National Library of Energy BETA

Sample records for nitrogen group stanford

  1. Stanford Nitrogen Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia

  2. Stanford Nitrogen Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia

  3. Computer Networking Group | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Networking Group Do you need help? For assistance please submit a CNG Help Request ticket. CNG Logo Chris Ramirez SSRL Computer and Networking Group (650) 926-2901 | email Jerry Camuso SSRL Computer and Networking Group (650) 926-2994 | email Networking Support The Networking group provides connectivity and communications services for SSRL. The services provided by the Networking Support Group include: Local Area Network support for cable and wireless connectivity. Installation and

  4. SSRL Imaging Group | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Group Wakefield With the high brightness of SPEAR3, imaging techniques over a wide range of length scales are being developed and added to the capabilities being made available to users, for various research projects in fields including biological, environmental, and materials science. Focused beams using mirrors, capillaries, and apertures are used to create x-ray beam sizes over a wide range, from a few microns to a few hundred microns. These techniques are used at beam lines 2-3, 10-2

  5. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    Office of Scientific and Technical Information (OSTI)

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 SGP-TR-84 SG P-TR-- 8 4 DE85 011582 PROCEEDINGS OF THE TENTH WORKSHOP ON GEOTHERMAL RESERVOIR ENGINEERING Stanford Un iver s i t y Stanford, California January 22-24, 1985 p$'/ 5 c u d DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or

  6. Method of manufacturing semiconductor having group II-group VI compounds doped with nitrogen

    DOE Patents [OSTI]

    Compaan, Alvin D.; Price, Kent J.; Ma, Xianda; Makhratchev, Konstantin

    2005-02-08

    A method of making a semiconductor comprises depositing a group II-group VI compound onto a substrate in the presence of nitrogen using sputtering to produce a nitrogen-doped semiconductor. This method can be used for making a photovoltaic cell using sputtering to apply a back contact layer of group II-group VI compound to a substrate in the presence of nitrogen, the back coating layer being doped with nitrogen. A semiconductor comprising a group II-group VI compound doped with nitrogen, and a photovoltaic cell comprising a substrate on which is deposited a layer of a group II-group VI compound doped with nitrogen, are also included.

  7. YingYing Lu > Postdoc - Stanford University > Center Alumni ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    YingYing Lu Postdoc - Stanford University yl854@stanford.edu Formerly a graduate student with the Archer Group, she received her PhD in 2014. She is now a postdoc in Materials...

  8. PULSE at Stanford University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Science @ SLAC - LCLS - LUSI - SSRL - PULSE - Stanford University Go Search Home Publications Atomic & Molecular Physics Condensed Matter Physics Single Molecule Imaging...

  9. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to right: Ryan Toomey, U. South Florida; Mark Dadmun, U. Tennessee; Christopher Kim, Chapman U. (SNUG Chair); Hendrik Ohldag, Stanford U. SSRLUO functions include: sponsoring and...

  10. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory SLAC National Accelerator Laboratory, Menlo Park, CA Operated by Stanford University for the U.S. Department of Energy Office of Science Content Owner: Cathy...

  11. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the terms and conditions set forth below. NOTE: All EXPORTS MUST BE APPROVED BY STANFORD. DELAYS IN PROVIDING THIS INFORMATION WILL DELAY YOUR SHIPMENT. For more information...

  12. DOE - Office of Legacy Management -- Leland Stanford University - CA 0-04

    Office of Legacy Management (LM)

    Leland Stanford University - CA 0-04 FUSRAP Considered Sites Site: Leland Stanford University (CA.0-04 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see http://www.stanford.edu/group/ginzton/ Documents Related to Leland Stanford University

  13. SSRL- Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the fund description (pdf) and to send contributions to (make checks payable to "Stanford University"): Stanford University co Cathy Knotts Manager, User Research...

  14. Stanford Geothermal Workshop

    Broader source: Energy.gov [DOE]

    Now in its 40th year, the Stanford Geothermal Workshop is one of the world's longest running technical meetings on geothermal energy. The conference brings together engineers, scientists and...

  15. Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford Synchrotron Radiation Lightsource Format for Proposal Extension Request Proposals are eligible for a one-time extension request. Submit extension requests by Email as a Word or PDF attachment to: Michelle Steger (steger@slac.stanford.edu) Proposal Number: Date of Extension Request: Spokesperson: 1. PROGRESS: Provide a progress report describing work accomplished at SSRL on this proposal to date (1-2 pages) 2. NEW ELEMENTS: Describe any new elements that may add interest to extending the

  16. Berkeley-Stanford Summer School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley-Stanford Summer School in Synchrotron Radiation July 8-14, 2001 The first Berkeley-Stanford summer school will provide basic lectures on the synchrotron radiation process,...

  17. Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extension Application for Macromolecular Crystallography Proposals Please submit via email attachment to Lisa Dunn (lisa@slac.stanford.edu) Proposal Number: Date of Extension Request: Spokesperson: 1. PROGRESS: Provide a progress report describing work accomplished at SSRL on this proposal to date (1-2 pages) 2. NEW ELEMENTS: Describe any new elements that may add interest to extending the proposal, if applicable (1-2 paragraphs) 3. FUTURE PLANS: Describe future plans or the next steps that you

  18. About the Stanford Synchrotron Radiation Lightsource | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource About the Stanford Synchrotron Radiation Lightsource SSRL is a forefront lightsource providing bright X-rays and oustanding user support. The Stanford Synchrotron Radiation Lightsource (SSRL), a directorate of the SLAC National Accelerator Laboratory (SLAC), is an Office of Science User Facility operated for the U.S. Department of Energy (DOE) by Stanford University. Located in Menlo Park, California, SLAC is a multi-program national laboratory exploring frontier

  19. Stanford Geothermal Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jay Nathwani, (Acting) Director Geothermal Technologies Office Stanford Geothermal Workshop January 26-28, 2015 Courtesy GRC Courtesy NREL SOURCE: Laura Garchar SOURCE: Enel Green Power Nofth America Akutan Fumeroles, sourece: GRC SOURCE: TAS Energy AltaRock Newberry EGS, source: E.Metcalfe Old Faithful Geyser, source: Laura Garchar SOURCE: FastCAP Systems DOE Budget, Geothermal Technologies Office, FY15 $22.4 $16.0 $16.0 $19.7 $27.1 $32.1 $13.0 $13.0 $7.9 $10.3 $12.5 $14.5 $4.0 $5.0 $2.9 $4.7

  20. SSRLUO 2015 Executive Committee Members | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford University, Stanford, CA Scott R. Daly, University of Iowa, Iowa City, IA Colleen Hansel, Woods Hole Oceanographic Institution, Dept. of Marine Chemistry and...

  1. History of the Stanford Synchrotron Radiation Lightsource | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource History of the Stanford Synchrotron Radiation Lightsource SPEAR Based on new applications of synchrotron radiation, SSRL began in 1973 as the Stanford Synchrotron Radiation Project (SSRP). The first synchrotron scientific user activities were originally attached to the SPEAR ring and were operated in "parasitic mode" on the SPEAR high-energy physics program. SSRL/SSRP was the first multi-GeV storage ring based synchrotron radiation source in the

  2. EERE Days at Stanford University

    Broader source: Energy.gov [DOE]

    The Department of Energy hosts the Office of Energy Efficiency and Renewable Energy (EERE) Days at Stanford University to engage students and faculty on key energy issues aligned with EERE’s...

  3. SSRL- Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management of SPEAR3 Project at Stanford Synchrotron Radiation Laboratory wins DOE Award for Excellence Friday, August 13, 2004 Secretary of Energy Spencer Abraham, Hanley Lee (DOE Stanford Site Office), Richard Boyce, Bob Hettel, Tom Elioff, and Deputy Secretary of Energy Kyle McSlarrow (L to R). The SPEAR3 Management Team and Hanley Lee received the award from The Secretary. Trophy awarded to the laboratory. Each of the members of the Project Management Team also received individual plaques.

  4. Effect of nitrogen-containing groups on enhanced capacitive behaviors of multi-walled carbon nanotubes

    SciTech Connect (OSTI)

    Kim, Ji-Il; Park, Soo-Jin

    2011-08-15

    In this work, electrochemical properties of surface treated multi-walled carbon nanotubes (MWNTs) are studied in supercapacitors. Nitrogen and oxygen functional groups containing MWNTs are prepared by urea and acidic treatments, respectively. The surface properties of the MWNTs are confirmed by X-ray photoelectron spectroscopy (XPS) and zeta-potential measurements. The textural properties are characterized by N{sub 2} adsorption/desorption isotherm at 77 K using the BET eqaution, BJH method, and HK method. The electrochemical properties of the MWNTs are accumulated by cyclic voltammetry, impedance spectra, and charge-discharge cycling performance in 1 M H{sub 2}SO{sub 4} at room temperature. As a result, the functionalized MWNTs lead to an increase in capacitance as compared with pristine MWNTs. It suggests that the pyridinic and pyridinic-N-oxides nitrogen species have effects on the specific capacitance due to the positive charge, and thus an improved electron transfer at high current loads results, the most important functional groups affecting capacitive behaviors. - Graphical Abstract: The N{sub 1s} spectra of nitrogen functionalized multi-walled carbon nanotubes are measured by X-ray photoelectron spectroscopy. Highlights: > Facile method of increasing elemental composition of nitrogen functional groups on carbon materials. > Increased specific capacitance multi-walled carbon nanotubes (MWNTs) for electrode materials as high as general chemical activation process. > Enhanced capacitive behaviors via introducing pyridinic and pyridinic-N-oxides nitrogen species onto the MWNTs. > Improvement of electron transfer at high current loads.

  5. Stanford - Woods Institute for the Environment | Open Energy...

    Open Energy Info (EERE)

    Stanford - Woods Institute for the Environment Jump to: navigation, search Logo: Stanford- Woods Institute for the Environment Name: Stanford- Woods Institute for the Environment...

  6. SSRLUO 1999 Executive Committee Members | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford CA 94305 Work: 650-723-7513 Fax: Email: trainor@pangea.stanford.edu Joe Wong Dept of Chem & Mat Science PO Box 808, L-356 Livermore CA 94551 Work:(510) 423-6385...

  7. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reviewed by SSRL's SMB & Biophysics Proposal Review Panel for scientific merit and feasibility. Rapid Access will in general only be granted once for a user group during a single...

  8. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biotic-Abiotic Pathways: A New Paradigm for Uranium Reduction in Sediments March 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure As part of a larger, DOE-funded investigation into bioremediation of uranium in contaminated aquifers, a group of SSRL scientists made a surprising discovery about how uranium ions behave in the environment. In addition to overturning current scientific models, this research will lead to more efficient, less costly methods for uranium

  9. M.; Weaver, J.N.; Wiedemann, H. (Stanford Univ., CA (USA). Stanford

    Office of Scientific and Technical Information (OSTI)

    the 2 MeV microwave gun for the SSRL 150 MeV linac Borland, M.; Weaver, J.N.; Wiedemann, H. (Stanford Univ., CA (USA). Stanford Synchrotron Radiation Lab.); Green, M.C.; Nelson,...

  10. SPEAR History | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPEAR History Experimental Facilities : The SPEAR Storage Ring Stanford University has a long history of involvement in the development and use of colliding-beam storage rings for particle physics research. The first such machine at Stanford was a small electron-electron collider, shaped like a figure eight, located on the main campus. A collaborative effort between physicists from Princeton and Stanford Universities, this project produced the first physics results ever obtained with the

  11. Stanford Geothermal Workshop - Geothermal Technologies Office | Department

    Energy Savers [EERE]

    of Energy - Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013. PDF icon stanford_2013_hollett.pdf More Documents & Publications Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Geothermal Technologies Program GRC

  12. Geothermal Technologies Program Overview Presentation at Stanford

    Office of Environmental Management (EM)

    Geothermal Workshop | Department of Energy Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal Technologies Program that includes information about subprograms and where each focuses. PDF icon gtp_overview_stanford_final.pdf More Documents & Publications Fiscal Year 2013 Budget Request Briefing Geothermal Technologies Program GRC Presentation, 10/1/2012 Geothermal

  13. Workplace Charging Challenge Partner: Stanford University

    Broader source: Energy.gov [DOE]

    Stanford University employs best practices to minimize the environmental impact of its operations, including its award-winning Transportation Demand Management program.

  14. Environmental Survey preliminary report, Stanford Linear Accelerator Center, Stanford, California

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    This report presents the preliminary findings from the first phase of the Survey of the US Department of Energy (DOE) Stanford Linear Accelerator Center (SLAC) at Stanford, California, conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the SLAC. The Survey covers all environmental media and all areas of environmental regulation and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the SLAC, and interviews with site personnel. The Survey team is developing a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the SLAC facility. The Interim Report will reflect the final determinations of the SLAC Survey. 95 refs., 25 figs., 25 tabs.

  15. 2010 Annual Planning Summary for Stanford Linear Accelerator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stanford Linear Accelerator Center Site Office (SLAC) 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) Annual Planning Summaries briefly...

  16. Stanford- Precourt Energy Efficiency Center | Open Energy Information

    Open Energy Info (EERE)

    Precourt Energy Efficiency Center Jump to: navigation, search Logo: Stanford- Precourt Energy Efficiency Center Name: Stanford- Precourt Energy Efficiency Center Address: 473 Via...

  17. Doug Hollett Gives Keynote Presentation at Stanford Geothermal Workshop

    Broader source: Energy.gov [DOE]

    The Program Manager of the Geothermal Technologies Program, Doug Hollett gave a keynote address at the 37th Stanford Geothermal Workshop in Stanford, California.

  18. SSRL ETS Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STANFORD SYNCHROTRON RADIATION LABORATORY Stanford Linear Accelerator Center Engineering & Technical Services Groups: Mechanical Services Group Mechanical Services Group Sharepoint ASD: Schedule Priorites Accelerator tech support - Call List Documentation: Engineering Notes, Drawings, and Accelerator Safety Documents Mechanical Systems: Accelerator Drawings Accelerator Pictures Accelerator Vacuum Systems (SSRL) LCW Vacuum Projects: Last Updated: February 8, 2007 Ben Scott

  19. Stanford Geothermal Workshop 2012 Annual Meeting | Department of Energy

    Energy Savers [EERE]

    2012 Annual Meeting Stanford Geothermal Workshop 2012 Annual Meeting Presentation slides for the Stanford Geothermal Workshop Annual Meeting presentation by Doug Hollett, Geothermal Technologies Program Manager PDF icon stanford_keynote_2012_hollett.pdf More Documents & Publications Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Stanford Geothermal Workshop - Geothermal Technologies Office Fiscal Year 2013 Budget Request Briefing

  20. Contact Us | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory 2575 Sand Hill Road, MS 69 Menlo Park, CA 94025 Tel: 650-926-4000 Fax: 650-926-4100 SSRL...

  1. The Research Program | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ssrl.slac.stanford.educontentsciencehighlight2013-03-31b.... A large fraction of sediment-bound uranium at the Rifle site occurs within organic-rich lenses of sediment. Slow...

  2. SSRL Meetings, Workshops & Training Archive | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oct 2003 SSRL Users' Meeting and Workshops (SSRL30) 16-19 Sep 2003 SSRL Structural Molecular Biology Summer School 25-29 Aug 2003 SRI 2003 9-13 Jun 2003 Stanford-Berkeley SR...

  3. SPEAR3 Accelerator | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPEAR3 Accelerator SPEAR3 SSRL utilizes x-rays produced by its accelerator, the Stanford Positron Electron Asymmetric Ring (SPEAR3). Based on a 2004 upgrade funded by the...

  4. Goniometer-based Femtosecond Macromolecular Crystallography | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Goniometer-based Femtosecond Macromolecular Crystallography Saturday, October 31, 2015 Scientists in the Structural Molecular Biology (SMB) program at the Stanford Synchrotron Radiation Lightsource (SSRL) in collaboration with scientists at Stanford University and at the Linac Coherent Light Source (LCLS) developed a goniometer-based system to study radiation-sensitive macromolecular complexes. The system operates in air and is complementary to the

  5. Stanford Geothermal Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stanford Geothermal Workshop Stanford Geothermal Workshop February 22, 2016 8:00AM EST to February 24, 2016 6:00PM EST The goals of the conference are to bring together engineers, scientists and managers involved in geothermal reservoir studies and developments; provide a forum for the exchange of ideas on the exploration, development and use of geothermal resources; and to enable prompt and open reporting of progress. We strongly encourage all scientists and engineers involved in geothermal

  6. Microsoft Word - EDUconnectStanford11-10

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford University and DOE/Predecessor Note: Stanford Linear Accelerator Center (SLAC) at Stanford has the dual associations of Stanford University and DOE/Predecessor. Nobel Laureate Name Date/Award In Association with Stanford Association with DOE/Predecessor George Wells Beadle 1958 Physiology or Medicine Professor of Biology 1937 - 1947 Consultant to the AEC Felix Bloch 1952 Physics Professor of Physics 1934 - 1971; Professor Emeritus Berkeley Laboratory 1930's; Manhattan Project at

  7. Stanford- Global Climate and Energy Project | Open Energy Information

    Open Energy Info (EERE)

    :"","visitedicon":"" Hide Map References: Stanford- Global Climate and Energy Project Web Site1 This article is a stub. You can help OpenEI by expanding it. Stanford- Global...

  8. SSRLUO 2015 Executive Committee Members | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource SSRLUO 2015 Executive Committee Members The SSRL Users Executive Committee (UEC) encourages users to participate in SSRL events and contact UEC members to share feedback or suggestions: Edward Snell , Hauptman Woodward Institute, Buffalo, NY (SSRL UEC Chair) David Bushnell, Stanford University, Stanford, CA Kelly Chacón, Oregon Health & Science University, Portland, OR Justin Chartron, Stanford University, Stanford, CA Scott R. Daly, University of Iowa, Iowa City, IA Colleen

  9. Preliminary Notice of Violation, Stanford University - November 20, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Stanford University - November 20, 2014 Preliminary Notice of Violation, Stanford University - November 20, 2014 November 20, 2014 Worker Safety and Health Enforcement Preliminary Notice of Violation issued to Stanford University On November 20, 2014, the U.S. Department of Energy Office of Enterprise Assessments' Office of Enforcement issued a Preliminary Notice of Violation (WEA-2014-05) to Stanford University for violations of the Department's worker safety and

  10. SSRL Science in SLAC Today | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science in SLAC Today Subscribe to SSRL Science in SLAC Today feed URL: https://www6.slac.stanford.edu/blog-tags/stanford-synchrotron-radiation-lightsource-ssrl Updated: 13 hours 18 min ago Stanford Scientists Celebrate Technological Advances that Finally Made Gravitational Wave Detection Possible Fri, 2016/02/12 - 1:19pm Contributions to LIGO have come from many Stanford teams, including SLAC, Applied Physics, Mechanical Engineering, Aeronautics and Astronautics and the School of Earth, Energy

  11. SSRL- Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this award, but only nominations for individuals will be considered (no group awards). Letters of nominations summarizing the individual's contributions and why they should be...

  12. Analysis of Nitrogen Incorporation in Group III-Nitride-Arsenide Materials Using a Magnetic Sector Secondary-Ion Mass Spectrometry (SIMS) Instrument: Preprint

    SciTech Connect (OSTI)

    Reedy, R. C.; Geisz, J. F.; Kurtz, S. R.; Adams, R. O.; Perkins, C. L.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Group III-nitride-arsenide materials were studied by SIMS, XRD, and Profiler to determine small amounts of nitrogen that can lower the alloys bandgap significantly.

  13. SSRLUO Executive Committee Charter | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource Executive Committee Charter Committee Members | Committee Meetings | SSRLUO Activism Overview The purpose of the SSRL Users' Organization (SSRLUO) is to provide an organized framework for interaction between the scientists who use the Stanford Synchrotron Radiation Lightsource (SSRL) at the SLAC National Accelerator Laboratory for their research and the SSRL and SLAC management, as well as to provide a channel for communication with other national laboratories, funding agencies,

  14. Celebrating Artie Bienenstock | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Celebrating Artie Bienenstock Saturday, October 10, 2015 - 8:30am Event Details A special symposium following the SSRL/LCLS Annual Users' Conference and Workshops will be held to honor Arthur Bienenstock. Artie Bienenstock This special symposium 'Celebrating Artie Bienenstock' on Saturday, October 10, 2015 will highlight Artie's contributions to science, graduate student training, Stanford University, US science policy, SLAC National Accelerator Laboratory, the development of synchrotron

  15. Director's Office | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director's Office Kelly Gaffney, SSRL Director Chi-Chang Kao, Associate Laboratory Director Kelly Gaffney, SSRL Director Email: Kelly Gaffney, SLAC Associate Laboratory Director for the Stanford Synchrotron Radiation Lightsource, came to SLAC in 2003. After a brief postdoctoral appointment working with Jerry Hastings and Keith Hodgson, Dr. Gaffney started his independent research career as an Assistant Professor of Photon Science. He initiated a chemical dynamics research effort at SLAC designed

  16. SSRL Site Map | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Map Global Menu DOE Stanford SLAC SSRL LCLS AD PPA SUNCAT PULSE SIMES Main menu Home About SSRL What is SSRL? Director's Office Organization Advisory Panels History SSRL News SSRL News and Events Science Highlights Press Releases SSRL Newsletter Photon Science Seminars SSRL Presents User Resources User Resources User Portal Schedules Deadlines Forms & Applications Beam Lines Beam Lines Map By Number By Technique Photon Source Parameters SPEAR3 Status Science at SSRL Science at SSRL

  17. Stanford Geothermal Workshop - Geothermal Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stanford Geothermal Workshop February 11-13, 2013 Doug Hollett, Director Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Desert Peak (Source: Ormat Nevada, Inc) 2 Energy Efficiency & Renewable Energy eere.energy.gov Geothermal Program: Key Goals and Objectives Creating Impact Increased Focus * Identify New Geothermal Opportunities * Lowered risk and cost * New prospecting workflow * EGS R&D and Underground Field Observatory * New techniques and technologies *

  18. Stanford Geothermal Workshop 2012 Annual Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program Stanford Geothermal Workshop 2012 Annual Meeting Jan 30-Feb 1, 2012 Doug Hollett, Program Manager Glass Buttes, OR (DOE) Energy Efficiency & Renewable Energy eere.energy.gov Accelerate Near Term Hydrothermal Growth * Lower hydrothermal exploration risks and costs. * Lower hydrothermal cost of electricity to 6 cents/kWh by 2020. * Accelerate the development of 30 GWe of undiscovered hydrothermal resources. Secure the Future with Enhanced Geothermal Systems (EGS) *

  19. Photon Science Seminar Series | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Science Seminar Series SLAC's Photon Science Seminar Series brings together scientists from SLAC's Linac Coherent Light Source, Stanford Synchrotron Radiation Lightsource, Photon Science and Accelerator directorates, including researchers from the Center for Sustainable Energy through Catalysis and two joint SLAC-Stanford institutes: the Stanford Institute for Materials and Energy Sciences and the Pulse Institute for Ultrafast Energy Science. The seminar series' main goals are to

  20. DOE - Office of Legacy Management -- Stanford Linear Accelerator Center -

    Office of Legacy Management (LM)

    005 Stanford Linear Accelerator Center - 005 FUSRAP Considered Sites Site: Stanford Linear Accelerator Center (005) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Stanford Linear Accelerator Center was established in 1962 as a research facility for high energy particle physics. The Environmental Management mission at this site is to

  1. DOE Cites Stanford University and Two Subcontractors for Worker...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Media contact(s): (202) 586-4940 Addthis Related Articles Department of Energy Cites Stanford University for Worker Safety and Health Violations Department of Energy Cites the ...

