Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Strain relaxation of thick (11–22) semipolar InGaN layer for long wavelength nitride-based device  

SciTech Connect (OSTI)

In this study, the properties of thick stress-relaxed (11–22) semipolar InGaN layers were investigated. Owing to the inclination of growth orientation, misfit dislocations (MDs) occurred at the heterointerface when the strain state of the (11–22) semipolar InGaN layers reached the critical point. We found that unlike InGaN layers based on polar and nonpolar growth orientations, the surface morphologies of the stress-relaxed (11–22) semipolar InGaN layers did not differ from each other and were similar to the morphology of the underlying GaN layer. In addition, misfit strain across the whole InGaN layer was gradually relaxed by MD formation at the heterointerface. To minimize the effect of surface roughness and defects in GaN layers on the InGaN layer, we conducted further investigation on a thick (11–22) semipolar InGaN layer grown on an epitaxial lateral overgrown GaN template. We found that the lateral indium composition across the whole stress-relaxed InGaN layer was almost uniform. Therefore, thick stress-relaxed (11–22) semipolar InGaN layers are suitable candidates for use as underlying layers in long-wavelength devices, as they can be used to control strain accumulation in the heterostructure active region without additional influence of surface roughness.

Kim, Jaehwan; Min, Daehong; Jang, Jongjin; Lee, Kyuseung; Chae, Sooryong; Nam, Okhyun, E-mail: ohnam@kpu.ac.kr [Advanced Photonics Research Center/LED Technology Center, Department of Nano-Optical Engineering, Korea Polytechnic University, 237, Sangidaehak-ro, Siheung-si, Gyeonggi-do 429-793 (Korea, Republic of)

2014-10-28T23:59:59.000Z

2

E-Print Network 3.0 - aluminum nitride thin Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thin Search Powered by Explorit Topic List Advanced Search Sample search results for: aluminum nitride thin Page: << < 1 2 3 4 5 > >> 1 Packaging Design for Lawrence Berkeley...

3

Growth and optical characterization of multilayers of InGaN quantum dots  

E-Print Network [OSTI]

carried out using a two photon excitation technique employing a picosecond mode-locked Ti-sapphire laser emitting at 790 nm. Samples were mounted in a cold -finger cryostat that could be cooled down to 4.2 K and the laser was focused through a microscope... GaN quantum dots Article Type: Research Paper Section/Category: General subjects Keywords: B2. InGaN quantum dots; A1. Photoluminescence; B1. Nitrides; A3. Metal-organic vapour phase epitaxy Corresponding Author: Dr Tongtong Zhu, Ph...

Zhu, Tontong; El-Ella, Haitham; Reid, Benjamin; Holmes, Mark; Taylor, Robert; Kappers, Menno; Oliver, Rachel

2012-01-01T23:59:59.000Z

4

IIl-nitride nanowires and heterostructures : growth and optical properties on nanoscale  

E-Print Network [OSTI]

Gallium nitride (GaN) and indium gallium nitride (InGaN) nanowires promise potential for further improving the electricity-to-light energy conversion efficiencies in light emitting diodes due to strain relaxation, reduced ...

Zhou, Xiang, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

5

Low Cost Production of InGaN for Next-Generation Photovoltaic Devices  

SciTech Connect (OSTI)

The goal of this project is to develop a low-cost and low-energy technology for production of photovoltaic devices based on InGaN materials. This project builds on the ongoing development by Structured Materials Industries (SMI), of novel thin film deposition technology for Group III-Nitride materials, which is capable of depositing Group-III nitride materials at significantly lower costs and significantly lower energy usage compared to conventional deposition techniques. During this project, SMI demonstrated deposition of GaN and InGaN films using metalorganic sources, and demonstrated compatibility of the process with standard substrate materials and hardware components.

Nick M. Sbrockey, Shangzhu Sun, Gary S. Tompa,

2012-07-09T23:59:59.000Z

6

E-Print Network 3.0 - adaptive nitride-based coatings Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DELAUSANNE Summary: AND ELECTRONICS PROF. N. GRANDJEAN 33 III-NITRIDE BASED OPTOELECTRONIC DEVICES 34 GALLIUM NITRIDE-BASED 2D... FOR DIVERSE APPLICATIONS 84 HOLE ARRAY...

7

E-Print Network 3.0 - amorphous tin nitride Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TiN, are extensively used as wear... of transition metal nitrides (TiN, NbN) where reduction of the metal is necessary for the nitride formation... Layer Epitaxy in Deposition...

8

E-Print Network 3.0 - actinide nitrides phosphides Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

vacancy scattering and Hall constant... ) of 8.4 (i.e. ThCo.6No.4). In transition metal carbides and nitrides, a similar but more pronounced... carbides, nitride and...

9

E-Print Network 3.0 - aluminum nitride films Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 CHARGE STABILITY IN LPCVD SILICON NITRIDE FOR SURFACE PASSIVATION OF SILICON SOLAR CELLS Summary: the distribution and stability of negative charge in silicon dioxide ...

10

E-Print Network 3.0 - aluminum nitride ceramics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emily Parker, Vanni Lughi, Noel C. MacDonald Summary: , biocompatibility, and high fracture toughness. As a piezoelectric ceramic, aluminum nitride is compatible... Aluminum...

11

E-Print Network 3.0 - actinide bearing nitride Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

> >> 41 Electronic structure and pairwise interactions in substoichiometric transition metal carbides and nitrides Summary: ) of transition metals, rare earths and actinides in...

12

E-Print Network 3.0 - aluminum nitride coatings Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nitride... was attributed to the formation of a layer of aluminum ... Source: zur Loye, Hans-Conrad - Department of Chemistry and Biochemistry, University of South Carolina...

13

Realizing InGaN monolithic solar-photoelectrochemical cells for artificial photosynthesis  

SciTech Connect (OSTI)

InGaN alloys are very promising for solar water splitting because they have direct bandgaps that cover almost the whole solar spectrum. The demonstration of direct solar-to-fuel conversion without external bias with the sunlight being the only energy input would pave the way for realizing photoelectrochemical (PEC) production of hydrogen by using InGaN. A monolithic solar-PEC cell based on InGaN/GaN multiple quantum wells capable to directly generate hydrogen gas under zero bias via solar water splitting is reported. Under the irradiation by a simulated sunlight (1-sun with 100 mW/cm{sup 2}), a 1.5% solar-to-fuel conversion efficiency has been achieved under zero bias, setting a fresh benchmark of employing III-nitrides for artificial photosynthesis. Time dependent hydrogen gas production photocurrent measured over a prolonged period (measured for 7 days) revealed an excellent chemical stability of InGaN in aqueous solution of hydrobromic acid. The results provide insights into the architecture design of using InGaN for artificial photosynthesis to provide usable clean fuel (hydrogen gas) with the sunlight being the only energy input.

Dahal, R.; Pantha, B. N.; Li, J.; Lin, J. Y.; Jiang, H. X., E-mail: hx.jiang@ttu.edu [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

2014-04-07T23:59:59.000Z

14

E-Print Network 3.0 - argon nitrides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

I?MAYR Sti+ng Institutfur Werkstofiechnik... ,Badgasteiner Str: 3, 2800Bremen 33, Germany Abstract Aluminium nitride (AlN) is a ve interestin ceramic because... the use %of...

15

Distinctive Signature of Indium Gallium Nitride Quantum Dot Lasing in Microdisks Cavities  

E-Print Network [OSTI]

Low threshold lasers realized within compact, high quality optical cavities enable a variety of nanophotonics applications. Gallium nitride (GaN) materials containing indium gallium nitride (InGaN) quantum dots and quantum wells offer an outstanding platform to study light matter interactions and realize practical devices such as efficient light emitting diodes and nanolasers. Despite progress in the growth and characterization of InGaN quantum dots, their advantages as the gain medium in low threshold lasers have not been clearly demonstrated. This work seeks to better understand the reasons for these limitations by focusing on the simpler, limited-mode microdisk cavities, and by carrying out comparisons of lasing dynamics in those cavities using varying gain media including InGaN quantum wells, fragmented quantum wells, and a combination of fragmented quantum wells with quantum dots. For each gain medium, we utilize the distinctive, high quality (Q~5500) modes of the cavities, and the change in the highest ...

Woolf, Alexander; Aharanovich, Igor; Zhu, Tongtong; Niu, Nan; Wang, Danqing; Oliver, Rachel A; Hu, Evelyn L

2014-01-01T23:59:59.000Z

16

Nitrided Metallic Bipolar Plates  

Broader source: Energy.gov (indexed) [DOE]

nitrided surface treatment. In this approach, an electrically-conductive and corrosion-resistant chromium-nitride surface layer is formed on the bipolar plate component by...

17

InGaN: Direct correlation of nanoscopic morphology features with optical and structural properties  

SciTech Connect (OSTI)

A comprehensive study on the impact of growth modes on the structural and optical properties of thick InGaN layers suitable for photovoltaic application is presented. Samples grown by metalorganic vapour phase epitaxy with different growth rates and thicknesses have been analyzed. The application of slow growth rates result in smooth layers while higher growth rates induce a meandering surface morphology. Using low-temperature cathodoluminescence, a direct correlation of the morphology to local luminescent properties is obtained: the top of meandering structures reveals a spectrally red-shifted emission compared to the emission wavelength expected from the average indium content determined by X-ray diffraction. The origin of this shift is identified and explained by increased indium incorporation on top of the meander due to a spatially localized compositional pulling effect.

Koch, Holger, E-mail: holger.koch@osram-os.com [OSRAM Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany); GaN Device Technology, RWTH Aachen University, Sommerfeldstraße 24, 52074 Aachen (Germany); Bertram, Frank; August, Olga; Christen, Jürgen [Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg (Germany); Pietzonka, Ines; Ahl, Jan-Philipp; Strassburg, Martin; Lugauer, Hans-Jürgen [OSRAM Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany); Kalisch, Holger; Vescan, Andrei [GaN Device Technology, RWTH Aachen University, Sommerfeldstraße 24, 52074 Aachen (Germany)

2014-08-18T23:59:59.000Z

18

Nitride fuel performance  

E-Print Network [OSTI]

The purpose of this work was to assess the potential of nitride fuels in the current context of the nuclear industry. Nitride fuels systems have indeed been for the past decade the subject of new interest from the international community...

Reynaud, Sylvie Marie Aurel?ie

2002-01-01T23:59:59.000Z

19

Remarkably reduced efficiency droop by using staircase thin InGaN quantum barriers in InGaN based blue light emitting diodes  

SciTech Connect (OSTI)

The efficiency droop of InGaN/GaN(InGaN) multiple quantum well (MQW) light emitting diodes (LEDs) with thin quantum barriers (QB) is studied. With thin GaN QB (3?nm–6?nm thickness), the efficiency droop is not improved, which indicates that hole transport cannot be significantly enhanced by the thin GaN QBs. On the contrary, the efficiency droop was remarkably reduced by using a InGaN staircase QB (InGaN SC-QB) MQWs structure where InGaN SC-QBs lower the transport energy barrier of holes. The efficiency droop ratio was as low as 3.3% up to 200?A/cm{sup 2} for the InGaN SC-QB LED. By using monitoring QW with longer wavelength we observe a much uniform carrier distribution in the InGaN SC-QB LEDs, which reveals the mechanism of improvement in the efficiency droop.

Zhou, Kun; Ikeda, Masao, E-mail: mikeda2013@sinano.ac.cn, E-mail: jpliu2010@sinano.ac.cn; Liu, Jianping, E-mail: mikeda2013@sinano.ac.cn, E-mail: jpliu2010@sinano.ac.cn; Zhang, Shuming; Li, Deyao; Zhang, Liqun; Yang, Hui [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou (China); Key Laboratory of Nanodevices and Applications, Chinese Academy of Sciences, Suzhou (China); Cai, Jin; Wang, Hui; Wang, H. B. [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou (China); Key Laboratory of Nanodevices and Applications, Chinese Academy of Sciences, Suzhou (China); Suzhou Nanojoin Photonics Co., Ltd., Suzhou (China)

2014-10-27T23:59:59.000Z

20

Superconducting structure with layers of niobium nitride and aluminum nitride  

DOE Patents [OSTI]

A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

Murduck, James M. (Lisle, IL); Lepetre, Yves J. (Lauris, FR); Schuller, Ivan K. (Woodridge, IL); Ketterson, John B. (Evanston, IL)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Superconducting structure with layers of niobium nitride and aluminum nitride  

DOE Patents [OSTI]

A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

1989-07-04T23:59:59.000Z

22

The Mg impurity in nitride alloys  

SciTech Connect (OSTI)

Although several magnetic resonance studies address the Mg acceptor in GaN, there are few reports on Mg doping in the alloys, where hole production depends strongly on the Al or In content. Our electron paramagnetic resonance (EPR) measurements of the p-type alloys suggest that the Mg impurity retains the axial symmetry, characteristic of a p-type dopant in both alloys; however, In and Al produce additional, different characteristics of the acceptor. In InGaN, the behavior is consistent with a lowering of the acceptor level and increasing hole density as In concentration increases. For AlGaN, the amount of neutral Mg decreases with increasing Al content, which is attributed to different kinetics of hydrogen diffusion thought to occur in samples with higher Al mole fraction.

Zvanut, M. E.; Willoughby, W. R.; Sunay, U. R. [Department of Physics, University of Alabama at Birmingham, Birmingham AL (United States); Koleske, D. D.; Allerman, A. A. [Sandia National Laboratory, Albuquerque NM (United States); Wang, Ke; Araki, Tsutomu [Department of Photonics, Ritsumeikan University, Kusatsu, Shiga (Japan); Nanishi, Yasushi [Department of Photonics, Ritsumeikan University, Kusatsu, Shiga, Japan and WCU Program, Department of Materials Science and Engineering, Seoul National University, Seoul (Korea, Republic of)

2014-02-21T23:59:59.000Z

23

Surface and Coatings Technology 102 (1998) 9096 Effects of argon irradiation on a plasma-nitrided carbon steel  

E-Print Network [OSTI]

-nitrided carbon steel G. Simon, M.A.Z. Vasconcellos, C.A. dos Santos * Instituto de Fisica -- UFRGS Av. Bento Gonc; accepted 20 October 1997 Abstract We report on the effects of Ar irradiation on a plasma-nitrided steel. Samples of AISI 1010 steel were nitrided in a mixture of H 2 -20% N 2 under a total pressure of 5 mbar

dos Santos, C.A.

24

Boron nitride nanotubes  

DOE Patents [OSTI]

Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

Smith, Michael W. (Newport News, VA); Jordan, Kevin (Newport News, VA); Park, Cheol (Yorktown, VA)

2012-06-06T23:59:59.000Z

25

Wavelength limits for InGaN quantum wells on GaN  

SciTech Connect (OSTI)

The emission wavelength of coherently strained InGaN quantum wells (QW) is limited by the maximum thickness before relaxation starts. For high indium contents x>40% the resulting wavelength decreases because quantum confinement dominates. For low indium content x<40% the electron hole wave function overlap (and hence radiative emission) is strongly reduced with increasing QW thickness due to the quantum confined Stark effect and imposes another limit. This results in a maximum usable emission wavelength at around 600?nm for QWs with 40%-50% indium content. Relaxed InGaN buffer layers could help to push this further, especially on non- and semi-polar orientations.

Pristovsek, Markus, E-mail: markus@pristovsek.de [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)] [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

2013-06-17T23:59:59.000Z

26

Nitrided Metallic Bipolar Plates  

SciTech Connect (OSTI)

The objectives are: (1) Develop and optimize stainless steel alloys amenable to formation of a protective Cr-nitride surface by gas nitridation, at a sufficiently low cost to meet DOE targets and with sufficient ductility to permit manufacture by stamping. (2) Demonstrate capability of nitridation to yield high-quality stainless steel bipolar plates from thin stamped alloy foils (no significant stamped foil warping or embrittlement). (3) Demonstrate single-cell fuel cell performance of stamped and nitrided alloy foils equivalent to that of machined graphite plates of the same flow-field design ({approx}750-1,000 h, cyclic conditions, to include quantification of metal ion contamination of the membrane electrode assembly [MEA] and contact resistance increase attributable to the bipolar plates). (4) Demonstrate potential for adoption in automotive fuel cell stacks. Thin stamped metallic bipolar plates offer the potential for (1) significantly lower cost than currently-used machined graphite bipolar plates, (2) reduced weight/volume, and (3) better performance and amenability to high volume manufacture than developmental polymer/carbon fiber and graphite composite bipolar plates. However, most metals exhibit inadequate corrosion resistance in proton exchange membrane fuel cell (PEMFC) environments. This behavior leads to high electrical resistance due to the formation of surface oxides and/or contamination of the MEA by metallic ions, both of which can significantly degrade fuel cell performance. Metal nitrides offer electrical conductivities up to an order of magnitude greater than that of graphite and are highly corrosion resistant. Unfortunately, most conventional coating methods (for metal nitrides) are too expensive for PEMFC stack commercialization or tend to leave pinhole defects, which result in accelerated local corrosion and unacceptable performance.

Brady, Michael P [ORNL; Tortorelli, Peter F [ORNL; Pihl, Josh A [ORNL; Toops, Todd J [ORNL; More, Karren Leslie [ORNL; Meyer III, Harry M [ORNL; Vitek, John Michael [ORNL; Wang, Heli [National Renewable Energy Laboratory (NREL); Turner, John [National Renewable Energy Laboratory (NREL); Wilson, Mahlon [Los Alamos National Laboratory (LANL); Garzon, Fernando [Los Alamos National Laboratory (LANL); Rockward, Tommy [Los Alamos National Laboratory (LANL); Connors, Dan [GenCell Corp; Rakowski, Jim [Allegheny Ludlum; Gervasio, Don [Arizona State University

2008-01-01T23:59:59.000Z

27

Cubic nitride templates  

DOE Patents [OSTI]

A polymer-assisted deposition process for deposition of epitaxial cubic metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be used as templates for the development of high quality cubic GaN based electronic devices.

Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Mueller, Alexander H; Luo, Hongmei

2013-04-30T23:59:59.000Z

28

Surface plasmon enhanced InGaN light emitter Koichi Okamoto*a  

E-Print Network [OSTI]

is a very promising method for developing the super bright light emitting diodes (LEDs). Moreover, we foundGaN/GaN, light emitting diode, quantum well, internal quantum efficiency, solid-state light source 1. INTRODUCTION Since 1993, InGaN quantum wells (QW)-based light emitting diodes (LEDs) have been continuously

Okamoto, Koichi

29

Enhancement of Radiative Efficiency with Staggered InGaN Quantum Well Light Emitting Diodes  

SciTech Connect (OSTI)

The technology on the large overlap InGaN QWs developed in this program is currently implemented in commercial technology in enhancing the internal quantum efficiency in major LED industry in US and Asia. The scientific finding from this work supported by the DOE enabled the implementation of this step-like staggered quantum well in the commercial LEDs.

Tansu, Nelson; Dierolf, Volkmar; Huang, Gensheng; Penn, Samson; Zhao, Hongping; Liu, Guangyu; Li, Xiaohang; Poplawsky, Jonathan

2011-07-14T23:59:59.000Z

30

Near-infrared InN quantum dots on high-In composition InGaN  

SciTech Connect (OSTI)

We report the growth of InN quantum dots (QDs) on thick InGaN layers with high In composition (>50%) by molecular beam epitaxy. Optimized growth conditions are identified for the InGaN layers at reduced growth temperature and increased active N flux resulting in minimized phase separation and defect generation. The InN QDs grown on top of the optimized InGaN layer exhibit small size, high density, and photoluminescence up to room temperature. The InN/InGaN QDs reveal excellent potential for intermediate band solar cells with the InGaN and InN QD bandgap energies tuned to the best match of absorption to the solar spectrum.

Soto Rodriguez, Paul E. D.; Gomez, Victor J.; Kumar, Praveen; Calleja, Enrique; Noetzel, Richard [Instituto de Sistemas Optoelectronicos y Microtecnologia (ISOM), Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)] [Instituto de Sistemas Optoelectronicos y Microtecnologia (ISOM), Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

2013-04-01T23:59:59.000Z

31

Comparative study of polar and semipolar (112{sup ¯}2) InGaN layers grown by metalorganic vapour phase epitaxy  

SciTech Connect (OSTI)

InGaN layers were grown simultaneously on (112{sup ¯}2) GaN and (0001) GaN templates by metalorganic vapour phase epitaxy. At higher growth temperature (?750?°C), the indium content (<15%) of the (112{sup ¯}2) and (0001) InGaN layers was similar. However, for temperatures less than 750?°C, the indium content of the (112{sup ¯}2) InGaN layers (15%–26%) were generally lower than those with (0001) orientation (15%–32%). The compositional deviation was attributed to the different strain relaxations between the (112{sup ¯}2) and (0001) InGaN layers. Room temperature photoluminescence measurements of the (112{sup ¯}2) InGaN layers showed an emission wavelength that shifts gradually from 380?nm to 580?nm with decreasing growth temperature (or increasing indium composition). The peak emission wavelength of the (112{sup ¯}2) InGaN layers with an indium content of more than 10% blue-shifted a constant value of ?(50–60) nm when using higher excitation power densities. This blue-shift was attributed to band filling effects in the layers.

Dinh, Duc V., E-mail: vanduc.dinh@tyndall.ie, E-mail: peter.parbrook@tyndall.ie; Zubialevich, V. Z. [Tyndall National Institute, University College Cork, Lee Matltings, Dyke Parade, Cork (Ireland); Oehler, F.; Kappers, M. J.; Humphreys, C. J. [Department of Materials Science and Metallurgy University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Alam, S. N.; Parbrook, P. J., E-mail: vanduc.dinh@tyndall.ie, E-mail: peter.parbrook@tyndall.ie [Tyndall National Institute, University College Cork, Lee Matltings, Dyke Parade, Cork (Ireland); School of Engineering, University College Cork, Cork (Ireland); Caliebe, M.; Scholtz, F. [Institute of Optoelectronics, Ulm University, Ulm 89069 (Germany)

2014-10-21T23:59:59.000Z

32

Polyorganosilazane preceramic binder development for reaction bonded silicon nitride composites  

SciTech Connect (OSTI)

This study has examined the use of two commercially available polyorganosilazanes for application as preceramic binders in a composite composed of silicon carbide fibers in a reaction bonded silicon nitride (RBSN) matrix. Ceramic monolithic and composite samples were produced. Density of monolithic and whisker reinforced RBSN samples containing the polysilazane binder was increased. Mercury intrusion porosimetry revealed a significant decrease in the pore sizes of samples containing a polyorganosilazane binder. Electron micrographs of samples containing the preceramic binder looked similar to control samples containing no precursor. Overall, incorporation of the polysilazane into monolithic and whisker reinforced samples resulted in significantly increased density and decreased porosity. Nitriding of the RBSN was slightly retarded by addition of the polysilazane binder. Samples with the preceramic binders contained increased contents of {alpha} versus {beta}-silicon nitride which may be due to interaction of hydrogen evolved from polysilazane pyrolysis with the nitriding process. Initial efforts to produce continuous fiber reinforced composites via this method have not realized the same improvements in density and porosity which have been observed for monolithic and whisker reinforced samples. Further, the addition of perceramic binder resulted in a more brittle fracture morphology as compared to similar composites made without the binder.

Mohr, D.L.; Starr, T.L. [Georgia Tech Research Inst., Atlanta, GA (United States)

1992-11-01T23:59:59.000Z

33

Polyorganosilazane preceramic binder development for reaction bonded silicon nitride composites  

SciTech Connect (OSTI)

This study has examined the use of two commercially available polyorganosilazanes for application as preceramic binders in a composite composed of silicon carbide fibers in a reaction bonded silicon nitride (RBSN) matrix. Ceramic monolithic and composite samples were produced. Density of monolithic and whisker reinforced RBSN samples containing the polysilazane binder was increased. Mercury intrusion porosimetry revealed a significant decrease in the pore sizes of samples containing a polyorganosilazane binder. Electron micrographs of samples containing the preceramic binder looked similar to control samples containing no precursor. Overall, incorporation of the polysilazane into monolithic and whisker reinforced samples resulted in significantly increased density and decreased porosity. Nitriding of the RBSN was slightly retarded by addition of the polysilazane binder. Samples with the preceramic binders contained increased contents of [alpha] versus [beta]-silicon nitride which may be due to interaction of hydrogen evolved from polysilazane pyrolysis with the nitriding process. Initial efforts to produce continuous fiber reinforced composites via this method have not realized the same improvements in density and porosity which have been observed for monolithic and whisker reinforced samples. Further, the addition of perceramic binder resulted in a more brittle fracture morphology as compared to similar composites made without the binder.

Mohr, D.L.; Starr, T.L. (Georgia Tech Research Inst., Atlanta, GA (United States))

1992-11-01T23:59:59.000Z

34

Superplastic forging nitride ceramics  

DOE Patents [OSTI]

The invention relates to producing relatively flaw free silicon nitride ceramic shapes requiring little or no machining by superplastic forging This invention herein was made in part under Department of Energy Grant DE-AC01-84ER80167, creating certain rights in the United States Government. The invention was also made in part under New York State Science and Technology Grant SB1R 1985-10.

Panda, Prakash C. (Ithaca, NY); Seydel, Edgar R. (Ithaca, NY); Raj, Rishi (Ithaca, NY)

1988-03-22T23:59:59.000Z

35

Observations of Rabi oscillations in a non-polar InGaN quantum dot  

SciTech Connect (OSTI)

Experimental observation of Rabi rotations between an exciton excited state and the crystal ground state in a single non-polar InGaN quantum dot is presented. The exciton excited state energy is determined by photoluminescence excitation spectroscopy using two-photon excitation from a pulsed laser. The population of the exciton excited state is seen to undergo power dependent damped Rabi oscillations.

Reid, Benjamin P. L., E-mail: benjamin.reid@physics.ox.ac.uk; Chan, Christopher C. S.; Taylor, Robert A. [Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Kocher, Claudius [Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Konstanz University, Konstanz (Germany); Zhu, Tongtong; Oehler, Fabrice; Emery, Robert; Oliver, Rachel A. [Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

2014-06-30T23:59:59.000Z

36

Silicon nitride ceramic comprising samaria and ytterbia  

DOE Patents [OSTI]

This invention relates to a sintered silicon nitride ceramic comprising samaria and ytterbia for enhanced toughness.

Yeckley, Russell L. (Oakham, MA)

1996-01-01T23:59:59.000Z

37

Functionalized boron nitride nanotubes  

DOE Patents [OSTI]

A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

2014-04-22T23:59:59.000Z

38

Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes  

SciTech Connect (OSTI)

Temperature-dependent trends in radiative and Auger recombination coefficients have been determined at different injection carrier concentrations using InGaN micro-light emitting diodes 40 ?m in diameter. The differential lifetime was obtained first from the measured modulation bandwidth and was then employed to calculate the carrier concentration in the quantum well active region. When the temperature increases, the carrier concentration increases, but both the radiative and Auger recombination coefficients decrease. In addition, the temperature dependence of radiative and Auger recombination coefficients is weaker at a higher injection carrier concentration, which is strongly related to phase space filling.

Tian, Pengfei; McKendry, Jonathan J. D.; Herrnsdorf, Johannes; Ferreira, Ricardo; Watson, Ian M.; Gu, Erdan, E-mail: erdan.gu@strath.ac.uk; Dawson, Martin D. [Institute of Photonics, University of Strathclyde, 106 Rottenrow, Glasgow G4 0NW (United Kingdom); Watson, Scott; Kelly, Anthony E. [School of Engineering, University of Glasgow, James Watt South Building, Glasgow G12 8LT (United Kingdom)

2014-10-27T23:59:59.000Z

39

Internal efficiency of InGaN light-emitting diodes: Beyond a quasiequilibrium model  

SciTech Connect (OSTI)

We propose a model to better investigate InGaN light-emitting diode (LED) internal efficiency by extending beyond the usual total carrier density rate equation approach. To illustrate its capability, the model is applied to study intrinsic performance differences between violet and green LEDs. The simulations show performance differences, at different current densities and temperatures, arising from variations in spontaneous emission and heat loss rates. By tracking the momentum-resolved carrier populations, these rate changes are, in turn, traced to differences in bandstructure and plasma heating. The latter leads to carrier distributions that deviate from the quasiequilibrium ones at lattice temperature.

Chow, Weng W.; Crawford, Mary H.; Tsao, Jeffrey Y.; Kneissl, Michael

2010-01-01T23:59:59.000Z

40

Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin Films  

E-Print Network [OSTI]

Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin FilmsDelta--Beta Scatter Plot at 220 eVBeta Scatter Plot at 220 eV #12;Why Uranium Nitride?Why Uranium Nitride? UraniumUranium, uranium,Bombard target, uranium, with argon ionswith argon ions Uranium atoms leaveUranium atoms leave

Hart, Gus

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Structural studies of magnesium nitride fluorides by powder neutron diffraction  

SciTech Connect (OSTI)

Samples of ternary nitride fluorides, Mg{sub 3}NF{sub 3} and Mg{sub 2}NF have been prepared by solid state reaction of Mg{sub 3}N{sub 2} and MgF{sub 2} at 1323-1423 K and investigated by powder X-ray and powder neutron diffraction techniques. Mg{sub 3}NF{sub 3} is cubic (space group: Pm3m) and has a structure related to rock-salt MgO, but with one cation site vacant. Mg{sub 2}NF is tetragonal (space group: I4{sub 1}/amd) and has an anti-LiFeO{sub 2} related structure. Both compounds are essentially ionic and form structures in which nitride and fluoride anions are crystallographically ordered. The nitride fluorides show temperature independent paramagnetic behaviour between 5 and 300 K. - Graphical abstract: Definitive structures of the ternary magnesium nitride fluorides Mg{sub 3}NF{sub 3} and the lower temperature polymorph of Mg{sub 2}NF have been determined from powder neutron diffraction data. The nitride halides are essentially ionic and exhibit weak temperature independent paramagnetic behaviour. Highlights: Black-Right-Pointing-Pointer Definitive structures of Mg{sub 3}NF{sub 3} and Mg{sub 2}NF were determined by neutron diffraction. Black-Right-Pointing-Pointer Nitride and fluoride anions are crystallographically ordered in both structures. Black-Right-Pointing-Pointer Both compounds exhibit weak, temperature independent paramagnetic behaviour. Black-Right-Pointing-Pointer The compounds are essentially ionic with ionicity increasing with F{sup -} content.

Brogan, Michael A. [School of Chemistry, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Hughes, Robert W. [WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Smith, Ronald I. [ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Gregory, Duncan H., E-mail: Duncan.Gregory@glasgow.ac.uk [WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

2012-01-15T23:59:59.000Z

42

OPTIMIZATION OF GaN WINDOW LAYER FOR InGaN SOLAR CELLS USING POLARIZATION EFFECT  

E-Print Network [OSTI]

on the design of wide-band gap GaN window layers for InGaN solar cells. Window layers serve to passivate the top into account during design of the solar cell to improve its collection efficiency. Previously, we have. The present work is a subset of the design optimization process for such solar cells, where we focus

Honsberg, Christiana

43

Silicon nitride/silicon carbide composite powders  

DOE Patents [OSTI]

Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

Dunmead, Stephen D. (Midland, MI); Weimer, Alan W. (Midland, MI); Carroll, Daniel F. (Midland, MI); Eisman, Glenn A. (Midland, MI); Cochran, Gene A. (Midland, MI); Susnitzky, David W. (Midland, MI); Beaman, Donald R. (Midland, MI); Nilsen, Kevin J. (Midland, MI)

1996-06-11T23:59:59.000Z

44

Preparation and atomic structure of reconstructed (0001) InGaN surfaces  

SciTech Connect (OSTI)

The preparation and surface structure of high quality group-III-polar (0001) InGaN layers grown by metal-organic vapor phase epitaxy have been investigated. In order to obtain a clean and well-ordered surface we studied the preparation by annealing at various temperatures under ultra high vacuum and nitrogen-rich conditions in nitrogen-plasma. We show that different InGaN surface reconstructions such as (1 Multiplication-Sign 1), (1 + 1/6), (2 Multiplication-Sign 2), and ({radical}(3) Multiplication-Sign {radical}(3))R30 Degree-Sign can be obtained as observed by low energy electron diffraction. Dependent on the annealing temperature and nitrogen supply these surfaces exhibit significant differences in stoichiometry and morphology as determined by Auger electron spectroscopy and atomic force microscopy measurements. The (1 Multiplication-Sign 1), (2 Multiplication-Sign 2), and ({radical}(3) Multiplication-Sign {radical}(3))R30 Degree-Sign superstructures are terminated by single group-III-adatoms, whereas the (1 + 1/6) exhibits a incommensurate overlayer of group-III-atoms. We show that the (2 Multiplication-Sign 2) and ({radical}(3) Multiplication-Sign {radical}(3))R30 Degree-Sign an In depletion in the first group-III layer and In or Ga adatoms in ontop position. Strain-relaxation is suggested to explain this structure formation.

Friedrich, C.; Biermann, A.; Kneissl, M.; Vogt, P. [Institut fuer Festkoerperphysik EW6-1, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Hoffmann, V. [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Esser, N. [Institut fuer Festkoerperphysik EW6-1, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Leibniz-Institut fuer Analytische Wissenschaften - ISAS e.V., Albert-Einstein-Str. 9, 12489 Berlin (Germany)

2012-08-01T23:59:59.000Z

45

P-type gallium nitride  

DOE Patents [OSTI]

Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

1997-08-12T23:59:59.000Z

46

P-type gallium nitride  

DOE Patents [OSTI]

Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

Rubin, Michael (Berkeley, CA); Newman, Nathan (Montara, CA); Fu, Tracy (Berkeley, CA); Ross, Jennifer (Pleasanton, CA); Chan, James (Berkeley, CA)

1997-01-01T23:59:59.000Z

47

amorphous carbon nitride: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Si-rich nitride Er:SRN materials have 3 Carbon Nitride and Conjugated Polymer Composite Materials. Open Access Theses and Dissertations Summary: ??The semiconductor and...

48

Vacancies in fully hydrogenated boron nitride layer: implications...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vacancies in fully hydrogenated boron nitride layer: implications for functional nanodevices. Vacancies in fully hydrogenated boron nitride layer: implications for functional...

49

Silicon nitride having a high tensile strength  

DOE Patents [OSTI]

A ceramic body comprising at least about 80 w/o silicon nitride and having a mean tensile strength of at least about 800 MPa.

Pujari, Vimal K. (Northboro, MA); Tracey, Dennis M. (Medfield, MA); Foley, Michael R. (Oxford, MA); Paille, Norman I. (Oxford, MA); Pelletier, Paul J. (Sutton, MA); Sales, Lenny C. (Grafton, MA); Willkens, Craig A. (Worcester, MA); Yeckley, Russell L. (Latrobe, PA)

1998-01-01T23:59:59.000Z

50

Nanostructure, Chemistry and Crystallography of Iron Nitride...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanostructure, Chemistry and Crystallography of Iron Nitride Magnetic Materials by Ultra-High-Resolution Electron Microscopy and Related Methods Nanostructure, Chemistry and...

51

Neutron detection using boron gallium nitride semiconductor material  

SciTech Connect (OSTI)

In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN) semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN) samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to ?-rays but poor sensitivity to ?-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in a neutron-detection signal after ?-rays were generated by the capture of neutrons by the B atoms. These results prove that BGaN is useful as a neutron-detecting semiconductor material.

Atsumi, Katsuhiro [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Inoue, Yoku; Nakano, Takayuki, E-mail: ttnakan@ipc.shizuoka.ac.jp [Department of Electrical and Materials Science, Graduate School of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Mimura, Hidenori; Aoki, Toru [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011 (Japan)

2014-03-01T23:59:59.000Z

52

Method of preparation of uranium nitride  

DOE Patents [OSTI]

Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

2013-07-09T23:59:59.000Z

53

Molten-Salt-Based Growth of Group III Nitrides  

DOE Patents [OSTI]

A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

Waldrip, Karen E. (Albuquerque, NM); Tsao, Jeffrey Y. (Albuquerque, NM); Kerley, Thomas M. (Albuquerque, NM)

2008-10-14T23:59:59.000Z

54

Synthesis of transition metal nitride by nitridation of metastable oxide precursor  

SciTech Connect (OSTI)

Metastable transition metal oxides were used as precursors to synthesize transition metal nitrides at low temperature. Amorphous MoO{sub 2} was prepared by reduction of (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24} solution with hydrazine. As-synthesized amorphous MoO{sub 2} was transformed into fcc {gamma}-Mo{sub 2}N at 400 Degree-Sign C and then into hexagonal {delta}-MoN by further increasing the temperature to 600 Degree-Sign C under a NH{sub 3} flow. The nitridation temperature employed here is much lower than that employed in nitridation of crystalline materials, and the amorphous materials underwent a unique nitridation process. Besides this, the bimetallic nitride Ni{sub 2}Mo{sub 3}N was also synthesized by nitridating amorphous bimetallic precursor. These results suggested that the nitridation of amorphous precursor possessed potential to be a general method for synthesizing many interstitial metallic compounds, such as nitrides and carbides at low temperature. - graphical abstract: Amorphous oxide was used as new precursor to prepare nitride at low temperature. Pure {gamma}-Mo{sub 2}N and {delta}-MoN were obtained at 400 Degree-Sign C and at 600 Degree-Sign C, respectively. Highlights: Black-Right-Pointing-Pointer We bring out a new method to synthesize transition metal nitrides at low temperature. Black-Right-Pointing-Pointer Both mono- and bimetallic molybdenum nitrides were synthesized at a mild condition. Black-Right-Pointing-Pointer The formation of two different molybdenum nitrides {gamma}-Mo{sub 2}N and {delta}-MoN can be controlled from the same metastable precursor. Black-Right-Pointing-Pointer The nitridation temperature was much lower than that reported from crystalline precursors. Black-Right-Pointing-Pointer The metastable precursor had different reaction process in comparison with crystalline precursor.

Wang, Huamin; Wu, Zijie; Kong, Jing [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China)] [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China); Wang, Zhiqiang, E-mail: zqwang@mail.nankai.edu.cn [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China) [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China); Tianjin Key Laboratory of Water Environment and Resources, Tianjin Normal University, No. 393 Binshui Road, Xiqing Dist., Tianjin 300387 (China); Zhang, Minghui, E-mail: zhangmh@nankai.edu.cn [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China)] [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China)

2012-10-15T23:59:59.000Z

55

Effect of contact metals on the piezoelectric properties of aluminum nitride thin films  

SciTech Connect (OSTI)

The converse piezoelectric response of aluminum nitride evaluated using standard metal insulator semiconductor structures has been found to exhibit a linear dependence on the work function of the metal used as the top electrode. The apparent d33 of the 150–1100 nm films also depends on the dc bias applied to the samples.

Harman, J.P.; Kabulski, A. (West Virginia U., Morgantown, WV); Pagan, V.R. (West Virginia U., Morgantown, WV); Famouri, K. (West Virginia U., Morgantown, WV); Kasarla, K.R.; Rodak, L.E. (West Virginia U., Morgantown, WV); Hensel, J.P.; Korakakis, D.

2008-07-01T23:59:59.000Z

56

Modeling of temperature and excitation dependences of efficiency in an InGaN light-emitting diode  

E-Print Network [OSTI]

The changes in excitation dependence of efficiency with temperature is modeled for a wurtzite InGaN light-emitting diode. The model incorporates bandstructure changes with carrier density arising from screening of quantum-confined Stark effect. Bandstructure is computed by solving Poisson and k.p equations in the envelop approximation. The information is used in a dynamical model for populations in momentum-resolved electron and hole states. Application of the approach shows the interplay of quantum-well and barrier emissions giving rise to shape changes in efficiency versus current density with changing temperature, as observed in some experiments.

Chow, Weng W

2013-01-01T23:59:59.000Z

57

Influences of excitation-dependent bandstructure changes on InGaN light-emitting diode efficiency  

E-Print Network [OSTI]

Bandstructure properties in wurtzite quantum wells can change appreciably with changing carrier density because of screening of quantum-confined Stark effect. An approach for incorporating these changes in an InGaN light-emitting-diode model is described. Bandstructure is computed for different carrier densities by solving Poisson and k\\cdotp equations in the envelop approximation. The information is used as input in a dynamical model for populations in momentum-resolved electron and hole states. Application of the approach is illustrated by modeling device internal quantum efficiency as a function of excitation.

Chow, Weng W

2011-01-01T23:59:59.000Z

58

Synthesis and characterization of visible emission from rare-earth doped aluminum nitride, gallium nitride and gallium aluminum nitride powders and thin films  

E-Print Network [OSTI]

of the Nitrides of Aluminum and Gallium," J. Electrochem.1) 24 (1962). G. Long and L. M. Foster, "Aluminum Nitride, aRefractory for Aluminum to 2000°C," J. Am. Ceram. Soc. ,

Tao, Jonathan Huai-Tse

2010-01-01T23:59:59.000Z

59

Method of nitriding refractory metal articles  

DOE Patents [OSTI]

A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

Tiegs, Terry N. (Lenoir City, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Omatete, Ogbemi O. (Lagos, NG); Young, Albert C. (Flushing, NY)

1994-01-01T23:59:59.000Z

60

Method of nitriding refractory metal articles  

DOE Patents [OSTI]

A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

Tiegs, T.N.; Holcombe, C.E.; Dykes, N.L.; Omatete, O.O.; Young, A.C.

1994-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Low temperature route to uranium nitride  

DOE Patents [OSTI]

A method of preparing an actinide nitride fuel for nuclear reactors is provided. The method comprises the steps of a) providing at least one actinide oxide and optionally zirconium oxide; b) mixing the oxide with a source of hydrogen fluoride for a period of time and at a temperature sufficient to convert the oxide to a fluoride salt; c) heating the fluoride salt to remove water; d) heating the fluoride salt in a nitrogen atmosphere for a period of time and at a temperature sufficient to convert the fluorides to nitrides; and e) heating the nitrides under vacuum and/or inert atmosphere for a period of time sufficient to convert the nitrides to mononitrides.

Burrell, Anthony K. (Los Alamos, NM); Sattelberger, Alfred P. (Darien, IL); Yeamans, Charles (Berkeley, CA); Hartmann, Thomas (Idaho Falls, ID); Silva, G. W. Chinthaka (Las Vegas, NV); Cerefice, Gary (Henderson, NV); Czerwinski, Kenneth R. (Henderson, NV)

2009-09-01T23:59:59.000Z

62

Journal of Crystal Growth 310 (2008) 23202325 Self-assembled InGaN quantum dots on GaN emitting at 520 nm grown  

E-Print Network [OSTI]

materials, and intrinsic quantum mechanical energy loss of the wavelength conversion process via Stokes, Muhammad Jamil, Nelson Tansu Department of Electrical and Computer Engineering, Center for Optical. These results demonstrates that high In-content InGaN QDs can be grown by MOVPE, and can potentially be utilized

Gilchrist, James F.

2008-01-01T23:59:59.000Z

63

Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520525 nm employing graded growth-temperature profile  

E-Print Network [OSTI]

Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520­525 nm employing current spreading and light extraction in GaN-based light emitting diodes Appl. Phys. Lett. 100, 061107 (2012) Electrically driven nanopyramid green light emitting diode Appl. Phys. Lett. 100, 061106 (2012

Gilchrist, James F.

