NOx emissions are decreasing at a slower rate dueOn-Road Emission Measurements of Reactive Nitrogen Compounds from Three California Cities G A R Y

  6. Schematic structure of nitrogen-doped graphene showing carbon

    E-Print Network [OSTI]

    Gong, Jian Ru

    method for graphene doping, and is compatible with current complementary metal oxide semiconductor (CMOSSchematic structure of nitrogen- doped graphene showing carbon (gray) and nitrogen (blue) NPG Asia Materials research highlight | doi:10.1038/asiamat.2010.204 Published online 13 December 2010 Graphene

  7. Development of the Radiation Stabilized Distributed Flux Burner, Phase II Final Report

    SciTech Connect (OSTI)

    Webb, A.; Sullivan, J.D.

    1997-06-01

    This report covers progress made during Phase 2 of a three-phase DOE-sponsored project to develop and demonstrate the Radiation Stabilized Distributed Flux burner (also referred to as the Radiation Stabilized Burner, or RSB) for use in industrial watertube boilers and process heaters. The goal of the DOE-sponsored work is to demonstrate an industrial boiler burner with NOx emissions below 9 ppm and CO emissions below 50 ppm (corrected to 3% stack oxygen). To be commercially successful, these very low levels of NOx and CO must be achievable without significantly affecting other measures of burner performance such as reliability, turndown, and thermal efficiency. Phase 1 of the project demonstrated that sub-9 ppm NOx emissions and sub-50 ppm CO emissions (corrected to 3% oxygen) could be achieved with the RSB in a 3 million Btu/Hr laboratory boiler using several methods of NOx reduction. The RSB was also tested in a 60 million Btu/hr steam generator used by Chevron for Thermally Enhanced Oil Recovery (TEOR). In the larger scale tests, fuel staging was demonstrated, with the RSB consistently achieving sub-20 ppm NOx and as low as 10 ppm NOx. Large-scale steam generator tests also demonstrated that flue gas recirculation (FGR) provided a more predictable and reliable method of achieving sub-9 ppm NOx levels. Based on the results of tests at San Francisco Thermal and Chevron, the near-term approach selected by Alzeta for achieving low NOx is to use FGR. This decision was based on a number of factors, with the most important being that FGR has proved to be an easier approach to transfer to different facilities and boiler designs. In addition, staging has proved difficult to implement in a way that allows good combustion and emissions performance in a fully modulating system. In Phase 3 of the project, the RSB will be demonstrated as a very low emissions burner product suitable for continuous operation in a commercial installation. As such, the Phase 3 field demonstration will represent the first installation in which the RSB will be operated continuously with a sub-9 ppm guarantee.

  8. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Topical report, LNCFS Levels 1 and 3 test results

    SciTech Connect (OSTI)

    Not Available

    1993-08-17

    This report presents results from the third phase of an Innovative Clean Coal Technology (ICC-1) project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The purpose of this project was to study the NO{sub x} emissions characteristics of ABB Combustion Engineering`s (ABB CE) Low NO{sub x} Concentric Firing System (LNCFS) Levels I, II, and III. These technologies were installed and tested in a stepwise fashion at Gulf Power Company`s Plant Lansing Smith Unit 2. The objective of this report is to provide the results from Phase III. During that phase, Levels I and III of the ABB C-E Services Low NO{sub x} Concentric Firing System were tested. The LNCFS Level III technology includes separated overfire air, close coupled overfire air, clustered coal nozzles, flame attachment coal nozzle tips, and concentric firing. The LNCFS Level I was simulated by closing the separated overfire air nozzles of the LNCFS Level III system. Based upon long-term data, LNCFS Level HI reduced NO{sub x} emissions by 45 percent at full load. LOI levels with LNCFS Level III increased slightly, however, tests showed that LOI levels with LNCFS Level III were highly dependent upon coal fineness. After correcting for leakage air through the separated overfire air system, the simulated LNCFS Level I reduced NO{sub x} emissions by 37 percent. There was no increase in LOI with LNCFS Level I.

  9. Electrochemical process for the preparation of nitrogen fertilizers

    DOE Patents [OSTI]

    Aulich, Ted R. (Grand Forks, ND); Olson, Edwin S. (Grand Forks, ND); Jiang, Junhua (Grand Forks, ND)

    2012-04-10

    The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia, at low temperature and pressure, preferably at ambient temperature and pressure, utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen or hydrogen equivalent. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be aqueous, non-aqueous, or solid.

  10. Nitrogen Deposition: A Component of Global Change Analyses

    SciTech Connect (OSTI)

    Norby, Richard J.

    1997-12-31

    The global cycles of carbon and nitrogen are being perturbed by human activities that increase the transfer from large pools of nonreactive forms of the elements to reactive forms that are essential to the functioning of the terrestrial biosphere. The cycles are closely linked at all scales, and global change analyses must consider carbon and nitrogen cycles together. The increasing amount of nitrogen originating from fossil fuel combustion and deposited to terrestrial ecosystems as nitrogen oxides could increase the capacity of ecosystems to sequester carbon thereby removing some of the excess carbon dioxide from the atmosphere and slowing the development of greenhouse warming. Several global and ecosystem models have calculated the amount of carbon sequestration that can be attributed to nitrogen deposition based on assumptions about the allocation of nitrogen among ecosystem components with different carbon-nitrogen ratios. They support the premise that nitrogen deposition is responsible for a an increasing terrestrial carbon sink since industrialization began, but there are large uncertainties related to the continued capacity of ecosystems to retain exogenous nitrogen. Whether terrestrial ecosystems continue to sequester additional carbon will depend in part on their response to increasing atmospheric carbon dioxide concentrations, which is widely thought to be constrained by limited nitrogen availability. Ecosystem models generally support the conclusion that the responses of ecosystems to increasing concentrations of carbon dioxide will be larger, and the range of possible responses will be wider, in ecosystems with increased nitrogen inputs originating as atmospheric deposition.

  11. Comprehensive report to Congress: Clean Coal Technology program: Evaluation of gas reburning and low-NO sub x burners on a wall-fired boiler

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This report briefly describes the Gas Reburning and Low-NO{sub x} Burners technology which is a low-cost technology that can be applied in both retrofit and new applications. This demonstration will be conducted on a utility boiler in Colorado at Cherokee Station {number sign}3; however, the technology is applicable to industrial boilers and other combustion systems. Although this technology is primarily a NO{sub x} reduction technology, some reductions in other emissions will take place. Since 15--20% of the coal is replaced with natural gas, SO{sub 2} and particulate emissions are reduced commensurately. Also the lower carbon-to-hydrogen ratio of natural gas compared to coal reduces CO{sub 2} emissions. The formation of NO{sub x} is controlled by several factors: (1) the amount of nitrogen that is chemically bound in the fuel; (2) the flame temperature; (3) the residence time that combustion products remain at very high temperatures; and (4) the amount of excess oxygen available, especially at the hottest parts of the flame. Decreasing any of these parameters, tends to reduce NO{sub x} formation. 6 figs., 1 tab.

  12. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    SciTech Connect (OSTI)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 ?m, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

  13. Multi-stage combustion using nitrogen-enriched air

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  14. Hot repair of ceramic burner on hot blast stoves at USS/Kobe`s {number_sign}3 blast furnace

    SciTech Connect (OSTI)

    Bernarding, T.F.; Chemorov, M.; Shimono, S.; Phillips, G.R.

    1997-12-31

    During the 1992 reline of the No. 3 blast furnace, three new stoves were constructed. The design of the stoves, equipped with internal ceramic burners, was for providing a hot blast temperature of 2,000 F at a wind rate of 140,000 SCFM. After 3 years the performance had deteriorated so the burners were cleaned. When a second cleaning did not improve the performance of No. 3 blast furnace, it was decided to repair the refractory while still hot. The paper describes the hot repair procedures, taking a stove off for repairs, maintenance heat up during repairs, two stove operation, stove commissioning, repair of a ceramic burner, and wet gas prevention.

  15. Combustion characteristics and NOx emissions of two kinds of swirl burners in a 300-MWe wall-fired pulverized-coal utility boiler

    SciTech Connect (OSTI)

    Li, Z.Q.; Jing, J.P.; Chen, Z.C.; Ren, F.; Xu, B.; Wei, H.D.; Ge, Z.H.

    2008-07-01

    Measurements were performed in a 300-MWe wall-fired pulverized-coal utility boiler. Enhanced ignition-dual register (EI-DR) burners and centrally fuel rich (CFR) swirl coal combustion burners were installed in the bottom row of the furnace during experiments. Local mean concentrations of O{sub 2}, CO, CO{sub 2} and NOx gas species, gas temperatures, and char burnout were determined in the region of the two types of burners. For centrally fuel rich swirl coal combustion burners, local mean CO concentrations, gas temperatures and the temperature gradient are higher and mean concentrations of O{sub 2} and NOx along the jet flow direction in the burner region are lower than for the enhanced ignition-dual register burners. Moreover, the mean O{sub 2} concentration is higher and the gas temperature and mean CO concentration are lower in the side wall region. For centrally fuel rich swirl coal combustion burners in the bottom row, the combustion efficiency of the boiler increases from 96.73% to 97.09%, and NOx emission decreases from 411.5 to 355 ppm at 6% O{sub 2} compared to enhanced ignition-dual register burners and the boiler operates stably at 110 MWe without auxiliary fuel oil.

  16. Pulse combustor NO/sub x/ as affected by fuel-bound nitrogen

    SciTech Connect (OSTI)

    Putnam, A.A.; Merryman, L.

    1985-10-01

    A short series of tests were run using nitrogen-doped liquid fuel in a gasoline fired pulse combustor and a similar capacity steady-state combustor. Four different fuel mixtures were used, white gasoline, and white gasoline doped with 0.2, 0.4 and 0.6 weight percent nitrogen in the form of pyridine. The pulse combustor used was a Golden Eagle Model 2610 Dyna-Fog insecticide fog generator. For comparison purposes, a Coleman range-top type burner, modified to include a chimney vent, was used. The Coleman data indicate a decreasing efficiency of conversion of fuel nitrogen to NO/sub x/ as the amount of fuel nitrogen increases. While the pulse combustor NO/sub x/ lies in the same region, there is very little deviation from a constant conversion rate of about 42 percent of the fuel-bound nitrogen. A pulse combustor system might have some advantages for studying the conversion of fuel-bound nitrogen to NO and NO/sub 2/. 4 references, 1 figure.

  17. Development of a full-flow burner regeneration type diesel particulate filter using SiC honeycomb

    SciTech Connect (OSTI)

    Okazoe, Hiroshi; Shimizu, Kenji; Watanabe, Yoshito; Santiago, E.; Kugland, P.; Ruth, W.

    1996-09-01

    A diesel particulate filter (DPF) for city buses was developed that combines a SiC filter and a full-now type burner for regeneration. Filter crack problems were averted by suppressing the peak temperature inside the filter to under 900 C. This was done by setting the maximum tolerable amount of collected particulate mass before regeneration at 50 g and controlling the burner so as to increase the regeneration gas temperature slowly up to a set value. This DPF was retrofitted to a Tokyo metropolitan bus to conduct a field test. The field test has been under way for half a year without any trouble or deterioration of system performance.

  18. Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners

    SciTech Connect (OSTI)

    Lobscheid, Agnes; Singer, Brett C.; Klepeis, Neil E.

    2011-06-01

    We developed a physics-based data-supported model to investigate indoor pollutant exposure distributions resulting from use of natural gas cooking appliances across households in California. The model was applied to calculate time-resolved indoor concentrations of CO, NO2 and formaldehyde resulting from cooking burners and entry with outdoor air. Exposure metrics include 1-week average concentrations and frequency of exceeding ambient air quality standards. We present model results for Southern California (SoCal) using two air-exchange scenarios in winter: (1) infiltration-only, and (2) air exchange rate (AER) sampled from lognormal distributions derived from measurements. In roughly 40percent of homes in the SoCal cohort (N=6634) the 1-hour USEPA NO2 standard (190 ?g/m3) was exceeded at least once. The frequency of exceeding this standard was largely independent of AER assumption, and related primarily to building volume, emission rate and amount of burner use. As expected, AER had a more substantial impact on one-week average concentrations.

  19. Multi-ported, internally recuperated burners for direct flame impingement heating applications

    DOE Patents [OSTI]

    Abbasi, Hamid A. (Naperville, IL); Kurek, Harry (Dyer, IN); Chudnovsky, Yaroslav (Skokie, IL); Lisienko, Vladimir G. (Ekaterinburg, RU); Malikov, German K. (Ekaterinburg, RU)

    2010-08-03

    A direct flame impingement method and apparatus employing at least one multi-ported, internally recuperated burner. The burner includes an innermost coaxial conduit having a first fluid inlet end and a first fluid outlet end, an outermost coaxial conduit disposed around the innermost coaxial conduit and having a combustion products outlet end proximate the first fluid inlet end of the innermost coaxial conduit and a combustion products inlet end proximate the first fluid outlet end of the innermost coaxial conduit, and a coaxial intermediate conduit disposed between the innermost coaxial conduit and the outermost coaxial conduit, whereby a second fluid annular region is formed between the innermost coaxial conduit and the intermediate coaxial conduit and a combustion products annular region is formed between the intermediate coaxial conduit and the outermost coaxial conduit. The intermediate coaxial conduit has a second fluid inlet end proximate the first fluid inlet end of the innermost coaxial conduit and a second fluid outlet end proximate the combustion products inlet end of the outermost coaxial conduit.

  20. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOE Patents [OSTI]

    Tuthill, Richard Sterling (Bolton, CT); Bechtel, II, William Theodore (Scotia, NY); Benoit, Jeffrey Arthur (Scotia, NY); Black, Stephen Hugh (Duanesburg, NY); Bland, Robert James (Clifton Park, NY); DeLeonardo, Guy Wayne (Scotia, NY); Meyer, Stefan Martin (Troy, NY); Taura, Joseph Charles (Clifton Park, NY); Battaglioli, John Luigi (Glenville, NY)

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  1. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    SciTech Connect (OSTI)

    Choudhuri, Ahsan

    2013-05-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO{sub 2} from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H{sub 2} concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO{sub 2} and H{sub 2}O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient g{sub F}) values for CH{sub 4}-O{sub 2}-CO{sub 2} flames. The scaling relation (𝐠{sub F} = 𝐜 𝐒{sub 𝐋}{sup 2}/𝛂) for different burner diameters was obtained for various diameter burners. The report shows that results correlated linearly with a scaling value of c =0.0174. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH{sub 4}/21%O{sub 2}/79%N{sub 2} and CH{sub 4}/38%O{sub 2}/72%CO{sub 2} mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of CH{sub 4}/air and CH{sub 4}/38%O{sub 2}/72%CO{sub 2} combustion. The velocity fluctuations, turbulence intensities and local propagation velocities along the combustion chamber have been determined. The turbulent intensities increase as we move away from the combustor axis. CH{sub 4}-38%O{sub 2}-72%CO{sub 2} flames have low radial velocity and turbulent intensity distributions at different axial distances when compared with CH{sub 4}-Air flames.

  2. Fluidized-bed copper oxide process

    SciTech Connect (OSTI)

    Shah, P.P.; Takahashi, G.S.; Leshock, D.G.

    1991-10-14

    The fluidized-bed copper oxide process was developed to simultaneously remove sulfur dioxide and nitrogen oxide contaminants from the flue gas of coal-fired utility boilers. This dry and regenerable process uses a copper oxide sorbent in a fluidized-bed reactor. Contaminants are removed without generating waste material. (VC)

  3. Modeling the Oxidative Capacity of the Atmosphere of the South Coast

    E-Print Network [OSTI]

    Dabdub, Donald

    of the complex chemistry involving volatile organic compounds (VOCs) and oxides of nitrogen (NOx ) nitrogen oxide (NO) + nitrogen dioxide (NO2))(1).O3 productionisinitiatedbyreactionsthatgenerate HOx radicals Air Basin of California (SoCAB). P(O3) indicates the rapid nature of O3 formation under peak

  4. Bioengineering nitrogen acquisition in rice

    E-Print Network [OSTI]

    Kronzucker, Herbert J.

    gas prices caused the price of nitrogen fertilizer to nearly double.(7) Increased nitrogen use is also nitrogen application is not an ideal solution, partly from a cost perspective--in 2001, increased natural

  5. Pollutant exposures from unvented gas cooking burners: A Simulation-based Assessment for Southern California

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-01-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants, and they are typically used without venting range hoods. In this study, LBNL researchers quantified pollutant concentrations and occupant exposures resulting from NGCB use in California homes.The simulation model estimated that—in homes using NGCBs without coincident use of venting range hoods -- 62%, 9%, and 53% of occupants are routinely exposed to NO2, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3,000, and 20 ppb for NO2, CO, and HCHO, respectively. The study recommends that reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

  6. Multifractal detrended fluctuation analysis of combustion flames in four-burner impinging entrained-flow gasifier

    E-Print Network [OSTI]

    Niu, Miao-Ren; Yan, Zhuo-Yong; Guo, Qing-Hua; Liang, Qin-Feng; Wang, Fu-Chen; Yu, Zun-Hong

    2007-01-01

    On a laboratory-scale testing platform of impinging entrained-flow gasifier with four opposed burners, the flame images for diesel combustion and gasification process were measured with a single charge coupled device (CCD) camera. The two-dimensional multifractal detrended fluctuation analysis was employed to investigate the multifractal nature of the flame images. Sound power-law scaling in the annealed average of detrended fluctuations was unveiled when the order $q>0$ and the multifractal feature of flame images were confirmed. Further analyses identified two multifractal parameters, the minimum and maximum singularity $\\alpha_{\\min}$ and $\\alpha_{\\max}$, serving as characteristic parameters of the multifractal flames. These two characteristic multifractal parameters vary with respect to different experimental conditions.