  2. Stanford University | OSTI, US Dept of Energy, Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    mouthpiece for concussion study Novel math formula can predict success of certain cancer therapies Stanford's Solar Car Project New method reveals parts of bacterium genome ...

  3. Stanford's input to the Commission to Review the Effectiveness...

    Energy Savers [EERE]

    President of SLAC National Acceleratory Laboratory and Chair, Board of Overseers, Stanford University. PDF icon Governance and Contracting Models More Documents & Publications...

  4. Type A Investigation of the Electrical Arc Injury at the Stanford...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Electrical Arc Injury at the Stanford Linear Accelerator Complex on October 11, 2004 Type A Investigation of the Electrical Arc Injury at the Stanford Linear Accelerator...

  5. A "Cardinal" Partnership: Stanford University & the Energy Department

    Broader source: Energy.gov [DOE]

    The Energy Department's Office of Science and Technical Information is proud to highlight the great work happening at Stanford University and the SLAC National Accelerator Lab located in Palo Alto, California.

  6. SSRLUO 2009 Executive Committee Members | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource 9 Executive Committee Members Beth Wurzberg Stanford University, Structural Biology, Stanford, CA 94305 USA Beth Wurzburg is a Research Associate in the laboratory of Prof. Ted Jardetzky. She trained as a protein biochemist (Don Wiley's laboratory) and as a crystallographer (Ted Jardetzky's laboratory), and she has been collecting data at synchrotrons since 1995. Her research interests include biophysical studies of proteins of the immune system and of human pathogens. email: ph:

  7. Data Collection & Analysis Software | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource Collection & Analysis Software Techniques Data Collection Packages Data Analysis Packages Macromolecular Crystallography See http://smb.slac.stanford.edu/facilities/ See http://smb.slac.stanford.edu/facilities/ Materials Scattering SPEC Super X-ray Absorption Spectroscopy XAS Collect uses an X Window-based graphical user interface. It is designed to allow quick and easy XAS experimental setup and data collection, and to make optimal use of available beam time. It has many

  8. Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency & Renewable Energy eere.energy.gov Program Name or Ancillary Text eere.energy.gov Geothermal Technologies Program For JoAnn Milliken Program Manager Enel Stillwater Courtesy of Enel Green Power North America Stanford Geothermal Workshop Program Manager Jay Nathwani Stanford Geothermal Workshop Jan 31, 2011 t Contractor ort: I i E l i Program Manager Seismicity & Roadmapping - John Ziagos (LLNL) Analysis & Nat'l Geothermal Data System - Arlene Anderson Systems

  9. 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (SLAC) | Department of Energy Stanford Linear Accelerator Center Site Office (SLAC) 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12 months, any EISs expected to be prepared in the next 24 months, and the planned cost and schedule for each NEPA review identified. PDF icon 2010 Annual Planning Summary for

  10. Nilsson Group Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stanford top slac line home group research line Welcome to the Nilsson group. Primary research interests in the Nilsson group includes using x-ray spectroscopies to understand: The Structure of water Bond breakage and formation during catalytic reactions on surfaces The fundamental studies of electrochemistry for energy conversion

  11. SSRLUO 1996 Executive Committee Members | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource 6 Executive Committee Members Frank G. Bridges University of California Dept of Physics Santa Cruz, CA 95064 Ph: 408-459-2893 Fax: 408-459-3043 Suzanne Barrett (SSRL Liaison) Stanford Synchrotron Radiation Lightsource P.O. Box 4349, M/S 99 Stanford, CA 94309 Ph: 415-926-3191 Fax: 415-926-3600 Alice M. Fischer-Colbrie (Chair) Hewlett-Packard Laboratories Bldg 26M, 3500 Deer Creek Rd. Palo Alto, CA 94304 Ph: 415-857-8879 Fax: 415-813-3279 Melissa M. Grush University of California

  12. SSRLUO 1998 Executive Committee Members | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource 8 Executive Committee Members Patrick Allen (Vice-Chair) Lawrence-Berkeley National Laboratory 1 Cyclotron Road MS 70A-1150 Berkeley CA 94720 Ph: 510-486-6937 Fax:510-486-5596 E-Mail: Suzanne Barrett (SSRL Liaison) SSRL P.O. Box 4349, M/S 99 Stanford, CA 94309 Ph: 415-926-3191 Fax: 415-926-3600 E-Mail: barrett@slac.stanford.edu John Bilello University of Michigan Dept of Material Science 2300 Haywood Street Ann Arbor MI 48109-2136 Work:(313) 764-6128 Fax: (313) 763-4788 E-Mail:

  13. SSRLUO 1999 Executive Committee Members | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource 9 Executive Committee Members Patrick Allen (Chairperson) Lawrence-Livermore National Laboratory GT Seaborg Inst. for Transuranic Science 7000 East Ave, MS L-231 Livermore CA 94551 Ph: 925-423-8955 Fax: 925-423-3160 E-Mail: allen42@llnl.gov Audrey Archuleta (SSRL Liaison) SSRL P.O. Box 4349, M/S 99 Stanford, CA 94309 Ph: 650-926-3191 Fax: 650-926-3600 E-Mail: ala@ssrl.slac.stanford.edu John Bilello University of Michigan Dept of Material Science 2300 Haywood Street Ann Arbor MI

  14. STANFORD SYNCHROTRON RADIATION LIGHTSOURCE LINAC COHERENT LIGHT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Name, Authorized Representative for Int'l User Group) (Name of Int'l User Group Organization) the Foreign Principal Party in Interest, that is subject to the jurisdiction...

  15. Department of Energy Cites Stanford University for Worker Safety and Health Violations

    Broader source: Energy.gov [DOE]

    WASHINGTON – The U.S. Department of Energy has issued a Preliminary Notice of Violation (PNOV) to Stanford University (Stanford) for four violations of the Department's worker safety and health regulations.

  16. Stanford's input to the Commission to Review the Effectiveness of the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Energy Laboratories | Department of Energy Stanford's input to the Commission to Review the Effectiveness of the National Energy Laboratories Stanford's input to the Commission to Review the Effectiveness of the National Energy Laboratories Stanford's input was presented to the Commission to Review the Effectiveness of the National Energy Laboratories by Bill Madia, Vice President of SLAC National Acceleratory Laboratory and Chair, Board of Overseers, Stanford University. PDF icon

  17. DEPARTMENT OF ENERGY CITES STANFORD UNIVERSITY FOR WORKER SAFETY AND HEALTH

    Office of Environmental Management (EM)

    STANFORD UNIVERSITY FOR WORKER SAFETY AND HEALTH VIOLATIONS November 21, 2014 - 11:25am Share on emailShare on facebook NEWS MEDIA CONTACT * 202-586-4940 Department of Energy Cites Stanford University for Worker Safety and Health Violations WASHINGTON - The U.S. Department of Energy has issued a Preliminary Notice of Violation (PNOV) to Stanford University (Stanford) for four violations of the Department's worker safety and health regulations. Worker safety is a priority for the Department, and

  18. SSRLUO 2008 Executive Committee Members | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource User's Organization Oct 2005-Oct 2006; and Chair, Synchrotron and Neutron User's Group Advocacy Committee since October 2005. email: joy.andrews@csueastbay.edu...

  19. Computer Accounts | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Accounts Each user group must have a computer account. Additionally, all persons using these accounts are responsible for understanding and complying with the terms...

  20. User Financial Accounts | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Financial Accounts Why Have a User Financial Account? Each user group should establish a user financial account to procure gases, chemicals, supplies or services to support your ...

  1. Staff Resources | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff Resources General Online Time and Effort System (online form) SSRL Weekly Reports Senior Management Group (SharePoint) Beam Line Coordination Minutes Administrative Contacts SSRL General Phonelist SSRL Organizational Chart BL Ops Staff Support Website (VMS log in) SLAC Budget Office SLAC only (petty cash info) SLAC Conference Rooms SLAC Staff Resources SLAC/SSRL Tours - contact, Administration and SLAC Security. Requisitions & Property SLAC Shipper Request PeopleSoft Procurement

  2. SSRLUO 2011 Executive Committee Members | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource 1 Executive Committee Members Serena DeBeer Cornell University, Dept. of Chemistry and Chemical Biology, Ithaca, NY 14853 Serena DeBeer is an Assistant Professor in the Chemistry and Chemical Biology Department at Cornell University. She holds a B.S. from Southwestern University and a Ph.D. from Stanford University, and spent several years as a staff scientist at SSRL. Her research focuses on the development and application of synchrotron spectroscopies to understand fundamental

  3. William E. and Diane M. Spicer Young Investigator Award | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource William E. and Diane M. Spicer Young Investigator Award William E. and Diane M. Spicer Young Investigator Award William E. Spicer (1929-2004) was an esteemed member of the international scientific community as a teacher and researcher in electrical engineering, applied physics and materials science. Bill spent the past 40 years as a professor at Stanford where he pioneered the technique ofultraviolet photoemission spectroscopy and its subsequent expansion

  4. Seeking New Approaches to Investigate Domestication Events | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Seeking New Approaches to Investigate Domestication Events Monday, October 29, 2012 - 3:30am SSRL Bldg. 137, Rm. 322 Krish Seetah, Stanford University, Department of Anthropology and Zooarcheology Laboratory The domestication of wild animal species has underpinned some of the most fundamental developments in human history. The inclusion of a range of fauna into the human menagerie has altered the way we feed and transport ourselves, not to mention how we

  5. New timing system for the Stanford Linear Collider

    SciTech Connect (OSTI)

    Paffrath, L.; Bernstein, D.; Kang, H.; Koontz, R.; Leger, G.; Ross, M.; Pierce, W.; Wilmunder, A.

    1984-11-01

    In order to be able to meet the goals of the Stanford Linear Collider, a much more precise timing system had to be implemented. This paper describes the specification and design of this system, and the results obtained from its use on 1/3 of the SLAC linac. The functions of various elements are described, and a programmable delay unit (PDU) is described in detail.

  6. Experimental Station 7-1 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Beamline 7-1 is a wiggler side-station beamline dedicated for monochromatic, high-throughput, high-resolution macromolecular crystallography. It is SAD and MAD capable and can be run in a full remote access mode. It is equipped with an ADSC Q315R CCD detector. For aditional information about the experimental capabilities, see http://smb.slac.stanford.edu/index.shtml. Status Open Supported Techniques Macromolecular Crystallography Multi wavelength anomalous diffraction (MAD) Single wavelength

  7. Photon Source Parameters | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Source Parameters Beam Lines by Techniques | Beam Lines by Number Beam Energy 3 GeV Injection Energy 3 GeV Current 300-500 mA Fill Pattern 270 bunches distributed in six groups of 45 with 17 bunch gaps in between Circumferenc 234.137 Radio Frequency 476.315 MHz Bunch Spacing 2.1 n Horizontal Emittance 10 nm*rad Vertical Emittance 14 pm*rad Critical Energy 7.6 keV Energy Spread 0.097 Lifetime 12 hours @ 350 mA e- size (x,y) Dipole: 140, 14 µm rms Standard ID: 310, 8 µm rms Chicane ID:

  8. DOE Cites Stanford University and Two Subcontractors for Worker Safety and

    Energy Savers [EERE]

    Health Violations | Department of Energy Stanford University and Two Subcontractors for Worker Safety and Health Violations DOE Cites Stanford University and Two Subcontractors for Worker Safety and Health Violations April 3, 2009 - 12:00am Addthis The U.S. Department of Energy (DOE) today issued Preliminary Notices of Violation (PNOVs) to three contractors - Stanford University, Pacific Underground Construction, Inc., and Western Allied Mechanical, Inc. - for violations in September 2007 of

  9. Type A Investigation of the Electrical Arc Injury at the Stanford Linear

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerator Complex on October 11, 2004 | Department of Energy of the Electrical Arc Injury at the Stanford Linear Accelerator Complex on October 11, 2004 Type A Investigation of the Electrical Arc Injury at the Stanford Linear Accelerator Complex on October 11, 2004 November 15, 2004 On October 11, 2004, at approximately 11:15 am, a subcontractor electrician working at the Stanford Linear Accelerator Center (SLAC) received serious burn injuries requiring hospitalization due to an electrical

  10. Stanford Precourt Institute for Energy Joins U.S. Department of Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MIT Energy Initiative Program to Advance Women's Leadership in Clean Energy | Department of Energy Stanford Precourt Institute for Energy Joins U.S. Department of Energy and MIT Energy Initiative Program to Advance Women's Leadership in Clean Energy Stanford Precourt Institute for Energy Joins U.S. Department of Energy and MIT Energy Initiative Program to Advance Women's Leadership in Clean Energy December 17, 2015 - 2:55pm Addthis Stanford Precourt Institute for Energy Joins U.S. Department

  11. 2011 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Stanford Linear Accelerator Center Site Office (SLAC SO) (See also Science).

  12. SSRLUO 1995 Executive Committee Members | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource 5 Executive Committee Members Frank G. Bridges Katherine Cantwell (SSRL Liaison) University of California SSRL Dept of Physics PO Box 4349, MS 69 Santa Cruz, CA 95064 Stanford, CA 94309 Ph: 408-459-2893 Ph: 415-926-3191 Fax: 408-459-3043 Fax: 415-926-4100 Steven D. Conradson Alice M. Fischer-Colbrie (Vice-Chair) Los Alamos National Laboratory Hewlett-Packard Laboratories MS D429, MEE-11 Bldg 26M, 3500 Deer Creek Rd Los Alamos, NM 87545 Palo Alto, CA 94304 Ph: 505-667-9584 Ph:

  13. SSRLUO 1997 Executive Committee Members | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource 7 Executive Committee Members Patrick Allen LBNL 1 Cyclotron Rd MS 70A-1150 Berkeley CA 94720 Ph: Fax: E-Mail: "> Suzanne Barrett (SSRL Liaison) SSRL PO Box 4349, MS 99 Stanford CA 94309 Ph: 650-926-3191 Fax: 650-926-3600 E-Mail: "> Alice Fischer-Colbrie (ex officio) Hewlett Packard Bldg 26M, 3500 Deer Creek Rd Palo Alto CA 94304 Ph: 650-857-8879 Fax : 650-813-3279 E-Mail: Jack Johnson Scripps Research Institute Dept of Molecular Biology MB13 10666 N Torry Pines

  14. SSRLUO 2001 Executive Committee Members | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource 1 Executive Committee Members Paul Alivisatos University of California at Berkeley Department of Chemistry Berkeley, CA 94720 Phone: 510-643-7371 Fax: 510-642-6911 E-mail: Cathy Knotts (SSRL Liaison) Stanford Synchrotron Radiation Lightsource, MS 99 2575 Sand Hill Rd. Menlo Park, CA 94025 Phone: 650-926-3191 Fax: 650-926-3600 E-mail: Patrick Allen Lawrence Livermore National Laboratory GT Seaborg Institute for Transuranic Science 7000 East Avenue, MS L-231 Livermore, CA 94551

  15. Experimental Station 11-1 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Beamline 11-1 is a PRT station, available to general users 33%; it is a wiggler side-station beamline dedicated for monochromatic, high-throughput and high-resolution macromolecular crystallography. It is SAD and MAD capable and can be run in a full remote access mode. It is equipped with an Dectris PILATUS 6M detector and a remote access controlled UV-Vis microspectrophotometer. For aditional information about the experimental capabilities, see http://smb.slac.stanford.edu/index.shtml. Status

  16. Mutual passivation of group IV donors and isovalent nitrogen in diluted GaN{sub x}As{sub 1-x} alloys

    SciTech Connect (OSTI)

    Yu, K.M.; Wu, J.; Walukiewicz, W.; Shan, W.; Beeman, J.; Mars, D.E.; Chamberlin, D.R.; Scarpulla, M.A.; Dubon, O.D.; Ridgway, M.C.; Geisz, J.F.

    2003-07-23

    We demonstrate the mutual passivation of electrically active group IV donors and isovalent N atoms in the GaN{sub x}As{sub 1-x} alloy system. This phenomenon occurs through the formation of a donor-nitrogen bond in the nearest neighbor IV{sub Ga}-N{sub As} pairs. In Si doped GaInN{sub 0.017}As{sub 0.983} the electron concentration starts to decrease rapidly at an annealing temperature of 700 C from {approx} 3 x 10{sup 19}cm{sup -3} in the as-grown state to less than 10{sup 16}cm{sup -3} after an annealing at 900 C for 10 s. At the same time annealing of this sample at 950 C increases the gap by about 35 meV, corresponding to a reduction of the concentration of the active N atoms by an amount very close to the total Si concentration. We also show that the formation of Si{sub Ga}-N{sub As} pairs is controlled by the diffusion of Si via Ga vacancies to the nearest N{sub As} site. The general nature of this mutual passivation effect is confirmed by our study of Ge doped GaN{sub x}As{sub 1-x} layers formed by N and Ge co-implantation in GaAs followed by pulsed laser melting.

  17. Method of preparing nitrogen containing semiconductor material

    DOE Patents [OSTI]

    Barber, Greg D.; Kurtz, Sarah R.

    2004-09-07

    A method of combining group III elements with group V elements that incorporates at least nitrogen from a nitrogen halide for use in semiconductors and in particular semiconductors in photovoltaic cells.

  18. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, D.T.; Babcock, W.C.; Edlund, D.J.; Miller, W.K.

    1993-07-06

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  19. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, D.T.; Babcock, W.C.; Edlund, D.J.; Miller, W.K.

    1996-05-14

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas. 5 figs.

  20. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Bend, OR); Miller, Warren K. (Bend, OR)

    1996-01-01

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  1. Nitrogen sorption

    DOE Patents [OSTI]

    Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Bend, OR); Miller, Warren K. (Bend, OR)

    1993-01-01

    Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  2. Scientists Pass Solid Particles Through Rock in DOE-Sponsored Research at Stanford University

    Broader source: Energy.gov [DOE]

    DOE-sponsored research at Stanford University under the direction of Dr. Roland Horne is advancing the application of nanotechnology in determining fluid flow through enhanced geothermal system reservoirs at depth.

  3. DOE-Funded Research at Stanford Sees Results in Reservoir Characterization

    Broader source: Energy.gov [DOE]

    The Stanford Geothermal Program had a noteworthy result this week, having achieved a proof of concept in the use of tiny particles called nanoparticles as tracers to characterize fractured rocks.

  4. M.; /Bern U.; Auty, D.J.; /Alabama U.; Barbeau, P.S.; /Stanford...

    Office of Scientific and Technical Information (OSTI)

    Neutrinoless Double-Beta Decay in 136Xe with EXO-200 Auger, M.; Bern U.; Auty, D.J.; Alabama U.; Barbeau, P.S.; Stanford U., Phys. Dept.; Beauchamp, E.; Laurentian U.;...

  5. Big Machines and Big Science: 80 Years of Accelerators at Stanford

    SciTech Connect (OSTI)

    Loew, Gregory

    2008-12-16

    Longtime SLAC physicist Greg Loew will present a trip through SLAC's origins, highlighting its scientific achievements, and provide a glimpse of the lab's future in 'Big Machines and Big Science: 80 Years of Accelerators at Stanford.'

  6. Bio-Imaging With Liquid-Metal-Jet X-ray Sources | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bio-Imaging With Liquid-Metal-Jet X-ray Sources Wednesday, September 9, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Daniel Larsson, Stanford Program Description...

  7. Stanford Linear Accelerator Center, Order R2-2005-0022, May 18, 2005

    Office of Environmental Management (EM)

    CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD SAN FRANCISCO BAY REGION ORDER No. R2-2005-0022 RESCISSION of: ORDER No. 85-88, WASTE DISCHARGE REQUIREMENTS and ADOPTION of: SITE CLEANUP REQUIREMENTS for: STANFORD UNIVERSITY and the UNITED STATES DEPARTMENT OF ENERGY for the property located at the: STANFORD LINEAR ACCELERATOR CENTER 2575 SAND HILL ROAD MENLO PARK, SAN MATEO COUNTY FINDINGS: The California Regional Water Quality Control Board, San Francisco Bay Region (Water Board) finds that:

  8. Stanford Synchrotron Radiation Light Source (SSRL) | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Stanford Synchrotron Radiation Light Source (SSRL) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Advanced Light Source (ALS) Advanced Photon Source (APS) Linac Coherent Light Source (LCLS) National Synchrotron Light Source II (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal

  9. A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource

    SciTech Connect (OSTI)

    Sokaras, D.; Weng, T.-C.; Nordlund, D.; Velikov, P.; Wenger, D.; Garachtchenko, A.; George, M.; Borzenets, V.; Johnson, B.; Rabedeau, T.; Alonso-Mori, R.; Bergmann, U.

    2013-05-15

    We present a multicrystal Johann-type hard x-ray spectrometer ({approx}5-18 keV) recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The instrument is set at the wiggler beamline 6-2 equipped with two liquid nitrogen cooled monochromators - Si(111) and Si(311) - as well as collimating and focusing optics. The spectrometer consists of seven spherically bent crystal analyzers placed on intersecting vertical Rowland circles of 1 m of diameter. The spectrometer is scanned vertically capturing an extended backscattering Bragg angular range (88 Degree-Sign -74 Degree-Sign ) while maintaining all crystals on the Rowland circle trace. The instrument operates in atmospheric pressure by means of a helium bag and when all the seven crystals are used (100 mm of projected diameter each), has a solid angle of about 0.45% of 4{pi} sr. The typical resolving power is in the order of (E/{Delta}E){approx}10 000. The spectrometer's high detection efficiency combined with the beamline 6-2 characteristics permits routine studies of x-ray emission, high energy resolution fluorescence detected x-ray absorption and resonant inelastic x-ray scattering of very diluted samples as well as implementation of demanding in situ environments.