64

Corrosion behavior of mesoporous transition metal nitrides  

SciTech Connect (OSTI)

Transition metal nitrides (TMN) have many desirable characteristics such as high hardness and good thermal stability under reducing conditions. This work reports an initial survey of the chemical stability of mesoporous TMNs (TM=Nb, V, Cr and Ti) in water at 80 °C at neutral, acidic and alkaline pH. The mesoporous TMNs had specific surface areas of 25–60 m{sup 2}/g with average pore sizes ranging from 10 to 50 nm. The high surface areas of these materials enhance the rate of corrosion per unit mass over that of a bulk material, making detection of corrosion much easier. The products were characterized by Rietveld refinement of powder X-ray diffraction (PXRD) patterns and by scanning electron microscopy (SEM). Several nitrides have corrosion rates that are, within error, not distinguishable from zero (±1 Å/day). Of the nitrides examined, CrN appears to be the most corrosion resistant under acidic conditions. None of the nitrides studied are corrosion resistant under alkaline conditions. - Graphical abstract: Corrosion behavior of mesoporous transition metal nitrides (TM=Nb, V, Cr and Ti) in acidic and alkaline solutions at 80 °C for 2 weeks. Display Omitted - highlights: • Corrosion rates of mesoporous transition metal nitrides in aqueous solution is reported. • The mesoporous TMNs had surface areas of 25–60 m{sup 2}/g. • CrN is the most corrosion resistant under the conditions studied.

Yang, Minghui, E-mail: m.yang@cornell.edu [Department of Chemistry, Cornell University, Ithaca 14853-1301, NY (United States); Allen, Amy J.; Nguyen, Minh T. [Department of Chemistry, Cornell University, Ithaca 14853-1301, NY (United States); Ralston, Walter T. [College of Chemistry, University of California, Berkeley 94720-1460, CA (United States); MacLeod, Michelle J. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139-4307, MA (United States); DiSalvo, Francis J., E-mail: fjd3@cornell.edu [Department of Chemistry, Cornell University, Ithaca 14853-1301, NY (United States)

2013-09-15T23:59:59.000Z

65

The Nitrogen-Nitride Anode.  

SciTech Connect (OSTI)

Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

Delnick, Frank M.

2014-10-01T23:59:59.000Z

66

Method of manufacture of atomically thin boron nitride  

DOE Patents [OSTI]

The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

Zettl, Alexander K

2013-08-06T23:59:59.000Z

67

Au-free Ohmic Contacts to Gallium Nitride and Graphene  

E-Print Network [OSTI]

This work deals with Au-free contact metallization schemes for gallium nitride (GaN) and graphene semiconductors. Graphene and gallium nitride are promising materials that can potentially be integrated together in the near future for high frequency...

Ravikirthi, Pradhyumna

2014-08-10T23:59:59.000Z

68

Characterizing organometallic-vapor-phase-epitaxy-grown indium gallium nitride islands on gallium nitride for light emitting diode applications.  

E-Print Network [OSTI]

??The indium-gallium-nitride on gallium-nitride (InGaN/GaN) materials system is a promising candidate for providing a high intensity, high efficiency solution to the yet unsolved problem of… (more)

Anderson, Kathy Perkins Jenkins

2011-01-01T23:59:59.000Z

69

Silicon nitride ceramic having high fatigue life and high toughness  

DOE Patents [OSTI]

A sintered silicon nitride ceramic comprising between about 0.6 mol % and about 3.2 mol % rare earth as rare earth oxide, and between about 85 w/o and about 95 w/o beta silicon nitride grains, wherein at least about 20% of the beta silicon nitride grains have a thickness of greater than about 1 micron.

Yeckley, Russell L. (Oakham, MA)

1996-01-01T23:59:59.000Z

70

Evaluation of silicon-nitride ceramic valves.  

SciTech Connect (OSTI)

Silicon-nitride ceramic valves can improve the performance of both light- and heavy-duty automotive engines because of the superior material properties of silicon nitrides over current metal alloys. However, ceramics are brittle materials that may introduce uncertainties in the reliability and durability of ceramic valves. As a result, the lifetime of ceramic valves are difficult to predict theoretically due to wide variations in the type and distribution of microstructural flaws in the material. Nondestructive evaluation (NDE) methods are therefore required to assess the quality and reliability of these valves. Because ceramic materials are optically translucent and the strength-limiting flaws are normally located near the valve surface, a laser-scatter method can be used for NDE evaluation of ceramic valves. This paper reviews the progress in the development of this NDE method and its application to inspect silicon-nitride ceramic valves at various stages of manufacturing and bench and engine tests.

Sun, J. G.; Zhang, J. M.; Andrews, M. J.; Tretheway, J. S.; Phillips, N. S .L.; Jensen, J. A.; Nuclear Engineering Division; Univ. of Texas; Caterpillar, Inc.

2008-01-01T23:59:59.000Z

71

Enhancing the quantum efficiency of InGaN yellow-green light-emitting diodes by growth interruption  

SciTech Connect (OSTI)

We studied the effect of multiple interruptions during the quantum well growth on emission-efficiency enhancement of InGaN-based yellow-green light emitting diodes on c-plane sapphire substrate. The output power and dominant wavelength at 20?mA are 0.24 mW and 556.3?nm. High resolution x-ray diffraction, photoluminescence, and electroluminescence measurements demonstrate that efficiency enhancement could be partially attributed to crystal quality improvement of the active region resulted from reduced In clusters and relevant defects on the surface of InGaN layer by introducing interruptions. The less tilted energy band in the quantum well is also caused by the decrease of In-content gradient along c-axis resulted from In segregation during the interruptions, which increases spatial overlap of electron-hole wavefunction and thus the internal quantum efficiency. The latter also leads to smaller blueshift of dominant wavelength with current increasing.

Du, Chunhua; Ma, Ziguang; Zhou, Junming; Lu, Taiping; Jiang, Yang; Zuo, Peng; Jia, Haiqiang; Chen, Hong, E-mail: hchen@iphy.ac.cn [Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condense Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

2014-08-18T23:59:59.000Z

72

Nitride Fuel Development at the INL  

SciTech Connect (OSTI)

A new method for fabricating nitride-based fuels for nuclear applications is under development at the Idaho National Laboratory (INL). A primary objective of this research is the development of a process that could be operated as an automated or semi-automated technique reducing costs, worker doses, and eventually improving the final product form. To achieve these goals the fabrication process utilizes a new cryo-forming technique to produce microspheres formed from sub-micron oxide powder to improve material handling issues, yield rapid kinetics for conversion to nitrides, and reduced material impurity levels within the nitride compounds. The microspheres are converted to a nitride form within a high temperature particle fluidizing bed using a carbothermic process that utilizes a hydrocarbon – hydrogen - nitrogen gas mixture. A new monitor and control system using differential pressure changes in the fluidizing gas allows for real-time monitoring and control of the spouted bed reactor during conversion. This monitor and control system can provide real-time data that is used to control the gas flow rates, temperatures, and gas composition to optimize the fluidization of the particle bed. The small size (0.5 µm) of the oxide powders in the microspheres dramatically increases the kinetics of the conversion process yielding reduced process times and temperatures. Initial studies using surrogate ZrO2 powder have yielded conversion efficiencies of 90 -95 % nitride formation with only small levels of oxide and carbide contaminants present. Further studies are being conducted to determine optimal gas mixture ratios, process time, and temperature range for providing complete conversion to a nitride form.

W.E. Windes

2007-06-01T23:59:59.000Z

73

Titanium nitride electrodes for thermoelectric generators  

DOE Patents [OSTI]

The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film of titanium nitride as an electrode deposited onto solid electrolyte. The invention is also directed to the method of making same.

Novak, Robert F. (Farmington Hills, MI); Schmatz, Duane J. (Dearborn Heights, MI); Hunt, Thomas K. (Ann Arbor, MI)

1987-12-22T23:59:59.000Z

74

Silicon nitride having a high tensile strength  

DOE Patents [OSTI]

A silicon nitride ceramic comprising: a) inclusions no greater than 25 microns in length, b) agglomerates no greater than 20 microns in diameter, and c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa.

Pujari, Vimal K. (Northboro, MA); Tracey, Dennis M. (Medfield, MA); Foley, Michael R. (Oxford, MA); Paille, Norman I. (Oxford, MA); Pelletier, Paul J. (Millbury, MA); Sales, Lenny C. (Grafton, MA); Willkens, Craig A. (Sterling, MA); Yeckley, Russell L. (Oakham, MA)

1996-01-01T23:59:59.000Z

75

Gallium nitride junction field-effect transistor  

DOE Patents [OSTI]

An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

Zolper, John C. (Albuquerque, NM); Shul, Randy J. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

76

Photodetectors using III-V nitrides  

DOE Patents [OSTI]

A bandpass photodetector using a III-V nitride and having predetermined electrical properties. The bandpass photodetector detects electromagnetic radiation between a lower transition wavelength and an upper transition wavelength. That detector comprises two low pass photodetectors. The response of the two low pass photodetectors is subtracted to yield a response signal.

Moustakas, Theodore D. (Dover, MA)

1998-01-01T23:59:59.000Z

77

Nitride-bonded silicon carbide composite filter  

SciTech Connect (OSTI)

The objective of this program is to develop and demonstrate an advanced hot gas filter, using ceramic component technology, with enhanced durability to provide increased resistance to thermal fatigue and crack propagation. The material is silicon carbide fiber reinforced nitride bonded silicon carbide.

Thomson, B.N.; DiPietro, S.G.

1995-12-01T23:59:59.000Z

78

Heteroepitaxy of group IV-VI nitrides by atomic layer deposition  

SciTech Connect (OSTI)

Heteroepitaxial growth of selected group IV-VI nitrides on various orientations of sapphire (?-Al{sub 2}O{sub 3}) is demonstrated using atomic layer deposition. High quality, epitaxial films are produced at significantly lower temperatures than required by conventional deposition methods. Characterization of electrical and superconducting properties of epitaxial films reveals a reduced room temperature resistivity and increased residual resistance ratio for films deposited on sapphire compared to polycrystalline samples deposited concurrently on fused quartz substrates.

Klug, Jeffrey A., E-mail: jklug@anl.gov; Groll, Nickolas R.; Pellin, Michael J.; Proslier, Thomas, E-mail: prolier@anl.gov [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)] [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Becker, Nicholas G.; Cao, Chaoyue; Zasadzinski, John F. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States) [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Weimer, Matthew S. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States) [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

2013-11-18T23:59:59.000Z

79

aluminium nitrides: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(more) Mutombo, Faustin Kalenda 2012-01-01 22 Carbon Nitride and Conjugated Polymer Composite Materials. Open Access Theses and Dissertations Summary: ??The semiconductor and...

80

americium nitrides: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heterostructure Zhang, Hongtao 2006-01-01 19 Carbon Nitride and Conjugated Polymer Composite Materials. Open Access Theses and Dissertations Summary: ??The semiconductor and...

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

aligned carbon nitride: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

22 23 24 25 Next Page Last Page Topic Index 1 Carbon Nitride and Conjugated Polymer Composite Materials. Open Access Theses and Dissertations Summary: ??The semiconductor and...

82

III-Nitride Nanowires: Emerging Materials for Lighting and Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

building blocks in LEDs, lasers, sensors, photovoltaics, and high power and high speed electronics. Compared to planar films, III-nitride nanowires have several potential...

83

Method for locating metallic nitride inclusions in metallic alloy ingots  

DOE Patents [OSTI]

A method of determining the location and history of metallic nitride and/or oxynitride inclusions in metallic melts. The method includes the steps of labeling metallic nitride and/or oxynitride inclusions by making a coreduced metallic-hafnium sponge from a mixture of hafnium chloride and the chloride of a metal, reducing the mixed chlorides with magnesium, nitriding the hafnium-labeled metallic-hafnium sponge, and seeding the sponge to be melted with hafnium-labeled nitride inclusions. The ingots are neutron activated and the hafnium is located by radiometric means. Hafnium possesses exactly the proper metallurgical and radiochemical properties for this use.

White, Jack C. (Albany, OR); Traut, Davis E. (Corvallis, OR); Oden, Laurance L. (Albany, OR); Schmitt, Roman A. (Corvallis, OR)

1992-01-01T23:59:59.000Z

84

Method for producing silicon nitride/silicon carbide composite  

DOE Patents [OSTI]

Silicon carbide/silicon nitride composites are prepared by carbothermal reduction of crystalline silica powder, carbon powder and optionally crsytalline silicon nitride powder. The crystalline silicon carbide portion of the composite has a mean number diameter less than about 700 nanometers and contains nitrogen.

Dunmead, Stephen D. (Midland, MI); Weimer, Alan W. (Midland, MI); Carroll, Daniel F. (Midland, MI); Eisman, Glenn A. (Midland, MI); Cochran, Gene A. (Midland, MI); Susnitzky, David W. (Midland, MI); Beaman, Donald R. (Midland, MI); Nilsen, Kevin J. (Midland, MI)

1996-07-23T23:59:59.000Z

85

Process for making boron nitride using sodium cyanide and boron  

DOE Patents [OSTI]

This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

Bamberger, Carlos E. (Oak Ridge, TN)

1990-01-01T23:59:59.000Z

86

Atomic Layer Deposition of Insulating Hafnium and Zirconium Nitrides  

E-Print Network [OSTI]

author. E-mail: gordon@chemistry.harvard.edu. (1) Toth, L. E. Transition Metal Carbides and Nitrides homoleptic tetrakis(dialkylamido)- metal(IV) complexes and ammonia at low substrate temperatures (150-250 °C). The precursor vapors were alternately pulsed into a heated reactor, yielding 1.15-1.20 � of metal nitride film

87

Oxidation Protection of Uranium Nitride Fuel using Liquid Phase Sintering  

SciTech Connect (OSTI)

Two methods are proposed to increase the oxidation resistance of uranium nitride (UN) nuclear fuel. These paths are: (1) Addition of USi{sub x} (e.g. U3Si2) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with various compounds (followed by densification via Spark Plasma Sintering or Liquid Phase Sintering) that will greatly increase oxidation resistance. The advantages (high thermal conductivity, very high melting point, and high density) of nitride fuel have long been recognized. The sodium cooled BR-10 reactor in Russia operated for 18 years on uranium nitride fuel (UN was used as the driver fuel for two core loads). However, the potential advantages (large power up-grade, increased cycle lengths, possible high burn-ups) as a Light Water Reactor (LWR) fuel are offset by uranium nitride's extremely low oxidation resistance (UN powders oxidize in air and UN pellets decompose in hot water). Innovative research is proposed to solve this problem and thereby provide an accident tolerant LWR fuel that would resist water leaks and high temperature steam oxidation/spalling during an accident. It is proposed that we investigate two methods to increase the oxidation resistance of UN: (1) Addition of USi{sub x} (e.g. U{sub 3}Si{sub 2}) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with compounds (followed by densification via Spark Plasma Sintering) that will greatly increase oxidation resistance.

Dr. Paul A. Lessing

2012-03-01T23:59:59.000Z

88

Trade-off between morphology, extended defects, and compositional fluctuation induced carrier localization in high In-content InGaN films  

SciTech Connect (OSTI)

We elucidate the role of growth parameters (III/N flux ratio, temperature T{sub G}) on the morphological and structural properties, as well as compositional homogeneity and carrier localization effects of high In-content (x(In)?>?0.75) In–polar InGaN films grown by plasma–assisted molecular beam epitaxy (PAMBE). Variations in III/N flux ratio evidence that higher excess of In yields higher threading dislocation densities as well as larger compositional inhomogeneity as measured by x-ray diffraction. Most interestingly, by variation of growth temperature T{sub G} we find a significant trade-off between improved morphological quality and compositional homogeneity at low–T{sub G} (?450–550?°C) versus improved threading dislocation densities at high–T{sub G} (?600–630?°C), as exemplified for InGaN films with x(In)?=?0.9. The enhanced compositional homogeneity mediated by low–T{sub G} growth is confirmed by systematic temperature-dependent photoluminescence (PL) spectroscopy data, such as lower PL peakwidths, >5× higher PL efficiency (less temperature-induced quenching) and a distinctly different temperature-dependent S-shape behavior of the PL peak energy. From these, we find that the carrier localization energy is as low as ?20?meV for low–T{sub G} grown films (T{sub G}?=?550?°C), while it rises to ?70?meV for high–T{sub G} grown films (T{sub G}?=?630?°C) right below the onset of In–N dissociation. These findings point out that for the kinetically limited metal-rich PAMBE growth of high In-content InGaN a III/N flux ratio of ?1 and low-to-intermediate T{sub G} are required to realize optically more efficient materials.

Ju, James; Loitsch, Bernhard; Stettner, Thomas; Schuster, Fabian; Stutzmann, Martin; Koblmüller, Gregor, E-mail: Gregor.Koblmueller@wsi.tum.de [Walter Schottky Institut and Physik Department, Technische Universität München, Garching 85748 (Germany)

2014-08-07T23:59:59.000Z

89

Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns  

SciTech Connect (OSTI)

This work reports on the selective area growth by plasma-assisted molecular beam epitaxy and characterization of InGaN/GaN nanocolumnar heterostructures. The optimization of the In/Ga and total III/V ratios, as well as the growth temperature, provides control on the emission wavelength, either in the blue, green, or red spectral range. An adequate structure tailoring and monolithic integration in a single nanocolumnar heterostructure of three InGaN portions emitting in the red-green-blue colors lead to white light emission.

Albert, S.; Bengoechea-Encabo, A.; Sanchez-Garcia, M. A.; Calleja, E. [ISOM and Dept. Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)] [ISOM and Dept. Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Kong, X.; Trampert, A. [Paul-Drude-Institut fuer Festkoeperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)] [Paul-Drude-Institut fuer Festkoeperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

2013-05-06T23:59:59.000Z

90

Carrier redistribution between different potential sites in semipolar (202{sup ¯}1) InGaN quantum wells studied by near-field photoluminescence  

SciTech Connect (OSTI)

Scanning near-field photoluminescence (PL) spectroscopy at different excitation powers was applied to study nanoscale properties of carrier localization and recombination in semipolar (202{sup ¯}1) InGaN quantum wells (QWs) emitting in violet, blue, and green-yellow spectral regions. With increased excitation power, an untypical PL peak energy shift to lower energies was observed. The shift was attributed to carrier density dependent carrier redistribution between nm-scale sites of different potentials. Near-field PL scans showed that in (202{sup ¯}1) QWs the in-plane carrier diffusion is modest, and the recombination properties are uniform, which is advantageous for photonic applications.

Marcinkevi?ius, S. [Department of Materials and Nano Physics, KTH Royal Institute of Technology, Electrum 229, 16440 Kista (Sweden); Gelžinyt?, K. [Department of Materials and Nano Physics, KTH Royal Institute of Technology, Electrum 229, 16440 Kista (Sweden); Institute of Applied Research, Vilnius University, Saul?tekio 9-3, 10222 Vilnius (Lithuania); Zhao, Y.; Nakamura, S.; DenBaars, S. P.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

2014-09-15T23:59:59.000Z

91

JOURNAL OF MATERIALS SCIENCE 40 (2005) 2101 2103 LETTERS Pressureless sintering of silicon nitride/boron nitride  

E-Print Network [OSTI]

, West Lafayette, Indiana 47907-2044, USA Silicon nitride (Si3N4) and boron nitride (BN) are ma- terials2O3 (Alcoa A- 16SG, 0.4 µm in diameter) and 4 wt% Y2O3 (Alfa Aesar REacton, 10 µm in diameter

Trice, Rodney W.

92

Nanowire-templated lateral epitaxial growth of non-polar group III nitrides  

DOE Patents [OSTI]

A method for growing high quality, nonpolar Group III nitrides using lateral growth from Group III nitride nanowires. The method of nanowire-templated lateral epitaxial growth (NTLEG) employs crystallographically aligned, substantially vertical Group III nitride nanowire arrays grown by metal-catalyzed metal-organic chemical vapor deposition (MOCVD) as templates for the lateral growth and coalescence of virtually crack-free Group III nitride films. This method requires no patterning or separate nitride growth step.

Wang, George T. (Albuquerque, NM); Li, Qiming (Albuquerque, NM); Creighton, J. Randall (Albuquerque, NM)

2010-03-02T23:59:59.000Z

93

Hard and low friction nitride coatings and methods for forming the same  

DOE Patents [OSTI]

An improved coating material possessing super-hard and low friction properties and a method for forming the same. The improved coating material includes the use of a noble metal or soft metal homogeneously distributed within a hard nitride material. The addition of small amounts of such metals into nitrides such as molybdenum nitride, titanium nitride, and chromium nitride results in as much as increasing of the hardness of the material as well as decreasing the friction coefficient and increasing the oxidation resistance.

Erdemir, Ali (Naperville, IL); Urgen, Mustafa (Istanbul, TR); Cakir, Ali Fuat (Istanbul, TR); Eryilmaz, Osman Levent (Bolingbrook, IL); Kazmanli, Kursat (Istanbul, TR); Keles, Ozgul (Istanbul, TR)

2007-05-01T23:59:59.000Z

94

Synthesis, Crystal Structure, and Elastic Properties of Novel Tungsten Nitrides  

SciTech Connect (OSTI)

Among transition metal nitrides, tungsten nitrides possess unique and/or superior chemical, mechanical, and thermal properties. Preparation of these nitrides, however, is challenging because the incorporation of nitrogen into tungsten lattice is thermodynamically unfavorable at atmospheric pressure. To date, most materials in the W-N system are in the form of thin films produced by nonequilibrium processes and are often poorly crystallized, which severely limits their use in diverse technological applications. Here we report synthesis of tungsten nitrides through new approaches involving solid-state ion exchange and nitrogen degassing under pressure. We unveil a number of novel nitrides including hexagonal and rhombohedral W{sub 2}N{sub 3}. The final products are phase-pure and well-crystallized in bulk forms. For hexagonal W{sub 2}N{sub 3}, hexagonal WN, and cubic W3N4, they exhibit elastic properties rivaling or even exceeding cubic-BN. All four nitrides are prepared at a moderate pressure of 5 GPa, the lowest among high-pressure synthesis of transition metal nitrides, making it practically feasible for massive and industrial-scale production.

Wang, Shanmin; Yu, Xiaohui; Lin, Zhijun; Zhang, Ruifeng; He, Duanwei; Qin, Jiaqian; Zhu, Jinlong; Han, Jiantao; Wang, Lin; Mao, Ho-kwang; Zhang, Jianzhong; Zhao, Yusheng (UNLV); (Ehime U); (CIW); (Sichuan U.); (LANL)

2012-12-13T23:59:59.000Z

95

Vibronic fine structure in high-resolution x-ray absorption spectra from ion-bombarded boron nitride nanotubes  

SciTech Connect (OSTI)

The authors have applied high-resolution near-edge x-ray absorption fine structure measurements around the nitrogen K-edge to study the effects of ion-bombardment on near-surface properties of boron nitride nanotubes. A notable difference has been observed between surface sensitive partial electron yield (PEY) and bulk sensitive total electron yield (TEY) fine-structure measurements. The authors assign the PEY fine structure to the coupling of excited molecular vibrational modes to electronic transitions in NO molecules trapped just below the surface. Oxidation resistance of the boron nitride nanotubes is significantly reduced by low energy ion bombardment, as broken B-N bonds are replaced by N-O bonds involving oxygen present in the surface region. In contrast to the PEY spectra, the bulk sensitive TEY measurements on as-grown samples do not exhibit any fine structure while the ion-bombarded samples show a clear vibronic signature of molecular nitrogen.

Petravic, Mladen; Peter, Robert; Varasanec, Marijana [Department of Physics and Center for Micro and Nano Sciences and Technologies, University of Rijeka, 51000 Rijeka (Croatia); Li Luhua; Chen Ying [Institute for Technology Research and Innovation, Deakin University, Geelong Waurn Ponds Campus, 3217 (Australia); Cowie, Bruce C. C. [Australian Synchrotron, Clayton VIC 3168 (Australia)

2013-05-15T23:59:59.000Z

96

High efficiency III-nitride light-emitting diodes  

DOE Patents [OSTI]

Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

2013-05-28T23:59:59.000Z

97

Silicon nitride protective coatings for silvered glass mirrors  

DOE Patents [OSTI]

A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO)

1988-01-01T23:59:59.000Z

98

Conductive and robust nitride buffer layers on biaxially textured substrates  

DOE Patents [OSTI]

The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

2009-03-31T23:59:59.000Z

99

Silicon nitride protective coatings for silvered glass mirrors  

DOE Patents [OSTI]

A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate prior to metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

Tracy, C.E.; Benson, D.K.

1984-07-20T23:59:59.000Z

100

Vacancy Hardening and Softening in Transition Metal Carbides and Nitrides  

SciTech Connect (OSTI)

The effects of vacancies on mechanical properties of the transition metal carbides and nitrides are studied using the ab initio pseudopotential approach. Calculated shear elastic stiffness and electronic structures show that the vacancy produces entirely different effects on the mechanical strength of groups IVb nitrides and Vb carbides. It is found that the occupation of shear-unstable metallic dd bonding states changes essentially in an opposite way for the carbides and nitrides in the presence of vacancies, resulting in different responses to shear stress. Our study provides an atomistic understanding of the anomaly in hardness for these substoichiometric materials.

Jhi, Seung-Hoon; Louie, Steven G.; Cohen, Marvin L.; Ihm, Jisoon

2001-04-09T23:59:59.000Z

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hard Magnets I: 2-17, Nitrides, Carbides Frederick Pinkerton, Chairman Structure and magnetic properties of rare-earth iron nitrides, carbides  

E-Print Network [OSTI]

Hard Magnets I: 2-17, Nitrides, Carbides Frederick Pinkerton, Chairman Structure and magnetic properties of rare-earth iron nitrides, carbides and carbonitrides (invited) Z. Altounian, X. Chen, L. X develops for R=Sm upon nitriding/carbiding with an anisotropy field that is almost double the value for Nd

Ryan, Dominic

102

Iron-Nitride Alloy Magnets: Transformation Enabled Nitride Magnets Absent Rare Earths (TEN Mare)  

SciTech Connect (OSTI)

REACT Project: Case Western is developing a highly magnetic iron-nitride alloy to use in the magnets that power electric motors found in EVs and renewable power generators. This would reduce the overall price of the motor by eliminating the expensive imported rare earth minerals typically found in today’s best commercial magnets. The iron-nitride powder is sourced from abundant and inexpensive materials found in the U.S. The ultimate goal of this project is to demonstrate this new magnet system, which contains no rare earths, in a prototype electric motor. This could significantly reduce the amount of greenhouse gases emitted in the U.S. each year by encouraging the use of clean alternatives to oil and coal.

None

2012-01-01T23:59:59.000Z

103

Anisotropic In distribution in InGaN core-shell nanowires  

SciTech Connect (OSTI)

In this work, we investigate the local atomic structure of defect-free homogeneous and self-organized core-shell structure nanowires by means of X-ray Absorption Fine Structure (XAFS) Spectroscopy at the In L{sub III} and K edges and Multiwavelength Anomalous Diffraction. The results are interpreted by comparison of the experimental data with X-ray absorption calculations carried out with ab initio structural models. Extended-XAFS data analysis at In K-edge shows an anisotropic In distribution in the second nearest neighbors pointing out to a deviation from randomness in In distribution for the core-shell sample.

Leclere, C.; Renevier, H., E-mail: Hubert.Renevier@grenoble-inp.fr [Laboratoire des Matériaux et du Génie Physique, Grenoble INP - Minatec, Grenoble (France); Katcho, N. A. [Liten, CEA-Grenoble, 17 rue des martyrs, 38054 Grenoble (France); Tourbot, G.; Daudin, B. [CEA-CNRS group Nanophysique et Semiconducteurs, Université Joseph Fourier and CEA Grenoble, INAC, SP2M, 17 rue des Martyrs, 38054 Grenoble (France); Proietti, M. G. [Departamento de Fisica de la Materia Condensada, Instituto de Ciencia de Materiales de Aragon, CSIC - Universidad de Zaragoza, Zaragoza (Spain)

2014-07-07T23:59:59.000Z

104

Single-layer graphene on silicon nitride micromembrane resonators  

E-Print Network [OSTI]

Due to their low mass, high quality factor, and good optical properties, silicon nitride (SiN) micromembrane resonators are widely used in force and mass sensing applications, particularly in optomechanics. The metallization ...

Schmid, Silvan

105

aluminum nitride insulator: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

K-r grown by a modified Bridgman tech- nique,r6 Rollins, Andrew M. 27 Low-voltage organic thin film transistors with hydrophobic aluminum nitride film as gate insulator Materials...

106

Molybdenum enhanced low-temperature deposition of crystalline silicon nitride  

DOE Patents [OSTI]

A process for chemical vapor deposition of crystalline silicon nitride is described which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide. 5 figures.

Lowden, R.A.

1994-04-05T23:59:59.000Z

107

Apparatus for the production of boron nitride nanotubes  

SciTech Connect (OSTI)

An apparatus for the large scale production of boron nitride nanotubes comprising; a pressure chamber containing; a continuously fed boron containing target; a source of thermal energy preferably a focused laser beam; a cooled condenser; a source of pressurized nitrogen gas; and a mechanism for extracting boron nitride nanotubes that are condensed on or in the area of the cooled condenser from the pressure chamber.

Smith, Michael W; Jordan, Kevin

2014-06-17T23:59:59.000Z

108

Process for preparing titanium nitride powder  

DOE Patents [OSTI]

A process for making titanium nitride powder by reaction of titanium phosphates with sodium cyanide. The process of this invention may comprise mixing one or more phosphates of Ti with a cyanide salt in the absence of oxygen and heating to a temperature sufficient to cause reaction to occur. In the preferred embodiment the ratio of cyanide salt to Ti should be at least 2 which results in the major Ti-containing product being TiN rather than sodium titanium phosphate byproducts. The process is an improvement over prior processes since the byproducts are water soluble salts of sodium which can easily be removed from the preferred TiN product by washing. 2 tabs.

Bamberger, C.E.

1988-06-17T23:59:59.000Z

109

A boron nitride nanotube peapod thermal rectifier  

SciTech Connect (OSTI)

The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

Loh, G. C., E-mail: jgloh@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)

2014-06-28T23:59:59.000Z

110

Protective nitride formation on stainless steel alloys for proton exchange membrane fuel cell bipolar plates  

SciTech Connect (OSTI)

Gas nitridation has shown excellent promise to form dense, electrically conductive and corrosion-resistant Cr-nitride surface layers on Ni-Cr base alloys for use as proton exchange membrane fuel cell (PEMFC) bipolar plates. Due to the high cost of nickel, Fe-base bipolar plate alloys are needed to meet the cost targets for many PEMFC applications. Unfortunately, nitridation of Fe-base stainless steel alloys typically leads to internal Cr-nitride precipitation rather than the desired protective surface nitride layer formation, due to the high permeability of nitrogen in these alloys. This paper reports the finding that it is possible to form a continuous, protective Cr-nitride (CrN and Cr{sub 2}N) surface layer through nitridation of Fe-base stainless steel alloys. The key to form a protective Cr-nitride surface layer was found to be the initial formation of oxide during nitridation, which prevented the internal nitridation typically observed for these alloys, and resulted in external Cr-nitride layer formation. The addition of V to the alloy, which resulted in the initial formation of V{sub 2}O{sub 3}-Cr{sub 2}O{sub 3}, was found to enhance this effect, by making the initially formed oxide more amenable to subsequent nitridation. The Cr-nitride surface layer formed on model V-modified Fe-27Cr alloys exhibited excellent corrosion resistance and low interfacial contact resistance under simulated PEMFC bipolar plate conditions.

Yang, Bing [ORNL; Brady, Michael P [ORNL; Wang, Heli [National Renewable Energy Laboratory (NREL); Turner, John [National Renewable Energy Laboratory (NREL); More, Karren Leslie [ORNL; Young, David J [ORNL; Tortorelli, Peter F [ORNL; Payzant, E Andrew [ORNL; Walker, Larry R [ORNL

2007-01-01T23:59:59.000Z

111

Adhesion improvement of electroless copper depositions on titanium nitride by low temperature annealing  

E-Print Network [OSTI]

copper depositions onto titanium nitride, a diffusion barrier material. In particular, an effort is made to characterize the adhesion of the electronics copper deposit on titanium nitride and the improvement of the adhesion produced by low temperature...

Eiserer, Rex Anthony

1999-01-01T23:59:59.000Z

112

Synthesis of III-V nitride nanowires with controlled structure, morphology, and composition  

E-Print Network [OSTI]

The III-V nitride materials system offers tunable electronic and optical properties that can be tailored for specific electronic and optoelectronic applications by varying the (In,Ga,Al)N alloy composition. While nitride ...

Crawford, Samuel Curtis

2014-01-01T23:59:59.000Z

113

Comparing directed efficiency of III-nitride nanowire light-emitting diodes  

E-Print Network [OSTI]

III-nitride-based nanowires are a promising platform for solid-state lighting. III-nitride nanowires that act as natural waveguides to enhance directed extraction have previously been shown to be free of extended defects ...

Gradecak, Silvija

114

Feasibility of breeding in hard spectrum boiling water reactors with oxide and nitride fuels  

E-Print Network [OSTI]

This study assesses the neutronic, thermal-hydraulic, and fuel performance aspects of using nitride fuel in place of oxides in Pu-based high conversion light water reactor designs. Using the higher density nitride fuel ...

Feng, Bo, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

115

SUBMILLIMETER OPTICAL PROPERTIES OF HEXAGONAL BORON NITRIDE A. J. Gatesman, R. H. Giles and J. Waldman  

E-Print Network [OSTI]

boron nitride was obtained in four grades (A, HP, M, M26) from The Carborundum Co. in Niagara Fall, NY

Massachusetts at Lowell, University of

116

Silicon nitride/silicon carbide composite densified materials prepared using composite powders  

DOE Patents [OSTI]

Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.

1997-07-01T23:59:59.000Z

117

DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME  

E-Print Network [OSTI]

DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME ULTRAVIOLET (1.6-35 NM deposition and characterization of reactively-sputtered uranium nitride thin films. I also report optical.1 Application 1 1.2 Optical Constants 2 1.3 Project Focus 7 2 Uranium Nitride Thin Films 8 2.1 Sputtering 8 2

Hart, Gus

118

Thermodynamic stability of oxide, nitride, and carbide coating materials in liquid Sn25Li  

E-Print Network [OSTI]

Thermodynamic stability of oxide, nitride, and carbide coating materials in liquid Sn­25Li S of various oxides, carbides, and nitrides in Sn­Li is estimated as a function of lithium composition K most of the studied nitrides, carbides, and some oxides were found to be stable (DrG > 0). However

Ghoniem, Nasr M.

119

Trends in elasticity and electronic structure of transition-metal nitrides and carbides from first principles  

E-Print Network [OSTI]

Trends in elasticity and electronic structure of transition-metal nitrides and carbides from first 2005 The elastic properties of selected transition-metal TM nitrides and carbides in B1 structure the transition-metal nitrides and carbides remain unclear and a challenge for engineering hard materials

Wu, Zhigang

120

Active Control of Nitride Plasmonic Dispersion in the Far Infrared.  

SciTech Connect (OSTI)

We investigate plasmonic structures in nitride-based materials for far-infrared (IR) applications. The two dimensional electron gas (2DEG) in the GaN/AlGaN material system, much like metal- dielectric structures, is a patternable plasmonic medium. However, it also permits for direct tunability via an applied voltage. While there have been proof-of-principle demonstrations of plasma excitations in nitride 2DEGs, exploration of the potential of this material system has thus far been limited. We recently demonstrated coherent phenomena such as the formation of plasmonic crystals, strong coupling of tunable crystal defects to a plasmonic crystal, and electromagnetically induced transparency in GaAs/AlGaAs 2DEGs at sub-THz frequencies. In this project, we explore whether these effects can be realized in nitride 2DEG materials above 1 THz and at temperatures exceeding 77 K.

Shaner, Eric A.; Dyer, Gregory Conrad; Seng, William Francis; Bethke, Donald Thomas; Grine, Albert Dario,; Baca, Albert G.; Allerman, Andrew A.

2014-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Characterization of nitrided silicon-silicon dioxide interfaces  

SciTech Connect (OSTI)

A newly-developed technique for the simultaneous characterization of the oxide-silicon interface properties and of bulk impurities was used for a systematic study of the nitridation process of thin oxides. This technique is based upon surface recombination velocity measurements, and does not require the formation of a capacitor structure, so it is very suitable for the characterization of as-grown interfaces. Oxides grown both in dry and in wet environments were considered, and nitridation processes in N{sub 2}O and in NO were compared to N{sub 2} annealing processes. The effect of nitridation temperature and duration were also studied, and RTO/RTN processes were compared to conventional furnace nitridation processes. Surface recombination velocity was correlated with nitrogen concentration at the oxide-silicon interface obtained by Secondary Ion Mass Spectroscopy (SIMS) measurements. Surface recombination velocity (hence surface state density) decreases with increasing nitrogen pile-up at the oxide-silicon interface, indicating that in nitrided interfaces surface state density is limited by nitridation. NO treatments are much more effective than N{sub 2}O treatments in the formation of nitrogen-rich interface layer and, as a consequence, in surface state reduction. Surface state density was measured in fully processed wafers before and after constant current stress. After a complete device process surface states are annealed out by hydrogen passivation, however they are reactivated by the electrical stress, and surface state results after stress were compared with data of surface recombination velocity in as-processed wafers.

Polignano, M.L.; Alessandri, M.; Brazzelli, D. [and others

2000-07-01T23:59:59.000Z

122

Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride  

DOE Patents [OSTI]

A process is disclosed for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

Koc, R.; Glatzmaier, G.C.

1995-05-23T23:59:59.000Z

123

Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride  

DOE Patents [OSTI]

A process for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

Koc, Rasit (Lakewood, CO); Glatzmaier, Gregory C. (Boulder, CO)

1995-01-01T23:59:59.000Z

124

Process for producing wurtzitic or cubic boron nitride  

DOE Patents [OSTI]

Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

Holt, J.B.; Kingman, D.D.; Bianchini, G.M.

1992-04-28T23:59:59.000Z

125

Process for producing wurtzitic or cubic boron nitride  

DOE Patents [OSTI]

Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

Holt, J. Birch (San Jose, CA); Kingman, deceased, Donald D. (late of Danville, CA); Bianchini, Gregory M. (Livermore, CA)

1992-01-01T23:59:59.000Z

126

Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides  

SciTech Connect (OSTI)

Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (Ux, Dy1-x)N (0.7 ? X ? 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

Drryl P. Butt; Brian Jaques

2009-03-31T23:59:59.000Z

127

Cubic Lithium Nitride Amy Lazicki1,2  

E-Print Network [OSTI]

Cubic Lithium Nitride to 200 GPa Amy Lazicki1,2 Choong-Shik Yoo1, Warren Pickett2, Richard electrolyte material for lithium-based batteries · possible hydrogen storage material Thrust of this research ­ differences between the XRS and PDOS are indications of the presence of core-hole interactions (excitons

Islam, M. Saif

128

Evaluation and silicon nitride internal combustion engine components  

SciTech Connect (OSTI)

The feasibility of silicon nitride (Si[sub 3]N[sub 4]) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components' gas-pressure sinterable Si[sub 3]N[sub 4] (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si[sub 3]N[sub 4] components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

Voldrich, W. (Allied-Signal Aerospace Co., Torrance, CA (United States). Garrett Ceramic Components Div.)

1992-04-01T23:59:59.000Z

129

Continuous Fiber Ceramic Composite (CFCC) Program: Gaseous Nitridation  

SciTech Connect (OSTI)

Textron has developed a mature process for the fabrication of continuous fiber ceramic composite (CFCC) tubes for application in the aluminum processing and casting industry. The major milestones in this project are System Composition; Matrix Formulation; Preform Fabrication; Nitridation; Material Characterization; Component Evaluation

R. Suplinskas G. DiBona; W. Grant

2001-10-29T23:59:59.000Z

130

Methods for improved growth of group III nitride buffer layers  

DOE Patents [OSTI]

Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

2014-07-15T23:59:59.000Z

131

Synthesis and Functionalization of Carbon and Boron Nitride Nanomaterials and Their Applications  

E-Print Network [OSTI]

Carbon Nitrides for Hydrogen Storage. Adv. Funct. Mater.N compounds for chemical hydrogen storage. Chemical SocietyT. , High-Pressure Hydrogen Storage in Zeolite-Templated

Erickson, Kristopher John

2012-01-01T23:59:59.000Z

132

amorphous carbon-nitride films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in hard and elastic amorphous carbon nitride films investigated H NMR spectroscopy Materials Science Websites Summary: Received 14 February 2003; published 5 November 2003 The...

133

Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications  

DOE Patents [OSTI]

The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.

Hui, Rongqing (Lenexa, KS); Jiang,Hong-Xing (Manhattan, KS); Lin, Jing-Yu (Manhattan, KS)

2008-03-18T23:59:59.000Z

134

Purification of boron nitride nanotubes via polymer wrapping  

SciTech Connect (OSTI)

Highlights: ? Surface modification of boron nitride nanotubes using polymeric materials. ? Surface-modified BNNT was purified with a simple dilution-centrifugation step. ? Surface-modified BNNT can be directly used for polymer composite fabrication ? Degree of purification was analyzed by Raman spectroscopy. - Abstract: Boron nitride nanotubes (BNNT) synthesized by a ball milling-annealing were surface-modified using three different types of polymeric materials. Those materials were chosen depending on future applications especially in polymer nanocomposite fabrications. We found that the surface-modified BNNT can be purified with a simple dilution-centrifugation step, which would be suitable for large-scale purification. Degree of purification was monitored by means of the center peak position and FWHM of E{sub 2g} mode of BNNT in Raman spectra. As the purification of BNNT develops, the peak position was up-shifted while FWHM of the peak was narrowed.

Choi, Jin-Hyuk [Department of Nano Science and Technology, Sejong University, 98 Gunja, Gwangjin, Seoul 143-747 (Korea, Republic of); Kim, Jaewoo [Nuclear Materials Research Division, Korea Atomic Energy Research Institute, 1045 Daedukdaero, Daejeon 305-353 (Korea, Republic of); WCI Quantum Beam based Radiation Research Center, Korea Atomic Energy Research Institute, 1045 Daedukdaero, Daejeon 305-353 (Korea, Republic of); Seo, Duckbong [Nuclear Materials Research Division, Korea Atomic Energy Research Institute, 1045 Daedukdaero, Daejeon 305-353 (Korea, Republic of); Seo, Young-Soo, E-mail: ysseo@sejong.ac.kr [Department of Nano Science and Technology, Sejong University, 98 Gunja, Gwangjin, Seoul 143-747 (Korea, Republic of)

2013-03-15T23:59:59.000Z

135

Chemical preparation and shock wave compression of carbon nitride precursors  

SciTech Connect (OSTI)

Two synthetic routes have been developed to produce high-molecular-weight organic precursors containing a high weight fraction of nitrogen. One of the precursors is a pyrolysis residue of melamine-formaldehyde resin. The second precursor is the byproduct of an unusual low-temperature combustion reaction of tetrazole and its sodium salt. These precursors have been shock compressed under typical conditions for diamond and wurtzite boron nitride synthesis in an attempt to recover a new ultrahard carbon nitride. The recovered material has been analyzed by X-ray diffraction, FTIR, and Raman microprobe analysis. Diamond is present in the recovered material. This diamond is well ordered relative to diamond shock synthesized from carbonaceous starting materials.

Wixon, M.R. (KMS Fusion, Inc., Ann Arbor, MI (USA))

1990-07-01T23:59:59.000Z

136

Electrically dependent bandgaps in graphene on hexagonal boron nitride  

SciTech Connect (OSTI)

We present first-principles calculations on the bandgap of graphene on a layer of hexagonal boron nitride in three different stacking configurations. Relative stability of the configurations is identified and bandgap tunability is demonstrated through the application of an external, perpendicularly applied electric field. We carefully examine the bandgap's sensitivity to both magnitude of the applied field as well as separation between the graphene and hexagonal boron nitride layers. Features of the band structure are examined and configuration-dependent relationships between the field and bandgap are revealed and elucidated through the atom-projected density of states. These findings suggest the potential for opening and modulating a bandgap in graphene as high as several hundred meV.