  7. Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate

    DOE Patents [OSTI]

    Liu, D. Kwok-Keung; Chang, Shih-Ger

    1987-08-25

    The present invention relates to a method of removing of nitrogen monoxide from a nitrogen monoxide-containing gas which method comprises contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate complex. The NO absorption efficiency of ferrous urea-dithiocarbamate and ferrous diethanolamine-xanthate as a function of time, oxygen content and solution ph is presented. 3 figs., 1 tab.

  8. Nitrogen Trifluoride-Based Fluoride- Volatility Separations Process: Initial Studies

    SciTech Connect (OSTI)

    McNamara, Bruce K.; Scheele, Randall D.; Casella, Andrew M.; Kozelisky, Anne E.

    2011-09-28

    This document describes the results of our investigations on the potential use of nitrogen trifluoride as the fluorinating and oxidizing agent in fluoride volatility-based used nuclear fuel reprocessing. The conceptual process uses differences in reaction temperatures between nitrogen trifluoride and fuel constituents that produce volatile fluorides to achieve separations and recover valuable constituents. We provide results from our thermodynamic evaluations, thermo-analytical experiments, kinetic models, and provide a preliminary process flowsheet. The evaluations found that nitrogen trifluoride can effectively produce volatile fluorides at different temperatures dependent on the fuel constituent.

  9. The biogeochemistry of marine nitrous oxide

    E-Print Network [OSTI]

    Frame, Caitlin H

    2011-01-01

    Atmospheric nitrous oxide N?O concentrations have been rising steadily for the past century as a result of human activities. In particular, human perturbation of the nitrogen cycle has increased the N?O production rates ...

  10. Turn-on fluorescent probes for detecting nitric oxide in biology

    E-Print Network [OSTI]

    McQuade, Lindsey Elizabeth, 1981-

    2010-01-01

    Chapter 1. Investigating the Biological Roles of Nitric Oxide and Other Reactive Nitrogen Species Using Fluorescent Probes: This chapter presents an overview of recent progress in the field of reactive nitrogen species ...

  11. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, July--September 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    Work on process design and LNS Burner design was deferred during this period, pending a reassessment of the project by TransAlta prior to commencement of Budget Period II, and only limited Balance of Plant engineering work was done.

  12. EPA's (Environmental Protection Agency's) program for evaluation and demonstration of low-cost retrofit LIMB (Limestone Injection Multistage Burner) technology

    SciTech Connect (OSTI)

    Stern, R.D.

    1987-09-01

    This paper discusses program objectives, approaches, current status and results, future activities, and schedules for EPA's program for research and development, field evaluation, and demonstration of Limestone Injection Multistage Burner (LIMB) technology. Primary emphasis is on: (1) the full-scale demonstration being conducted on Ohio Edison's 104-MW wall-fired Edgewater Station Unit 4; (2) evaluation on a 50 million Btu/hr tangentially fired prototype nearing completion; (3) on-going field evaluation on Richmond Power and Light's 61-MW tangentially fired Whitewater Valley Generating Station Unit 2. The new program for demonstration on Virginia Electric Power's 180-MW tangentially fired Yorktown II Plant is also described. The LIMB process is based on injecting dry sorbents into the boiler for direct capture of SO/sub 2/ from the combustion gases. LIMB combines sorbent injection for SO/sub 2/ control with the use of low-NOx burners, in which staged combustion is utilized for NOx control.

  13. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Public design report

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  14. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOE Patents [OSTI]

    Butcher, Thomas A. (Port Jefferson, NY); Celebi, Yusuf (Middle Island, NY); Fisher, Leonard (Colrain, MA)

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  15. Experimental study on NOx emission and unburnt carbon of a radial biased swirl burner for coal combustion

    SciTech Connect (OSTI)

    Shan Xue; Shi'en Hui; Qulan Zhou; Tongmo Xu

    2009-07-15

    Pilot tests were carried out on a 1 MW thermal pulverized coal fired testing furnace. Symmetrical combustion was implemented by use of two whirl burners with dual air adjustment. The burnout air device was installed in various places at the top of the main burner, which consists of a primary air pipe with a varying cross-section and an impact ring. In the primary air pipe, the air pulverized coal (PC) stream was separated into a whirling stream that was thick inside and thin outside, thus realizing the thin-thick distribution at the burner nozzle in the radial direction. From the comparative combustion tests of three coals with relatively great characteristic differences, Shaanbei Shenhua high rank bituminous coal (SH coal), Shanxi Hejin low rank bituminous coal (HJ coal), and Shanxi Changzhi meager coal (CZ coal), were obtained such test results as the primary air ratio, inner secondary air ratio, outer secondary air ratio, impact of the change of outer secondary air, change of the relative position for the layout of burnout air, change of the swirling intensity of the primary air and secondary air, etc., on the NOx emission, and unburnt carbon content in fly ash (CFA). At the same time, the relationship between the NOx emission and burnout ratio and affecting factors of the corresponding test items on the combustion stability and economic results were also acquired. The results may provide a vital guiding significance to engineering designs and practical applications. According to the experimental results, the influence of each individual parameter on NOx formation and unburned carbon in fly ash agrees well with the existing literature. In this study, the influences of various combinations of these parameters are also examined, thus providing some reference for the design of the radial biased swirl burner, the configuration of the furnace, and the distribution of the air. 23 refs., 14 figs., 2 tabs.

  16. Laminar burn rates of gun propellants measured in the high-pressure strand burner

    SciTech Connect (OSTI)

    Reaugh, J. E., LLNL

    1997-10-01

    The pressure dependence of the laminar burn rate of gun propellants plays a role in the design and behavior of high-performance guns. We have begun a program to investigate the effects of processing variables on the laminar burn rates, using our high-pressure strand burner to measure these rates at pressures exceeding 700 MPa. We have burned JA2 and M43 propellant samples, provided by Dr. Arpad Juhasz, ARL, from propellant lots previously used in round-robin tests. Our results at room temperature are in accord with other measurements. In addition, we present results measured for propellant that has been preheated to 50 C before burning. We used our thermochemical equilibrium code, CHEETAH, to help interpret the simultaneous pressure and temperature measurements taken during the testing, and show examples of its use. It has been modified to provide performance measures and equations of state for the products that are familiar to the gun-propellant community users of BLAKE.

  17. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    SciTech Connect (OSTI)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  18. Nitrogen is a deep acceptor in ZnO

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence bandmore »relative to the vacuum level.« less

  19. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect (OSTI)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  20. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOE Patents [OSTI]

    Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  1. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  2. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  3. Thermal NF3 fluorination/oxidation of cobalt, yttrium, zirconium, and selected lanthanide oxides

    SciTech Connect (OSTI)

    Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.; Kozelisky, Anne E.; Neiner, Doinita

    2013-02-01

    This paper presents results of our continuing investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. This article focuses on fission products that do not have volatile fluorides or oxyfluorides at expected operations temperatures. Our thermodynamic calculations show that nitrogen trifluoride has the potential to completely fluorinate fission product oxides to their fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of cobalt, zirconium, and the lanthanides are fluorinated but do not form volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550°C. Our studies of gadolinium-doped commercial nuclear fuel indicate that nitrogen trifluoride can extract uranium from the non-volatile gadolinium.

  4. Use of freeze-casting in advanced burner reactor fuel design

    SciTech Connect (OSTI)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models. Preliminary results show that criticality is achievable with freeze-cast fuel pins despite the significant amount of inert fuel matrix. Freeze casting is a promising method to achieve very precise fuel placement within fuel pins. (authors)

  5. Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate

    DOE Patents [OSTI]

    Liu, David K. (San Pablo, CA); Chang, Shih-Ger (El Cerrito, CA)

    1989-01-01

    A method of removing nitrogen monoxide from a nitrogen monoxide-containing gas, which method comprises: (a) contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate of the formula: ##STR1## wherein the water-soluble organic compound is selected from compounds of the formula: ##STR2## wherein: R is selected from hydrogen or an organic moiety having at least one polar functional group; Z is selected from oxygen, sulfur, or --N--A wherein N is nitrogen and A is hydrogen or lower alkyl having from one to four carbon atoms; and M is selected from hydrogen, sodium or potassium; and n is 1 or 2, in a contacting zone for a time and at a temperature effective to reduce the nitrogen monoxide. These mixtures are useful to provide an unexpensive method of removing NO from gases, thus reducing atmospheric pollution from flue gases.

  6. Catalysis by Confinement: Enthalpic Stabilization of NO Oxidation Transition States by Micropororous and Mesoporous Siliceous

    E-Print Network [OSTI]

    Iglesia, Enrique

    . INTRODUCTION The homogeneous oxidation of nitric oxide (NO) to nitrogen dioxide (NO2) with O2 as the oxidant transformation in selective catalytic NOx reduction (SCR) by NH3 on metal- exchanged zeolites7-11 and in NOxCatalysis by Confinement: Enthalpic Stabilization of NO Oxidation Transition States

  7. Nitrogen fixation apparatus

    DOE Patents [OSTI]

    Chen, Hao-Lin (Walnut Creek, CA)

    1984-01-01

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

  8. ARM - Measurement - Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Roomparticlecontent ARMgovMeasurementsNitrogen ARM Data

  9. Biomass Production and Nitrogen Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Peer Review WBS 4.2.2.10: Biomass Production and Nitrogen Recovery Date: March 23, 2015 Technology Area Review: Sustainability Principal Investigator: M. Cristina Negri...

  10. Eighth international congress on nitrogen fixation

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  11. Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation

    SciTech Connect (OSTI)

    Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning'Vidvuds; de Walle, Axel van; Wolverton, Christopher

    2011-12-29

    The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

  12. O2 Reduction on Graphite and Nitrogen-Doped Graphite: Experiment and Theory Reyimjan A. Sidik and Alfred B. Anderson*

    E-Print Network [OSTI]

    Popov, Branko N.

    toward NOx reduction.7,8 Others are oxidation catalysts.9 In the case of NOx oxidation and O2 reductionO2 Reduction on Graphite and Nitrogen-Doped Graphite: Experiment and Theory Reyimjan A. Sidik for reduction of approximately 0.5 V (SHE) compared to the onset potential of 0.2 V observed for untreated

  13. COMBUSTION SOURCES OF NITROGEN COMPOUNDS

    E-Print Network [OSTI]

    Brown, Nancy J.

    2011-01-01

    Rasmussen, R.A. (1976). Combustion as a source of nitrousx control for stationary combustion sources. Prog. Energy,CA, March 3-4, 1977 COMBUSTION SOURCES OF NITROGEN COMPOUNDS

  14. Nitrogen Deposition in the Southern High Plains 

    E-Print Network [OSTI]

    Upadhyay, Jeetendra; Auvermann, Brent W.; Bush, K. Jack; Mukhtar, Saqib

    2008-02-11

    convert nitrogen into other chemical forms. Legume roots sustain rhizobia, the organisms capable of nitrogen fixation, a microbial process for con- verting nitrogen into ammonium (NH 4 ). Reactive nitrogen species (RNS) are nitrogen- bearing compounds... acid gas can dissolve as the ammonium ion (NH 4 +), where it may react with Sources Transport / Transformation Removal Effects Photochemistry Chemical Transformations Cloud Processes Vertical Mixing Prevailing Winds Dry DepositionWet Deposition...

  15. Low NO{sub x} combustion system with DSVS{trademark} rotating classifier retrofit for a 630 MW{sub e} cell burner unit

    SciTech Connect (OSTI)

    Bryk, S.A.; Maringo, G.J.; Shah, A.I. [Babcock and Wilcox, Barberton, OH (United States); Madden, V.F. [New England Power, Westborough, MA (United States)

    1996-12-31

    New England Power Company`s (NEP) 630 MW{sub e} Brayton Point Unit 3 is a universal pressure (UP) type supercritical boiler originally equipped with pulverized coal (PC) fired cell burners. In order to comply with the Phase 1 NO{sub x} emissions requirements under Title I of the 1990 Clean Air Act Amendments, the unit has been retrofitted with a low NO{sub x} staged combustion system during the spring 1995 outage. The unit was restarted in early May 1995 and was operating under the State Compliance emission levels by the end of the month. Additional optimization testing was performed in August, 1995. The retrofit scope consisted of replacing the cell burners with low NO{sub x} DRB-XCL{reg_sign} type PC/oil burners and overfire air ports within the existing open windbox, with no change in the firing pattern. A 70% NO{sub x} reduction from baseline levels was achieved while maintaining acceptable unburned carbon (UBC) and carbon monoxide (CO) emission levels. To maintain low UBC levels, the scope included modifying the MPS-89 pulverizers by replacing the existing stationary classifiers with the B and W DSVS{trademark} (Dynamically Staged Variable Speed) two stage rotating classifiers. The DSVS{trademark} classifiers provide higher fineness for UBC control without derating the mill capacity. This paper will describe the project and discuss the retrofit emissions data. The paper will conclude with recommendations for retrofitting other similarly designed units.

  16. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    SciTech Connect (OSTI)

    Scheele, Randall D.; Casella, Andrew M.

    2010-09-28

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  17. Oxygen minimization effects on nitrogen dioxide generation during oxyacetylene metal cutting 

    E-Print Network [OSTI]

    Clendenen, David Lee

    1981-01-01

    oxides lies in the characteristic remission of initial symptoms, such as cough and chest discomfort, for up to several hours prior to onset of acute, potentially lethal pulmonary edema. The generation rate of nitrogen oxides is dependent on many... tract w1th acute severity ranging from a revers1ble irritant coughing to potentially lethal pulmonary edema. ( The danger involved here lies 1n the sudden onset of pulmonary edema occurring an unpredictable length of time after exposure. Very little...

  18. Abatement of Air Pollution: Control of Nitrogen Oxides Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection These regulations may apply to reciprocating...

  19. EFFECT OF NITROGEN OXIDE PRETREATMENTS ON ENZYMATIC HYDROLYSIS OF CELLULOSE

    E-Print Network [OSTI]

    Borrevik, R.K.

    2011-01-01

    57) TO EXTRACTION WATER (6276) _________________________ ~~~focus this study on the extraction using water only, with noe followed by water leaching, then extraction for 11 hOl.lr

  20. Nitrogen oxide removal using diesel fuel and a catalyst

    DOE Patents [OSTI]

    Vogtlin, George E. (Fremont, CA); Goerz, David A. (Brentwood, CA); Hsiao, Mark (San Jose, CA); Merritt, Bernard T. (Livermore, CA); Penetrante, Bernie M. (San Ramon, CA); Reynolds, John G. (San Ramon, CA); Brusasco, Ray (Livermore, CA)

    2000-01-01

    Hydrocarbons, such as diesel fuel, are added to internal combustion engine exhaust to reduce exhaust NO.sub.x in the presence of a amphoteric catalyst support material. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbons.

  1. Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

    2007-01-01

    Selective Catalytic Reduction (SCR) NOx Control; Prepared byNOx Removal Technologies. Volume 1. Selective Catalytic Reduction.

  2. Persistent sensitivity of Asian aerosol to emissions of nitrogen oxides

    E-Print Network [OSTI]

    Kharol, S. K.

    We use a chemical transport model and its adjoint to examine the sensitivity of secondary inorganic aerosol formation to emissions of precursor trace gases from Asia. Sensitivity simulations indicate that secondary inorganic ...

  3. Nitrogen oxides reduction by staged combustion of LCV gas 

    E-Print Network [OSTI]

    Cabrera Sixto, Jose Manuel

    1990-01-01

    ); and the bottom (figure 4). The purpose of this design was to provide flexsMity to modify the CC. Figure 5 shows a sectional view of the cydone combustor designed. The dimensions in this drawing were calculated based on a CGT feeding rate in the gasifier... TABLES OF THE STATISTICAL ANALYSES Primary Equivalence Ratio Overall Equivalence Ratio Delay Time between Stages Inlet Reynolds Number Combustion Temperature F/A Ratio in Gasifier D COMPUTER PROGRAM USED IN THE CAMAC SYSTEM E EXAMPLE . 162 163...

  4. Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

    2007-01-01

    Pollution Control Costs for Coal-Fired Power Stations; IEAControl Options for Coal-Fired Electric Utility Boilers; J.for NO x Control on Coal-Fired Boilers; U.S. Environmen- tal

  5. Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

    2007-01-01

    x Control. Volume 1: Utility Boiler Applications; ElectricCoal-Fired Electric Utility Boilers; J. Air & Waste Manage.for NO x Control on Coal-Fired Boilers; U.S. Environmen- tal

  6. Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

    2007-01-01

    including issues of technology and cost un- certainties, areon NO x Control Technologies and Cost Effectiveness forand other factors on technology cost trends (hence, the

  7. Performance of Installed Cooking Exhaust Devices

    E-Print Network [OSTI]

    Singer, Brett C.

    2013-01-01

    Carbon monoxide; Natural gas burners; Nitrogen dioxide; Range hood; Task ventilation; Unvented combustion.

