Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

FUMIGATION, GROSS NITROGEN TRANSFORMATIONS, N-15, NITRATE, RATES, SOIL  

NLE Websites -- All DOE Office Websites (Extended Search)

FUMIGATION, GROSS NITROGEN TRANSFORMATIONS, N-15, FUMIGATION, GROSS NITROGEN TRANSFORMATIONS, N-15, NITRATE, RATES, SOIL 1909 Pushnik, J.C., R.S. Demaree, J.L.J. Houpis, W.B. Flory, S.M. Bauer, and P.D. Anderson. 1995. The effect of elevated carbon dioxide on a Sierra-Nevadan dominant species: Pinus ponderosa. Journal of Biogeography 22(2-3):249-254. The impact of increasing atmospheric CO2 has not been fully evaluated on western coniferous forest species. Two year old seedlings of Pinus ponderosa were grown in environmentally controlled chambers under increased CO2 conditions (525 mu L L(-1) and 700 mu L L(-1)) for 6 months. These trees exhibited morphological, physiological and biochemical alterations when compared to our controls (350 mu L L(- 1)). Analysis of whole plant biomass distribution has shown no

2

ORNL DAAC, global soil respiration rates  

NLE Websites -- All DOE Office Websites (Extended Search)

W. Raich and W. H. Schlesinger, the newly released data set contains soil respiration rates from sites in terrestrial and wetland ecosystems as reported in scientific literature...

3

Laboratory scale vitrification of low-level radioactive nitrate salts and soils from the Idaho National Engineering Laboratory  

SciTech Connect

INEL has radiologically contaminated nitrate salt and soil waste stored above and below ground in Pad A and the Acid Pit at the Radioactive Waste Management Complex. Pad A contain uranium and transuranic contaminated potassium and sodium nitrate salts generated from dewatered waste solutions at the Rocky Flats Plant. The Acid Pit was used to dispose of liquids containing waste mineral acids, uranium, nitrate, chlorinated solvents, and some mercury. Ex situ vitrification is a high temperature destruction of nitrates and organics and immobilizes hazardous and radioactive metals. Laboratory scale melting of actual radionuclides containing INEL Pad A nitrate salts and Acid Pit soils was performed. The salt/soil/additive ratios were varied to determine the range of glass compositions (resulted from melting different wastes); maximize mass and volume reduction, durability, and immobilization of hazardous and radioactive metals; and minimize viscosity and offgas generation for wastes prevalent at INEL and other DOE sites. Some mixtures were spiked with additional hazardous and radioactive metals. Representative glasses were leach tested and showed none. Samples spiked with transuranic showed low nuclide leaching. Wasteforms were two to three times bulk densities of the salt and soil. Thermally co-processing soils and salts is an effective remediation method for destroying nitrate salts while stabilizing the radiological and hazardous metals they contain. The measured durability of these low-level waste glasses approached those of high-level waste glasses. Lab scale vitrification of actual INEL contaminated salts and soils was performed at General Atomics Laboratory as part of the INEL Waste Technology Development and Environmental Restoration within the Buried Waste Integrated Demonstration Program.

Shaw, P. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Anderson, B. [General Atomics, San Diego, CA (United States). NRT Div.; Davis, D. [Envitco Inc., Toledo, OH (United States)

1993-07-01T23:59:59.000Z

4

Ecohydrological Analysis of the Transport of Nitrate and Ammonium in Sandy Desert Soils in Southern California  

E-Print Network (OSTI)

an Unsaturated Zone of a Sandy Loam Field. Soil Science 176:sorption of ammonium by sandy soil in fixed bed columns:and Evaporation in a Sandy Column. Soil Science Society of

Scanlan, Julie Marie

2012-01-01T23:59:59.000Z

5

U.S. Soil and Mineralogy Data and Weathering Rates  

Science Conference Proceedings (OSTI)

Deposition of sulfur and nitrogen compounds as rain, snow, and fog, as well as dry deposition in gas and particulate forms, can lead to the formation of sulfuric and nitric acids in soils and surface waters, resulting in decreased pH and alkalinity, higher aluminum concentrations, and increased leaching of base cations. This report evaluates methods to estimate base cation weathering rates for use in watershed simulations and in critical load calculations developed to protect surface waters and ...

2013-12-17T23:59:59.000Z

6

Corrosion Rate, Effect of Soil Properties: Development of a Sensor System to Calculate Corrosion Rates  

Science Conference Proceedings (OSTI)

This report addresses corrosion of substation ground grids and the development of a corrosion sensor system and supporting algorithms that can be used in the field to quickly estimate the corrosion rate of a metal in soils of low resistivity.The system is based on the linear polarization resistance (LPR) technique, an electrochemical method of calculating corrosion rates by measuring the relationship between electrochemical potential and the electric current between electrodes. ...

2013-12-16T23:59:59.000Z

7

Revegetation of an Acid Mine Drainage - Impacted Soil Using Low Rates of Lime and Compost.  