Kaplan, D., E-mail: daniel.b.kaplan.civ@mail.mil; Swaminathan, V. [U.S. Army RDECOM-ARDEC, Fuze Precision Armaments and Technology Directorate, Picatinny Arsenal, New Jersey 07806 (United States); Recine, G. [Department of Applied Physics, Polytechnic Institute of New York University, Brooklyn, New York 11201 (United States); Department of Physics and Engineering Physics, Fordham University, Bronx, New York 10458 (United States)

2014-03-31T23:59:59.000Z

137

Development of silicon nitride composites with continuous fiber reinforcement  

SciTech Connect (OSTI)

The composites were fabricated using ultrafine Si powders prepared by attritor milling; the powders exhibits full conversion to Si nitride in < 3 h at {le} 1200 C (these conditions reduce degradation of the fibers compared to conventional). Effects of processing conditions on fiber properties and the use of fiber coatings to improve stability during processing as well as change the fiber-matrix interfacial properties were investigated. A duplex carbon-silicon carbide coating, deposited by CVD, reduced fiber degradation in processing, and it modified the fiber-matrix adhesion. Si nitride matrix composites were fabricated using reaction sintering, forming laminates, filament-wound plates, and tubes. In each case, an attritor milled Si powder slurry is infiltrated into ceramic fiber preforms or tows, which are then assembled to form a 3-D structure for reaction sintering. The resulting composites have properties comparable to chemical vapor infiltration densified composites, with reasonable strengths and graceful composite fracture behavior.

Starr, T.L.; Mohr, D.L.; Lackey, W.J.; Hanigofsky, J.A. [Georgia Inst. of Tech., Atlanta, GA (United States). Georgia Technology Research Inst.

1993-10-01T23:59:59.000Z

138

Study of nitrogen-rich titanium and zirconium nitride films  

SciTech Connect (OSTI)

Thin titanium nitride (TiN) and zirconium nitride (ZrN) films containing excess nitrogen up to 59 and 63 at. % N, respectively, were deposited on austenitic stainless-steel substrates by reactive triode ion plating at about 823 K. The film structure and surface chemistry were studied using x-ray diffraction, scanning Auger spectroscopy, and electron energy-loss spectroscopy (EELS). In TiN films only the face-centered-cubic mononitride phase was detected. The lattice parameter of the stoichiometric TiN film was larger than the corresponding bulk value and it increased with increasing nitrogen content. The lattice parameter of overstoichiometric ZrN films showed abnormal behavior when calculated from different diffracting planes. This behavior together with the EELS and other measurements indicate that a dielectric Zr/sub 3/N/sub 4/ phase was formed at overstoichiometric compositions.

Ristolainen, E.O.; Molarius, J.M.; Korhonen, A.S.; Lindroos, V.K.

1987-07-01T23:59:59.000Z

139

Charge carrier transport properties in layer structured hexagonal boron nitride  

SciTech Connect (OSTI)

Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (~ 6.4 eV), hexagonal boron nitride (hBN) has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700?°K). The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of ? ? (T/T{sub 0}){sup ??} with ? = 3.02, satisfying the two-dimensional (2D) carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ?? = 192 meV (or 1546 cm{sup -1}), which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X., E-mail: hx.jiang@ttu.edu [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

2014-10-15T23:59:59.000Z

140

E-Print Network 3.0 - advanced microstructural study Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Engineering 15 Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with Summary: microstructures on the light extraction efficiency...

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Nitridation under ammonia of high surface area vanadium aerogels  

SciTech Connect (OSTI)

Vanadium pentoxide gels have been obtained from decavanadic acid prepared by ion exchange on a resin from ammonium metavanadate solution. The progressive removal of water by solvent exchange in supercritical conditions led to the formation of high surface area V{sub 2}O{sub 5}, 1.6H{sub 2}O aerogels. Heat treatment under ammonia has been performed on these aerogels in the 450-900 deg. C temperature range. The oxide precursors and oxynitrides have been characterized by XRD, SEM, TGA, BET. Nitridation leads to divided oxynitride powders in which the fibrous structure of the aerogel is maintained. The use of both very low heating rates and high surface area aerogel precursors allows a higher rate and a lower threshold of nitridation than those reported in previous works. By adjusting the nitridation temperature, it has been possible to prepare oxynitrides with various nitrogen enrichment and vanadium valency states. Whatever the V(O,N) composition, the oxidation of the oxynitrides in air starts between 250 and 300 deg. C. This determines their potential use as chemical gas sensors at a maximum working temperature of 250 deg. C.

Merdrignac-Conanec, Odile [Laboratoire Verres et Ceramiques, UMR CNRS 6512, Institut de Chimie de Rennes, Universite de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France)]. E-mail: odile.merdrignac@univ-rennes1.fr; El Badraoui, Khadija [Laboratoire Verres et Ceramiques, UMR CNRS 6512, Institut de Chimie de Rennes, Universite de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France); L'Haridon, Paul [Laboratoire Verres et Ceramiques, UMR CNRS 6512, Institut de Chimie de Rennes, Universite de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France)

2005-01-15T23:59:59.000Z

142

Ion implantation of silicon nitride ball bearings  

SciTech Connect (OSTI)

Hypothesis for ion implantation effect was that stress concentrations reflected into the bulk due to topography such as polishing imperfections, texture in the race, or transferred material, might be reduced due to surface amorphization. 42 control samples were tested to an intended runout period of 60 h. Six ion implanted balls were tested to an extended period of 150 h. Accelerated testing was done in a V groove so that wear was on two narrow wear tracks. Rutherford backscattering, XRPS, profilometry, optical microscopy, nanoindentation hardness, and white light interferometry were used. The balls were implanted with 150-keV C ions at fluence 1.1x10{sup 17}/cm{sup 2}. The samples had preexisting surface defects (C-cracks), so the failure rate of the control group was unacceptable. None of the ion-implanted samples failed in 150 h of testing. Probability of randomly selecting 6 samples from the control group that would perform this well is about 5%, so there is good probability that ion implantation improved performance. Possible reasons are discussed. Wear tracks, microstructure, and impurity content were studied in possible relation to C-cracks.

Williams, J.M. [Oak Ridge National Lab., TN (United States); Miner, J.R. [United Technologies, Pratt and Whitney, West Palm Beach, FL (United States)

1996-09-01T23:59:59.000Z

143

Influence of interlayer trapping and detrapping mechanisms on the electrical characterization of hafnium oxide/silicon nitride stacks on silicon  

SciTech Connect (OSTI)

Al/HfO{sub 2}/SiN{sub x}:H/n-Si metal-insulator-semiconductor capacitors have been studied by electrical characterization. Films of silicon nitride were directly grown on n-type silicon substrates by electron cyclotron resonance assisted chemical vapor deposition. Silicon nitride thickness was varied from 3 to 6.6 nm. Afterwards, 12 nm thick hafnium oxide films were deposited by the high-pressure sputtering approach. Interface quality was determined by using current-voltage, capacitance-voltage, deep-level transient spectroscopy (DLTS), conductance transients, and flatband voltage transient techniques. Leakage currents followed the Poole-Frenkel emission model in all cases. According to the simultaneous measurement of the high and low frequency capacitance voltage curves, the interface trap density obtained for all the samples is in the 10{sup 11} cm{sup -2} eV{sup -1} range. However, a significant increase in this density of about two orders of magnitude was obtained by DLTS for the thinnest silicon nitride interfacial layers. In this work we probe that this increase is an artifact that must be attributed to traps existing at the HfO{sub 2}/SiN{sub x}:H intralayer interface. These traps are more easily charged or discharged as this interface comes near to the substrate, that is, as thinner the SiN{sub x}:H interface layer is. The trapping/detrapping mechanism increases the capacitance transient and, in consequence, the DLTS measurements have contributions not only from the insulator/substrate interface but also from the HfO{sub 2}/SiN{sub x}:H intralayer interface.

Garcia, H.; Duenas, S.; Castan, H.; Gomez, A.; Bailon, L. [Departamento de Electricidad y Electronica, E.T.S.I. Telecomunicacion, Universidad de Valladolid, Campus 'Miguel Delibes', 47011 Valladolid (Spain); Toledano-Luque, M.; Prado, A. del; Martil, I.; Gonzalez-Diaz, G. [Departamento de Fisica Aplicada III (Electricidad y Electronica), Facultad de Ciencias Fisicas, Universidad Complutense, 28040 Madrid (Spain)

2008-11-01T23:59:59.000Z

144

Excitons in Boron Nitride Nanotubes: Dimensionality Effects Ludger Wirtz,1,2  

E-Print Network [OSTI]

Excitons in Boron Nitride Nanotubes: Dimensionality Effects Ludger Wirtz,1,2 Andrea Marini,3; published 30 March 2006) We show that the optical absorption spectra of boron nitride (BN) nanotubes are dominated by strongly bound excitons. Our first-principles calculations indicate that the binding energy

Marini, Andrea

145

MOVPE growth of semipolar III-nitride semiconductors on CVD graphene Priti Gupta n  

E-Print Network [OSTI]

MOVPE growth of semipolar III-nitride semiconductors on CVD graphene Priti Gupta n , A.A. Rahman pressure metalorganic vapor phase epitaxy B1. Graphene B1. Nitrides B2. Semiconducting III­V materials a b on graphene grown by chemical vapour deposition. GaN, AlGaN alloys, and InN layers are grown using an Al

Deshmukh, Mandar M.

146

The effect of surface mechanical attrition treatment on low temperature plasma nitriding of an austenitic stainless  

E-Print Network [OSTI]

of an austenitic stainless steel M. Chemkhi1 , D. Retraint1,* , A. Roos1 , C. Garnier1 , L. Waltz2 , C. Demangel3) followed by plasma nitriding on the mechanical properties of a medical grade austenitic stainless steel, nanocrystalline materials, plasma nitriding, austenitic steels 1. Introduction Austenitic stainless steel AISI 316

Boyer, Edmond

147

Microwave Nitridation of Sintered Reaction Bonded Silicon Parts for Natural Gas Fueled Diesel Engines  

SciTech Connect (OSTI)

This cooperative project was a joint development program between Eaton Corporation and Lockheed Martin Energy Research (LMER). Cooperative work was of benefit to both parties. ORNL was able to assess up-scale of the microwave nitridation process using a more intricate-shaped part designed for application in advanced diesel engines. Eaton Corporation mined access to microwave facilities and expertise for the nitridation of SRBSN materials. The broad objective of the CRADA established with Eaton Corporation and ORNL was to develop cost-effective silicon nitride ceramics compared to the current materials available. The following conclusions can be made from the work performed under the CRADA: (1) Demonstrated that the binder burnout step can be incorporated into the SRBSN processing in the microwave furnace. (2) Scale-up of the microwave nitridation process using Eaton Corporation parts showed that the nitridation weight gains were essentially identical to those obtained by conventional heating. (3) Combined nitridation and sintering processes using silicon nitride beads as packing powders results in degradation of the mechanical properties. (4) Gelcasting of silicon nitride materials using Eaton Si mixtures was demonstrated.

Edler, J.; Kiggans, J.O.; Suman, A.W.; Tiegs, T.N.

1999-01-01T23:59:59.000Z

148

Alternated high-and low-pressure nitriding of austenitic stainless steel: Mechanisms and results  

E-Print Network [OSTI]

Alternated high- and low-pressure nitriding of austenitic stainless steel: Mechanisms and results G a gas mixture of (N2 /H2):(50/50) in pressure, was applied to stainless-steel AISI 304. In the first or plasma nitriding of metal parts, in par- ticular those made of steel and cast iron, is extensively ap

149

Tunneling characteristics in chemical vapor deposited graphene hexagonal boron nitride graphene junctions  

E-Print Network [OSTI]

1 Tunneling characteristics in chemical vapor deposited graphene ­ hexagonal boron nitride ­ graphene junctions T. Roy1 , L. Liu2 , S. de la Barrera,3 B. Chakrabarti1,4 , Z. R. Hesabi1 , C. A. Joiner1 Abstract: Large area chemical vapor deposited graphene and hexagonal boron nitride was used to fabricate

Feenstra, Randall

150

One step process for producing dense aluminum nitride and composites thereof  

DOE Patents [OSTI]

A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

Holt, J. Birch (San Jose, CA); Kingman, Donald D. (Danville, CA); Bianchini, Gregory M. (Livermore, CA)

1989-01-01T23:59:59.000Z

151

Thermo-chemical Modelling of Uranium-free Nitride Fuels Mikael JOLKKONEN1;;y  

E-Print Network [OSTI]

and accepted December 22, 2003) A production process for americium-bearing, uranium-free nitride fuels environments was also estimated. We show that sintering of nitride compounds containing americium should be performed under nitrogen atmosphere in order to the avoid the excessive losses of americium reported from

Haviland, David

152

carbides. The multiphase/polytypic region can be expected to occur also in the nitrides because  

E-Print Network [OSTI]

in valence electron concentration where sev- eral phases of the 3d, 4d, and 5d transition metal carbides have, Transition Metal Carbides and Nitrides (Academic Press, New York, 1971). 6. C. Maerky, M.-O. Guillou, J. L is predicted to be substantially enhanced over that of traditional transition metal car- bide/nitride coatings

Shen, Guoyin

153

Single-Crystalline Mesoporous Molybdenum Nitride Nanowires with Improved Electrochemical Properties  

E-Print Network [OSTI]

process. I. Introduction TRANSITION -metal oxides, carbides, sulfides, and nitrides are extensively, and catalytic properties.1­4 Among the transition-metal com- pounds, transition-metal nitrides are regarded using transition-metal complex materials.16 However, the transi- tion-metal complex materials are lower

Cao, Guozhong

154

Hard superconducting nitrides Xiao-Jia Chen*, Viktor V. Struzhkin*, Zhigang Wu*, Maddury Somayazulu  

E-Print Network [OSTI]

(4). The refractory characteristics of these transition- metal nitrides and carbides have been, and hardness of selected superconducting transition-metal nitrides reveals inter- esting correlations among transition temperature (Tc) near 4 K when doped with boron (3). However, the transition-metal compounds

Wu, Zhigang

155

Large-scale well aligned carbon nitride nanotube films: Low temperature growth and electron field emission  

E-Print Network [OSTI]

Large-scale well aligned carbon nitride nanotube films: Low temperature growth and electron field emission Dingyong Zhong, Shuang Liu, Guangyu Zhang, and E. G. Wanga) State Key Laboratory for Surface Received 2 January 2001; accepted for publication 13 March 2001 Large-scale well aligned carbon nitride

Zhang, Guangyu

156

Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates  

DOE Patents [OSTI]

A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

Brady, Michael P. (Oak Ridge, TN) [Oak Ridge, TN; Yang, Bing (Oak Ridge, TN) [Oak Ridge, TN; Maziasz, Philip J. (Oak Ridge, TN) [Oak Ridge, TN

2010-11-09T23:59:59.000Z

157

Performance improvement of silicon nitride ball bearings by ion implantation. CRADA final report  

SciTech Connect (OSTI)

The present report summarizes technical results of CRADA No. ORNL 92-128 with the Pratt and Whitney Division of United Technologies Corporation. The stated purpose of the program was to assess the 3effect of ion implantation on the rolling contact performance of engineering silicon nitride bearings, to determine by post-test analyses of the bearings the reasons for improved or reduced performance and the mechanisms of failure, if applicable, and to relate the overall results to basic property changes including but not limited to swelling, hardness, modulus, micromechanical properties, and surface morphology. Forty-two control samples were tested to an intended runout period of 60 h. It was possible to supply only six balls for ion implantation, but an extended test period goal of 150 h was used. The balls were implanted with C-ions at 150 keV to a fluence of 1.1 {times} 10{sup 17}/cm{sup 2}. The collection of samples had pre-existing defects called C-cracks in the surfaces. As a result, seven of the control samples had severe spalls before reaching the goal of 60 h for an unacceptable failure rate of 0.003/sample-h. None of the ion-implanted samples experienced engineering failure in 150 h of testing. Analytical techniques have been used to characterize ion implantation results, to characterize wear tracks, and to characterize microstructure and impurity content. In possible relation to C-cracks. It is encouraging that ion implantation can mitigate the C-crack failure mode. However, the practical implications are compromised by the fact that bearings with C-cracks would, in no case, be acceptable in engineering practice, as this type of defect was not anticipated when the program was designed. The most important reason for the use of ceramic bearings is energy efficiency.

Williams, J.M. [Oak Ridge National Lab., TN (United States); Miner, J. [United Technologies Corp., West Palm Beach, FL (United States). Pratt and Whitney Div.

1998-03-01T23:59:59.000Z

158

Synthesis of silicon nitride particles in pulsed Rf plasmas  

SciTech Connect (OSTI)

Silicon nitride (hydrogenated) particles are synthesized using a pulsed 13.56 Mhz glow discharge. The plasma is modulated with a square-wave on/off cycle of varying period to study the growth kinetics. In situ laser light scattering and ex situ particle analysis are used to study the nucleation and growth. For SiH{sub 4}/Ar and SiH{sub 4}/NH{sub 3} plasmas, an initial very rapid growth phase is followed by slower growth, approaching the rate of thin film deposition on adjacent flat surfaces. The average particle size can be controlled in the 10-100 nm range by adjusting the plasma-on time. The size dispersion of the particles is large and is consistent with a process of continuous nucleation during the plasma-on period. The large polydispersity is also reported for silicon particles from silane and differs from that reported in other laboratories. The silicon nitride particle morphology is compared to that of silicon and silicon carbide particles generated by the same technique. Whereas Si particles appear as rough clusters of smaller subunits, the SiC particles are smooth spheres, and the Si{sub 3}N{sub 4} particles are smooth but non-spherical. Post-plasma oxidation kinetics of the particles are studied with FTIR and are consistent with a hydrolysis mechanism proposed in earlier work with continuous plasmas. Heat treatment of the powder in an ammonia atmosphere results in the elimination of hydrogen, rendering the silicon nitride resistant to atmospheric oxidation.

Buss, R.J.; Babu, S.V.

1995-11-01T23:59:59.000Z

159

Boron nitride nanosheets as oxygen-atom corrosion protective coatings  

SciTech Connect (OSTI)

The research of two-dimensional nanomaterials for anticorrosion applications is just recently burgeoning. Herein, we demonstrate the boron nitride nanosheets (BNNSs) coatings for protecting polymer from oxygen-atom corrosion. High-quality BNNSs, which are produced by an effective fluid dynamics method with multiple exfoliation mechanisms, can be assembled into coatings with controlled thickness by vacuum filtration. After exposed in atom oxygen, the naked polymer is severely corroded with remarkable mass loss, while the BNNSs-coated polymer remains intact. Barrier and bonding effects of the BNNSs are responsible for the coating's protective performance. These preliminary yet reproducible results pave a way for resisting oxygen-atom corrosion.

Yi, Min [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Plasma Laboratory, Ministry-of-Education Key Laboratory of Fluid Mechanics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Shen, Zhigang, E-mail: shenzhg@buaa.edu.cn [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Plasma Laboratory, Ministry-of-Education Key Laboratory of Fluid Mechanics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); School of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Zhao, Xiaohu [Plasma Laboratory, Ministry-of-Education Key Laboratory of Fluid Mechanics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Liang, Shuaishuai [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Liu, Lei [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); School of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China)

2014-04-07T23:59:59.000Z

160

Excellent oxidation endurance of boron nitride nanotube field electron emitters  

SciTech Connect (OSTI)

Boron nitride nanotubes (BNNTs) are considered as a promising cold electron emission material owing to their negative electron affinity. BNNT field emitters show excellent oxidation endurance after high temperature thermal annealing of 600?°C in air ambient. There is no damage to the BNNTs after thermal annealing at a temperature of 600?°C and also no degradation of field emission properties. The thermally annealed BNNTs exhibit a high maximum emission current density of 8.39?mA/cm{sup 2} and show very robust emission stability. The BNNTs can be a promising emitter material for field emission devices under harsh oxygen environments.

Song, Yenan [Department of Micro/Nano Systems, Korea University, Seoul 136-713 (Korea, Republic of); Sun, Yuning; Hoon Shin, Dong; Nam Yun, Ki [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Song, Yoon-Ho [Nano Electron-Source Creative Research Center, Creative and Challenging Research Division, ETRI, Daejeon 305-700 (Korea, Republic of); Milne, William I. [Electrical Engineering Division, Engineering Department, Cambridge University, Cambridge CB3 0FA (United Kingdom); Jin Lee, Cheol, E-mail: cjlee@korea.ac.kr [Department of Micro/Nano Systems, Korea University, Seoul 136-713 (Korea, Republic of); School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

2014-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Method of nitriding niobium to form a superconducting surface  

DOE Patents [OSTI]

A method of forming a delta niobium nitride .delta.-NbN layer on the surface of a niobium object including cleaning the surface of the niobium object; providing a treatment chamber; placing the niobium object in the treatment chamber; evacuating the chamber; passing pure nitrogen into the treatment chamber; focusing a laser spot on the niobium object; delivering laser fluences at the laser spot until the surface of the niobium object reaches above its boiling temperature; and rastering the laser spot over the surface of the niobium object.

Kelley, Michael J.; Klopf, John Michael; Singaravelu, Senthilaraja

2014-08-19T23:59:59.000Z

162

Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths  

SciTech Connect (OSTI)

Aluminum nitride (AlN) has recently emerged as a promising material for integrated photonics due to a large bandgap and attractive optical properties. Exploiting the wideband transparency, we demonstrate waveguiding in AlN-on-Insulator circuits from near-infrared to ultraviolet wavelengths using nanophotonic components with dimensions down to 40?nm. By measuring the propagation loss over a wide spectral range, we conclude that both scattering and absorption of AlN-intrinsic defects contribute to strong attenuation at short wavelengths, thus providing guidelines for future improvements in thin-film deposition and circuit fabrication.

Stegmaier, M.; Ebert, J.; Pernice, W. H. P., E-mail: wolfram.pernice@kit.edu [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76133 Karlsruhe (Germany); Meckbach, J. M.; Ilin, K.; Siegel, M. [Institute of Micro- und Nanoelectronic Systems, Karlsruhe Institute of Technology, 76187 Karlsruhe (Germany)

2014-03-03T23:59:59.000Z

163

Field emission characteristics from graphene on hexagonal boron nitride  

SciTech Connect (OSTI)

An attempt has been made to utilize uniquely high electron mobility of graphene on hexagonal boron nitride (h-BN) to electron emitter. The field emission property of graphene/h-BN/Si structure has shown enhanced threshold voltage and emission current, both of which are key to develop novel vacuum nanoelectronics devices. The field emission property was discussed along with the electronic structure of graphene investigated by Fowler-Nordheim plot and ultraviolet photoelectron spectroscopy. The result suggested that transferring graphene on h-BN modified its work function, which changed field emission mechanism. Our report opens up a possibility of graphene-based vacuum nanoelectronics devices with tuned work function.

Yamada, Takatoshi, E-mail: takatoshi-yamada@aist.go.jp [National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Masuzawa, Tomoaki; Ebisudani, Taishi; Okano, Ken [International Christian University, 3-10-2 Osawa, Mitaka, Tokyo 181-8585 (Japan); Taniguchi, Takashi [National Institute for Material Science (NIMS), 1-1-1 Namiki, Tsukuba 305-0044 (Japan)

2014-06-02T23:59:59.000Z

164

Nitride and Oxynitride Based Phosphors for Solid State Lighting  

SciTech Connect (OSTI)

The objective of the project is to advance the technology of the Lightscape Materials Inc. (Lightscape) proprietary nitride and oxynitride phosphors for solid state lighting (SSL) from the current level of maturity of applied research to advanced engineering development. This objective will be accomplished by optimizing the novel nitride and oxynitride phosphors, whose formulations are listed in Table 1, and establishing cost-effective preparation processes for the phosphors. The target performances of the phosphors are: • High luminescence efficiency: Quantum Yield = 90%. • Superior thermal stability of luminescence: Thermal Quenching Loss <10% at 150 °C. • Superior environmental stability: Luminescence Maintenance >90% after 5,000 hours at 85 °C and 85% relative humidity. • Scattering loss <10%. • Cost-effective preparation processes. The resulting phosphor materials and their preparation processes are anticipated to be a drop-in component for product development paths undertaken by LED lamp makers in the SSL industry. Upon program completion, Lightscape will target market insertion that enables high efficacy, high color rendering index (CRI), high thermal stability and long lifetime LED-based lighting products for general illumination that realizes substantial energy savings.

Tian, Yongchi

2011-10-15T23:59:59.000Z

165

High upper critical field in disordered niobium nitride superconductor  

SciTech Connect (OSTI)

Superconducting Niobium Nitride thin films have been deposited on glass, aluminum nitride buffered glass, and oxidized silicon substrates by reactive DC magnetron sputtering at ambient substrate temperatures. The crystal structure of these thin films has been determined to be cubic fcc B1 structure by Glancing Incidence X-Ray Diffraction analysis. The superconducting transition temperatures of the thin films were measured to be greater than 11.6?K with a maximum of 13.4?K. The negative temperature coefficient of resistance observed in these thin films indicates the presence of disorder. Magneto-resistance measurements have been carried out on these thin films patterned into standard four probe geometry upto a maximum magnetic field of 12?T for two films and upto 15?T for the other two films. The dependence of transition temperature on the applied field is analyzed to estimate the upper critical field. The upper critical field for most of the films was estimated to exceed 35?T, while one of the most disordered films had an estimated upper critical field greater than 70?T.

Baskaran, R., E-mail: baskaran@igcar.gov.in; Thanikai Arasu, A. V.; Amaladass, E. P.; Janawadkar, M. P. [Materials Science Group, IGCAR, Kalpakkam-603102 (India)

2014-10-28T23:59:59.000Z

166

Radiation tolerance of piezoelectric bulk single-crystal aluminum nitride  

SciTech Connect (OSTI)

For practical use in harsh radiation environments, we pose selection criteria for piezoelectric materials for nondestructive evaluation (NDE) and material characterization. Using these criteria, piezoelectric aluminum nitride is shown to be an excellent candidate. The results of tests on an aluminumnitride-based transducer operating in a nuclear reactor are also presented. We demonstrate the tolerance of single-crystal piezoelectric aluminum nitride after fast and thermal neutron fluences of 1.85 × 1018 neutron/cm2 and 5.8 × 1018 neutron/cm2, respectively, and a gamma dose of 26.8 MGy. The radiation hardness of AlN is most evident from the unaltered piezoelectric coefficient d33, which measured 5.5 pC/N after a fast and thermal neutron exposure in a nuclear reactor core for over 120 MWh, in agreement with the published literature value. The results offer potential for improving reactor safety and furthering the understanding of radiation effects on materials by enabling structural health monitoring and NDE in spite of the high levels of radiation and high temperatures, which are known to destroy typical commercial ultrasonic transducers.

David A. Parks; Bernhard R. Tittmann

2014-07-01T23:59:59.000Z

167

Tunneling characteristics in chemical vapor deposited graphene–hexagonal boron nitride–graphene junctions  

SciTech Connect (OSTI)

Large area chemical vapor deposited graphene and hexagonal boron nitride was used to fabricate graphene–hexagonal boron nitride–graphene symmetric field effect transistors. Gate control of the tunneling characteristics is observed similar to previously reported results for exfoliated graphene–hexagonal boron nitride–graphene devices. Density-of-states features are observed in the tunneling characteristics of the devices, although without large resonant peaks that would arise from lateral momentum conservation. The lack of distinct resonant behavior is attributed to disorder in the devices, and a possible source of the disorder is discussed.

Roy, T.; Hesabi, Z. R.; Joiner, C. A.; Vogel, E. M. [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332 (United States); Liu, L.; Gu, G. [Department of Electrical Engineering and Computer Science, University of Tennessee, 1520 Middle Drive, Knoxville, Tennessee 37996 (United States); Barrera, S. de la; Feenstra, R. M. [Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States); Chakrabarti, B. [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332 (United States); Department of Materials Science and Engineering, University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080 (United States)

2014-03-24T23:59:59.000Z

168

Optoelectronic Properties in Monolayers of Hybridized Graphene and Hexagonal Boron Nitride  

E-Print Network [OSTI]

We explain the nature of the electronic energy gap and optical absorption spectrum of carbon–boron-nitride (CBN) monolayers using density functional theory, GW and Bethe-Salpeter calculations. The band structure and the ...

Bernardi, Marco

169

Process for preparing transition metal nitrides and transition metal carbonitrides and their reaction intermediates  

DOE Patents [OSTI]

A process for making ammonolytic precursors to nitride and carbonitride ceramics. Extreme reaction conditions are not required and the precursor is a powder-like substance that produces ceramics of improved purity and morphology upon pyrolysis.

Maya, Leon (Oak Ridge, TN)

1988-05-24T23:59:59.000Z

170

Precursors in the preparation of transition metal nitrides and transition metal carbonitrides and their reaction intermediates  

DOE Patents [OSTI]

A process for making ammonolytic precursors to nitride and carbonitride ceramics. Extreme reaction conditions are not required and the precursor is a powder-like substance that produces ceramics of improved purity and morphology upon pyrolysis.

Maya, Leon (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

171

Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves  

DOE Patents [OSTI]

A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

Holcombe, C.E.; Dykes, N.L.; Tiegs, T.N.

1992-10-13T23:59:59.000Z

172

Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves  

DOE Patents [OSTI]

A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Tiegs, Terry N. (Lenoir City, TN)

1992-01-01T23:59:59.000Z

173

Electronic structure analyses and activation studies of a dinitrogen-derived terminal nitride of molybdenum  

E-Print Network [OSTI]

Chapter 1: Complexes obtained by electrophilic attack on a dinitrogen-derived terminal molybdenum nitride: Electronic structure analysis by solid state CP/MAS ¹?N NMR in combination ... Chapter 2. Carbene chemistry in the ...

Sceats, Emma Louise, 1978-

2004-01-01T23:59:59.000Z

174

Photon-induced tunneling in graphene-boron nitride-graphene heterostructures  

E-Print Network [OSTI]

Graphene is a material that has generated much interest due to its many unique electronic and optical properties. In this work, we present optoelectronic measurements performed on ultrathin graphene-boron nitride-graphene ...

Nair, Nityan

2013-01-01T23:59:59.000Z

175

Method of enhancing the wettability of boron nitride for use as an electrochemical cell separator  

DOE Patents [OSTI]

A felt or other fabric of boron nitride suitable for use as an interelecte separator within an electrochemical cell is wetted with a solution containing a thermally decomposable organic salt of an alkaline earth metal. An aqueous solution of magnesium acetate is the preferred solution for this purpose. After wetting the boron nitride, the solution is dried by heating at a sufficiently low temperature to prevent rapid boiling and the creation of voids within the separator. The dried material is then calcined at an elevated temperature in excess of 400.degree. C. to provide a coating of an oxide of magnesium on the surface of the boron nitride fibers. A fabric or felt of boron nitride treated in this manner is easily wetted by molten electrolytic salts, such as the alkali metal halides or alkaline earth metal halides, that are used in high temperature, secondary electrochemical cells.

McCoy, Lowell R. (Woodland Hills, CA)

1982-01-01T23:59:59.000Z

176

Method of enhancing the wettability of boron nitride for use as an electrochemical cell separator  

DOE Patents [OSTI]

A felt or other fabric of boron nitride suitable for use as an interelectrode separator within an electrochemical cell is wetted with a solution containing a thermally decomposable organic salt of an alkaline earth metal. An aqueous solution of magnesium acetate is the preferred solution for this purpose. After wetting the boron nitride, the solution is dried by heating at a sufficiently low temperature to prevent rapid boiling and the creation of voids within the separator. The dried material is then calcined at an elevated temperature in excess of 400/sup 0/C to provide a coating of an oxide of magnesium on the surface of the boron nitride fibers. A fabric or felt of boron nitride treated in this manner is easily wetted by molten electrolytic salts, such as the alkali metal halides or alkaline earth metal halides, that are used in high temperature, secondary electrochemical cells.

McCoy, L.R.

1981-01-23T23:59:59.000Z

177

Aluminum nitride transitional layer for reducing dislocation density and cracking of AIGan epitaxial films  

DOE Patents [OSTI]

A denticulated Group III nitride structure that is useful for growing Al.sub.xGa.sub.1-xN to greater thicknesses without cracking and with a greatly reduced threading dislocation (TD) density.

Allerman, Andrew A. (Tijeras, NM); Crawford, Mary H. (Albuquerque, NM); Koleske, Daniel D. (Albuquerque, NM); Lee, Stephen R. (Albuquerque, NM)

2011-03-29T23:59:59.000Z

178

In situ formation of tin nanocrystals embedded in silicon nitride matrix  

SciTech Connect (OSTI)

Tin (Sn) nanocrystals (NCs) embedded in a silicon nitride (Si{sub 3}N{sub 4}) matrix have been fabricated in a cosputtering process employing low temperature (100 deg. C) substrate heating. Transmission electron microscopy (TEM) showed the formation of uniformly sized Sn NCs of 5.2+-0.9 nm evenly distributed in the Si{sub 3}N{sub 4} matrix. Both TEM and x-ray diffraction measurements showed that the Sn NCs adopted the semimetallic tetragonal beta-Sn structure rather than the cubic semiconducting alpha-Sn structure. X-ray photoelectron spectroscopy revealed that the semimetallic state (Sn{sup 0}) is the major component of Sn in the sample films. Our investigation demonstrates a pronounced effect of the substrate temperature on the formation of Sn NCs. The mechanism of in situ formation of Sn NCs is discussed. We suggest that the formation of uniformly sized Sn NCs is correlated with lowering the surface mobility of the nuclei due to the presence of the cosputtered Si{sub 3}N{sub 4}.

Huang Shujuan; So, Yong Heng; Conibeer, Gavin; Green, Martin A. [ARC Photovoltaics Centre of Excellence, University of New South Wales, Sydney, New South Wales 2052 (Australia)

2009-06-15T23:59:59.000Z

179

Impurity-induced disorder in III-nitride materials and devices  

DOE Patents [OSTI]

A method for impurity-induced disordering in III-nitride materials comprises growing a III-nitride heterostructure at a growth temperature and doping the heterostructure layers with a dopant during or after the growth of the heterostructure and post-growth annealing of the heterostructure. The post-growth annealing temperature can be sufficiently high to induce disorder of the heterostructure layer interfaces.

Wierer, Jr., Jonathan J; Allerman, Andrew A

2014-11-25T23:59:59.000Z

180

Use of additives to improve microstructures and fracture resistance of silicon nitride ceramics  

DOE Patents [OSTI]

A high-strength, fracture-resistant silicon nitride ceramic material that includes about 5 to about 75 wt-% of elongated reinforcing grains of beta-silicon nitride, about 20 to about 95 wt-% of fine grains of beta-silicon nitride, wherein the fine grains have a major axis of less than about 1 micron; and about 1 to about 15 wt-% of an amorphous intergranular phase comprising Si, N, O, a rare earth element and a secondary densification element. The elongated reinforcing grains have an aspect ratio of 2:1 or greater and a major axis measuring about 1 micron or greater. The elongated reinforcing grains are essentially isotropically oriented within the ceramic microstructure. The silicon nitride ceramic exhibits a room temperature flexure strength of 1,000 MPa or greater and a fracture toughness of 9 MPa-m.sup.(1/2) or greater. The silicon nitride ceramic exhibits a peak strength of 800 MPa or greater at 1200 degrees C. Also included are methods of making silicon nitride ceramic materials which exhibit the described high flexure strength and fracture-resistant values.

Becher, Paul F. (Oak Ridge, TN); Lin, Hua-Tay (Oak Ridge, TN)

2011-06-28T23:59:59.000Z

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

High temperature mechanical performance of a hot isostatically pressed silicon nitride  

SciTech Connect (OSTI)

Silicon nitride ceramics are an attractive material of choice for designers and manufacturers of advanced gas turbine engine components for many reasons. These materials typically have potentially high temperatures of usefulness (up to 1400{degrees}C), are chemically inert, have a relatively low specific gravity (important for inertial effects), and are good thermal conductors (i.e., resistant to thermal shock). In order for manufacturers to take advantage of these inherent properties of silicon nitride, the high-temperature mechanical performance of the material must first be characterized. The mechanical response of silicon nitride to static, dynamic, and cyclic conditions at elevated temperatures, along with reliable and representative data, is critical information that gas turbine engine designers and manufacturers require for the confident insertion of silicon nitride components into gas turbine engines. This final report describes the high-temperature mechanical characterization and analyses that were conducted on a candidate structural silicon nitride ceramic. The high-temperature strength, static fatigue (creep rupture), and dynamic and cyclic fatigue performance were characterized. The efforts put forth were part of Work Breakdown Structure Subelement 3.2.1, {open_quotes}Rotor Data Base Generation.{close_quotes} PY6 is comparable to other hot isostatically pressed (HIPed) silicon nitrides currently being considered for advanced gas turbine engine applications.

Wereszczak, A.A.; Ferber, M.K.; Jenkins, M.G.; Lin, C.K.J. [and others] [and others

1996-01-01T23:59:59.000Z

182

Single-layer graphene on silicon nitride micromembrane resonators  

SciTech Connect (OSTI)

Due to their low mass, high quality factor, and good optical properties, silicon nitride (SiN) micromembrane resonators are widely used in force and mass sensing applications, particularly in optomechanics. The metallization of such membranes would enable an electronic integration with the prospect for exciting new devices, such as optoelectromechanical transducers. Here, we add a single-layer graphene on SiN micromembranes and compare electromechanical coupling and mechanical properties to bare dielectric membranes and to membranes metallized with an aluminium layer. The electrostatic coupling of graphene covered membranes is found to be equal to a perfectly conductive membrane, without significantly adding mass, decreasing the superior mechanical quality factor or affecting the optical properties of pure SiN micromembranes. The concept of graphene-SiN resonators allows a broad range of new experiments both in applied physics and fundamental basic research, e.g., for the mechanical, electrical, or optical characterization of graphene.

Schmid, Silvan; Guillermo Villanueva, Luis; Amato, Bartolo; Boisen, Anja [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, 2800 Kongens Lyngby (Denmark); Bagci, Tolga; Zeuthen, Emil; Sørensen, Anders S.; Usami, Koji; Polzik, Eugene S. [QUANTOP, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Taylor, Jacob M. [Joint Quantum Institute/NIST, College Park, Maryland 20899 (United States); Herring, Patrick K.; Cassidy, Maja C. [School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Charles M. [Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Cheol Shin, Yong; Kong, Jing [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2014-02-07T23:59:59.000Z

183

Role of defects in III-nitride based electronics  

SciTech Connect (OSTI)

The LDRD entitled ``Role of Defects in III-Nitride Based Devices'' is aimed to place Sandia National Laboratory at the forefront of the field of GaN materials and devices by establishing a scientific foundation in areas such as material growth, defect characterization/modeling, and processing (metalization and etching) chemistry. In this SAND report the authors summarize their studies such as (1) the MOCVD growth and doping of GaN and AlGaN, (2) the characterization and modeling of hydrogen in GaN, including its bonding, diffusion, and activation behaviors, (3) the calculation of energetic of various defects including planar stacking faults, threading dislocations, and point defects in GaN, and (4) dry etching (plasma etching) of GaN (n- and p-types) and AlGaN. The result of the first AlGaN/GaN heterojunction bipolar transistor is also presented.

HAN,JUNG; MYERS JR.,SAMUEL M.; FOLLSTAEDT,DAVID M.; WRIGHT,ALAN F.; CRAWFORD,MARY H.; LEE,STEPHEN R.; SEAGER,CARLETON H.; SHUL,RANDY J.; BACA,ALBERT G.

2000-01-01T23:59:59.000Z

184

High-Efficiency Nitride-Based Photonic Crystal Light Sources  

Broader source: Energy.gov [DOE]

The University of California Santa Barbara (UCSB) is maximizing the efficiency of a white LED by enhancing the external quantum efficiency using photonic crystals to extract light that would normally be confined in a conventional structure. Ultimate efficiency can only be achieved by looking at the internal structure of light. To do this, UCSB is focusing on maximizing the light extraction efficiency and total light output from light engines driven by Gallium Nitride (GaN)-based LEDs. The challenge is to engineer large overlap (interaction) between modes and photonic crystals. The project is focused on achieving high extraction efficiency in LEDs, controlled directionality of emitted light, integrated design of vertical device structure, and nanoscale patterning of lateral structure.

185

Silver delafossite nitride, AgTaN{sub 2}?  

SciTech Connect (OSTI)

A new silver nitride, AgTaN{sub 2}, was synthesized from NaTaN{sub 2} by a cation-exchange reaction, using a AgNO{sub 3}-NH{sub 4}NO{sub 3} flux at 175 {sup o}C. Its crystal structure type is delafossite (R3-bar m) with hexagonal lattice parameters of a=3.141(3) A, c=18.81(2) A, in which silver is linearly coordinated to nitrogen. Energy dispersive X-ray analysis and combustion nitrogen/oxygen analysis gave a composition with atomic ratios of Ag:Ta:N:O as 1.0:1.2(1):2.1(1):0.77(4), which is somewhat Ta rich and indicates some oxide formation. The X-ray photoelectron spectroscopy analysis showed a Ta- and O-rich surface and transmission electron microscope observation exhibited aggregates of ca. 4-5 nm-sized particles on the surface, which are probably related to the composition deviation from a AgTaN{sub 2}. The lattice parameters of stoichiometric AgTaN{sub 2} calculated by density functional theory agree with the experimental ones, but the possibility of some oxygen incorporation and/or silver deficiency is not precluded. -- Graphical abstract: A delafossite silver nitride, AgTaN{sub 2}, was synthesized from NaTaN{sub 2} by a cation-exchange reaction using a AgNO{sub 3}-NH{sub 4}NO{sub 3} flux. It contains N-Ag-N linear bonding. Display Omitted

Miura, Akira [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany); Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853 (United States); Lowe, Michael; Leonard, Brian M.; Subban, Chinmayee V. [Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853 (United States); Masubuchi, Yuji; Kikkawa, Shinichi [Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku Sapporo 060-8628 (Japan); Dronskowski, Richard [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany); Hennig, Richard G. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Abruna, Hector D. [Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853 (United States); DiSalvo, Francis J., E-mail: fjd3@cornell.ed [Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853 (United States)

2011-01-15T23:59:59.000Z

186

Biofuels production from hydrotreating of vegetable oil using supported noble metals, and transition metal carbide and nitride.  

E-Print Network [OSTI]

?? The focus of this research is to prepare non-sulfided hydrotreating catalysts, supported noble metal and transition metal carbide/ nitride, and evaluate their hydrocracking activities… (more)

Wang, Huali

2012-01-01T23:59:59.000Z

187

E-Print Network 3.0 - aluminum nitride powder Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the original powder. An FTIR study was done using the KBr technique and a high... , a reduction in the content of adsorbed water was observed, compared to the original ... Source:...