  10. ARPA-E & Stanford University Explore the Hows and Whys of Energy Use |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy E & Stanford University Explore the Hows and Whys of Energy Use ARPA-E & Stanford University Explore the Hows and Whys of Energy Use May 25, 2011 - 3:45pm Addthis Members of Girl Scout Troop #61373 from Santa Clara, CA create an instructional video for home energy use. | Photo courtesy of Troop Leader Sylvia Kennedy Members of Girl Scout Troop #61373 from Santa Clara, CA create an instructional video for home energy use. | Photo courtesy of Troop Leader Sylvia

  11. NREL and Stanford Team up on Peel-and-Stick Solar Cells - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and Stanford Team up on Peel-and-Stick Solar Cells Devices could charge battery-powered products in the future January 10, 2013 It may be possible soon to charge cell phones, change the tint on windows, or power small toys with peel-and-stick versions of solar cells, thanks to a partnership between Stanford University and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). A scientific paper, "Peel and Stick: Fabricating Thin Film Solar Cells on Universal

  12. WC_1996_001_CLASS_WAIVER_FOR_LELAND_STANFORD_JUNIOR_UNIVERSI.pdf |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 6_001_CLASS_WAIVER_FOR_LELAND_STANFORD_JUNIOR_UNIVERSI.pdf More Documents & Publications WC_1993_002_CRADA_CLASS_WAIVER_SOUTHERN_UNIVERSITY_RESEARCH_.pdf WC_1993_008_CLASS_WAIVER_ROCKETDYNE_DIVISION_ROCKWELL_INTERN.pdf WC_1990_012_CLASS_WAIVER_of_Patent_Rights_in_Inventions_Made

  13. Tutorial: The Basics of SAXS Data Analysis | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource Tutorial: The Basics of SAXS Data Analysis Thursday, November 17, 2011 - 1:00pm SLAC, Redtail Hawk Conference Room 108A Dr. Alexander V. Shkumatov, Biological Small Angle Scattering Group, EMBL Hamburg

  14. 33rd International Symposium on Combustion Hottel Lecture Applications of Quantitative Laser Sensors to Kinetics, Propulsion and Practical Combustion Systems Ronald K. Hanson Department of Mechanical Engineering Stanford University, Stanford CA, 94305

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Combustion Science Stanford University Contribution R. K. Hanson and D. F. Davidson Department of Mechanical Engineering Stanford University 1 * Butanol Studies * Ignition Delay Times * Species Time-Histories * Reaction Rate Constants * Methyl Ester Studies * Ignition Delay Times Long-Term Objectives * Generate high-quality fundamental kinetics database using shock tube/laser absorption methods Leading to: * Improved detailed mechanisms for next-generation fuels First Targets: * Isomers of

  15. Type B Accident Investigation of the January 28, 2003, Fall and Injury at the Stanford Linear Accelerator Center

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Accident Investigation Board appointed by John S. Muhlestein, Director, Stanford Site Office (DOE/SC), U.S. Department of Energy.

  16. Stanford Synchrotron Radiation Laboratory activity report for 1986

    SciTech Connect (OSTI)

    Cantwell, K.

    1987-12-31

    1986 was another year of major advances for SSRL as the ultimate capabilities of PEP as a synchrotron radiation source became more apparent and a second PEP beam line was initiated, while effective development and utilization of SPEAR proceeded. Given these various PEP developments, SSRL abandoned its plans for a separate diffraction limited ring, as they abandoned their plans for a 6--7 GeV ring of the APS type last year. It has become increasingly apparent that SSRL should concentrate on developing SPEAR and PEP as synchrotron radiation sources. Consequently, initial planning for a 3 GeV booster synchrotron injector for SPEAR was performed in 1986, with a proposal to the Department of Energy resulting. As described in Chapter 2, the New Rings Group and the Machine Physics Group were combined into one Accelerator Physics Group. This group is focusing mainly on the improvement of SPEAR`s operating conditions and on planning for the conversion of PEP into a fourth generation x-ray source. Considerable emphasis is also being given to the training of accelerator physics graduate students. At the same time, several improvements of SSRL`s existing facilities were made. These are described in Chapter 3. Chapter 4 describes new SSRL beam lines being commissioned. Chapter 5 discusses SSRL`s present construction projects. Chapter 6 discusses a number of projects presently underway in the engineering division. Chapter 7 describes SSRL`s advisory panels while Chapter 8 discusses SSRL`s overall organization. Chapter 9 describes the experimental progress reports.

  17. In situ X-ray Characterization of Energy Storage Materials | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource X-ray Characterization of Energy Storage Materials Tuesday, July 9, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Johanna Nelson, Stanford Postdoctoral Scholar, SSRL MSD Hard X-ray Department A key factor in the global move towards clean, renewable energy is the electrification of the automobile. Current battery technology limits EV (electric vehicles) to a short travel range, slow recharge, and costly price tag. Li-ion batteries promise the high

  18. SSRLUO 2013-2014 Executive Committee Members | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource 2013-2014 Executive Committee Members Charter | Committee Meetings | SSRLUO Activism Jordi Cabana University of Illinois at Chicago, IL 60607 Jordi Cabana recently joined the University of Illinois in 2013. Prior to that time, Jordi was a Research Scientist at LBNL. He moved to the US in 2005 to join Prof. Clare P. Grey's group at the State University of New York at Stony Brook as a Postdoctoral Research Associate, after completing his Ph.D. in Materials Science at the

  19. Reservoir Modeling Working Group Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir Modeling Working Group Meeting Reservoir Modeling Working Group Meeting Reservoir Modeling working group meeting presentation on May 10, 2012 at the 2012 Peer Review Meeting. PDF icon gtp_2012peerreview_reservoir_modeling_wg.pdf More Documents & Publications Welcome to the Geothermal Technologies Program 2012 Annual Peer Review Integration of Noise and Coda Correlation Data into Kinematic and Waveform Inversions Stanford Geothermal Workshop 2012 Annual Meeting

  20. Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992

    SciTech Connect (OSTI)

    Cantwell, K.; St. Pierre, M.

    1992-12-31

    SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

  1. Nitrogen dioxide detection

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM); Agnew, Stephen F. (Los Alamos, NM); Christensen, William H. (Buena Park, CA)

    1993-01-01

    Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

  2. Reversible CO-binding to the Active Site of Nitrogenase | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Reversible CO-binding to the Active Site of Nitrogenase Tuesday, March 31, 2015 All living organisms depend on the availability of nitrogen for incorporation into the basic biological building blocks such as amino acids and DNA. Globally the largest reservoir for nitrogen is the atmosphere, with an N2 content of roughly 78%. However, as a highly unreactive gas, most organisms are unable to directly utilize dinitrogen due to the severe energy barrier required

  3. Appointments Announced for NREL Advisory Group - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appointments Announced for NREL Advisory Group April 24, 2003 Golden, CO. - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has recently appointed two new members to its independent panel of advisers. Named to the NREL National Advisory Council were Dr. James Sweeney, professor of Management Science and Engineering at Stanford University, and Bill Baxter, director of the Tennessee Valley Authority (TVA). "NREL is delighted to have these distinguished experts join

  4. ARM - Measurement - Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsNitrogen ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Nitrogen All gaseous compounds of nitrogen including N2, N2O, and NOx. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  5. ARM - Oxides of Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxides of Nitrogen Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Oxides of Nitrogen Oxides of nitrogen, chlorofluorocarbons (CFCs), and ozone have a lesser effect on the atmosphere than carbon dioxide and methane, but as you will see they are important contributors to the greenhouse

  6. High-nitrogen explosives

    SciTech Connect (OSTI)

    Naud, D.; Hiskey, M. A.; Kramer, J. F.; Bishop, R. L.; Harry, H. H.; Son, S. F.; Sullivan, G. K.

    2002-01-01

    The syntheses and characterization of various tetrazine and furazan compounds offer a different approach to explosives development. Traditional explosives - such as TNT or RDX - rely on the oxidation of the carbon and hydrogen atoms by the oxygen carrying nitro group to produce the explosive energy. High-nitrogen compounds rely instead on large positive heats of formation for that energy. Some of these high-nitrogen compounds have been shown to be less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine (BDT), several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. The compound, 3,3{prime}-azobis(6-amino-s-tetrazine) or DAAT, detonates as a half inch rate stick despite having no oxygen in the molecule. Using perfluoroacetic acid, DAAT can be oxidized to give mixtures of N-oxide isomers (DAAT03.5) with an average oxygen content of about 3.5. This energetic mixture burns at extremely high rates and with low dependency on pressure. Another tetrazine compound of interest is 3,6-diguanidino-s-tetrazine(DGT) and its dinitrate and diperchlorate salts. DGT is easily synthesized by reacting BDT with guanidine in methanol. Using Caro's acid, DGT can be further oxidized to give 3,6-diguanidino-s-tetrazine-1,4-di-N-oxide (DGT-DO). Like DGT, the di-N-oxide can react with nitric acid or perchloric acid to give the dinitrate and the diperchlorate salts. The compounds, 4,4{prime}-diamino-3,3{prime}-azoxyfurazan (DAAF) and 4,4{prime}-diamino-3,3{prime}-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB - the standard of insensitive high explosives. The thermal stability of DAAzF is equal to that of hexanitrostilbene (HNS), yet it has a greater CJ pressure and detonation velocity. In an effort to reduce the critical diameter of TATB without sacrificing its insensitivity, we have studied the explosive performances of TATB mixed with DAAzlF (X-0561) and TATB mixed with DAAF (X-0563).

  7. Lead, Uranium, and Nickel Compound Data from the XAFS Library at the Stanford Synchrotron Radiation Laboratory (SSRL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The x-ray absorption fine structure spectroscopy (XAFS) library at the Stanford Synchrotron Radiation Laboratory is intended to be a reference library of XAFS spectra for various lead, uranium, and nickel compounds. Compounds are organized by central atom and all spectra are transmission data. Molecular Environmental Science (MES) research at SSRL focuses on the fundamental interfacial, molecular- and nano-scale processes that control contaminant and nutrient cycling in the biosphere with the goal of elucidating global elemental cycles and anthropogenic influences on the environment. Key areas of investigation include the: (a) Structural chemistry of water and dissolved solutes, (b) Structural chemistry and reactivity of complex natural environmental materials with respect to heavy metals and metalloids (biominerals, Fe- and Mn-oxides, biofilms, and organic materials), (c) Reactions at environmental interfaces, including sorption, precipitation and dissolution processes that affect the bioavailability of heavy metals and other contaminants, and (d) Microbial transformations of metals and anions. SSRL-based MES research utilizes synchrotron-based x-ray absorption spectroscopy (XAS), x-ray diffraction (XRD), small-angle x-ray scattering (SAXS), x-ray standing wave (XSW) spectroscopy, and photoemission spectroscopy (PES) because of their unique capabilities to probe structure/composition relationships in complex, non-crystalline, and dilute materials. [copied from http://www-ssrl.slac.stanford.edu/mes/index.html

  8. Final Environmental Assessment for the construction and operation of an office building at the Stanford Linear Accelerator Center. Part 2

    SciTech Connect (OSTI)

    1995-08-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1107, analyzing the environmental effects relating to the construction and operation of an office building at the Stanford Linear Accelerator Center (SLAC). SLAC is a national facility operated by Stanford University, California, under contract with DOE. The center is dedicated to research in elementary particle physics and in those fields that make use of its synchrotron facilities. The objective for the construction and operation of an office building is to provide adequate office space for existing SLAC Waste Management (WM) personnel, so as to centralize WM personnel and to make WM operations more efficient and effective. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  9. Aqueous phase removal of nitrogen from nitrogen compounds

    DOE Patents [OSTI]

    Fassbender, Alex G. (West Richland, WA)

    1993-01-01

    A method is disclosed for denitrification of compounds containing nitrogen present in aqueous waste streams. The method comprises the steps of (1) identifying the types of nitrogen compounds present in a waste stream, (2) determining the concentrations of nitrogen compounds, (3) balancing oxidized and reduced form of nitrogen by adding a reactant, and (4) heating the mixture to a predetermined reaction temperature from about 300.degree. C. to about 600.degree. C., thereby resulting in less harmful nitrogen and oxygen gas, hydroxides, alcohols, and hydrocarbons.

  10. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  11. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  12. Nitrogen-doped Graphene and Its Electrochemical Applications

    SciTech Connect (OSTI)

    Shao, Yuyan; Zhang, Sheng; Engelhard, Mark H.; Li, Guosheng; Shao, Guocheng; Wang, Yong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-06-04

    Nitrogen-doped graphene (N-graphene) is obtained by exposing graphene to nitrogen plasma. N-graphene exhibits much higher electrocatalytic activity toward oxygen reduction and H2O2 reduction than graphene, and much higher durability and selectivity than the widely-used expensive Pt. The excellent electrochemical performance of N-graphene is attributed to nitrogen functional groups and the specific properties of graphene. This indicates that N-graphene is promising for applications in electrochemical energy devices (fuel cells, metal-air batteries) and biosensors.

  13. Group X

    SciTech Connect (OSTI)

    Fields, Susannah

    2007-08-16

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  14. Nitrogen fixation apparatus

    DOE Patents [OSTI]

    Chen, Hao-Lin

    1984-01-01

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

  15. About the Stanford Synchrotron Radiation Lightsource | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    specific data acquisition and analysis techniques as well as practice with sharing research findings through talks and poster presentations. SSRL research results in...

  16. Welcome to Stanford Synchrotron Radiation Lightsource | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRL Science in SLAC Today Q&A: Biologist Describes Milestone toward a Universal Flu Vaccine SSRL Upgrades, Adds Equipment for Next Round of Experiments X-ray Microscope Reveals...

  17. STANFORD SYNCHROTRON RADIATION LIGHTSOURCE The Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the very nature of bacteria and viruses, exposed how genetic mutations may cause diabetes, and mapped the structures of proteins for use in biology and medicine. Opportunities...

  18. Galaxy groups

    SciTech Connect (OSTI)

    Brent Tully, R.

    2015-02-01

    Galaxy groups can be characterized by the radius of decoupling from cosmic expansion, the radius of the caustic of second turnaround, and the velocity dispersion of galaxies within this latter radius. These parameters can be a challenge to measure, especially for small groups with few members. In this study, results are gathered pertaining to particularly well-studied groups over four decades in group mass. Scaling relations anticipated from theory are demonstrated and coefficients of the relationships are specified. There is an update of the relationship between light and mass for groups, confirming that groups with mass of a few times 10{sup 12}M{sub ?} are the most lit up while groups with more and less mass are darker. It is demonstrated that there is an interesting one-to-one correlation between the number of dwarf satellites in a group and the group mass. There is the suggestion that small variations in the slope of the luminosity function in groups are caused by the degree of depletion of intermediate luminosity systems rather than variations in the number per unit mass of dwarfs. Finally, returning to the characteristic radii of groups, the ratio of first to second turnaround depends on the dark matter and dark energy content of the universe and a crude estimate can be made from the current observations of ?{sub matter}?0.15 in a flat topology, with a 68% probability of being less than 0.44.

  19. Eighth international congress on nitrogen fixation

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  20. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This limited understanding of the molecular mechanism and the scope of drug design for these enzymes. A team of researchers from SSRL and the University of Iowa used SSRL's Beam ...

  1. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supporting the User Community Register | Submit Proposals | Request Time | Check-In Plus Sign Overview SSRL experimental facilities are scheduled and managed centrally to...

  2. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to your user account. Specialty gases cannot be returned for credit to your account. Gas: Balance: Grade: Analyzed? Yes No No. Cylinders: Dewars: SSRL has a small supply of...

  3. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water-Rock Reactions Produce Hydrogen Gas at Temperatures within the Limits of Life June 2013 SSRL Science Summary by Manuel Gnida, SLAC Office of Communications and Lisa E....

  4. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystal Structure and Functional Analysis Identify Evolutionary Secret of SerRS in Vascular Development July 2013 SSRL Science Summary by Manuel Gnida, SLAC Office of...

  5. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Basis for Iron Piracy by Pathogenic Neisseria January 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure (Courtesy of the Buchanan Lab...

  6. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Navigating Fermi Arcs SSRL Science Summary - November 2012 Figure In solids, Fermi surfaces are the boundaries between occupied and unoccupied electron levels, as defined in...

  7. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    able to follow a single nanoscale catalytic particle, a bulk iron oxide promoted with titanium, zinc and potassium oxides, during activation and under Fischer-Tropsch reaction...

  8. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Long-sought Structure of α-Catenin Defines Its Functions for Cell-cell Interactions June 2013 SSRL Science Summary by Manuel Gnida, SLAC Office of Communications Figure Full-length α-catenin crystal structure reveals its dimeric asymmetric arrangement. The individual domains are colored individually (dimerization domain in yellow, vinculin binding domain in green, M-fragment in cyan, and the F-actin binding domain in magenta). A: View onto the vinculin binding domains. B: View onto the

  9. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Lassa Virus Nucleoprotein Appears to Exhibit Conformational Control of Genome Binding January 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure Surface representation of the Lassa virus nucleoprotein showing the RNA bound in between the two sub-domains, highlighting, in particular, a deep pocket that could be a prime target for anti-virals. (Courtesy of the Ollmann Saphire lab, The Scripps Research Institute.) Lassa virus is endemic in Western Africa, and is

  10. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesoscale Phase Distribution in Li-ion Battery Electrode Materials May 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure Figure 1a) Chemical phase map obtained by linear combination fitting of XANES data at each pixel acquired with FF TXM at Beam Line 6-2 for a particle with nominal composition of Li0.74FePO4. b) STEM image of a fully delithiated sample. Figure adapted from Boesenberg et al. 2013 Li-ion batteries are key devices in the effort to develop efficient

  11. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 XRD Rapid Access Application Form A block of 6 shifts of beam time will be set aside periodically for rapid access XRD on BL11-3. Both new and current users are eligible to apply. Allocation of time will be based on a one-page scientific proposal, which will be reviewed by the MEIS subpanel of the SSRL Proposal Review Panel. Rapid access proposals should be submitted by the first of each month, and users will be notified ~2 weeks prior to their allocated beam time. New users scheduled for beam

  12. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Excel When you see a security warning, click the "options" button and enable the macros. Step 2: Fill out the Excel spreadsheet Complete Cells B2 to B19 with general...

  13. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as a dissociative anesthetic acting as a noncompetitive antagonist on the N-methyl-D-aspartate (NMDA) receptor, it is also a potent inhibitor of neuronal nAChRs, and the sites of...

  14. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it can cause rare metabolic diseases such as Tay-Sachs and Gaucher, which often cause death in affected children by their early teens. Three years ago, researchers discovered...

  15. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LASER USE yes no If yes, please fill out all of the fields in this section. ANSI classification Wavelength Total Power Laser hazard controls you will apply. HAZARDOUS...

  16. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzyme Created in Test Tube Promises Biocatalysts for a Range of Uses December 2012 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure larger image In...

  17. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preparation and data analysis. This will help new users efficiently utilize their beam time, and prepare them for successful future experiments. Spokesperson: Institution:...

  18. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on sample preparation and data analysis to help new users efficiently utilize their beam time and prepare them for successful future experiments. Spokesperson: Institution: Email:...

  19. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    much is yet to be determined regarding their fate, transport, and toxicity in the environment, including the implications of the potential storage of these ENPs or their...

  20. Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the next steps that you propose to pursue under this proposal (1-2 paragraphs) 4. COLLABORATORS: If different from the original proposal, list current collaborators, including...

  1. Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    under this proposal. Please cover safety concerns -if any. (1-2 paragraphs) 4. COLLABORATORS: If different from the original proposal, list current collaborators, including...

  2. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoparticulate FeS as an Effective Redox Buffer to Prevent Uraninite (UO2) Oxidation August 2013 SSRL Science Summary by Manuel Gnida Figure A major concern in the nuclear age is...

  3. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Structure and Dynamics of Eukaryotic Glutaminyl-tRNA Synthetase May 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure Full-length Gln4 shown...

  4. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantification of the Mercury Adsorption Mechanism on Brominated Activated Carbon August 2013 SSRL Science Summary by Manuel Gnida Figure Emissions from coal-fired power plants are...

  5. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SIRAS) method using x-ray diffraction data collected at SSRL's Beam Line 9-2 and NE-CAT at the Advanced Photon Source. Surprisingly, the non-toxic NTNHA exhibited a...

  6. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study had three components: low-temperature measurements that revealed three distinct ground states at different dopings; temperature-dependence measurements that revealed that...

  7. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    white due to high attenuation of lead-uranyl acetate, with bone tissue appearing grey and voids black. Scale bar: A,C,E 50 m; B,D,F 5 m. Sample created in the...

  8. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cone center is the "Dirac point"; which is equivalent to the "Fermi level" in graphene. Grey indicates electrons. If there are electrons (shaded grey) above the Fermi level, the...

  9. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the roughness correlation function. Grazing Incidence X-ray Scattering and Diffraction on Thin Films Grazing incidence X-ray scattering or diffraction (GIXS) refers to a...

  10. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    while slightly nonstoichiometric material gives rises to magnetic order. Extended X-ray absorption fine structure (EXAFS) analysis performed on Beam Line 10-2 provides part...

  11. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the design principles of natural functional sites. The team targeted a surface on the influenza hemagglutinin protein that enables flu viruses to attach to and invade cells lining...

  12. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PDF Version Contacts Corwin Booth, Lawrence Berkeley National Laboratory and Tsu-Chien Weng, SSRL 2575 Sand Hill Road, MS: 99, Menlo Park, California, 94025, USA Tel:...

  13. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of photon science capabilities available at the lab to investigate a proposal that adsorption and desorption of a molecule to a surface - both fundamental processes of...

  14. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxygenic photosynthesis approximately 2.3 to 2.4 billion years ago revolutionized life on Earth. For most modern-day terrestrial life, oxygen has become indispensable. At the heart...

  15. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as well as at the ALS and NSLS, reveal a complicated association between bromine and organic carbon in both sea water and soil. One study measured absolute organobromine...

  16. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systematic Expansion of Porous Crystals to Include Large Molecules February 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure Recently, scientists...