E-Print Network (OSTI)

??AbstractA study was designed to determine whether a degraded soil overlain by acid mine drainage (AMD) precipitates could be remediated with low rates of lime… (more)

Lupton, Mary Kay

2008-01-01T23:59:59.000Z

8

Accumulation and replacement of exchangeable sodium in soils of Southeast Texas under turfgrass and its effect on soil infiltration rate  

E-Print Network (OSTI)

Many municipal water supplies in Southeast Texas have a relatively high level of Ne and low total dissolved solids. Smectitic clays which respond to wetting by swelling, especially when wetted with high Na waters of low salinity are the major clays in soils of this area. This study assessed the degree of Na accumulation on cation exchange sites as affected by gypsum treatments in soils that support turfgrass (bermudagrass) and the response of soil infiltration rate to different rates of gypsum amendment by using rainfall simulation. A field experiment was conducted on a sodic, non-saline Boonville soil (fine, montmorillonitic, thennic Ruptic Vertic Albaqualf) amended with gypsum at rates equivalent to 5 0%, I 00% and 200% of the exchangeable Na in the soil to a depth of 15 cm. Application of gypsum resulted in similar infiltration rates (IR) which were lower than the untreated plots suggesting a significant difference between treated and untreated soils 9 wk after application. However, at 36 wk after application, treated and untreated soils had similar IR with no statistical difference between treatments. Soils of the study area varied somewhat in textural class, but generally had more than 20 % clay within the 0-IO cm depth. Clay content in the 0-10 cm depth was not correlated with IR at the 20-min measurement. These results suggest the channels developed by roots may enable water to enter the soil in spite of clay content and degree of sodic character. The gypsum treatments statistically affected the levels of extractable Ca and Na in some plots and some depths. Treated plots had higher extractable Ca than untreated plots for the 01 0 cm depth for all sites, but treatment rates did not show a significant difference for each site in the same depth. Levels of extractable Na were statistically lower for treated plots than untreated ones for the 0-I 0 cm depth at all sites. For all sites gypsum application did not have significant effects on levels of extractable Mg and K at all depths and times. Even though the pH of the soils tended to decrease with application of gypsum, untreated soils also showed a decrease in pH over the course of the study and pH was not statistically significant.

Aydemir, Salih

1996-01-01T23:59:59.000Z

9

Rate of flow of leachate through clay soil liners  

SciTech Connect

The objective of the research was to measure the time of travel (TOT) of inorganic solutes through laboratory columns of compacted clay, to determine the physical and geochemical parameters that controlled solute transport through the soil columns, and to compare measured and predicted TOT's. Two clay soils were used: kaolinite (a low-plasticity, commercially-produced clay) and Lufkin clay (a highly plastic, naturally-occurring clay soil). Anionic tracers were chloride and bromide; potassium and zinc were the cationic tracers. Diffusion cells were designed, constructed, and used to measure the effective diffusion coefficient of the tracers in the two soils. Diffusion coefficients for anions were typically 0.000002 to 0.000007 sq cm/s; somewhat lower values were determined for cations. Column tests showed that the effective porosity ratio (defined as effective divided by total porosity) increased with increasing hydraulic gradient in kaolinite from a low of about 0.25 at a gradient of 1 to a high of 1 at a gradient of 20. With Lufkin clay, the effective porosity ratio was between 0.02 and 0.16. Breakthrough times were controlled much more by the low effective porosities than by molecular diffusion. The computer program SOILINER predicted times of travel that were larger than actual TOT's by a factor of up to 52. The failure to account for effective porosity ratios less than 1 was the cause for the poor predictions from SOILINER.

Daniel, D.E.; Shackelford, C.D.; Liao, W.P.; Liljestrand, H.M.

1991-06-01T23:59:59.000Z

10

Denitrification rates in a wastewater-irrigated forest soil in New Zealand  

SciTech Connect

Denitrification is considered to be an important N removal process in land-based wastewater treatment systems, although in situ denitrification rates have rarely been reported. The authors investigated the contribution of denitrification to N removal in a land treatment system by measuring in situ denitrification rates for 12 mo in a Monterey pine (Pinus radiata D. Don) forest irrigated with tertiary-treated wastewater. The variability of denitrification rates was investigated using a nested field design that divided the land treatment system into four spatial components (irrigation block, topographic position, field site, and sample plot) and two temporal components (sample period, sample day). Denitrification was measured using undisturbed soil cores collected daily, for six consecutive days on 21 occasions throughout the year. Soil moisture content, NO{sub 3} concentration, available C, denitrifying enzyme activity, and temperature also were measured. The annual denitrification rate in the irrigated soil was 2.4 kg N ha{sup {minus}1} yr{sup {minus}1}, and only slightly higher than the unirrigated soil. Temporal effects contributed more than spatial effects to the overall variation in denitrification rates. Multiple regression analysis showed that soil factors could only explain 29% of the variation in denitrification rates. Soil water-filled porosity was low in the land treatment system, and less than the critical threshold value determined in a laboratory study. The authors concluded that denitrification in this land treatment system studied was limited by excessive aeration in the free-draining soils.

Barton, L.; McLay, C.D.A.; Schipper, L.A.; Smith, C.T.

1999-12-01T23:59:59.000Z

11

TREATMENT OF AMMONIUM NITRATE SOLUTIONS  

DOE Patents (OSTI)

The treatment of waste solutions obtained in the processing of neutron- irradiated uranium containing fission products and ammonium nitrate is described. The object of this process is to provide a method whereby the ammonium nitrate is destroyed and removed from the solution so as to permit subsequent concentration of the solution.. In accordance with the process the residual nitrate solutions are treated with an excess of alkyl acid anhydride, such as acetic anhydride. Preferably, the residual nitrate solution is added to an excess of the acetic anhydride at such a rate that external heat is not required. The result of this operation is that the ammonium nitrate and acetic anhydride react to form N/sub 2/ O and acetic acid.

Boyer, T.W.; MacHutchin, J.G.; Yaffe, L.