188

Applicability of carbon and boron nitride nanotubes as biosensors: Effect of biomolecular adsorption on the transport properties of carbon and boron  

E-Print Network [OSTI]

Applicability of carbon and boron nitride nanotubes as biosensors: Effect of biomolecular;Applicability of carbon and boron nitride nanotubes as biosensors: Effect of biomolecular adsorption University, Houghton, Michigan 49931, USA 2 US Army Research Laboratory, Weapons and Materials Research

Pandey, Ravi

189

Advanced Epi Tools for Gallium Nitride Light Emitting Diode Devices  

SciTech Connect (OSTI)

Over the course of this program, Applied Materials, Inc., with generous support from the United States Department of Energy, developed a world-class three chamber III-Nitride epi cluster tool for low-cost, high volume GaN growth for the solid state lighting industry. One of the major achievements of the program was to design, build, and demonstrate the world’s largest wafer capacity HVPE chamber suitable for repeatable high volume III-Nitride template and device manufacturing. Applied Materials’ experience in developing deposition chambers for the silicon chip industry over many decades resulted in many orders of magnitude reductions in the price of transistors. That experience and understanding was used in developing this GaN epi deposition tool. The multi-chamber approach, which continues to be unique in the ability of the each chamber to deposit a section of the full device structure, unlike other cluster tools, allows for extreme flexibility in the manufacturing process. This robust architecture is suitable for not just the LED industry, but GaN power devices as well, both horizontal and vertical designs. The new HVPE technology developed allows GaN to be grown at a rate unheard of with MOCVD, up to 20x the typical MOCVD rates of 3{micro}m per hour, with bulk crystal quality better than the highest-quality commercial GaN films grown by MOCVD at a much cheaper overall cost. This is a unique development as the HVPE process has been known for decades, but never successfully commercially developed for high volume manufacturing. This research shows the potential of the first commercial-grade HVPE chamber, an elusive goal for III-V researchers and those wanting to capitalize on the promise of HVPE. Additionally, in the course of this program, Applied Materials built two MOCVD chambers, in addition to the HVPE chamber, and a robot that moves wafers between them. The MOCVD chambers demonstrated industry-leading wavelength yield for GaN based LED wafers and industry-leading uptime enabled in part by a novel in-situ cleaning process developed in this program.

Patibandla, Nag; Agrawal, Vivek

2012-12-01T23:59:59.000Z

190

Reaction injection molding of silicon nitride ceramics having crystallized grain boundary phases  

SciTech Connect (OSTI)

A reaction injection molding process is described for preparing a sintered, silicon nitride-containing ceramic article comprising; (1) injecting into a heated mold a fluid, nondilatant mixture comprising (a) at least 40% by volume of a powder mixture of (i) from about 20 wt.% to about 98 wt.% silicon nitride, (ii) from about 0.5 wt.% to about 20 wt.% of a silicate glass-forming sintering aid, and (iii) from about 0.001 wt.% to about 80 wt.% of a high metal content transition metal silicide or a transition metal or metal compound that forms a high metal content silicide with silicon nitride under the conditions defined in steps (2) or (3), and (b) a curable silicon nitride precursor binder that is a liquid below its curing temperature, to cure the binder and produce a hardened molded article, (2) heating the hardened mol suitable atmosphere to a temperature sufficient to convert the cured binder to a silicon nitride-containing ceramic, and (3) sintering the article by (i) heating at a temperature of 1,300 to 1,800 C until a silicate glass forms, and (ii) further heating at a temperature of 1,300 to 1,800 C under a vacuum until oxygen is removed from the silicate glass and the glass crystallizes.

Lukacs, A. III; Matsumoto, R.L.K.

1993-08-31T23:59:59.000Z

191

Process for producing silicon nitride based articles of high fracture toughness and strength  

DOE Patents [OSTI]

A process for producing a silicon nitride-based article of improved fracture toughness and strength. The process involves densifying to at least 98% of theoretical density a mixture including (a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon nitride powder of an average particle size of about 0.2 .mu.m and a surface area of about 8-12 m.sup.2 /g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 .mu.m and a surface area of about 2-4 m.sup.2 /g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified article an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. Optionally, the mixture may be blended with a binder and injection molded to form a green body, which then may be densified by, for example, hot isostatic pressing.

Huckabee, Marvin (Marlboro, MA); Buljan, Sergej-Tomislav (Acton, MA); Neil, Jeffrey T. (Acton, MA)

1991-01-01T23:59:59.000Z

192

Process for producing silicon nitride based articles of high fracture toughness and strength  

DOE Patents [OSTI]

A process for producing a silicon nitride-based article of improved fracture toughness and strength is disclosed. The process involves densifying to at least 98% of theoretical density a mixture including (a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon nitride powder of an average particle size of about 0.2 [mu]m and a surface area of about 8-12 m[sup 2]/g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 [mu]m and a surface area of about 2-4 m[sup 2]/g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified article an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. Optionally, the mixture may be blended with a binder and injection molded to form a green body, which then may be densified by, for example, hot isostatic pressing.

Huckabee, M.; Buljan, S.T.; Neil, J.T.

1991-09-10T23:59:59.000Z

193

Abstract--Titanium nitride (TiN) has been investigated as a material for MEMS hotplate heaters operating at high  

E-Print Network [OSTI]

TiN Bond pad TiN Figure 1. Schematic cross section of the hotplate. Titanium Nitride for MEMSAbstract--Titanium nitride (TiN) has been investigated as a material for MEMS hotplate heaters boundaries start to diffuse above one- third of the melting point. As a result, residual stresses relax [3

Technische Universiteit Delft

194

Radial elasticity of multi-walled boron nitride nanotubes  

SciTech Connect (OSTI)

We investigated the radial mechanical properties of multi-walled boron nitride nanotubes (MW-BNNTs) using atomic force microscopy. The employed MW-BNNTs were synthesized using pressurized vapor/condenser (PVC) methods and were dispersed in aqueous solution using ultrasonication methods with the aid of ionic surfactants. Our nanomechanical measurements reveal the elastic deformational behaviors of individual BNNTs with two to four tube walls in their transverse directions. Their effective radial elastic moduli were obtained through interpreting their measured radial deformation profiles using Hertzian contact mechanics models. Our results capture the dependences of the effective radial moduli of MW-BNNTs on both the tube outer diameter and the number of tube layers. The effective radial moduli of double-walled BNNTs are found to be several-fold higher than those of single-walled BNNTs within the same diameter range. Our work contributes directly to a complete understanding of the fundamental structural and mechanical properties of BNNTs and the pursuits of their novel structural and electronics applications.

Michael W. Smith, Cheol Park, Meng Zheng, Changhong Ke ,In-Tae Bae, Kevin Jordan

2012-02-01T23:59:59.000Z

195

Mechanical deformations of boron nitride nanotubes in crossed junctions  

SciTech Connect (OSTI)

We present a study of the mechanical deformations of boron nitride nanotubes (BNNTs) in crossed junctions. The structure and deformation of the crossed tubes in the junction are characterized by using atomic force microscopy. Our results show that the total tube heights are reduced by 20%–33% at the crossed junctions formed by double-walled BNNTs with outer diameters in the range of 2.21–4.67?nm. The measured tube height reduction is found to be in a nearly linear relationship with the summation of the outer diameters of the two tubes forming the junction. The contact force between the two tubes in the junction is estimated based on contact mechanics theories and found to be within the range of 4.2–7.6 nN. The Young's modulus of BNNTs and their binding strengths with the substrate are quantified, based on the deformation profile of the upper tube in the junction, and are found to be 1.07?±?0.11 TPa and 0.18–0.29 nJ/m, respectively. Finally, we perform finite element simulations on the mechanical deformations of the crossed BNNT junctions. The numerical simulation results are consistent with both the experimental measurements and the analytical analysis. The results reported in this paper contribute to a better understanding of the structural and mechanical properties of BNNTs and to the pursuit of their applications.

Zhao, Yadong; Chen, Xiaoming; Ke, Changhong, E-mail: cke@binghamton.edu [Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902 (United States); Park, Cheol [NASA Langley Research Center, Hampton, Virginia 23681 (United States); Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Fay, Catharine C. [NASA Langley Research Center, Hampton, Virginia 23681 (United States); Stupkiewicz, Stanislaw [Institute of Fundamental Technological Research, Warsaw (Poland)

2014-04-28T23:59:59.000Z

196

HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING  

SciTech Connect (OSTI)

In this semiannual report we summarize the progress obtained in the first six months with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

Dr. Paul T. Fini; Prof. Shuji Nakamura

2002-04-30T23:59:59.000Z

197

HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING  

SciTech Connect (OSTI)

In this annual report we summarize the progress obtained in the first year with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

Dr. Paul T. Fini; Prof. Shuji Nakamura

2002-09-01T23:59:59.000Z

198

SUMMARY ON TITANIUM NITRIDE COATING OF SNS RING VACUUM CHAMBERS.  

SciTech Connect (OSTI)

The inner surfaces of the 248 m Spallation Neutron Source (SNS) accumulator ring vacuum chambers are coated with {approx}100nm of titanium nitride (TiN) to reduce the secondary electron yield (SEY) of the chamber walls. There are approximately 135 chambers and kicker modules, some up to 5m in length and 36cm in diameter, coated with TiN. The coating is deposited by means of reactive DC magnetron sputtering -using a - cylindrical cathode with internal permanent magnets. This cathode configuration generates a deposition-rate sufficient to meet the required production schedule and produces stoichiometric films with good adhesion, low SEY and acceptable outgassing. Moreover, the cathode magnet configuration allows for simple changes in length and has been adapted to coat the wide variety of chambers and components contained within the arcs, injection, extraction, collimation and RF straight sections. Chamber types and quantities as well as the cathode configurations are presented herein. The unique coating requirements of the injection kicker ceramic chambers and the extraction kicker ferrite surface will be emphasized. A brief summary of the salient coating properties is given including the interdependence of SEY as a function of surface roughness and its effect on outgassing.

TODD, R.; HE, P.; HSEUH, H.C.; WEISS, D.

2005-05-16T23:59:59.000Z

199

Thermal oxidation of polycrystalline and single crystalline aluminum nitride wafers (Prop 2003-054)  

SciTech Connect (OSTI)

Two types of aluminum nitride (AlN) samples were oxidized in flowing oxygen between 900 C and 1150 C for up to 6 h - highly (0001) textured polycrystalline AlN wafers and low defect density AlN single crystals. The N-face consistently oxidized at a faster rate than the Al-face. At 900 C and 1000 C after 6 h, the oxide was 15% thicker on the N-face than on the Al-face of polycrystalline AlN. At 1100 C and 1150 C, the oxide was only 5% thicker on the N-face, as the rate-limiting step changed from kinetically-controlled to diffusion-controlled with the oxide thickness. A linear parabolic model was established for the thermal oxidation of polycrystalline AlN on both the Al- and N-face. Transmission electron microscopy (TEM) confirmed the formation of a thicker crystalline oxide film on the N-face than on the Al-face, and established the crystallographic relationship between the oxide film and substrate. The oxidation of high-quality AlN single crystals resulted in a more uniform colored oxide layer compared to polycrystalline AlN. The aluminum oxide layer was crystalline with a rough AlN/oxide interface. The orientation relationship between AlN and Al{sub 2}O{sub 3} was (0001) AlN//(10{bar 1}0) Al{sub 2}O{sub 3} and (1{bar 1}00) AlN//(01{bar 1}2) Al{sub 2}O{sub 3}.

Speakman, Scott A [ORNL; Gu, Z [Kansas State University; Edgar, J H [Kansas State University; Blom, Douglas Allen [ORNL; Perrin, J [Kansas State University; Chaudhuri, J [Kansas State University

2006-10-01T23:59:59.000Z

200

Effects of N{sub 2} remote plasma nitridation on the structural and electrical characteristics of the HfO{sub 2} gate dielectrics grown using remote plasma atomic layer deposition methods  

SciTech Connect (OSTI)

The characteristics of remote plasma atomic layer deposited HfO{sub 2} on Si, which has a very thin SiO{sub 2} interlayer with and without remote plasma nitridation (RPN), have been investigated. Small amounts of N atoms were successfully incorporated by RPN pretreatment, in which the dominant emission species were excited atomic nitrogen (N{sup *}) and excited molecular nitrogen (N{sub 2}{sup *}), into a very thin SiO{sub 2} interlayer for the growth of HfO{sub 2} thin film. The thin ({approx}1.5 nm) intermediate layer containing nitrogen, which was prepared by sequential O{sub 2} and N{sub 2} remote plasma treatment of the Si substrate, can effectively suppress growth of the unintentional interface layer. In addition, it enhances the thermal stability and the resistance to oxygen diffusion during rapid thermal annealing. The HfO{sub 2} film containing the remote plasma nitrided SiO{sub 2} interlayer annealed at 800 deg. C showed a lower equivalent oxide thickness of {approx}1.89 nm and a lower leakage current density (3.78x10{sup -7} A cm{sup -2} at |V{sub G}-V{sub FB}|=2 V) compared to a non-nitrided sample of the same physical thickness. Also, we compared the characteristics of HfO{sub 2} films annealed in two different ambient environments, N{sub 2} and O{sub 2}.

Choi, Jihoon; Kim, Seokhoon; Kim, Jinwoo; Kang, Hyunseok; Jeon, Hyeongtag; Bae, Choelhwyi [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

2006-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The internal-nitriding behavior of Co-Fe-Al alloys  

SciTech Connect (OSTI)

Co-10Fe, Co-20Fe, and Co-40Fe alloys containing 3 at.% Al were internally nitrided in NH{sub 3}/H{sub 2} mixtures over the range 700--1000 C. The kinetics of thickening of the internal-reaction zone followed the parabolic rate law, suggesting that solid-state diffusion was rate controlling. Nitrogen permeabilities were obtained for each alloy. AlN was the only nitride to form for all materials and at all temperatures. At high temperature, the nitride precipitates formed hexagonal plates near the surface, the precipitates becoming more blocky near the reaction front. Precipitate size increased with increasing depth in the alloy and increasing temperature, because of competition between nucleation and growth processes. Increasing iron content increased the reaction kinetics due to increased nitrogen solubility with increasing iron content.

Chen, I.C. [Raytheon Systems Co., El Segundo, CA (United States). Sensors and Electronics Systems] [Raytheon Systems Co., El Segundo, CA (United States). Sensors and Electronics Systems; Douglass, D.L. [Univ. of Arizona, Tucson, AZ (United States). Arizona Materials Labs.] [Univ. of Arizona, Tucson, AZ (United States). Arizona Materials Labs.

1999-10-01T23:59:59.000Z

202

Formation of Protective Nitride Surfaces for PEM Fuel Cell Metallic Bipolar Plates  

SciTech Connect (OSTI)

Selective gas nitridation of model Ni-base alloys was used to form dense, electrically-conductive and corrosion-resistant nitride surface layers, including TiN, VN, CrN, Cr2N, as well as a complex NiNbVN phase. Evaluation for use as a protective surface for metallic bipolar plates in proton exchange membrane fuel cells (PEMFC) indicated that CrN/Cr2N base surfaces hold promise to meet Department of Energy (DOE) performance goals for automotive applications. The thermally grown CrN/Cr2N surface formed on model Ni-Cr base alloys exhibited good stability and low electrical resistance in single-cell fuel cell testing under simulated drive-cycle conditions. Recent results indicate that similar protective Cr-nitride surfaces can be formed on less expensive Fe-Cr base alloys potentially capable of meeting DOE cost goals.

Brady, Michael P [ORNL; Yang, Bing [ORNL; Wang, Heli [National Renewable Energy Laboratory (NREL); Turner, John [National Renewable Energy Laboratory (NREL); More, Karren Leslie [ORNL; Wilson, Mahlon [Los Alamos National Laboratory (LANL); Garzon, Fernando [Los Alamos National Laboratory (LANL)

2006-01-01T23:59:59.000Z

203

Thermodynamic stability and unusual strength of ultra-incompressible rhenium nitrides  

SciTech Connect (OSTI)

We report on a comprehensive study of thermodynamic and mechanical properties as well as a bond-deformation mechanism on ultra-incompressible Re{sub 2} N and Re{sub 3} N. The introduction of nitrogen into the rhenium lattice leads to thermodynamic instability in Re{sub 2} N at ambient conditions and enhanced incompressibility and strength for both rhenium nitrides. Rhenium nitrides, however, show substantially lower ideal shear strength than hard ReB{sub 2} and superhard c -BN, suggesting that they cannot be intrinsically superhard. An intriguing soft “ionic bond mediated plastic deformation” mechanism is revealed to underline the physical origin of their unusual mechanical strength. These results suggest a need to reformulate the design concept of intrinsically superhard transition-metal nitrides, borides, and carbides.

Zhang, R. F.; Lin, Zhijun; Mao, Ho-kwang; Zhao, Yusheng

2011-01-01T23:59:59.000Z

204

The different adsorption mechanism of methane molecule onto a boron nitride and a graphene flakes  

SciTech Connect (OSTI)

Graphene and single layer hexagonal boron-nitride are two newly discovered 2D materials with wonderful physical properties. Using density functional theory, we study the adsorption mechanism of a methane molecule over a hexagonal flake of single layer hexagonal boron-nitride (h-BN) and compare the results with those of graphene. We found that independent of the used functional in our ab-initio calculations, the adsorption energy in the h-BN flake is larger than that for graphene. Despite of the adsorption energy profile of methane over a graphene flake, we show that there is a long range behavior beyond minimum energy in the adsorption energy of methane over h-BN flake. This result reveals the higher sensitivity of h-BN sheet to the adsorption of a typical closed shell molecule with respect to graphene. The latter gives insight in the recent experiments of graphene over hexagonal boron nitride.

Seyed-Talebi, Seyedeh Mozhgan [Shahid Chamran University, Golestan boulevard, Ahvaz, Khouzestan (Iran, Islamic Republic of); Neek-Amal, M., E-mail: neekamal@srttu.edu [Shahid Rajaee Teacher Training University, Lavizan, Tehran (Iran, Islamic Republic of)

2014-10-21T23:59:59.000Z

205

Electron/phonon coupling in group-IV transition-metal and rare-earth nitrides  

SciTech Connect (OSTI)

Transport electron/phonon coupling parameters and Eliashberg spectral functions ?{sub tr}{sup 2}F(??) are determined for group-IV transition-metal (TM) nitrides TiN, ZrN, and HfN, and the rare-earth (RE) nitride CeN using an inversion procedure based upon temperature-dependent (4 < T < 300 K) resistivity measurements of high-crystalline-quality stoichiometric epitaxial films grown on MgO(001) by magnetically-unbalanced reactive magnetron sputtering. Transport electron/phonon coupling parameters ?{sub tr} vary from 1.11 for ZrN to 0.82 for HfN, 0.73 for TiN, and 0.44 for CeN. The small variation in ?{sub tr} among the TM nitrides and the weak coupling in CeN are consistent with measured superconducting transition temperatures 10.4 (ZrN), 9.18 (HfN), 5.35 (TiN), and <4 K for CeN. The Eliashberg spectral function describes the strength and energy spectrum of electron/phonon coupling in conventional superconductors. Spectral peaks in ?{sup 2}F(??), corresponding to regions in energy-space for which electrons couple to acoustic ??{sub ac} and optical ??{sub op} phonon modes, are centered at ??{sub ac} = 33 and ??{sub op} = 57 meV for TiN, 25 and 60 meV for ZrN, 18 and 64 meV for HfN, and 21 and 39 meV for CeN. The acoustic modes soften with increasing cation mass; optical mode energies remain approximately constant for the TM nitrides, but are significantly lower for the RE nitride due to a lower interatomic force constant. Optical/acoustic peak-intensity ratios are 1.15 ± 0.1 for all four nitrides, indicating similar electron/phonon coupling strengths ?{sub tr}(??) for both modes.

Mei, A. B.; Rockett, A. [Departments of Materials Science, Physics, and the Materials Research Laboratory, University of Illinois, 104 South Goodwin, Urbana, Illinois 61801 (United States)] [Departments of Materials Science, Physics, and the Materials Research Laboratory, University of Illinois, 104 South Goodwin, Urbana, Illinois 61801 (United States); Hultman, L. [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-58183 Linköping (Sweden)] [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-58183 Linköping (Sweden); Petrov, I.; Greene, J. E. [Departments of Materials Science, Physics, and the Materials Research Laboratory, University of Illinois, 104 South Goodwin, Urbana, Illinois 61801 (United States) [Departments of Materials Science, Physics, and the Materials Research Laboratory, University of Illinois, 104 South Goodwin, Urbana, Illinois 61801 (United States); Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-58183 Linköping (Sweden)

2013-11-21T23:59:59.000Z

206

Effects of surface grinding conditions on the reciprocating friction and wear behavior of silicon nitride  

SciTech Connect (OSTI)

The relationship between two significantly different surface grinding conditions and the reciprocating ball-on-flat friction and wear behavior of a high-quality, structural silicon nitride material (GS-44) was investigated. The slider materials were silicon nitride NBD 200 and 440C stainless steel. Two machining conditions were selected based on extensive machining and flexural strength test data obtained under the auspices of an international, interlaboratory grinding study. The condition categorized as {open_quotes}low strength{close_quote} grinding used a coarse 80 grit wheel and produced low flexure strength due to machining-induced flaws in the surface. The other condition, regarded as {open_quotes}high strength grinding,{close_quotes} utilized a 320 grit wheel and produced a flexural strength nearly 70% greater. Grinding wheel surface speeds were 35 and 47 m/s. Reciprocating sliding tests were conducted following the procedure described in a newly-published ASTM standard (G- 133) for linearly-reciprocating wear. Tests were performed in directions both parallel and perpendicular to the grinding marks (lay) using a 25 N load, 5 Hz reciprocating frequency, 10 mm stroke length, and 100 m of sliding at room temperature. The effects of sliding direction relative to the lay were more pronounced for stainless steel than for silicon nitride sliders. The wear of stainless steel was less than the wear of the silicon nitride slider materials because of the formation of transfer particles which covered the sharp edges of the silicon nitride grinding grooves and reduced abrasive contact. The wear of the GS-44 material was much greater for the silicon nitride sliders than for the stainless steel sliders. The causes for the effects of surface-grinding severity and sliding direction on friction and wear of GS-44 and its counterface materials are explained.

Blau, P.J.; Martin, R.L.; Zanoria, E.S.

1997-12-31T23:59:59.000Z

207

Improved porous mixture of molybdenum nitride and tantalum oxide as a charge storage material  

SciTech Connect (OSTI)

High surface area {gamma}-molybdenum nitride has shown promise as a charge storage material. The addition of amorphous tantalum oxide to the molybdenum nitride system not only improves the film cohesion tremendously, but also widens the voltage stability window from 0.8 to 1.1 V. This occurs without adversely effecting the capacitance. Ultracapacitors, also called supercapacitors or electrochemical capacitors, are high power storage devices which have found application in products as diverse as cardiac pacemakers, cellular phones, electric vehicles, and air bags.

Deng, C.Z.; Pynenburg, R.A.J.; Tsai, K.C. [Pinnacle Research Inst., Inc., Los Gatos, CA (United States)

1998-04-01T23:59:59.000Z

208

Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films  

SciTech Connect (OSTI)

Thermal conductivity of freestanding 10?nm and 20?nm thick chemical vapor deposited hexagonal boron nitride films was measured using both steady state and transient techniques. The measured value for both thicknesses, about 100?±?10?W m{sup ?1} K{sup ?1}, is lower than the bulk basal plane value (390?W m{sup ?1} K{sup ?1}) due to the imperfections in the specimen microstructure. Impressively, this value is still 100 times higher than conventional dielectrics. Considering scalability and ease of integration, hexagonal boron nitride grown over large area is an excellent candidate for thermal management in two dimensional materials-based nanoelectronics.

Alam, M. T.; Haque, M. A., E-mail: mah37@psu.edu [Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Bresnehan, M. S.; Robinson, J. A. [Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA and The Center for Two-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)] [Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA and The Center for Two-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

2014-01-06T23:59:59.000Z

209

Efficient boron nitride nanotube formation via combined laser-gas flow levitation  

DOE Patents [OSTI]

A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

Whitney, R. Roy; Jordan, Kevin; Smith, Michael

2014-03-18T23:59:59.000Z

210

Microstructural characterization of silicon nitride ceramics processed by pressureless sintering, overpressure sintering, and sinter/HIP  

SciTech Connect (OSTI)

Silicon nitride ceramics of the same nominal sialon composition have been sintered under different conditions including atmospheric sintering, overpressure sintering, reaction bonded (nitrided pressureless sinter) and sinter/HIP cycles. The sintered ceramics, which exhibited dramatic differences in fracture toughness, have been characterized by x-ray diffraction, scanning electron microscopy, analytical transmission electron microscopy, and image analysis techniques. Fracture toughness data have been correlated to the microstructural and chemical analysis of the grain boundary phases. The microstructure was the strongest influencing factor on the observed fracture toughness difference. 5 refs., 5 tabs.

Selkregg, K.R. (Oak Ridge National Lab., TN (USA)); More, K.L.; Seshadri, S.G.; McMurtry, C.H. (Carborundum Co., Niagara Falls, NY (USA))

1990-01-01T23:59:59.000Z

211

Desorption and sublimation kinetics for fluorinated aluminum nitride surfaces  

SciTech Connect (OSTI)

The adsorption and desorption of halogen and other gaseous species from surfaces is a key fundamental process for both wet chemical and dry plasma etch and clean processes utilized in nanoelectronic fabrication processes. Therefore, to increase the fundamental understanding of these processes with regard to aluminum nitride (AlN) surfaces, temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) have been utilized to investigate the desorption kinetics of water (H{sub 2}O), fluorine (F{sub 2}), hydrogen (H{sub 2}), hydrogen fluoride (HF), and other related species from aluminum nitride thin film surfaces treated with an aqueous solution of buffered hydrogen fluoride (BHF) diluted in methanol (CH{sub 3}OH). Pre-TPD XPS measurements of the CH{sub 3}OH:BHF treated AlN surfaces showed the presence of a variety of Al-F, N-F, Al-O, Al-OH, C-H, and C-O surfaces species in addition to Al-N bonding from the AlN thin film. The primary species observed desorbing from these same surfaces during TPD measurements included H{sub 2}, H{sub 2}O, HF, F{sub 2}, and CH{sub 3}OH with some evidence for nitrogen (N{sub 2}) and ammonia (NH{sub 3}) desorption as well. For H{sub 2}O, two desorption peaks with second order kinetics were observed at 195 and 460?°C with activation energies (E{sub d}) of 51?±?3 and 87?±?5?kJ/mol, respectively. Desorption of HF similarly exhibited second order kinetics with a peak temperature of 475?°C and E{sub d} of 110?±?5?kJ/mol. The TPD spectra for F{sub 2} exhibited two peaks at 485 and 585?°C with second order kinetics and E{sub d} of 62?±?3 and 270?±?10?kJ/mol, respectively. These values are in excellent agreement with previous E{sub d} measurements for desorption of H{sub 2}O from SiO{sub 2} and AlF{sub x} from AlN surfaces, respectively. The F{sub 2} desorption is therefore attributed to fragmentation of AlF{sub x} species in the mass spectrometer ionizer. H{sub 2} desorption exhibited an additional high temperature peak at 910?°C with E{sub d}?=?370?±?10?kJ/mol that is consistent with both the dehydrogenation of surface AlOH species and H{sub 2} assisted sublimation of AlN. Similarly, N{sub 2} exhibited a similar higher temperature desorption peak with E{sub d}?=?535?±?40?kJ/mol that is consistent with the activation energy for direct sublimation of AlN.

King, Sean W., E-mail: sean.king@intel.com; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

2014-09-01T23:59:59.000Z

212

Anisotropic Hexagonal Boron Nitride Nanomaterials - Synthesis and Applications  

SciTech Connect (OSTI)

Boron nitride (BN) is a synthetic binary compound located between III and V group elements in the Periodic Table. However, its properties, in terms of polymorphism and mechanical characteristics, are rather close to those of carbon compared with other III-V compounds, such as gallium nitride. BN crystallizes into a layered or a tetrahedrally linked structure, like those of graphite and diamond, respectively, depending on the conditions of its preparation, especially the pressure applied. Such correspondence between BN and carbon readily can be understood from their isoelectronic structures [1, 2]. On the other hand, in contrast to graphite, layered BN is transparent and is an insulator. This material has attracted great interest because, similar to carbon, it exists in various polymorphic forms exhibiting very different properties; however, these forms do not correspond strictly to those of carbon. Crystallographically, BN is classified into four polymorphic forms: Hexagonal BN (h-BN) (Figure 1(b)); rhombohedral BN (r-BN); cubic BN (c-BN); and wurtzite BN (w-BN). BN does not occur in nature. In 1842, Balmain [3] obtained BN as a reaction product between molten boric oxide and potassium cyanide under atmospheric pressure. Thereafter, many methods for its synthesis were reported. h-BN and r-BN are formed under ambient pressure. c-BN is synthesized from h-BN under high pressure at high temperature while w-BN is prepared from h-BN under high pressure at room temperature [1]. Each BN layer consists of stacks of hexagonal plate-like units of boron and nitrogen atoms linked by SP{sup 2} hybridized orbits and held together mainly by Van der Waals force (Fig 1(b)). The hexagonal polymorph has two-layered repeating units: AA'AA'... that differ from those in graphite: ABAB... (Figure 1(a)). Within the layers of h-BN there is coincidence between the same phases of the hexagons, although the boron atoms and nitrogen atoms are alternatively located along the c-axis. The rhombohedral system consists of three-layered units: ABCABC..., whose honeycomb layers are arranged in a shifted phase, like as those of graphite. Reflecting its weak interlayer bond, the h-BN can be cleaved easily along its layers, and hence, is widely used as a lubricant material. The material is stable up to a high temperature of 2300 C before decomposition sets in [2] does not fuse a nitrogen atmosphere of 1 atm, and thus, is applicable as a refractory material. Besides having such properties, similar to those of graphite, the material is transparent, and acts as a good electric insulator, especially at high temperatures (10{sup 6} {Omega}m at 1000 C) [1]. c-BN and w-BN are tetrahedrally linked BN. The former has a cubic sphalerite-type structure, and the latter has a hexagonal wurtzite-type structure. c-BN is the second hardest known material (the hardest is diamond), the so-called white diamond. It is used mainly for grinding and cutting industrial ferrous materials because it does not react with molten iron, nickel, and related alloys at high temperatures whereas diamond does [1]. It displays the second highest thermal conductivity (6-9 W/cm.deg) after diamond. This chapter focuses principally upon information about h-BN nanomaterials, mainly BN nanotubes (BNNTs), porous BN, mono- and few-layer-BN sheets. There are good reviews book chapters about c-BN in [1, 4-6].

Han,W.Q.

2008-08-01T23:59:59.000Z

213

High-Efficiency Nitride-Based Solid-State Lighting  

SciTech Connect (OSTI)

In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white light fixture. During the third and final year of the project, the LRC team investigated alternate packaging methods for the white LED device to achieve at least 25 percent more luminous efficacy than traditional white LEDs; conducted optical ray-tracing analyses and human factors studies to determine the best form factor for the white light source under development, in terms of high luminous efficacy and greater acceptance by subjects; and developed a new die encapsulant using silicone-epoxy resins that showed less yellowing and slower degradation. At the conclusion of this project, the LRC demonstrated a new packaging method, called scattered photon extraction (SPE), that produced an average luminous flux and corresponding average efficacy of 90.7 lm and 36.3 lm/W, respectively, compared with 56.5 lm and 22.6 lm/W for a similar commercial white LED package. At low currents, the SPE package emitted white light with an efficacy of over 80 lm/W and had chromaticity values very close to the blackbody locus. The SPE package showed an overall improvement of 61% for this particular comparison, exceeding the LRC's third-year goal of 25% improvement.

Paul T. Fini; Shuji Nakamura

2005-07-30T23:59:59.000Z

214

The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior  

SciTech Connect (OSTI)

In this paper, we describe the influence of the intrinsic indium fluctuation in the InGaN quantum wells on the carrier transport, efficiency droop, and emission spectrum in GaN-based light emitting diodes (LEDs). Both real and randomly generated indium fluctuations were used in 3D simulations and compared to quantum wells with a uniform indium distribution. We found that without further hypothesis the simulations of electrical and optical properties in LEDs such as carrier transport, radiative and Auger recombination, and efficiency droop are greatly improved by considering natural nanoscale indium fluctuations.

Yang, Tsung-Jui; Wu, Yuh-Renn, E-mail: yrwu@ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Shivaraman, Ravi; Speck, James S. [Department of Materials, University of California, Santa Barbara, California 93106 (United States)

2014-09-21T23:59:59.000Z

215

Formation of BN and AlBN during nitridation of sapphire using RF plasma sources[Radiofrequency  

SciTech Connect (OSTI)

Evidence is presented that nitrogen plasma sources utilizing a pyrolytic boron nitride liner may be a significant source of B contamination during growth and processing. Auger electron spectroscopy analysis performed during nitridation of sapphire indicate the resulting layers contain a significant amount of BN. The formation of Al{sub 1{minus}x}B{sub x}N would explain the observation of a lattice constant several percent smaller than AlN as measured by reflection high-energy electron diffraction. The presence of cubic inclusions in layers grown on such a surface may be related to the segregation of BN during the nitridation into its cubic phase.

Ptak, A.J.; Ziemer, K.S.; Holbert, L.J.; Stinespring, C.D.; Myers, T.H.

2000-07-01T23:59:59.000Z

216

Method for Improving Mg Doping During Group-III Nitride MOCVD  

DOE Patents [OSTI]

A method for improving Mg doping of Group III-N materials grown by MOCVD preventing condensation in the gas phase or on reactor surfaces of adducts of magnesocene and ammonia by suitably heating reactor surfaces between the location of mixing of the magnesocene and ammonia reactants and the Group III-nitride surface whereon growth is to occur.

Creighton, J. Randall (Albuquerque, NM); Wang, George T. (Albuquerque, NM)

2008-11-11T23:59:59.000Z

217

Formation of Nickel Silicide from Direct-Liquid-Injection Chemical-Vapor-Deposited Nickel Nitride Films  

E-Print Network [OSTI]

. Published April 28, 2010. Metal silicides such as TiSi2 and CoSi2 have been commonly used as the contactsFormation of Nickel Silicide from Direct-Liquid-Injection Chemical-Vapor-Deposited Nickel Nitride as the intermediate for subsequent conversion into nickel silicide NiSi , which is a key material for source, drain

218

Characterization of multilayer nitride coatings by electron microscopy and modulus mapping  

SciTech Connect (OSTI)

This paper discusses multi-scale characterization of physical vapour deposited multilayer nitride coatings using a combination of electron microscopy and modulus mapping. Multilayer coatings with a triple layer structure based on TiAlN and nanocomposite nitrides with a nano-multilayered architecture were deposited by Cathodic arc deposition and detailed microstructural studies were carried out employing Energy Dispersive Spectroscopy, Electron Backscattered Diffraction, Focused Ion Beam and Cross sectional Transmission Electron Microscopy in order to identify the different phases and to study microstructural features of the various layers formed as a result of the deposition process. Modulus mapping was also performed to study the effect of varying composition on the moduli of the nano-multilayers within the triple layer coating by using a Scanning Probe Microscopy based technique. To the best of our knowledge, this is the first attempt on modulus mapping of cathodic arc deposited nitride multilayer coatings. This work demonstrates the application of Scanning Probe Microscopy based modulus mapping and electron microscopy for the study of coating properties and their relation to composition and microstructure. - Highlights: • Microstructure of a triple layer nitride coating studied at multiple length scales. • Phases identified by EDS, EBSD and SAED (TEM). • Nanolayered, nanocomposite structure of the coating studied using FIB and TEM. • Modulus mapping identified moduli variation even in a nani-multilayer architecture.

Pemmasani, Sai Pramod [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India); School of Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad — 500046 India (India); Rajulapati, Koteswararao V. [School of Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad — 500046 India (India); Ramakrishna, M.; Valleti, Krishna [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India); Gundakaram, Ravi C., E-mail: ravi.gundakaram@arci.res.in [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India); Joshi, Shrikant V. [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad — 500005 India (India)

2013-07-15T23:59:59.000Z

219

Numerical simulation of the heat transfer in amorphous silicon nitride membrane-based microcalorimeters  

E-Print Network [OSTI]

Numerical simulation of the heat transfer in amorphous silicon nitride membrane July 2003 Numerical simulations of the two-dimensional 2D heat flow in a membrane-based microcalorimeter have been performed. The steady-state isotherms and time-dependent heat flow have been calculated

Hellman, Frances

220

Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites  

DOE Patents [OSTI]

A fiber-reinforced silicon--silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon--silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

Corman, Gregory Scot (Ballston Lake, NY); Luthra, Krishan Lal (Schenectady, NY)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites  

DOE Patents [OSTI]

A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

Corman, Gregory Scot (Ballston Lake, NY); Luthra, Krishan Lal (Schenectady, NY)

2002-01-01T23:59:59.000Z

222

Line-source E beam crystallization of Si on silicon nitride layers  

SciTech Connect (OSTI)

The use of a swept line-source electron beam is reported for liquid phase recrystallization of Si films on Si/sub 3/N/sub 4/ layers over Si substrates. For the case of 5000A of Si on 1000A of Si/sub 3/N/sub 4/ layers over Si the growth of Si crystalline regions as large as 0.5 x 5 mm of predominately (100) orientation normal to the film and (010) in the sweep direction has been demonstrated. The nucleation of grain growth for this case occurred at small defects in the nitride layer at the edge of the treated area, growing out as far as 500 ..mu..m over intact nitride. Thicker nitrides (2500A) remained intact at power densities useful for treating the Si film. For this thicker nitride non-seeded growth is demonstrated for single and repetitively melted Si. In all cases the surface morphology of the regrown regions is suggestive of rapid growth along <100> directions.

Knapp, J.A.; Picraux, S.T.; Lee, K.; Gibbons, J.F.; Sedgwick, T.O.; Depp, S.W.

1981-01-01T23:59:59.000Z

223

CHARGE STABILITY IN LPCVD SILICON NITRIDE FOR SURFACE PASSIVATION OF SILICON SOLAR CELLS  

E-Print Network [OSTI]

CHARGE STABILITY IN LPCVD SILICON NITRIDE FOR SURFACE PASSIVATION OF SILICON SOLAR CELLS Yongling Ren, Natalita M Nursam, Da Wang and Klaus J Weber Centre for Sustainable Energy Systems, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 0200, Australia ABSTRACT

224

Disordered graphene and boron nitride in a microwave tight-binding analogue S. Barkhofen,1  

E-Print Network [OSTI]

Disordered graphene and boron nitride in a microwave tight-binding analogue S. Barkhofen,1 M Sophia-Antipolis, 06108 Nice, France (Dated: December 20, 2012) Experiments on hexagonal graphene of the high flexibility of the discs positions, consequences of the disorder introduced in the graphene

Paris-Sud XI, Université de

225

Reversible Intercalation of Hexagonal Boron Nitride with Brnsted Nina I. Kovtyukhova,*,  

E-Print Network [OSTI]

materials.1-3 Intercalation reactions are often used as the first step in exfoliation of lamellar crystals dichalogenides,10,12 and hexagonal boron nitride (h-BN)13-15 can be mechanically exfoliated to form crystalline, several solution-based chem- ical approaches have been studied.10,16-22 Among these, only exfoliation

226

Group III-nitride thin films grown using MBE and bismuth  

DOE Patents [OSTI]

The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

Kisielowski, Christian K. (Peidmont, CA); Rubin, Michael (Berkeley, CA)

2000-01-01T23:59:59.000Z

227

Group III-nitride thin films grown using MBE and bismuth  

DOE Patents [OSTI]

The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

Kisielowski, Christian K. (Piedmont, CA); Rubin, Michael (Berkeley, CA)

2002-01-01T23:59:59.000Z

228

Tuning the optical properties of dilute nitride site controlled quantum dots  

SciTech Connect (OSTI)

We show that deterministic control of the properties of pyramidal site-controlled quantum dots (QD) could be achieved by exposing the QD layer to nitrogen precursor unsymmetrical dimethylhydrazine (UDMHy). The properties that could be tuned include an expected emission reduction in dilute nitride materials, excitonic pattern (biexciton binding energy) and improved carrier confinement potential symmetry (reduced fine-structure splitting)

Juska, G.; Dimastrodonato, V.; Mereni, L. O.; Gocalinska, A.; Pelucchi, E. [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland)

2013-12-04T23:59:59.000Z

229

Characterization of the nitrogen split interstitial defect in wurtzite aluminum nitride using density functional theory  

SciTech Connect (OSTI)

We carried out Heyd-Scuseria-Ernzerhof hybrid density functional theory plane wave supercell calculations in wurtzite aluminum nitride in order to characterize the geometry, formation energies, transition levels, and hyperfine tensors of the nitrogen split interstitial defect. The calculated hyperfine tensors may provide useful fingerprint of this defect for electron paramagnetic resonance measurement.

Szállás, A., E-mail: szallas.attila@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Szász, K. [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Institute of Physics, Eötvös University, Pázmány Péter sétány 1/A, H-1117 Budapest (Hungary); Trinh, X. T.; Son, N. T.; Janzén, E. [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Gali, A., E-mail: gali.adam@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8, H-1111 Budapest (Hungary)

2014-09-21T23:59:59.000Z

230

Evaluation and silicon nitride internal combustion engine components. Final report, Phase I  

SciTech Connect (OSTI)

The feasibility of silicon nitride (Si{sub 3}N{sub 4}) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components` gas-pressure sinterable Si{sub 3}N{sub 4} (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si{sub 3}N{sub 4} components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

Voldrich, W. [Allied-Signal Aerospace Co., Torrance, CA (United States). Garrett Ceramic Components Div.

1992-04-01T23:59:59.000Z

231

LPCVD SILICON NITRIDE-ON-SILICON SPACER TECHNOLOGY H. W. van Zeijl, L.K. Nanver  

E-Print Network [OSTI]

of obtaining self-aligned sub- lithographic dimensions. In many processes were spacers are applied to separate-etching affects the dimensions of the spacer which could lead to a lack of control over the spacer-related deviceLPCVD SILICON NITRIDE-ON-SILICON SPACER TECHNOLOGY H. W. van Zeijl, L.K. Nanver DIMES Delft

Technische Universiteit Delft

232

Base-contact proximity effects in bipolar transistors with nitride-spacer technology  

E-Print Network [OSTI]

-lithographic dimensions. For example, in the double polysilicon bipolar transistor, spacers are used to separate the baseBase-contact proximity effects in bipolar transistors with nitride-spacer technology Henk van Zeijl-BJT's with spacer separated Al/Si emitter and base contacts are fabricated and characterized. Due to the proximity

Technische Universiteit Delft

233

Electronic structure and pairwise interactions in substoichiometric transition metal carbides and nitrides  

E-Print Network [OSTI]

1001 Electronic structure and pairwise interactions in substoichiometric transition metal carbides observations expéri- mentales. Abstract 2014 In substoichiometric transition metal carbides and nitrides This paper is devoted to the study of the ordering processes in substoichiometric transition metal carbi- des

Paris-Sud XI, Université de

234

Compressibilities and phonon spectra of high-hardness transition metal-nitride materials  

SciTech Connect (OSTI)

We report compressibilities measured by synchrotron X-ray diffraction and phonon spectra from Raman scattering at high pressure in the diamond anvil cell (DAC) for cubic transition metal nitrides TiN{sub 1-x}, {gamma}-Mo{sub 2}N and VN{sub x}. The high-hardness metal nitride compounds have large values of the bulk modulus. B1-structured nitrides normally have no allowed first-order Raman spectra. However, they exhibit broad bands that reflect the vibrational density of states g({omega}) associated with breakdown of q=0 selection rules because of the presence of N{sup 3-} vacancies on anion sites. Peaks in g({omega}) at low frequency are identified with the longitudinal and transverse acoustic (TA) branches. The maximum in the TA band is correlated with the superconducting transition temperature in these materials (T{sub c}). In situ Raman scattering measurements in the DAC thus permit predictions of the T{sub c} variation with pressure for cubic nitrides and isostructural carbide materials.