  17. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of Human Argonaute2: A Programmable Ribonuclease July 2013 SSRL Science Summary by Manuel Gnida, SLAC Office of Communications Figure RNA degradation is an important...

  18. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coming to SSRL) before beam time. Spokesperson: Institution: Email: Degree: Work Phone: Fax: Principal Investigator: Email: Work Phone: Collaborators: Institution: (if...

  19. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPAIN 2019-10-30 IDAHO NATIONAL LAB-BATTELLE ENERGY ALLIA 2018-05-13 IFIC - INST FISICA CORPUSCULAR SPAIN 2017-12-04 ILL - INST LAUE-LANGEVIN GRENOBLE FRANCE 2018-05-07 IMCB,...

  20. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    melanoma, and degenerative diseases like multiple sclerosis, Alzheimer's and Type 2 diabetes. Understanding of how Wnt proteins bind and activate Frizzled receptors is important...

  1. Stanford Geothermal Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laura Garchar, Fellow Geothermal Technologies Office March 12, 2015 Courtesy GRC Courtesy NREL SOURCE: Laura Garchar SOURCE: Enel Green Power Nofth America SOURCE: Akutan Fumeroles, GRC SOURCE: TAS Energy SOURCE: AltaRock Newberry EGS, E.Metcalfe SOURCE: Old Faithful Geyser, Laura Garchar To accelerate the development and deployment of clean, domestic geothermal power that will promote a stronger, more productive economy; support a cleaner environment; and improve energy security. Office Mission

  2. Stanford Geothermal Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Timothy Reinhardt Acting Program Manager Systems Analysis and Low Temperature (SALT) Geothermal Technologies Office Geothermal Vision Study May 11th, 2015 Courtesy GRC Courtesy E Metcalfe Courtesy T Schulteis Enel Green Power North America Atlas Geosciences Courtesay GRC courtesy Laura Garchar 2 Information Quality Act IQA Compliance The Office of Management and Budget's "Final Information Quality Bulletin" provides guidelines for properly managing peer review at Federal agencies in

  3. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stroke: hemorrhagic, caused by a broken artery or vein leaking blood into the brain tissue, and ischemic, in which a blockage in a blood vessel starves part of the brain of oxygen. ...

  4. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012 Figure A single reconstructed slice and a volume rendering of the tomography sequence. Energy storage materials, such as batteries, are of increasing importance in the...

  5. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRL Science Highlights Archive SSRL Beam Lines Contact Aaron Lindenberg, PULSESSRLStanford University 2575 Sand Hill Road, MS: 99, Menlo Park, California, 94025, USA Tel:...

  6. Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate

    DOE Patents [OSTI]

    Liu, David K. (San Pablo, CA); Chang, Shih-Ger (El Cerrito, CA)

    1989-01-01

    A method of removing nitrogen monoxide from a nitrogen monoxide-containing gas, which method comprises: (a) contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate of the formula: ##STR1## wherein the water-soluble organic compound is selected from compounds of the formula: ##STR2## wherein: R is selected from hydrogen or an organic moiety having at least one polar functional group; Z is selected from oxygen, sulfur, or --N--A wherein N is nitrogen and A is hydrogen or lower alkyl having from one to four carbon atoms; and M is selected from hydrogen, sodium or potassium; and n is 1 or 2, in a contacting zone for a time and at a temperature effective to reduce the nitrogen monoxide. These mixtures are useful to provide an unexpensive method of removing NO from gases, thus reducing atmospheric pollution from flue gases.

  7. The Role of Research Universities in Helping Solve our Energy Challenges: A Case Study at Stanford and SLAC (2011 EFRC Summit)

    ScienceCinema (OSTI)

    Hennessey, John (President, Stanford University)

    2012-03-14

    The first speaker in the 2011 EFRC Summit session titled "Leading Perspectives in Energy Research" was John Hennessey, President of Stanford University. He discussed the important role that the academic world plays as a partner in innovative energy research by presenting a case study involving Stanford and SLAC. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  8. Research Groups - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Groups Research Group Homepages: Nuclear Theory Group Dr. Sherry Yennello's Research Group Dr. Dan Melconian's Research Group Dr. Cody Folden's Group...

  9. Nitrogen fixation method and apparatus

    DOE Patents [OSTI]

    Chen, H.L.

    1983-08-16

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O[sub 2]/cm promotes the formation of vibrationally excited N[sub 2]. Atomic oxygen interacts with vibrationally excited N[sub 2] at a much quicker rate than unexcited N[sub 2], greatly improving the rate at which NO is formed. 1 fig.

  10. Nitrogen fixation method and apparatus

    DOE Patents [OSTI]

    Chen, Hao-Lin

    1983-01-01

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

  11. TEC Working Group Topic Groups Archives Consolidated Grant Topic Group |

    Office of Environmental Management (EM)

    Department of Energy Consolidated Grant Topic Group TEC Working Group Topic Groups Archives Consolidated Grant Topic Group The Consolidated Grant Topic Group arose from recommendations provided by the TEC and other external parties to the DOE Senior Executive Transportation Forum in July 1998. It was proposed that the consolidation of multiple funding streams from numerous DOE sources into a single grant would provide a more equitable and efficient means of assistance to States and Tribes

  12. Oil recovery by nitrogen flooding. Final report

    SciTech Connect (OSTI)

    Ronde, H.; Hagoort, J.

    1992-03-01

    The general objective of the project is the Establishment of technical and economic design criteria and evaluation tools for oil and condensate recovery by Nitrogen Injection. The main objective has been divided into the following specific objectives: Determination of the effect of oil composition on the oil recovery; Investigation of the pros and cons of slim-tube experiments as a tool for the design and evaluation of nitrogen flooding; Measurement and calculation of the minimum miscibility pressures (MMP) for nitrogen flooding.

  13. The Nitrogen-Nitride Anode.

    SciTech Connect (OSTI)

    Delnick, Frank M.

    2014-10-01

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  14. A high resolution and large solid angle x-ray Raman spectroscopy end-station at the Stanford Synchrotron Radiation Lightsource

    SciTech Connect (OSTI)

    Sokaras, D.; Nordlund, D.; Weng, T.-C.; Velikov, P.; Wenger, D.; Garachtchenko, A.; George, M.; Borzenets, V.; Johnson, B.; Rabedeau, T.; Mori, R. Alonso; Bergmann, U.; Qian, Q.

    2012-04-15

    We present a new x-ray Raman spectroscopy end-station recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The end-station is located at wiggler beamline 6-2 equipped with two monochromators-Si(111) and Si(311) as well as collimating and focusing optics. It consists of two multi-crystal Johann type spectrometers arranged on intersecting Rowland circles of 1 m diameter. The first one, positioned at the forward scattering angles (low-q), consists of 40 spherically bent and diced Si(110) crystals with 100 mm diameters providing about 1.9% of 4{pi} sr solid angle of detection. When operated in the (440) order in combination with the Si (311) monochromator, an overall energy resolution of 270 meV is obtained at 6462.20 eV. The second spectrometer, consisting of 14 spherically bent Si(110) crystal analyzers (not diced), is positioned at the backward scattering angles (high-q) enabling the study of non-dipole transitions. The solid angle of this spectrometer is about 0.9% of 4{pi} sr, with a combined energy resolution of 600 meV using the Si (311) monochromator. These features exceed the specifications of currently existing relevant instrumentation, opening new opportunities for the routine application of this photon-in/photon-out hard x-ray technique to emerging research in multidisciplinary scientific fields, such as energy-related sciences, material sciences, physical chemistry, etc.

  15. Eighth international congress on nitrogen fixation. Final program

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  16. ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Nitrogen Control in Ladle and Casting Operations ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting Operations PDF icon castingops.pdf More Documents &...

  17. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOE Patents [OSTI]

    Coruzzi, Gloria M. (New York, NY); Brears, Timothy (Durham, NC)

    1999-01-01

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  18. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOE Patents [OSTI]

    Coruzzi, Gloria M. (New York, NY); Brears, Timothy (Durham, NC)

    2000-01-01

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  19. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOE Patents [OSTI]

    Coruzzi, Gloria M.; Brears, Timothy

    2005-03-08

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  20. Microfabricated nitrogen-phosphorus detector : chemically mediated

    Office of Scientific and Technical Information (OSTI)

    thermionic emission. (Technical Report) | SciTech Connect Technical Report: Microfabricated nitrogen-phosphorus detector : chemically mediated thermionic emission. Citation Details In-Document Search Title: Microfabricated nitrogen-phosphorus detector : chemically mediated thermionic emission. Authors: Simonson, Robert Joseph ; Hess, Ryan Falcone ; Moorman, Matthew Wallace ; Boyle, Timothy J. Publication Date: 2012-09-01 OSTI Identifier: 1055647 Report Number(s): SAND2012-7778 DOE Contract

  1. Preparation of nitrogen-doped carbon tubes

    DOE Patents [OSTI]

    Chung, Hoon Taek; Zelenay, Piotr

    2015-12-22

    A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.

  2. Plant nitrogen regulatory P-PII genes

    DOE Patents [OSTI]

    Coruzzi, Gloria M. (New York, NY); Lam, Hon-Ming (Hong Kong, HK); Hsieh, Ming-Hsiun (Woodside, NY)

    2001-01-01

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the

  3. JLF User Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLF User Group NIF and Jupiter User Group Meeting 2016 The 2016 NIF User Group Meeting will take place the first week of February. The exact dates are Sunday evening, January 31th,...

  4. History of the Stanford Synchrotron Radiation Lightsource | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    government labs and foreign institutions in numerous disciplines including chemistry, biology, medicine, environmental science, materials science, and engineering as well as...

  5. TEC Working Group Topic Groups Manual Review

    Broader source: Energy.gov [DOE]

    This group is responsible for the update of DOE Manual 460.2-1, Radioactive Material Transportation Practices Manual.  This manual was issued on September 23, 2002, and establishes a set of...

  6. Women's Employee Resource Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group Women's Employee Resource Group The Women's Employee Resource Group encourages women's contributions, professional development opportunities, and shared support across the Laboratory. Contact Us Office of Diversity and Strategic Staffing (505) 667-2602 Email Computational scientist Hai Ah Nam, a member of the Women's Employee Resource Group Computational scientist Hai Ah Nam, a member of the Women's Employee Resource Group, works on the Laboratory's new Trinity supercomputing system.

  7. JLab Users Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Users Group Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? JLab Users Group User Liaison Home Users Group Program Advisory Committee User/Researcher Information print version UG Resources Background & Purpose Users Group Wiki By Laws Board of Directors Board of Directors Minutes Directory of Members Events At-A-Glance Member Institutions News Users Group Mailing

  8. Moltech Power Systems Group MPS Group | Open Energy Information

    Open Energy Info (EERE)

    Moltech Power Systems Group MPS Group Jump to: navigation, search Name: Moltech Power Systems Group (MPS Group) Place: China Product: China-based subsidiary of Shanghai Huayi Group...

  9. Hanergy Holdings Group Company Ltd formerly Farsighted Group...

    Open Energy Info (EERE)

    Hanergy Holdings Group Company Ltd formerly Farsighted Group aka Huarui Group Jump to: navigation, search Name: Hanergy Holdings Group Company Ltd (formerly Farsighted Group, aka...

  10. MiniBooNE Pion Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pion Group

  11. Team | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    geochemistry, redox processes, and synchrotron techniques. noemie.janot@gmail.com Morris Jones. (SLAC): Postdoctoral researcher. Expertise in biogeochemistry, electronchemistry,...

  12. SSRL- Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W.E. Spicer Young Investigator Award William E. Spicer (1929-2004) was an esteemed member of the international scientific community as a teacher and researcher in electrical...

  13. Theses | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Lisa M. B. Kirk, "In Situ Microbial Reduction of ... and Solid Oxide Fuel Cell Anodes", University of ... Heterojunction Solar Cells", University of ...

  14. Nitrogen doping study in ingot niobium cavities

    SciTech Connect (OSTI)

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter; Myneni, Ganapati Rao; Makita, Junki

    2015-09-01

    Thermal diffusion of nitrogen in niobium superconducting radio frequency cavities at temperature ~800 C has resulted in the increase in quality factor with a low-field Q-rise extending to Bp > 90 mT. However, the maximum accelerating gradient of these doped cavities often deteriorates below the values achieved by standard treatments prior to doping. Here, we present the results of the measurements on ingot niobium cavities doped with nitrogen at 800 C. The rf measurements were carried out after the successive electropolishing to remove small amount of material from the inner surface layer. The result showed higher breakdown field with lower quality factor as material removal increases.

  15. Running Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2016-02-01 08:06:40

  16. Pending Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pending Jobs by Group Pending Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2016-02-01 08:07:15

  17. Running Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 13:59:48...

  18. Pending Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pending Jobs by Group Pending Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 14:00:14...

  19. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the August meeting, the Focus Group Secretary continues to work on deleting the language proposed by the QA Sub-group that would have divided the section on methods into one...

  20. TEC Communications Topic Group

    Office of Environmental Management (EM)

    procurement - Routing criteriaemergency preparedness Tribal Issues Topic Group * TEPP Navajo Nation (Tom Clawson) - 1404 - Needs Assessment * Identified strengths and...

  1. Interagency Sustainability Working Group

    Broader source: Energy.gov [DOE]

    The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

  2. Nitrogen-doped and simultaneously reduced graphene oxide with superior dispersion as electrocatalysts for oxygen reduction reaction

    SciTech Connect (OSTI)

    Lee, Cheol-Ho; Yun, Jin-Mun; Lee, Sungho; Jo, Seong Mu; Yoo, Sung Jong; Cho, Eun Ae; Khil, Myung-Seob; Joh, Han-Ik

    2014-11-15

    Nitrogen doped graphene oxide (Nr-GO) with properties suitable for electrocatalysts is easily synthesized using phenylhydrazine as a reductant at relatively low temperature. The reducing agent removes various oxygen functional groups bonded to graphene oxide and simultaneously dope the nitrogen atoms bonded with phenyl group all over the basal planes and edge sites of the graphene. The Nr-GO exhibits remarkable electrocatalytic activities for oxygen reduction reaction compared to the commercial carbon black and graphene oxide due to the electronic modification of the graphene structure. In addition, Nr-GO shows excellent dispersibility in various solvent due to the dopant molecules.

  3. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, MY); Watkins, Ronnie Wade (Cypress, TX)

    2010-11-09

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  4. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, ML); Watkins, Ronnie Wade (Cypress, TX)

    2012-07-31

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  5. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizesmore » the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.« less

  6. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Core-Hole Localization in Molecular Nitrogen Probing Core-Hole Localization in Molecular Nitrogen Print Wednesday, 25 February 2009 00:00 The behavior of the core hole...

  7. Liquid absorbent solutions for separating nitrogen from natural gas

    DOE Patents [OSTI]

    Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Redmond, OR); Lyon, David K. (Bend, OR); Miller, Warren K. (Bend, OR)

    2000-01-01

    Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  8. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine ...

  9. Electrochemical process for the preparation of nitrogen fertilizers

    DOE Patents [OSTI]

    Aulich, Ted R.; Olson, Edwin S.; Jiang, Junhua

    2013-03-19

    The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be solid.

  10. Process for separating nitrogen from methane using microchannel process

    Office of Scientific and Technical Information (OSTI)

    technology (Patent) | SciTech Connect Process for separating nitrogen from methane using microchannel process technology Citation Details In-Document Search Title: Process for separating nitrogen from methane using microchannel process technology The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator

  11. TEC Working Group Topic Groups Routing Key Documents | Department...

    Office of Environmental Management (EM)

    Key Documents TEC Working Group Topic Groups Routing Key Documents KEY DOCUMENTS PDF icon Proposed Task Plan - Routing Topic Group More Documents & Publications TEC Working Group...

  12. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:09 PM on December 17, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Taffy Almeida, Joe Archuleta, Jeff Cheadle, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Karl Pool, Chris Sutton, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the

  13. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2015 The meeting was called to order by Cliff Watkins, HASQARD Focus Group Secretary at 2:07 PM on May 26, 2015 in Conference Room 328 at 2420 Stevens. Those attending were: Jonathan Sanwald (Mission Support Alliance (MSA), Focus Group Chair), Cliff Watkins (Corporate Allocation Services, DOE-RL Support Contractor, Focus Group Secretary), Taffy Almeida (Pacific Northwest National Laboratory (PNNL)), Glen Clark (Washington River Protection Solution (WRPS)), Fred Dunhour (DOE-ORP), Scot

  14. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22, 2015 The meeting was called to order by Cliff Watkins, HASQARD Focus Group Secretary at 2:05 PM on October 22, 2015 in Conference Room 328 at 2420 Stevens. Those attending were: Jonathan Sanwald (Mission Support Alliance (MSA), Focus Group Chair), Cliff Watkins (Corporate Allocation Services, DOE-RL Support Contractor, Focus Group Secretary), Glen Clark (Washington River Protection Solution (WRPS)), Fred Dunhour (DOE-ORP), Joan Kessner (Washington Closure Hanford (WCH)), Karl Pool (Pacific

  15. TEC Communications Topic Group

    Office of Environmental Management (EM)

    Tribal Issues Topic Group Judith Holm, Chair April 21, 2004 Albuquerque, NM Tribal Issues Topic Group * February Tribal Summit with Secretary of Energy (Kristen Ellis, CI) - Held in conjunction with NCAI mid-year conference - First Summit held in response to DOE Indian Policy - Addressed barriers to communication and developing framework for interaction Tribal Issues Topic Group * Summit (continued) - Federal Register Notice published in March soliciting input on how to improve summit process

  16. NIF User Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    users NIF User Group The National Ignition Facility User Group provides an organized framework and independent vehicle for interaction between the scientists who use NIF for "Science Use of NIF" experiments and NIF management. Responsibility for NIF and the research programs carried out at NIF resides with the NIF Director. The NIF User Group advises the NIF Director on matters of concern to users, as well as providing a channel for communication for NIF users with funding agencies and

  17. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on October 16, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Robert Elkins, Larry Markel, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Steve Trent, Amanda Tuttle, Sam Vega, Rich Weiss and Eric Wyse. New personnel have joined the Focus Group since the last

  18. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:09 PM on November 27, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Robert Elkins, Joan Kessner, Larry Markel, Mary McCormick-Barger, Steve Trent, and Rich Weiss. I. Huei Meznarich requested comments on the minutes from the October 16, 2012 meeting. No HASQARD Focus Group members present stated any

  19. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on August 20, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Taffy Almeida, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Steve Smith, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the July 23, 2013 meeting. No Focus Group members stated they had

  20. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:10 PM on April 15, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Robert Elkins, Scot Fitzgerald, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the March 18, 2014 meeting. No Focus Group members stated they

  1. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communications Group Print From left: Ashley White, Lori Tamura, Keri Troutman, and Carina Braun. The ALS Communications staff maintain the ALS Web site; write and edit all print...

  2. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deviations from a procedure or deviations from a published analytical method. Also, the language in this section of HASQARD uses the term "modification" and the Focus Group was...

  3. Photoelectrochemical Working Group

    Broader source: Energy.gov [DOE]

    The Photoelectrochemical Working Group meets regularly to review technical progress, develop synergies, and collaboratively develop common tools and processes for photoelectrochemical (PEC) water...

  4. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a. The action item related to organizing a working group to address the HASQARD language regarding independent assessments to ensure the language addresses all organizations...

  5. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics

    SciTech Connect (OSTI)

    Xu, Chonggang [Los Alamos National Laboratory (LANL); Fisher, Rosie [National Center for Atmospheric Research (NCAR); Wullschleger, Stan D [ORNL; Wilson, Cathy [Los Alamos National Laboratory (LANL); Cai, Michael [Los Alamos National Laboratory (LANL); McDowell, Nathan [Los Alamos National Laboratory (LANL)

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO{sub 2} concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO{sub 2} concentration, temperature, and radiation when evaluated against published data of V{sub c,max} (maximum carboxylation rate) and J{sub max} (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO{sub 2} concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks to climate in Earth system models.

  6. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    Summaries Rail Topic Group TEC Working Group Topic Groups Rail Conference Call Summaries Rail Topic Group Rail Topic Group PDF icon May 17, 2007 PDF icon January 16, 2007 PDF icon...

  7. Plant nitrogen regulatory P-PII polypeptides

    DOE Patents [OSTI]

    Coruzzi, Gloria M.; Lam, Hon-Ming; Hsieh, Ming-Hsiun

    2004-11-23

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the invention may be used to engineer organisms to overexpress wild-type or mutant P-PII regulatory protein. Engineered plants that overexpress or underexpress P-PII regulatory protein may have increased nitrogen assimilation capacity. Engineered organisms may be used to produce P-PII proteins which, in turn, can be used for a variety of purposes including in vitro screening of herbicides. P-PII nucleotide sequences have additional uses as probes for isolating additional genomic clones having the promoters of P-PII gene. P-PII promoters are light- and/or sucrose-inducible and may be advantageously used in genetic engineering of plants.

  8. Nitrogen control of chloroplast differentiation. Final report

    SciTech Connect (OSTI)

    Schmidt, G.W.

    1998-05-01

    This project was directed toward understanding at the physiological, biochemical and molecular levels of how photosynthetic organisms adapt to long-term nitrogen-deficiency conditions is quite incomplete even though limitation of this nutrient is the most commonly restricts plant growth and development. For our work on this problem, the unicellular green alga, Chlamydomonas reinhardtii, was grown in continuous cultures in which steady-state levels of nitrogen can be precisely controlled. N-limited cells exhibit the classical symptoms of deficiency of this nutrient, chlorosis and slow growth rates, and respond to nitrogen provision by rapid greening and chloroplast differentiation. We have addressed three aspects of this problem: (1) the regulation of pigment synthesis; (2) control of expression of nuclear genes encoding photosynthetic proteins; (3) changes in metabolic and electron transport pathways that enable sustained CO{sub 2} fixation even though they cannot be readily converted into amino and nucleic acids. For the last, principle components are: (a) enhanced mitochondrial respiratory activity intimately associated with photosynthates, and (b) the occurrence in thylakoids of a supplemental electron transport pathway that facilitates reduction of the plastoquinone pool. Together, these distinguishing features of N-limited cells are likely to enable cell survival, especially under conditions of high irradiance stress.

  9. Nitrogen Deposition: A Component of Global Change Analyses

    SciTech Connect (OSTI)

    Norby, Richard J.