1958-06-10T23:59:59.000Z

12

Alkali metal nitrate purification  

DOE Patents (OSTI)

A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

1986-02-04T23:59:59.000Z

13

ELECTROLYTIC OXIDATION OF ZIRCONIUM IN NITRATE SOLUTIONS  

SciTech Connect

Zirconiurn alloys used in the fabrication of nuclear fuel elements can be disintegrated and converted to insoluble oxides by electrolytic treatment in concentrated nitrate solutions. This reaction shows promise as a technique for reprocessing nuclear fuels clad with Zircaloy-2. For a particular applied voltage, nitric acid achieves the highest rate of attack, but the reaction can be carried out at rates of 2 mg/(cm/sup 2/)(min) or greater in either 7.5M sodium nitrate or 2.3M aluminum nitrate. A reaction rate of 7 mg/(cm/sup 2/) (min) can be easily attained in either 8M nitric acid or 7.5M sodium nitrate. The rate of reaction is a function of the temperature and tho applied voltage. An as-yet unsolved problem is the carry--down of uranium with the insoluble zirconium oxide product. (auth)

Bomar, M.R.

1961-12-29T23:59:59.000Z

14

Soil  

NLE Websites -- All DOE Office Websites (Extended Search)

Soil carbon sequestration and land-use change: processes and potential W . M . P O S T * and K . C . K W O N * Environmental Sciences Division, Oak Ridge National Laboratory,...

15

Thermochemical nitrate destruction  

DOE Patents (OSTI)

A method is disclosed for denitrification of nitrates and nitrates present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200.degree. C. to about 600.degree. C., and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

Cox, John L. (Richland, WA); Hallen, Richard T. (Richland, WA); Lilga, Michael A. (Richland, WA)

1992-01-01T23:59:59.000Z

16

Drinking Water Problems: Nitrates  

E-Print Network (OSTI)

High levels of nitrates in drinking water can be harmful for very young infants and susceptible adults. This publication explains how people are exposed to nitrates, what health effects are caused by them in drinking water and how to remove them.

Dozier, Monty; Melton, Rebecca; Hare, Michael; Hopkins, Janie; Lesikar, Bruce J.

2008-03-28T23:59:59.000Z

17

Electrolytic production of uranous nitrate  

SciTech Connect

Efficient production of uranous nitrate is important in nuclear fuel reprocessing because U(IV) acts as a plutonium reductant in solvent extraction and can be coprecipitated with plutonium and/or throium as oxalates during fuel reprocessing. Experimental conditions are described for the efficient electrolytic production of uranous nitrate for use as a reductant in the SRP Purex process. The bench-scale, continuous-flow, electrolysis cell exhibits a current efficiency approaching 100% in combination with high conversion rates of U(VI) to U(IV) in simulated and actual SRP Purex solutions. High current efficiency is achieved with a voltage-controlled mercury-plated platinum electrode and the use of hydrazine as a nitrite scavenger. Conversion of U(VI) to U(IV) proceeds at 100% efficiency. Cathodic gas generation is minimal. The low rate of gas generation permits a long residence time within the cathode, a necessary condition for high conversions on a continuous basis. Design proposals are given for a plant-scale, continuous-flow unit to meet SRP production requirements. Results from the bench-scale tests indicate that an 8-kW unit can supply sufficient uranous nitrate reductant to meet the needs of the Purex process at SRP.

Orebaugh, E.G.; Propst, R.C.

1980-04-01T23:59:59.000Z

18

Thermochemical nitrate destruction  

DOE Patents (OSTI)

A method is disclosed for denitrification of nitrates and nitrites present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200 C to about 600 C, and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

Cox, J.L.; Hallen, R.T.; Lilga, M.A.

1992-06-02T23:59:59.000Z

19

Laboratory evaluation of the constant rate of strain and constant head techniques for measurement of the hydraulic conductivity of fine grained soils  

E-Print Network (OSTI)

This thesis evaluates the constant rate of strain and constant head techniques for measurement of the hydraulic conductivity of fine grained soils. A laboratory program compares hydraulic conductivity measurements made ...

Adams, Amy Lynn

2011-01-01T23:59:59.000Z

20

Thermochemical nitrate reduction  

DOE Green Energy (OSTI)

A series of preliminary experiments was conducted directed at thermochemically converting nitrate to nitrogen and water. Nitrates are a major constituent of the waste stored in the underground tanks on the Hanford Site, and the characteristics and effects of nitrate compounds on stabilization techniques must be considered before permanent disposal operations begin. For the thermochemical reduction experiments, six reducing agents (ammonia, formate, urea, glucose, methane, and hydrogen) were mixed separately with {approximately}3 wt% NO{sub 3}{sup {minus}} solutions in a buffered aqueous solution at high pH (13); ammonia and formate were also mixed at low pH (4). Reactions were conducted in an aqueous solution in a batch reactor at temperatures of 200{degrees}C to 350{degrees}C and pressures of 600 to 2800 psig. Both gas and liquid samples were analyzed. The specific components analyzed were nitrate, nitrite, nitrous oxide, nitrogen, and ammonia. Results of experimental runs showed the following order of nitrate reduction of the six reducing agents in basic solution: formate > glucose > urea > hydrogen > ammonia {approx} methane. Airnmonia was more effective under acidic conditions than basic conditions. Formate was also effective under acidic conditions. A more thorough, fundamental study appears warranted to provide additional data on the mechanism of nitrate reduction. Furthermore, an expanded data base and engineering feasibility study could be used to evaluate conversion conditions for promising reducing agents in more detail and identify new reducing agents with improved performance characteristics.