Shebanova, O.; Soignard, E.; Mcmillan, P.F. (ASU); (UCL)

2010-01-20T23:59:59.000Z

235

ORDER AND DISORDER IN CARBIDES AND NITRIDES Ch. H. DE NOVION and V. MAURICE  

E-Print Network [OSTI]

transition metals, rare earths and actinides react with carbon and nitrogen to form metallic carbides experimental evidence for short and long-range ordering of point defects in metallic transition metal, rareCOMPOUNDS. ORDER AND DISORDER IN CARBIDES AND NITRIDES Ch. H. DE NOVION and V. MAURICE SESI, C

Paris-Sud XI, Université de

236

Effect of swift heavy ion irradiations in polycrystalline aluminum nitride J.C. Nappa,*  

E-Print Network [OSTI]

conductivity, aluminum nitride may be a serious candidate as fuel coating for the Gas Fast Reactor. However.41.Bm, 78.60.Kn, 78.20.Ci 1. Introduction Gas Fast Reactor (GFR) is one of the six new systems is also studied in the framework of fusion reactors, in which this material, thanks to its high electrical

Paris-Sud XI, Université de

237

Graphene field-effect transistors based on boron nitride gate dielectrics Inanc Meric1  

E-Print Network [OSTI]

Graphene field-effect transistors based on boron nitride gate dielectrics Inanc Meric1 , Cory Dean1, 10027 Tel: (212) 854-2529, Fax: (212) 932-9421, Email: shepard@ee.columbia.edu Abstract Graphene field of graphene, as the gate dielectric. The devices ex- hibit mobility values exceeding 10,000 cm2 /V

Shepard, Kenneth

238

Compatibility/Stability Issues in the Use of Nitride Kernels in LWR TRISO Fuel  

SciTech Connect (OSTI)

The stability of the SiC layer in the presence of free nitrogen will be dependent upon the operating temperatures and resulting nitrogen pressures whether it is at High Temperature Gas-Cooled Reactor (HTGR) temperatures of 1000-1400 C (coolant design dependent) or LWR temperatures that range from 500-700 C. Although nitrogen released in fissioning will form fission product nitrides, there will remain an overpressure of nitrogen of some magnitude. The nitrogen can be speculated to transport through the inner pyrolytic carbon layer and contact the SiC layer. The SiC layer may be envisioned to fail due to resulting nitridation at the elevated temperatures. However, it is believed that these issues are particularly avoided in the LWR application. Lower temperatures will result in significantly lower nitrogen pressures. Lower temperatures will also substantially reduce nitrogen diffusion rates through the layers and nitriding kinetics. Kinetics calculations were performed using an expression for nitriding silicon. In order to further address these concerns, experiments were run with surrogate fuel particles under simulated operating conditions to determine the resulting phase formation at 700 and 1400 C.

Armstrong, Beth L [ORNL; Besmann, Theodore M [ORNL

2012-02-01T23:59:59.000Z

239

Spontaneous Spatial Alignment of Polymer Cylindrical Nanodomains on Silicon Nitride Gratings  

E-Print Network [OSTI]

a simple method to align lying-down cylindrical domains of PS-b-PMMA in the trough regions of 555 nm deepSpontaneous Spatial Alignment of Polymer Cylindrical Nanodomains on Silicon Nitride Gratings Deepak to the orientation of the grating lines and essentially spans the width of the grating trough. The proposed mechanism

Sibener, Steven

240

Process for preparing a densified beta-phase silicon nitride material having at least one densification aid, and the material resulting therefrom  

SciTech Connect (OSTI)

A process is described for preparing an alpha-phase silicon nitride material and thereafter sintering to a densified beta-phase silicon nitride material, comprising: (a) comminuting a slurry including a mixture of (i) silicon-containing powder, (ii) water, and (iii) at least one densification aid to aid in later densifying of the silicon nitride material, said comminuting being performed to form fresh, non-oxidized surfaces on the silicon powder and to allow substantial chemical reaction between the silicon and the water, said comminuting being performed to form fresh, non-oxidized surfaces on the silicon powder and to allow substantial chemical reaction between the silicon and the water, yielding a mass; (b) nitriding the mass by exposure to a sufficient amount of a nitriding gas including at least nitrogen at a sufficient temperature for a sufficient length of time to form a mass of substantially alpha-phase silicon nitride; and (c) sintering the resultant silicon nitride mass at a sintering holding temperature of from about 1,450 C to about 2,100 C for a sufficient length of time to convert the silicon nitride from a predominantly alpha-phase material to a predominantly densified beta phase silicon nitride material exhibiting a decrease in bulk volume of the silicon nitride due to the densification.

Edler, J.P.; Lisowsky, B.

1993-05-25T23:59:59.000Z

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Additive-assisted synthesis of boride, carbide, and nitride micro/nanocrystals  

SciTech Connect (OSTI)

General and simple methods for the syntheses of borides, carbides and nitrides are highly desirable, since those materials have unique physical properties and promising applications. Here, a series of boride (TiB{sub 2}, ZrB{sub 2}, NbB{sub 2}, CeB{sub 6}, PrB{sub 6}, SmB{sub 6}, EuB{sub 6}, LaB{sub 6}), carbide (SiC, TiC, NbC, WC) and nitride (TiN, BN, AlN, MgSiN{sub 2}, VN) micro/nanocrystals were prepared from related oxides and amorphous boron/active carbon/NaN{sub 3} with the assistance of metallic Na and elemental S. In-situ temperature monitoring showed that the reaction temperature could increase quickly to {approx}850 Degree-Sign C, once the autoclave was heated to 100 Degree-Sign C. Such a rapid temperature increase was attributed to the intense exothermic reaction between Na and S, which assisted the formation of borides, carbides and nitrides. The as-obtained products were characterized by XRD, SEM, TEM, and HRTEM techniques. Results in this report will greatly benefit the future extension of this approach to other compounds. - Graphical abstract: An additive-assisted approach is successfully developed for the syntheses of borides, carbides and nitrides micro/nanocrystals with the assistance of the exothermic reaction between Na and S. Highlights: Black-Right-Pointing-Pointer An additive-assisted synthesis strategy is developed for a number of borides, carbides and nitrides. Black-Right-Pointing-Pointer The reaction mechanism is demonstrated by the case of SiC nanowires. Black-Right-Pointing-Pointer The formation of SiC nanowires is initiated by the exothermic reaction of Na and S.

Chen, Bo [Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, and Department of Chemistry, Shandong University, Jinan 250100 (China)] [Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, and Department of Chemistry, Shandong University, Jinan 250100 (China); Yang, Lishan [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Shandong University), Ministry of Education, and School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)] [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Shandong University), Ministry of Education, and School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Heng, Hua; Chen, Jingzhong; Zhang, Linfei; Xu, Liqiang [Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, and Department of Chemistry, Shandong University, Jinan 250100 (China)] [Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, and Department of Chemistry, Shandong University, Jinan 250100 (China); Qian, Yitai, E-mail: ytqian@sdu.edu.cn [Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, and Department of Chemistry, Shandong University, Jinan 250100 (China)] [Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, and Department of Chemistry, Shandong University, Jinan 250100 (China); Yang, Jian, E-mail: yangjian@sdu.edu.cn [Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, and Department of Chemistry, Shandong University, Jinan 250100 (China)] [Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, and Department of Chemistry, Shandong University, Jinan 250100 (China)

2012-10-15T23:59:59.000Z

242

Aluminum nitride transitional layer for reducing dislocation density and cracking of AlGaN epitaxial films  

DOE Patents [OSTI]

A denticulated Group III nitride structure that is useful for growing Al.sub.xGa.sub.1-xN to greater thicknesses without cracking and with a greatly reduced threading dislocation (TD) density.

Allerman, Andrew A.; Crawford, Mary H.; Lee, Stephen R.

2013-01-08T23:59:59.000Z

243

Using Monte Carlo ray tracing simulations to model the quantum harmonic oscillator modes observed in uranium nitride  

SciTech Connect (OSTI)

Recently an extended series of equally spaced vibrational modes was observed in uranium nitride (UN) by performing neutron spectroscopy measurements using the ARCS and SEQUOIA time-of- flight chopper spectrometers [A.A. Aczel et al, Nature Communications 3, 1124 (2012)]. These modes are well described by 3D isotropic quantum harmonic oscillator (QHO) behavior of the nitrogen atoms, but there are additional contributions to the scattering that complicate the measured response. In an effort to better characterize the observed neutron scattering spectrum of UN, we have performed Monte Carlo ray tracing simulations of the ARCS and SEQUOIA experiments with various sample kernels, accounting for the nitrogen QHO scattering, contributions that arise from the acoustic portion of the partial phonon density of states (PDOS), and multiple scattering. These simulations demonstrate that the U and N motions can be treated independently, and show that multiple scattering contributes an approximate Q-independent background to the spectrum at the oscillator mode positions. Temperature dependent studies of the lowest few oscillator modes have also been made with SEQUOIA, and our simulations indicate that the T-dependence of the scattering from these modes is strongly influenced by the uranium lattice.

Lin, J. Y. Y. [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena; Aczel, Adam A [ORNL] [ORNL; Abernathy, Douglas L [ORNL] [ORNL; Nagler, Stephen E [ORNL] [ORNL; Buyers, W. J. L. [National Research Council of Canada] [National Research Council of Canada; Granroth, Garrett E [ORNL] [ORNL

2014-01-01T23:59:59.000Z

244

E-Print Network 3.0 - alternative lmfbr carbide Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

illustrating the rich behavior of carbo-nitride materials. The early transition metal carbides and nitrides... the calculations re- ported here were performed with the...

245

E-Print Network 3.0 - applied zro2 inhibitor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the transition-metal nitrides... recently applying the same approach to the transition metal carbides and nitrides.14 Note that the one Source: Paxton, Anthony T. - Department of...

246

Sampling box  

DOE Patents [OSTI]

An air sampling box that uses a slidable filter tray and a removable filter cartridge to allow for the easy replacement of a filter which catches radioactive particles is disclosed.

Phillips, Terrance D. (617 Chestnut Ct., Aiken, SC 29803); Johnson, Craig (100 Midland Rd., Oak Ridge, TN 37831-0895)

2000-01-01T23:59:59.000Z

247

Pulsed-ion-beam nitriding and smoothing of titanium surface in a vacuum  

SciTech Connect (OSTI)

Both nitriding and smoothing of titanium have been achieved under irradiation of intense pulsed ion beam in a vacuum of 2x10{sup -2} Pa. Applying a screening method, we find that medium ion-beam intensity and multi-shot irradiation are effective for the processing, where repetitive surface melting with limited ablation favored Ti nitride formation as well as surface smoothing. The present results demonstrate that ambient gas atoms/molecules can be efficiently incorporated in metal matrices to form compounds under the ion-beam irradiation. The finding is of great significance for extending application scope of the ion-beam technique in materials research and processing, combined with the recent success in introducing ambient gas into the processing chamber.

Zhu, X.P.; Suematsu, Hisayuki; Jiang Weihua; Yatsui, Kiyoshi; Lei, M.K. [Extreme Energy-Density Research Institute, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Surface Engineering Laboratory, Department of Materials Engineering, Dalian University of Technology, Dalian 116024 (China)

2005-08-29T23:59:59.000Z

248

Phase transformations of nano-sized cubic boron nitride to white graphene and white graphite  

SciTech Connect (OSTI)

We report quantum-mechanical investigations that predict the formation of white graphene and nano-sized white graphite from the first-order phase transformations of nano-sized boron nitride thin-films. The phase transformations from the nano-sized diamond-like structure, when the thickness d?>?1.4?nm, to the energetically more stable nano-sized white graphite involve low activation energies of less than 1.0?eV. On the other hand, the diamond-like structure transforms spontaneously to white graphite when d???1.4?nm. In particular, the two-dimensional structure with single-layer boron nitride, the so-called white graphene, could be formed as a result of such transformation.

Dang, Hongli; Liu, Yingdi; Xue, Wenhua; Anderson, Ryan S.; Sewell, Cody R. [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, Oklahoma 74104 (United States); Xue, Sha; Crunkleton, Daniel W. [Department of Chemical Engineering, The University of Tulsa, Tulsa, Oklahoma 74104 (United States); Institute of Alternate Energy, The University of Tulsa, Tulsa, Oklahoma 74104 (United States); Shen, Yaogen [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon (Hong Kong); Wang, Sanwu, E-mail: sanwu-wang@utulsa.edu [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, Oklahoma 74104 (United States); Institute of Alternate Energy, The University of Tulsa, Tulsa, Oklahoma 74104 (United States)

2014-03-03T23:59:59.000Z

249

Nondestructive evaluation of silicon-nitride ceramic valves from engine duration test.  

SciTech Connect (OSTI)

In this study, we investigated impact and wear damage in silicon-nitride ceramic valves that were subjected to an engine duration test in a natural-gas engine. A high-speed automated laser-scattering system was developed for the nondestructive evaluation (NDE) of 10 SN235P silicon-nitride valves. The NDE system scans the entire valve surface and generates a two-dimensional scattering image that is used to identify location, size and relative severity of subsurface damage in the valves. NED imaging data were obtained at before and at 100 and 500 hours of the engine duration test. The NDE data were analyzed and compared with surface photomicrographs. Wear damage was found in the impact surface of all valves, expecially for exhaust valves. However, the NDE examination did not detect subsurface damage such as cracks or spalls in these engine-tested valves.

Sun, J. G.; Trethewey, J. S.; Vanderspiegle, N. N.; Jensen, J. A.; Nuclear Engineering Division; Caterpillar, Inc.

2008-01-01T23:59:59.000Z

250

Thermal transport in boron nitride nanotorus—towards a nanoscopic thermal shield  

SciTech Connect (OSTI)

Nanotori, or nanorings, are topological variants of nanotubes and are conceived to have different properties from their tubular form. In this study, the toroidal arrangement of boron nitride is introduced. Using classical molecular dynamics simulations, the thermal behaviour (thermal conductivity and thermal stability) of the boron nitride nanotorus and its relationship with the structural characteristics are investigated. Its circumferential thermal rectification strength displays a linear dependence on the bending coefficient of the nanostructure. Surface kinks are relatively inconsequential on its circumferential mode of conduction, as compared to its axial sense. The circumferential conductivity in the diffusive regime is calculated to be approximately 10?W/m K, while the axial conductivity is more than tenfold of this value. All nanotori with different toroidal characters show excellent thermal stability at extremely high temperatures approaching 3400?K. With consideration to its favourable properties, a thermal shield made up of a parallel row of nanotori is proposed as a nanoscale thermal insulation device.

Loh, G. C., E-mail: jgloh@mtu.edu [Institute of High Performance Computing, 1 Fusionopolis Way, 16-16 Connexis, Singapore 138632 (Singapore); Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)

2013-11-14T23:59:59.000Z

251

Effects of plasma-deposited silicon nitride passivation on the radiation hardness of CMOS integrated circuits  

SciTech Connect (OSTI)

The use of plasma-deposited silicon nitride as a final passivation over metal-gate CMOS integrated circuits degrades the radiation hardness of these devices. The hardness degradation is manifested by increased radiation-induced threshold voltage shifts caused principally by the charging of new interface states and, to a lesser extent, by the trapping of holes created upon exposure to ionizing radiation. The threshold voltage shifts are a strong function of the deposition temperature, and show very little dependence on thickness for films deposited at 300/sup 0/C. There is some correlation between the threshold voltage shifts and the hydrogen content of the PECVD silicon nitride films used as the final passivation layer as a function of deposition temperature. The mechanism by which the hydrogen contained in these films may react with the Si/SiO/sub 2/ interface is not clear at this point.

Clement, J. J.

1980-01-01T23:59:59.000Z

252

Ab initio study of phase transition of boron nitride between zinc-blende and rhombohedral structures  

SciTech Connect (OSTI)

Boron nitride has polymorphs such as zinc-blende (c-BN), wurtzite (w-BN), rhombohedral (r-BN), and graphite-like (h-BN) forms. We simulate the direct conversion of r-BN to c-BN through electronic excitation. In our calculation, the conversion is made possible by increasing the hole concentration to over 0.06/atom. This conversion should be experimentally possible by hole-doping via an electric double layer transistor (EDLT) or capacitor.

Nishida, S.; Funashima, H.; Sato, K.; Katayama-Yoshida, H. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

2013-12-04T23:59:59.000Z

253

Amber light-emitting diode comprising a group III-nitride nanowire active region  

DOE Patents [OSTI]

A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

2014-07-22T23:59:59.000Z

254

Integrated rig for the production of boron nitride nanotubes via the pressurized vapor-condenser method  

DOE Patents [OSTI]

An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

Smith, Michael W; Jordan, Kevin C

2014-03-25T23:59:59.000Z

255

An electrochemical method suitable for preparing nine metal-nitride powders  

SciTech Connect (OSTI)

We present an electrochemical method that is suitable for the preparation of metal-nitride ceramic materials that is both simple and general. We begin with a single-compartment electrochemical cell containing suitable metal (M) anodes and cathodes (M=Al, Mo, Nb, Ni, Ti, V, W, Zn, or Zr) and a NH{sub 3}/NH{sub 4}X (X=Br or Cl) electrolyte solution. Application of a sufficiently high voltage results in oxidation and dissolution of M to M{sup n+} at the anode and reduction of NH{sub 3} to NH{sub 2}- at the cathode. When M=Al, this results in formation of an insoluble inorganic polymer, which can subsequently be calcined above 600{degrees}C to yield phase-pure AlN. For some of the other metals, a simple ammoniated metal ion is formed at the anode, but calcination of this material also leads to the corresponding metal nitride. The phases and morphologies of the powders depends strongly on the calcining conditions. The important point is that this method is general for the preparation of metal-nitride powders even though the pathway that leads to the powders is metal-dependent. This talk will focus primarily on the preparation of AlN, which is an important packaging material for the electronics industry, and NbN, which is a superconductor (T{sub c}{approximately}17 K) with important technological applications.

Wade, T.; Crooks, R.M. [Texas A& M Univ., College Station, TX (United States)

1995-12-31T23:59:59.000Z

256

Transmission electron microscopy investigation of acicular ferrite precipitation in {gamma}'-Fe{sub 4}N nitride  

SciTech Connect (OSTI)

Acicular-shaped crystals precipitate from {gamma}'-Fe{sub 4}N nitride in an iron-nitrogen alloy and were identified by electron microdiffraction as {alpha}-ferrite. Acicular ferrite develops both the Nishiyama-Wassermann and the Kurdjumov-Sachs orientation relationships with {gamma}'-Fe{sub 4}N nitride. These orientation relationships were discussed in terms of the symmetry theory. The driving force for acicular ferrite formation was related to the increasing nitrogen content of {gamma}'-Fe{sub 4}N, in equilibrium with {alpha}-ferrite, with decreasing temperature. The passage from lamellar to acicular structure in Fe-N system was proposed. - Research Highlights: {yields} Acicular crystals precipitate from pearlitic{gamma}'-Fe{sub 4}N nitride in an iron-nitrogen alloy and were identified by electron microdiffraction as acicular ferrite. {yields} The crystal structure, orientation relationships with the matrix and morphologies of acicular ferrite, were studied by transmission electron microscopy. {yields} The driving force for the formation of acicular ferrite is related to the temperature dependence of nitrogen content of {gamma}'-Fe{sub 4}N, in equilibrium with ferrite. {yields} The passage from the pearlitic structure to the acicular structure in the present iron-nitrogen alloy was proposed.

Xiong, X.C., E-mail: xiaochuan.xiong@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Institut Jean Lamour, UMR 7198 CNRS, Nancy-Universite, UPV-Metz, Ecole des Mines de Nancy, Parc de Saurupt CS 14234, F-54042 Nancy Cedex (France); Redjaimia, A. [Institut Jean Lamour, UMR 7198 CNRS, Nancy-Universite, UPV-Metz, Ecole des Mines de Nancy, Parc de Saurupt CS 14234, F-54042 Nancy Cedex (France); Goune, M. [Institut Jean Lamour, UMR 7198 CNRS, Nancy-Universite, UPV-Metz, Ecole des Mines de Nancy, Parc de Saurupt CS 14234, F-54042 Nancy Cedex (France); ArcelorMittal SA, Voie Romaine, BP 30320, F-57283 Maizieres-les-Metz (France)

2010-11-15T23:59:59.000Z

257

MOCVD synthesis of group III-nitride heterostructure nanowires for solid-state lighting.  

SciTech Connect (OSTI)

Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

Wang, George T.; Creighton, James Randall; Talin, Albert Alec

2006-11-01T23:59:59.000Z

258

Behavior of molybdenum nitrides as materials for electrochemical capacitors: Comparison with ruthenium oxide  

SciTech Connect (OSTI)

Ruthenium oxide (RuO{sub 2}), formed as a thin film on a Ru or Ti metal substrate, exhibits a large specific (cm{sup {minus}2}) and almost constant, electrochemical capacitance over a 1.35 V range in aqueous H{sub 2}SO{sub 4}. This behavior has led to its investigation and use as a material for fabrication of supercapacitor devices. However, its cost has encouraged search for other materials exhibiting similar behavior. Work reported in the present paper evaluates two nitrides of Mo, Mo{sub 2}N and MoN, as substitutes for RuO{sub 2}. It is shown that very similar capacitance behavior to that of RuO{sub 2} films arises, e.g., in cyclic voltammetry and dc charging curves; in the former, almost mirror-image anodic and cathodic current-response profiles, characteristic of a capacitor, arise. However, the nitride materials have a substantially smaller voltage operating range of only some 0.7 V due to electrochemical decomposition above ca. 0.7 V vs. RHE. This limits their usefulness as a substitute for RuO{sub 2}. Of interest is that the nitride films exhibit potential-decay and potential-recovery on open circuit after respective charge and forced discharge. The decay and recovery processes are logarithmic in time, indicating the role of internal faradaic charge redistribution processes.

Liu, T.C.; Pell, W.G.; Conway, B.E. [Univ. of Ottawa, Ontario (Canada). Dept. of Chemistry; Roberson, S.L. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Materials Science and Engineering

1998-06-01T23:59:59.000Z

259

Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications Phase 2. Final report  

SciTech Connect (OSTI)

The purpose of joining, Phase 2 was to develop joining technologies for HIP`ed Si{sub 3}N{sub 4} with 4wt% Y{sub 2}O{sub 3} (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

Sundberg, G.J.; Vartabedian, A.M.; Wade, J.A.; White, C.S. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.

1994-10-01T23:59:59.000Z

260

Boron nitride formation on magnesium studied by ab initio calculations S. Riikonen,1 A. S. Foster,1,2 A. V. Krasheninnikov,1,3 and R. M. Nieminen1,*  

E-Print Network [OSTI]

Boron nitride formation on magnesium studied by ab initio calculations S. Riikonen,1 A. S. Foster,1 of the art method for producing boron nitride nanotubes in which magnesium has been speculated to act boron and nitrogen containing molecules. We observe that magnesium promotes boron-nitride BN molecule

Krasheninnikov, Arkady V.

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Power mixture and green body for producing silicon nitride base articles of high fracture toughness and strength  

DOE Patents [OSTI]

A powder mixture and a green body for producing a silicon nitride-based article of improved fracture toughness and strength are disclosed. The powder mixture includes (a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon nitride powder of an average particle size of about 0.2 [mu]m and a surface area of about 8-12m[sup 2]g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 [mu]m and a surface area of about 2-4 m[sup 2]/g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified article an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. The green body is formed from the powder mixture, an effective amount of a suitable oxide densification aid, and an effective amount of a suitable organic binder. No Drawings

Huckabee, M.L.; Buljan, S.T.; Neil, J.T.

1991-09-17T23:59:59.000Z

262

Process for the production of hydrogen and carbonyl sulfide from hydrogen sulfide and carbon monoxide using a metal boride, nitride, carbide and/or silicide catalyst  

SciTech Connect (OSTI)

Hydrogen and carbonyl sulfide are produced by a process comprising contacting gaseous hydrogen sulfide with gaseous carbon monoxide in the presence of a metal boride, carbide, nitride and/or silicide catalyst, such as titanium carbide, vanadium boride, manganese nitride or molybdenum silicide.

McGuiggan, M.F.; Kuch, P.L.

1984-05-08T23:59:59.000Z

263

Published in 'Silicon Carbide, III-Nitrides and Related Materials', Year: 1998, pp: 829-832 Periodical: Materials Science Forum Vols. 264-268  

E-Print Network [OSTI]

Published in 'Silicon Carbide, III-Nitrides and Related Materials', Year: 1998, pp: 829@scientific.net © 1998 by Trans Tech Publications Ltd., Switzerland, http://www.ttp.net #12;Published in 'Silicon Carbide Publications Ltd., Switzerland, http://www.ttp.net #12;Published in 'Silicon Carbide, III-Nitrides and Related

Steckl, Andrew J.

264

Published in 'Silicon Carbide, III-Nitrides and Related Materials', Year: 1998, pp: 1149-1152 Periodical: Materials Science Forum Vols. 264-268  

E-Print Network [OSTI]

Published in 'Silicon Carbide, III-Nitrides and Related Materials', Year: 1998, pp: 1149@scientific.net © 1998 by Trans Tech Publications Ltd., Switzerland, http://www.ttp.net #12;Published in 'Silicon Carbide Publications Ltd., Switzerland, http://www.ttp.net #12;Published in 'Silicon Carbide, III-Nitrides and Related

Steckl, Andrew J.

265

Aluminum Nitride Thin Films on Titanium for Piezoelectric MEMS Applications Seth Boeshore, Emily Parker, Vanni Lughi, Noel C. MacDonald  

E-Print Network [OSTI]

Aluminum Nitride Thin Films on Titanium for Piezoelectric MEMS Applications Seth Boeshore, Emily Parker, Vanni Lughi, Noel C. MacDonald University of California, Santa Barbara Highly­textured aluminum, biocompatibility, and high fracture toughness. As a piezoelectric ceramic, aluminum nitride is compatible

MacDonald, Noel C.

266

The near-edge structure in energy-loss spectroscopy: many-electron and magnetic effects in transition metal nitrides and carbides  

E-Print Network [OSTI]

in transition metal nitrides and carbides This article has been downloaded from IOPscience. Please scroll down-loss spectroscopy: many-electron and magnetic effects in transition metal nitrides and carbides A T Paxton, M van energies are systematically overestimated by 4.22 ± 0.44 eV in twelve transition metal carbides

Paxton, Anthony T.

267

Laboratory Directed Research and Development (LDRD) on Mono-uranium Nitride Fuel Development for SSTAR and Space Applications  

SciTech Connect (OSTI)

The US National Energy Policy of 2001 advocated the development of advanced fuel and fuel cycle technologies that are cleaner, more efficient, less waste-intensive, and more proliferation resistant. The need for advanced fuel development is emphasized in on-going DOE-supported programs, e.g., Global Nuclear Energy Initiative (GNEI), Advanced Fuel Cycle Initiative (AFCI), and GEN-IV Technology Development. The Directorates of Energy & Environment (E&E) and Chemistry & Material Sciences (C&MS) at Lawrence Livermore National Laboratory (LLNL) are interested in advanced fuel research and manufacturing using its multi-disciplinary capability and facilities to support a design concept of a small, secure, transportable, and autonomous reactor (SSTAR). The E&E and C&MS Directorates co-sponsored this Laboratory Directed Research & Development (LDRD) Project on Mono-Uranium Nitride Fuel Development for SSTAR and Space Applications. In fact, three out of the six GEN-IV reactor concepts consider using the nitride-based fuel, as shown in Table 1. SSTAR is a liquid-metal cooled, fast reactor. It uses nitride fuel in a sealed reactor vessel that could be shipped to the user and returned to the supplier having never been opened in its long operating lifetime. This sealed reactor concept envisions no fuel refueling nor on-site storage of spent fuel, and as a result, can greatly enhance proliferation resistance. However, the requirement for a sealed, long-life core imposes great challenges to research and development of the nitride fuel and its cladding. Cladding is an important interface between the fuel and coolant and a barrier to prevent fission gas release during normal and accidental conditions. In fabricating the nitride fuel rods and assemblies, the cladding material should be selected based on its the coolant-side corrosion properties, the chemical/physical interaction with the nitride fuel, as well as their thermal and neutronic properties. The US NASA space reactor, the SP-100 was designed to use mono-uranium nitride fuel. Although the SP-100 reactor was not commissioned, tens of thousand of nitride fuel pellets were manufactured and lots of them, cladded in Nb-1-Zr had been irradiated in fast test reactors (FFTF and EBR-II) with good irradiation results. The Russian Naval submarines also use nitride fuel with stainless steel cladding (HT-9) in Pb-Bi coolant. Although the operating experience of the Russian submarine is not readily available, such combination of fuel, cladding and coolant has been proposed for a commercial-size liquid-metal cooled fast reactor (BREST-300). Uranium mono-nitride fuel is studied in this LDRD Project due to its favorable properties such as its high actinide density and high thermal conductivity. The thermal conductivity of mono-nitride is 10 times higher than that of oxide (23 W/m-K for UN vs. 2.3 W/m-K for UO{sub 2} at 1000 K) and its melting temperature is much higher than that of metal fuel (2630 C for UN vs. 1132 C for U metal). It also has relatively high actinide density, (13.51 gU/cm{sup 3} in UN vs. 9.66 gU/cm{sup 3} in UO{sub 2}) which is essential for a compact reactor core design. The objective of this LDRD Project is to: (1) Establish a manufacturing capability for uranium-based ceramic nuclear fuel, (2) Develop a computational capability to analyze nuclear fuel performance, (3) Develop a modified UN-based fuel that can support a compact long-life reactor core, and (4) Collaborate with the Nuclear Engineering Department of UC Berkeley on nitride fuel reprocessing and disposal in a geologic repository.

Choi, J; Ebbinghaus, B; Meiers, T; Ahn, J

2006-02-09T23:59:59.000Z

268

Role of silicon excess in Er-doped silicon-rich nitride light emitting devices at 1.54??m  

SciTech Connect (OSTI)

Erbium-doped silicon-rich nitride electroluminescent thin-films emitting at 1.54??m have been fabricated and integrated within a metal-oxide-semiconductor structure. By gradually varying the stoichiometry of the silicon nitride, we uncover the role of silicon excess on the optoelectronic properties of devices. While the electrical transport is mainly enabled in all cases by Poole-Frenkel conduction, power efficiency and conductivity are strongly altered by the silicon excess content. Specifically, the increase in silicon excess remarkably enhances the conductivity and decreases the charge trapping; however, it also reduces the power efficiency. The main excitation mechanism of Er{sup 3+} ions embedded in silicon-rich nitrides is discussed. The optimum Si excess that balances power efficiency, conductivity, and charge trapping density is found to be close to 16%.

Ramírez, J. M., E-mail: jmramirez@el.ub.edu; Berencén, Y.; Garrido, B. [MIND-IN2UB, Department Electrònica, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028 (Spain); Cueff, S. [Institut des Nanotechnologies de Lyon, École Centrale de Lyon, Écully 69134 (France); Labbé, C. [Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CNRS/CEA/Ensicaen/UCBN, Caen 14050 (France)

2014-08-28T23:59:59.000Z

269

Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method  

SciTech Connect (OSTI)

Boron nitride nanotubes (BNNTs) are desired for their exceptional mechanical, electronic, thermal, structural, textural, optical, and quantum properties. A new method for producing long, small-diameter, single- and few-walled, boron nitride nanotubes (BNNTs) in macroscopic quantities is reported. The pressurized vapor/condenser (PVC) method produces, without catalysts, highly crystalline, very long, small-diameter, BNNTs. Palm-sized, cotton-like masses of BNNT raw material were grown by this technique and spun directly into centimeters-long yarn. Nanotube lengths were observed to be 100 times that of those grown by the most closely related method. Self-assembly and growth models for these long BNNTs are discussed.

Michael W. Smith, Kevin Jordan, Cheol Park, Jae-Woo Kim, Peter Lillehei, Roy Crooks, Joycelyn Harrison

2009-11-01T23:59:59.000Z

270

Influence of process parameters on properties of reactively sputtered tungsten nitride thin films  

SciTech Connect (OSTI)

Tungsten nitride (WN{sub x}) thin films were produced by reactive dc magnetron sputtering of tungsten in an Ar-N{sub 2} gas mixture. The influence of the deposition power on the properties of tungsten nitride has been analyzed and compared with that induced by nitrogen content variation in the sputtering gas. A combined analysis of structural, electrical and optical properties on thin WN{sub x} films obtained at different deposition conditions has been performed. It was found that at an N{sub 2} content of 14% a single phase structure of W{sub 2}N films was formed with the highest crystalline content. This sputtering gas composition was subsequently used for fabricating films at different deposition powers. Optical analysis showed that increasing the deposition power created tungsten nitride films with a more metallic character, which is confirmed with resistivity measurements. At low sputtering powers the resulting films were crystalline whereas, with an increase of power, an amorphous phase was also present. The incorporation of an excess of nitrogen atoms resulted in an expansion of the W{sub 2}N lattice and this effect was more pronounced at low deposition powers. Infrared analysis revealed that in WN{sub x} films deposited at low power, chemisorbed N{sub 2} molecules did not behave as ligands whereas at high deposition power they clearly appeared as ligands around metallic tungsten. In this study, the influence of the most meaningful deposition parameters on the phase transformation reaction path was established and deposition conditions suitable for producing thermally stable and highly crystalline W{sub 2}N films were found.

Addonizio, Maria L.; Castaldo, Anna; Antonaia, Alessandro; Gambale, Emilia; Iemmo, Laura [ENEA, Portici Research Centre, Piazzale E. Fermi 1, I-80055, Portici (Italy)

2012-05-15T23:59:59.000Z

271

Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications  

SciTech Connect (OSTI)

Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

2008-01-01T23:59:59.000Z

272

The development of a porous silicon nitride crossflow filter; Final report, September 1988--September 1992  

SciTech Connect (OSTI)

This report summarizes the work performed in developing a permeable form of silicon nitride for application to ceramic crossflow filters for use in advanced coal-fired electric power plants. The program was sponsored by the Department of Energy Morgantown Energy Technology Center and consisted of a design analysis and material development phase and a filter manufacture and demonstration phase. The crossflow filter design and operating requirements were defined. A filter design meeting the requirements was developed and thermal and stress analyses were performed. Material development efforts focused initially on reaction-bonded silicon nitride material. This approach was not successful, and the materials effort was refocused on the development of a permeable form of sintered silicon nitride (SSN). This effort was successful. The SSN material was used for the second phase of the program, filter manufacture and evaluation. Four half-scale SAN filter modules were fabricated. Three of the modules were qualified for filter performance tests. Tests were performed on two of the three qualified modules in the High-Temperature, High-Pressure facility at the Westinghouse Science and Technology Center. The first module failed on test when it expanded into the clamping device, causing dust leakage through the filter. The second module performed well for a cumulative 150-hr test. It displayed excellent filtration capability during the test. The blowback pulse cleaning was highly effective, and the module apparently withstood the stresses induced by the periodic pulse cleaning. Testing of the module resumed, and when the flow of combustion gas through the filter was doubled, cracks developed and the test was concluded.

NONE

1992-09-01T23:59:59.000Z

273

High performance vertical tunneling diodes using graphene/hexagonal boron nitride/graphene hetero-structure  

SciTech Connect (OSTI)

A tunneling rectifier prepared from vertically stacked two-dimensional (2D) materials composed of chemically doped graphene electrodes and hexagonal boron nitride (h-BN) tunneling barrier was demonstrated. The asymmetric chemical doping to graphene with linear dispersion property induces rectifying behavior effectively, by facilitating Fowler-Nordheim tunneling at high forward biases. It results in excellent diode performances of a hetero-structured graphene/h-BN/graphene tunneling diode, with an asymmetric factor exceeding 1000, a nonlinearity of ?40, and a peak sensitivity of ?12?V{sup ?1}, which are superior to contending metal-insulator-metal diodes, showing great potential for future flexible and transparent electronic devices.

Hwan Lee, Seung; Lee, Jia; Ho Ra, Chang; Liu, Xiaochi; Hwang, Euyheon [Samsung-SKKU Graphene Center (SSGC), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Sup Choi, Min [Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Hee Choi, Jun [Frontier Research Laboratory, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Yongin, Gyeonggi-do 446-711 (Korea, Republic of); Zhong, Jianqiang; Chen, Wei [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Jong Yoo, Won, E-mail: yoowj@skku.edu [Samsung-SKKU Graphene Center (SSGC), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

2014-02-03T23:59:59.000Z

274

Strength and fatigue of NT551 silicon nitride and NT551 diesel exhaust valves  

SciTech Connect (OSTI)

The content of this report is excerpted from Mark Andrew's Ph.D. Thesis (Andrews, 1999), which was funded by a DOE/OTT High Temperature Materials Laboratory Graduate Fellowship. It involves the characterization of NT551 and valves fabricated with it. The motivations behind using silicon nitride (Si{sub 3}N{sub 4}) as an exhaust valve for a diesel engine are presented in this section. There are several economic factors that have encouraged the design and implementation of ceramic components for internal combustion (IC) engines. The reasons for selecting the diesel engine valve for this are also presented.

Andrews, M.J.; Werezczak, A.A.; Kirkland, T.P.; Breder, K.

2000-02-01T23:59:59.000Z

275

Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride  

SciTech Connect (OSTI)

We present a fast method to fabricate high quality heterostructure devices by picking up crystals of arbitrary sizes. Bilayer graphene is encapsulated with hexagonal boron nitride to demonstrate this approach, showing good electronic quality with mobilities ranging from 17?000 cm{sup 2} V{sup ?1} s{sup ?1} at room temperature to 49?000 cm{sup 2} V{sup ?1} s{sup ?1} at 4.2?K, and entering the quantum Hall regime below 0.5?T. This method provides a strong and useful tool for the fabrication of future high quality layered crystal devices.

Zomer, P. J., E-mail: pj.zomer@gmail.com; Guimarães, M. H. D.; Brant, J. C.; Tombros, N.; Wees, B. J. van [Physics of Nanodevices, Zernike Institute for Advanced Materials, University of Groningen, Groningen (Netherlands)

2014-07-07T23:59:59.000Z

276

Mechanical Instability and Ideal Shear Strength of Transition Metal Carbides and Nitrides  

SciTech Connect (OSTI)

The ideal shear strength of transition metal carbides and nitrides is calculated with the use of the ab initio pseudopotential density functional method. The microscopic mechanism that limits the ideal strength is studied using full atomic and structural relaxation and the results of electronic structure calculations. It is shown that plasticity in perfect crystals can be triggered by electronic instabilities at finite strains. Our study explicitly demonstrates that the ideal strength in these materials is limited by the elastic instability which is in turn initiated by electronic instabilities. The potential application of alloy hardening due to the onset of instabilities at different strains is also discussed.

Jhi, Seung-Hoon; Louie, Steven G.; Cohen, Marvin L.; Morris, J. W.

2001-08-13T23:59:59.000Z

277

Rf-plasma synthesis of nanosize silicon carbide and nitride. Final report  

SciTech Connect (OSTI)

A pulsed rf plasma technique is capable of generating ceramic particles of 10 manometer dimension. Experiments using silane/ammonia and trimethylchlorosilane/hydrogen gas mixtures show that both silicon nitride and silicon carbide powders can be synthesized with control of the average particle diameter from 7 to 200 nm. Large size dispersion and much agglomeration appear characteristic of the method, in contrast to results reported by another research group. The as produced powders have a high hydrogen content and are air and moisture sensitive. Post-plasma treatment in a controlled atmosphere at elevated temperature (800{degrees}C) eliminates the hydrogen and stabilizes the powder with respect to oxidation or hydrolysis.

Buss, R.J.

1997-02-01T23:59:59.000Z

278

Control of interface fracture in silicon nitride ceramics: influence of different rare earth elements  

SciTech Connect (OSTI)

The toughness of self-reinforced silicon nitride ceramics is improved by enhancing crack deflection and crack bridging mechanisms. Both mechanisms rely on the interfacial debonding process between the elongated {Beta}-Si{sub 3}N{sub 4} grains and the intergranular amorphous phases. The various sintering additives used for densification may influence the interfacial debonding process by modifying the thermal and mechanical properties of the intergranular glasses, which will result in different residual thermal expansion mismatch stresses; and the atomic bonding structure across the {Beta}-Si{sub 3}N{sub 4} glass interface. Earlier studies indicated that self-reinforced silicon nitrides sintered with different rare earth additives and/or different Y{sub 2}O{sub 3}:AI{sub 2}0{sub 3} ratios could exhibit different fracture behavior that varied from intergranular to transgranular fracture. No studies have been conducted to investigate the influence of sintering additives on the interfacial fracture in silicon nitride ceramics. Because of the complexity of the material system and the extremely small scale, it is difficult to conduct quantitative analyses on the chemistry and stress states of the intergranular glass phases and to relate the results to the bulk properties. The influence of different sintering additives on the interfacial fracture behavior is assessed using model systems in which {Beta}-Si{sub 3}N{sub 4}whiskers are embedded in SIAIRE (RE: rare-earth) oxynitride glasses. By systematically varying the glass composition, the role of various rare-earth additives on interfacial fracture has been examined. Specifically, four different additives were investigated: Al{sub 2}0{sub 3}, Y{sub 2}0{sub 3}, La{sub 2}O{sub 3}, and Yb{sub 2}O{sub 3}. In addition, applying the results from the model systems, the R- curve behavior of self-reinforced silicon nitride ceramics sintered with different Y{sub 2}0{sub 3}:AI{sub 2}0{sub 3} ratios was characterized.

Sun, E.Y.; Becher, P.F.; Waters, S.B.; Hsueh, Chun-Hway; Plucknett, K.P. [Oak Ridge National Lab., TN (United States); Hoffmann, M.J. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Keramik im Maschinenbau

1996-10-01T23:59:59.000Z

279

Multi-scale modelling of III-nitrides: from dislocations to the electronic structure  

E-Print Network [OSTI]

or public lighting nowadays use GaN-based LEDs. Significant effort is being invested in development of efficient and reliable LEDs which emit comfort- able white light, as there is a huge market potential for replacing bulbs and fluorescent tubes currently... of wurtzite forms of the III-nitrides. The range of the visible spectrum is shown on the wavelength axis. GaN and its alloys with aluminium or indium are in their stable form, wurtzite direct band gap semicon- ductors that have become the most important since...

Holec, David

280

Ferromagnetism in Doped Thin-Film Oxide and Nitride Semiconductors and Dielectrics  

SciTech Connect (OSTI)

The principal goal in the field of high-Tc ferromagnetic semiconductors is the synthesis, characterization and utilization of semiconductors which exhibit substantial carrier spin polarization at and above room temperature. Such materials are of critical importance in the emerging field of semiconductor spintronics. The interaction leading to carrier spin polarization, exchange coupling between the dopant spins and the valence or conduction band, is known to be sufficiently weak in conventional semiconductors, such as GaAs and Si, that magnetic ordering above cryogenic temperatures is essentially impossible. Since the provocative theoretical predictions of Tc above ambient in p-Mn:ZnO and p-Mn:GaN (T. Dietl et al., Science 287 1019 (2000)), and the observation of room-temperature ferromagnetism in Co:TiO2 anatase (Y. Matsumoto et al., Science 291 854 (2001)), there has been a flurry of work in oxides and nitrides doped with transition metals with unpaired d electrons. It has even been claimed that room-temperature ferromagnetism can be obtained in certain d0 transition metals oxides without a dopant. In this Report, the field of transition metal doped oxides and nitrides is critically reviewed and assessed from a materials science perspective. Since much of the field centers around thin film growth, this Report focuses on films prepared not only by conventional vacuum deposition methods, but also by spin coating colloidal nanoparticles.