  8. Nitrogen-doped graphene as transparent counter electrode for efficient dye-sensitized solar cells

    SciTech Connect (OSTI)

    Wang, Guiqiang, E-mail: wgqiang123@163.com [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)] [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China); Fang, Yanyan; Lin, Yuan [Institute of Chemistry, Chinese Academy of Science, Beijing 100080 (China)] [Institute of Chemistry, Chinese Academy of Science, Beijing 100080 (China); Xing, Wei; Zhuo, Shuping [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)] [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ? NG sheets are prepared through a hydrothermal reduction of graphite oxide. ? The transparent NG counter electrodes of DSCs are fabricated at room temperature. ? Transparent NG electrode exhibits excellent catalytic activity for the reduction of I{sub 3}{sup ?}. ? The DSC with NG electrode achieves a comparable efficiency to that of the Pt-based cell. ? The efficiency of rear illumination is about 85% that of front illumination. -- Abstract: Nitrogen-doped graphene sheets are prepared through a hydrothermal reduction of graphite oxide in the presence of ammonia and applied to fabricate the transparent counter electrode of dye-sensitized solar cells. The atomic percentage of nitrogen in doped graphene sample is about 2.5%, and the nitrogen bonds display pyridine and pyrrole-like configurations. Cyclic voltammetry studies demonstrate a much higher electrocatalytic activity toward I{sup ?}/I{sub 3}{sup ?} redox reaction for nitrogen-doped graphene, as compared with pristine graphene. The dye-sensitized solar cell with this transparent nitrogen-doped graphene counter electrode shows conversion efficiencies of 6.12% and 5.23% corresponding to front-side and rear-side illumination, respectively. Meanwhile, the cell with a Pt counter electrode shows a conversion efficiency of 6.97% under the same experimental condition. These promising results highlight the potential application of nitrogen-doped graphene in cost-effective, transparent dye-sensitized solar cells.

  9. Improvement of the process of fuel firing on BKZ-210-140F boilers

    SciTech Connect (OSTI)

    V.V. Osintsev; M.P. Sukharev; E.V. Toropov; K.V. Osintsev

    2007-01-15

    The existing flame processes of dual firing of gas and solid fuel are updated with reconstruction of the burners at the Chelyabinsk TETs-2. This is connected with marked worsening of the quality of local coal supplied to the cogeneration plant. Comparative tests of boilers with burners subjected to different degrees of updating have shown that replacement of the now used swirled method of introduction of reagents into the furnace by a uniflow one lowers the heat flows to the metal structures and to the settling of the burner throats making them more reliable. The emission of nitrogen oxides is minimized in the mode of gas firing and the activity of slagging of the furnace and of the platens is reduced in the mode of coal firing, which makes it possible to raise the steam rate of the boiler. Ways for further improvement of burner design with respect to nitrogen oxide emissions in the polydisperse flame are outlined.

  10. Palladium-Catalysed CH Activation of Aliphatic Amines! to give Strained Nitrogen Heterocycles !

    E-Print Network [OSTI]

    Jackson, Sophie

    Palladium-Catalysed C­H Activation of Aliphatic Amines! to give Strained Nitrogen Heterocycles. The University of Cambridge, Lensfield Road, Cambridge, CB2 1EW.! Palladium-Catalyzed C­H Activation Modes cyclopalladation complex N H palladium catalyst directed C­H activation oxidant C­Pd functionalization 4-membered

  11. What Happens to Nitrogen in Soils? 

    E-Print Network [OSTI]

    Provin, Tony; Hossner, L. R.

    2001-07-09

    35,000 tons of inert nitrogen gas (N 2 ). Most of the nitrogen found in soil originated as N 2 gas and nearly all the nitrogen in the atmosphere is N 2 gas. This inert nitrogen cannot be used by the plant until it is changed to ammonium (NH 4... + ) or nitrate (NO 3 - ) forms. Three important methods for changing nitrogen gas (N 2 ) to ammonium (NH 4 + ) are: a73 Free-living N 2 -fixing bacteria a73 N 2 -fixing bacteria in nodules on the roots of leguminous plants, and a73 Nitrogen fertilizer production...

  12. Kinetic modeling of nitric oxide removal from exhaust gases by Selective Non-Catalytic Reduction 

    E-Print Network [OSTI]

    Chenanda, Cariappa Mudappa

    1993-01-01

    Selective Non-Catalytic Reduction is one of the most promising techniques for the removal of oxides of nitrogen from combustion exhaust gases. These techniques are based on the injection of certain compounds, such as cyanuric acid and ammonia...

  13. Method of preparing nitrogen containing semiconductor material

    DOE Patents [OSTI]

    Barber, Greg D.; Kurtz, Sarah R.

    2004-09-07

    A method of combining group III elements with group V elements that incorporates at least nitrogen from a nitrogen halide for use in semiconductors and in particular semiconductors in photovoltaic cells.

  14. Mechanistic models of oceanic nitrogen fixation

    E-Print Network [OSTI]

    Monteiro, Fanny

    2009-01-01

    Oceanic nitrogen fixation and biogeochemical interactions between the nitrogen, phosphorus and iron cycles have important implications for the control of primary production and carbon storage in the ocean. The biological ...

  15. BIOGEOCHEMISTRY LETTERS Chronic nitrogen additions suppress decomposition

    E-Print Network [OSTI]

    Templer, Pamela

    BIOGEOCHEMISTRY LETTERS Chronic nitrogen additions suppress decomposition and sequester soil carbon dioxide emis- sions, offsetting a substantial portion of greenhouse gas forcing of the climate system. Although a number of factors are responsible for this terrestrial carbon sink, atmospheric nitrogen

  16. Size-reduction of nanodiamonds via air oxidation

    E-Print Network [OSTI]

    Gaebel, T; Chen, J; Hemmer, P; Rabeau, J R

    2011-01-01

    Here we report the size reduction and effects on nitrogen-vacancy centres in nanodiamonds by air oxidation using a combined atomic force and confocal microscope. The average height reduction of individual crystals as measured by atomic force microscopy was 10.6 nm/h at 600 {\\deg}C air oxidation at atmospheric pressure. The oxidation process modified the surface including removal of non-diamond carbon and organic material which also led to a decrease in background fluorescence. During the course of the nanodiamond size reduction, we observed the annihilation of nitrogen-vacancy centres which provided important insight into the formation of colour centres in small crystals. In these unirradiated samples, the smallest nanodiamond still hosting a stable nitrogen-vacancy centre observed was 8 nm.

  17. Size-reduction of nanodiamonds via air oxidation

    E-Print Network [OSTI]

    T. Gaebel; C. Bradac; J. Chen; P. Hemmer; J. R. Rabeau

    2011-04-27

    Here we report the size reduction and effects on nitrogen-vacancy centres in nanodiamonds by air oxidation using a combined atomic force and confocal microscope. The average height reduction of individual crystals as measured by atomic force microscopy was 10.6 nm/h at 600 {\\deg}C air oxidation at atmospheric pressure. The oxidation process modified the surface including removal of non-diamond carbon and organic material which also led to a decrease in background fluorescence. During the course of the nanodiamond size reduction, we observed the annihilation of nitrogen-vacancy centres which provided important insight into the formation of colour centres in small crystals. In these unirradiated samples, the smallest nanodiamond still hosting a stable nitrogen-vacancy centre observed was 8 nm.

  18. Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion

    SciTech Connect (OSTI)

    Wayne Penrod

    2006-12-31

    The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

  19. Nitrogen dioxide and respiratory illnesses in infants

    SciTech Connect (OSTI)

    Samet, J.M.; Lambert, W.E.; Skipper, B.J.; Cushing, A.H.; Hunt, W.C.; Young, S.A.; McLaren, L.C.; Schwab, M.; Spengler, J.D. )

    1993-11-01

    Nitrogen dioxide is an oxidant gas that contaminates outdoor air and indoor air in homes with unvented gas appliances. A prospective cohort study was carried out to test the hypothesis that residential exposure to NO2 increases incidence and severity of respiratory illnesses during the first 18 months of life. A cohort of 1,205 healthy infants from homes without smokers was enrolled. The daily occurrence of respiratory symptoms and illnesses was reported by the mothers every 2 wk. Illnesses with wheezing or wet cough were classified as lower respiratory tract. Indoor NO2 concentrations were serially measured with passive samplers place in the subjects' bedrooms. In stratified analyses, illness incidence rates did not consistently increase with exposure to NO2 or stove type. In multivariate analyses that adjusted for potential confounding factors, odds ratios were not significantly elevated for current or lagged NO2 exposures, or stove type. Illness duration, a measure of illness severity, was not associated with NO2 exposure. The findings can be extended to homes with gas stoves in regions of the United States where the outdoor air is not heavily polluted by NO2.

  20. Effect of nitrogen-containing groups on enhanced capacitive behaviors of multi-walled carbon nanotubes

    SciTech Connect (OSTI)

    Kim, Ji-Il; Park, Soo-Jin

    2011-08-15

    In this work, electrochemical properties of surface treated multi-walled carbon nanotubes (MWNTs) are studied in supercapacitors. Nitrogen and oxygen functional groups containing MWNTs are prepared by urea and acidic treatments, respectively. The surface properties of the MWNTs are confirmed by X-ray photoelectron spectroscopy (XPS) and zeta-potential measurements. The textural properties are characterized by N{sub 2} adsorption/desorption isotherm at 77 K using the BET eqaution, BJH method, and HK method. The electrochemical properties of the MWNTs are accumulated by cyclic voltammetry, impedance spectra, and charge-discharge cycling performance in 1 M H{sub 2}SO{sub 4} at room temperature. As a result, the functionalized MWNTs lead to an increase in capacitance as compared with pristine MWNTs. It suggests that the pyridinic and pyridinic-N-oxides nitrogen species have effects on the specific capacitance due to the positive charge, and thus an improved electron transfer at high current loads results, the most important functional groups affecting capacitive behaviors. - Graphical Abstract: The N{sub 1s} spectra of nitrogen functionalized multi-walled carbon nanotubes are measured by X-ray photoelectron spectroscopy. Highlights: > Facile method of increasing elemental composition of nitrogen functional groups on carbon materials. > Increased specific capacitance multi-walled carbon nanotubes (MWNTs) for electrode materials as high as general chemical activation process. > Enhanced capacitive behaviors via introducing pyridinic and pyridinic-N-oxides nitrogen species onto the MWNTs. > Improvement of electron transfer at high current loads.

  1. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    SciTech Connect (OSTI)

    Noam Lior; Stuart W. Churchill

    2003-10-01

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at the Gordon Conference on Modern Development in Thermodynamics. The results obtained are very encouraging for the development of the RCSC as a commercial burner for significant reduction of NO{sub x} emissions, and highly warrants further study and development.

  2. Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner

    SciTech Connect (OSTI)

    Selle, L.; Ferret, B. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); Poinsot, T. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); CERFACS, Toulouse (France)

    2011-01-15

    Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require corrections which are studied using two-dimensional DNS. Numerical simulations also provide stretch, displacement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames. (author)

  3. Nitrogen fixation method and apparatus

    DOE Patents [OSTI]

    Chen, Hao-Lin (Walnut Creek, CA)

    1983-01-01

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

  4. Nitrogen fixation method and apparatus

    DOE Patents [OSTI]

    Chen, H.L.

    1983-08-16

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O[sub 2]/cm promotes the formation of vibrationally excited N[sub 2]. Atomic oxygen interacts with vibrationally excited N[sub 2] at a much quicker rate than unexcited N[sub 2], greatly improving the rate at which NO is formed. 1 fig.

  5. Nitrogen Removal from Natural Gas

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report: AchievementsTemperatures Year 6 -FINALEnergy,Pacificdouble-betaNitrogen

  6. Dark matter burners

    E-Print Network [OSTI]

    Moskalenko, I V

    2006-01-01

    We show that a star orbiting close enough to an adiabatically grown supermassive black hole can capture a large number of weakly interacting massive particles (WIMPs) during its lifetime. WIMP annihilation energy release in low- to medium-mass stars is comparable with or even exceeds the luminosity of such stars due to thermonuclear burning. The excessive energy release in the stellar core may result in an evolution scenario different from what is expected for a regular star. The model thus predicts the existence of unusual stars within the central parsec of galactic nuclei. If found, such stars would provide evidence for the existence of particle dark matter. The excess luminosity of such stars attributed to WIMP "burning" can be used to infer the local WIMP matter density. A white dwarf with a highly eccentric orbit around the central black hole may exhibit variations in brightness correlated with the orbital phase. On the other hand, white dwarfs shown to lack such orbital brightness variations can be used...

  7. Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel Engine 

    E-Print Network [OSTI]

    Song, Hoseok

    2012-07-16

    Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It beneficially reduces regulated emission gases, but increases NOx (nitric oxide and nitrogen dioxide) Thus, the increase in NOx is the ...

  8. Sandia Energy - Strategic Petroleum Reserve: Nitrogen Monitoring...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Petroleum Reserve: Nitrogen Monitoring & Integrity Testing of SW Louisiana Caverns Home Carbon Capture & Storage News News & Events Research & Capabilities Systems...

  9. Oxidation catalyst

    DOE Patents [OSTI]

    Ceyer, Sylvia T. (Cambridge, MA); Lahr, David L. (Cambridge, MA)

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  10. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries

    SciTech Connect (OSTI)

    Shao, Yuyan; Wang, Xiqing; Engelhard, Mark H.; Wang, Chong M.; Dai, Sheng; Liu, Jun; Yang, Zhenguo; Lin, Yuehe

    2010-03-22

    We demonstrate a novel electrode material?nitrogen-doped mesoporous carbon (NMC)?for vanadium redox flow batteries. Mesoporous carbon (MC) is prepared using a soft-template method and doped with nitrogen by heat-treating MC in NH3. NMC is characterized with X-ray photoelectron spectroscopy and transmission electron microscopy. The redox reaction of VO2+/VO2+ is characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic kinetics of the redox couple VO2+/VO2+ is significantly enhanced on NMC electrode compared with MC and graphite electrodes. The reversibility of the redox couple VO2+/VO2+ is greatly improved on NMC (0.61 for NMC vs. 0.34 for graphite). Nitrogen doping facilitates the electron transfer on the electrode/electrolyte interface for both oxidation and reduction processes. NMC is a promising electrode material for redox flow batteries.

  11. Foliar nitrogen dynamics and nitrogen resorption of a sandy shrub Salix gordejevii in northern China

    E-Print Network [OSTI]

    Foliar nitrogen dynamics and nitrogen resorption of a sandy shrub Salix gordejevii in northern Key words: Nitrogen, resorption efficiency, resorption proficiency, Salix gordejevii, senescence, soil and senescing leaves and N resorption in Salix gordejevii Chang, a sandy shrub in northern China, were studied

  12. The Ecological Society of America www.frontiersinecology.org Earth's atmosphere consists largely of nitrogen (N) in

    E-Print Network [OSTI]

    Templer, Pamela

    nitrogen oxides (NOx) and ammonia (NH3), to the atmosphere (eg Galloway et al. 2008). Both NOx and NH3 can of North America. Some of this N can stimulate carbon (C) storage in terrestrial ecosystems rates of ammonia emissions and deposition are expected to remain unchanged, projected declines

  13. Contribution of gas phase oxidation of volatile organic compounds to atmospheric carbon monoxide levels in two areas of the United States

    E-Print Network [OSTI]

    Dabdub, Donald

    - house gas, but also the hydroperoxide radical (HO2). HO2 converts nitric oxide to nitrogen dioxideContribution of gas phase oxidation of volatile organic compounds to atmospheric carbon monoxide. Chen, K. Carmody, S. Vutukuru, and D. Dabdub (2007), Contribution of gas phase oxidation of volatile

  14. Correcting Nitrogen Deficiencies in Cotton with Urea-Based Products 

    E-Print Network [OSTI]

    Livingston, Stephen; Stichler, Charles

    1995-11-22

    Correcting nitrogen deficiency is important for cotton plant growth. This publication explains nitrogen requirements, the problems associated with nitrogen deficiency, and ways to correct deficiencies using urea as a source ...

  15. Method for producing high carrier concentration p-Type transparent conducting oxides

    DOE Patents [OSTI]

    Li, Xiaonan (Evergreen, CO); Yan, Yanfa (Littleton, CO); Coutts, Timothy J. (Golden, CO); Gessert, Timothy A. (Conifer, CO); Dehart, Clay M. (Westminster, CO)

    2009-04-14

    A method for producing transparent p-type conducting oxide films without co-doping plasma enhancement or high temperature comprising: a) introducing a dialkyl metal at ambient temperature and a saturated pressure in a carrier gas into a low pressure deposition chamber, and b) introducing NO alone or with an oxidizer into the chamber under an environment sufficient to produce a metal-rich condition to enable NO decomposition and atomic nitrogen incorporation into the formed transparent metal conducting oxide.

  16. Titanium subhydride potassium perchlorate (TiH1.65/KClO4) burn rates from hybrid closed bomb-strand burner experiments.

    SciTech Connect (OSTI)

    Cooper, Marcia A.; Oliver, Michael S.

    2012-08-01

    A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burning within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.

  17. Functional and inflammatory alterations in the lung following exposure of rats to nitrogen mustard

    SciTech Connect (OSTI)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Patel, Kinal J., E-mail: kinalv5@gmail.com [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Shen, Jianliang, E-mail: jianliangs@gmail.com [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Reimer, David, E-mail: reimerd@las.rutgers.edu [Laboratory Animal Services, Rutgers University, Piscataway, NJ (United States); Gow, Andrew J., E-mail: gow@rci.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States)

    2011-01-01

    Nitrogen mustard is a vesicant that causes damage to the respiratory tract. In these studies, we characterized the acute effects of nitrogen mustard on lung structure, inflammatory mediator expression, and pulmonary function, with the goal of identifying mediators potentially involved in toxicity. Treatment of rats (male Wistar, 200-225 g) with nitrogen mustard (mechlorethamine hydrochloride, i.t., 0.25 mg/kg) resulted in marked histological changes in the respiratory tract, including necrotizing bronchiolitis, thickening of alveolar septa, and inflammation which was evident within 24 h. This was associated with increases in bronchoalveolar lavage protein and cells, confirming injury to alveolar epithelial regions of the lung. Nitrogen mustard administration also resulted in increased expression of inducible nitric oxide synthase and cyclooxygenase-2, pro-inflammatory proteins implicated in lung injury, in alveolar macrophages and alveolar and bronchial epithelial cells. Expression of connective tissue growth factor and matrix metalloproteinase-9, mediators regulating extracellular matrix turnover was also increased, suggesting that pathways leading to chronic lung disease are initiated early in the pathogenic process. Following nitrogen mustard exposure, alterations in lung mechanics and function were also observed. These included decreases in baseline static compliance, end-tidal volume and airway resistance, and a pronounced loss of methacholine responsiveness in resistance, tissue damping and elastance. Taken together, these data demonstrate that nitrogen mustard induces rapid structural and inflammatory changes in the lung which are associated with altered lung functioning. Understanding the nature of the injury induced by nitrogen mustard and related analogs may aid in the development of efficacious therapies for treatment of pulmonary injury resulting from exposure to vesicants.