Cox, J.L.; Lilga, M.A.; Hallen, R.T.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Aluminum nitrate recrystallization and recovery from liquid extraction raffinates  

SciTech Connect

The solid sludges resulting form biodenitrification of discarded aluminum nitrate are the largest Y-12 Plant process solid waste. Aluminum nitrate feedstocks also represent a major plant materials cost. The chemical constraints on aluminum nitrate recycle were investigated to determine the feasibility of increasing recycle while maintaining acceptable aluminum nitrate purity. Reported phase behavior of analogous systems, together with bench research, indicated that it would be possible to raise the recycle rate from 35% to between 70 and 90% by successive concentration and recrystallization of the mother liquor. A full scale pilot test successfully confirmed the ability to obtain 70% recycle in existing process equipment.

Griffith, W.L.; Compere, A.L.; Googin, J.M.; Huxtable, W.P.

1991-09-01T23:59:59.000Z

22

Final Report for DOE grant no. DE-FG02-04ER63883: Can soil genomics predict the impact of precipitation on nitrous oxide flux from soil  

SciTech Connect

Nitrous oxide is a potent greenhouse gas that is released by microorganisms in soil. However, the production of nitrous oxide in soil is highly variable and difficult to predict. Future climate change may have large impacts on nitrous oxide release through alteration of precipitation patterns. We analyzed DNA extracted from soil in order to uncover relationships between microbial processes, abundance of particular DNA sequences and net nitrous oxide fluxes from soil. Denitrification, a microbial process in which nitrate is used as an electron acceptor, correlated with nitrous oxide flux from soil. The abundance of ammonia oxidizing archaea correlated positively, but weakly, with nitrous oxide production in soil. The abundance of bacterial genes in soil was negatively correlated with gross nitrogen mineralization rates and nitrous oxide release from soil. We suggest that the most important control over nitrous oxide production in soil is the growth and death of microorganisms. When organisms are growing nitrogen is incorporated into their biomass and nitrous oxide flux is low. In contrast, when microorganisms die, due to predation or infection by viruses, inorganic nitrogen is released into the soil resulting in nitrous oxide release. Higher rates of precipitation increase access to microorganisms by predators or viruses through filling large soil pores with water and therefore can lead to large releases of nitrous oxide from soil. We developed a new technique, stable isotope probing with 18O-water, to study growth and mortality of microorganisms in soil.

Egbert Schwartz

2008-12-15T23:59:59.000Z

23

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

Marketing > RATES Marketing > RATES RATES Current Rates Past Rates 2006 2007 2008 2009 2010 2011 2012 Rates Schedules Power CV-F13 CPP-2 Transmissions CV-T3 CV-NWT5 PACI-T3 COTP-T3 CV-TPT7 CV-UUP1 Ancillary CV-RFS4 CV-SPR4 CV-SUR4 CV-EID4 CV-GID1 Future and Other Rates SNR Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K)

24

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning & Projects Planning & Projects Power Marketing Rates You are here: SN Home page > Power Marketing > RATES Rates and Repayment Services Rates Current Rates Power Revenue Requirement Worksheet (FY 2014) (Oct 2013 - Sep 2014) (PDF - 30K) PRR Notification Letter (Sep 27, 2013) (PDF - 959K) FY 2012 FP% True-Up Calculations(PDF - 387K) Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) PRR Forecast FY14-FY17 (May 23, 2013) (PDF - 100K) Forecasted Transmission Rates (May 2013) (PDF - 164K) Past Rates 2013 2012 2011 2010 2009 Historical CVP Transmission Rates (April 2013) (PDF - 287K) Rate Schedules Power - CV-F13 - CPP-2 Transmission - CV-T3 - CV-NWT5 - PACI-T3 - COTP-T3 - CV-TPT7 - CV-UUP1 Ancillary - CV-RFS4 - CV-SPR4 - CV-SUR4 - CV-EID4 - CV-GID1 Federal Register Notices - CVP, COTP and PACI

25

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

RATES RATES Rates Document Library SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K) Appendix D - Western Transmission System Facilities Map (PDF - 274K) Appendix E - Estimated FY12 FP and BR Customer (PDF - 1144K) Appendix F - Forecasted Replacements and Additions FY11 - FY16 (PDF - 491K) Appendix G - Definitions (PDF - 1758K) Appendix H - Acronyms (PDF - 720K)

26

Calcium nitrate explosive composition  

SciTech Connect

A blasting agent is composed of about 40% by wt of a mixture of calcium nitrate, water, a second inorganic oxidizing salt, and a water miscible organic fuel. These 4 components are provided in proportions to each other so as to provide an effective blasting agent. Optionally, up to 60% of additives well known in the explosives art, e.g., organic and inorganic fuels, sensitizers, density control agents, thickeners and gelling agents, inorganic nitrate based explosive compositions, can be incorporated into the blasting agent to provide certain desired characteristics. (42 claims)

Clark, W.F.; Slykhouse, T.E.

1974-10-01T23:59:59.000Z

27

Comparison of radon fluxes with gamma-radiation exposure rates and soil /sup 226/Ra concentrations  

Science Conference Proceedings (OSTI)

Radon fluxes and contact gamma-radiation-exposure rates were measured at the grid points of rectangular grids on three properties in Edgemont, South Dakota that were known to have deposits of residual radioactivity relatively near to the surface. The coefficient of determination, r/sup 2/, between the radon fluxes and the contact gamma-radiation-exposure rates varied from 0.89 to 0.31 for the three properties. The property having the highest fluxes and residual radioactivity of relatively uniform depth showed the highest correlation between fluxes and exposure rates, and the property having residual radioactivity that varied considerably in depth showed the lowest. Correlations between fluxes and /sup 226/Ra concentrations measured in boreholes that varied in depth from 60 to 195 cm were lower than those between fluxes and exposure rates, indicating that exposure rates are better than /sup 226/Ra measurements for detecting elevated radon fluxes from near-surface deposits. Measurements made on one property at two different times indicated that if the average flux were determined from a large number (40) of measurements at one time, the average flux at a later time could be estimated from a few measurements using the assumption that the change in the flux at individual locations will be equal to the change in the average flux. Flux measurements around two buildings showing elevated indoor radon-daughter concentrations, but around which no residual radioactivity had been discovered by /sup 226/Ra and gamma-radiation measurements, provided no clear indication of the presence of such material, possibly because none was present.