Chambers, Scott A.

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Contact fatigue behavior and gas cell thermal wave NDE of sintered reaction bonded silicon nitride  

SciTech Connect (OSTI)

Silicon nitride is being evaluated for potential applications as structural components subjected to contact fatigue loading. A new testing and evaluation methodology for evaluation of Hertzian contact fatigue damage in ceramic materials has been developed and is described. Contact fatigue damage is induced in three test specimens simultaneously. The material investigated is Eaton Corporation`s low cost E - Process Silicon Nitride. Tests were conducted at several Hertzian stress levels to evaluate contact fatigue damage behavior. Gas cell thermal wave NDE was employed to study the induced subsurface damage. Damage behavior was also investigated using optical microscopy. Two specimens were evaluated in detail; one that was tested for 17,400 cycles, P{sub max} = 2700 N and one that was tested for 1 x 10{sup 6} cycles, P{sub max} = 1800 N. The 2700 N specimen has a partial cone crack and contains a small concentration of vertical and shallow horizontal cracks. No evidence of a cone crack was detected on the 1800 N specimen. However, a larger concentration of horizontal microcracks at and just below the surface is present in this specimen, with particle debris in and around the surface contact area. Correlation of the optical microscopy observations with gas cell thermal wave NDE of the subsurface damage in these two specimens is discussed.

Barla, J.R.; Edler, J.P.; Lin, H. [Eaton Corp. R & D, Southfield, MI (United States)] [and others

1996-12-31T23:59:59.000Z

282

Thickness limitations in carbon nanotube reinforced silicon nitride coatings synthesized by vapor infiltration  

SciTech Connect (OSTI)

Chemical vapor infiltration is a convenient method for synthesizing carbon nanotube (CNT)-reinforced ceramic coatings. The thickness over which infiltration is relatively uniform is limited by gas phase diffusion in the pore structure. These effects were investigated in two types of silicon nitride matrix composites. With CNTs that were distributed uniformly on the substrate surface dense coatings were limited to thicknesses of several microns. With dual structured CNT arrays produced by photolithography coatings up to 400 gm thick were obtained with minimal residual porosity. Gas transport into these dual structured materials was facilitated by creating micron sized channels between "CNT pillars" (i.e. each pillar consisted of a large number of individual CNTs). The experimental results are consistent with basic comparisons between the rates of gas diffusion and silicon nitride growth in porous structures. This analysis also provides a general insight into optimizing infiltration conditions during the fabrication of thick CNT-reinforced composite coatings. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Eres, Gyula [ORNL

2012-01-01T23:59:59.000Z

283

Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II. Collision, storage, and adsorption  

E-Print Network [OSTI]

of a true hydrogen storage capacity, thus it would be also true that some results of rather high storage storage material or not. Our previous study6 showed that the pristine CNT is not an effective hydrogenTheoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II

Goddard III, William A.

284

Energy transfer and 1.54 m emission in amorphous silicon nitride films S. O. Kucheyev,2  

E-Print Network [OSTI]

spectrometry RBS and high-resolution transmission electron microscopy HRTEM to quantify the amount of Si, NEnergy transfer and 1.54 m emission in amorphous silicon nitride films S. Yerci,1 R. Li,1 S. O a broad energy spectrum and attributed to disorder-induced localized transitions in amorphous Er

285

Power mixture and green body for producing silicon nitride base & articles of high fracture toughness and strength  

DOE Patents [OSTI]

A powder mixture and a green body for producing a silicon nitride-based article of improved fracture toughness and strength. The powder mixture includes 9a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon mitride powder of an average particle size of about 0.2 .mu.m and a surface area of about 8-12m.sup.2 g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 .mu.m and a surface area of about 2-4 m.sup.2 /g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified articel an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. The green body is formed from the powder mixture, an effective amount of a suitable oxide densification aid, and an effective amount of a suitable organic binder.

Huckabee, Marvin L. (Marlboro, MA); Buljan, Sergej-Tomislav (Acton, MA); Neil, Jeffrey T. (Acton, MA)

1991-01-01T23:59:59.000Z

286

First-Principles Study of MetalCarbide/Nitride Adhesion: Al/VC vs. Al/VN Donald J. Siegel  

E-Print Network [OSTI]

-oxide ce- ramics. Within this class, the transition metal carbides and ni- trides are a particularly knowledge, there have been only three studies of adhesion between metals and transition metal carbidesFirst-Principles Study of Metal­Carbide/Nitride Adhesion: Al/VC vs. Al/VN Donald J. Siegel

Adams, James B

287

Effective Control of the Charge and Magnetic States of Transition-Metal Atoms on Single-Layer Boron Nitride  

E-Print Network [OSTI]

Nitride Bing Huang,1 Hongjun Xiang,2 Jaejun Yu,3 and Su-Huai Wei1 1 National Renewable Energy LaboratoryEffective Control of the Charge and Magnetic States of Transition-Metal Atoms on Single-Layer Boron devices but is still challenging. Here we suggest that the magnetic and charge states of transition

Gong, Xingao

288

The electroluminescence mechanism of Er{sup 3+} in different silicon oxide and silicon nitride environments  

SciTech Connect (OSTI)

Rare earth doped metal-oxide-semiconductor (MOS) structures are of great interest for Si-based light emission. However, several physical limitations make it difficult to achieve the performance of light emitters based on compound semiconductors. To address this point, in this work the electroluminescence (EL) excitation and quenching mechanism of Er-implanted MOS structures with different designs of the dielectric stack are investigated. The devices usually consist of an injection layer made of SiO{sub 2} and an Er-implanted layer made of SiO{sub 2}, Si-rich SiO{sub 2}, silicon nitride, or Si-rich silicon nitride. All structures implanted with Er show intense EL around 1540?nm with EL power efficiencies in the order of 2?×?10{sup ?3} (for SiO{sub 2}:Er) or 2?×?10{sup ?4} (all other matrices) for lower current densities. The EL is excited by the impact of hot electrons with an excitation cross section in the range of 0.5–1.5?×?10{sup ?15?}cm{sup ?2}. Whereas the fraction of potentially excitable Er ions in SiO{sub 2} can reach values up to 50%, five times lower values were observed for other matrices. The decrease of the EL decay time for devices with Si-rich SiO{sub 2} or Si nitride compared to SiO{sub 2} as host matrix implies an increase of the number of defects adding additional non-radiative de-excitation paths for Er{sup 3+}. For all investigated devices, EL quenching cross sections in the 10{sup ?20} cm{sup 2} range and charge-to-breakdown values in the range of 1–10 C cm{sup ?2} were measured. For the present design with a SiO{sub 2} acceleration layer, thickness reduction and the use of different host matrices did not improve the EL power efficiency or the operation lifetime, but strongly lowered the operation voltage needed to achieve intense EL.

Rebohle, L., E-mail: l.rebohle@hzdr.de; Wutzler, R.; Braun, M.; Helm, M.; Skorupa, W. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Berencén, Y.; Ramírez, J. M.; Garrido, B. [Dept. Electrònica, Martí i Franquès 1, Universitat de Barcelona, 08028 Barcelona (Spain); Hiller, D. [IMTEK, Faculty of Engineering, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany)

2014-09-28T23:59:59.000Z

289

Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia  

SciTech Connect (OSTI)

Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300?°C from three recently synthesized M[N(t-Bu){sub 2}]{sub 2} precursors, where M?=?Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200?°C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18?nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities.

Cloud, Andrew N.; Abelson, John R., E-mail: abelson@illinois.edu [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 201 Materials Science and Engineering Building, 1304 W. Green St., Urbana, Illinois 61801 (United States); Davis, Luke M.; Girolami, Gregory S., E-mail: girolami@scs.illinois.edu [School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801 (United States)

2014-03-15T23:59:59.000Z

290

Thermally Nitrided Stainless Steels for Polymer Electrolyte Membrane Fuel Cell Bipolar Plates: Part 1 Model Ni-50Cr and Austenitic 349TM alloys  

SciTech Connect (OSTI)

Thermal nitridation of a model Ni-50Cr alloy at 1100 C for 2 h in pure nitrogen resulted in the formation of a continuous, protective CrN/Cr{sub 2}N surface layer with a low interfacial contact resistance. Application of similar nitridation parameters to an austenitic stainless steel, 349{sup TM}, however, resulted in a discontinuous mixture of discrete CrN, Cr{sub 2}N and (Cr,Fe){sub 2}N{sub 1-x} (x = 0--0.5) phase surface particles overlying an exposed {gamma} austenite-based matrix, rather than a continuous nitride surface layer. The interfacial contact resistance of the 349{sup TM} was reduced significantly by the nitridation treatment. However, in the simulated PEMFC environments (1 M H{sub 2}SO{sub 4} + 2 ppm F{sup -} solutions at 70 C sparged with either hydrogen or air), very high corrosion currents were observed under both anodic and cathodic conditions. This poor behavior was linked to the lack of continuity of the Cr-rich nitride surface formed on 349{sup TM} Issues regarding achieving continuous, protective Cr-nitride surface layers on stainless steel alloys are discussed.

Wang, Heli [National Renewable Energy Laboratory (NREL); Brady, Michael P [ORNL; Turner, John [National Renewable Energy Laboratory (NREL)

2004-01-01T23:59:59.000Z

291

Transient fission-gas behavior in uranium nitride fuel under proposed space applications. Doctoral thesis  

SciTech Connect (OSTI)

In order to investigate whether fission gas swelling and release would be significant factors in a space based nuclear reactor operating under the Strategic Defense Initiative (SDI) program, the finite element program REDSTONE (Routine For Evaluating Dynamic Swelling in Transient Operational Nuclear Environments) was developed to model the 1-D, spherical geometry diffusion equations describing transient fission gas behavior in a single uranium nitride fuel grain. The equations characterized individual bubbles, rather than bubble groupings. This limits calculations to those scenarios where low temperatures, low burnups, or both were present. Instabilities in the bubble radii calculations forced the implementation of additional constraints limiting the bubble sizes to minimum and maximum (equilibrium) radii. The validity of REDSTONE calculations were checked against analytical solutions for internal consistency and against experimental studies for agreement with swelling and release results.

Deforest, D.L.

1991-12-01T23:59:59.000Z

292

The structural distortion of the anti-perovskite nitride Ca sub 3 AsN  

SciTech Connect (OSTI)

The structure of the distorted anti-perovskite nitride Ca{sub 3}AsN has been studied both by neutron powder diffraction at 305 and 15 K and by X-ray powder diffraction at room temperature. Ca{sub 3}AsN is distorted to an orthorhombic cell with a and b {approximately} {radical}2a{prime} and c{approximately}2a{prime}, where a{prime} is the lattice constant of the ideal undistorted cubic anti-perovskite. The distortion is produced by tilting of octahedra of Ca{sub 6}N and results in six short and six long bond distances of the twelvefold coordinated As atom by Ca atoms.

Chern, M.Y.; DiSalvo, F.J. (Cornell Univ., Ithaca, NY (United States)); Parise, J.B. (State Univ. of New York, Stony Brook, NY (United States)); Goldstone, J.A. (Los Alamos National lab., NM (United States))

1992-02-01T23:59:59.000Z

293

Steel bonded dense silicon nitride compositions and method for their fabrication  

DOE Patents [OSTI]

A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500/sup 0/C in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850/sup 0/ to 950/sup 0/C in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.

Landingham, R.L.; Shell, T.E.

1985-05-20T23:59:59.000Z

294

Plasma-enriched chemical vapor deposition of silicon nitride on silicon carbide fibers  

SciTech Connect (OSTI)

Near stoichiometric Si:N coatings were deposited by means of PECVD on SCS-6 SiC fibers which contained a carbon-rich coating. Weight loss associated with oxidation of the outer carbon-rich coating of the as-received SiC fibers was greatly reduced for the Si:N coated SiC fibers even after 10 h heat-treatment in oxygen at 800{degrees}C. Auger Electron Spectroscopy (AES) was used to obtain elemental compositions of the as-received and Si:N coated SiC fibers after heat-treatment. Negligible amounts of oxygen were found at the carbon-rich coating of the heat-treated Si:N coated SiC fiber. These results clearly prove the effectiveness of PECVD silicon nitride coating as an oxygen diffusion barrier.

Stinespring, C.D.; Collazos, D.F.; Gupta, R.K. [West Virginia Univ., Morgantown, WV (United States)] [and others

1994-12-31T23:59:59.000Z

295

Internal Oxidation-Nitridation of Ferritic Fe(Al) Alloys in Air  

SciTech Connect (OSTI)

Exposure of undoped Fe(Al) and Fe(Al)+Cr ferritic alloys in laboratory air at 900-1,000 C resulted in significant internal attack after 5,000 h, including oxides and underlying nitrides. In the most severely attacked alloys, kinetics based on mass gain and maximum penetration depth were linear; also, the deepest penetrations were a significant fraction of the specimen thickness, and were thickness-dependent. Little internal attack was observed at 700-800 C where these compositions may be used as coatings. The extent of internal attack did not decrease with increasing Al or Cr content which may indicate that rather than classical internal oxidation this attack is related to the permeation of N through a defective external scale. No internal attack was observed in alloys doped with Y, Zr, Hf or Ti where the substrate-alumina scale interface was flatter.

Pint, Bruce A [ORNL; Dwyer, Matthew J [Lehigh University, Bethlehem, PA; Deacon, Ryan M [Lehigh University, Bethlehem, PA

2008-01-01T23:59:59.000Z

296

III-nitride nanowires : novel materials for solid-state lighting.  

SciTech Connect (OSTI)

Although planar heterostructures dominate current solid-state lighting architectures (SSL), 1D nanowires have distinct and advantageous properties that may eventually enable higher efficiency, longer wavelength, and cheaper devices. However, in order to fully realize the potential of nanowire-based SSL, several challenges exist in the areas of controlled nanowire synthesis, nanowire device integration, and understanding and controlling the nanowire electrical, optical, and thermal properties. Here recent results are reported regarding the aligned growth of GaN and III-nitride core-shell nanowires, along with extensive results providing insights into the nanowire properties obtained using cutting-edge structural, electrical, thermal, and optical nanocharacterization techniques. A new top-down fabrication method for fabricating periodic arrays of GaN nanorods and subsequent nanorod LED fabrication is also presented.

Wang, George T.; Upadhya, Prashanth C. (Los Alamos National Laboratory, Los Alamos, NM); Prasankumar, Rohit P. (Los Alamos National Laboratory, Los Alamos, NM); Armstrong, Andrew M.; Huang, Jian Yu; Li, Qiming; Talin, Albert Alec (NIST, Gaithersburg, MD)

2010-12-01T23:59:59.000Z

297

Energy transfer and 1.54 {mu}m emission in amorphous silicon nitride films  

SciTech Connect (OSTI)

Er-doped amorphous silicon nitride films with various Si concentrations (Er:SiN{sub x}) were fabricated by reactive magnetron cosputtering followed by thermal annealing. The effects of Si concentrations and annealing temperatures were investigated in relation to Er emission and excitation processes. Efficient excitation of Er ions was demonstrated within a broad energy spectrum and attributed to disorder-induced localized transitions in amorphous Er:SiN{sub x}. A systematic optimization of the 1.54 {mu}m emission was performed and a fundamental trade-off was discovered between Er excitation and emission efficiency due to excess Si incorporation. These results provide an alternative approach for the engineering of sensitized Si-based light sources and lasers.

Yerci, S.; Li, R. [Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary's Street, Boston, Massachusetts 02215-2421 (United States); Kucheyev, S. O.; Buuren, T. van [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Basu, S. N. [Division of Materials Science and Engineering, Boston University, 15 Saint Mary's Street, Brookline, Massachusetts 02446 (United States); Department of Mechanical Engineering, Boston University, 110 Cummington Street, Boston, Massachusetts 02215 (United States); Dal Negro, L. [Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary's Street, Boston, Massachusetts 02215-2421 (United States); Division of Materials Science and Engineering, Boston University, 15 Saint Mary's Street, Brookline, Massachusetts 02446 (United States)

2009-07-20T23:59:59.000Z

298

Dilute Group III-V nitride intermediate band solar cells with contact blocking layers  

DOE Patents [OSTI]

An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

Walukiewicz, Wladyslaw (Kensington, CA); Yu, Kin Man (Lafayette, CA)

2012-07-31T23:59:59.000Z

299

Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope  

SciTech Connect (OSTI)

We used a broadband, atomic-force-microscope-based, scanning microwave microscope (SMM) to probe the axial dependence of the charge depletion in a p-n junction within a gallium nitride nanowire (NW). SMM enables the visualization of the p-n junction location without the need to make patterned electrical contacts to the NW. Spatially resolved measurements of S{sub 11}{sup ?}, which is the derivative of the RF reflection coefficient S{sub 11} with respect to voltage, varied strongly when probing axially along the NW and across the p-n junction. The axial variation in S{sub 11}{sup ?}? effectively mapped the asymmetric depletion arising from the doping concentrations on either side of the junction. Furthermore, variation of the probe tip voltage altered the apparent extent of features associated with the p-n junction in S{sub 11}{sup ?} images.

Imtiaz, Atif [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Wallis, Thomas M.; Brubaker, Matt D.; Blanchard, Paul T.; Bertness, Kris A.; Sanford, Norman A.; Kabos, Pavel, E-mail: kabos@boulder.nist.gov [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Weber, Joel C. [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Coakley, Kevin J. [Information Technology Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

2014-06-30T23:59:59.000Z

300

Polarization doping and the efficiency of III-nitride optoelectronic devices  

SciTech Connect (OSTI)

The intrinsic polarization is generally considered a nuisance in III-nitride devices, but recent studies have shown that it can be used to enhance p- and n-type conductivity and even to replace impurity doping. We show by numerical simulations that polarization-doped light-emitting diode (LED) structures have a significant performance advantage over conventional impurity-doped LED structures. Our results indicate that polarization doping decreases electric fields inside the active region and potential barriers in the depletion region, as well as the magnitude of the quantum-confined Stark effect. The simulations also predict at least an order of magnitude increase in the current density corresponding to the maximum efficiency (i.e., smaller droop) as compared to impurity-doped structures. The obtained high doping concentrations could also enable, e.g., fabrication of III-N resonant tunneling diodes and improved ohmic contacts.

Kivisaari, Pyry; Oksanen, Jani; Tulkki, Jukka [Department of Biomedical Engineering and Computational Science, Aalto University, P.O. Box 12200, FI-00076 Aalto (Finland)] [Department of Biomedical Engineering and Computational Science, Aalto University, P.O. Box 12200, FI-00076 Aalto (Finland)

2013-11-18T23:59:59.000Z

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Graphene on boron-nitride: Moiré pattern in the van der Waals energy  

SciTech Connect (OSTI)

The spatial dependence of the van der Waals (vdW) energy between graphene and hexagonal boron-nitride (h-BN) is investigated using atomistic simulations. The van der Waals energy between graphene and h-BN shows a hexagonal superlattice structure identical to the observed Moiré pattern in the local density of states, which depends on the lattice mismatch and misorientation angle between graphene and h-BN. Our results provide atomistic features of the weak van der Waals interaction between graphene and BN which are in agreement with experiment and provide an analytical expression for the size of the spatial variation of the weak van der Waals interaction. We also found that the A-B-lattice symmetry of graphene is broken along the armchair direction.

Neek-Amal, M. [Department of Physics, University of Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Department of Physics, Shahid Rajaee University, Lavizan, Tehran 16788 (Iran, Islamic Republic of); Peeters, F. M. [Department of Physics, University of Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

2014-01-27T23:59:59.000Z

302

A cohesive law for interfaces in graphene/hexagonal boron nitride heterostructure  

SciTech Connect (OSTI)

Graphene/hexagonal boron nitride (h-BN) heterostructure has showed great potential to improve the performance of graphene device. We have established the cohesive law for interfaces between graphene and monolayer or multi-layer h-BN based on the van der Waals force. The cohesive energy and cohesive strength are given in terms of area density of atoms on corresponding layers, number of layers, and parameters in the van der Waals force. It is found that the cohesive law in the graphene/multi-layer h-BN is dominated by the three h-BN layers which are closest to the graphene. The approximate solution is also obtained to simplify the expression of cohesive law. These results are very useful to study the deformation of graphene/h-BN heterostructure, which may have significant impacts on the performance and reliability of the graphene devices especially in the areas of emerging applications such as stretchable electronics.

Zhang, Chenxi [Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, Florida 33146 (United States); Lou, Jun [Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77251 (United States); Song, Jizhou, E-mail: jzsong@gmail.com [Department of Engineering Mechanics and Soft Matter Research Center, Zhejiang University, Hangzhou 310027 (China)

2014-04-14T23:59:59.000Z

303

Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction  

SciTech Connect (OSTI)

We measure thermal transport across a graphene/hexagonal boron nitride (h-BN) interface by electrically heating the graphene and measuring the temperature difference between the graphene and BN using Raman spectroscopy. Because the temperature of the graphene and BN are measured optically, this approach enables nanometer resolution in the cross-plane direction. A temperature drop of 60?K can be achieved across this junction at high electrical powers (14 mW). Based on the temperature difference and the applied power data, we determine the thermal interface conductance of this junction to be 7.4?×?10{sup 6}?Wm{sup ?2}K{sup ?1}, which is below the 10{sup 7}–10{sup 8}?Wm{sup ?2}K{sup ?1} values previously reported for graphene/SiO{sub 2} interface.

Chen, Chun-Chung; Li, Zhen; Cronin, Stephen B. [Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States); Shi, Li [Department of Mechanical Engineering and Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States)

2014-02-24T23:59:59.000Z

304

SREELS analysis of oxygen-rich inversion domain boundaries in aluminum nitride  

SciTech Connect (OSTI)

Spatially resolved electron energy loss spectroscopy analysis has been conducted on planar inversion domain boundaries in aluminum nitride. The defects were found to contain 1.5 monolayers of oxygen, in agreement with the most recent structural model of Westwood. From variations in near-edge structure, the local atomic environments of both oxygen and aluminum are compared with {alpha}-Al{sub 2}O{sub 3}, {gamma}-Al{sub 2}O{sub 3} and {gamma}-AlON standards. Based upon this study the structure of the inversion domain boundary is found to resemble that of the cubic {gamma}-AlON spinel, and eliminates from consideration those structural models based upon {alpha}-Al{sub 2}O{sub 3}. Furthermore, quantification of the shape resonances provided Al-O bond-length data from the inversion domain boundary interface. These distances closely agree with the Youngman Model that has recently been further refined by Westwood et al.

Bruley, J.; Zhao, J.C.; Notis, M.R. [Lehigh Univ. Bethlehem, PA (United States). Dept. of Materials Science and Engineering; Westwood, A.D. [IBM T.J. Watson Research Center, Yorktown Heights, NY (United States); Youngman, R.A. [Carborundum Co., Phoenix, AZ (United States)

1995-09-01T23:59:59.000Z

305

The cost of silicon nitride powder: What must it be to compete?  

SciTech Connect (OSTI)

The ability of advanced ceramic components to compete with similar metallic parts will depend in part on current and future efforts to reduce the cost of ceramic parts. This paper examines the potential reductions in part cost that could result from the development of less expensive advanced ceramic powders. The analysis focuses specifically on two silicon nitride engine components -- roller followers and turbocharger rotors. The results of the process-cost models developed for this work suggest that reductions in the cost of advanced silicon nitride powder from its current level of about $20 per pound to about $5 per pound will not in itself be sufficient to lower the cost of ceramic parts below the current cost of similar metallic components. This work also examines if combinations of lower-cost powders and further improvements in other key technical parameters to which costs are most sensitive could push the cost of ceramics below the cost of metallics. Although these sensitivity analyses are reflective of technical improvements that are very optimistic, the resulting part costs are estimated to remain higher than similar metallic parts. Our findings call into question the widely-held notion that the cost of ceramic components must not exceed the cost of similar metallic parts if ceramics are to be competitive. Economic viability will ultimately be decided not on the basis of which part is less costly, but on an assessment of the marginal costs and benefits provided by ceramics and metallics. This analysis does not consider the benefits side of the equation. Our findings on the cost side of the equation suggest that the competitiveness of advanced ceramics will ultimately be decided by our ability to evaluate and communicate the higher benefits that advanced ceramic parts may offer.

Das, S.; Curlee, T.R.

1992-02-01T23:59:59.000Z

306

The cost of silicon nitride powder: What must it be to compete  

SciTech Connect (OSTI)

The ability of advanced ceramic components to compete with similar metallic parts will depend in part on current and future efforts to reduce the cost of ceramic parts. This paper examines the potential reductions in part cost that could result from the development of less expensive advanced ceramic powders. The analysis focuses specifically on two silicon nitride engine components -- roller followers and turbocharger rotors. The results of the process-cost models developed for this work suggest that reductions in the cost of advanced silicon nitride powder from its current level of about $20 per pound to about $5 per pound will not in itself be sufficient to lower the cost of ceramic parts below the current cost of similar metallic components. This work also examines if combinations of lower-cost powders and further improvements in other key technical parameters to which costs are most sensitive could push the cost of ceramics below the cost of metallics. Although these sensitivity analyses are reflective of technical improvements that are very optimistic, the resulting part costs are estimated to remain higher than similar metallic parts. Our findings call into question the widely-held notion that the cost of ceramic components must not exceed the cost of similar metallic parts if ceramics are to be competitive. Economic viability will ultimately be decided not on the basis of which part is less costly, but on an assessment of the marginal costs and benefits provided by ceramics and metallics. This analysis does not consider the benefits side of the equation. Our findings on the cost side of the equation suggest that the competitiveness of advanced ceramics will ultimately be decided by our ability to evaluate and communicate the higher benefits that advanced ceramic parts may offer.

Das, S.; Curlee, T.R.

1992-02-01T23:59:59.000Z

307

Spin-dependent processes in amorphous silicon-rich silicon-nitride S.-Y. Lee,1  

E-Print Network [OSTI]

diodes9 and a-Si:H solar cells.10 Fol- lowing coherent manipulation of paramagnetic centers, tran- sient-band , TSAMPLE=15 K. Dark and illuminated IV curves of the p-i-n devices were measured at room temperature and T amorphous silicon nitride a-SiNx:H has been used widely as a dielectric for thin-film transistors,1 solar

McCamey, Dane

308

Final LDRD report : the physics of 1D and 2D electron gases in III-nitride heterostructure NWs.  

SciTech Connect (OSTI)

The proposed work seeks to demonstrate and understand new phenomena in novel, freestanding III-nitride core-shell nanowires, including 1D and 2D electron gas formation and properties, and to investigate the role of surfaces and heterointerfaces on the transport and optical properties of nanowires, using a combined experimental and theoretical approach. Obtaining an understanding of these phenomena will be a critical step that will allow development of novel, ultrafast and ultraefficient nanowire-based electronic and photonic devices.

Armstrong, Andrew M.; Arslan, Ilke (Sandia National Laboratories, Livermore, CA); Upadhya, Prashanth C. (Los Alamos National Laboratory, Los Alamos, NM); Morales, Eugenia T. (Sandia National Laboratories, Livermore, CA); Leonard, Francois Leonard (Sandia National Laboratories, Livermore, CA); Li, Qiming; Wang, George T.; Talin, Albert Alec (Sandia National Laboratories, Livermore, CA); Prasankumar, Rohit P. (Los Alamos National Laboratory, Los Alamos, NM); Lin, Yong

2009-09-01T23:59:59.000Z

309

Application of Self-Propagating High Temperature Synthesis to the Fabrication of Actinide Bearing Nitride and Other Ceramic Nuclear Fuels  

SciTech Connect (OSTI)

The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or low–heat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS takes thermodynamic advantage of the high combustion temperatures of these exothermic SHS reactions to synthesize the required compounds, the very fast heating, reaction and cooling rates can kinetically generate extremely fast reaction rates and facilitate the retention of volatile species within the rapidly propagating SHS reaction front. The initial objective of the research program is to use Mn as the surrogate for Am to synthesize a reproducible, dense, high quality Zr-Mn-N ceramic compound. Having determined the fundamental SHS reaction parameters and optimized SHS processing steps using Mn as the surrogate for Am, the technology will be transferred to Idaho National Laboratory to successfully synthesize a high quality Zr-Am-N ceramic fuel.

John J. Moore, Douglas E. Burkes, Collin D. Donohoue, Marissa M. Reigel, J. Rory Kennedy

2009-05-18T23:59:59.000Z

310

E-Print Network 3.0 - advanced technologies directorate Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Director Center for Advanced Nitride Electronics Umesh Mishra... , Director Optoelectronics Technology ... Source: Becker, Luann - Institute for Crustal Studies, University...

311

Pre-Oxidized and Nitrided Stainless Steel Foil for Proton Exchange Membrane Fuel Cell Bipolar Plates: Part 2- Single-Cell Fuel Cell Evaluation of Stamped Plates  

SciTech Connect (OSTI)

Thermal (gas) nitridation of stainless steel alloys can yield low interfacial contact resistance (ICR), electrically conductive and corrosion-resistant nitride containing surface layers (Cr{sub 2}N, CrN, TiN, V{sub 2}N, VN, etc.) of interest for fuel cells, batteries, and sensors. This paper presents results of proton exchange membrane (PEM) single-cell fuel cell studies of stamped and pre-oxidized/nitrided developmental Fe-20Cr-4V weight percent (wt.%) and commercial type 2205 stainless steel alloy foils. The single-cell fuel cell behavior of the stamped and pre-oxidized/nitrided material was compared to as-stamped (no surface treatment) 904L, 2205, and Fe-20Cr-4V stainless steel alloy foils and machined graphite of similar flow field design. The best fuel cell behavior among the alloys was exhibited by the pre-oxidized/nitrided Fe-20Cr-4V, which exhibited {approx}5-20% better peak power output than untreated Fe-20Cr-4V, 2205, and 904L metal stampings. Durability was assessed for pre-oxidized/nitrided Fe-20Cr-4V, 904L metal, and graphite plates by 1000+ h of cyclic single-cell fuel cell testing. All three materials showed good durability with no significant degradation in cell power output. Post-test analysis indicated no metal ion contamination of the membrane electrode assemblies (MEAs) occurred with the pre-oxidized and nitrided Fe-20Cr-4V or graphite plates, and only a minor amount of contamination with the 904L plates.

Toops, Todd J [ORNL; Brady, Michael P [ORNL; Tortorelli, Peter F [ORNL; Pihl, Josh A [ORNL; EstevezGenCell, Francisco [GenCell Corp; Connors, Dan [GenCell Corp; Garzon, Fernando [Los Alamos National Laboratory (LANL); Rockward, Tommy [Los Alamos National Laboratory (LANL); Gervasio, Don [Arizona State University; Kosaraju, S.H. [Arizona State University

2010-01-01T23:59:59.000Z

312

Nanostructural engineering of nitride nucleation layers for GaN substrate dislocation reduction.  

SciTech Connect (OSTI)

With no lattice matched substrate available, sapphire continues as the substrate of choice for GaN growth, because of its reasonable cost and the extensive prior experience using it as a substrate for GaN. Surprisingly, the high dislocation density does not appear to limit UV and blue LED light intensity. However, dislocations may limit green LED light intensity and LED lifetime, especially as LEDs are pushed to higher current density for high end solid state lighting sources. To improve the performance for these higher current density LEDs, simple growth-enabled reductions in dislocation density would be highly prized. GaN nucleation layers (NLs) are not commonly thought of as an application of nano-structural engineering; yet, these layers evolve during the growth process to produce self-assembled, nanometer-scale structures. Continued growth on these nuclei ultimately leads to a fully coalesced film, and we show in this research program that their initial density is correlated to the GaN dislocation density. In this 18 month program, we developed MOCVD growth methods to reduce GaN dislocation densities on sapphire from 5 x 10{sup 8} cm{sup -2} using our standard delay recovery growth technique to 1 x 10{sup 8} cm{sup -2} using an ultra-low nucleation density technique. For this research, we firmly established a correlation between the GaN nucleation thickness, the resulting nucleation density after annealing, and dislocation density of full GaN films grown on these nucleation layers. We developed methods to reduce the nuclei density while still maintaining the ability to fully coalesce the GaN films. Ways were sought to improve the GaN nuclei orientation by improving the sapphire surface smoothness by annealing prior to the NL growth. Methods to eliminate the formation of additional nuclei once the majority of GaN nuclei were developed using a silicon nitride treatment prior to the deposition of the nucleation layer. Nucleation layer thickness was determined using optical reflectance and the nucleation density was determined using atomic force microscopy (AFM) and Nomarski microscopy. Dislocation density was measured using X-ray diffraction and AFM after coating the surface with silicon nitride to delineate all dislocation types. The program milestone of producing GaN films with dislocation densities of 1 x 10{sup 8} cm{sup -2} was met by silicon nitride treatment of annealed sapphire followed by the multiple deposition of a low density of GaN nuclei followed by high temperature GaN growth. Details of this growth process and the underlying science are presented in this final report along with problems encountered in this research and recommendations for future work.

Koleske, Daniel David; Lee, Stephen Roger; Lemp, Thomas Kerr; Coltrin, Michael Elliott; Cross, Karen Charlene; Thaler, Gerald

2009-07-01T23:59:59.000Z

313

Methods for and products of processing nanostructure nitride, carbonitride and oxycarbonitride electrode power materials by utilizing sol gel technology for supercapacitor applications  

DOE Patents [OSTI]

Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m.sup.2 /g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725.degree. C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors. Electrode is formed either by pressing the mixture of nitride powder and binder to a foil, or by depositing electrode coating onto metal current collector. The binder or coating is converted into a continuous network of electrode material after thermal treatment to provide enhanced energy and power density. Liquid electrolyte is soaked into porous electrode. The electrochemical capacitor assembly further has a porous separator layer between two electrodes/electrolyte and forming a unit cell.

Huang, Yuhong (West Hills, CA); Wei, Oiang (West Hills, CA); Chu, Chung-tse (Chatsworth, CA); Zheng, Haixing (Oak Park, CA)

2001-01-01T23:59:59.000Z

314

Synthesis of nanostructured materials in supercritical ammonia: nitrides, metals and oxides Desmoulins-Krawiec S., Aymonier C., Loppinet-Serani A., Weill F., Grosse S., Etourneau J., Cansell F.  

E-Print Network [OSTI]

N in supercritical cryogenic nitrogen by self-propagating-high- temperature synthesis (6.21 MPa, ­141 °C);19 (ii) GaSynthesis of nanostructured materials in supercritical ammonia: nitrides, metals and oxides. Abstract : In this study, the synthesis of nanostructured particles of nitrides (Cr2N, Co2N, Fe4N, Cu3N, Ni

Boyer, Edmond

315

ESPC IDIQ Contract Sample  

Broader source: Energy.gov [DOE]

Document displays a sample indefinite delivery, indefinite quantity (IDIQ) energy savings performance contract (ESPC).

316

Resistive switching phenomena of tungsten nitride thin films with excellent CMOS compatibility  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • The resistive switching characteristics of WN{sub x} thin films. • Excellent CMOS compatibility WN{sub x} films as a resistive switching material. • Resistive switching mechanism revealed trap-controlled space charge limited conduction. • Good endurance and retention properties over 10{sup 5} cycles, and 10{sup 5} s, respectively - Abstract: We report the resistive switching (RS) characteristics of tungsten nitride (WN{sub x}) thin films with excellent complementary metal-oxide-semiconductor (CMOS) compatibility. A Ti/WN{sub x}/Pt memory cell clearly shows bipolar RS behaviors at a low voltage of approximately ±2.2 V. The dominant conduction mechanisms at low and high resistance states were verified by Ohmic behavior and trap-controlled space-charge-limited conduction, respectively. A conducting filament model by a redox reaction explains the RS behavior in WN{sub x} films. We also demonstrate the memory characteristics during pulse operation, including a high endurance over >10{sup 5} cycles and a long retention time of >10{sup 5} s.

Hong, Seok Man; Kim, Hee-Dong; An, Ho-Myoung; Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr

2013-12-15T23:59:59.000Z

317

Characterization of two-dimensional hexagonal boron nitride using scanning electron and scanning helium ion microscopy  

SciTech Connect (OSTI)

Characterization of the structural and physical properties of two-dimensional (2D) materials, such as layer number and inelastic mean free path measurements, is very important to optimize their synthesis and application. In this study, we characterize the layer number and morphology of hexagonal boron nitride (h-BN) nanosheets on a metallic substrate using field emission scanning electron microscopy (FE-SEM) and scanning helium ion microscopy (HIM). Using scanning beams of various energies, we could analyze the dependence of the intensities of secondary electrons on the thickness of the h-BN nanosheets. Based on the interaction between the scanning particles (electrons and helium ions) and h-BN nanosheets, we deduced an exponential relationship between the intensities of secondary electrons and number of layers of h-BN. With the attenuation factor of the exponential formula, we calculate the inelastic mean free path of electrons and helium ions in the h-BN nanosheets. Our results show that HIM is more sensitive and consistent than FE-SEM for characterizing the number of layers and morphology of 2D materials.

Guo, Hongxuan, E-mail: Guo.hongxuan@nims.go.jp, E-mail: msxu@zju.edu.cn [Global Research Center for Environment and Energy Based on Nanomaterials Science National Institute for Materials Science (NIMS) 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Gao, Jianhua; Ishida, Nobuyuki [International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Xu, Mingsheng, E-mail: Guo.hongxuan@nims.go.jp, E-mail: msxu@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Fujita, Daisuke [Advanced Key Technologies Division, Global Research Center for Environment and Energy Based on Nanomaterials Science, and International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

2014-01-20T23:59:59.000Z

318

High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films  

SciTech Connect (OSTI)

A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE-grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

Farrell, R.; Pagan, V.R.; Kabulski, A.; Kuchibhatla, S.; Harman, J.; Kasarla, K.R.; Rodak, L.E.; Hensel, J.P.; Famouri, P.; Korakakis, D.

2008-01-01T23:59:59.000Z

319

Antifuse with a single silicon-rich silicon nitride insulating layer  

DOE Patents [OSTI]

An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0

Habermehl, Scott D.; Apodaca, Roger T.

2013-01-22T23:59:59.000Z

320

Layered insulator hexagonal boron nitride for surface passivation in quantum dot solar cell  

SciTech Connect (OSTI)

Single crystalline, two dimensional (2D) layered insulator hexagonal boron nitride (h-BN), is demonstrated as an emerging material candidate for surface passivation on mesoporous TiO{sub 2}. Cadmium selenide (CdSe) quantum dot based bulk heterojunction (BHJ) solar cell employed h-BN passivated TiO{sub 2} as an electron acceptor exhibits photoconversion efficiency ?46% more than BHJ employed unpassivated TiO{sub 2}. Dominant interfacial recombination pathways such as electron capture by TiO{sub 2} surface states and recombination with hole at valence band of CdSe are efficiently controlled by h-BN enabled surface passivation, leading to improved photovoltaic performance. Highly crystalline, confirmed by transmission electron microscopy, dangling bond-free 2D layered h-BN with self-terminated atomic planes, achieved by chemical exfoliation, enables efficient passivation on TiO{sub 2}, allowing electronic transport at TiO{sub 2}/h-BN/CdSe interface with much lower recombination rate compared to an unpassivated TiO{sub 2}/CdSe interface.

Shanmugam, Mariyappan; Jain, Nikhil; Jacobs-Gedrim, Robin; Yu, Bin, E-mail: byu@albany.edu [College of Nanoscale Science and Engineering, State University of New York, Albany, New York 12203 (United States)] [College of Nanoscale Science and Engineering, State University of New York, Albany, New York 12203 (United States); Xu, Yang [Institute of Microelectronics and Optoelectronics, Zhejiang University, Hangzhou 310027 (China)] [Institute of Microelectronics and Optoelectronics, Zhejiang University, Hangzhou 310027 (China)

2013-12-09T23:59:59.000Z

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

More Efficient Power Conversion for EVs: Gallium-Nitride Advanced Power Semiconductor and Packaging  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Delphi is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures, voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the device’s efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphi’s GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.

None

2010-02-01T23:59:59.000Z

322

Carbide/nitride grain refined rare earth-iron-boron permanent magnet and method of making  

DOE Patents [OSTI]

A method of making a permanent magnet wherein 1) a melt is formed having a base alloy composition comprising RE, Fe and/or Co, and B (where RE is one or more rare earth elements) and 2) TR (where TR is a transition metal selected from at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al) and at least one of C and N are provided in the base alloy composition melt in substantially stoichiometric amounts to form a thermodynamically stable compound (e.g. TR carbide, nitride or carbonitride). The melt is rapidly solidified in a manner to form particulates having a substantially amorphous (metallic glass) structure and a dispersion of primary TRC, TRN and/or TRC/N precipitates. The amorphous particulates are heated above the crystallization temperature of the base alloy composition to nucleate and grow a hard magnetic phase to an optimum grain size and to form secondary TRC, TRN and/or TRC/N precipitates dispersed at grain boundaries. The crystallized particulates are consolidated at an elevated temperature to form a shape. During elevated temperature consolidation, the primary and secondary precipitates act to pin the grain boundaries and minimize deleterious grain growth that is harmful to magnetic properties.

McCallum, R. William (Ames, IA); Branagan, Daniel J. (Ames, IA)

1996-01-23T23:59:59.000Z

323

Carbide/nitride grain refined rare earth-iron-boron permanent magnet and method of making  

DOE Patents [OSTI]

A method of making a permanent magnet is disclosed wherein (1) a melt is formed having a base alloy composition comprising RE, Fe and/or Co, and B (where RE is one or more rare earth elements) and (2) TR (where TR is a transition metal selected from at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al) and at least one of C and N are provided in the base alloy composition melt in substantially stoichiometric amounts to form a thermodynamically stable compound (e.g. TR carbide, nitride or carbonitride). The melt is rapidly solidified in a manner to form particulates having a substantially amorphous (metallic glass) structure and a dispersion of primary TRC, TRN and/or TRC/N precipitates. The amorphous particulates are heated above the crystallization temperature of the base alloy composition to nucleate and grow a hard magnetic phase to an optimum grain size and to form secondary TRC, TRN and/or TRC/N precipitates dispersed at grain boundaries. The crystallized particulates are consolidated at an elevated temperature to form a shape. During elevated temperature consolidation, the primary and secondary precipitates act to pin the grain boundaries and minimize deleterious grain growth that is harmful to magnetic properties. 33 figs.

McCallum, R.W.; Branagan, D.J.

1996-01-23T23:59:59.000Z

324

Strong, Tough Ceramics Containing Microscopic Reinforcements: Tailoring In-Situ Reinforced Silicon Nitride Ceramics  

SciTech Connect (OSTI)

Ceramics with their hardness, chemical stability, and refractoriness could be used to design more efficient energy generation and conversion systems as well as numerous other applications. However, we have needed to develop a fundamental understanding of how to tailor ceramics to improve their performance, especially to overcome their brittle nature. One of the advances in this respect was the incorporation of very strong microscopic rod-like reinforcements in the form of whiskers that serve to hold the ceramic together making it tougher and resistant to fracture. This microscopic reinforcement approach has a number of features that are similar to continuous fiber-reinforced ceramics; however, some of the details are modified. For instance, the strengths of the microscopic reinforcements must be higher as they typically have much stronger interfaces. For instance, single crystal silicon carbide whiskers can have tensile strengths in excess of {ge}7 GPa or >2 times that of continuous fibers. Furthermore, reinforcement pullout is limited to lengths of a few microns in the case of microscopic reinforcement due as much to the higher interfacial shear resistance as to the limit of the reinforcement lengths. On the other hand, the microscopic reinforcement approach can be generated in-situ during the processing of ceramics. A remarkable example of this is found in silicon nitride ceramics where elongated rod-like shape grains can be formed when the ceramic is fired at elevated temperatures to form a dense component.