    1997-12-31

    The global cycles of carbon and nitrogen are being perturbed by human activities that increase the transfer from large pools of nonreactive forms of the elements to reactive forms that are essential to the functioning of the terrestrial biosphere. The cycles are closely linked at all scales, and global change analyses must consider carbon and nitrogen cycles together. The increasing amount of nitrogen originating from fossil fuel combustion and deposited to terrestrial ecosystems as nitrogen oxides could increase the capacity of ecosystems to sequester carbon thereby removing some of the excess carbon dioxide from the atmosphere and slowing the development of greenhouse warming. Several global and ecosystem models have calculated the amount of carbon sequestration that can be attributed to nitrogen deposition based on assumptions about the allocation of nitrogen among ecosystem components with different carbon-nitrogen ratios. They support the premise that nitrogen deposition is responsible for a an increasing terrestrial carbon sink since industrialization began, but there are large uncertainties related to the continued capacity of ecosystems to retain exogenous nitrogen. Whether terrestrial ecosystems continue to sequester additional carbon will depend in part on their response to increasing atmospheric carbon dioxide concentrations, which is widely thought to be constrained by limited nitrogen availability. Ecosystem models generally support the conclusion that the responses of ecosystems to increasing concentrations of carbon dioxide will be larger, and the range of possible responses will be wider, in ecosystems with increased nitrogen inputs originating as atmospheric deposition.

  10. Electrochemical process for the preparation of nitrogen fertilizers

    DOE Patents [OSTI]

    Jiang, Junhua; Aulich, Ted R; Ignatchenko, Alexey V

    2015-04-14

    Methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia are disclosed. Embodiments include (1) ammonium nitrate produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source: (3) ammonia produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source.

  11. Trails Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trails » Trails Working Group Trails Working Group Our mission is to inventory, map, and prepare historical reports on the many trails used at LANL. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The LANL Trails Working Group inventories, maps, and prepares historical reports on the many trails used at LANL. Some of these trails are ancient pueblo footpaths that continue to be used for recreational hiking today. Some

  12. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:06 PM on June 12, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Shannan Johnson, Joan Kessner, Larry Markel, Karl Pool, Steve Smith, Noe'l Smith-Jackson, Chris Sutton, Cindy Taylor, Chris Thomson, Amanda Tuttle, Sam Vega, Rick Warriner and Eric Wyse. I. Huei Meznarich requested comments on the

  13. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2013 The beginning of the meeting was delayed due to an unannounced loss of the conference room scheduled for the meeting. After securing another meeting location, the meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:18 PM on April 16, 2013 in Conference Room 156 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Joan Kessner, Larry Markel, Mary McCormick-Barger, Karl Pool,

  14. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 28, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on January 28, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Chris Thompson, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on

  15. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:07 PM on February 25, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Lynn Albin, Taffy Almeida, Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Chris Thompson, and Eric Wyse. I. Huei Meznarich asked if there were any

  16. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on May 20, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Lynn Albin, Taffy Almeida, Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Shannan Johnson, Joan Kessner, Mary McCormick-Barger, Craig Perkins, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Chris Thompson and Eric Wyse. I. Acknowledging the

  17. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:07 PM on June 12, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Joe Archuleta, Sara Champoux, Glen Clark, Jim Douglas, Robert Elkins, Scot Fitzgerald, Joan Kessner, Jan McCallum, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Rich Weiss and Eric Wyse. I. Acknowledging the presence of new and/or infrequent

  18. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:10 PM on June 17, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Robert Elkins, Shannan Johnson, Joan Kessner, Jan McCallum, Craig Perkins, Karl Pool, Chris Sutton and Rich Weiss. I. Because of the short time since the last meeting, Huei Meznarich stated that the minutes from the June 12, 2014 meeting have not yet

  19. NERSC Users Group (NUG)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NUGEX Elections Charter User Announcements Help Staff Blogs Request Repository Mailing List Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting http://help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home » For Users » NERSC Users Group NERSC Users Group (NUG) The NERSC Users' Group, NUG, welcomes participation from all

  20. InterGroup Protocols

    Energy Science and Technology Software Center (OSTI)

    2003-04-02

    Existing reliable ordered group communication protocols have been developed for local-area networks and do not in general scale well to a large number of nodes and wide-area networks. The InterGroup suite of protocols is a scalable group communication system that introduces an unusual approach to handling group membership, and supports a receiver-oriented selection of service. The protocols are intended for a wide-area network, with a large number of nodes, that has highly variable delays andmore »a high message loss rate, such as the Internet. The levels of the message delivery service range from unreliable unordered to reliable timestamp ordered.« less

  1. Date Times Group Speakers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meetings - Spring 2014 Date Times Group Speakers Tues, 1-13 2:30-3:30pm Faculty Meeting Fri, 1-24 12:30-1:30pm Group Research Meeting Emmanuel Giannelis Fri, 1-31 12:30-1:30pm Student & Postdoc Mtg Apostolos Enotiadis; Nikki Ritzert & Megan Holtz Fri, 2-7 12:30-1:30pm Group Research Meeting CHESS Mon, 2-10 2:30-3:30pm Faculty Meeting Will Dichtel Fri, 2-14 12:30-1:30pm Student & Postdoc Mtg Frank DiSalvo Fri, 2-21 12:30-1:30pm Group Research Meeting Lynden Archer Fri, 2-28

  2. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the September 21 meeting of the Focus Group, the concerns related to the current language in HASQARD Volume 1, Section 10.4, "Quality Systems" were discussed at the...

  3. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    been distributed to the Focus Group prior to the meeting. The comments that required editorial changes to the document were made in the working electronic version. b. At the June...

  4. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Markel, Mary McCormick-Barger, Dave St. John, Steve Smith, Steve Trent and Eric Wyse. ... On January 31, the Secretary received a call from the QA Sub-Group Chair, Steve Smith. ...

  5. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Elkins, Mary McCormick-Barger, Noe'l Smith-Jackson, Chris Sutton, Amanda Tuttle, Rick ... Noe'l Smith-Jackson stated that the HASQARD document is the work of the Focus Group not ...

  6. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Markel, Huei Meznarich, Karl Pool, Noe'l Smith-Jackson, Andrew Stevens, Genesis Thomas, ... the radar of the DOE- HQ QA group. Noe'l Smith-Jackson commented that Ecology was always ...

  7. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group to review. Rich began his presentation by stating that he does not believe the language in Revision 3 works nor is it necessary anymore. The purpose of the Revision 3...

  8. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the last Focus Group meeting to get together and see if an agreement on proposed language could be achieved that would satisfy CHPRC sampling personnel and WSCF laboratory...

  9. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the May 15 meeting, Rich Weiss sent an e-mail to the Focus Group to propose revised language for the last paragraph in Section 5.3 containing the sentence about measured...

  10. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    change. This distribution was to allow the Focus Group time to review the proposed language and be prepared for the matter to come to a vote at the next meeting of the Focus...

  11. Tritium Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    matters related to tritium. Contacts Mike Rogers (505) 665-2513 Email Chandra Savage Marsden (505) 664-0183 Email The Tritium Focus Group consists of participants from member...

  12. Specific Group Hardware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specific Group Hardware Specific Group Hardware ALICE palicevo1 The Virtual Organization (VO) server. Serves as gatekeeper for ALICE jobs. It's duties include getting assignments from ALICE file catalog (at CERN), submitting jobs to pdsfgrid (via condor) which submits jobs to the compute nodes, monitoring the cluster work load, and uploading job information to ALICE file catalog. It is monitored with MonALISA (the monitoring page is here). It's made up of 2 Intel Xeon E5520 processors each with

  13. Macro Industrial Working Group

    Gasoline and Diesel Fuel Update (EIA)

    September 29, 2014 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Industrial team preliminary results for AEO2015 Overview AEO2015 2 Industrial Team Washington DC, September 29, 2014 WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE * AEO2015 is a "Lite" year - New ethane/propane pricing model only major update - Major side cases released with Reference case

  14. DOE STGWG Group

    Energy Savers [EERE]

    STGWG Group The State and Tribal Government Working Group (STGWG) is one of the intergovernmental organizations with which the DOE EM office works with. They meet twice yearly for updates to the EM projects. They were formed in 1989. It is comprised of several state legislators and tribal staff and leadership from states in proximity to DOE's environmental cleanup sites of the following states: New York, South Carolina, Ohio, Washington, New Mexico, Idaho, California, Colorado, Georgia,

  15. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communications Group Print From left: Ashley White, Lori Tamura, Keri Troutman, and Carina Braun. The ALS Communications staff maintain the ALS Web site; write and edit all print and electronic publications for the ALS, including Science Highlights, Science Briefs, brochures, handouts, and the monthly newsletter ALSNews; and create educational and scientific outreach materials. In addition, members of the group organize bi-monthly Science Cafés, create conference and workshop Web sites and

  16. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Communications Group Print From left: Ashley White, Lori Tamura, Keri Troutman, and Carina Braun. The ALS Communications staff maintain the ALS Web site; write and edit all print and electronic publications for the ALS, including Science Highlights, Science Briefs, brochures, handouts, and the monthly newsletter ALSNews; and create educational and scientific outreach materials. In addition, members of the group organize bi-monthly Science Cafés, create conference and workshop Web sites and

  17. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Communications Group Print From left: Ashley White, Lori Tamura, Keri Troutman, and Carina Braun. The ALS Communications staff maintain the ALS Web site; write and edit all print and electronic publications for the ALS, including Science Highlights, Science Briefs, brochures, handouts, and the monthly newsletter ALSNews; and create educational and scientific outreach materials. In addition, members of the group organize bi-monthly Science Cafés, create conference and workshop Web sites and

  18. Indoor nitrogen dioxide in five Chattangooga, Tennessee public housing developments

    SciTech Connect (OSTI)

    Parkhurst, W.J.; Harper, J.P. ); Spengler, J.D.; Fraumeni, L.P.; Majahad, A.M. ); Cropp, J.W. )

    1988-01-01

    This report summarizes an indoor nitrogen dioxide (NO{sub 2}) sampling study conducted during January through March of 1987 in five Chattanooga public housing developments. The origins of this study date to the summer of 1983 when the Piney Woods Community Organization (a citizens action group) expressed concern about toxic industrial air pollution and the effects it might have on their community. In response to these concerns, the Chattanooga-Hamilton County Air Pollution Control Bureau (Bureau) requested assistance from the Tennessee Department of Health and Environment (TDHE) in conducting a community health survey and assistance from the Tennessee Valley Authority (TVA) in conducting a community air quality measurement program. The TDHE community health study did not find any significant differences between the mortality statistics for the Piney Woods community and a demographically similar control group. However, a health survey revealed that Piney Woods residents did not have a statistically significant higher self-reported prevalence of cough, wheezing, phlegm, breathlessness, colds, and respiratory illness.

  19. TEC Working Group Topic Groups Section 180(c) Meeting Summaries...

    Office of Environmental Management (EM)

    Meeting Summaries TEC Working Group Topic Groups Section 180(c) Meeting Summaries Meeting Summaries PDF icon Washington, DC TEC Meeting - 180(c) Group Summary - March 15, 2006 More...

  20. TEC Working Group Topic Groups Routing Meeting Summaries | Department...

    Office of Environmental Management (EM)

    Routing Meeting Summaries TEC Working Group Topic Groups Routing Meeting Summaries MEETING SUMMARIES PDF icon Atlanta TEC Meeting, Routing Topic Group Summary More Documents &...

  1. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    Rail Conference Call Summaries TEC Working Group Topic Groups Rail Conference Call Summaries CONFERENCE CALL SUMMARIES Rail Topic Group Inspections Subgroup Planning Subgroup...

  2. TEC Working Group Topic Groups Archives Protocols Meeting Summaries...

    Office of Environmental Management (EM)

    Protocols Meeting Summaries TEC Working Group Topic Groups Archives Protocols Meeting Summaries Meeting Summaries PDF icon Philadelphia TEC Meeting, Protocols Topic Group Summary -...

  3. TEC Working Group Topic Groups Rail Meeting Summaries | Department...

    Office of Environmental Management (EM)

    TEC Working Group Topic Groups Rail Meeting Summaries MEETING SUMMARIES PDF icon Kansas City TEC Meeting, Rail Topic Group Summary - July 25, 2007 PDF icon Atlanta TEC...

  4. Good Energy Group Plc previously Monkton Group Plc | Open Energy...

    Open Energy Info (EERE)

    Plc previously Monkton Group Plc Jump to: navigation, search Name: Good Energy Group Plc (previously Monkton Group Plc) Place: Chippenham, Wiltshire, United Kingdom Zip: SN15 1EE...

  5. THE EFFECTS OF INITIAL ABUNDANCES ON NITROGEN IN PROTOPLANETARY DISKS

    SciTech Connect (OSTI)

    Schwarz, Kamber R.; Bergin, Edwin A.

    2014-12-20

    The dominant form of nitrogen provided to most solar system bodies is currently unknown, though available measurements show that the detected nitrogen in solar system rocks and ices is depleted with respect to solar abundances and the interstellar medium. We use a detailed chemical/physical model of the chemical evolution of a protoplanetary disk to explore the evolution and abundance of nitrogen-bearing molecules. Based on this model, we analyze how initial chemical abundances provided as either gas or ice during the early stages of disk formation influence which species become the dominant nitrogen bearers at later stages. We find that a disk with the majority of its initial nitrogen in either atomic or molecular nitrogen is later dominated by atomic and molecular nitrogen as well as NH{sub 3} and HCN ices, where the dominant species varies with disk radius. When nitrogen is initially in gaseous ammonia, it later becomes trapped in ammonia ice except in the outer disk where atomic nitrogen dominates. For a disk with the initial nitrogen in the form of ammonia ice, the nitrogen remains trapped in the ice as NH{sub 3} at later stages. The model in which most of the initial nitrogen is placed in atomic N best matches the ammonia abundances observed in comets. Furthermore, the initial state of nitrogen influences the abundance of N{sub 2}H{sup +}, which has been detected in protoplanetary disks. Strong N{sub 2}H{sup +} emission is found to be indicative of an N{sub 2} abundance greater than n{sub N{sub 2}}/n{sub H{sub 2}}>10{sup ?6} in addition to tracing the CO snow line. Our models also indicate that NO is potentially detectable, with lower N gas abundances leading to higher NO abundances.

  6. Jefferson Lab Invites Families, Groups, Classes to Physics Fest Events |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Families, Groups, Classes to Physics Fest Events Small Business A student watches in amazement at the behavior of inflated balloons after they have been pulled from a container of liquid nitrogen (at a temperature of -321 Fahrenheit). NEWPORT NEWS, Va., June 3, 2010 - The U.S. Department of Energy's Jefferson Lab invites families, groups and classes to sign up now for a summer 2010 or school year 2010-2011 Physics Fest. Seating is still available for the Physics Fests scheduled

  7. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  8. Nitrogen oxides storage catalysts containing cobalt

    DOE Patents [OSTI]

    Lauterbach, Jochen (Newark, DE); Snively, Christopher M. (Clarks Summit, PA); Vijay, Rohit (Annandale, NJ); Hendershot, Reed (Breinigsville, PA); Feist, Ben (Newark, DE)

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  9. Worldwide organic soil carbon and nitrogen data

    SciTech Connect (OSTI)

    Zinke, P.J.; Stangenberger, A.G.; Post, W.M.; Emanual, W.R.; Olson, J.S.

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  10. ENN Group aka XinAo Group | Open Energy Information

    Open Energy Info (EERE)

    ENN Group aka XinAo Group Jump to: navigation, search Name: ENN Group (aka XinAo Group) Place: Langfang, Hebei Province, China Zip: 65001 Product: Chinese private industrial...

  11. Bell, group and tangle

    SciTech Connect (OSTI)

    Solomon, A. I.

    2010-03-15

    The 'Bell' of the title refers to bipartite Bell states, and their extensions to, for example, tripartite systems. The 'Group' of the title is the Braid Group in its various representations; while 'Tangle' refers to the property of entanglement which is present in both of these scenarios. The objective of this note is to explore the relation between Quantum Entanglement and Topological Links, and to show that the use of the language of entanglement in both cases is more than one of linguistic analogy.

  12. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  13. The Chaninik Wind Group

    Energy Savers [EERE]

    Chaninik Wind Group It started as a small, simple idea..., now we are headed to become," the heartbeat of the region." William Igkurak, President USDoE Tribal Energy Program, Annual Program Review, November 13-16, 2012, Denver, Colorado Department of Energy Tribal Energy Chaninik Wind Group Villages Kongiganak pop.359 Kwigillingok pop. 388 Kipnuk pop.644 Tuntutuliak pop. 370 On average, 24% of families are below the poverty line. Chaninik's Goal is to become "The

  14. Greenko Group | Open Energy Information

    Open Energy Info (EERE)

    Greenko Group Jump to: navigation, search Name: Greenko Group Place: Hyderabad, India Zip: 500 033 Product: Focused on clean energy projects in Asia. References: Greenko Group1...

  15. Sinocome Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Sinocome Group Place: Beijing Municipality, China Sector: Solar Product: A Chinese high tech group with business in solar PV sector...

  16. Valesul Group | Open Energy Information

    Open Energy Info (EERE)

    Valesul Group Jump to: navigation, search Name: Valesul Group Place: Brazil Product: Brazilian ethanol producer. References: Valesul Group1 This article is a stub. You can help...

  17. Angeleno Group | Open Energy Information

    Open Energy Info (EERE)

    Angeleno Group Jump to: navigation, search Logo: Angeleno Group Name: Angeleno Group Address: 2029 Century Park East, Suite 2980 Place: Los Angeles, California Zip: 90067 Region:...

  18. MTorres Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: MTorres Group Place: Murcia, Spain Zip: 30320 Sector: Wind energy Product: Wind turbine manufacturer References: MTorres Group1 This...

  19. Ferrari Group | Open Energy Information

    Open Energy Info (EERE)

    Ferrari Group Jump to: navigation, search Name: Ferrari Group Place: Sao Paulo, Brazil Product: Sao Paulo-based ethanol producer. References: Ferrari Group1 This article is a...

  20. PROTOSOLAR AMMONIA AS THE UNIQUE SOURCE OF TITAN's NITROGEN

    SciTech Connect (OSTI)

    Mandt, Kathleen E.; Mousis, Olivier; Gautier, Daniel

    2014-06-20

    The origin of Titan's nitrogen-rich atmosphere is thought to be ammonia ice, but this has not yet been confirmed. Furthermore, it is uncertain whether the building blocks of Titan formed within the Saturnian subnebula or in the colder protosolar nebula (PSN). Recent measurements of the nitrogen isotope ratio in cometary ammonia, combined with evolutionary constraints on the nitrogen isotopes in Titan's atmosphere provide firm evidence that the nitrogen in Titan's atmosphere must have originated as ammonia ice formed in the PSN under conditions similar to that of cometary formation. This result has important implications for the projected D/H ratio in cometary methane, nitrogen isotopic fractionation in the PSN and the source of nitrogen for Earth's atmosphere.

  1. TEC Working Group Topic Groups Archives Communications Meeting Summaries |

    Office of Environmental Management (EM)

    Department of Energy Archives Communications Meeting Summaries TEC Working Group Topic Groups Archives Communications Meeting Summaries Meeting Summaries PDF icon Milwaukee TEC Meeting, Communications Topic Group Summary - July 1998 PDF icon Inaugural Group Meeting - April 1998 More Documents & Publications TEC Working Group Topic Groups Archives Communications Conference Call Summaries TEC Meeting Summaries - January 1997 TEC Working Group Topic Groups Tribal Conference Call Summa

  2. TEC Working Group Topic Groups Rail Conference Call Summaries Inspections

    Office of Environmental Management (EM)

    Subgroup | Department of Energy Summaries Inspections Subgroup TEC Working Group Topic Groups Rail Conference Call Summaries Inspections Subgroup Inspections Subgroup PDF icon April 6, 2006 PDF icon February 23, 2006 Draft PDF icon January 24, 2006 More Documents & Publications TEC Working Group Topic Groups Rail Conference Call Summaries Planning Subgroup TEC Working Group Topic Groups Rail Conference Call Summaries Tracking Subgroup TEC Working Group Topic Groups Rail Conference Call

  3. TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring

    Office of Environmental Management (EM)

    Subgroup | Department of Energy Radiation Monitoring Subgroup TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring Subgroup Radiation Monitoring Subgroup PDF icon Draft Work Plan - February 4, 2008 More Documents & Publications TEC Working Group Topic Groups Rail Meeting Summaries TEC Working Group Topic Groups Rail Conference Call Summaries Radiation Monitoring Subgroup TEC Working Group Topic Groups Rail Key Documents Intermodal Subgroup

  4. Nitrogen removal from natural gas using two types of membranes

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Wijmans, Johannes G.; Da Costa, Andre R.

    2003-10-07

    A process for treating natural gas or other methane-rich gas to remove excess nitrogen. The invention relies on two-stage membrane separation, using methane-selective membranes for the first stage and nitrogen-selective membranes for the second stage. The process enables the nitrogen content of the gas to be substantially reduced, without requiring the membranes to be operated at very low temperatures.

  5. Fixation of nitrogen in the presence of water vapor

    DOE Patents [OSTI]

    Harteck, Paul (Santa Barbara, CA)

    1984-01-01

    A process for the fixation of nitrogen is disclosed which comprises combining a mixture of nitrogen, oxygen, metal oxide and water vapor, initially heating the combination to initiate a reaction which forms nitrate, but at a temperature and pressure range below the dissociation pressure of the nitrate. With or without the water component, the yield of fixed nitrogen is increased by the use of a Linde Molecular Sieve Catalyst.

  6. Helms Research Group - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helms Group Home Research Members Publications Collaborations Connect Physical Organic Materials Chemistry Our research is devoted to understanding transport phenomena in mesostructured systems assembled from organic, organometallic, polymeric and nanocrystalline components. Enhanced capabilities relevant to energy, health, water, and food quality are enabled by our unique approaches to the modular design of their architectures and interfaces.

  7. Durability Working Group

    Broader source: Energy.gov [DOE]

    Description, technical targets, meeting archives, and contacts for the DOE Durability Working Group, which meets twice per year to exchange information, create synergies, and collaboratively develop both an understanding of and tools for studying degradation mechanisms of polymer electrolyte fuel cell stacks.