Young, J.A.; Thomas, V.W.

1984-04-01T23:59:59.000Z

28

Energetic Material – Electro Nitration  

INL has developed an improved method of nitrating a nitro compound by oxidizing a chemical mediator in the presence of a voltage in order to produce an oxidizing agent. Then, the agent reacts with a nitro compound and ion source in a solution in order ...

29

A dynamic soil chamber system coupled with a tunable diode laser for online measurements of delta-13C, delta-18O, and efflux rate of soil respired CO2  

Science Conference Proceedings (OSTI)

High frequency observations of the stable isotopic composition of CO(2) effluxes from soil have been sparse due in part to measurement challenges. We have developed an open-system method that utilizes a flow-through chamber coupled to a tunable diode laser (TDL) to quantify the rate of soil CO(2) efflux and its delta(13)C and delta(18)O values (delta(13)C(R) and delta(18)O(R), respectively). We tested the method first in the laboratory using an artificial soil test column and then in a semi-arid woodland. We found that the CO(2) efflux rates of 1.2 to 7.3 micromol m(-2) s(-1) measured by the chamber-TDL system were similar to measurements made using the chamber and an infrared gas analyzer (IRGA) (R(2) = 0.99) and compared well with efflux rates generated from the soil test column (R(2) = 0.94). Measured delta(13)C and delta(18)O values of CO(2) efflux using the chamber-TDL system at 2 min intervals were not significantly different from source air values across all efflux rates after accounting for diffusive enrichment. Field measurements during drought demonstrated a strong dependency of CO(2) efflux and isotopic composition on soil water content. Addition of water to the soil beneath the chamber resulted in average changes of +6.9 micromol m(-2) s(-1), -5.0 per thousand, and -55.0 per thousand for soil CO(2) efflux, delta(13)C(R) and delta(18)O(R), respectively. All three variables initiated responses within 2 min of water addition, with peak responses observed within 10 min for isotopes and 20 min for efflux. The observed delta(18)O(R) was more enriched than predicted from temperature-dependent H(2)O-CO(2) equilibration theory, similar to other recent observations of delta(18)O(R) from dry soils (Wingate L, Seibt U, Maseyk K, Ogee J, Almeida P, Yakir D, Pereira JS, Mencuccini M. Global Change Biol. 2008; 14: 2178). The soil chamber coupled with the TDL was found to be an effective method for capturing soil CO(2) efflux and its stable isotope composition at high temporal frequency.

Powers, Heath H [Los Alamos National Laboratory; Mcdowell, Nate [Los Alamos National Laboratory; Hanson, David [UNM; Hunt, John [LANDCARE RESEARCH

2009-01-01T23:59:59.000Z

30

Purification of alkali metal nitrates  

DOE Patents (OSTI)

A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

Fiorucci, Louis C. (Hamden, CT); Gregory, Kevin M. (Woodridge, IL)

1985-05-14T23:59:59.000Z

31

Ammonium nitrate explosive systems  

SciTech Connect

Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

Stinecipher, Mary M. (Los Alamos, NM); Coburn, Michael D. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

32

A comparison of rates of hornblende etching in soils in glacial deposits of the northern Rocky Mountains: Influence of climate and characteristics of parent material  

Science Conference Proceedings (OSTI)

Etching rates of hornblende grains in the soil matrix of glacial deposits in the Northern Rocky Mountains are dependent primarily upon the influences on soil moisture of the climate and texture of the parent materials. Etching is measured as the deepest penetration of weathering along cleavages. Previous works have shown that hornblende etching is a logarithmic function of depth. Hornblende etching is also a logarithmic function of age of the parent material, with etching rates declining rapidly after initially high rates during the first 10 to 15 kyr after deposition. A comparison of etching rates was made among four chronosequences from the Wind River Range, Wyoming and the Tobacco Root Range, Montana, which have differences in mean annual precipitation (MAP) and texture of the till parent materials. Using rates calculated from both ranges for the first 12 kyr after deposition, etching is slowest (0.02 [mu]m/1,000 yrs) in coarse-textured granitic parent materials where the MAP is 25--40 cm. In contrast, etching is faster by an order of magnitude (0.21 [mu]m/1,000 yrs) where MAP is 110--150 cm and the parent material is finer textured due to about 15% sedimentary rock material mixed with a granitic component. Within individual chronosequences, deposits at higher elevations have accelerated etching rates due to higher orographic precipitation or the influence of late-lying snow. These factors result in higher soil moisture content.