  18. Eighth international congress on nitrogen fixation. Final program

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  19. Nitrogen Fixation and Dentrification in Sediments of Eutrophic Mediterranean-Type Estuaries: Seasonal Patterns and Responses to Anthropogenic Nitrogen Inputs

    E-Print Network [OSTI]

    Kane, Tonya Lynn

    2012-01-01

    and mechanisms controlling sediment nitrogen fixation in aKane T & Fong P. 2007. Sediment nitrogen fixation in UpperKane T & Fong P. 2007. Sediment nitrogen fixation in Upper

  20. ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Nitrogen Control in Ladle and Casting Operations ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting Operations castingops.pdf More Documents & Publications...

  1. Nitrogen Control in Electric Arc Furnace Steelmaking by Direct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines...

  2. Reducing NOx in Fired Heaters and Boilers 

    E-Print Network [OSTI]

    Garg, A.

    2000-01-01

    be achieved by Ultra Low NOx burners or FGR in boilers. ? Primary products of combustion ? Carbon dioxide ? Water vapors ? Oxygen ? Nitrogen ? Trace compounds NOx emissions ? NOx or Oxides of Nitrogen have an adverse effects of health and environment... NOx burners ? Flue gas recirculation ? Steam injection ? Staged combustion NOx reduction I eChnology IN U x ppm IN U x In Ibs/m m Btu L. oDventlona l.J as Burn e r lU 1?.16 Low N 0 x Burn e r 7:> ,U .1 Ultra LOw NUx Burn e r ,Z:> I U . U...

  3. Dissociation and excitation coefficients of nitrogen molecules and nitrogen monoxide generation

    SciTech Connect (OSTI)

    Uhm, Han S.; Na, Young H.; Choi, Eun H.; Cho, Guangsup [Department of Electronic and Biological Physics, Kwangwoon University 447-1 Wolgye-Dong, Nowon-Gu, Seoul 137-701 (Korea, Republic of)] [Department of Electronic and Biological Physics, Kwangwoon University 447-1 Wolgye-Dong, Nowon-Gu, Seoul 137-701 (Korea, Republic of)

    2013-08-15

    The excitation coefficient ?{sub N2} is calculated for the excited metastable level of N{sub 2}(A{sub 3}?{sub u}{sup +}) in nitrogen molecules. In addition, the dissociation coefficient of nitrogen molecules is investigated by making use of the Boltzmann distribution of the electrons in atmospheric plasmas. The excitation and electron-impact dissociation coefficients of nitrogen molecules are analytically expressed in terms of the electron temperature T{sub e} for evaluations of the reactive oxygen and nitrogen species in atmospheric plasmas. As an application example of these coefficients, the nitrogen monoxide generation through a microwave torch is carried out for a development of medical tool. The nitrogen monoxide concentration from a microwave plasma-torch can be easily controlled by the nitrogen flow rate, mole fraction of the oxygen gas, and the microwave power. A simple analytic expression of the nitrogen monoxide concentration is obtained in terms of the oxygen molecular density and gas flow rate. The experimental data agree remarkably well with the theoretical results from the analytical expression. A microwave nitrogen-torch can easily provide an appropriate nitrogen monoxide concentration for the wound healings.

  4. Effect of ammonia plasma treatment on graphene oxide LB monolayers

    SciTech Connect (OSTI)

    Singh, Gulbagh; Botcha, V. Divakar; Narayanam, Pavan K.; Sutar, D. S.; Talwar, S. S.; Major, S. S.; Srinivasa, R. S.

    2013-02-05

    Graphene oxide monolayer sheets were transferred on Si and SiO{sub 2}/Si substrates by Langmuir-Blodgett technique and were exposed to ammonia plasma at room temperature. The monolayer character of both graphene oxide and plasma treated graphene oxide sheets were ascertained by atomic force microscopy. X-ray photoelectron spectroscopy and Raman spectroscopy revealed that ammonia plasma treatment results in enhancement of graphitic carbon content along with the incorporation of nitrogen. The conductivity of graphene oxide monolayers, which was in the range of 10{sup -6}-10{sup -7} S/cm, increased to 10{sup -2}-10{sup -3} S/cm after the ammonia plasma treatment. These results indicate that the graphene oxide was simultaneously reduced and N-doped during ammonia plasma treatment, without affecting the morphological stability of sheets.

  5. Catalyst Additives to Enhance Mercury Oxidation and Capture

    SciTech Connect (OSTI)

    Thomas K. Gale

    2005-12-31

    Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. Three different SCR catalysts are currently being studied in this project--honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Future work to characterize flue gas simulations typically derived from low and high sulfur bituminous coal are being performed in a stepwise manner, to avoid the constant interruptions in testing that occur when leaks in the system are generated during temperature transitions. Specifically, chlorine concentration vs. mercury oxidation correlations will be developed for each catalyst. The contributions of temperature are also being investigated. SO2 oxidation is also being investigated for each test condition.

  6. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOE Patents [OSTI]

    Coruzzi, Gloria M. (New York, NY); Brears, Timothy (Durham, NC)

    2000-01-01

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  7. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOE Patents [OSTI]

    Coruzzi, Gloria M.; Brears, Timothy

    2005-03-08

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  8. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOE Patents [OSTI]

    Coruzzi, Gloria M. (New York, NY); Brears, Timothy (Durham, NC)

    1999-01-01

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  9. Preparation of nitrogen-doped carbon tubes

    DOE Patents [OSTI]

    Chung, Hoon Taek; Zelenay, Piotr

    2015-12-22

    A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.

  10. Plant nitrogen regulatory P-PII genes

    DOE Patents [OSTI]

    Coruzzi, Gloria M. (New York, NY); Lam, Hon-Ming (Hong Kong, HK); Hsieh, Ming-Hsiun (Woodside, NY)

    2001-01-01

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the

  11. Effects of Nitrogen contamination in liquid Argon

    E-Print Network [OSTI]

    R. Acciarri; M. Antonello; B. Baibussinov; M. Baldo-Ceolin; P. Benetti; F. Calaprice; E. Calligarich; M. Cambiaghi; N. Canci; F. Carbonara; F. Cavanna; S. Centro; A. G. Cocco; F. Di Pompeo; G. Fiorillo; C. Galbiati; V. Gallo; L. Grandi; G. Meng; I. Modena; C. Montanari; O. Palamara; L. Pandola; F. Pietropaolo; G. L. Raselli; M. Roncadelli; M. Rossella; C. Rubbia; E. Segreto; A. M. Szelc; S. Ventura; C. Vignoli

    2008-04-08

    A dedicated test of the effects of Nitrogen contamination in liquid Argon has been performed at the INFN-Gran Sasso Laboratory (LNGS, Italy) within the WArP R&D program. A detector has been designed and assembled for this specific task and connected to a system for the injection of controlled amounts of gaseous Nitrogen into the liquid Argon. Purpose of the test is to detect the reduction of the Ar scintillation light emission as a function of the amount of the Nitrogen contaminant injected in the Argon volume. A wide concentration range, spanning from about 10^-1 ppm up to about 10^3 ppm, has been explored. Measurements have been done with electrons in the energy range of minimum ionizing particles (gamma-conversion from radioactive sources). Source spectra at different Nitrogen contaminations are analyzed, showing sensitive reduction of the scintillation yield at increasing concentrations. The rate constant of the light quenching process induced by Nitrogen in liquid Ar has been found to be k(N2)=0.11 micros^-1 ppm^-1. Direct PMT signals acquisition at high time resolution by fast Waveform recording allowed to extract with high precision the main characteristics of the scintillation light emission in pure and contaminated LAr. In particular, the decreasing behavior in lifetime and relative amplitude of the slow component is found to be appreciable from O(1 ppm) of Nitrogen concentrations.

  12. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    SciTech Connect (OSTI)

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  13. Saving work to a CD-RW using the Optical CD Drive (CD Burner) Saving files to a Rewritable CD (or CD-RW) is very similar to the process described

    E-Print Network [OSTI]

    Machel, Hans

    Saving work to a CD-RW using the Optical CD Drive (CD Burner) Saving files to a Rewritable CD (or CD-RW) is very similar to the process described above for saving files to a Recordable CD (or CD to accept files again, so drag-and-drop the files that are on the desktop that you wish to save and when you

  14. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries

    SciTech Connect (OSTI)

    Dai, Sheng [ORNL; Shao, Yuyan [Pacific Northwest National Laboratory (PNNL); Wang, Xiqing [ORNL; Engelhard, Mark H [Pacific Northwest National Laboratory (PNNL); Wang, Congmin [ORNL; Liu, Jun [Pacific Northwest National Laboratory (PNNL); YANG, ZHENGUO [Pacific Northwest National Laboratory (PNNL); Lin, Yuehe [ORNL

    2010-01-01

    We demonstrate an excellent performance of nitrogen-doped mesoporous carbon (N-MPC) for energy storage in vanadium redox flow batteries. Mesoporous carbon (MPC) is prepared using a soft-template method and doped with nitrogen by heat-treating MPC in NH{sub 3}. N-MPC is characterized with X-ray photoelectron spectroscopy and transmission electron microscopy. The redox reaction of [VO]{sup 2+}/[VO{sub 2}]{sup +} is characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic kinetics of the redox couple [VO]{sup 2+}/[VO{sub 2}]{sup +} is significantly enhanced on N-MPC electrode compared with MPC and graphite electrodes. The reversibility of the redox couple [VO]{sup 2+}/[VO{sub 2}]{sup +} is greatly improved on N-MPC (0.61 for N-MPC vs. 0.34 for graphite), which is expected to increase the energystorage efficiency of redoxflowbatteries. Nitrogen doping facilitates the electron transfer on electrode/electrolyte interface for both oxidation and reduction processes. N-MPC is a promising material for redoxflowbatteries. This also opens up new and wider applications of nitrogen-doped carbon.

  15. Final Report for DOE grant no. DE-FG02-04ER63883: Can soil genomics predict the impact of precipitation on nitrous oxide flux from soil

    SciTech Connect (OSTI)

    Egbert Schwartz

    2008-12-15

    Nitrous oxide is a potent greenhouse gas that is released by microorganisms in soil. However, the production of nitrous oxide in soil is highly variable and difficult to predict. Future climate change may have large impacts on nitrous oxide release through alteration of precipitation patterns. We analyzed DNA extracted from soil in order to uncover relationships between microbial processes, abundance of particular DNA sequences and net nitrous oxide fluxes from soil. Denitrification, a microbial process in which nitrate is used as an electron acceptor, correlated with nitrous oxide flux from soil. The abundance of ammonia oxidizing archaea correlated positively, but weakly, with nitrous oxide production in soil. The abundance of bacterial genes in soil was negatively correlated with gross nitrogen mineralization rates and nitrous oxide release from soil. We suggest that the most important control over nitrous oxide production in soil is the growth and death of microorganisms. When organisms are growing nitrogen is incorporated into their biomass and nitrous oxide flux is low. In contrast, when microorganisms die, due to predation or infection by viruses, inorganic nitrogen is released into the soil resulting in nitrous oxide release. Higher rates of precipitation increase access to microorganisms by predators or viruses through filling large soil pores with water and therefore can lead to large releases of nitrous oxide from soil. We developed a new technique, stable isotope probing with 18O-water, to study growth and mortality of microorganisms in soil.

  16. NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES

    SciTech Connect (OSTI)

    Singer, Brett C.; Apte, Michael G.; Black, Douglas R.; Hotchi, Toshifumi; Lucas, Donald; Lunden, Melissa M.; Mirer, Anna G.; Spears, Michael; Sullivan, Douglas P.

    2009-12-01

    The effect of liquefied natural gas on pollutant emissions was evaluated experimentally with used and new appliances in the laboratory and with appliances installed in residences, targeting information gaps from previous studies. Burner selection targeted available technologies that are projected to comprise the majority of installed appliances over the next decade. Experiments were conducted on 13 cooktop sets, 12 ovens, 5 broiler burners, 5 storage water heaters, 4 forced air furnaces, 1 wall furnace, and 6 tankless water heaters. Air-free concentrations and fuel-based emission factors were determined for carbon monoxide, nitrogen oxides, nitrogen dioxide, and the number of (predominantly ultrafine) particles over complete burns?including transient effects (device warm-up and intermittent firing of burners) following ignition--and during more stable end-of-burn conditions. Formaldehyde was measured over multi-burn cycles. The baseline fuel was Northern California line gas with Wobbe number (a measure of fuel energy delivery rate) of 1320-1340; test fuels had Wobbe numbers of roughly 1390 and 1420, and in some cases 1360. No ignition or operational problems were observed during test fuel use. Baseline emissions varied widely across and within burner groups and with burner operational mode. Statistically significant emissions changes were observed for some pollutants on some burners.

  17. Evidence for the formation of nitrogen-rich precious metal nanoparticles

    SciTech Connect (OSTI)

    Veith, Gabriel M [ORNL; Lupini, Andrew R [ORNL; Baggetto, Loic [ORNL; Browning, Jim [ORNL; Keum, Jong Kahk [ORNL; Villa, Alberto [Universita di Milano, Italy; Prati, Laura [Universita di Milano, Italy; Papandrew, Alexander B [ORNL; Goenaga Jimenez, Gabriel A [ORNL; Mullins, David R [ORNL; Bullock, Steven E [ORNL; Dudney, Nancy J [ORNL

    2014-01-01

    We report evidence for the formation of nitrogen-rich precious metal nanoparticles (Pt, Pd) prepared by reactive sputtering of the pure metal in a N2 plasma. The composition of the nanoparticles varies as a function of particle size and growth conditions. For the smallest particles the nitrogen content appears to be as high as 6.7 N atoms for each Pd atom or 5.9 N atoms for each Pt atom whereas bulk films have nominal compositions of Pt7.3N and Pd2.5N. The nanoparticles are metastable in air and moisture, slowly decomposing over several years. This paper describes the synthesis of these materials along with experimental evidence of the composition, oxidation state, and growth modes. The catalytic properties of these N-rich nanoparticles were accessed by rotating disk electrode electrochemical studies, the liquid phase oxidation of benzyl alcohol and gas phase CO oxidation and support the experimental evidence for the materials composition.

  18. Availability of Some Nitrogenous and Phosphatic Materials. 

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1922-01-01

    at this Station, some of which are reported in this bulletin. Some of these tests relate to the use of the materials as fertilizer, while others relate to their possible value to plants when occurring as soil minerals. These tests have been made from time... to ascertain the availability of the nitrogen in the wheat which was charred. The experiments were carried out in the usual manner. The charred wheat was ground, and a quantity used containing 0.1 gram of nitrogen to 5000 grams of soil. Acid phosphate...

  19. Photo-oxidation catalysts

    DOE Patents [OSTI]

    Pitts, J. Roland (Lakewood, CO); Liu, Ping (Irvine, CA); Smith, R. Davis (Golden, CO)

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  20. Stress dependent oxidation of sputtered niobium and effects on superconductivity

    SciTech Connect (OSTI)

    David Henry, M. Wolfley, Steve; Monson, Todd; Clark, Blythe G.; Shaner, Eric; Jarecki, Robert

    2014-02-28

    We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, T{sub c}. Niobium was sputter-deposited on silicon dioxide coated 150?mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400?MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb{sub 2}O{sub 5}, consumed the top 6–10?nm, we measure less than 1 at. % oxygen and nitrogen in the bulk of the films after the oxidation period. T{sub c} measurements using a SQUID magnetometer indicate that the tensile films maintained a T{sub c} approaching the dirty superconductive limit of 8.4?K after two years of oxidation while maintaining room temperature sheet resistance. This work demonstrates that control over niobium film stress during deposition can prevent bulk oxidation by limiting the vertical grain boundaries ability to oxidize, prolonging the superconductive properties of sputtered niobium when exposed to atmosphere.

  1. Biexciton emission from single isoelectronic traps formed by nitrogen-nitrogen pairs in GaAs

    SciTech Connect (OSTI)

    Takamiya, Kengo; Fukushima, Toshiyuki; Yagi, Shuhei; Hijikata, Yasuto; Yaguchi, Hiroyuki [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku , Saitama 338-8570 (Japan); Mochizuki, Toshimitsu; Yoshita, Masahiro; Akiyama, Hidefumi [Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Kuboya, Shigeyuki; Onabe, Kentaro [Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Katayama, Ryuji [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2013-12-04

    We have studied photoluminescence (PL) from individual isoelectronic traps formed by nitrogen-nitrogen (NN) pairs in GaAs. Sharp emission lines due to exciton and biexciton were observed from individual isoelectronic traps in nitrogen atomic-layer doped (ALD) GaAs. The binding energy of biexciton bound to individual isoelectronic traps was approximately 8 meV. Both the exciton and biexciton luminescence lines show completely random polarization and no fine-structure splitting. These results are desirable to the application to the quantum cryptography used in the field of quantum information technology.

  2. Impacts of Atmospheric Anthropogenic Nitrogen on the

    E-Print Network [OSTI]

    Ward, Bess

    discharges from wastewater treatment, atmospheric deposition, and so forth, resulting in increasing), including oxidized and reduced inorganic and organic forms. The availability of Nr limits primary pro

  3. Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition

    SciTech Connect (OSTI)

    Lushington, Andrew; Liu, Jian; Tang, Yongji; Li, Ruying; Sun, Xueliang, E-mail: xsun@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2014-01-15

    The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10?wt. % ozone at temperatures of 150, 250, and 300?°C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTs was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O{sub 3} attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides.