  8. Method and apparatus for nitrogen oxide determination

    DOE Patents [OSTI]

    Hohorst, Frederick A. (Idaho Falls, ID)

    1990-01-01

    Method and apparatus for determining nitrogen oxide content in a high temperature process gas, which involves withdrawing a sample portion of a high temperature gas containing nitrogen oxide from a source to be analyzed. The sample portion is passed through a restrictive flow conduit, which may be a capillary or a restriction orifice. The restrictive flow conduit is heated to a temperature sufficient to maintain the flowing sample portion at an elevated temperature at least as great as the temperature of the high temperature gas source, to thereby provide that deposition of ammonium nitrate within the restrictive flow conduit cannot occur. The sample portion is then drawn into an aspirator device. A heated motive gas is passed to the aspirator device at a temperature at least as great as the temperature of the high temperature gas source. The motive gas is passed through the nozzle of the aspirator device under conditions sufficient to aspirate the heated sample portion through the restrictive flow conduit and produce a mixture of the sample portion in the motive gas at a dilution of the sample portion sufficient to provide that deposition of ammonium nitrate from the mixture cannot occur at reduced temperature. A portion of the cooled dilute mixture is then passed to analytical means capable of detecting nitric oxide.

  9. Hydrogen and Nitrogen Control in Ladle and Casting Operations

    SciTech Connect (OSTI)

    2002-01-01

    Development of Models will Help Predict and Control Hydrogen and Nitrogen Levels in Electric Arc Furnace and Basic Oxygen Furnace Steelmaking

  10. Modifying the response of Ehrlich ascites tumor cells to nitrogen...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 59 BASIC BIOLOGICAL SCIENCES; ANTINEOPLASTIC DRUGS; BIOLOGICAL EFFECTS; ASCITES TUMOR CELLS; GROWTH; NITROGEN ...

  11. Raman spectroscopy in hot compressed hydrogen and nitrogen -...

    Office of Scientific and Technical Information (OSTI)

    Raman spectroscopy in hot compressed hydrogen and nitrogen - implications for the intramolecular potential Citation Details In-Document Search Title: Raman spectroscopy in hot...

  12. Nitrogen Control in Electric Arc Furnace Steelmaking by Direct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Direct Reduced Iron Fines Injection Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection This fact sheet describes a new ...

  13. Convergence of microbial assimilations of soil carbon, nitrogen...

    Office of Scientific and Technical Information (OSTI)

    Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems Citation Details In-Document Search Title: Convergence of ...

  14. Focus Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outreach Forums » Focus Group and Work Group Activities » Focus Group Focus Group The Focus Group was formed in March 2007 to initiate dialogue and interface with labor unions, DOE Program Secretarial Offices, and stakeholders in areas of mutual interest and concern related to health, safety, security, and the environment. Meeting Documents Available for Download November 13, 2012 Work Group Leadership Meetings: Transition Elements This Focus Group Work Group telecom was held with the Work

  15. Additive for lubricants and hydrocarbon fuels comprising reaction products of olefins, sulfur, hydrogen sulfide and nitrogen containing polymeric compounds

    SciTech Connect (OSTI)

    Horodysky, A.G.; Law, D.A.

    1987-04-28

    A process is described for making an additive for lubricant compositions comprising co-reacting: a monoolefin selected from the group consisting of butenes, propenes, pentenes, and mixtures of two or more thereof; sulfur; hydrogen sulfide; polymeric nitrogen-containing compound selected from the group consisting of succinimides, amides, imides, polyoxyazoline polymers and alkyl imidazoline compounds; and a catalytic amount of an amine selected from the group consisting of polyethylene amines and hydroxyl-containing amines; at a temperature between about 130/sup 0/C and about 200/sup 0/C and a pressure of about 0 psig to about 900 psig, the reactants being reacted in a molar ratio of olefin, polymeric nitrogen-containing compound, and hydrogen sulfide to sulfur of 2 to 0.5, 0.001 to 0.4, and 0.5 to 0.7, respectively, and the concentration of amine being between 0.5 and 10 percent of the total weight of reactants.

  16. TEC Working Group Topic Groups Tribal Meeting Summaries | Department of

    Energy Savers [EERE]

    Energy Meeting Summaries TEC Working Group Topic Groups Tribal Meeting Summaries Meeting Summaries PDF icon Kansas City TEC Meeting - Tribal Group Summary - July 25, 2007 PDF icon Atlanta TEC Meeting - Tribal Group Summary - March 6, 2007 PDF icon Green Bay TEC Meeting -- Tribal Group Summary - October 26, 2006 PDF icon Washington TEC Meeting - Tribal Topic Group Summary - March 14, 2006 PDF icon Pueblo TEC Meeting - Tribal Topic Group Summary, September 22, 2005 PDF icon Phoenix TEC Meeting

  17. TEC Working Group Topic Groups | Department of Energy

    Energy Savers [EERE]

    Topic Groups TEC Working Group Topic Groups TEC Topic Groups were formed in 1991 following an evaluation of the TEC program. Interested members, DOE and other federal agency staff meet to examine specific issues related to radioactive materials transportation. TEC Topic Groups enable a small number of participants to focus intensively on key issues at a level of detail that is unattainable during the TEC semiannual meetings due to time and group size constraints. Topic Groups meet individually

  18. Working Group Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group Reports Special Working Session on the Role of Buoy Observations in the Tropical Western Pacific Measurement Scheme J. Downing Marine Sciences Laboratory Sequim, Washington R. M. Reynolds Brookhaven National Laboratory Upton, New York Attending W. Clements (TWPPO) F. Barnes (TWPPO) T. Ackerman (TWP Site Scientist) M. Ivey (ARCS Manager) H. Church J. Curry J. del Corral B. DeRoos S. Kinne J. Mather J. Michalsky M. Miller P. Minnett B. Porch J. Sheaffer P. Webster M. Wesely K.

  19. Schuck Group - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Archive Research Members Publications Contacts The Schuck Research Group Home News Archive Research Members Publications Contacts Tweet We focus on investigating and controlling light-matter interactions at the nanoscale, and using light to probe local environments. We are particularly interested in understanding the nano- and meso-scale interactions between localized states in materials, and relating these properties with material and device functionality. We do this by correlating

  20. ORGANIZATION/GROUP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HANFORD ADVISORY BOARD MEMBERSHIP Page 1 January 22, 2016 ORGANIZATION/GROUP PRIMARY MEMBER ALTERNATE LOCAL GOVERNMENT INTERESTS (7) Benton County Bob Suyama Larry Lockrem Benton-Franklin Council of Governments Dawn Wellman Tony Benegas City of Kennewick Bob Parks Dick Smith City of Pasco Rob Davis Vacant City of Richland Pam Larsen Vince Panesko City of West Richland Jerry Peltier Richard Bloom Grant & Franklin Counties Gary Garnant Mike Korenko LOCAL BUSINESS INTERESTS (1) Tri-Cities

  1. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on January 17, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Mike Barnes, Jeff Cheadle, Glen Clark, Scot Fitzgerald, Shannan Johnson, Joan Kessner, Larry Markel, Cindy Taylor, Chris Thompson, Amanda Tuttle, Sam Vega, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the December 13, 2011 meeting.

  2. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:02 PM on February 21, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Lynn Albin, Taffy Almeida, Courtney Blanchard, Glen Clark, Scot Fitzgerald, Shannan Johnson, Kris Kuhl-Klinger, Larry Markel, Karl Pool, Steve Smith, Cindy Taylor, Amanda Tuttle, Sam Vega, Rick Warriner, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on

  3. Buildings Sector Working Group

    Gasoline and Diesel Fuel Update (EIA)

    July 22, 2013 AEO2014 Model Development For discussion purposes only Not for citation Overview Builldings Working Group Forrestal 2E-069 / July 22, 2013 2 * Residential projects - RECS update - Lighting model - Equipment, shell subsidies - ENERGY STAR benchmarking - Housing stock formation and decay * Commercial projects - Major end-use capacity factors - Hurdle rates - ENERGY STAR buildings * Both sectors - Consumer behavior workshop - Comparisons to STEO - AER  MER - Usual annual updates -

  4. Tritium Focus Group Meeting:

    Office of Environmental Management (EM)

    32 nd Tritium Focus Group Meeting: Tritium research activities in Safety and Tritium Applied Research (STAR) facility, Idaho National Laboratory Masashi Shimada Fusion Safety Program, Idaho National Laboratory April 25 th 2013, Germantown, MD STI #: INL/MIS-13-28975 Outlines 1. Motivation of tritium research activity in STAR facility 2. Unique capabilities in STAR facility 3. Research highlights from tritium retention in HFIR neutron- irradiated tungsten April 25th 2013 Germantown, MD STAR

  5. Detector Support Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search Nuclear Physics Program Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Hall B Navigation DSG Home Staff Presentations Notes print version Detector Support Group Spotlight Archive Index Rotation test for the SVT detector EPICS Interlock Testing Bundling HV DC cables Hall D N2 tank level check Parameter check of Hall D solenoid Testing of SVT Hybrid Flex Circuit

  6. Environmental/Interest Groups

    Office of Legacy Management (LM)

    Environmental/Interest Groups Miamisburg Mound Community Improvement Corporation (MMCIC) Mike J. Grauwelman President P.O. Box 232 Miamisburg, OH 45343-0232 (937) 865-4462 Email: mikeg@mound.com Mound Reuse Committee See MMCIC Mound Environmental Safety and Health Sharon Cowdrey President 5491 Weidner Road Springboro, OH 45066 (937) 748-4757 No email address available Mound Museum Association Dr. Don Sullenger President Mound Advanced Technology Center 720 Mound Road Miamisburg, OH 45342-6714

  7. TEC Working Group Topic Groups Archives | Department of Energy

    Office of Environmental Management (EM)

    Archives TEC Working Group Topic Groups Archives The following Topic Groups are no longer active; however, related documents and notes for these archived Topic Groups are available through the following links: Communicatons Consolidated Grant Topic Group Training - Medical Training Protocols Route Identificaiton Process Mechanics of Funding and Technical Assistance

  8. Catalyst for reduction of nitrogen oxides

    DOE Patents [OSTI]

    Ott, Kevin C.

    2010-04-06

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  9. Nitrogen oxide abatement by distributed fuel addition

    SciTech Connect (OSTI)

    Wendt, J.O.L.; Mereb, J.B.

    1991-09-20

    Reburning is examined as a means of NO{sub x} destruction in a 17 kW down-fired pulverized coal combustor. In reburning, a secondary fuel is introduced downstream of the primary flame to produce a reducing zone, favorable to NO destruction, and air is introduced further downstream to complete the combustion. Emphasis is on natural gas reburning and a bituminous coal primary flame. A parametric examination of reburning employing a statistical experimental design, is conducted, complemented by detailed experiments. Mechanisms governing the inter-conversion of nitrogenous species in the fuel rich reburn zone is explored. The effect of reburning on N{sub 2}O emissions, the effect of primary flame mode (premixed and diffusion) and the effect of distributing the reburning fuel, are also investigated.

  10. Electrochemical process for the preparation of nitrogen fertilizers

    DOE Patents [OSTI]

    Aulich, Ted R. (Grand Forks, ND); Olson, Edwin S. (Grand Forks, ND); Jiang, Junhua (Grand Forks, ND)

    2012-04-10

    The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia, at low temperature and pressure, preferably at ambient temperature and pressure, utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen or hydrogen equivalent. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be aqueous, non-aqueous, or solid.

  11. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on December 13, 2011 in Conference Room 126 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Lynn Albin, Heather Anastos, Jeff Cheadle, Glen Clark, Scot Fitzgerald, Shannan Johnson, Kris Kuhl-Klinger, Joan Kessner, Karl Pool, Dave St. John, Noe'l Smith-Jackson, Chris Sutton, Cindy Taylor, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments

  12. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:06 PM on April 17, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Lynn Albin, Taffy Almeida, Jeff Cheadle, Glen Clark, Scot Fitzgerald, Kris Kuhl-Klinger, Joan Kessner, Larry Markel, Noe'l Smith-Jackson, Cindy Taylor, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the March 20, 2012

  13. # Energy Measuremenfs Group

    Office of Legacy Management (LM)

    ri EECE # Energy Measuremenfs Group SUMMARY REPORT . AiRIAL R4DIOLOGICAL SURVEY - NIAGARA FALLS AREA NIAGARA FALLS, NEh' YORK DATE OF SURVEY: SEPTEMBER 1979 APPROVED FOR DISTRIBUTION: P Stuart, EC&G, Inc. . . Herbirt F. Hahn, Department of Energy PERFDRflED BY EGtf, INC. UNDER CONTRACT NO. DE-AHO&76NV01163 WITH THE UNITED STATES DEPARTMENT OF ENERGY II'AFID 010 November 30, 1979 - The Aerial Measurements System (A%), operated by EC&t, Inc< for the Un i ted States Department of

  14. Process for separating nitrogen from methane using microchannel process technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Marysville, OH); Qiu, Dongming (Dublin, OH); Dritz, Terence Andrew (Worthington, OH); Neagle, Paul (Westerville, OH); Litt, Robert Dwayne (Westerville, OH); Arora, Ravi (Dublin, OH); Lamont, Michael Jay (Hilliard, OH); Pagnotto, Kristina M. (Cincinnati, OH)

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  15. Removal of basic nitrogen compounds from hydrocarbon liquids

    DOE Patents [OSTI]

    Givens, Edwin N. (Bethlehem, PA); Hoover, David S. (New Tripoli, PA)

    1985-01-01

    A method is provided for reducing the concentration of basic nitrogen compounds in hydrocarbonaceous feedstock fluids used in the refining industry by providing a solid particulate carbonaceous adsorbent/fuel material such as coal having active basic nitrogen complexing sites on the surface thereof and the coal with a hydrocarbonaceous feedstock containing basic nitrogen compounds to facilitate attraction of the basic nitrogen compounds to the complexing sites and the formation of complexes thereof on the surface of the coal. The adsorbent coal material and the complexes formed thereon are from the feedstock fluid to provide a hydrocarbonaceous fluid of reduced basic nitrogen compound concentration. The coal can then be used as fuel for boilers and the like.

  16. TEC Working Group Topic Groups Archives Communications Conference Call

    Office of Environmental Management (EM)

    Summaries | Department of Energy Communications Conference Call Summaries TEC Working Group Topic Groups Archives Communications Conference Call Summaries Conference Call Summaries PDF icon Conference Call Summary April 2000 PDF icon Conference Call Summary February 1999 PDF icon Conference Call Summary November 1998 More Documents & Publications TEC Working Group Topic Groups Archives Communications Meeting Summaries TEC Working Group Topic Groups Tribal Conference Call Summaries TEC

  17. CORRELATION BETWEEN GROUP LOCAL DENSITY AND GROUP LUMINOSITY

    SciTech Connect (OSTI)

    Deng Xinfa; Yu Guisheng

    2012-11-10

    In this study, we investigate the correlation between group local number density and total luminosity of groups. In four volume-limited group catalogs, we can conclude that groups with high luminosity exist preferentially in high-density regions, while groups with low luminosity are located preferentially in low-density regions, and that in a volume-limited group sample with absolute magnitude limit M{sub r} = -18, the correlation between group local number density and total luminosity of groups is the weakest. These results basically are consistent with the environmental dependence of galaxy luminosity.

  18. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    Summaries Inspections Subgroup TEC Working Group Topic Groups Rail Conference Call Summaries Inspections Subgroup Inspections Subgroup PDF icon April 6, 2006 PDF icon February 23,...

  19. TEC Working Group Topic Groups Routing Conference Call Summaries...

    Office of Environmental Management (EM)

    Routing Conference Call Summaries TEC Working Group Topic Groups Routing Conference Call Summaries CONFERENCE CALL SUMMARIES PDF icon January 31, 2008 PDF icon December 6, 2007 PDF...

  20. TEC Working Group Topic Groups Security Meeting Summaries | Department...

    Office of Environmental Management (EM)

    Meeting Summaries TEC Working Group Topic Groups Security Meeting Summaries Meeting Summaries PDF icon Green Bay STG Meeting Summary- September 14, 2006 PDF icon Washington STG...

  1. TEC Working Group Topic Groups Archives Mechanics of Funding...

    Office of Environmental Management (EM)

    Mechanics of Funding and Techical Assistance TEC Working Group Topic Groups Archives Mechanics of Funding and Techical Assistance Mechanics of Funding and Techical Assistance Items...

  2. TEC Working Group Topic Groups Rail Archived Documents | Department...

    Office of Environmental Management (EM)

    Archived Documents TEC Working Group Topic Groups Rail Archived Documents ARCHIVED DOCUMENTS PDF icon Inspections Summary Matrix PDF icon TEC Transportation Safety WIPP-PIG Rail...

  3. TEC Working Group Topic Groups Tribal Conference Call Summaries...

    Office of Environmental Management (EM)

    Conference Call Summaries TEC Working Group Topic Groups Tribal Conference Call Summaries Conference Call Summaries PDF icon March 12, 2008 PDF icon October 3, 2007 PDF icon...

  4. TEC Working Group Topic Groups Archives Communications Conference...

    Office of Environmental Management (EM)

    Communications Conference Call Summaries TEC Working Group Topic Groups Archives Communications Conference Call Summaries Conference Call Summaries PDF icon Conference Call Summary...

  5. TEC Working Group Topic Groups Archives Communications Meeting...

    Office of Environmental Management (EM)

    Archives Communications Meeting Summaries TEC Working Group Topic Groups Archives Communications Meeting Summaries Meeting Summaries PDF icon Milwaukee TEC Meeting, Communications...

  6. TEC Working Group Topic Groups Section 180(c) Key Documents ...

    Office of Environmental Management (EM)

    Key Documents TEC Working Group Topic Groups Section 180(c) Key Documents Key Documents Briefing Package for Section 180(c) Implementation - July 2005 PDF icon Executive Summary...

  7. TEC Working Group Topic Groups Security Conference Call Summaries...

    Office of Environmental Management (EM)

    Security Conference Call Summaries TEC Working Group Topic Groups Security Conference Call Summaries Conference Call Summaries PDF icon August 17, 2006 (Draft) PDF icon July 18,...

  8. TEC Working Group Topic Groups Rail Key Documents | Department...

    Office of Environmental Management (EM)

    Rail Key Documents TEC Working Group Topic Groups Rail Key Documents KEY DOCUMENTS Radiation Monitoring Subgroup Intermodal Subgroup Planning Subgroup PDF icon Current FRA State...

  9. TEC Working Group Topic Groups Rail Key Documents Intermodal...

    Office of Environmental Management (EM)

    Intermodal Subgroup TEC Working Group Topic Groups Rail Key Documents Intermodal Subgroup Intermodal Subgroup PDF icon Draft Work Plan More Documents & Publications TEC Working...

  10. TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring...

    Office of Environmental Management (EM)

    Radiation Monitoring Subgroup TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring Subgroup Radiation Monitoring Subgroup PDF icon Draft Work Plan - February 4,...

  11. Fall 2012 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 C STEC W orking G roup S chedule Thrust I --- s elected Thursdays; M SE C onference R oom ( 3062 H H D ow) October 1 1 Dylan B ayerl ( Kioupakis g roup) 3:00---4:00pm November 1 Andy M artin ( Millunchick g roup) 2:00---3:00pm December 1 3 Brian R oberts ( Ku g roup) 2:00---3:00pm Thrust II --- s elected T hursdays, 3 :30---4:30pm; M SE C onference R oom ( 3062 H H D ow) September 2 7 Hang C hi ( Uher g roup) October 1 8 Reddy g roup November 2 9 Gunho Kim (Pipe group) Thrust III --- s elected

  12. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  13. Rowan Group | Open Energy Information

    Open Energy Info (EERE)

    Rowan Group Place: United Kingdom Product: ( Private family-controlled ) References: Rowan Group1 This article is a stub. You can help OpenEI by expanding it. Rowan Group is a...

  14. Tecate Group | Open Energy Information

    Open Energy Info (EERE)

    Tecate Group Jump to: navigation, search Name: Tecate Group Place: San Diego, California Zip: 92108-4400 Product: The Tecate Group is a global supplier of electronic components and...

  15. USJ Group | Open Energy Information

    Open Energy Info (EERE)

    USJ Group Jump to: navigation, search Name: USJ Group Place: So Paulo, Sao Paulo, Brazil Zip: 04534 000 Product: Sao Paulo based ethanol producer. References: USJ Group1 This...

  16. ERIC Group | Open Energy Information

    Open Energy Info (EERE)

    ERIC Group Jump to: navigation, search Name: ERIC Group Place: Italy Product: Italian project developer of PV power plants. References: ERIC Group1 This article is a stub. You...

  17. Rioglass Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Rioglass Group Place: Spain Product: A Spanish glass company supplying the automotive sector, who has recently announced to launch...

  18. Humus Group | Open Energy Information

    Open Energy Info (EERE)

    search Name: Humus Group Place: Brazil Product: Stakeholder in the Vertente ethanol mill in Brazil. References: Humus Group1 This article is a stub. You can help...

  19. Bumlai Group | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Bumlai Group Place: Brazil Product: Investor in ethanol plant So Fernando Acar e lcool. References: Bumlai Group1 This...

  20. Paro group | Open Energy Information

    Open Energy Info (EERE)

    Paro group Jump to: navigation, search Name: Paro group Place: Brazil Product: Ethanol producer that plans to jointly own an ethanol plant in Minas Gerais. References: Paro...

  1. Mouratoglou Group | Open Energy Information

    Open Energy Info (EERE)

    Mouratoglou Group Jump to: navigation, search Name: Mouratoglou Group Place: France Sector: Renewable Energy Product: Investment parent-company of EDF Energies Nouvelles, involved...

  2. Electrocell Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Electrocell Group Place: Sao Paolo, Brazil Zip: 05508-000 Product: Producer of fuel cells, accessories and controls. The company...

  3. Copisa Group | Open Energy Information

    Open Energy Info (EERE)

    Copisa Group Jump to: navigation, search Name: Copisa Group Place: Barcelona, Spain Zip: 8029 Product: Barcelona-based, construction company. Copisa is involved in building three...

  4. Emte Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Emte Group Place: Spain Sector: Renewable Energy, Services Product: String representation "EMTE is the ben ... ctor companies." is too long....

  5. Poyry Group | Open Energy Information

    Open Energy Info (EERE)

    Poyry Group Jump to: navigation, search Name: Poyry Group Place: Vantaa, Finland Zip: 1621 Product: Vantaa-based consulting and engineering firm, specialising in issues regarding...

  6. Anel Group | Open Energy Information

    Open Energy Info (EERE)

    Anel Group Jump to: navigation, search Name: Anel Group Place: ISTANBUL, Turkey Zip: 34768 Sector: Solar, Wind energy Product: Istanbul-based technological and engineering...