Horn, L.L. (Univ. of Florida, Gainesville, FL (United States). Dept. of Geology); Hall, R.D. (Indiana Univ.--Purdue Univ., Indianapolis, IN (United States). Dept. of Geology)

1993-04-01T23:59:59.000Z

33

Evaluation of nitrate destruction methods  

Science Conference Proceedings (OSTI)

A wide variety of high nitrate-concentration aqueous mixed [radioactive and Resource Conservation and Recovery Act (RCRA) hazardous] wastes are stored at various US Department of Energy (DOE) facilities. These wastes will ultimately be solidified for final disposal, although the waste acceptance criteria for the final waste form is still being determined. Because the nitrates in the wastes will normally increase the volume or reduce the integrity of all of the waste forms under consideration for final disposal, nitrate destruction before solidification of the waste will generally be beneficial. This report describes and evaluates various technologies that could be used to destroy the nitrates in the stored wastes. This work was funded by the Department of Energy`s Office of Technology Development, through the Chemical/Physical Technology Support Group of the Mixed Waste Integrated Program. All the nitrate destruction technologies will require further development work before a facility could be designed and built to treat the majority of the stored wastes. Several of the technologies have particularly attractive features: the nitrate to ammonia and ceramic (NAC) process produces an insoluble waste form with a significant volume reduction, electrochemical reduction destroys nitrates without any chemical addition, and the hydrothermal process can simultaneously treat nitrates and organics in both acidic and alkaline wastes. These three technologies have been tested using lab-scale equipment and surrogate solutions. At their current state of development, it is not possible to predict which process will be the most beneficial for a particular waste stream.

Taylor, P.A. [Oak Ridge National Lab., TN (United States); Kurath, D.E.; Guenther, R. [Pacific Northwest Lab., Richland, WA (United States)

1993-03-30T23:59:59.000Z

34

Effect of CH4 and O2 variations on rates of CH4 oxidation and stable isotope fractionation in tropical rain forest soils  

Science Conference Proceedings (OSTI)

Methane-oxidizing bacteria are the primary sink for CH{sub 4} in reduced soils, and account for as much as 90 percent of all CH{sub 4} produced. Methanotrophic bacteria strongly discriminate against the heavy isotopes of carbon, resulting in CH{sub 4} emissions that are significantly more enriched in {sup 13}C than the original source material. Previous studies have used an isotope mass balance approach to quantify CH{sub 4} sources and sinks in the field, based on the assumption that the fractionation factor for CH{sub 4} oxidation is a constant. This study quantifies the effect of systematic variations in CH{sub 4} and O{sub 2} concentrations on rates of CH{sub 4} oxidation and stable isotope fractionation in tropical rain forest soils. Soils were collected from the 0-15 cm depth, and incubated with varying concentrations of CH{sub 4} (100 ppmv, 500 ppmv, 1000 ppmv, and 5000 ppmv) or O{sub 2} (3 percent, 5 percent, 10 percent, and 21 percent). The isotope fractionation factor for CH{sub 4} oxidation was calculated for each incubation using a Rayleigh fractionation model. Rates of CH{sub 4} oxidation varied significantly between CH{sub 4} treatments, with the 100 ppmv CH{sub 4} treatment showing the lowest rate of CH{sub 4} uptake, and the other 3 treatments showing similar rates of CH{sub 4} uptake. Rates of CH{sub 4} oxidation did not vary significantly between the different O{sub 2} treatments. The fractionation factor for CH{sub 4} oxidation varied significantly between the different CH{sub 4} treatments, with the 5000 ppmv CH{sub 4} treatment showing the largest {sup 13}C-enrichment of residual CH{sub 4}. In treatments where CH{sub 4} concentration was not rate-limiting (> 500 ppmv CH{sub 4}), the fractionation factor for CH{sub 4} oxidation was negatively correlated with CH{sub 4} oxidation rate (P activity or CH{sub 4} pool size.

Teh, Yit Arn; Conrad, Mark; Silver, Whendee L.; Carlson, Charlotte M.

2003-10-01T23:59:59.000Z

35

Corrosion of aluminides by molten nitrate salt  

DOE Green Energy (OSTI)

The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

Tortorelli, P.F.; Bishop, P.S.

1990-01-01T23:59:59.000Z

36

Process for reducing aqueous nitrate to ammonia  

DOE Patents (OSTI)

Powdered aluminum is added to a nitrate-containing alkaline, aqueous solution to reduce the nitrate and/or nitrite to ammonia and co-produce a sinterable ceramic product.

Mattus, Alfred J. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

37

Process for reducing aqueous nitrate to ammonia  

DOE Patents (OSTI)

Powdered aluminum is added to a nitrate-containing alkaline, aqueous solution to reduce the nitrate and/or nitrite to ammonia and co-produce a sinterable ceramic product. 3 figures.

Mattus, A.J.

1993-11-30T23:59:59.000Z

38

Biological denitrification of high concentration nitrate waste  

DOE Patents (OSTI)

Biological denitrification of nitrate solutions at concentrations of greater than one kilogram nitrate per cubic meter is accomplished anaerobically in an upflow column having as a packing material a support for denitrifying bacteria.

Francis, Chester W. (Oak Ridge, TN); Brinkley, Frank S. (Knoxville, TN)

1977-01-01T23:59:59.000Z

39

Method of producing thin cellulose nitrate film  

DOE Patents (OSTI)

An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

Lupica, S.B.