Becher, P.F.

1999-06-27T23:59:59.000Z

325

Interlayer coupling enhancement in graphene/hexagonal boron nitride heterostructures by intercalated defects or vacancies  

SciTech Connect (OSTI)

Hexagonal boron nitride (hBN), a remarkable material with a two-dimensional atomic crystal structure, has the potential to fabricate heterostructures with unusual properties. We perform first-principles calculations to determine whether intercalated metal atoms and vacancies can mediate interfacial coupling and influence the structural and electronic properties of the graphene/hBN heterostructure. Metal impurity atoms (Li, K, Cr, Mn, Co, and Cu), acting as extrinsic defects between the graphene and hBN sheets, produce n-doped graphene. We also consider intrinsic vacancy defects and find that a boron monovacancy in hBN acts as a magnetic dopant for graphene, whereas a nitrogen monovacancy in hBN serves as a nonmagnetic dopant for graphene. In contrast, the smallest triangular vacancy defects in hBN are unlikely to result in significant changes in the electronic transport of graphene. Our findings reveal that a hBN layer with some vacancies or metal impurities enhances the interlayer coupling in the graphene/hBN heterostructure with respect to charge doping and electron scattering.

Park, Sohee [Department of Materials Science and Engineering, Seoul National University, Seoul 151-747 (Korea, Republic of)] [Department of Materials Science and Engineering, Seoul National University, Seoul 151-747 (Korea, Republic of); Park, Changwon [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kim, Gunn, E-mail: gunnkim@sejong.ac.kr [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of)] [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of)

2014-04-07T23:59:59.000Z

326

Electronic properties of III-nitride semiconductors: A first-principles investigation using the Tran-Blaha modified Becke-Johnson potential  

SciTech Connect (OSTI)

In this work, we use density functional theory to investigate the influence of semilocal exchange and correlation effects on the electronic properties of III-nitride semiconductors considering zinc-blende and wurtzite crystal structures. We find that the inclusion of such effects through the use of the Tran-Blaha modified Becke-Johnson potential yields an excellent description of the electronic structures of these materials giving energy band gaps which are systematically larger than the ones obtained with standard functionals such as the generalized gradient approximation. The discrepancy between the experimental and theoretical band gaps is then significantly reduced with semilocal exchange and correlation effects. However, the effective masses are overestimated in the zinc-blende nitrides, but no systematic trend is found in the wurtzite compounds. New results for energy band gaps and effective masses of zinc-blende and wurtzite indium nitrides are presented.

Araujo, Rafael B., E-mail: rafaelbna@gmail.com; Almeida, J. S. de, E-mail: jailton-almeida@hotmail.com; Ferreira da Silva, A. [Instituto de Física, Universidade Federal da Bahia, Campus Universitário de Ondina, 40210-340 Salvador, Bahia (Brazil)

2013-11-14T23:59:59.000Z

327

Rain sampling device  

DOE Patents [OSTI]

The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of the precipitation from the chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device. 11 figures.

Nelson, D.A.; Tomich, S.D.; Glover, D.W.; Allen, E.V.; Hales, J.M.; Dana, M.T.

1991-05-14T23:59:59.000Z

328

Rain sampling device  

DOE Patents [OSTI]

The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of said precipitation from said chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device.

Nelson, Danny A. (Richland, WA); Tomich, Stanley D. (Richland, WA); Glover, Donald W. (Prosser, WA); Allen, Errol V. (Benton City, WA); Hales, Jeremy M. (Kennewick, WA); Dana, Marshall T. (Richland, WA)

1991-01-01T23:59:59.000Z

329

Effects of the amorphous oxide intergranular layer structure and bonding on the fracture toughness of a high purity silicon nitride  

SciTech Connect (OSTI)

The microstructural evolution and structural characteristics and transitions in the thin grain-boundary oxide films in a silicon nitride ceramic, specifically between two adjacent grains and not the triple junctions, are investigated to find their effect on the macroscopic fracture properties. It is found that by heat treating a model Si3N4-2wt percent Y2O3 ceramic for {approx}200 hr at 1400 degrees C in air, the fracture toughness can be increased by {approx}100 percent, coincident with a change in fracture mechanism from transgranular to intergranular.

Ziegler, A.; Kisielowski, C.; Hoffmann, M.J.; Ritchie, R.O.

2002-11-18T23:59:59.000Z

330

Application of Self-Propagating High Temperature Synthesis to the Fabrication of Actinide Bearing Nitride and Other Ceramic Nuclear Fuels  

SciTech Connect (OSTI)

The project uses an exothermic combustion synthesis reaction, termed self-propagating high-temperature synthesis (SHS), to produce high quality, reproducible nitride fuels and other ceramic type nuclear fuels (cercers and cermets, etc.) in conjunction with the fabrication of transmutation fuels. The major research objective of the project is determining the fundamental SHS processing parameters by first using manganese as a surrogate for americium to produce dense Zr-Mn-N ceramic compounds. These fundamental principles will then be transferred to the production of dense Zr-Am-N ceramic materials. A further research objective in the research program is generating fundamental SHS processing data to the synthesis of (i) Pu-Am-Zr-N and (ii) U-Pu-Am-N ceramic fuels. In this case, Ce will be used as the surrogate for Pu, Mn as the surrogate for Am, and depleted uranium as the surrogate for U. Once sufficient fundamental data has been determined for these surrogate systems, the information will be transferred to Idaho National Laboratory (INL) for synthesis of Zr-Am-N, Pu-Am-Zr-N and U-Pu-Am-N ceramic fuels. The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or low–heat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS takes thermodynamic advantage of the high combustion temperatures of these exothermic SHS reactions to synthesize the required compounds, the very fast heating, reaction and cooling rates can kinetically generate extremely fast reaction rates and facilitate the retention of volatile species within the rapidly propagating SHS reaction front. The initial objective of the research program is to use Mn as the surrogate for Am to synthesize a reproducible, dense, high quality Zr-Mn-N ceramic compound. Having determined the fundamental SHS reaction parameters and optimized SHS processing steps using Mn as the surrogate for Am, the technology will be transferred to Idaho National Laboratory to successfully synthesize a high quality Zr-Am-N ceramic fuel.

John J. Moore, Marissa M. Reigel, Collin D. Donohoue

2009-04-30T23:59:59.000Z

331

COMPUTER SCIENCE SAMPLE PROGRAM  

E-Print Network [OSTI]

COMPUTER SCIENCE SAMPLE PROGRAM (First Math Course MATH 198) This sample program suggests one way CS 181: Foundations of Computer Science II CS 180: Foundations of Computer Science I CS 191

Gering, Jon C.

332

Formation of Nickel Silicide from Direct-liquid-injection Chemical-vapor-deposited Nickel Nitride Films  

SciTech Connect (OSTI)

Smooth, continuous, and highly conformal nickel nitride (NiN{sub x}) films were deposited by direct liquid injection (DLI)-chemical vapor deposition (CVD) using a solution of bis(N,N{prime}-di-tert-butylacetamidinato)nickel(II) in tetrahydronaphthalene as the nickel (Ni) source and ammonia (NH{sub 3}) as the coreactant gas. The DLI-CVD NiNx films grown on HF-last (100) silicon and on highly doped polysilicon substrates served as the intermediate for subsequent conversion into nickel silicide (NiSi), which is a key material for source, drain, and gate contacts in microelectronic devices. Rapid thermal annealing in the forming gas of DLI-CVD NiNx films formed continuous NiSi films at temperatures above 400 C. The resistivity of the NiSi films was 15{mu}{Omega} cm, close to the value for bulk crystals. The NiSi films have remarkably smooth and sharp interfaces with underlying Si substrates, thereby producing contacts for transistors with a higher drive current and a lower junction leakage. Resistivity and synchrotron X-ray diffraction in real-time during annealing of NiNx films showed the formation of a NiSi film at about 440 C, which is morphologically stable up to about 650 C. These NiSi films could find applications in future nanoscale complementary metal oxide semiconductor devices or three-dimensional metal-oxide-semiconductor devices such as Fin-type field effect transistors for the 22 nm technology node and beyond.

Li, Z.; Gordon, R; Li, H; Shenai, D; Lavoie, C

2010-01-01T23:59:59.000Z

333

Preliminary design study of small long life boiling water reactor (BWR) with tight lattice thorium nitride fuel  

SciTech Connect (OSTI)

Neutronic performance of small long-life boiling water reactors (BWR) with thorium nitride based fuel has been performed. A recent study conducted on BWR in tight lattice environments (with a lower moderator percentage) produces small power reactor which has some specifications, i.e. 10 years operation time, power density of 19.1 watt/cc and maximum excess reactivity of about 4%. This excess reactivity value is smaller than standard reactivity of conventional BWR. The use of hexagonal geometry on the fuel cell of BWR provides a substantial effect on the criticality of the reactor to obtain a longer operating time. Supported by a tight concept lattice where the volume fraction of the fuel is greater than the moderator and fuel, Thorium Nitride give good results for fuel cell design on small long life BWR. The excess reactivity of the reactor can be reduced with the addition of gadolinium as burnable poisons. Therefore the hexagonal tight lattice fuel cell design of small long life BWR that has a criticality more than 20 years of operating time has been obtained.

Trianti, Nuri, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id; Su'ud, Zaki, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id; Arif, Idam, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id [Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Science, Bandung Institute of Technology (Ganesha 10 Bandung, Indonesia) (Indonesia); Riyana, EkaSapta [Nuclear Energy Regulatory Agency (BAPETEN) (Indonesia)

2014-09-30T23:59:59.000Z

334

A Tungsten(VI) Nitride Having a W2(-N)2 Core Zachary J. Tonzetich, Richard R. Schrock,* Keith M. Wampler, Brad C. Bailey,  

E-Print Network [OSTI]

A Tungsten(VI) Nitride Having a W2(µ-N)2 Core Zachary J. Tonzetich, Richard R. Schrock,* Keith M-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Received September 27, 2007 The tungsten that the tungsten alkylidyne species W(C-t-Bu)(CH2-t-Bu)(OAr)2 (Ar ) 2,6-diisopropylphenyl) can be prepared readily

Müller, Peter

335

[1] P. Schwarzkopf, R. Kieffer, Refractory Hard Metals: Borides, Car-bides, Nitrides and Silicides, MacMillan, New York 1953.  

E-Print Network [OSTI]

± [1] P. Schwarzkopf, R. Kieffer, Refractory Hard Metals: Borides, Car- bides, Nitrides and Silicides, MacMillan, New York 1953. [2] E. Fryt, Solid State Ionics 1997, 101±103, 437. [3] N. Durlu, J. Metal catalysts, such as gold[1,4,8] and tin[5,9,10] have been employed in the synthesis to align

Wang, Zhong L.

336

C. Wetzel et al MRS Internet J. Nitride Semicond. Res. 10, 2 (2005) 1 Development of High Power Green Light Emitting Diode Chips  

E-Print Network [OSTI]

Power Green Light Emitting Diode Chips C. Wetzel and T. Detchprohm Future Chips Constellation Abstract The development of high emission power green light emitting diodes chips using GaInN/GaN multi production-scale implementation of this green LED die process. Keywords: nitrides, light emitting diode

Wetzel, Christian M.

337

Hydrogen storage in carbon nitride nanobells X. D. Bai, Dingyong Zhong, G. Y. Zhang, X. C. Ma, Shuang Liu, and E. G. Wanga)  

E-Print Network [OSTI]

Hydrogen storage in carbon nitride nanobells X. D. Bai, Dingyong Zhong, G. Y. Zhang, X. C. Ma as hydrogen adsorbent. A hydrogen storage capacity up to 8 wt % was achieved reproducibly under ambient pressure and at temperature of 300 °C. The high hydrogen storage capacity under the moderate conditions

Zhang, Guangyu

338

Sampled data lattice filters  

E-Print Network [OSTI]

SAMPLED DATA LATTICE FILTERS A Thesis by WILLIAM TERRY THRIFT III Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1979 Major Subfect...: Electrical Engineering SAMPLED DATA LATTICE FILTERS A Thesis by WILLIAM TERRY THRIFT III Approved as to style and content by: (Chair an of Committee) (Hea f Department) (Member) (Member) (Member) (Member) December 1979 ABSTRACT Sampled Data...

Thrift, William Terry

1980-01-01T23:59:59.000Z

339

Hetero-junctions of Boron Nitride and Carbon Nanotubes: Synthesis and Characterization  

SciTech Connect (OSTI)

Hetero-junctions of boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) are expected to have appealing new properties that are not available from pure BNNTs and CNTs. Theoretical studies indicate that BNNT/CNT junctions could be multifunctional and applicable as memory, spintronic, electronic, and photonics devices with tunable band structures. This will lead to energy and material efficient multifunctional devices that will be beneficial to the society. However, experimental realization of BNNT/CNT junctions was hindered by the absent of a common growth technique for BNNTs and CNTs. In fact, the synthesis of BNNTs was very challenging and may involve high temperatures (up to 3000 degree Celsius by laser ablation) and explosive chemicals. During the award period, we have successfully developed a simple chemical vapor deposition (CVD) technique to grow BNNTs at 1100-1200 degree Celsius without using dangerous chemicals. A series of common catalyst have then been identified for the synthesis of BNNTs and CNTs. Both of these breakthroughs have led to our preliminary success in growing two types of BNNT/CNT junctions and two additional new nanostructures: 1) branching BNNT/CNT junctions and 2) co-axial BNNT/CNT junctions, 3) quantum dots functionalized BNNTs (QDs-BNNTs), 4) BNNT/graphene junctions. We have started to understand their structural, compositional, and electronic properties. Latest results indicate that the branching BNNT/CNT junctions and QDs-BNNTs are functional as room-temperature tunneling devices. We have submitted the application of a renewal grant to continue the study of these new energy efficient materials. Finally, this project has also strengthened our collaborations with multiple Department of Energy�s Nanoscale Science Research Centers (NSRCs), including the Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory, and the Center for Integrated Nanotechnologies (CINTs) at Sandia National Laboratories and Los Alamos National Laboratory. Results obtained during the current funding period have led to the publication of twelve peer reviewed articles, three review papers, two book and one encyclopedia chapters, and thirty eight conference/seminar presentation. One US provisional patent and one international patent have also been filed.

Yap, Yoke Khin

2013-03-14T23:59:59.000Z

340

Dual mechanical behaviour of hydrogen in stressed silicon nitride thin films  

SciTech Connect (OSTI)

In the present article, we report a study on the mechanical behaviour displayed by hydrogen atoms and pores in silicon nitride (SiN) films. A simple three-phase model is proposed to relate the physical properties (stiffness, film stress, mass density, etc.) of hydrogenated nanoporous SiN thin films to the volume fractions of hydrogen and pores. This model is then applied to experimental data extracted from films deposited by plasma enhanced chemical vapour deposition, where hydrogen content, stress, and mass densities range widely from 11% to 30%, ?2.8 to 1.5?GPa, and 2.0 to 2.8?g/cm{sup 3}, respectively. Starting from the conventional plotting of film's Young's modulus against film porosity, we first propose to correct the conventional calculation of porosity volume fraction with the hydrogen content, thus taking into account both hydrogen mass and concentration. The weight of this hydrogen-correction is found to evolve linearly with hydrogen concentration in tensile films (in accordance with a simple “mass correction” of the film density calculation), but a clear discontinuity is observed toward compressive stresses. Then, the effective volume occupied by hydrogen atoms is calculated taking account of the bond type (N-H or Si-H bonds), thus allowing a precise extraction of the hydrogen volume fraction. These calculations applied to tensile films show that both volume fractions of hydrogen and porosity are similar in magnitude and randomly distributed against Young's modulus. However, the expected linear dependence of the Young's modulus is clearly observed when both volume fractions are added. Finally, we show that the stiffer behaviour of compressive films cannot be only explained on the basis of this (hydrogen?+?porosity) volume fraction. Indeed this stiffness difference relies on a dual mechanical behaviour displayed by hydrogen atoms against the film stress state: while they participate to the stiffness in compressive films, hydrogen atoms mainly behave like pores in tensile films where they do not participate to the film stiffness.

Volpi, F., E-mail: fabien.volpi@simap.grenoble-inp.fr; Braccini, M.; Pasturel, A. [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Devos, A. [IEMN, UMR 8520 CNRS, Avenue Poincarré - CS 60069 - 59652 Villeneuve d'Ascq Cedex (France); Raymond, G. [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); Morin, P. [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France)

2014-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Compact cold stage for micro-computerized tomography imaging of chilled or frozen samples  

SciTech Connect (OSTI)

High resolution X-ray microCT (computerized tomography) can be used to image a variety of objects, including temperature-sensitive materials. In cases where the sample must be chilled or frozen to maintain sample integrity, either the microCT machine itself must be placed in a refrigerated chamber, or a relatively expensive commercial cold stage must be purchased. We describe here the design and construction of a low-cost custom cold stage suitable for use in a microCT imaging system. Our device uses a boron nitride sample holder, two-stage Peltier cooler, fan-cooled heat sink, and electronic controller to maintain sample temperatures as low as ?25?°C ± 0.2?°C for the duration of a tomography acquisition. The design does not require modification to the microCT machine, and is easily installed and removed. Our custom cold stage represents a cost-effective solution for refrigerating CT samples for imaging, and is especially useful for shared equipment or machines unsuitable for cold room use.

Hullar, Ted; Anastasio, Cort, E-mail: canastasio@ucdavis.edu [Department of Land, Air, and Water Resources, University of California, Davis, California 95616 (United States)] [Department of Land, Air, and Water Resources, University of California, Davis, California 95616 (United States); Paige, David F. [Paige Instruments, Woodland, California 95776 (United States)] [Paige Instruments, Woodland, California 95776 (United States); Rowland, Douglas J. [Center for Molecular and Genomic Imaging, Department of Biomedical Engineering, University of California, Davis, California 95616 (United States)] [Center for Molecular and Genomic Imaging, Department of Biomedical Engineering, University of California, Davis, California 95616 (United States)

2014-04-15T23:59:59.000Z

342

Rehabilitation Services Sample Occupations  

E-Print Network [OSTI]

/Industries Correction Agencies Drug Treatment Centers Addiction Counselor Advocacy Occupations Art Therapist BehavioralRehabilitation Services Sample Occupations Sample Work Settings Child & Day Care Centers Clinics................................ IIB 29-1000 E4 Careers in Counseling and Human Services .........IIB 21-1010 C7 Careers in Health Care

Ronquist, Fredrik

343

Sampling system and method  

DOE Patents [OSTI]

The present disclosure provides an apparatus and method for coupling conduit segments together. A first pump obtains a sample and transmits it through a first conduit to a reservoir accessible by a second pump. The second pump further conducts the sample from the reservoir through a second conduit.

Decker, David L.; Lyles, Brad F.; Purcell, Richard G.; Hershey, Ronald Lee

2013-04-16T23:59:59.000Z

344

Biological sample collector  

DOE Patents [OSTI]

A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

Murphy, Gloria A. (French Camp, CA)

2010-09-07T23:59:59.000Z

345

Electronic stiffness of a superconducting niobium nitride single crystal under pressure Xiao-Jia Chen, Viktor V. Struzhkin, Zhigang Wu, Ronald E. Cohen, Simon Kung,* Ho-kwang Mao, and Russell J. Hemley  

E-Print Network [OSTI]

Electronic stiffness of a superconducting niobium nitride single crystal under pressure Xiao report a quantitative study of pressure effects on the superconducting transition temperature Tc transition temperatures Tc's of materials, pur- suing new classes of superconductors and shedding light

Wu, Zhigang

346

Waste classification sampling plan  

SciTech Connect (OSTI)

The purpose of this sampling is to explain the method used to collect and analyze data necessary to verify and/or determine the radionuclide content of the B-Cell decontamination and decommissioning waste stream so that the correct waste classification for the waste stream can be made, and to collect samples for studies of decontamination methods that could be used to remove fixed contamination present on the waste. The scope of this plan is to establish the technical basis for collecting samples and compiling quantitative data on the radioactive constituents present in waste generated during deactivation activities in B-Cell. Sampling and radioisotopic analysis will be performed on the fixed layers of contamination present on structural material and internal surfaces of process piping and tanks. In addition, dose rate measurements on existing waste material will be performed to determine the fraction of dose rate attributable to both removable and fixed contamination. Samples will also be collected to support studies of decontamination methods that are effective in removing the fixed contamination present on the waste. Sampling performed under this plan will meet criteria established in BNF-2596, Data Quality Objectives for the B-Cell Waste Stream Classification Sampling, J. M. Barnett, May 1998.

Landsman, S.D.

1998-05-27T23:59:59.000Z

347

Excitation wavelength dependence of water-window line emissions from boron-nitride laser-produced plasmas  

SciTech Connect (OSTI)

We investigated the effects of laser excitation wavelength on water-window emission lines of laser-produced boron-nitride plasmas. Plasmas are produced by focusing 1064 nm and harmonically generated 532 and 266 nm radiation from a Nd:YAG laser on BN target in vacuum. Soft x-ray emission lines in the water-window region are recorded using a grazing-incidence spectrograph. Filtered photodiodes are used to obtain complementary data for water-window emission intensity and angular dependence. Spectral emission intensity changes in nitrogen Ly-{alpha} and He-{alpha} are used to show how laser wavelength affects emission. Our results show that the relative intensity of spectral lines is laser wavelength dependent, with the ratio of Ly-{alpha} to He-{alpha} emission intensity decreasing as laser wavelength is shortened. Filtered photodiode measurements of angular dependence showed that 266 and 532 nm laser wavelengths produce uniform emission.

Crank, M.; Harilal, S. S.; Hassan, S. M.; Hassanein, A. [Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

2012-02-01T23:59:59.000Z

348

The method of general dimensional analysis applied to the determination of the parameters of the process of nitriding  

SciTech Connect (OSTI)

In the field of process characteristics for thermochemical treatments there is a contradiction between the great number of the parameters, that the experiment pointed out as determinants of the acquired results, and the small number of such kind of parameters that the Fick`s analytical laws can correlate. It can be ascertained that, a great deal of the complexity of diffusion processes is focused on the diffusion constant, as in the case of convection, where the coefficient of convection reflects the complexity of the process. The general dimensional analysis, created by the Romanian School of Experimental Physics as a development on a superior level of Rayleigh and Buckingham`s methods, can gather without exception, in analytical relations, all the parameters of the process of diffusion. The authors apply the method in the case of nitriding in nitrogen atmosphere with addition of ammonia.

Samoila, C.; Bot, D. [Transilvania-Univ. of Brasov (Romania)

1995-12-31T23:59:59.000Z

349

Controlled polarity of sputter-deposited aluminum nitride on metals observed by aberration corrected scanning transmission electron microscopy  

SciTech Connect (OSTI)

The polarity determination process of sputter-deposited aluminum nitride (AlN) on metals has been analyzed using aberration corrected atomic resolution scanning transmission electron microscope. Direct growth of c-axis orientated AlN on face centered cubic metals (fcc) (111) with the local epitaxy has been observed, and the polarity was determined at the AlN/metal interface. We found that the AlN polarity can be controlled by the base metal layer: N-polarity AlN grows on Pt(111) while Al-polarity AlN forms on Al(111). Based on these results, the growth mechanism of AlN on metals is discussed.

Harumoto, T. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1-S8-6 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Department of Materials Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Sannomiya, T.; Matsukawa, Y.; Muraishi, S.; Shi, J.; Nakamura, Y. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1-S8-6 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Sawada, H. [Japan Electron Optics Laboratory (JEOL) Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Tanaka, T.; Tanishiro, Y.; Takayanagi, K. [Department of Physics, Tokyo Institute of Technology, 2-12-1-H-51 O-okayama, Meguro-ku, Tokyo 152-8551 (Japan)

2013-02-28T23:59:59.000Z

350

High-Speed Electro-Optic Modulator Integrated with Graphene-Boron Nitride Heterostructure and Photonic Crystal Nanocavity  

E-Print Network [OSTI]

Nanoscale and power-efficient electro-optic (EO) modulators are essential components for optical interconnects that are beginning to replace electrical wiring for intra- and inter-chip communications. Silicon-based EO modulators show sufficient figures of merits regarding device footprint, speed, power consumption and modulation depth. However, the weak electro-optic effect of silicon still sets a technical bottleneck for these devices, motivating the development of modulators based on new materials. Graphene, a two-dimensional carbon allotrope, has emerged as an alternative active material for optoelectronic applications owing to its exceptional optical and electronic properties. Here, we demonstrate a high-speed graphene electro-optic modulator based on a graphene-boron nitride (BN) heterostructure integrated with a silicon photonic crystal nanocavity. Strongly enhanced light-matter interaction of graphene in a submicron cavity enables efficient electrical tuning of the cavity reflection. We observe a modul...

Gao, Yuanda; Gan, Xuetao; Li, Luozhou; Peng, Cheng; Meric, Inanc; Wang, Lei; Szep, Attila; Walker, Dennis; Hone, James; Englund, Dirk

2014-01-01T23:59:59.000Z

351

The Tunable Hybrid Surface Phonon and Plasmon Polariton Modes in Boron Nitride Nanotube and Graphene Monolayer Heterostructures  

E-Print Network [OSTI]

The hybrid modes incorporating surface phonon polariton (SPhP) modes in boron nitride nanotubes (BNNTs) and surface plasmon polariton (SPP) modes in graphene monolayers are theoretically studied. The combination of the 1D BNNTs and 2D graphene monolayer further improves the modal characteristics with electrical tunability. Superior to the graphene monolayers, the proposed heterostructures supports single mode transmission with lateral optical confinement. The modal characteristics can be shifted from SPP-like toward SPhP-like. Both the figure of merit and field enhancement of hybrid modes are improved over 3 times than those of BNNT SPhP modes, which may further enable sub-wavelength mid-infrared applications.

Sun, Yu; Cheng, Jiangtao; Liu, Jiansheng

2014-01-01T23:59:59.000Z

352

Effects of boron-nitride substrates on Stone-Wales defect formation in graphene: An ab initio molecular dynamics study  

SciTech Connect (OSTI)

Ab initio molecular dynamics simulations are performed to investigate the effects of a boron nitride (BN) substrate on Stone-Wales (SW) defect formation and recovery in graphene. It is found that SW defects can be created by an off-plane recoil atom that interacts with the BN substrate. A mechanism with complete bond breakage for formation of SW defects in suspended graphene is also revealed for recoils at large displacement angles. In addition, further irradiation can result in recovery of the SW defects through a bond rotation mechanism in both graphene and graphene/BN, and the substrate has little effect on the recovery process. This study indicates that the BN substrate enhances the irradiation resistance of graphene.

Jin, K.; Xiao, H. Y. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Zhang, Y. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Weber, W. J., E-mail: wjweber@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2014-05-19T23:59:59.000Z

353

Effects of ternary mixed crystal and size on optical phonons in wurtzite nitride core-shell nanowires  

SciTech Connect (OSTI)

Within the framework of dielectric continuum and Loudon's uniaxial crystal models, existence conditions dependent on components and frequencies for optical phonons in wurtzite nitride core-shell nanowires (CSNWs) are discussed to obtain dispersion relations and electrostatic potentials of optical phonons in In{sub x}Ga{sub 1?x}N/GaN CSNWs. The results show that there may be four types of optical phonons in In{sub x}Ga{sub 1?x}N/GaN CSNWs for a given ternary mixed crystal (TMC) component due to the phonon dispersion anisotropy. This property is analogous to wurtzite planar heterojunctions. Among the optical phonons, there are two types of quasi-confined optical (QCO) phonons (named, respectively, as QCO-A and QCO-B), one type of interface (IF) phonons and propagating (PR) phonons existing in certain component and frequency domains while the dispersion relations and electrostatic potentials of same type of optical phonons vary with components. Furthermore, the size effect on optical phonons in CSNWs is also discussed. The dispersion relations of IF and QCO-A are independent of the boundary location of CSNWs. Meanwhile, dispersion relations and electrostatic potentials of QCO-B and PR phonons vary obviously with size, especially, when the ratio of a core radius to a shell radius is small, and dispersion relation curves of PR phonons appear to be close to each other, whereas, this phenomenon disappears when the ratio becomes large. Based on our conclusions, one can further discuss photoelectric properties in nitride CSNWs consisting of TMCs associated with optical phonons.

Li, J.; Guan, J. Y.; Zhang, S. F.; Ban, S. L.; Qu, Y., E-mail: quyuan@imu.edu.cn [School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China)

2014-04-21T23:59:59.000Z

354

Water Sample Concentrator  

ScienceCinema (OSTI)

Automated portable device that concentrates and packages a sample of suspected contaminated water for safe, efficient transport to a qualified analytical laboratory. This technology will help safeguard against pathogen contamination or chemical and biolog

Idaho National Laboratory

2010-01-08T23:59:59.000Z

355

Dissolution actuated sample container  

DOE Patents [OSTI]

A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.

Nance, Thomas A.; McCoy, Frank T.

2013-03-26T23:59:59.000Z

356

SAMPLING AND ANALYSIS PROTOCOLS  

SciTech Connect (OSTI)

Radiological sampling and analyses are performed to collect data for a variety of specific reasons covering a wide range of projects. These activities include: Effluent monitoring; Environmental surveillance; Emergency response; Routine ambient monitoring; Background assessments; Nuclear license termination; Remediation; Deactivation and decommissioning (D&D); and Waste management. In this chapter, effluent monitoring and environmental surveillance programs at nuclear operating facilities and radiological sampling and analysis plans for remediation and D&D activities will be discussed.

Jannik, T; P Fledderman, P

2007-02-09T23:59:59.000Z

357

E-Print Network 3.0 - arsenide oxides sr2cro3feas Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microstructures of gallium nitride nanowires synthesized by oxide-assisted method W.S. Shi, Y... synthesized using the recently developed oxide-assisted method by laser...

358

E-Print Network 3.0 - area semiconductor laser Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

areas of semiconductor... for conducting research on wide bandgap semiconductor optoelectronics in my research group, within the Center... bandgap III-Nitride semiconductor...

359

E-Print Network 3.0 - assistive technology devices Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Computer Engineering (ECE) at Lehigh... bandgap III-Nitride semiconductor optoelectronics materials and devices. The position is available Source: Gilchrist, James F. -...

360

E-Print Network 3.0 - asssited chemical vapor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nitride, chemical vapor ... Source: Dandy, David - Department of Chemical Engineering, Colorado State University Collection: Materials Science 14 DEPOSITION OF ELECTRON BEAM...

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

E-Print Network 3.0 - all-hot-wire chemical vapor Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nitride, chemical vapor ... Source: Dandy, David - Department of Chemical Engineering, Colorado State University Collection: Materials Science 10 DEPOSITION OF ELECTRON BEAM...

362

E-Print Network 3.0 - atomic hydrogen density Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

> >> 1 Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II. Collision, storage, and adsorption Summary: two hydrogen atoms, but only one of...

363

E-Print Network 3.0 - advanced ceramic hot-gas Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nitride and silicon carbide ceramics exposed to a representative ... Source: Pint, Bruce A. - Materials Science & Technology Division, Oak Ridge National Laboratory...

364

E-Print Network 3.0 - ammonolysis Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pressure nitridation of In addition, numerous examples of ammonolysis reactions tantalum metal... of contact between these grains, minor product of both the ammonolysis of niobium...

365

E-Print Network 3.0 - alloy design challenge Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alloy cost - Co... Responsibilities Oak Ridge National Lab: Alloy design, nitridation optimization, characterization National... Representative Decision ORNL FeAust Alloys...

366

E-Print Network 3.0 - amplifying planar glass Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ft. C. Kistler, and J. M. Poate Summary: materials in this planar technology are silica, phosphosilicate glass, and silicon nitride. The silica... point of view. For in- stance,...

367

E-Print Network 3.0 - aluminium hydroxides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on the powder by heating... process was to convert the oxides or hydroxides to carbides and nitrides by carburizing them with methane Source: Ecole Polytechnique, Centre de...

368

E-Print Network 3.0 - abinit first-principles approach Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Materials Science 100 Trends in elasticity and electronic structure of transition-metal nitrides and carbides from first principles Summary: and carbides. Our...

369

E-Print Network 3.0 - analysing positron annihilation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1995 Summary: Positron Annihilation Characteristics in Perfect and Imperfect Transition Metal Carbides and Nitrides M... kova 22, CZ-616 62 Bmo, CzechRepublic **PositronAnnihilatio...

370

E-Print Network 3.0 - assuring ultra-clean environments Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aug 21-26, 2004. Co-chair of Symposium on Ultra Clean... Catalysis by Metal Sulfides, Carbides, Nitrides and Phosphides for Ultra- ... Source: Guiltinan, Mark - Department of...

371

E-Print Network 3.0 - annihilation lifetime study Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

C1, supplkment au Journal de Physique 111,Volume 5,janvier 1995 Summary: for transition metal carbides and nitrides. The quantities studied are the positron affinity and...

372

E-Print Network 3.0 - axillary region positron Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1995 Summary: Positron Annihilation Characteristics in Perfect and Imperfect Transition Metal Carbides and Nitrides M... kova 22, CZ-616 62 Bmo, CzechRepublic **PositronAnnihilatio...

373

E-Print Network 3.0 - annihilation lifetime technique Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1995 Summary: Positron Annihilation Characteristics in Perfect and Imperfect Transition Metal Carbides and Nitrides M... kova 22, CZ-616 62 Bmo, CzechRepublic **PositronAnnihilatio...

374

Liquid sampling system  

DOE Patents [OSTI]

A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

Larson, L.L.

1984-09-17T23:59:59.000Z

375

Bandgap Engineering of 1-Dimensional Nitride and Oxynitride Materials for Solar Water Splitting  

E-Print Network [OSTI]

1-x O x ) nanotubes were studied using TEM energy dispersivethe band gap energy of GaN:ZnO nanotubes. Samples wereINCA energy dispersive X-ray detector. Different nanotubes

Hahn, Christopher

2012-01-01T23:59:59.000Z

376

Size dependent optical properties of Si quantum dots in Si-rich nitride/Si{sub 3}N{sub 4} superlattice synthesized by magnetron sputtering  

SciTech Connect (OSTI)

A spectroscopic ellipsometry compatible approach is reported for the optical study of Si quantum dots (QDs) in Si-rich nitride/silicon nitride (SRN/Si{sub 3}N{sub 4}) superlattice, which based on Tauc-Lorentz model and Bruggeman effective medium approximation. It is shown that the optical constants and dielectric functions of Si QDs are strongly size dependent. The suppressed imaginary dielectric function of Si QDs exhibits a single broad peak analogous to amorphous Si, which centered between the transition energies E{sub 1} and E{sub 2} of bulk crystalline Si and blue shifted toward E{sub 2} as the QD size reduced. A bandgap expansion observed by the TL model when the size of Si QD reduced is in good agreement with the PL measurement. The bandgap expansion with the reduction of Si QD size is well supported by the first-principles calculations based on quantum confinement.

So, Yong-Heng; Huang, Shujuan; Conibeer, Gavin; Green, Martin A. [ARC Photovoltaics Centre of Excellence, University of New South Wales, Sydney, New South Wales 2052 (Australia); Gentle, Angus [Physics and Advanced Materials, University of Technology Sydney, P. O. Box 123, Broadway, New South Wales 2007 (Australia)

2011-03-15T23:59:59.000Z

377

Fluid sampling system  

DOE Patents [OSTI]

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

Houck, E.D.

1994-10-11T23:59:59.000Z

378

Fluid sampling system  

DOE Patents [OSTI]

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

Houck, Edward D. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

379

Review of corrosion behavior of ceramic heat exchanger materals: Corrosion characteristics of silicon carbide and silicon nitride. Final report, September 11, 1992--March 11, 1993  

SciTech Connect (OSTI)

The present work is a review of the substantial effort that has been made to measure and understand the effects of corrosion with respect to the properties, performance, and durability of various forms of silicon carbide and silicon nitride. The review encompasses corrosion in diverse environments, usually at temperatures of 1000C or higher. The environments include dry and moist oxygen, mixtures of hot gaseous vapors, molten salts, molten metals, and complex environments pertaining to coal ashes and slags.

Munro, R.G.; Dapkunas, S.J.

1993-09-01T23:59:59.000Z

380

Viscous sludge sample collector  

DOE Patents [OSTI]

A vertical core sample collection system for viscous sludge. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

Beitel, George A [Richland, WA

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thermally Nitrided Stainless Steels for Polymer Electrolyte Membrane Fuel Cell Bipolar Plates: Part 2: Beneficial Modification of Passive Layer on AISI446  

SciTech Connect (OSTI)

Thermal nitridation of AISI446 mod-1 superferritic stainless steel for 24 h at 1100 C resulted in an adherent, inward growing surface layer based on (Cr, Fe){sub 2}N{sub 1-x} (x = 0--0.5). The layer was not continuous, and although it resulted in low interfacial contact resistance (ICR) and good corrosion resistance under simulated polymer electrolyte membrane fuel cell (PEMFC) cathodic conditions; poor corrosion resistance was observed under simulated anodic conditions. Nitridation for 2 h at 1100 C resulted in little nitrogen uptake and a tinted surface. Analysis by SEM, XPS, and AES suggested a complex heterogeneous modification of the native passive oxide film by nitrogen rather than the desired microns-thick exclusive Cr-rich nitride layer. Surprisingly, this modification resulted in both good corrosion resistance under simulated cathodic and anodic conditions and low ICR, well over an order of magnitude lower than the untreated alloy. Further, little increase in ICR was observed under passivating polarization conditions. The potential of this phenomenon for PEMFC bipolar plates is discussed.

Wang, Heli [National Renewable Energy Laboratory (NREL); Brady, Michael P [ORNL; More, Karren Leslie [ORNL; Meyer III, Harry M [ORNL; Turner, John [National Renewable Energy Laboratory (NREL)

2004-01-01T23:59:59.000Z

382

Environmental Science: Sample Pathway  

E-Print Network [OSTI]

Environmental Science: Sample Pathway Semester I Semester II Freshman Year CGS Core CGS Core GE 100 Intro to Env Science ES 105 Env Earth Science Sophomore Year CGS Core (CGS NS201 will fulfill CAS BI107 & 124) MA 115 Statistics Summer Environmental Internship Junior Year CH 171 Chem for Health Sciences CH

Goldberg, Bennett

383

Decoupled Sampling for Graphics Pipelines  

E-Print Network [OSTI]

We propose a generalized approach to decoupling shading from visibility sampling in graphics pipelines, which we call decoupled sampling. Decoupled sampling enables stochastic supersampling of motion and defocus blur at ...

Ragan-Kelley, Jonathan Millar

384

Fluid sampling apparatus and method  

DOE Patents [OSTI]

Incorporation of a bellows in a sampling syringe eliminates ingress of contaminants, permits replication of amounts and compression of multiple sample injections, and enables remote sampling for off-site analysis. 3 figs.

Yeamans, D.R.

1998-02-03T23:59:59.000Z

385

Sample introducing apparatus and sample modules for mass spectrometer  

DOE Patents [OSTI]

An apparatus for introducing gaseous samples from a wide range of environmental matrices into a mass spectrometer for analysis of the samples is described. Several sample preparing modules including a real-time air monitoring module, a soil/liquid purge module, and a thermal desorption module are individually and rapidly attachable to the sample introducing apparatus for supplying gaseous samples to the mass spectrometer. The sample-introducing apparatus uses a capillary column for conveying the gaseous samples into the mass spectrometer and is provided with an open/split interface in communication with the capillary and a sample archiving port through which at least about 90 percent of the gaseous sample in a mixture with an inert gas that was introduced into the sample introducing apparatus is separated from a minor portion of the mixture entering the capillary discharged from the sample introducing apparatus.

Thompson, Cyril V. (Knoxville, TN); Wise, Marcus B. (Kingston, TN)

1993-01-01T23:59:59.000Z

386

Sample introducing apparatus and sample modules for mass spectrometer  

DOE Patents [OSTI]

An apparatus for introducing gaseous samples from a wide range of environmental matrices into a mass spectrometer for analysis of the samples is described. Several sample preparing modules including a real-time air monitoring module, a soil/liquid purge module, and a thermal desorption module are individually and rapidly attachable to the sample introducing apparatus for supplying gaseous samples to the mass spectrometer. The sample-introducing apparatus uses a capillary column for conveying the gaseous samples into the mass spectrometer and is provided with an open/split interface in communication with the capillary and a sample archiving port through which at least about 90 percent of the gaseous sample in a mixture with an inert gas that was introduced into the sample introducing apparatus is separated from a minor portion of the mixture entering the capillary discharged from the sample introducing apparatus. 5 figures.

Thompson, C.V.; Wise, M.B.

1993-12-21T23:59:59.000Z

387

Soil sampling kit and a method of sampling therewith  

DOE Patents [OSTI]

A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allow an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds.

Thompson, Cyril V. (Knoxville, TN)

1991-01-01T23:59:59.000Z

388

Soil sampling kit and a method of sampling therewith  

DOE Patents [OSTI]

A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allows an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds. 11 figures.

Thompson, C.V.

1991-02-05T23:59:59.000Z

389

Sample holder with optical features  

DOE Patents [OSTI]

A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

Milas, Mirko; Zhu, Yimei; Rameau, Jonathan David

2013-07-30T23:59:59.000Z

390

Sample Environment Plans and Progress  

E-Print Network [OSTI]

Sample Environment Plans and Progress at the SNS & HFIR SNS HFIR User Group Meeting American Conference on Neutron Scattering Ottawa, Canada June 26 ­ 30, 2010 Lou Santodonato Sample Environment Group our sample environment capabilities Feedback SHUG meetings User surveys Sample Environment Steering

Pennycook, Steve

391

Transition metal carbides, nitrides and borides, and their oxygen containing analogs useful as water gas shift catalysts  

DOE Patents [OSTI]

Mono- and bimetallic transition metal carbides, nitrides and borides, and their oxygen containing analogs (e.g. oxycarbides) for use as water gas shift catalysts are described. In a preferred embodiment, the catalysts have the general formula of M1.sub.A M2.sub.B Z.sub.C O.sub.D, wherein M1 is selected from the group consisting of Mo, W, and combinations thereof; M2 is selected from the group consisting of Fe, Ni, Cu, Co, and combinations thereof; Z is selected from the group consisting of carbon, nitrogen, boron, and combinations thereof; A is an integer; B is 0 or an integer greater than 0; C is an integer; O is oxygen; and D is 0 or an integer greater than 0. The catalysts exhibit good reactivity, stability, and sulfur tolerance, as compared to conventional water shift gas catalysts. These catalysts hold promise for use in conjunction with proton exchange membrane fuel cell powered systems.

Thompson, Levi T.; Patt, Jeremy; Moon, Dong Ju; Phillips, Cory

2003-09-23T23:59:59.000Z

392

Electrical properties of scandium nitride epitaxial films grown on (100) magnesium oxide substrates by molecular beam epitaxy  

SciTech Connect (OSTI)

Scandium nitride (ScN) films were grown on (100) MgO single crystals by a molecular beam epitaxy method. The effects of growth conditions, including [Sc]/[N] ratio, growth temperature, and nitrogen radical state, on the electrical properties of the ScN films were studied. The ScN films comprised many small columnar grains. Hall coefficient measurements confirmed that the ScN films were highly degenerate n-type semiconductors and that the carrier concentration of the ScN films was sensitive to the growth temperature and the nitrogen radical states during the film growth. The carrier concentrations of the ScN films ranged from 10{sup 19}–10{sup 21} cm{sup ?3} while the Hall mobilities ranged from 50–130 cm{sup 2}·V{sup ?1}·s{sup ?1} for undoped films. The temperature-dependent Hall coefficient measurements showed that the carrier concentration is nearly independent of temperature, indicating that the change in resistivity with temperature is explained by a change in the Hall mobility. The temperature-dependence of the Hall mobility was strongly affected by the growth conditions.