  7. Aksa Group | Open Energy Information

    Open Energy Info (EERE)

    Aksa Group Jump to: navigation, search Name: Aksa Group Place: Istanbul, Turkey Zip: 34212 Sector: Wind energy Product: Turkey-based international company recently involved in the...

  8. GEA Group | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: GEA Group Place: Bochum, Germany Zip: 44809 Sector: Biofuels, Solar Product: Bochum-based, engineering group specialising in process engineering...

  9. Daesung Group | Open Energy Information

    Open Energy Info (EERE)

    Daesung Group Place: Jongno-Gu Seoul, Korea (Republic) Zip: 110-300 Sector: Hydro, Hydrogen Product: Daesung Group, a Korea-based energy provider and electric machinary...

  10. Westly Group | Open Energy Information

    Open Energy Info (EERE)

    Westly Group Jump to: navigation, search Name: Westly Group Place: Menlo Park, California Zip: 94025 Product: Clean technology-oriented venture capital firm. References: Westly...

  11. Enerbio Group | Open Energy Information

    Open Energy Info (EERE)

    Enerbio Group Jump to: navigation, search Name: Enerbio Group Place: Porto Alegre, Rio Grande do Sul, Brazil Zip: 90480-003 Sector: Renewable Energy, Services Product: Brazilian...

  12. BOC Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: BOC Group Place: United Kingdom Zip: GU20 6HJ Sector: Services Product: UK-based industrial gases, vacuum technologies and distribution...

  13. Jinglong Group | Open Energy Information

    Open Energy Info (EERE)

    Jinglong Group Jump to: navigation, search Name: Jinglong Group Place: Ningjin, Hebei Province, China Product: Chinese manufacturer and supplier of monocrystalline silicon and...

  14. Verdeo Group | Open Energy Information

    Open Energy Info (EERE)

    Verdeo Group Jump to: navigation, search Name: Verdeo Group Place: Washington, DC Zip: 20006 Sector: Carbon Product: Washington based integrated carbon solutions company....

  15. Bazan Group | Open Energy Information

    Open Energy Info (EERE)

    Bazan Group Jump to: navigation, search Name: Bazan Group Place: Pontal, Brazil Zip: 14180-000 Product: Bioethanol production company Coordinates: -21.023149, -48.037099 Show...

  16. Delaney Group | Open Energy Information

    Open Energy Info (EERE)

    Delaney Group Jump to: navigation, search Name: Delaney Group Place: Gloversville, New York Zip: 12078 Sector: Services, Wind energy Product: Services company focused on...

  17. Ramky Group | Open Energy Information

    Open Energy Info (EERE)

    Ramky Group Jump to: navigation, search Name: Ramky Group Place: Andhra Pradesh, India Zip: 500082 Product: Focussed on construction, infrastructure development and waste...

  18. Samaras Group | Open Energy Information

    Open Energy Info (EERE)

    Samaras Group Jump to: navigation, search Name: Samaras Group Place: Greece Sector: Renewable Energy, Services Product: Greek consultancy services provider with specialization in...

  19. Altira Group | Open Energy Information

    Open Energy Info (EERE)

    Altira Group Jump to: navigation, search Name: Altira Group Address: 1675 Broadway, Suite 2400 Place: Denver, Colorado Zip: 80202 Region: Rockies Area Product: Venture Capital...

  20. Sunvim Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Sunvim Group Place: Gaomi, Shandong Province, China Zip: 261500 Product: Sunvim, a Chinese home textile maker, is also engaged in the...

  1. Balta Group | Open Energy Information

    Open Energy Info (EERE)

    Balta Group Jump to: navigation, search Name: Balta Group Place: Sint Baafs Vijve, Belgium Zip: 8710 Product: Belgium-based manufacturer of broadloom carpets, rugs and laminate...

  2. Noribachi Group | Open Energy Information

    Open Energy Info (EERE)

    Noribachi Group Jump to: navigation, search Name: Noribachi Group Place: Albuquerque, New Mexico Zip: 87104 Product: New Mexico-based private equity firm focused on investing in...

  3. Lucas Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Lucas Group Place: Chicago, Illinois Sector: Services Product: Renewable Energy Recruiters Year Founded: 1970 Coordinates: 41.850033,...

  4. Pohlen Group | Open Energy Information

    Open Energy Info (EERE)

    Pohlen Group Jump to: navigation, search Name: Pohlen Group Place: Geilenkirchen, Germany Product: Specialises in roof engineering, including installing and maintaining PV systems...

  5. Vaillant Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Vaillant Group Place: Remscheid, Germany Zip: 42859 Product: For nearly 130 years Vaillant has been at the forefront of heating technology....

  6. Ostwind Group | Open Energy Information

    Open Energy Info (EERE)

    Ostwind Group Jump to: navigation, search Name: Ostwind Group Place: Regensburg, Germany Zip: D-93047 Sector: Biomass, Hydro, Wind energy Product: Develops wind projects, and also...

  7. Schaffner Group | Open Energy Information

    Open Energy Info (EERE)

    Schaffner Group Jump to: navigation, search Name: Schaffner Group Place: Switzerland Zip: 4542 Product: Switzerland-based company supplier of components that support the efficient...

  8. Schulthess Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Schulthess Group Place: Wolfhausen, Switzerland Zip: CH-8633 Product: A company with activities in regenerative energy production,...

  9. TRITEC Group | Open Energy Information

    Open Energy Info (EERE)

    TRITEC Group Jump to: navigation, search Name: TRITEC Group Place: Basel, Switzerland Zip: CH-4123 Product: Basel-based installer and distributor for PV products. Coordinates:...

  10. Swatch Group | Open Energy Information

    Open Energy Info (EERE)

    Swatch Group Jump to: navigation, search Name: Swatch Group Place: Switzerland Product: String representation "The Swatch Grou ... ther industries" is too long. References: Swatch...

  11. Shenergy Group | Open Energy Information

    Open Energy Info (EERE)

    Shenergy Group Place: Shanghai Municipality, China Product: Gas and power project investor and developer based in Shanghai. References: Shenergy Group1 This article is a stub....

  12. Ralos Group | Open Energy Information

    Open Energy Info (EERE)

    Ralos Group Jump to: navigation, search Name: Ralos Group Place: Michelstadt, Germany Zip: D-64720 Sector: Solar Product: Germany-based solar project developer that specialises in...

  13. Enovos Group | Open Energy Information

    Open Energy Info (EERE)

    Enovos Group Jump to: navigation, search Name: Enovos Group Place: Germany Sector: Solar Product: Germany-based utility. The utility has interests in solar energy. References:...

  14. Richway Group | Open Energy Information

    Open Energy Info (EERE)

    by expanding it. Richway Group is a company based in Richmond, British Columbia. FROM WASTE TO ENERGY, YOUR WISE CHOICE Vision and Objectives Richway Group (Richway) is located...

  15. TEC Working Group Topic Groups Archives Protocols | Department of Energy

    Office of Environmental Management (EM)

    Protocols TEC Working Group Topic Groups Archives Protocols The Transportation Protocols Topic Group serves as an important vehicle for DOE senior managers to assess and incorporate stakeholder input into the protocols process. The Topic Group was formed to review a series of transportation protocols developed in response to a request for DOE to be more consistent in its approach to transportation.

  16. Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich Materials Citation Details In-Document Search Title: Nitrogen Oxides as a Chemistry Trap in Detonating...

  17. Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich Materials Citation Details In-Document Search Title: Nitrogen Oxides as a Chemistry Trap in Detonating ...

  18. Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas...

  19. TEC Working Group Topic Groups Tribal | Department of Energy

    Office of Environmental Management (EM)

    Tribal TEC Working Group Topic Groups Tribal The Tribal Topic Group was established in January 1998 to address government-to-government consultation between DOE and Indian Tribes affected by its transportation activities. The group focuses on transportation planning, funding, and training. Members convene at the semiannual TEC meetings and hold frequent conference calls between TEC sessions. The group has addressed issues such as a consolidated transportation funding grant, DOE's revised Indian

  20. Focus Group Training Work Group Meeting | Department of Energy

    Energy Savers [EERE]

    Date: September 13, 2012 In conjunction with the HAMMER Steering Committee meeting the HSS Focus Group Training Working Group Meeting was conducted from 2:00 PM to 4:30 PM at the HAMMER Training Facility in Richland, WA. Documents Available for Download PDF icon Meeting Agenda PDF icon Meeting Summary More Documents & Publications Focus Group Training Work Group Meeting DOE Training Reciprocity Program Training Work Group Charter

  1. METHANE AND NITROGEN ABUNDANCES ON PLUTO AND ERIS

    SciTech Connect (OSTI)

    Tegler, S. C.; Cornelison, D. M.; Abernathy, M. R.; Bovyn, M. J.; Burt, J. A.; Evans, D. E.; Maleszewski, C. K.; Thompson, Z.; Grundy, W. M.; Romanishin, W.; Vilas, F. E-mail: David.Cornelison@nau.ed E-mail: wjr@nhn.ou.ed

    2010-12-10

    We present spectra of Eris from the MMT 6.5 m Telescope and Red Channel Spectrograph (5700-9800 A, 5 A pixel{sup -1}) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 m Telescope and Boller and Chivens Spectrograph (7100-9400 A, 2 A pixel{sup -1}) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich, and comparing methane bands in our Eris and Pluto spectra and methane bands in our laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are {approx}10% and {approx}90% and Pluto's bulk methane and nitrogen abundances are {approx}3% and {approx}97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon-rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 {mu}m band is seen in spectra of Pluto and Triton.

  2. Removal of sulfur and nitrogen containing pollutants from discharge gases

    DOE Patents [OSTI]

    Joubert, James I. (Pittsburgh, PA)

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  3. Nitrogen Trifluoride-Based Fluoride- Volatility Separations Process: Initial Studies

    SciTech Connect (OSTI)

    McNamara, Bruce K.; Scheele, Randall D.; Casella, Andrew M.; Kozelisky, Anne E.

    2011-09-28

    This document describes the results of our investigations on the potential use of nitrogen trifluoride as the fluorinating and oxidizing agent in fluoride volatility-based used nuclear fuel reprocessing. The conceptual process uses differences in reaction temperatures between nitrogen trifluoride and fuel constituents that produce volatile fluorides to achieve separations and recover valuable constituents. We provide results from our thermodynamic evaluations, thermo-analytical experiments, kinetic models, and provide a preliminary process flowsheet. The evaluations found that nitrogen trifluoride can effectively produce volatile fluorides at different temperatures dependent on the fuel constituent.

  4. Nitrogen dioxide and respiratory illnesses in infants

    SciTech Connect (OSTI)

    Samet, J.M.; Lambert, W.E.; Skipper, B.J.; Cushing, A.H.; Hunt, W.C.; Young, S.A.; McLaren, L.C.; Schwab, M.; Spengler, J.D. )

    1993-11-01

    Nitrogen dioxide is an oxidant gas that contaminates outdoor air and indoor air in homes with unvented gas appliances. A prospective cohort study was carried out to test the hypothesis that residential exposure to NO2 increases incidence and severity of respiratory illnesses during the first 18 months of life. A cohort of 1,205 healthy infants from homes without smokers was enrolled. The daily occurrence of respiratory symptoms and illnesses was reported by the mothers every 2 wk. Illnesses with wheezing or wet cough were classified as lower respiratory tract. Indoor NO2 concentrations were serially measured with passive samplers place in the subjects' bedrooms. In stratified analyses, illness incidence rates did not consistently increase with exposure to NO2 or stove type. In multivariate analyses that adjusted for potential confounding factors, odds ratios were not significantly elevated for current or lagged NO2 exposures, or stove type. Illness duration, a measure of illness severity, was not associated with NO2 exposure. The findings can be extended to homes with gas stoves in regions of the United States where the outdoor air is not heavily polluted by NO2.

  5. September 8, 2011, HSS/Union Focus Group Work Group Telecom - Work Group Charter

    Energy Savers [EERE]

    TEMPLATE Office of Health, Safety and Security Focus Group [Name of Work Group] Work Group Charter (Date) I. PURPOSE The HSS Focus Group [Name of Work Group] is one of several HSS Work Groups, established to address worker health, safety and security programs improvements across the U.S. Department of Energy Complex. The [Name of Work Group] has been established to (state specific purpose). II. OBJECTIVES (State the desired impact(s) and major outcome(s) for, the Work Group) 1. Establish

  6. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  7. Science Education Group | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Education Group View larger image Sci Ed Group 15 View larger image Group 21

  8. Recovery of nitrogen and light hydrocarbons from polyalkene purge gas

    DOE Patents [OSTI]

    Zwilling, Daniel Patrick; Golden, Timothy Christoph; Weist, Jr., Edward Landis; Ludwig, Keith Alan

    2003-06-10

    A method for the separation of a gas mixture comprises (a) obtaining a feed gas mixture comprising nitrogen and at least one hydrocarbon having two to six carbon atoms; (b) introducing the feed gas mixture at a temperature of about 60.degree. F. to about 105.degree. F. into an adsorbent bed containing adsorbent material which selectively adsorbs the hydrocarbon, and withdrawing from the adsorbent bed an effluent gas enriched in nitrogen; (c) discontinuing the flow of the feed gas mixture into the adsorbent bed and depressurizing the adsorbent bed by withdrawing depressurization gas therefrom; (d) purging the adsorbent bed by introducing a purge gas into the bed and withdrawing therefrom an effluent gas comprising the hydrocarbon, wherein the purge gas contains nitrogen at a concentration higher than that of the nitrogen in the feed gas mixture; (e) pressurizing the adsorbent bed by introducing pressurization gas into the bed; and (f) repeating (b) through (e) in a cyclic manner.

  9. Hydrogen and nitrogen control in ladle and casting operations

    SciTech Connect (OSTI)

    Fruehan, R. J.; Misra, Siddhartha

    2005-01-15

    In recent years there has been an increasing demand to reduce and control the amount of dissolved gases in steel. Hydrogen and nitrogen are two of the most important gases which when dissolved in liquid steel affect its properties significantly.

  10. Substitutional Nitrogen in Nanodiamond and Bucky-Diamond Particles

    SciTech Connect (OSTI)

    Barnard, Amanda S.; Sternberg, Michael G.

    2005-09-15

    The inclusion of dopants (such as nitrogen) in diamond nanoparticles is expected to be important for use in future nanodevices, such as qubits for quantum computing. Although most commercial diamond nanoparticles contain a small fraction of nitrogen, it is still unclear whether it is located within the core or at the surface of the nanoparticle. Presented here are density functional tight binding simulations examining the configuration, potential energy surface, and electronic charge of substitutional nitrogen in nanodiamond and bucky-diamond particles. The results predict that nitrogen is likely to be positioned at the surface of both hydrogenated nanodiamond and (dehydrogenated) bucky-diamond, and that the coordination of the dopants within the particles is dependent upon the surface structure.

  11. Nitrogen is a deep acceptor in ZnO

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence bandmore » relative to the vacuum level.« less

  12. Amplification of subnanosecond nitrogen laser pulses in UV dyes

    SciTech Connect (OSTI)

    Au, M.; Rayner, D.M.; Malatesta, V.; Hackett, P.A.

    1982-12-01

    The performance of a short pulse netrogen laser system have been improved by replacing the subatmospheric TE nitrogen laser amplifier with a XV xenon chloride excimer pumped dye amplifier. (AIP)

  13. Nitrogen expander cycles for large capacity liquefaction of natural gas

    SciTech Connect (OSTI)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung

    2014-01-29

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  14. TEC Working Group Topic Groups Security Key Documents | Department...

    Office of Environmental Management (EM)

    Key Documents TEC Working Group Topic Groups Security Key Documents Key Documents PDF icon Security TG Work Plan August 7, 2006 PDF icon Security Lessons Learned Document August 2,...

  15. Membrane-augmented cryogenic methane/nitrogen separation

    DOE Patents [OSTI]

    Lokhandwala, K.

    1997-07-15

    A membrane separation process is described which is combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C{sub +2} hydrocarbons that might otherwise freeze and plug the cryogenic equipment. 10 figs.

  16. Membrane-augmented cryogenic methane/nitrogen separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid (Menlo Park, CA)

    1997-01-01

    A membrane separation process combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C.sub.3+ hydrocarbons that might otherwise freeze and plug the cryogenic equipment.

  17. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Core-Hole Localization in Molecular Nitrogen Probing Core-Hole Localization in Molecular Nitrogen Print Wednesday, 25 February 2009 00:00 The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic

  18. Nitrogen concentration and isotope dataset for environmental samples from

    Office of Scientific and Technical Information (OSTI)

    2012 and 2013, Barrow, Alaska (Dataset) | Data Explorer Data Explorer Search Results Nitrogen concentration and isotope dataset for environmental samples from 2012 and 2013, Barrow, Alaska Title: Nitrogen concentration and isotope dataset for environmental samples from 2012 and 2013, Barrow, Alaska Dataset includes nitrate concentrations for polygonal active layer samples, snowmelt; ammonium concentrations for active layer samples; nitrate isotopes for active layer samples, snowmelt,

  19. TEC Working Group Topic Groups Rail | Department of Energy

    Office of Environmental Management (EM)

    Rail TEC Working Group Topic Groups Rail The Rail Topic Group has the responsibility to identify and discuss current issues and concerns regarding rail transportation of radioactive materials by the Department of Energy (DOE). The group's current task is to examine different aspects of rail transportation including inspections, tracking and radiation monitoring, planning and process, and review of lessons learned. Ultimately, the main goal for members will be to assist in the identification of

  20. TEC Working Group Topic Groups Routing | Department of Energy

    Office of Environmental Management (EM)

    Routing TEC Working Group Topic Groups Routing ROUTING The Routing Topic Group has been established to examine topics of interest and relevance concerning routing of shipments of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) to a national repository at Yucca Mountain, Nevada by highway, rail, and intermodal operations that could involve use of barges. Ultimately, the main goal for the topic group members will be to provide stakeholder perspectives and input to the Office of

  1. TEC Working Group Topic Groups Archives Communications | Department of

    Office of Environmental Management (EM)

    Energy Communications TEC Working Group Topic Groups Archives Communications The Communications Topic Group was convened in April 1998 to improve internal and external strategic level communications regarding DOE shipments of radioactive and other hazardous materials. Major issues under consideration by this Topic Group include: - Examination of DOE external and internal communications processes; - Roles and responsibilities when communicating with a diverse range of stakeholders; and -

  2. TEC Working Group Topic Groups Archives Training - Medical Training |

    Office of Environmental Management (EM)

    Department of Energy Training - Medical Training TEC Working Group Topic Groups Archives Training - Medical Training The TEC Training and Medical Training Issues Topic Group was formed to address the training issues for emergency responders in the event of a radioactive material transportation incident. The Topic Group first met in 1996 to assist DOE in developing an approach to address radiological emergency response training needs and to avoid redundancy of existing training materials. The

  3. Research Group Websites - Links - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Group Websites Dr. Sherry J. Yennello's Research Group Nuclear Theory Group Dr. Dan Melconian's Research Group Dr. Cody Folden's Research Group...

  4. Measurement of nitrogen content in a gas mixture by transforming the nitrogen into a substance detectable with nondispersive infrared detection

    DOE Patents [OSTI]

    Owen, Thomas E. (Helotes, TX); Miller, Michael A. (San Antonio, TX)

    2010-08-24

    A method of determining the amount of nitrogen in a gas mixture. The constituent gases of the mixture are dissociated and transformed to create a substance that may measured using nondispersive infrared adsorption techniques.

  5. Measurement of nitrogen content in a gas mixture by transforming the nitrogen into a substance detectable with nondispersive infrared detection

    DOE Patents [OSTI]

    Owen, Thomas E.; Miller, Michael A.

    2007-03-13

    A method of determining the amount of nitrogen in a gas mixture. The constituent gases of the mixture are dissociated and transformed to create a substance that may measured using nondispersive infrared adsorption techniques.

  6. Weighted Running Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weighted Running Jobs by Group Weighted Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2016-02-01 08:06:59

  7. Klebl Group | Open Energy Information

    Open Energy Info (EERE)

    Zip: 6388 Product: Construction and engineering group with some experience building PV plants. References: Klebl Group1 This article is a stub. You can help OpenEI by expanding...

  8. Sova Group | Open Energy Information

    Open Energy Info (EERE)

    Sova Group Jump to: navigation, search Name: Sova Group Place: Kolkata, West Bengal, India Zip: 700012 Product: Kolkatta-based iron and steel major. The firm plans to foray into PV...

  9. Minoan Group | Open Energy Information

    Open Energy Info (EERE)

    Minoan Group Jump to: navigation, search Name: Minoan Group Place: Kent, England, United Kingdom Zip: BR5 1XB Sector: Solar Product: UK-based developer of resorts in Greece that...

  10. ESV Group | Open Energy Information

    Open Energy Info (EERE)

    ESV Group Jump to: navigation, search Name: ESV Group Place: London, England, United Kingdom Zip: W1K 4QH Sector: Biofuels Product: UK-based investment agri-business involved in...

  11. Ensus Group | Open Energy Information

    Open Energy Info (EERE)

    Ensus Group Jump to: navigation, search Name: Ensus Group Place: Stockton-on-Tees, England, United Kingdom Zip: TS15 9BW Product: North Yorkshire-based developer & operator of...

  12. Camco Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Camco Group Place: Jersey, United Kingdom Zip: JE2 4UH Sector: Carbon, Renewable Energy, Services Product: UK-based firm that provides...