  4. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine...

  5. Global reactive nitrogen deposition from lightning NOx A. Shepon,1

    E-Print Network [OSTI]

    Gildor, Hezi

    ., 2002]. The anthropogenic perturbation to the nitrogen cycle (i.e., the increased fossil fuel usage of lightning activity [Price and Rind, 1994; Reeve and Toumi, 1999], creating more available nitrogen compounds

  6. Liquid absorbent solutions for separating nitrogen from natural gas

    DOE Patents [OSTI]

    Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Redmond, OR); Lyon, David K. (Bend, OR); Miller, Warren K. (Bend, OR)

    2000-01-01

    Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  7. ORIGINAL ARTICLE Carbon and nitrogen fixation and

    E-Print Network [OSTI]

    Capone, Douglas G.

    capable of fixing both dinitrogen (N2) and carbon dioxide (CO2), deriving energy from oxygenicORIGINAL ARTICLE Carbon and nitrogen fixation and metabolite exchange in and between individual and was evenly allocated among vegetative cells, with the exception of the most remote vegetative cells between

  8. groundwater nitrogen source identification and remediation

    E-Print Network [OSTI]

    groundwater nitrogen source identification and remediation The Seymour Aquifer is a shallow aquifer, the Seymour Aquifer has the highest groundwater pollution potential of all the major aqui- fers in Texas drinking water standards. Potential sources of nitrate in groundwater include atmospheric deposi- tion

  9. Phase Discrimination through Oxidant Selection for Iron Oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin Films Home > Research > ANSER Research Highlights > Phase Discrimination through Oxidant Selection for Iron...

  10. Cerium Oxide Coating for Oxidation Reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Award In order to produce power more efficiently and cleanly, the next generation of power plant boilers, turbines, solid oxide fuel cells (SOFCs) and other essential equipment...

  11. Identifying Sources of Nitrogen to Hanalei Bay, Kauai, Utilizing the

    E-Print Network [OSTI]

    Paytan, Adina

    Identifying Sources of Nitrogen to Hanalei Bay, Kauai, Utilizing the Nitrogen Isotope Signature, Menlo Park, California 94025, and P.O. Box 681, Kilauea, Hawaii 96754 Sewage effluent, storm runoff of land derived nutrients into Hanalei Bay, Kauai. We determined the nitrogen isotopic signatures (15N

  12. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics

    SciTech Connect (OSTI)

    Xu, Chonggang [Los Alamos National Laboratory (LANL); Fisher, Rosie [National Center for Atmospheric Research (NCAR); Wullschleger, Stan D [ORNL; Wilson, Cathy [Los Alamos National Laboratory (LANL); Cai, Michael [Los Alamos National Laboratory (LANL); McDowell, Nathan [Los Alamos National Laboratory (LANL)

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO{sub 2} concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO{sub 2} concentration, temperature, and radiation when evaluated against published data of V{sub c,max} (maximum carboxylation rate) and J{sub max} (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO{sub 2} concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks to climate in Earth system models.

  13. Methane oxidation rates by AMS

    E-Print Network [OSTI]

    Pack, M; Heintz, M; ReeburGh, WS; Trumbore, SE; Valentine, DL; Xu, X

    2009-01-01

    second case. Number of cases Methane oxidation rates by AMSIn the marine environment methane (CH 4 ) oxidation consumes

  14. Nitrogen control of chloroplast differentiation. Final report

    SciTech Connect (OSTI)

    Schmidt, G.W.

    1998-05-01

    This project was directed toward understanding at the physiological, biochemical and molecular levels of how photosynthetic organisms adapt to long-term nitrogen-deficiency conditions is quite incomplete even though limitation of this nutrient is the most commonly restricts plant growth and development. For our work on this problem, the unicellular green alga, Chlamydomonas reinhardtii, was grown in continuous cultures in which steady-state levels of nitrogen can be precisely controlled. N-limited cells exhibit the classical symptoms of deficiency of this nutrient, chlorosis and slow growth rates, and respond to nitrogen provision by rapid greening and chloroplast differentiation. We have addressed three aspects of this problem: (1) the regulation of pigment synthesis; (2) control of expression of nuclear genes encoding photosynthetic proteins; (3) changes in metabolic and electron transport pathways that enable sustained CO{sub 2} fixation even though they cannot be readily converted into amino and nucleic acids. For the last, principle components are: (a) enhanced mitochondrial respiratory activity intimately associated with photosynthates, and (b) the occurrence in thylakoids of a supplemental electron transport pathway that facilitates reduction of the plastoquinone pool. Together, these distinguishing features of N-limited cells are likely to enable cell survival, especially under conditions of high irradiance stress.

  15. Plant nitrogen regulatory P-PII polypeptides

    DOE Patents [OSTI]

    Coruzzi, Gloria M.; Lam, Hon-Ming; Hsieh, Ming-Hsiun

    2004-11-23

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the invention may be used to engineer organisms to overexpress wild-type or mutant P-PII regulatory protein. Engineered plants that overexpress or underexpress P-PII regulatory protein may have increased nitrogen assimilation capacity. Engineered organisms may be used to produce P-PII proteins which, in turn, can be used for a variety of purposes including in vitro screening of herbicides. P-PII nucleotide sequences have additional uses as probes for isolating additional genomic clones having the promoters of P-PII gene. P-PII promoters are light- and/or sucrose-inducible and may be advantageously used in genetic engineering of plants.

  16. Partial oxidation catalyst

    DOE Patents [OSTI]

    Krumpelt, Michael (Naperville, IL); Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Doshi, Rajiv (Downers Grove, IL)

    2000-01-01

    A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  17. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOE Patents [OSTI]

    Flinn, J.E.; Kelly, T.F.

    1999-06-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

  18. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOE Patents [OSTI]

    Flinn, John E. (Idaho Falls, ID); Kelly, Thomas F. (Madison, WI)

    1999-01-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

  19. THE EFFECTS OF INITIAL ABUNDANCES ON NITROGEN IN PROTOPLANETARY DISKS

    SciTech Connect (OSTI)

    Schwarz, Kamber R.; Bergin, Edwin A.

    2014-12-20

    The dominant form of nitrogen provided to most solar system bodies is currently unknown, though available measurements show that the detected nitrogen in solar system rocks and ices is depleted with respect to solar abundances and the interstellar medium. We use a detailed chemical/physical model of the chemical evolution of a protoplanetary disk to explore the evolution and abundance of nitrogen-bearing molecules. Based on this model, we analyze how initial chemical abundances provided as either gas or ice during the early stages of disk formation influence which species become the dominant nitrogen bearers at later stages. We find that a disk with the majority of its initial nitrogen in either atomic or molecular nitrogen is later dominated by atomic and molecular nitrogen as well as NH{sub 3} and HCN ices, where the dominant species varies with disk radius. When nitrogen is initially in gaseous ammonia, it later becomes trapped in ammonia ice except in the outer disk where atomic nitrogen dominates. For a disk with the initial nitrogen in the form of ammonia ice, the nitrogen remains trapped in the ice as NH{sub 3} at later stages. The model in which most of the initial nitrogen is placed in atomic N best matches the ammonia abundances observed in comets. Furthermore, the initial state of nitrogen influences the abundance of N{sub 2}H{sup +}, which has been detected in protoplanetary disks. Strong N{sub 2}H{sup +} emission is found to be indicative of an N{sub 2} abundance greater than n{sub N{sub 2}}/n{sub H{sub 2}}>10{sup ?6} in addition to tracing the CO snow line. Our models also indicate that NO is potentially detectable, with lower N gas abundances leading to higher NO abundances.

  20. ZIRCONIUM OXIDE NANOSTRUCTURES PREPARED BY ANODIC OXIDATION

    SciTech Connect (OSTI)

    Dang, Y. Y.; Bhuiyan, M.S.; Paranthaman, M. P.

    2008-01-01

    Zirconium oxide is an advanced ceramic material highly useful for structural and electrical applications because of its high strength, fracture toughness, chemical and thermal stability, and biocompatibility. If highly-ordered porous zirconium oxide membranes can be successfully formed, this will expand its real-world applications, such as further enhancing solid-oxide fuel cell technology. Recent studies have achieved various morphologies of porous zirconium oxide via anodization, but they have yet to create a porous layer where nanoholes are formed in a highly ordered array. In this study, electrochemical methods were used for zirconium oxide synthesis due to its advantages over other coating techniques, and because the thickness and morphology of the ceramic fi lms can be easily tuned by the electrochemical parameters, such as electrolyte solutions and processing conditions, such as pH, voltage, and duration. The effects of additional steps such as pre-annealing and post-annealing were also examined. Results demonstrate the formation of anodic porous zirconium oxide with diverse morphologies, such as sponge-like layers, porous arrays with nanoholes ranging from 40 to 75 nm, and nanotube layers. X-ray powder diffraction analysis indicates a cubic crystallographic structure in the zirconium oxide. It was noted that increased voltage improved the ability of the membrane to stay adhered to the zirconium substrate, whereas lower voltages caused a propensity for the oxide fi lm to fl ake off. Further studies are needed to defi ne the parameters windows that create these morphologies and to investigate other important characteristics such as ionic conductivity.

  1. Electro Catalytic Oxidation (ECO) Operation

    SciTech Connect (OSTI)

    Morgan Jones

    2011-03-31

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large scale capture and sequestration projects. The objectives of this project were to prove at a commercial scale that ECO is capable of extended operations over a range of conditions, that it meets the reliability requirements of a typical utility, and that the fertilizer co-product can be consistently generated, providing ECO with an economic advantage over conventional technologies currently available. Further objectives of the project were to show that the ECO system provides flue gas that meets the inlet standards necessary for ECO{sub 2} to operate, and that the outlet CO{sub 2} and other constituents produced by the ECO{sub 2} pilot can meet Kinder-Morgan pipeline standards for purposes of sequestration. All project objectives are consistent with DOE's Pollution Control Innovations for Power Plants program goals.

  2. Oxidation Resistant Graphite Studies

    SciTech Connect (OSTI)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  3. PROTOSOLAR AMMONIA AS THE UNIQUE SOURCE OF TITAN's NITROGEN

    SciTech Connect (OSTI)

    Mandt, Kathleen E.; Mousis, Olivier; Gautier, Daniel

    2014-06-20

    The origin of Titan's nitrogen-rich atmosphere is thought to be ammonia ice, but this has not yet been confirmed. Furthermore, it is uncertain whether the building blocks of Titan formed within the Saturnian subnebula or in the colder protosolar nebula (PSN). Recent measurements of the nitrogen isotope ratio in cometary ammonia, combined with evolutionary constraints on the nitrogen isotopes in Titan's atmosphere provide firm evidence that the nitrogen in Titan's atmosphere must have originated as ammonia ice formed in the PSN under conditions similar to that of cometary formation. This result has important implications for the projected D/H ratio in cometary methane, nitrogen isotopic fractionation in the PSN and the source of nitrogen for Earth's atmosphere.

  4. Dark matter burners: Preliminary estimates

    E-Print Network [OSTI]

    I. V. Moskalenko; L. L. Wai

    2007-02-24

    We show that a star orbiting close enough to an adiabatically grown supermassive black hole can capture a large number of weakly interacting massive particles (WIMPs) during its lifetime. WIMP annihilation energy release in low- to medium-mass stars is comparable with or even exceeds the luminosity of such stars due to thermonuclear burning. The excessive energy release in the stellar core may result in an evolution scenario different from what is expected for a regular star. The model thus predicts the existence of unusual stars within the central parsec of galactic nuclei. If found, such stars would provide evidence for the existence of particle dark matter. White dwarfs seem to be the most promising candidates to look for. The signature of a white dwarf burning WIMPs would be a very hot star with mass and radius characteristic for a white dwarf, but with luminosity exceeding the typical luminosity of a white dwarf by orders of magnitude <50L_sun. A white dwarf with a highly eccentric orbit around the central black hole may exhibit variations in brightness correlated with the orbital phase.

  5. Involvement of peptides in nitrogen fixation 

    E-Print Network [OSTI]

    Ahlgren, Joy Annette

    1983-01-01

    molecular weight. 4 Effect of fixed nitrogen (Ca(NO&)z) on the nodula- tion (the number of nodules per plant), growth of nodules (mg per nodule), nitrogenase activity (acetylene reduction assay), and soyrhizin A con- tent in arginine equivalents. 22... solution and 0. 2 g of picric acid were mixed, the volume reduced to 10 approximately 20 ml by vacuum evaporation, and then centrifuged at 25, 000g for 20 min. Each of these samples was eluted from a column of 10 0 go e AG 248 e 1 . F o Rhitohiom 2~4 tc...

  6. Worldwide organic soil carbon and nitrogen data

    SciTech Connect (OSTI)

    Zinke, P.J.; Stangenberger, A.G.; Post, W.M.; Emanual, W.R.; Olson, J.S.

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  7. Stanford Nitrogen Group | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveApril 2, 2014ApplicationLanceStaffStanford Nitrogen

  8. Nitrogen removal from natural gas using two types of membranes

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Wijmans, Johannes G.; Da Costa, Andre R.

    2003-10-07

    A process for treating natural gas or other methane-rich gas to remove excess nitrogen. The invention relies on two-stage membrane separation, using methane-selective membranes for the first stage and nitrogen-selective membranes for the second stage. The process enables the nitrogen content of the gas to be substantially reduced, without requiring the membranes to be operated at very low temperatures.

  9. METAL OXIDE NANOPARTICLES

    SciTech Connect (OSTI)

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  10. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    DOE Patents [OSTI]

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  11. Increasing Price of Nitrogen Nitrogen fertilizer is often the largest contributor to the

    E-Print Network [OSTI]

    events; the distribution of more than 5,700 publications; and access to web-based guidance on deep and associated costs. Since 2007, the importance of deep-soil testing for nitrogen management has been-sampling methods and procedures. Economic and Environmental Impact The economic impact of deep-soil testing

  12. Lesson Title: Nitrogen Cycle Game Date: February 1, 2008 Author: Ryan Lenz Topic: Nitrogen Cycle

    E-Print Network [OSTI]

    !" "Waste" is a relative term--some animals' waste is another's food. !" The sun is the driving force a nitrogen molecule as it is passed around the food chain. This lesson should be preceded or followed. Objectives: Students will understand that: !" Animal waste is recycled by other organisms, often bacteria

  13. Absorption of Foliar-Applied Nitrogen by Cotton

    E-Print Network [OSTI]

    Oosterhuis, Derrick M

    2009-01-01

    on the epicuticular wax composition and ultrastructure ofleaf age, epicuticular wax, and nitrogen-15 absorption. Cropleaf cuticle and epicuticular wax as described by Oosterhuis

  14. Effects of atmospheric inorganic nitrogen deposition on ocean biogeochemistry

    E-Print Network [OSTI]

    Moore, Keith

    nitrogen (ammonia and nitrate) sources include fossil fuel combustion [Hameed and Dignon, 1988], biomass burning, soil emissions and breakdown of urea from domestic animals [Warneck, 1988]. Jickells [2005

  15. Raman spectroscopy in hot compressed hydrogen and nitrogen -...

    Office of Scientific and Technical Information (OSTI)

    Raman spectroscopy in hot compressed hydrogen and nitrogen - implications for the intramolecular potential Citation Details In-Document Search Title: Raman spectroscopy in hot...

  16. COMBUSTION SOURCES OF UNREGULATED GAS PHASE NITROGENEOUS SPECIES

    E-Print Network [OSTI]

    Matthews, Ronald D.

    2013-01-01

    SAE Paper 750173, 1975. L. , Fifteenth Symposium Combustion,The Combustion Institute, International Pittsburgh, on 64.chemistry of products of combustion: nitrogenous The

  17. Carbon and Nitrogen Cycling in Snow-Covered Environments

    E-Print Network [OSTI]

    Grogan, Paul

    snow cover through shading, wind sheltering, and interception. Changes in snow cover associated and nitrogen cycling. Introduction Approximately 60% of the terrestrial earth surface experiences seasonal snow

  18. Modeling nitrogen cycling in forested watersheds of Chesapeake Bay

    SciTech Connect (OSTI)

    Hunsaker, C.T.; Garten, C.T.; Mulholland, P.J.

    1995-03-01

    The Chesapeake Bay Agreement calls for a 40% reduction of controllable phosphorus and nitrogen to the tidal Bay by the year 2000. To accomplish this goal the Chesapeake Bay Program needs accurate estimates of nutrient loadings, including atmospheric deposition, from various land uses. The literature was reviewed on forest nitrogen pools and fluxes, and nitrogen data from research catchments in the Chesapeake Basin were identified. The structure of a nitrogen module for forests is recommended for the Chesapeake Bay Watershed Model along with the possible functional forms for fluxes.

  19. Mixed oxide solid solutions

    DOE Patents [OSTI]

    Magno, Scott (Dublin, CA); Wang, Ruiping (Fremont, CA); Derouane, Eric (Liverpool, GB)

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  20. Nitrogen fixation in peanut nodules during dark periods and detopped conditions with special reference to lipid bodies

    SciTech Connect (OSTI)

    Siddique, A.M.; Bal, A.K. (Memorial Univ. of Newfoundland, St. John's (Canada))

    1991-03-01

    The peanut plant (Arachis hypogaea L.), unlike other known legumes, can sustain nitrogen fixation when prolonged periods of darkness or detopping curtail the supply of photosynthate to the nodule. This ability to withstand photosynthate stress is attributed to the presence of lipid bodies in infected nodule cells. In both dark-treated and detopped plants, the lipid bodies show a gradual decrease in numbers, suggesting their utilization as a source of energy and carbon for nitrogen fixation. Lipolytic activity can be localized in the lipid bodies, and the existence of {beta}-oxidation pathway and glyoxylate cycle is shown by the release of {sup 14}CO{sub 2} from {sup 14}C lineoleoyl coenzyme A by the nodule homogenate.