1975-12-23T23:59:59.000Z

40

Effect of CH4 and O2 variations on rates of CH4 oxidation and stable isotope fractionation in tropical rain forest soils  

SciTech Connect

Methane-oxidizing bacteria are the primary sink for CH{sub 4} in reduced soils, and account for as much as 90 percent of all CH{sub 4} produced. Methanotrophic bacteria strongly discriminate against the heavy isotopes of carbon, resulting in CH{sub 4} emissions that are significantly more enriched in {sup 13}C than the original source material. Previous studies have used an isotope mass balance approach to quantify CH{sub 4} sources and sinks in the field, based on the assumption that the fractionation factor for CH{sub 4} oxidation is a constant. This study quantifies the effect of systematic variations in CH{sub 4} and O{sub 2} concentrations on rates of CH{sub 4} oxidation and stable isotope fractionation in tropical rain forest soils. Soils were collected from the 0-15 cm depth, and incubated with varying concentrations of CH{sub 4} (100 ppmv, 500 ppmv, 1000 ppmv, and 5000 ppmv) or O{sub 2} (3 percent, 5 percent, 10 percent, and 21 percent). The isotope fractionation factor for CH{sub 4} oxidation was calculated for each incubation using a Rayleigh fractionation model. Rates of CH{sub 4} oxidation varied significantly between CH{sub 4} treatments, with the 100 ppmv CH{sub 4} treatment showing the lowest rate of CH{sub 4} uptake, and the other 3 treatments showing similar rates of CH{sub 4} uptake. Rates of CH{sub 4} oxidation did not vary significantly between the different O{sub 2} treatments. The fractionation factor for CH{sub 4} oxidation varied significantly between the different CH{sub 4} treatments, with the 5000 ppmv CH{sub 4} treatment showing the largest {sup 13}C-enrichment of residual CH{sub 4}. In treatments where CH{sub 4} concentration was not rate-limiting (> 500 ppmv CH{sub 4}), the fractionation factor for CH{sub 4} oxidation was negatively correlated with CH{sub 4} oxidation rate (P < 0.003, r{sup 2} = 0.86). A multiple regression model that included initial CH{sub 4} concentration and CH{sub 4} oxidation rate as independent variables accounted for 94 percent of the variability in the isotope fractionation data, suggesting that both factors are important in determining the extent of isotopic fractionation (P < 0.002, r{sup 2} = 0.94). The fractionation factor for CH{sub 4} oxidation did not vary significantly between the different O{sub 2} treatments. These results challenge the assumption that the isotope fractionation factor for CH{sub 4} oxidation remains constant, regardless of metabolic activity or CH{sub 4} pool size.

Teh, Yit Arn; Conrad, Mark; Silver, Whendee L.; Carlson, Charlotte M.

2003-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nitrates/Nitrites  

Science Conference Proceedings (OSTI)

Table 1   Corrosion rates of iron-base alloys in eutectic molten salt mixtures...Stainless steel μm/yr mils/yr μm/yr mils/yr NaNO 3 -NaCl-Na 2 SO 4 (86.3,8.4,5.3 mol%, respectively) 15 0.6 1 0.03 KNO 3 -KCl (94.6 mol%, respectively) 23 0.9 7.5 0.3 LiCl-KCl (58.42 mol%, respectively) 63 2.5 20 0.8...

42

STANDARDS CONTROLLING AIR EMISSIONS FOR THE SOIL DESICCATION PILOT TEST  

Science Conference Proceedings (OSTI)

This air emissions document supports implementation of the Treatability Test Plan for Soil Desiccation as outlined in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau (DOE/RL-2007-56). Treatability testing supports evaluation of remedial technologies for technetium-99 (Tc-99) contamination in the vadose zone at sites such as the BC Cribs and Trenches. Soil desiccation has been selected as the first technology for testing because it has been recommended as a promising technology in previous Hanford Site technology evaluations and because testing of soil desiccation will provide useful information to enhance evaluation of other technologies, in particular gas-phase remediation technologies. A soil desiccation pilot test (SDPT) will evaluate the desiccation process (e.g., how the targeted interval is dried) and the long-term performance for mitigation of contaminant transport. The SDPT will dry out a moist zone contaminated by Tc-99 and nitrate that has been detected at Well 299-E13-62 (Borehole C5923). This air emissions document applies to the activities to be completed to conduct the SDPT in the 200-BC-1 operable unit located in the 200 East Area of the Hanford Site. Well 299-E13-62 is planned to be used as an injection well. This well is located between and approximately equidistant from cribs 216-B-16, 216-B-17, 216-B-18. and 216-B-19. Nitrogen gas will be pumped at approximately 300 ft{sup 3}/min into the 299-EI3-62 injection well, located approximately 12 m (39 ft) away from extraction well 299-EI3-65. The soil gas extraction rate will be approximately 150 ft{sup 3}/min. The SDPT will be conducted continuously over a period of approximately six months. The purpose of the test is to evaluate soil desiccation as a potential remedy for protecting groundwater. A conceptual depiction is provided in Figure 1. The soil desiccation process will physically dry, or evaporate, some of the water from the moist zone of interest. As such, it is expected that Tc-99 and nitrate will remain with the water residual that is not removed, or remain as a salt bound to the soil particles. In addition, the SDPT will be conducted at lower extraction velocities to preclude pore water entrainment and thus, the extracted air effluent should be free of the contaminant residual present in the targeted moist zone. However, to conservatively bound the planned activity for potential radionuclide air emissions, it is assumed, hypothetically, that the Tc-99 does not remain in the zone of interest, but that it instead travels with the evaporated moisture to the extraction well and to the test equipment at the land surface. Thus, a release potential would exist from the planned point source (powered exhaust) for Tc-99 in the extracted moist air. In this hypothetical bounding case there would also be a potential for very minor fugitive emissions to occur due to nitrogen injection into the soil. The maximum value for Tc-99, measured in the contaminated moist zone, is used in calculating the release potential described in Section 2.3. The desiccation mechanism will be evaporation. Nitrate is neither a criteria pollutant nor a toxic air pollutant. It would remain nitrate as a salt adhered to sand and silt grains or as nitrate dissolved in the pore water. Nitrogen, an inert gas, will be injected into the ground during the test. Tracer gasses will also be injected near the beginning, middle, and the end of the test. The tracer gasses are sulfur hexafluoride, trichlorofluoromethane, and difluoromethane.