Ohgaki, Takeshi; Watanabe, Ken; Adachi, Yutaka; Sakaguchi, Isao; Hishita, Shunichi; Ohashi, Naoki; Haneda, Hajime [Environment and Energy Materials Research Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)] [Environment and Energy Materials Research Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

2013-09-07T23:59:59.000Z

393

Performance analysis of boron nitride embedded armchair graphene nanoribbon metal–oxide–semiconductor field effect transistor with Stone Wales defects  

SciTech Connect (OSTI)

We study the performance of a hybrid Graphene-Boron Nitride armchair nanoribbon (a-GNR-BN) n-MOSFET at its ballistic transport limit. We consider three geometric configurations 3p, 3p + 1, and 3p + 2 of a-GNR-BN with BN atoms embedded on either side (2, 4, and 6 BN) on the GNR. Material properties like band gap, effective mass, and density of states of these H-passivated structures are evaluated using the Density Functional Theory. Using these material parameters, self-consistent Poisson-Schrodinger simulations are carried out under the Non Equilibrium Green's Function formalism to calculate the ballistic n-MOSFET device characteristics. For a hybrid nanoribbon of width ?5?nm, the simulated ON current is found to be in the range of 265??A–280??A with an ON/OFF ratio 7.1 × 10{sup 6}–7.4 × 10{sup 6} for a V{sub DD}?=?0.68?V corresponding to 10?nm technology node. We further study the impact of randomly distributed Stone Wales (SW) defects in these hybrid structures and only 2.5% degradation of ON current is observed for SW defect density of 3.18%.

Chanana, Anuja; Sengupta, Amretashis; Mahapatra, Santanu [Nano Scale Device Research Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560 012 (India)

2014-01-21T23:59:59.000Z

394

Stack sampling apparatus  

SciTech Connect (OSTI)

An apparatus for obtaining samples from a structure includes a support member, at least one stabilizing member, and at least one moveable member. The stabilizing member has a first portion coupled to the support member and a second portion configured to engage with the structure to restrict relative movement between the support member and the structure. The stabilizing member is radially expandable from a first configuration where the second portion does not engage with a surface of the structure to a second configuration where the second portion engages with the surface of the structure.

Lind, Randall F; Lloyd, Peter D; Love, Lonnie J; Noakes, Mark W; Pin, Francois G; Richardson, Bradley S; Rowe, John C

2014-09-16T23:59:59.000Z

395

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the Grand Junction, Colorado, Disposal

396

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the Grand Junction, Colorado,

397

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the Grand Junction, Colorado,and

398

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the Grand Junction, Colorado,andOld

399

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the Grand Junction, Colorado,andOld

400

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the Grand Junction, Colorado,andOldOld

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the Grand Junction,

402

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the Grand Junction,Groundwater and

403

Sample Changes and Issues  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubic Feet)Year JanC.9.3. Receipts8.160Sample

404

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, DisposalRulison,Sampling at

405

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, DisposalRulison,Sampling at4

406

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River, Utah, DisposalRulison,Sampling

407

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28Sacandaga SiteSep NovWater Sampling

408

September 2004 Water Sampling  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28Sacandaga SiteSep NovWaterSampling

409

Fluid sampling tool  

DOE Patents [OSTI]

A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.

Garcia, A.R.; Johnston, R.G.; Martinez, R.K.

1999-05-25T23:59:59.000Z

410

Lasers Used to Make First Boron-Nitride Nanotube Yarn | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERNSemiconductor thin film onof

411

Fluid sampling tool  

DOE Patents [OSTI]

The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

Johnston, Roger G. (Los Alamos, NM); Garcia, Anthony R. E. (Espanola, NM); Martinez, Ronald K. (Santa Cruz, NM)

2001-09-25T23:59:59.000Z

412

Specified assurance level sampling procedure  

SciTech Connect (OSTI)

In the nuclear industry design specifications for certain quality characteristics require that the final product be inspected by a sampling plan which can demonstrate product conformance to stated assurance levels. The Specified Assurance Level (SAL) Sampling Procedure has been developed to permit the direct selection of attribute sampling plans which can meet commonly used assurance levels. The SAL procedure contains sampling plans which yield the minimum sample size at stated assurance levels. The SAL procedure also provides sampling plans with acceptance numbers ranging from 0 to 10, thus, making available to the user a wide choice of plans all designed to comply with a stated assurance level.

Willner, O.

1980-11-01T23:59:59.000Z

413

Ab initio calculations of the physical properties of transition metal carbides and nitrides and possible routes to high-T{sub c} superconductivity  

SciTech Connect (OSTI)

We report ab initio linear-response calculations of the phonon spectra and the electron-phonon interaction for several transition metal carbides and nitrides in a NaCl-type structure. For NbC, the kinetic, optical, and superconducting properties are calculated in detail at various pressures and the normal-pressure results are found to agree well with the experiment. Factors accounting for the relatively low critical temperatures T{sub c} in transition metal compounds with light elements are considered and the possible ways of increasing T{sub c} are discussed.

Maksimov, E. G., E-mail: maksimov@lpi.ru; Ebert, S. V. [Lebedev Physics Institute (Russian Federation); Magnitskaya, M. V.; Karakozov, A. E. [Vereshchagin Institute for High Pressure Physics (Russian Federation)

2007-10-15T23:59:59.000Z

414

Coherent nanocavity structures for enhancement in internal quantum efficiency of III-nitride multiple quantum wells  

SciTech Connect (OSTI)

A “coherent” nanocavity structure has been designed on two-dimensional well-ordered InGaN/GaN nanodisk arrays with an emission wavelength in the green spectral region, leading to a massive enhancement in resonance mode in the green spectra region. By means of a cost-effective nanosphere lithography technique, we have fabricated such a structure on an InGaN/GaN multiple quantum well epiwafer and have observed the “coherent” nanocavity effect, which leads to an enhanced spontaneous emission (SE) rate. The enhanced SE rate has been confirmed by time resolved photoluminescence measurements. Due to the coherent nanocavity effect, we have achieved a massive improvement in internal quantum efficiency with a factor of 88, compared with the as-grown sample, which could be significant to bridge the “green gap” in solid-state lighting.

Kim, T.; Liu, B.; Smith, R.; Athanasiou, M.; Gong, Y.; Wang, T., E-mail: t.wang@sheffield.ac.uk [Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

2014-04-21T23:59:59.000Z

415

Sampling for Bacteria in Wells  

E-Print Network [OSTI]

This publication will instruct you on the proper procedures for collecting a sample from a water well for bacteriological analysis....

Lesikar, Bruce J.

2001-11-15T23:59:59.000Z

416

Sample Residential Program Term Sheet  

Broader source: Energy.gov (indexed) [DOE]

Goal DRAFT U.S. DOE Sample Residential Program Term Sheet - DRAFT Introduction is seeking to develop an energy...

417

Electron Cloud in Steel Beam Pipe vs Titanium Nitride Coated and Amorphous Carbon Coated Beam Pipes in Fermilab's Main Injector  

SciTech Connect (OSTI)

This paper documents the use of four retarding field analyzers (RFAs) to measure electron cloud signals created in Fermilab’s Main Injector during 120 GeV operations. The first data set was taken from September 11, 2009 to July 4, 2010. This data set is used to compare two different types of beam pipe that were installed in the accelerator. Two RFAs were installed in a normal steel beam pipe like the rest of the Main Injector while another two were installed in a one meter section of beam pipe that was coated on the inside with titanium nitride (TiN). A second data run started on August 23, 2010 and ended on January 10, 2011 when Main Injector beam intensities were reduced thus eliminating the electron cloud. This second run uses the same RFA setup but the TiN coated beam pipe was replaced by a one meter section coated with amorphous carbon (aC). This section of beam pipe was provided by CERN in an effort to better understand how an aC coating will perform over time in an accelerator. The research consists of three basic parts: (a) continuously monitoring the conditioning of the three different types of beam pipe over both time and absorbed electrons (b) measurement of the characteristics of the surrounding magnetic fields in the Main Injector in order to better relate actual data observed in the Main Injector with that of simulations (c) measurement of the energy spectrum of the electron cloud signals using retarding field analyzers in all three types of beam pipe.

Backfish, Michael

2013-04-01T23:59:59.000Z

418

Characterization of amorphous hydrogenated carbon nitride films prepared by plasma-enhanced chemical vapor deposition using a helical resonator discharge  

SciTech Connect (OSTI)

Amorphous hydrogenated carbon nitride thin films (a-CN{sub x}:H) have been prepared by plasma-enhanced chemical vapor deposition of N{sub 2} and CH{sub 4} gases using a helical resonator discharge. The structural and optical properties of the deposited a-CN{sub x}:H films have been systematically studied as a function of the substrate temperature and radio frequency (rf) substrate bias. The chemical structure and elemental composition of the a-CN{sub x}:H films were characterized by Fourier transform infrared spectroscopy (FT-IR), x-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The optical properties of the films were evaluated using transmission ultraviolet{endash}visible spectroscopy. The morphology of the films was investigated by scanning electron microscopy and atomic force microscopy. The FT-IR and XPS studies demonstrate the presence of carbon{endash}nitrogen bonds with hydrogenated components in the films. The film composition ratio N/C was found to vary from 0.127 to 0.213 depending on the deposition conditions. The Raman spectra, showing the G and D bands, indicate that the a-CN{sub x}:H films have a graphitic structure. It can be found that the optical band-gap E{sub g} of a-CN{sub x}:H films is associated with graphitic clusters, while the decrease in E{sub g} is correlated with an increase in the size and number of graphitic clusters. Combining the results of Raman and optical measurements, it can be concluded that a progressive graphitization of the films occurs with increasing the substrate temperature and rf substrate bias power, corresponding to bias voltage. {copyright} {ital 1997 American Institute of Physics.}

Kim, J.H.; Ahn, D.H. [LG Electronics Research Center, 16 Woomyeon-Dong, Seocho-Gu, Seoul 137-140 (Korea)] [LG Electronics Research Center, 16 Woomyeon-Dong, Seocho-Gu, Seoul 137-140 (Korea); Kim, Y.H.; Baik, H.K. [Department of Metallurgical Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-ku, Seoul 120-749 (Korea)] [Department of Metallurgical Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-ku, Seoul 120-749 (Korea)

1997-07-01T23:59:59.000Z

419

Manufacturing and Performance Assessment of Stamped, Laser Welded, and Nitrided FeCrV Stainless Steel Bipolar Plates for Proton Exchange Membrane Fuel Cells  

SciTech Connect (OSTI)

A manufacturing and single-cell fuel cell performance study of stamped, laser welded, and gas nitrided ferritic stainless steel foils in an advanced automotive bipolar plate assembly design was performed. Two developmental foil compositions were studied: Fee20Cre4V and Fee23Cre4V wt.%. Foils 0.1 mm thick were stamped and then laser welded together to create single bipolar plate assemblies with cooling channels. The plates were then surface treated by pre-oxidation and nitridation in N2e4H2 based gas mixtures using either a conventional furnace or a short-cycle quartz lamp infrared heating system. Single-cell fuel cell testing was performed at 80 C for 500 h at 0.3 A/cm2 using 100% humidification and a 100%/40% humidification cycle that stresses the membrane and enhances release of the fluoride ion and promotes a more corrosive environment for the bipolar plates. Periodic high frequency resistance potential-current scans during the 500 h fuel cell test and posttest analysis of the membrane indicated no resistance increase of the plates and only trace levels of metal ion contamination.

Brady, Michael P [ORNL; Abdelhamid, Mahmoud [General Motors Technical Center; Dadheech, G [General Motors Technical Center; Bradley, J [General Motors Technical Center; Toops, Todd J [ORNL; Meyer III, Harry M [ORNL; Tortorelli, Peter F [ORNL

2013-01-01T23:59:59.000Z

420

Structures and Energetics of Some Potential Intermediates in Titanium Nitride Chemical Vapor Deposition: TiClm(NH2)n, TiClm(NH2)nNH, and TiClm(NH2)nN. An ab Initio  

E-Print Network [OSTI]

Structures and Energetics of Some Potential Intermediates in Titanium Nitride Chemical Vapor with these basis sets augmented by multiple sets of polarization and diffuse functions using the B3LYP optimized geometries. Bond dissociation energies, heats of atomization, heats of formation, and entropies have been

Schlegel, H. Bernhard

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Post-Award Deliverables Sample (Second Part of Sample Deliverables...  

Broader source: Energy.gov (indexed) [DOE]

Task Orders (IDIQ Attachment. J-4) Sample Statement of Work - Standard Service Offerings for Contractor-Identified Project ESPC TASK ORDER REQUEST FOR PROPOSAL (TO RFP) TEMPLATE...

422

Acceptance sampling using judgmental and randomly selected samples  

SciTech Connect (OSTI)

We present a Bayesian model for acceptance sampling where the population consists of two groups, each with different levels of risk of containing unacceptable items. Expert opinion, or judgment, may be required to distinguish between the high and low-risk groups. Hence, high-risk items are likely to be identifed (and sampled) using expert judgment, while the remaining low-risk items are sampled randomly. We focus on the situation where all observed samples must be acceptable. Consequently, the objective of the statistical inference is to quantify the probability that a large percentage of the unsampled items in the population are also acceptable. We demonstrate that traditional (frequentist) acceptance sampling and simpler Bayesian formulations of the problem are essentially special cases of the proposed model. We explore the properties of the model in detail, and discuss the conditions necessary to ensure that required samples sizes are non-decreasing function of the population size. The method is applicable to a variety of acceptance sampling problems, and, in particular, to environmental sampling where the objective is to demonstrate the safety of reoccupying a remediated facility that has been contaminated with a lethal agent.

Sego, Landon H.; Shulman, Stanley A.; Anderson, Kevin K.; Wilson, John E.; Pulsipher, Brent A.; Sieber, W. Karl

2010-09-01T23:59:59.000Z

423

Adaptive Sampling for Environmental Robotics  

E-Print Network [OSTI]

186, 2003. S. Thrun, “Robotics Mapping: A survey”, Exploringtechnique to environmental robotics applications includingSampling for Environmental Robotics Mohammad Rahimi †,‡‡ ,

Mohammad Rahimi; Richard Pon; Deborah Estrin; William J. Kaiser; Mani Srivastava; Gaurav S. Sukhatme

2003-01-01T23:59:59.000Z

424

Sample Residential Program Term Sheet  

Broader source: Energy.gov [DOE]

A sample for defining and elaborating on the specifics of a clean energy loan program. Author: U.S. Department of Energy

425

Homeowner Soil Sample Information Form  

E-Print Network [OSTI]

Homeowners should submit this form with their soil samples when requesting a soil test from the Texas A&M Soil Testing Laboratory....

Provin, Tony

2007-04-11T23:59:59.000Z

426

Efficiency Improvement of Nitride-Based Solid State Light Emitting Materials -- CRADA Final Report  

SciTech Connect (OSTI)

The development of In{sub x}Ga{sub 1-x} N/GaN thin film growth by Molecular Beam Epitaxy has opened a new route towards energy efficient solid-state lighting. Blue and green LED's became available that can be used to match the whole color spectrum of visible light with the potential to match the eye response curve. Moreover, the efficiency of such devices largely exceeds that of incandescent light sources (tungsten filaments) and even competes favorably with lighting by fluorescent lamps. It is, however, also seen in Figure 1 that it is essential to improve on the luminous performance of green LED's in order to mimic the eye response curve. This lack of sufficiently efficient green LED's relates to particularities of the In{sub x}Ga{sub 1-x}N materials system. This ternary alloy system is polar and large strain is generated during a lattice mismatched thin film growth because of the significantly different lattice parameters between GaN and InN and common substrates such as sapphire. Moreover, it is challenging to incorporate indium into GaN at typical growth temperatures because a miscibility gap exists that can be modified by strain effects. As a result a large parameter space needs exploration to optimize the growth of In{sub x}Ga{sub 1-x}N and to date it is unclear what the detailed physical processes are that affect device efficiencies. In particular, an inhomogeneous distribution indium in GaN modifies the device performance in an unpredictable manner. As a result technology is pushed forward on a trial and error basis in particular in Asian countries such as Japan and Korea, which dominate the market and it is desirable to strengthen the competitiveness of the US industry. This CRADA was initiated to help Lumileds Lighting/USA boosting the performance of their green LED's. The tasks address the distribution of the indium atoms in the active area of their blue and green LED's and its relation to internal and external quantum efficiencies. Procedures to measure the indium distribution with near atomic resolution were developed and applied to test samples and devices that were provided by Lumilids. Further, the optical performance of the device materials was probed by photoluminescence, electroluminescence and time resolved optical measurements. Overall, the programs objective is to provide a physical basis for the development of a simulation program that helps making predictions to improve the growth processes such that the device efficiency can be increased to about 20%. Our study addresses all proposed aspects successfully. Carrier localization, lifetime and recombination as well as the strain-induced generation of electric fields were characterized and modeled. Band gap parameters and their relation to the indium distribution were characterized and modeled. Electron microscopy was developed as a unique tool to measure the formation of indium clusters on a nanometer length scale and it was demonstrated that strain induced atom column displacements can reliably be determined in any materials system with a precision that approaches 2 pm. The relation between the local indium composition x and the strain induced lattice constant c(x) in fully strained In{sub x}Ga{sub 1-x}N quantum wells was found to be: c(x) = 0.5185 + {alpha}x with {alpha} = 0.111 nm. It was concluded that the local indium concentration in the final product can be modulated by growth procedures in a predictable manner to favorably affect external quantum efficiencies that approached target values and that internal quantum efficiencies exceeded them.

Kisielowski, Christian; Weber, Eicke

2010-05-13T23:59:59.000Z

427

Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples  

SciTech Connect (OSTI)

Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and statisticians used carefully thought out designs that systematically and economically provided plans for data collection from the DWPF process. Key shared features of the sampling designs used at DWPF and the Gy sampling methodology were the specification of a standard for sample representativeness, an investigation that produced data from the process to study the sampling function, and a decision framework used to assess whether the specification was met based on the data. Without going into detail with regard to the seven errors identified by Pierre Gy, as excellent summaries are readily available such as Pitard [1989] and Smith [2001], SRS engineers understood, for example, that samplers can be biased (Gy?s extraction error), and developed plans to mitigate those biases. Experiments that compared installed samplers with more representative samples obtained directly from the tank may not have resulted in systematically partitioning sampling errors into the now well-known error categories of Gy, but did provide overall information on the suitability of sampling systems. Most of the designs in this report are related to the DWPF vessels, not the large SRS Tank Farm tanks. Samples from the DWPF Slurry Mix Evaporator (SME), which contains the feed to the DWPF melter, are characterized using standardized analytical methods with known uncertainty. The analytical error is combined with the established error from sampling and processing in DWPF to determine the melter feed composition. This composition is used with the known uncertainty of the models in the Product Composition Control System (PCCS) to ensure that the wasteform that is produced is comfortably within the acceptable processing and product performance region. Having the advantage of many years of processing that meets the waste glass product acceptance criteria, the DWPF process has provided a considerable amount of data about itself in addition to the data from many special studies. Demonstrating representative sampling directly from the large Tank Farm tanks is a difficult, if not unsolvable enterprise due to li

Shine, E. P.; Poirier, M. R.

2013-10-29T23:59:59.000Z

428

E-Print Network 3.0 - ablation enhances age-dependent Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cells. We analyze a novel layer selective laser ablation process. From a passivating stack composed... of 70 nm silicon nitride that we deposit on top of 35 nm of amorphous...

429

E-Print Network 3.0 - amino acids nucleobases Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

< 1 2 3 4 5 > >> 1 Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials Summary: and amino acids on single-walled...

430

E-Print Network 3.0 - alloy quantum dots Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a dilute nitride: InAsNGaAsSb, GaInAsInP and In... . QUANTUM DOT INTERMEDIATE BAND SOLAR CELL MATERIAL SYSTEMS WITH NEGLIGIBLE VALENCE BAND OFFSETS Michael Y... ABSTRACT In...

431

Database Sampling with Functional Dependencies  

E-Print Network [OSTI]

Database Sampling with Functional Dependencies Jes´us Bisbal, Jane Grimson Department of Computer there is a need to prototype the database which the applications will use when in operation. A prototype database can be built by sampling data from an existing database. Including relevant semantic information when

Riera, Jesús Bisbal

432

Sample push-out fixture  

DOE Patents [OSTI]

This invention generally relates to the remote removal of pelletized samples from cylindrical containment capsules. V-blocks are used to receive the samples and provide guidance to push out rods. Stainless steel liners fit into the v-channels on the v-blocks which permits them to be remotely removed and replaced or cleaned to prevent cross contamination between capsules and samples. A capsule holder securely holds the capsule while allowing manual up/down and in/out movement to align each sample hole with the v-blocks. Both end sections contain identical v-blocks; one that guides the drive out screw and rods or manual push out rods and the other to receive the samples as they are driven out of the capsule.

Biernat, John L. (Scotia, NY)

2002-11-05T23:59:59.000Z

433

Sample rotating turntable kit for infrared spectrometers  

DOE Patents [OSTI]

An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

Eckels, Joel Del (Livermore, CA); Klunder, Gregory L. (Oakland, CA)

2008-03-04T23:59:59.000Z

434

Sample Business Plan Framework 3  

Broader source: Energy.gov [DOE]

U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 1: A program seeking to continue operations in the post-grant period as a not-for-profit (NGO) entity.

435

Sample Business Plan Framework 2  

Broader source: Energy.gov [DOE]

U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 1: A program seeking to continue operations in the post-grant period as a not-for-profit (NGO) entity.

436

Sample Business Plan Framework 4  

Broader source: Energy.gov [DOE]

U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 1: A program seeking to continue operations in the post-grant period as a not-for-profit (NGO) entity.

437

Sample Business Plan Framework 1  

Broader source: Energy.gov [DOE]

U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 1: A program seeking to continue operations in the post-grant period as a not-for-profit (NGO) entity.

438

Sampling based on local bandwidth  

E-Print Network [OSTI]

The sampling of continuous-time signals based on local bandwidth is considered in this thesis. In an intuitive sense, local bandwidth refers to the rate at which a signal varies locally. One would expect that signals should ...

Wei, Dennis

2007-01-01T23:59:59.000Z

439

Depth-discrete sampling port  

DOE Patents [OSTI]

A sampling port is provided which has threaded ends for incorporating the port into a length of subsurface pipe. The port defines an internal receptacle which is in communication with subsurface fluids through a series of fine filtering slits. The receptacle is in further communication through a bore with a fitting carrying a length of tubing there which samples are transported to the surface. Each port further defines an additional bore through which tubing, cables, or similar components of adjacent ports may pass.

Pemberton, Bradley E. (Aiken, SC); May, Christopher P. (Columbia, MD); Rossabi, Joseph (Aiken, SC); Riha, Brian D. (Augusta, GA); Nichols, Ralph L. (North Augusta, SC)

1999-01-01T23:59:59.000Z

440

Depth-discrete sampling port  

DOE Patents [OSTI]

A sampling port is provided which has threaded ends for incorporating the port into a length of subsurface pipe. The port defines an internal receptacle which is in communication with subsurface fluids through a series of fine filtering slits. The receptacle is in further communication through a bore with a fitting carrying a length of tubing there which samples are transported to the surface. Each port further defines an additional bore through which tubing, cables, or similar components of adjacent ports may pass.

Pemberton, Bradley E. (Aiken, SC); May, Christopher P. (Columbia, MD); Rossabi, Joseph (Aiken, SC); Riha, Brian D. (Augusta, GA); Nichols, Ralph L. (North Augusta, SC)

1998-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Nitrided Metallic Bipolar Plates  

Broader source: Energy.gov (indexed) [DOE]

April, 2008 * B. Cost (estimated) * Targets (2010) - resistivity < 10 mohm-cm 2 - corrosion < 1 x10 -6 Acm 2 Budget * Total project funding - cost < 5kW - 4530 K (+ 400 K...

442

Sandia National Laboratories: nitride  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialsthe Goal ofco-locatinglight-emittingnitride SSLS

443

Reference Potential source Data type Sampling site Type of samples Number of samples Method of source  

E-Print Network [OSTI]

samples for Saharan dust from Libya back trajectory analysis Kandler et al. 2009 PSA NAF-2 Illite NAF-4 Illite/kaolinite ratio Chlorite/kaolinite ratio Carbonate content Libya (here: central

Meskhidze, Nicholas

444

Inertial impaction air sampling device  

DOE Patents [OSTI]

An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

Dewhurst, K.H.

1987-12-10T23:59:59.000Z

445

Spent nuclear fuel sampling strategy  

SciTech Connect (OSTI)

This report proposes a strategy for sampling the spent nuclear fuel (SNF) stored in the 105-K Basins (105-K East and 105-K West). This strategy will support decisions concerning the path forward SNF disposition efforts in the following areas: (1) SNF isolation activities such as repackaging/overpacking to a newly constructed staging facility; (2) conditioning processes for fuel stabilization; and (3) interim storage options. This strategy was developed without following the Data Quality Objective (DQO) methodology. It is, however, intended to augment the SNF project DQOS. The SNF sampling is derived by evaluating the current storage condition of the SNF and the factors that effected SNF corrosion/degradation.

Bergmann, D.W.

1995-02-08T23:59:59.000Z

446

Inertial impaction air sampling device  

DOE Patents [OSTI]

An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

Dewhurst, Katharine H. (13150 Wenonah SE. Apt. 727, Albuquerque, NM 87123)

1990-01-01T23:59:59.000Z

447

Inertial impaction air sampling device  

DOE Patents [OSTI]

An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

Dewhurst, K.H.

1990-05-22T23:59:59.000Z

448

Sample Licensing Agreements | Partnerships | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards and SecuritySafety Salt LakeSampleSample

449

Offline solid phase microextraction sampling system  

DOE Patents [OSTI]

An offline solid phase microextraction (SPME) sampling apparatus for enabling SPME samples to be taken a number of times from a previously collected fluid sample (e.g. sample atmosphere) stored in a fused silica lined bottle which keeps volatile organics in the fluid sample stable for weeks at a time. The offline SPME sampling apparatus has a hollow body surrounding a sampling chamber, with multiple ports through which a portion of a previously collected fluid sample may be (a) released into the sampling chamber, (b) SPME sampled to collect analytes for subsequent GC analysis, and (c) flushed/purged using a fluidically connected vacuum source and purging fluid source to prepare the sampling chamber for additional SPME samplings of the same original fluid sample, such as may have been collected in situ from a headspace.

Harvey, Chris A. (French Camp, CA)

2008-12-16T23:59:59.000Z

450

Waste tank characterization sampling limits  

SciTech Connect (OSTI)

This document is a result of the Plant Implementation Team Investigation into delayed reporting of the exotherm in Tank 241-T-111 waste samples. The corrective actions identified are to have immediate notification of appropriate Tank Farm Operations Shift Management if analyses with potential safety impact exceed established levels. A procedure, WHC-IP-0842 Section 12.18, ``TWRS Approved Sampling and Data Analysis by Designated Laboratories`` (WHC 1994), has been established to require all tank waste sampling (including core, auger and supernate) and tank vapor samples be performed using this document. This document establishes levels for specified analysis that require notification of the appropriate shift manager. The following categories provide numerical values for analysis that may indicate that a tank is either outside the operating specification or should be evaluated for inclusion on a Watch List. The information given is intended to translate an operating limit such as heat load, expressed in Btu/hour, to an analysis related limit, in this case cesium-137 and strontium-90 concentrations. By using the values provided as safety flags, the analytical laboratory personnel can notify a shift manager that a tank is in potential violation of an operating limit or that a tank should be considered for inclusion on a Watch List. The shift manager can then take appropriate interim measures until a final determination is made by engineering personnel.

Tusler, L.A.

1994-09-02T23:59:59.000Z

451

Sample Internship Posting Department Name  

E-Print Network [OSTI]

Sample Internship Posting Department Name: Internship Title: Location: Description of Organization are examples from other internship postings Interns will: · Analyze potential investments · Shadow team members(s) in ________ is desirable For a list of majors see http://admissions.vanderbilt.edu/major Internship Period: The following

Bordenstein, Seth

452

Environmental surveillance master sampling schedule  

SciTech Connect (OSTI)

This document contains the planned 1994 schedules for routine collection of samples for the Surface Environmental Surveillance Project (SESP), Drinking Water Project, and Ground-Water Surveillance Project. Samples are routinely collected for the SESP and analyzed to determine the quality of air, surface water, soil, sediment, wildlife, vegetation, foodstuffs, and farm products at Hanford Site and surrounding communities. The responsibility for monitoring the onsite drinking water falls outside the scope of the SESP. The Hanford Environmental Health Foundation is responsible for monitoring the nonradiological parameters as defined in the National Drinking Water Standards while PNL conducts the radiological monitoring of the onsite drinking water. PNL conducts the drinking water monitoring project concurrent with the SESP to promote efficiency and consistency, utilize the expertise developed over the years, and reduce costs associated with management, procedure development, data management, quality control and reporting. The ground-water sampling schedule identifies ground-water sampling events used by PNL for environmental surveillance of the Hanford Site.

Bisping, L.E.

1994-02-01T23:59:59.000Z

453

Environmental Analysis & Policy: Sample Pathway  

E-Print Network [OSTI]

Environmental Analysis & Policy: Sample Pathway Semester I Semester II Freshman Year CGS Core CGS Sustainable Development OR Spring GE 425 U.S. Environmental Policy (Senior) GE 309 Intermediate Env Analysis (Fall) EAP Elective Summer Environmental Internship Senior Year GE 420 Env Policy Analysis 4 th Semester

Goldberg, Bennett

454

AUTOMATING GROUNDWATER SAMPLING AT HANFORD  

SciTech Connect (OSTI)

Until this past October, Fluor Hanford managed Hanford's integrated groundwater program for the U.S. Department of Energy (DOE). With the new contract awards at the Site, however, the CH2M HILL Plateau Remediation Company (CHPRC) has assumed responsibility for the groundwater-monitoring programs at the 586-square-mile reservation in southeastern Washington State. These programs are regulated by the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. More than 1,200 wells are sampled each year. Historically, field personnel or 'samplers' have been issued pre-printed forms that have information about the well(s) for a particular sampling evolution. This information is taken from the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS)--official electronic databases. The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and the collected information was posted onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. This is a pilot project for automating this tedious process by providing an electronic tool for automating water-level measurements and groundwater field-sampling activities. The automation will eliminate the manual forms and associated data entry, improve the accuracy of the information recorded, and enhance the efficiency and sampling capacity of field personnel. The goal of the effort is to eliminate 100 percent of the manual input to the database(s) and replace the management of paperwork by the field and clerical personnel with an almost entirely electronic process. These activities will include the following: scheduling the activities of the field teams, electronically recording water-level measurements, electronically logging and filing Groundwater Sampling Reports (GSR), and transferring field forms into the site-wide Integrated Document Management System (IDMS).

CONNELL CW; HILDEBRAND RD; CONLEY SF; CUNNINGHAM DE

2009-01-16T23:59:59.000Z

455

Hanford Site Environmental Surveillance Master Sampling Schedule  

SciTech Connect (OSTI)

This document contains the CY2000 schedules for the routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project. Each section includes sampling locations, sample types, and analyses to be performed.

Bisping, Lynn E.

2000-01-27T23:59:59.000Z

456

Tank farm backlog soil sample analysis plan  

SciTech Connect (OSTI)

This document describes the measures to collect samples, perform testing on samples, and make decisions to obtain a Contained- in Determination for tank farms backlog soil.

Ahlers, J.D., Westinghouse Hanford

1996-07-17T23:59:59.000Z

457

Adaptive Sampling in Hierarchical Simulation  

SciTech Connect (OSTI)

We propose an adaptive sampling methodology for hierarchical multi-scale simulation. The method utilizes a moving kriging interpolation to significantly reduce the number of evaluations of finer-scale response functions to provide essential constitutive information to a coarser-scale simulation model. The underlying interpolation scheme is unstructured and adaptive to handle the transient nature of a simulation. To handle the dynamic construction and searching of a potentially large set of finer-scale response data, we employ a dynamic metric tree database. We study the performance of our adaptive sampling methodology for a two-level multi-scale model involving a coarse-scale finite element simulation and a finer-scale crystal plasticity based constitutive law.

Knap, J; Barton, N R; Hornung, R D; Arsenlis, A; Becker, R; Jefferson, D R

2007-07-09T23:59:59.000Z

458

Environmental surveillance master sampling schedule  

SciTech Connect (OSTI)

Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE). This document contains the planned schedule for routine sample collection for the Surface Environmental Surveillance Project (SESP) and Ground-Water Monitoring Project. Samples for radiological analyses include Air-Particulate Filter, gases and vapor; Water/Columbia River, Onsite Pond, Spring, Irrigation, and Drinking; Foodstuffs/Animal Products including Whole Milk, Poultry and Eggs, and Beef; Foodstuffs/Produce including Leafy Vegetables, Vegetables, and Fruit; Foodstuffs/Farm Products including Wine, Wheat and Alfalfa; Wildlife; Soil; Vegetation; and Sediment. Direct Radiation Measurements include Terrestrial Locations, Columbia River Shoreline Locations, and Onsite Roadway, Railway and Aerial, Radiation Surveys.

Bisping, L E

1992-01-01T23:59:59.000Z

459

Rock Sampling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia BlueRiverwoods,Rock Sampling Details Activities (18) Areas

460

INCOHERENCE AND THE PARAMETRIC TEST FRAMEWORK: MISCONCEIVED RELATIONSHIPS AMONG SAMPLE, SAMPLING DISTRIBUTION, AND POPULATION  

E-Print Network [OSTI]

INCOHERENCE AND THE PARAMETRIC TEST FRAMEWORK: MISCONCEIVED RELATIONSHIPS AMONG SAMPLE, SAMPLING Keywords: Parametric test, sample, population, sampling distributions Parametric tests are frequently parametric tests, nor hold beliefs that are consistent with that framework. The parametric test framework

Yu, Alex

Note: This page contains sample records for the topic "nitride ingan samples" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A novel hohlraum with ultrathin depleted-uranium-nitride coating layer for low hard x-ray emission and high radiation temperature  

E-Print Network [OSTI]

An ultra-thin layer of uranium nitrides (UN) has been coated on the inner surface of the depleted uranium hohlraum (DUH), which has been proved by our experiment can prevent the oxidization of Uranium (U) effectively. Comparative experiments between the novel depleted uranium hohlraum and pure golden (Au) hohlraum are implemented on Shenguang III prototype laser facility. Under the laser intensity of 6*10^14 W/cm2, we observe that, the hard x-ray (> 1.8 keV) fraction of this uranium hohlraum decreases by 61% and the peak intensity of total x-ray flux (0.1 keV ~ 5 keV) increases by 5%. Two dimensional radiation hydrodynamic code LARED are exploited to interpret the above observations. Our result for the first time indicates the advantage of the UN-coated DUH in generating the uniform x-ray field with a quasi Planckian spectrum and thus has important implications in optimizing the ignition hohlraum design.

Guo, Liang; Xing, Peifeng; Li, Sanwei; Yi, Taimin; Kuang, Longyu; Li, Zhichao; Li, Renguo; Wu, Zheqing; Jing, Longfei; Zhang, Wenhai; Zhan, Xiayu; Yang, Dong; Jiang, Bobi; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen; Li, Yongsheng; Liu, Jie; Huo, Wenyi; Lan, Ke

2014-01-01T23:59:59.000Z

462

Analytical and experimental evaluation of joining silicon nitride to metal and silicon carbide to metal for advanced heat engine applications. Final report  

SciTech Connect (OSTI)

This report summarizes the results of Phase 2 of Analytical and Experimental Evaluation of Joining Silicon Nitride to Metal and Silicon Carbide to Metal for Advanced Heat Engine Applications. A general methodology was developed to optimize the joint geometry and material systems for 650{degrees}C applications. Failure criteria were derived to predict the fracture of the braze and ceramic. Extensive finite element analyses (FEA) were performed to examine various joint geometries and to evaluate the affect of different interlayers on the residual stress state. Also, material systems composed of coating materials, interlayers, and braze alloys were developed for the program based on the chemical stability and strength of the joints during processing, and service. The FEA results were compared with experiments using two methods: (1) an idealized strength relationship of the ceramic, and (2) a probabilistic analysis of the ceramic strength (NASA CARES). The results showed that the measured strength of the joint reached 30--80% of the strength predicted by FEA. Also, potential high-temperature braze alloys were developed and evaluated for the high-temperature application of ceramic-metal joints. 38 tabs, 29 figs, 20 refs.

Kang, S.; Selverian, J.H.; O`Neil, D.; Kim, H. [GTE Labs., Inc., Waltham, MA (US); Kim, K. [Brown Univ., Providence, RI (US). Div. of Engineering

1993-05-01T23:59:59.000Z

463

Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures  

SciTech Connect (OSTI)

Efficient semiconductor optical emitters in the deep-ultraviolet spectral window are encountering some of the most deep rooted problems of semiconductor physics. In III-Nitride heterostructures, obtaining short-wavelength photon emission requires the use of wide bandgap high Al composition AlGaN active regions. High conductivity electron (n-) and hole (p-) injection layers of even higher bandgaps are necessary for electrical carrier injection. This approach requires the activation of very deep dopants in very wide bandgap semiconductors, which is a difficult task. In this work, an approach is proposed and experimentally demonstrated to counter the challenges. The active region of the heterostructure light emitting diode uses ultrasmall epitaxially grown GaN quantum dots. Remarkably, the optical emission energy from GaN is pushed from 365?nm (3.4?eV, the bulk bandgap) to below 240?nm (>5.2?eV) because of extreme quantum confinement in the dots. This is possible because of the peculiar bandstructure and band alignments in the GaN/AlN system. This active region design crucially enables two further innovations for efficient carrier injection: Tunnel injection of carriers and polarization-induced p-type doping. The combination of these three advances results in major boosts in electroluminescence in deep-ultraviolet light emitting diodes and lays the groundwork for electrically pumped short-wavelength lasers.

Verma, Jai, E-mail: jverma@nd.edu; Islam, S. M.; Protasenko, Vladimir; Kumar Kandaswamy, Prem; Xing, Huili; Jena, Debdeep [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

2014-01-13T23:59:59.000Z

464

Sample introduction apparatus for a flow cytometer  

DOE Patents [OSTI]

A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning HPLC tubing and fittings may be used in a manner which facilitates removable of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it.

Van den Engh, Ger (Seattle, WA)

1998-01-01T23:59:59.000Z

465

Sample introduction system for a flow cytometer  

DOE Patents [OSTI]

A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning, HPLC tubing and fittings may be used in a manner which facilitates removing of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it. 3 figs.

Engh, G. van den

1997-02-11T23:59:59.000Z

466

Sample introduction system for a flow cytometer  

DOE Patents [OSTI]

A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning, HPLC tubing and fittings may be used in a manner which facilitates removing of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it.

Van den Engh, Ger (Seattle, WA)

1997-01-01T23:59:59.000Z

467

Sample introduction apparatus for a flow cytometer  

DOE Patents [OSTI]

A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning HPLC tubing and fittings may be used in a manner which facilitates removable of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it. 3 figs.

Van den Engh, G.

1998-03-10T23:59:59.000Z

468

Synchronized sampling improves fault location  

SciTech Connect (OSTI)

Transmission line faults must be located accurately to allow maintenance crews to arrive at the scene and repair the faulted section as soon as possible. Rugged terrain and geographical layout cause some sections of power transmission lines to be difficult to reach. In the past, a variety of fault location algorithms were introduced as either an add-on feature in protective relays or stand-alone implementation in fault locators. In both cases, the measurements of current and voltages were taken at one terminal of a transmission line only. Under such conditions, it may become difficult to determine the fault location accurately, since data from other transmission line ends are required for more precise computations. In the absence of data from the other end, existing algorithms have accuracy problems under several circumstances, such as varying switching and loading conditions, fault infeed from the other end, and random value of fault resistance. Most of the one-end algorithms were based on estimation of voltage and current phasors. The need to estimate phasors introduces additional difficulty in high-speed tripping situations where the algorithms may not be fast enough in determining fault location accurately before the current signals disappear due to the relay operation and breaker opening. This article introduces a unique concept of high-speed fault location that can be implemented either as a simple add-on to the digital fault recorders (DFRs) or as a stand-alone new relaying function. This advanced concept is based on the use of voltage and current samples that are synchronously taken at both ends of a transmission line. This sampling technique can be made readily available in some new DFR designs incorporating receivers for accurate sampling clock synchronization using the satellite Global Positioning System (GPS).

Kezunovic, M. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States); Perunicic, B. [Lamar Univ., Beaumont, TX (United States)] [Lamar Univ., Beaumont, TX (United States)

1995-04-01T23:59:59.000Z

469

Licensing Guide and Sample License  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceE CAnalytical InstrumentationEnergy

470

Sample Environments at Sector 30  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards and SecuritySafety Salt LakeSample

471

TRU waste-sampling program  

SciTech Connect (OSTI)

As part of a TRU waste-sampling program, Los Alamos National Laboratory retrieved and examined 44 drums of /sup 238/Pu- and /sup 239/Pu-contaminated waste. The drums ranged in age from 8 months to 9 years. The majority of drums were tested for pressure, and gas samples withdrawn from the drums were analyzed by a mass spectrometer. Real-time radiography and visual examination were used to determine both void volumes and waste content. Drum walls were measured for deterioration, and selected drum contents were reassayed for comparison with original assays and WIPP criteria. Each drum tested at atmospheric pressure. Mass spectrometry revealed no problem with /sup 239/Pu-contaminated waste, but three 8-month-old drums of /sup 238/Pu-contaminated waste contained a potentially hazardous gas mixture. Void volumes fell within the 81 to 97% range. Measurements of drum walls showed no significant corrosion or deterioration. All reassayed contents were within WIPP waste acceptance criteria. Five of the drums opened and examined (15%) could not be certified as packaged. Three contained free liquids, one had corrosive materials, and one had too much unstabilized particulate. Eleven drums had the wrong (or not the most appropriate) waste code. In many cases, disposal volumes had been inefficiently used. 2 refs., 23 figs., 7 tabs.

Warren, J.L.; Zerwekh, A.

1985-08-01T23:59:59.000Z

472

X-ray line broadening studies on aluminum nitride, titanium carbide and titanium diboride modified by high pressure shock loading  

SciTech Connect (OSTI)

Powders of AlN, TiC and TiB/sub 2/ have been subjected to controlled shock loading with peak pressures in the samples between 14 to 27 GPa and preserved for post-shock study. Broadened x-ray diffraction peak profiles are analyzed by a simplified method and show increases in residual lattice strain and small decreases in crystallite size. Strain values range from 10/sup -5/ to 10/sup -4/ for TiB/sub 2/ and to values larger than 10/sup -3/ for TiC and AlN.

Morosin, B.; Graham, R.A.

1983-01-01T23:59:59.000Z

473

Method and apparatus for data sampling  

DOE Patents [OSTI]

A method and apparatus for sampling radiation detector outputs and determining event data from the collected samples. The method uses high speed sampling of the detector output, the conversion of the samples to digital values, and the discrimination of the digital values so that digital values representing detected events are determined. The high speed sampling and digital conversion is performed by an A/D sampler that samples the detector output at a rate high enough to produce numerous digital samples for each detected event. The digital discrimination identifies those digital samples that are not representative of detected events. The sampling and discrimination also provides for temporary or permanent storage, either serially or in parallel, to a digital storage medium.

Odell, Daniel M. C. (Aiken, SC)

1994-01-01T23:59:59.000Z

474