  1. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    SciTech Connect (OSTI)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high-flow operation to natural circulation. Low-flow coolant events are the most difficult to design for because they involve the most complex thermal-hydraulic behavior induced by the dominance of thermal-buoyancy forces acting on the coolants. Such behavior can cause multiple-component flow interaction phenomena, which are not adequately understood or appreciated by reactor designers as to their impact on reactor performance and safety. Since the early 1990s, when DOE canceled the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program, little has been done experimentally to further understand the importance of the complex thermal-buoyancy phenomena and their impact on reactor design or to improve the ability of three-dimensional (3-D) transient computational fluid dynamics (CFD) and structures codes to model the phenomena. An improved experimental data base and the associated improved validated codes would provide needed design tools to the reactor community. The improved codes would also facilitate scale-up from small-scale testing to prototype size and would facilitate comparing performance of one reactor/component design with another. The codes would also have relevance to the design and safety of water-cooled reactors. To accomplish the preceding, it is proposed to establish a national GNEP-LMR research and development center at Argonne having as its foundation state-of-art science-based infrastructure consisting of: (a) thermal-hydraulic experimental capabilities for conducting both water and sodium testing of individual reactor components and complete reactor in-vessel models and (b) a computational modeling development and validation capability that is strongly interfaced with the experimental facilities. The proposed center would greatly advance capabilities for reactor development by establishing the validity of high-fidelity (i.e., close to first principles) models and tools. Such tools could be used directly for reactor design or for qualifying/tuning of lower-fidelity models, which now require costly experimental qualification for each different type of design

  2. Stabilized chromium oxide film

    DOE Patents [OSTI]

    Garwin, Edward L. (Los Altos, CA); Nyaiesh, Ali R. (Palo Alto, CA)

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  3. Stabilized chromium oxide film

    DOE Patents [OSTI]

    Nyaiesh, A.R.; Garwin, E.L.

    1986-08-04

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  4. Multi-component Zirconia-Titania Mixed Oxides: Catalytic Materials with Unprecedented Performance in the Selective Catalytic Reduction of NOx

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in the Selective Catalytic Reduction of NOx with NH3 after harsh hydrothermal ageing. Nathalie MARCOTTE1#, Bernard catalytic reduction. 1. Introduction. The abatement of nitrogen oxides (NOx) and particulate matter (PM% H2O, ~ 1050 K) is a prerequisite for deNOx catalysts of tomorrow in Diesel exhaust gas treatment

  5. Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide

    E-Print Network [OSTI]

    Kim, Sehun

    Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide catalytic systems.12,13 On the other hand, the reduced graphene oxide (rGO) is functionalized graphene Laboratory (PAL), Pohang 790-784, Republic of Korea ABSTRACT: The capacities of graphene oxide (GO

  6. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and

    E-Print Network [OSTI]

    Schweik, Charles M.

    production in some parts of the world is nitrogen-deficient, highlighting inequities in the distribution energy production by coal, natural gas, and petroleum combustion increased from 8543 million tons of oil. Martinelli,7 Sybil P. Seitzinger,8 Mark A. Sutton9 Humans continue to transform the global nitrogen cycle

  7. How extensive are the impacts of nitrogen pollution in Great

    E-Print Network [OSTI]

    How extensive are the impacts of nitrogen pollution in Great Britain's forests? Protecting our forests from pollutant deposition is and has been a topical issue for some time. Nitrogen, as well as being an essential nutrient for trees, is one of the most important of these pollutants. This article

  8. Quantum optics with nitrogen-vacancy centers in diamond

    E-Print Network [OSTI]

    Yiwen Chu; Mikhail D. Lukin

    2015-04-22

    We review the electronic level structure of the nitrogen-vacancy in diamond and some common experimental techniques to study its optical properties at low temperatures. We then summarize several recent experiments and advances in using nitrogen-vacancy centers for quantum optics.

  9. Materials Safety Liquid Nitrogen Safety! ! A Message from Rick Kelly

    E-Print Network [OSTI]

    (special cryo- gen gloves or leather) and safety glasses with side shields. When dispensing liquid nitrogen from a pressurized dewar, or at any time that a splash may occur, a face shield should also be used as possible. Dispensing from Bulk Stor! age Tanks: Anyone who will be handling liquid nitrogen must complete

  10. Nitrogen Fertilization of Irrigated Cotton as Fertilizer Prices Climb

    E-Print Network [OSTI]

    Mukhtar, Saqib

    Nitrogen Fertilization of Irrigated Cotton as Fertilizer Prices Climb As gasoline prices at the pump continue to climb above $ 3.00/gallon, fertilizer prices, especially Nitrogen (N) are doing the same. As of spring 2008, the price of one ton of urea ammonium nitrate was $420, or $0.67 per lb N

  11. Mechanisms of plant species impacts on ecosystem nitrogen cycling

    E-Print Network [OSTI]

    Thomas, David D.

    in nitrification, denitrification and trace nitrogen gas losses. Plant species also impact herbivore behaviourREVIEW Mechanisms of plant species impacts on ecosystem nitrogen cycling J. M. H. Knops,1 * K. L. Bradley1 and D. A. Wedin2 1 School of Biological Sciences, 2 School of Natural Resource Sciences

  12. Microbial immobilization drives nitrogen cycling differences among plant species

    E-Print Network [OSTI]

    Thomas, David D.

    1840 Microbial immobilization drives nitrogen cycling differences among plant species Ramesh cycling. We examined four potential mechanisms of plant species effects on nitrogen (N) cycling. We found no species differences in gross ammonification suggesting there are no changes in the ecosystem N cycling

  13. Breath is a mixture of nitrogen, oxygen, carbon dioxide, water

    E-Print Network [OSTI]

    12 SCIENCE Breath is a mixture of nitrogen, oxygen, carbon dioxide, water vapour, inert gases. On the basis of proton affinity, the major constituents of air and breath (nitrogen, oxygen, carbon dioxide, as the products of normal metabolism and those that have altered owing to disease, and are transported via

  14. THERMAL DIFFUSION OF HEAT PULSE IN SUBCOOLED LIQUID NITROGEN

    E-Print Network [OSTI]

    Chang, Ho-Myung

    and result in better thermal protection and faster recovery from a heat pulse. KEYWORDS: Heat TransferTHERMAL DIFFUSION OF HEAT PULSE IN SUBCOOLED LIQUID NITROGEN H. M. Chang1 , J. J. Byun1 , J. H ABSTRACT Transient heat transfer caused by a heat pulse in subcooled liquid nitrogen is investigated

  15. Toward Institutional Sustainability: A Nitrogen Footprint for the Marine Biological Maggie Notopoulos

    E-Print Network [OSTI]

    Vallino, Joseph J.

    impact on the environment. Many people have focused on improving their carbon footprint, or releaseToward Institutional Sustainability: A Nitrogen Footprint for the Marine Biological Laboratory is defined as the institution's nitrogen footprint. The Marine Biological Laboratory's nitrogen footprint

  16. Process for separating nitrogen from methane using microchannel process technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Marysville, OH); Qiu, Dongming (Dublin, OH); Dritz, Terence Andrew (Worthington, OH); Neagle, Paul (Westerville, OH); Litt, Robert Dwayne (Westerville, OH); Arora, Ravi (Dublin, OH); Lamont, Michael Jay (Hilliard, OH); Pagnotto, Kristina M. (Cincinnati, OH)

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  17. Removal of basic nitrogen compounds from hydrocarbon liquids

    DOE Patents [OSTI]

    Givens, Edwin N. (Bethlehem, PA); Hoover, David S. (New Tripoli, PA)

    1985-01-01

    A method is provided for reducing the concentration of basic nitrogen compounds in hydrocarbonaceous feedstock fluids used in the refining industry by providing a solid particulate carbonaceous adsorbent/fuel material such as coal having active basic nitrogen complexing sites on the surface thereof and the coal with a hydrocarbonaceous feedstock containing basic nitrogen compounds to facilitate attraction of the basic nitrogen compounds to the complexing sites and the formation of complexes thereof on the surface of the coal. The adsorbent coal material and the complexes formed thereon are from the feedstock fluid to provide a hydrocarbonaceous fluid of reduced basic nitrogen compound concentration. The coal can then be used as fuel for boilers and the like.

  18. Catalyst Additives to Enhance Mercury Oxidation and Capture

    SciTech Connect (OSTI)

    Jared W. Cannon; Thomas K. Gale

    2004-12-31

    Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. Three different SCR catalysts are being studied. These are honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts are manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Test methods and experimental procedures were developed for current and future testing. The methods and procedures equalize factors influencing mercury adsorption and oxidation (surface area, catalyst activity, and pore structure) that normally differ for each catalyst type. Initial testing was performed to determine the time necessary for each catalyst to reach surface-adsorption equilibrium. In addition, the fraction of Hg oxidized by each of the SCR catalyst types is being investigated, for a given amount of catalyst and flow rate of mercury and flue gas. The next major effort will be to examine the kinetics of mercury oxidation across the SCR catalysts with respect to changes in mercury concentration and with respect to HCl concentration. Hg-sorption equilibrium times will also be investigated with respect to ammonia concentration in the simulated flue gas.

  19. Coal-fired power generation: Proven technologies and pollution control systems

    SciTech Connect (OSTI)

    Balat, M. [University of Mah, Trabzon (Turkey)

    2008-07-01

    During the last two decades, significant advances have been made in the reduction of emissions from coal-fired power generating plants. New technologies include better understanding of the fundamentals of the formation and destruction of criteria pollutants in combustion processes (low nitrogen oxides burners) and improved methods for separating criteria pollutants from stack gases (FGD technology), as well as efficiency improvements in power plants (clean coal technologies). Future demand for more environmentally benign electric power, however, will lead to even more stringent controls of pollutants (sulphur dioxide and nitrogen oxides) and greenhouse gases such as carbon dioxide.

  20. Spectroscopic detection of nitrogen concentrations in sagebrush

    SciTech Connect (OSTI)

    J. J. MITCHELL; N. F. GLENN; T.T. SANKEY; D. R. DERRYBERRY; R. C. HRUSKA; M. O. Anderson

    2012-07-01

    The ability to estimate foliar nitrogen (N) in semi-arid landscapes can yield information on nutritional status and improve our limited understanding of controls on canopy photosynthesis. We examined two spectroscopic methods for estimating sagebrush dried leaf and live shrub N content: first derivative reflectance (FDR) and continuum removal. Both methods used partial least squares (PLS) regression to select wavebands most significantly correlated with N concentrations in the samples. Sagebrush dried leaf spectra produced PLS models (R2 = 0.76–0.86) that could predict N concentrations within the dataset more accurately than PLS models generated from live shrub spectra (R2 = 0.41–0.63). Inclusion of wavelengths associated with leaf water in the FDR transformations appeared to improve regression results. Findings are encouraging and warrant further exploration into sagebrush reflectance spectra to characterize N concentrations.

  1. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    E-Print Network [OSTI]

    Rheaume, Jonathan Michael

    2010-01-01

    combustion with excess oxygen that is typical of gas turbinescombustion processes. 14 Automobile engines, gas turbines,

  2. Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions

    E-Print Network [OSTI]

    Millstein, Dev

    2009-01-01

    E. , (2000). Spectral analysis of air pollutants. Part 1:time series and analyses of air quality model outputs will

  3. Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions

    E-Print Network [OSTI]

    Millstein, Dev

    2009-01-01

    3 Community Multiscale Air Quality (CMAQ) model aerosoland its role in regional air quality. Science, 311, 67-70.aerosol in Fresno, CA. J. Air Waste Manage. Assoc. , 56,

  4. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    E-Print Network [OSTI]

    Rheaume, Jonathan Michael

    2010-01-01

    and Japan. 8 Volkswagen 2009 TDIl-TDI-Motor von Volkswagen für niedrigste Abgasgrenzwerte –l-TDI-Motor von Volkswagen für niedrigste Abgasgrenzwerte –

  5. Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions

    E-Print Network [OSTI]

    Millstein, Dev

    2009-01-01

    894-895. Harley, R. A. , Marr, L. C. , Lehner, J. K. , andAssoc. , 50, 1236-1250. Marr, L. C. , and Harley, R. A. , (Environ. , 36, 2327-2335. Marr, L. C. , and Harley, R.

  6. Variability in wildfire emissions of nitrogen oxides as observed from space

    E-Print Network [OSTI]

    Mebust, Anna

    2013-01-01

    using wind at 850 hPa from the NCEP Climate Forecast Systemand wind vectors at 850 hPa from the Climate Forecast Systemwind fields from the National Centers for Environmental Prediction (NCEP) Climate Forecast

  7. Reducing nitrogen oxides emissions from the combustion of LCV gas staged firing 

    E-Print Network [OSTI]

    Finch, Stanley Frank

    1986-01-01

    have to meet per mit division guidelines or produce less than 227 Ng (250 tons) per year of NOx on an N02 basis (TACH, 1985). The primary fuel under consideration, cotton gin trash, is approximately 2$ nitr ogen by weight. The applicable TACB...~ (Zeldovich, 1946): N2 + 0~NO+ N N+ 02~NO+ 0 (2) Obviously, before these reactions can take place 02 must dissociate, which requir es high temperature. Reaction 1 is the rate control 1 ing step because of its large acti va- tion energy. According to Wark...

  8. Reducing Emissions of Sulfur Dioxide, Nitrogen Oxides, and Mercury from Electric Power Plants

    Reports and Publications (EIA)

    2001-01-01

    This analysis responds to a request from Senators Bob Smith, George Voinovich, and Sam Brownback to examine the costs of specific multi-emission reduction strategies.

  9. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    E-Print Network [OSTI]

    Rheaume, Jonathan Michael

    2010-01-01

    Chou, Steve Dai, Ramesh Koripella, Manny Oliver, Daniel Sadler, PaulChou, Steve Dai, Ramesh Koripella, Manny Oliver, Daniel Sadler, Paul

  10. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    E-Print Network [OSTI]

    Rheaume, Jonathan Michael

    2010-01-01

    deposited by atomic layer deposition ALD: a structural,Paul C. McIntyre, "Atomic Layer Deposition of Y 2 O 3 /ZrO 2rate-determining step Atomic layer Deposition Ammonium

  11. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    E-Print Network [OSTI]

    Rheaume, Jonathan Michael

    2010-01-01

    material has refractory properties that make it also useful for kiln furniture and for thermal barrier coatings for gas turbine

  12. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    E-Print Network [OSTI]

    Rheaume, Jonathan Michael

    2010-01-01

    shrinkage of approximately 45% after sintering. 4.1 Introduction Since the inception of the tape-casting

  13. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    E-Print Network [OSTI]

    Rheaume, Jonathan Michael

    2010-01-01

    Serge, Electrochemistry of Zirconia Gas Sensors, New York:and A. C. Young, "Gelcast Zirconia-Alumina Composites", 15thand A. C. Young, "Gelcast Zirconia-Alumina Composites", 15th

  14. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    E-Print Network [OSTI]

    Rheaume, Jonathan Michael

    2010-01-01

    James, "Study of solid electrolyte polarization by a complexThe NO 2 response of solid electrolyte sensors made usingTechnologies using Solid Electrolytes in Measuring Gas

  15. Nanocomposites for nitrogen oxide emissions control in lean-burn engines

    E-Print Network [OSTI]

    Pitukmanorom, Pemakorn, 1976-

    2004-01-01

    (cont.) reducing agent than propane in the SCR of NO. Pt-Rh/CuO/A1?O? nanocomposites capable of adsorbing SO? in oxygen-rich environment as metal sulfates and releasing SO? in reducing atmosphere were synthesized with ...

  16. Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions Control

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    E-Print Network [OSTI]

    Rheaume, Jonathan Michael

    2010-01-01

    Low Temperature Electrodes for SOFC’s”, EPRI /GRI / DOE FuelSm 0.5 Sr 0.5 CoO 3 as SOFC cathode", Sol. Stat. Ion. ,Low Temperature Electrodes for SOFC’s”, EPRI /GRI / DOE Fuel

  18. Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About Us Rob Roberts - Former DirectorControl |

  19. Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich Materials

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech Connect Nanomechanical switch for| SciTechPhaseNewton's Method(Conference)modes

  20. Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich Materials

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech Connect Nanomechanical switch for| SciTechPhaseNewton's

  1. NEPTUNIUM OXIDE PROCESSING

    SciTech Connect (OSTI)

    Jordan, J; Watkins, R; Hensel, S

    2009-05-27

    The Savannah River Site's HB-Line Facility completed a campaign in which fifty nine cans of neptunium oxide were produced and shipped to the Idaho National Laboratory in the 9975 shipping container. The neptunium campaign was divided into two parts: Part 1 which consisted of oxide made from H-Canyon neptunium solution which did not require any processing prior to conversion into an oxide, and Part 2 which consisted of oxide made from additional H-Canyon neptunium solutions which required processing to purify the solution prior to conversion into an oxide. The neptunium was received as a nitrate solution and converted to oxide through ion-exchange column extraction, precipitation, and calcination. Numerous processing challenges were encountered in order make a final neptunium oxide product that could be shipped in a 9975 shipping container. Among the challenges overcome was the issue of scale: translating lab scale production into full facility production. The balance between processing efficiency and product quality assurance was addressed during this campaign. Lessons learned from these challenges are applicable to other processing projects.

  2. Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas...