  13. Expanded Pending Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expanded Pending Jobs by Group Expanded Pending Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2016-02-01 08:07:29

  14. TEC Working Group Topic Groups Security | Department of Energy

    Office of Environmental Management (EM)

    Security TEC Working Group Topic Groups Security The Security Topic group is comprised of regulators, law enforcement officials, labor and industry representatives and other subject matter experts concerned with secure transport of spent nuclear fuel (SNF) and high level waste (HLW) to Yucca Mountain. Current activities include updating the security portion of DOE's Transportation Practices Manual, identifying key State, Tribal and local security officials and organizations, and examining

  15. Hydrogen and Nitrogen Control in Ladle and Casting Operations

    SciTech Connect (OSTI)

    Richard J. Fruehan; Siddhartha Misra

    2005-01-15

    In recent years there has been an increasing demand to reduce and control the amount of dissolved gases in steel. Hydrogen and nitrogen are two of the most important gases which when dissolved in liquid steel affect its properties significantly. Several steelmaking additions have been investigated in this research for their effect on the hydrogen and nitrogen content of steels. It has been established that calcium hydroxide (hydrated lime) acts as a source of hydrogen. Carburizers, such as metallurgical coke, were found to result in no hydrogen pickup when added to liquid steel. Addition of petroleum coke, on the other hand, increased the hydrogen content of liquid steel. Ferroalloy such as medium carbon ferromanganese when added to the liquid iron was found to increase its nitrogen content, the increase being proportional to the amount of ferroalloy added. Similarly, addition of pitch coke, which had a significant nitrogen impurity, increased the nitrogen content of liquid iron. A mathematical model was developed to quantify the absorption of nitrogen and hydrogen from the air bubbles entrained during tapping of liquid steel. During the bottom stirring of liquid metal in a ladle, the inert gas escaping from the top displaces the slag layer and often forms an open eye. The absorption of atmospheric nitrogen through the spout eye was estimated for different slag thickness and gas flow rate. The ultimate goal of this research was to develop a comprehensive set of equations which could predict the nitrogen and hydrogen pickup from their various sources. Estimates of hydrogen and nitrogen pickup during the steel transfer operations such as tapping and ladle stirring and the predicted pickup from steelmaking additions were integrated into empirical equations. The comprehensive model is designed to predict the gas pickup under varying operating conditions such as the metal oxygen and sulfur content, the total tapping or stirring time, the stirring gas flow rate and the slag thickness. The model predictions are based on mathematical and empirical evidence which are derived from thermodynamic and kinetic fundamental principles.

  16. Nitrogen Monitoring of West Hackberry 117 Cavern Wells.

    SciTech Connect (OSTI)

    Bettin, Giorgia; Lord, David

    2015-02-01

    U.S. Strategic Petroleum Reserve (SPR) oil storage cavern West Hackberry 117 was tested under extended nitrogen monitoring following a successful mechanical integrity test in order to validate a newly developed hydrostatic column model to be used to differentiate between normal "tight" well behavior and small-leak behavior under nitrogen. High resolution wireline pressure and temperature data were collected during the test period and used in conjunction with the hydrostatic column model to predict the nitrogen/oil interface and the pressure along the entire fluid column from the bradenhead flange nominally at ground surface to bottom of brine pool. Results here and for other SPR caverns have shown that wells under long term nitrogen monitoring do not necessarily pressurize with a relative rate (P N2 /P brine) of 1. The theoretical relative pressure rate depends on the well configuration, pressure and the location of the nitrogen-oil interface and varies from well to well. For the case of WH117 the predicted rates were 0.73 for well A and 0.92 for well B. The measured relative pressurization rate for well B was consistent with the model prediction, while well A rate was found to be between 0.58-0.68. A number of possible reasons for the discrepancy between the model and measured rates of well A are possible. These include modeling inaccuracy, measurement inaccuracy or the possibility of the presence of a very small leak (below the latest calculated minimum detectable leak rate).

  17. METHOD FOR THE PREPARATION OF BINARY NITROGEN-FLUORINE COMPOUNDS

    DOE Patents [OSTI]

    Frazer, J.W.

    1962-05-01

    A process is given for preparing binary nitrogenfluorine compounds, in particular, tetrafluorohydrazine (N/sub 2/F/sub 4/) and difluorodiazine (N/sub 2/ F/sub 2/), The process comprises subjecting gaseous nitrogen trifluoride to the action of an alternating current electrical glow discharge in the presence of mercury vapors. By the action of the electrical discharge, the nitrogen trifluoride is converted into a gaseous product comprising a mixture of tetrafluorohydrazine, the isomers of difluorodiazine, and other impurities including nitrogen, nitrogen oxides, silicon tetrafiuoride, and unreacted nitrogen trifluoride. The gaseous products and impurities are passed into a trap maintained at about - 196 deg C to freeze out the desired products and impurities with the exception of nitregen gas which passes off from the trap and is discarded. Subsequently, the desired products and remaining impurities are warmed to the gaseous state and passed through a silica gel trap maintained at about - 55DEC, wherein the desired tetrafluorohydrazine and difluorodiazine products are retained while the remaining gaseous impurities pass therethrough. The desired products are volatilized from the silica gel trap by heating and then separated by gas chrounatography means into the respective tetrafluorohydrazine and difluorodiazine products. (A.e.C)

  18. Groups

    Open Energy Info (EERE)

    groupbig-clean-data" target"blank">read more

    Big Data Concentrated Solar Power DataAnalysis energy efficiency energy storage expert systems machine learning...

  19. TEC Working Group Topic Groups Archives Route Identification Process |

    Office of Environmental Management (EM)

    Department of Energy Route Identification Process TEC Working Group Topic Groups Archives Route Identification Process Route Identification Process Items Available for Download PDF icon Routing Discussion Paper (April 1998) More Documents & Publications TEC Meeting Summaries - January 1997 TEC Meeting Summaries - July 1997 TEC Meeting Summaries - January 1998

  20. HASQARD Focus Group - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracting Wastren Advantage, Inc. HASQARD Focus Group Contracting ORP Contracts and Procurements RL Contracts and Procurements CH2M HILL Plateau Remediation Company Mission Support Alliance Washington Closure Hanford HPM Corporation (HPMC) Wastren Advantage, Inc. Analytical Services HASQARD Focus Group Bechtel National, Inc. Washington River Protection Solutions HASQARD Focus Group Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size HASQARD Document HASQARD

  1. Creating Los Alamos Women's Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raeanna Sharp-Geiger-Creating a cleaner, greener environment March 28, 2014 Creating Los Alamos Women's Group Inspired by their informal dinner discussions, Raeanna Sharp-Geiger and a few of her female colleagues decided to create a new resource a few years ago, the Los Alamos Women's Group. They wanted to create a comfortable environment where women from all across the diverse Lab could network, collaborate, share ideas and gain a broader perspective of the Lab's mission. The Women's Group has

  2. Copelouzos Group | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Copelouzos Group Place: Athens, Greece Product: Fully integrated business development organisation, servicing key industrial and technological sectors such...

  3. XSD Groups | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging (IMG) Primary Contact: Francesco De Carlo Research Disciplines: Materials Science, Biology, Physics, Life Sciences The IMG group designs, supports, and operates...

  4. Arakaki Group | Open Energy Information

    Open Energy Info (EERE)

    Name: Arakaki Group Place: Fernandopolis, Sao Paulo, Brazil Product: Brazil based agriculture company, which owns 50% of an ethanol plant. Coordinates: -20.284244,...

  5. Royalstar Group | Open Energy Information

    Open Energy Info (EERE)

    search Name: Royalstar Group Place: Hefei, Anhui Province, China Sector: Solar Product: Chinese manufacturer of washing machines, solar water heaters, and as of June 2006,...

  6. Groupe Valeco | Open Energy Information

    Open Energy Info (EERE)

    Name: Groupe Valeco Place: Montpellier, France Zip: 34070 Sector: Biomass, Solar, Wind energy Product: Develops wind, solar, biomass and cogeneration projects in France....

  7. Airvoice Group | Open Energy Information

    Open Energy Info (EERE)

    Airvoice Group Place: Gurgaon, Haryana, India Zip: 122001 Sector: Services, Solar, Wind energy Product: Holding company with interest in tele-solutions, petrochemicals and...

  8. Kedco Group | Open Energy Information

    Open Energy Info (EERE)

    Co. Cork, Ireland Product: Cork-based project developer of biogas and gasification plants; also active in the residential heating sector. References: Kedco Group1 This...

  9. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells.

  10. Martifer Group | Open Energy Information

    Open Energy Info (EERE)

    search Name: Martifer Group Place: Oliveira de Frades, Portugal Zip: 3684-001 Sector: Biofuels, Solar, Wind energy Product: Portugal-based company divided across four core business...

  11. Traction Drive Systems Breakout Group

    Broader source: Energy.gov (indexed) [DOE]

    TRACTION DRIVE SYSTEM BREAKOUT GROUP EV Everywhere Workshop July 24, 2012 Breakout Session 1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the...

  12. Groups | OpenEI Community

    Open Energy Info (EERE)

    technologies. Groups Home Title Posts Members Subgroups Description Created sort icon Big Clean Data 2 We aim to bring together professionals who want to share ideas, knowledge...

  13. DAQO Group | Open Energy Information

    Open Energy Info (EERE)

    An enterprise group whose industry field involves electric, environmental protection, science and technology and hotels, and is also setting up a polysilicon factory. References:...

  14. Tim Kuneli, Electronics Maintenance Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tim Kuneli, Electronics Maintenance Group Print The recent ALS power supply failure was one of the most challenging projects that Electronics Engineer Technical Superintendent Tim...

  15. Acterra Group | Open Energy Information

    Open Energy Info (EERE)

    Product: Acterra Group provides consulting, project financing, services and support to energy, natural resource, and sustainability companies. Coordinates: 44.671312,...

  16. Marseglia Group | Open Energy Information

    Open Energy Info (EERE)

    diversified infrastructure developer. The firm is active in the fields of energy, tourism and hotels and real estate. References: Marseglia Group1 This article is a stub....

  17. TUNL Nuclear Data Evaluation Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TUNL Nuclear Data Evaluation Group As a part of the United States Nuclear Data Network and the international Nuclear Structure and Decay Data Evaluators' Network, the Nuclear Data...

  18. Unix File Groups at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    disk and tape. At NERSC, groups are also used to control access to certain computational resources (e.g., batch queues, testbed systems, licensed software). Overview of Unix...

  19. Schaeffler Group | Open Energy Information

    Open Energy Info (EERE)

    rolling bearings and linear products worldwide as well as a renowned supplier to the automotive industry. References: Schaeffler Group1 This article is a stub. You can help...

  20. Direct visualization of atomically precise nitrogen-doped graphene nanoribbons

    SciTech Connect (OSTI)

    Zhang, Yi; Zhang, Yanfang; Li, Geng; Lu, Jianchen; Du, Shixuan, E-mail: sxdu@iphy.ac.cn, E-mail: feng@mpip-mainz.mpg.de; Gao, Hong-Jun [Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Lin, Xiao [University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100049 (China); Berger, Reinhard; Feng, Xinliang, E-mail: sxdu@iphy.ac.cn, E-mail: feng@mpip-mainz.mpg.de; Mllen, Klaus [Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz (Germany)

    2014-07-14

    We have fabricated atomically precise nitrogen-doped chevron-type graphene nanoribbons by using the on-surface synthesis technique combined with the nitrogen substitution of the precursors. Scanning tunneling microscopy and spectroscopy indicate that the well-defined nanoribbons tend to align with the neighbors side-by-side with a band gap of 1.02?eV, which is in good agreement with the density functional theory calculation result. The influence of the high precursor coverage on the quality of the nanoribbons is also studied. We find that graphene nanoribbons with sufficient aspect ratios can only be fabricated at sub-monolayer precursor coverage. This work provides a way to construct atomically precise nitrogen-doped graphene nanoribbons.

  1. Interagency Sustainability Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Sustainable Buildings & Campuses Interagency Sustainability Working Group Interagency Sustainability Working Group The Interagency Sustainability Working Group ...

  2. Cesium Pentazolate: a New Nitrogen-rich Energetic Material (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Cesium Pentazolate: a New Nitrogen-rich Energetic Material Citation Details In-Document Search Title: Cesium Pentazolate: a New Nitrogen-rich Energetic Material Authors: Steele, B A ; Stavrou, E ; Prakapenka, V B ; Radousky, H B ; Zaug, J M ; Crowhurst, J C ; Oleynik, I I Publication Date: 2015-09-15 OSTI Identifier: 1223838 Report Number(s): LLNL-PROC-677378 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Conference Resource Relation: Conference: Presented

  3. Electrical conductivity and equation of state of liquid nitrogen, oxygen,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    benzene, and 1-butene shocked to 60 GPa (Technical Report) | SciTech Connect Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa Citation Details In-Document Search Title: Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and

  4. Engineering shallow spins in diamond with nitrogen delta-doping

    SciTech Connect (OSTI)

    Ohno, Kenichi; Joseph Heremans, F.; Bassett, Lee C.; Myers, Bryan A.; Toyli, David M.; Bleszynski Jayich, Ania C.; Palmstrom, Christopher J.; Awschalom, David D.

    2012-08-20

    We demonstrate nanometer-precision depth control of nitrogen-vacancy (NV) center creation near the surface of synthetic diamond using an in situ nitrogen delta-doping technique during plasma-enhanced chemical vapor deposition. Despite their proximity to the surface, doped NV centers with depths (d) ranging from 5 to 100 nm display long spin coherence times, T{sub 2} > 100 {mu}s at d = 5 nm and T{sub 2} > 600 {mu}s at d {>=} 50 nm. The consistently long spin coherence observed in such shallow NV centers enables applications such as atomic-scale external spin sensing and hybrid quantum architectures.

  5. SSRL Users' Organization | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    users, particularly students, to share their research results or new techniques; promoting, selecting recipients, and presenting the Farrel W. Lytle Award and the Melvin P....

  6. THE STANFORD SYNCHROTRON RADIATION LIGHTSOURCE STRATEGIC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... on the understanding of the complex biological machinery that drive the biology in cells. ... and making distribution of timing signals inexpensive. * Controls Upgrade ...

  7. SSRLUO 2003 Executive Committee Members | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    925-423-9719 Nicholas Pingitore UTEP, Environmental & Geosciences, El Paso, TX 79968-0555 Analytical geochemistprofessor at the University of Texas at El Paso with broad...

  8. SSRLUO 2002 Executive Committee Members | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pingitore University of Texas at El Paso Environmental & Geosciences El Paso, TX 79968-0555 Phone: 915-747-5754 Fax: 915-747-5073 E-mail: nick@geo.utep.edu MACROMOLECULAR...

  9. Graphite and its Hidden Superconductivity | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    located at certain surfaces or interfaces between semiconducting crystalline regions with Bernal stacking order inside graphite samples. Recently published theoretical works...

  10. Graphite and its Hidden Superconductivity | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    located at certain surfaces or interfaces between semiconducting crystalline regions with Bernal stacking order inside graphite samples. Recently published theoretical works 9,10...

  11. SSRLUO Executive Committee Meetings | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource Executive Committee Meetings All users are encouraged to participate in SSRL Users' Organization activities. Meetings of the SSRL Users' Organization Executive Committee (SSRLUO-EC) include open sessions that all members of the SSRL user community are invited to attend. Meetings are held 2-3 times a year and include an annual users' conference. If you have issues that you would like to present to the committee or have added as a discussion item on the next agenda, please feel

  12. Translocator Protein Structure and Function | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource Translocator Protein Structure and Function Monday, November 30, 2015 Translocator protein (TSPO) is an ancient conserved protein whose functions in bacteria and higher eukaryotes are yet to be clearly defined in spite of more than 30 years of study. In mitochondria, it was first recognized as an outer membrane protein that binds benzodiazepine drugs, but distinct from the central nervous system site, the GABAA receptor(1). Originally called the peripheral

  13. Ultrafast Demagnetisation at 20 | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource Ultrafast Demagnetisation at 20 Wednesday, February 10, 2016 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Christian Dornes, ETH Zurich Program Description First discovered in 1996, ultrafast demagnetisation has sparked a wide variety of research in magnetism on the femtosecond timescale. The effect observed was that the elemental ferromagnet nickel demagnetises by a considerable amount (>30%) upon excitation by an ultrashort IR laser pulse. This result was seminal

  14. Publications and Presentations at Scientific Meetings | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Giammar, and B.M. Tebo (2008) Indirect UO2 oxidation by Mn(II)-oxidizing spores of Bacillus sp. strain SG-1 and the effect of U and Mn concentrations. Environ. Sci. Technol....

  15. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Office of Environmental Management (EM)

    More Documents & Publications Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Iceland Geothermal Conference 2013 - Geothermal...

  16. Geothermal Technologies Program Overview Presentation at Stanford...

    Office of Environmental Management (EM)

    Fiscal Year 2013 Budget Request Briefing Geothermal Technologies Program GRC Presentation, 1012012 Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett...

  17. Single particle imaging: opportunities and challenges | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single particle imaging: opportunities and challenges Thursday, December 17, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Ivan Vartaniants, DESY Program...

  18. Preliminary Notice of Violation, Stanford University - November...

    Broader source: Energy.gov (indexed) [DOE]

    worker safety and health program requirements (10 C.F.R. 851) relating to a series of laser and energetic beam events that occurred at DOE's SLAC National Accelerator Laboratory....

  19. Workshop: Synchrotron Applications in Chemical Catalysis | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Synchrotron Applications in Chemical Catalysis Tuesday, October 25, 2011 - 8:00am 2011 SSRL/LCLS Annual Users Conference This workshop, part of the 2011 SSRL/LCLS Annual Users Conference, will focus on understanding processes in homogeneous (both biological and small molecule) and heterogeneous catalysis, using synchrotron-based methods. The workshop will cover more traditional applications (using XANES and EXAFS), as well as applications of XES, RIXS and

  20. Single particle imaging: opportunities and challenges | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Single particle imaging: opportunities and challenges Thursday, December 17, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Ivan Vartaniants, DESY Program Description X-ray free-electron lasers (XFELs) may allow us to employ the single-particle imaging (SPI) method to determine the structure of macromolecules that do not form stable crystals [1]. Ultrashort pulses of 10 fs and less allow us to outrun complete disintegration by Coulomb

  1. Publications and Presentations at Scientific Meetings | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Publications and Presentations at Scientific Meetings Calendar Year 2014: †Denotes papers on which a university or other collaborator was the lead author. Alessi D.S., J.S. Lezama-Pacheco, J.E. Stubbs, M. Janousch, J.R. Bargar, P. Persson, and R. Bernier-Latmani (2014) The product of microbial uranium reduction includes multiple species with U(IV)-phosphate coordination, Geochim. Cosmochim. Acta, in press. †Qafoku, N.P., B.N. Gartman, R.K. Kukkadapu,

  2. Stanford Synchrotron Radiation Lightsource: SPEAR3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the SLAC Gun Test Facililty Friday, December 3, 2010 A workshop was held on Friday, December 3, 2010 to discuss possible photo-cathode experiments at the SLAC Gun Test Facility ...

  3. Proprietary Research | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proprietary Research Proprietary Research is defined as that for which users request confidentiality of proposal, data and results for a certain period of time. This research...

  4. SSRL Deadlines | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 pm 82115-3 pm 82215; some user portal functions may not be available during this outage. XrayVUV BTR deadline extended thru 8 am 82415. The current run year is November...

  5. SSRL Events & Presentations | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anford-synchrotron-radiation-lightsource-ssrl Updated: 11 hours 1 min ago SSRL Hosts 17th Annual RapiData Course in Macromolecular X-ray Diffraction Mon, 20150518 - 9:30am The...

  6. Scientific Advisory Committee | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Role and Charter of the SSRL SAC Scope The SSRL Scientific Advisory Committee (SAC) reports to and advises the SSRL Director on issues related to:...

  7. Proposal Review Panel | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Physics New Haven, CT, USA Owen Duckworth (MEIS) North Carolina State University Soil Science Raleigh, NC, USA Lawrence Que, Jr. (BIO) University of Minnesota Department...

  8. Systems Biology in Prokaryote - Eukaryote Symbiosis | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vibrational structures; but, information about the latter two are not accessible by diffraction methods. Fortunately, spectroscopic methods provide data to help resolve...

  9. Workshop: Synchrotron Applications in Chemical Catalysis | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications in Chemical Catalysis Tuesday, October 25, 2011 - 8:00am 2011 SSRLLCLS Annual Users Conference This workshop, part of the 2011 SSRLLCLS Annual Users...

  10. User Research Administration | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-rayVUV Proposals, Scheduling) Tel: (650) 926-2886 Fax: (650) 926-3600 Joint SSRLLCLS User Registration, Safety Training, Check-In, On-Boarding Services Sacha Hanigan SLAC...

  11. SSRLUO Executive Committee Meetings | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users Executive Committee Representatives. Review summary article about the Annual SSRLLCLS Users' Conference & Workshops, October 7-10, 2015. Review previous programs from the...

  12. Stanford Synchrotron Radiation Lightsource: SPEAR3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The second revolutionary discovery made at SPEAR was that of a new particle called the tau, which turned out to be the third in the sequence of electrically charged elementary...

  13. Translocator Protein Structure and Function | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Translocator Protein Structure and Function Monday, November 30, 2015 Translocator protein (TSPO) is an ancient conserved protein whose functions in bacteria and higher eukaryotes...

  14. SSRLUO 1998 Executive Committee Members | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Francisco CA 94080 Ph: (415) 225-2523 Fax: (415) 225-3734 E-mail: devos@gene.com Joe Wong Dept of Chem & Mat Science PO Box 808, L-356 Livermore CA 94551 Work:(510) 423-6385...

  15. Synchrotron Studies for Nuclear Security | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structure studies in the Tender X-ray region are giving insights on closing the nuclear fuel cycle, and micro-spectroscopy on single particles are of growing interest for...

  16. Radioactive Materials at SSRL | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Run, there are requests from users to transport and use small amounts of radioactive material in their experiments, either as stand alone samples or in a matrix of other...

  17. Stanford-Berkeley Summer School 2005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    different methods, and a broad range of scientific applications. It will cover both fundamentals of EUV, soft x-ray ,and hard x-ray synchrotron radiation and its use in...

  18. Celebrating Artie Bienenstock | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kortright, Lawrence Berkeley National Laboratory and Program Committee Chair Chi-Chang Kao, SLAC Director Early Science Chair: Brian Stephenson 9:15 Slade Cargill, Lehigh...

  19. Experimental Equipment | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment SSRL plans the distribution of its limited equipment on the basis of the information supplied on the Beam Time Request Form and the User Support Requirements Form. Please make sure to state all of your needs. Standard X-Ray Station Equipment Standard equipment to be found on an x-ray station includes: (1 ea.) Small and large ionization chambers (1) Exit slits (1) X-Y sample positioner (3) Keithly 427 current-to-voltage amplifier TEK 2215 60 MHZ 2 channel scope Voltage-to-frequency

  20. Floor Support | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Floor Support Service Responsible Person BLDG Extension (650) 926-XXXX Beam Status Duty Operator 120 926-2326 (BEAM) Duty Operator Cell Duty Operator 120 926-4040 User Program/Beam Line Scheduling X-ray/VUV Beam Lines Macromolecular Crystallography/Bio SAXS Beam Lines Cathy Knotts TBD Lisa Dunn 137 120 120 3191 2886 2087 User Check-In/Badging Jackie Kerlegan 120 2079 User Financial Accounts Jackie Kerlegan 120 2079 Beam Lines/ VUV Bart Johnson 120 3858 Beam Lines/ X-ray Bart Johnson 120 3858