  3. Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds

    E-Print Network [OSTI]

    Rondin, L; Slablab, A; Treussart, F; Bergonzo, P; Perruchas, S; Gacoin, T; Chaigneau, M; Chang, H -C; Jacques, V; Roch, J -F

    2010-01-01

    We present a study of the charge state conversion of single nitrogen-vacancy (NV) defects hosted in nanodiamonds whose size ranges from 10 nm to 100 nm. We first show that after irradiation and annealing of the nanodiamond powder, the proportion of negatively-charged NV- defects, with respect to its neutral counterpart NV0, decreases with the size of the nanoparticle. We propose a simple model based on a layer of electron traps located at the nanodiamond surface which is in good agreement with the statistics we recorded. By using thermal oxidation to remove the shell of amorphous carbon around the nanodiamonds, we achieve a significant increase of the proportion of NV- defects in approximately 10-nm nanodiamonds. These results demonstrate the importance of controlling the nanodiamond surface for the development of the numerous applications of NV centers which are made possible by their unique photostability and spin properties.

  4. Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds

    E-Print Network [OSTI]

    L. Rondin; G. Dantelle; A. Slablab; F. Grosshans; F. Treussart; P. Bergonzo; S. Perruchas; T. Gacoin; M. Chaigneau; H. -C. Chang; V. Jacques; J. -F. Roch

    2010-10-19

    We present a study of the charge state conversion of single nitrogen-vacancy (NV) defects hosted in nanodiamonds (NDs). We first show that the proportion of negatively-charged NV$^{-}$ defects, with respect to its neutral counterpart NV$^{0}$, decreases with the size of the ND. We then propose a simple model based on a layer of electron traps located at the ND surface which is in good agreement with the recorded statistics. By using thermal oxidation to remove the shell of amorphous carbon around the NDs, we demonstrate a significant increase of the proportion of NV$^{-}$ defects in 10-nm NDs. These results are invaluable for further understanding, control and use of the unique properties of negatively-charged NV defects in diamond

  5. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects. Quarterly report for the period of February, March and April 1991

    SciTech Connect (OSTI)

    White, T.; Contos, L.; Adams, L. [Radian Corp., Research Triangle Park, NC (United States). Progress Center

    1992-02-01

    The purpose of this document is to present environmental monitoring data collected during the US DOE Limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators. (VC)

  6. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects

    SciTech Connect (OSTI)

    White, T.; Contos, L.; Adams, L. (Radian Corp., Research Triangle Park, NC (United States). Progress Center)

    1992-02-01

    The purpose of this document is to present environmental monitoring data collected during the US DOE Limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators. (VC)

  7. Undoped and doped poly(tetraphenylbenzidine) as sensitive material for an impedimetric nitrogen dioxide gas dosimeter

    SciTech Connect (OSTI)

    Marr, I.; Moos, R.; Neumann, K.; Thelakkat, M.

    2014-09-29

    This article presents a nitrogen dioxide (NO{sub 2}) detecting gas dosimeter based on poly(tetraphenylbenzidine) poly(TPD) as nitrogen oxide (NO{sub x}) sensitive layer. Gas dosimeters are suitable devices to determine reliably low levels of analytes over a long period of time. During NO{sub x} exposure, the analyte molecules are accumulated irreversibly in the sensing layer of the dosimeter enhancing the conductivity of the hole conducting poly(TPD), which can be measured by impedance spectroscopy. Due to their possibility for low cost production by simple printing techniques and very good physical, photochemical, and electrochemical properties, poly(TPD)s are suitable for application in gas dosimeters operated at room temperature. We studied the effect of doping with a Co(III)-complex in combination with a conducting salt on the dosimeter behavior. Compared to the undoped material, a strong influence of the doping can be observed: the conductivity of the sensing material increases significantly, the noise of the signal decreases and an unwanted recovery of the sensor signal can be prevented, leading to a NO{sub x} detection limit <10?ppm.

  8. Catalyst Additives to Enhance Mercury Oxidation and Capture

    SciTech Connect (OSTI)

    Alex J. Berry; Thomas K. Gale

    2005-09-30

    Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. The testing was performed at Southern Research's Catalyst Test Facility, a bench-scale reactor capable of simulating gas-phase reactions occurring in coal-fired utility pollution-control equipment. Three different SCR catalysts are currently being studied in this project - honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Methods and procedures for experimental testing continue to be developed to produce the highest quality mercury-oxidation data. Most experiments so far have focused on testing the catalysts in a simulated Powder River Basin (PRB) flue-gas environment, which contains lower sulfur and chlorine than produced by other coals. Future work to characterize flue gas simulations typically derived from low and high sulfur bituminous coal will be performed in a stepwise manner, to avoid the constant interruptions in testing that occur when leaks in the system are generated during temperature transitions. Specifically, chlorine concentration vs. mercury oxidation graph will be developed for each catalyst. The contributions of temperature and later sulfur will be investigated after this is complete. Also, last quarter's tests showed a potential linear relationship between SO3 conversion and mercury oxidation. As a result, SO3 samples will be taken more frequently to investigate each catalyst's ability to selectively oxidize mercury.

  9. Oxidative Tritium Decontamination System

    DOE Patents [OSTI]

    Gentile, Charles A. (Plainsboro, NJ), Guttadora, Gregory L. (Highland Park, NJ), Parker, John J. (Medford, NJ)

    2006-02-07

    The Oxidative Tritium Decontamination System, OTDS, provides a method and apparatus for reduction of tritium surface contamination on various items. The OTDS employs ozone gas as oxidizing agent to convert elemental tritium to tritium oxide. Tritium oxide vapor and excess ozone gas is purged from the OTDS, for discharge to atmosphere or transport to further process. An effluent stream is subjected to a catalytic process for the decomposition of excess ozone to diatomic oxygen. One of two configurations of the OTDS is employed: dynamic apparatus equipped with agitation mechanism and large volumetric capacity for decontamination of light items, or static apparatus equipped with pressurization and evacuation capability for decontamination of heavier, delicate, and/or valuable items.

  10. Controlled CO preferential oxidation

    DOE Patents [OSTI]

    Meltser, M.A.; Hoch, M.M.

    1997-06-10

    Method is described for controlling the supply of air to a PROX (PReferential OXidation for CO cleanup) reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference there between correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference. 2 figs.

  11. METHANE AND NITROGEN ABUNDANCES ON PLUTO AND ERIS

    SciTech Connect (OSTI)

    Tegler, S. C.; Cornelison, D. M.; Abernathy, M. R.; Bovyn, M. J.; Burt, J. A.; Evans, D. E.; Maleszewski, C. K.; Thompson, Z.; Grundy, W. M.; Romanishin, W.; Vilas, F. E-mail: David.Cornelison@nau.ed E-mail: wjr@nhn.ou.ed

    2010-12-10

    We present spectra of Eris from the MMT 6.5 m Telescope and Red Channel Spectrograph (5700-9800 A, 5 A pixel{sup -1}) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 m Telescope and Boller and Chivens Spectrograph (7100-9400 A, 2 A pixel{sup -1}) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich, and comparing methane bands in our Eris and Pluto spectra and methane bands in our laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are {approx}10% and {approx}90% and Pluto's bulk methane and nitrogen abundances are {approx}3% and {approx}97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon-rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 {mu}m band is seen in spectra of Pluto and Triton.

  12. Nitrogen-doped Graphene and Its Electrochemical Applications

    SciTech Connect (OSTI)

    Shao, Yuyan; Zhang, Sheng; Engelhard, Mark H.; Li, Guosheng; Shao, Guocheng; Wang, Yong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-06-04

    Nitrogen-doped graphene (N-graphene) is obtained by exposing graphene to nitrogen plasma. N-graphene exhibits much higher electrocatalytic activity toward oxygen reduction and H2O2 reduction than graphene, and much higher durability and selectivity than the widely-used expensive Pt. The excellent electrochemical performance of N-graphene is attributed to nitrogen functional groups and the specific properties of graphene. This indicates that N-graphene is promising for applications in electrochemical energy devices (fuel cells, metal-air batteries) and biosensors.

  13. Selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes

    SciTech Connect (OSTI)

    Martis, P.; Venugopal, B.R.; Delhalle, J.; Mekhalif, Z.

    2011-05-15

    A simple route to selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes (MWCNTs) using nickel acetylacetonate (NAA) was successfully achieved for the first time. The homogeneously decorated nanocrystals on MWCNTs were investigated for their structure and morphology by various techniques, such as powder X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, field emission scanning electron microscopy and thermogravimetric analysis. It was found that the size distributions of the nanocrystals on MWCNTs ranged from 8 to 15 nm and they were well resolved. The precursor, NAA, was effectively employed to impregnate the MWCNTs, which on calcination at suitable temperatures and in the presence of hydrogen and nitrogen atmosphere gave rise to nickel and nickel oxide nanocrystals, respectively. -- Graphical abstract: Nickel and nickel oxide nanocrystals were selectively and homogeneously decorated on multiwalled carbon nanotubes using nickel acetylacetonate, as a precursor in a simple and efficient route. Display Omitted Highlights: {yields} A simple route for decoration of nickel and nickel oxide nanocrystals on MWCNTs. {yields} Nickel acetylacetonate used as nickel source for the first time to impregnate on MWCNTs. {yields} Selective decoration was achieved by calcination in hydrogen and nitrogen atmospheres. {yields} The as-decorated nickel and nickel oxide nanocrystals are in the range of 8-15 nm.

  14. Innershell Photoionization Studies of Neutral Atomic Nitrogen

    E-Print Network [OSTI]

    Stolte, W C; Lindle, D W; Sant'Anna, M M; Savin, D W

    2014-01-01

    Innershell ionization of a $1s$ electron by either photons or electrons is important for X-ray photoionized objects such as active galactic nuclei and electron-ionized sources such as supernova remnants. Modeling and interpreting observations of such objects requires accurate predictions for the charge state distribution (CSD) which results as the $1s$-hole system stabilizes. Due to the complexity of the complete stabilization process, few modern calculations exist and the community currently relies on 40-year-old atomic data. Here, we present a combined experimental and theoretical study for innershell photoionization of neutral atomic nitrogen for photon energies of $403-475$~eV. Results are reported for the total ion yield cross section, for the branching ratios for formation of N$^+$, N$^{2+}$, and N$^{3+}$, and for the average charge state. We find significant differences when comparing to the data currently available to the astrophysics community. For example, while the branching ratio to N$^{2+}$ is so...

  15. The effect of sources of nitrogen on nitrate formation and nitrogen uptake by cotton plants growing on Miller clay loam 

    E-Print Network [OSTI]

    Marcos, Zilmar Ziller

    1958-01-01

    LIB RARV A & M COLLEGE OF TEXAS THE EFFECT OF SOURCES OF NITROGEN ON NITRATE FORMATION AND NITROGEN UPTAKE HX COTTON PIANTS GROWXNG ON MILLER CIAY LOAN A Thesis ZXINAR ZXLLER NARCOS AAS Submitted, to the Graduate School of the Agricultural... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ 66 APPEEDIXt ~ ~ ~ ~ ~ ~ ~ 73 Tables l. Treatments Used in the Study. 2 Nitrate Content (ppm) of Miller Clay (0-6 ') on the 10th of July as Affected. by Rate and Source of' Nitrogen, Avexage oi' Two Repli- Nitrate Content (ppm) of Miller...

  16. Optimization of row spacing and nitrogen fertilization for cotton 

    E-Print Network [OSTI]

    Clawson, Ernest Leslie

    2004-09-30

    Ultra-narrow row (UNR) cotton (Gossypium hirsutum L.) is a production system using high plant populations in reduced row spacings. The responses of this production system to nitrogen fertilizer have not been fully investigated. Evaluations...

  17. Nitrogen expander cycles for large capacity liquefaction of natural gas

    SciTech Connect (OSTI)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung

    2014-01-29

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  18. Substitutional Nitrogen in Nanodiamond and Bucky-Diamond Particles

    SciTech Connect (OSTI)

    Barnard, Amanda S.; Sternberg, Michael G.

    2005-09-15

    The inclusion of dopants (such as nitrogen) in diamond nanoparticles is expected to be important for use in future nanodevices, such as qubits for quantum computing. Although most commercial diamond nanoparticles contain a small fraction of nitrogen, it is still unclear whether it is located within the core or at the surface of the nanoparticle. Presented here are density functional tight binding simulations examining the configuration, potential energy surface, and electronic charge of substitutional nitrogen in nanodiamond and bucky-diamond particles. The results predict that nitrogen is likely to be positioned at the surface of both hydrogenated nanodiamond and (dehydrogenated) bucky-diamond, and that the coordination of the dopants within the particles is dependent upon the surface structure.

  19. The nitrogen cycle and ecohydrology of seasonally dry grasslands

    E-Print Network [OSTI]

    Parolari, Anthony Joseph

    2013-01-01

    This thesis addresses the coupling of hydrologic and biogeochemical processes and, specifically, the organization of ecosystem traits with the water, carbon, and nitrogen cycles. Observations from a factorial irrigation- ...

  20. Amplification of subnanosecond nitrogen laser pulses in UV dyes

    SciTech Connect (OSTI)

    Au, M.; Rayner, D.M.; Malatesta, V.; Hackett, P.A.

    1982-12-01

    The performance of a short pulse netrogen laser system have been improved by replacing the subatmospheric TE nitrogen laser amplifier with a XV xenon chloride excimer pumped dye amplifier. (AIP)

  1. The relationship between iron and nitrogen fixation in Trichodesmium spp.

    E-Print Network [OSTI]

    Chappell, Phoebe Dreux

    2009-01-01

    Trichodesmium spp. are considered the dominant nitrogen (N) fixing cyanobacteria in tropical and subtropical oceans, regimes frequently characterized by low iron (Fe). Limited information exists about what levels of Fe ...

  2. Nitrogen chemistry in an urban bioretention system in Singapore

    E-Print Network [OSTI]

    Ritter, Halle (Halle Caitlan)

    2013-01-01

    An investigation into the nitrogen chemistry of the anoxic layer of an urban constructed wetland in Singapore was conducted. This pilot-scale wetland treats stormwater runoff from the Balam Estate housing development for ...

  3. Effects of the Hemlock Woolly Adelgid on Nitrogen Losses from

    E-Print Network [OSTI]

    Templer, Pamela

    of nitrogen losses via leachate were more than ten times greater, at the Arnold Arboretum compared to Harvard Forest. Nitrate that was lost via leachate at Harvard Forest came predominantly from atmospheric

  4. Determination of carbon, nitrogen, and oxygen in high purity magnesium 

    E-Print Network [OSTI]

    Roche, Neil Gerard

    1981-01-01

    DETERMINATION OF CARBON, NITROGEN, AND OXYGEN IN HIGH PURITY MAGNESIUM A Thesis by NEIL GERARD ROCHE Submitted to the Graduate College of Texas A8cM University in partial i'ulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1981 Major Subject: Chemistry DETERMINATION OF CARBON, NITROGEN, AND OXYGEN IN HIGH PURITY MAGNESIUM A Thesis by NEIL GERARD ROCHE Approved as to style and content by: E. A. Schweikert (Chairman of Committee) G. J. Bastiaans (Member) L...

  5. Membrane-augmented cryogenic methane/nitrogen separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid (Menlo Park, CA)

    1997-01-01

    A membrane separation process combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C.sub.3+ hydrocarbons that might otherwise freeze and plug the cryogenic equipment.

  6. Membrane-augmented cryogenic methane/nitrogen separation

    DOE Patents [OSTI]

    Lokhandwala, K.

    1997-07-15

    A membrane separation process is described which is combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C{sub +2} hydrocarbons that might otherwise freeze and plug the cryogenic equipment. 10 figs.

  7. Energy loss characteristics of heavy ions in nitrogen, carbon dioxide, argon, hydrocarbon gases and tradescantia tissue

    E-Print Network [OSTI]

    Dennis, J A

    1971-01-01

    Energy loss characteristics of heavy ions in nitrogen, carbon dioxide, argon, hydrocarbon gases and tradescantia tissue

  8. Nitrogen isotope effects on glutamate decarboxylase from Escherichia coli

    SciTech Connect (OSTI)

    Abell, L.M.; O'Leary, M.H.

    1988-05-03

    The nitrogen isotope effect on the decarboxylation of glutamic acid by glutamate decarboxylase from Escherichia coli has been measured by comparison of the isotopic composition of the amino nitrogen of the product ..gamma..-aminobutyric acid isolated after 10-20% reaction with that of the starting glutamic acid. At pH 4.7, 37 /sup 0/C, the isotope effect is k/sup 14//k/sup 15/ = 0.9855 +/- 0.0006 when compared to unprotonated glutamic acid. Interpretation of this result requires knowledge of the equilibrium nitrogen isotope effect for Schiff base formation. This equilibrium isotope effect is K/sup 14//K/sup 15/ - 0.9824 for the formation of the unprotonated Schiff base between unprotonated valine and salicylaldehyde. Analysis of the nitrogen isotope effect on decarboxylation of glutamic acid and of the previously measured carbon isotope effect on this same reaction shows that decarboxylation and Schiff base formation are jointly rate limiting. The enzyme-bound Schiff base between glutamate and pyridoxal 5'-phosphate partitions approximately 2:1 between decarboxylation and return to the starting state. The nitrogen isotope effect also reveals that the Schiff base nitrogen is protonated in this intermediate.

  9. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  10. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  11. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  12. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  13. Nitrate movement in soils and nitrogen uptake efficiency as affected by nitrogen source, time of application, and a nitrification inhibitor 

    E-Print Network [OSTI]

    Banks, Kenneth Phanon

    1976-01-01

    NITRATE MOVEMENT IN SOILS AND NITROGEN UPTAKE EFFICIENCY AS AFFECTED BY NITROGEN SOURCEs TINE OF APPLICATIONs AIJD A NITRIFICATION INHIBITOR A Thesis by KENNETH PHAIJON BANKS Submitted to the Graduate College of Texas A&N University..., Norwood silt loam (Typic Udifluvent) and Houston Black clay (Udic Pellustert) to determine the amount of N03-N leaching from various N fertilizer sources. Nitrate N movement, as affected by time of application, was determined for (NHq)2 Sop, urea...

  14. Tetraalykylammonium polyoxoanionic oxidation catalysts

    DOE Patents [OSTI]

    Ellis, Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA); Myers, Jr., Harry K. (Cochranville, PA); Shaikh, Shahid N. (Media, PA)

    1998-01-01

    Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H.sub.e-z ›(n-C.sub.4 H.sub.9).sub.4 N!.sub.z (XM.sub.11 M'O.sub.39).sup.-e The M' (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

  15. Tetraalklylammonium polyoxoanionic oxidation catalysts

    DOE Patents [OSTI]

    Ellis, P.E.; Lyons, J.E.; Myers, H.K. Jr.; Shaikh, S.N.

    1998-10-06

    Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H{sub e{minus}z}[(n-C{sub 4}H{sub 9}){sub 4}N]{sub z}(XM{sub 11}M{prime}O{sub 39}){sup {minus}e}. The M{prime} (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

  16. Lecture Session (LeS): E.1 In-situ chemical oxidation-1 ENA OF HETEROCYCLIC HYDROCARBONS USING HYDROGEN PEROXIDE AND

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    , In situ Biological Degradation, Heterocyclic Hydrocarbons, PAH, Field Trial, Groundwater Circulation WellsLecture Session (LeS): E.1 In-situ chemical oxidation-1 ENA OF HETEROCYCLIC HYDROCARBONS USING (GCW), Hydrogen Peroxide Introduction Heterocyclic hydrocarbons (NSO-HET) containing nitrogen (N

  17. Detailed modeling and laser-induced fluorescence imaging of nitric oxide in a NH3-seeded non-premixed methane/air flame

    E-Print Network [OSTI]

    Bell, John B.

    non-premixed methane/air flame John B. Bell, Marcus S. Day, Joseph F. Grcar Computing Sciences-induced fluorescence imaging of nitric oxide in a NH3-seeded non-premixed methane/air flame Abstract In this paper we study the formation of NO in laminar, nitrogen diluted methane diffusion flames that are seeded

  18. Nanostructured transition metal oxides useful for water oxidation catalysis

    DOE Patents [OSTI]

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  19. Oxidative Reforming of Biodiesel Over Molybdenum (IV) Oxide

    E-Print Network [OSTI]

    Collins, Gary S.

    molybdenum dioxide displays excellent behavior as catalytic material for the oxidative reforming of bothOxidative Reforming of Biodiesel Over Molybdenum (IV) Oxide Jessica Whalen, Oscar Marin Flores, Su candidate as an effective catalyst for biodiesel. Few papers have been published on the topic of catalytic

  20. Doped zinc oxide microspheres

    DOE Patents [OSTI]

    Arnold, Jr., Wesley D. (Oak Ridge, TN); Bond, Walter D. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  1. Doped zinc oxide microspheres

    DOE Patents [OSTI]

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  2. Conformations of Organophosphine Oxides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    De Silva, Nuwan; Zahariev, Federico; Hay, Benjamin P.; Gordon, Mark S.; Windus, Theresa L.

    2015-07-29

    The conformations of a series of organophosphine oxides, OP(CH3)2R, where R = methyl, ethyl, isopropyl, tert-butyl, vinyl, and phenyl, are predicted using the MP2/cc-pVTZ level of theory. Comparison of potential energy surfaces for rotation about P–C bonds with crystal structure data reveals a strong correlation between predicted location and energetics of minima and histograms of dihedral angle distributions observed in the solid state. In addition, the most stable conformers are those that minimize the extent of steric repulsion between adjacent rotor substituents, and the torsional barriers tend to increase with the steric bulk of the rotating alkyl group. MM3 forcemore »field parameters were adjusted to fit the MP2 results, providing a fast and accurate model for predicting organophosphine oxides shapes—an essential part of understanding the chemistry of these compounds. The predictive power of the modified MM3 model was tested against MP2/cc-pVTZ conformations for triethylphosphine oxide, OP(CH2CH3)3, and triphenylphosphine oxide, OP(Ph)3.« less

  3. Staged membrane oxidation reactor system

    DOE Patents [OSTI]

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  4. Staged membrane oxidation reactor system

    DOE Patents [OSTI]

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2014-05-20

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  5. Staged membrane oxidation reactor system

    DOE Patents [OSTI]

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2013-04-16

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  6. REVIEW OF PLUTONIUM OXIDATION LITERATURE

    SciTech Connect (OSTI)

    Korinko, P.

    2009-11-12

    A brief review of plutonium oxidation literature was conducted. The purpose of the review was to ascertain the effect of oxidation conditions on oxide morphology to support the design and operation of the PDCF direct metal oxidation (DMO) furnace. The interest in the review was due to a new furnace design that resulted in oxide characteristics that are different than those of the original furnace. Very little of the published literature is directly relevant to the DMO furnace operation, which makes assimilation of the literature data with operating conditions and data a convoluted task. The oxidation behavior can be distilled into three regimes, a low temperature regime (RT to 350 C) with a relatively slow oxidation rate that is influenced by moisture, a moderate temperature regime (350-450 C) that is temperature dependent and relies on more or less conventional oxidation growth of a partially protective oxide scale, and high temperature oxidation (> 500 C) where the metal autocatalytically combusts and oxidizes. The particle sizes obtained from these three regimes vary with the finest being from the lowest temperature. It is surmised that the slow growth rate permits significant stress levels to be achieved that help break up the oxides. The intermediate temperatures result in a fairly compact scale that is partially protective and that grows to critical thickness prior to fracturing. The growth rate in this regime may be parabolic or paralinear, depending on the oxidation time and consequently the oxide thickness. The high temperature oxidation is invariant in quiescent or nearly quiescent conditions due to gas blanketing while it accelerates with temperature under flowing conditions. The oxide morphology will generally consist of fine particles (<15 {micro}m), moderately sized particles (15 < x < 250 {micro}m) and large particles (> 250 {micro}m). The particle size ratio is expected to be < 5%, 25%, and 70% for fine, medium and large particles, respectively, for metal temperatures in the 500-600 C range.

  7. Doped palladium containing oxidation catalysts

    DOE Patents [OSTI]

    Mohajeri, Nahid

    2014-02-18

    A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

  8. Nitrogen Monitoring of West Hackberry 117 Cavern Wells.

    SciTech Connect (OSTI)

    Bettin, Giorgia; Lord, David

    2015-02-01

    U.S. Strategic Petroleum Reserve (SPR) oil storage cavern West Hackberry 117 was tested under extended nitrogen monitoring following a successful mechanical integrity test in order to validate a newly developed hydrostatic column model to be used to differentiate between normal "tight" well behavior and small-leak behavior under nitrogen. High resolution wireline pressure and temperature data were collected during the test period and used in conjunction with the hydrostatic column model to predict the nitrogen/oil interface and the pressure along the entire fluid column from the bradenhead flange nominally at ground surface to bottom of brine pool. Results here and for other SPR caverns have shown that wells under long term nitrogen monitoring do not necessarily pressurize with a relative rate (P N2 /P brine) of 1. The theoretical relative pressure rate depends on the well configuration, pressure and the location of the nitrogen-oil interface and varies from well to well. For the case of WH117 the predicted rates were 0.73 for well A and 0.92 for well B. The measured relative pressurization rate for well B was consistent with the model prediction, while well A rate was found to be between 0.58-0.68. A number of possible reasons for the discrepancy between the model and measured rates of well A are possible. These include modeling inaccuracy, measurement inaccuracy or the possibility of the presence of a very small leak (below the latest calculated minimum detectable leak rate).

  9. Direct visualization of atomically precise nitrogen-doped graphene nanoribbons

    SciTech Connect (OSTI)

    Zhang, Yi; Zhang, Yanfang; Li, Geng; Lu, Jianchen; Du, Shixuan, E-mail: sxdu@iphy.ac.cn, E-mail: feng@mpip-mainz.mpg.de; Gao, Hong-Jun [Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Lin, Xiao [University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100049 (China); Berger, Reinhard; Feng, Xinliang, E-mail: sxdu@iphy.ac.cn, E-mail: feng@mpip-mainz.mpg.de; Müllen, Klaus [Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz (Germany)

    2014-07-14

    We have fabricated atomically precise nitrogen-doped chevron-type graphene nanoribbons by using the on-surface synthesis technique combined with the nitrogen substitution of the precursors. Scanning tunneling microscopy and spectroscopy indicate that the well-defined nanoribbons tend to align with the neighbors side-by-side with a band gap of 1.02?eV, which is in good agreement with the density functional theory calculation result. The influence of the high precursor coverage on the quality of the nanoribbons is also studied. We find that graphene nanoribbons with sufficient aspect ratios can only be fabricated at sub-monolayer precursor coverage. This work provides a way to construct atomically precise nitrogen-doped graphene nanoribbons.

  10. High temperature methods for forming oxidizer fuel

    DOE Patents [OSTI]

    Bravo, Jose Luis (Houston, TX)

    2011-01-11

    A method of treating a formation fluid includes providing formation fluid from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes carbon dioxide, hydrogen sulfide, hydrocarbons, hydrogen or mixtures thereof. Molecular oxygen is separated from air to form a molecular oxygen stream comprising molecular oxygen. The first gas stream is combined with the molecular oxygen stream to form a combined stream comprising molecular oxygen and the first gas stream. The combined stream is provided to one or more downhole burners.

  11. Method of manufacturing semiconductor having group II-group VI compounds doped with nitrogen

    DOE Patents [OSTI]

    Compaan, Alvin D.; Price, Kent J.; Ma, Xianda; Makhratchev, Konstantin

    2005-02-08

    A method of making a semiconductor comprises depositing a group II-group VI compound onto a substrate in the presence of nitrogen using sputtering to produce a nitrogen-doped semiconductor. This method can be used for making a photovoltaic cell using sputtering to apply a back contact layer of group II-group VI compound to a substrate in the presence of nitrogen, the back coating layer being doped with nitrogen. A semiconductor comprising a group II-group VI compound doped with nitrogen, and a photovoltaic cell comprising a substrate on which is deposited a layer of a group II-group VI compound doped with nitrogen, are also included.

  12. Catalyst Additives to Enhance Mercury Oxidation and Capture

    SciTech Connect (OSTI)

    Jared W. Cannon; Thomas K. Gale

    2005-06-30

    Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. The testing was performed at Southern Research's Catalyst Test Facility, a bench-scale reactor capable of simulating gas-phase reactions occurring in coal-fired utility pollution-control equipment. Three different SCR catalysts are currently being studied in this project--honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Methods and procedures for experimental testing continue to be developed to produce the highest quality mercury-oxidation data. During this past quarter, it was discovered that long periods (12 - 24 hours) are required to equilibrate the catalysts in the system. In addition, after the system has been equilibrated, operational changes to temperature, gas concentration, or flow rate shifts the equilibrium, and steady-state must be reestablished, which can require as much as twelve additional hours per condition change. In the last quarter of testing, it was shown that the inclusion of ammonia had a strong effect on the oxidation of mercury by SCR catalysts, both in the short-term (a transitional period of elemental and oxidized mercury off gassing) and the long-term (less steady-state mercury oxidation). All experiments so far have focused on testing the catalysts in a simulated Powder River Basin (PRB) flue-gas environment, which contains lower sulfur and chlorine than produced by other coals. In the next quarter, parametric testing will be expanded to include flue gases simulating power plants burning Midwestern and Eastern coals, which are higher in sulfur and chlorine. Also, the isolation of such gases as hydrogen chloride (HCl), ammonia (NH{sub 3}), and sulfur trioxide (SO{sub 3}) will be investigated. All of these efforts will be used to examine the kinetics of mercury oxidation across the SCR catalysts with respect to flue gas composition, temperature, and flow rate.

  13. Controlled CO preferential oxidation

    DOE Patents [OSTI]

    Meltser, Mark A. (Pittsford, NY); Hoch, Martin M. (Webster, NY)

    1997-01-01

    Method for controlling the supply of air to a PROX reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference therebetween correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference.

  14. Millisecond Oxidation of Alkanes

    Broader source: Energy.gov [DOE]

    This factsheet describes a project whose goal is to commercialize a production process for propylene and acrylic acid from propane using a catalytic auto-thermal oxydehydrogenation process operating at short contact times. Auto-thermal oxidation for conversion of propane to propylene and acrylic acid promises energy savings of 20 trillion Btu per year by 2020. In addition to reducing energy consumption, this technology can reduce manufacturing costs by up to 25 percent, and reduce a variety of greenhouse gas emissions.

  15. Engineering shallow spins in diamond with nitrogen delta-doping

    SciTech Connect (OSTI)

    Ohno, Kenichi; Joseph Heremans, F.; Bassett, Lee C.; Myers, Bryan A.; Toyli, David M.; Bleszynski Jayich, Ania C.; Palmstrom, Christopher J.; Awschalom, David D.

    2012-08-20

    We demonstrate nanometer-precision depth control of nitrogen-vacancy (NV) center creation near the surface of synthetic diamond using an in situ nitrogen delta-doping technique during plasma-enhanced chemical vapor deposition. Despite their proximity to the surface, doped NV centers with depths (d) ranging from 5 to 100 nm display long spin coherence times, T{sub 2} > 100 {mu}s at d = 5 nm and T{sub 2} > 600 {mu}s at d {>=} 50 nm. The consistently long spin coherence observed in such shallow NV centers enables applications such as atomic-scale external spin sensing and hybrid quantum architectures.

  16. Quasimonoenergetic electron beams from laser wakefield acceleration in pure nitrogen

    SciTech Connect (OSTI)

    Mo, M. Z.; Ali, A.; Fedosejevs, R. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Fourmaux, S.; Lassonde, P.; Kieffer, J. C. [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2012-02-13

    Quasimonoenergetic electron beams with maximum energy >0.5 GeV and 2 mrad divergence have been generated in pure nitrogen gas via wakefield acceleration with 80 TW, 30 fs laser pulses. Long low energy tail features were typically observed due to continuous ionization injection. The measured peak electron energy decreased with the plasma density, agreeing with the predicted scaling for electrons. The experiments showed a threshold electron density of 3x10{sup 18}cm{sup -3} for self-trapping. Our experiments suggest that pure Nitrogen is a potential candidate gas to achieve GeV monoenergetic electrons using the ionization induced injection scheme for laser wakefield acceleration.

  17. Nitrogen solubility and protein utilization by dairy cows 

    E-Print Network [OSTI]

    El Majdoub, Abdesselam

    1977-01-01

    of solubility of dietary nitrogen were obtained by selecting from natural feedstuffs. Four complete diets of concentrates and sorghum silage were fed ad libi sum: a) 15. 34'I crude protein (CP) with 42. 26'X solubility (HP-HS); b) '15. 36K CP with 21. 82K... Mixtures. 23 Chemical Composition of the Concentrate Mixtures. 24 Sorghum Silage Analysis. 26 Chemical Composition of Complete Diets (Concentrate + Silage) 28 Effect of Protein Level and Nitrogen Solubility on Body Weight Changes, Daily DM, CP...

  18. Nonisostructural complex oxide heteroepitaxy

    SciTech Connect (OSTI)

    Wong, Franklin J. Ramanathan, Shriram

    2014-07-01

    The authors present an overview of the fundamentals and representative examples of the growth of epitaxial complex oxide thin films on structurally dissimilar substrates. The authors will delineate how the details of particular crystal structures and symmetry of different oxide surfaces can be employed for a rational approach to the synthesis of nonisostructural epitaxial heterostructures. The concept of oxygen eutaxy can be widely applied. Materials combinations will be split into three categories, and in all cases the films and substrates occur in different crystal structures: (1) common translational and rotational symmetry between the film and substrate planes; (2) translational symmetry mismatch between the substrates and films that is distinct from a simple mismatch in lattice parameters; and (3) rotational symmetry mismatch. In case (1), in principle single-crystalline thin films can be attained despite the films and substrates possessing different crystal structures. In case (2), antiphase boundaries will be prevalent in the thin films. In case (3), thin-film rotational variants that are joined by tilt boundaries will be present. Diffraction techniques to determine crystallographic alignment and epitaxial variants are discussed, and transmission electron microscopy studies to investigate extended defects in the thin films will also be reviewed. The authors end with open problems in this field regarding the structure of oxide interfaces that can be topics for future research.

  19. Vitiated ethane oxidation in a high-pressure flow reactor

    SciTech Connect (OSTI)

    Walters, K.M.; Bowman, C.T.

    2009-10-15

    Vitiated combustion processes offer the potential to improve the thermodynamic efficiency in hydrocarbon-fueled combustion systems, providing a subsequent decrease in energy-specific CO{sub 2} emissions along with a decrease in the emission levels of nitrogen oxides (NO{sub x}) and particulate matter. The present work comprises an experimental and modeling study of vitiated ethane oxidation in a high-pressure flow reactor, with pressures of 1-6 bar, O{sub 2} mole fractions of 3.5-7.0%, temperatures of 1075-1100 K and 15-18 mole.% H{sub 2}O. Time-history measurements of species are used to characterize the overall rate of reaction and track the fuel-carbon through intermediate and product species. A one-dimensional mixing-reacting model that accounts for partial oxidation during reactant mixing is used in conjunction with a detailed kinetic mechanism. Changes in competing pathways due to variations in pressure and O{sub 2} mole fraction give rise to the complex pressure dependence seen in the experiments. (author)

  20. NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    indoor air quality, liquefied natural gas, nitrogen natural gas burners with the largest potential air quality natural gas composition and physical properties that is, gas quality,