BENECKE MW

2010-09-08T23:59:59.000Z

43

A Coupled Soil Moisture and Surface Temperature Prediction Model  

Science Conference Proceedings (OSTI)

A model for soil moisture and soil surface temperature prediction for bare soil is considered in this paper. In describing evaporation rate. soil structure and moisture were taken into account as much as possible. Soil moisture prediction was ...

F. Ács; D. T. Mihailovi?; B. Rajkovi?

1991-06-01T23:59:59.000Z

44

The Transformation of Outdoor Ammonium Nitrate Aerosols in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Transformation of Outdoor Ammonium Nitrate Aerosols in the Indoor Environment Title The Transformation of Outdoor Ammonium Nitrate Aerosols in the Indoor Environment...

45

Perchlorate and Nitrate Remediation Efficiency and Microbial Diversity in a Containerized Wetland Bioreactor  

DOE Green Energy (OSTI)

We have developed a method to remove perchlorate (14 to 27 {micro}g/L) and nitrate (48 mg/L) from contaminated groundwater using a wetland bioreactor. The bioreactor has operated continuously in a remote field location for more than two years with a stable ecosystem of indigenous organisms. This study assesses the bioreactor for long-term perchlorate and nitrate remediation by evaluating influent and effluent groundwater for reduction-oxidation conditions and nitrate and perchlorate concentrations. Total community DNA was extracted and purified from 10-g sediment samples retrieved from vertical coring of the bioreactor during winter. Analysis by denaturing gradient gel electrophoresis of short, 16S rDNA, polymerase-chain-reaction products was used to identify dominant microorganisms. Bacteria genera identified were closely affiliated with bacteria widely distributed in soils, mud layers, and fresh water. Of the 17 dominant bands sequenced, most were gram negative and capable of aerobic or anaerobic respiration with nitrate as the terminal electron acceptor (Pseudomonas, Acinetobacter, Halomonas, and Nitrospira). Several identified genera (Rhizobium, Acinetobactor, and Xanthomonas) are capable of fixing atmospheric nitrogen into a combined form (ammonia) usable by host plants. Isolates were identified from the Proteobacteria class, known for the ability to reduce perchlorate. Initial bacterial assessments of sediments confirm the prevalence of facultative anaerobic bacteria capable of reducing perchlorate and nitrate in situ.

Jr., B D; Dibley, V; Pinkart, H; Legler, T

2004-06-09T23:59:59.000Z

46

Surface Soil  

NLE Websites -- All DOE Office Websites (Extended Search)

operations Why we sample surface soil Soil sampling is performed to: Determine radionuclide and chemical concentrations in soil and compare these results to regional...

47

Process for the preparation of an energetic nitrate ester  

SciTech Connect

A process for the preparation of an energetic nitrate ester compound and related intermediates is provided.

Chavez, David E; Naud, Darren L; Hiskey, Michael A

2013-12-17T23:59:59.000Z

48

PREPARATION OF URANIUM(IV) NITRATE SOLUTIONS  

SciTech Connect

A procedure was developed for the preparation of uranium(IV) nitrate solutions in dilute nitric acid. Zinc metal was used as a reducing agent for uranium(VI) in dilute sulfuric acid. The uranium(IV) was precipitated as the hydrated oxide and dissolved in nitric acid. Uranium(IV) nitrate solutions were prepared at a maximum concentration of 100 g/l. The uranium(VI) content was less than 2% of the uranium(IV). (auth)

Ondrejcin, R.S.

1961-07-01T23:59:59.000Z

49

Synthesis of a new energetic nitrate ester  

DOE Green Energy (OSTI)

Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

Chavez, David E [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

50

Nitrate and Perchlorate removal from groundwater by ion exchange  

SciTech Connect

This study was conducted to evaluate the performance of a small scale ion exchange unit (Krudico, Inc of Auborn, IA) for removal of nitrate and perchlorate from groundwater at Lawrence Livermore National Laboratory's Site 300. The unit was able to treat 3,600 gallons of Site 300 groundwater, at an average influent concentration of 100 mg/L NO{sub 3}{sup -} before breakthrough occurred. The unit contained 2.5 ft{sup 3} of Sybron SR-7 resin. Seventy gallons of regeneration waste were generated (water treated to waste ratio of 51:1). The effluent concentration was about 20 mg/L NO{sub 3}{sup -}, which is equivalent to a treatment efficiency of at least 80%. There are several options for implementing this technology at Site 300. A target well, in the 817 area, has been selected. It has a 3 to 4 gpm flow rate, and concentrations of 90 mg/L NO{sub 3}{sup -} and 40 {micro}g/L perchlorate. The different treatment options include ion exchange treatment of nitrate only, nitrate and perchlorate, or perchlorate only. Option 1: For the treatment of nitrate only, this unit will be able to treat 3,700 gallons of water before regeneration is required. If both columns of the ion exchange unit are used, 7,400 gallons could be treated before the columns will need to be regenerated (producing 140 gallons of waste, per cycle or every 1.5 days). The effluent nitrate concentration is expected to be about 17 mg/L. Annual operation and maintenance costs are estimated to be $0.14 per gallon of water treated. Option 2: If only perchlorate is to be removed with ion exchange at the 817 area, a smaller unit should be considered. A 55 gallon canister filled with ion exchange resin should be able to reduce perchlorate concentrations in the groundwater from 40 {micro}g/L to non-detect levels for three years before the resin would need to be replaced. The contaminant-laden resin would be disposed of as hazardous waste. It is not practical to regenerate the resin because of the extreme difficulty of removing perchlorate from the resin. Due to the selectivity of the ion exchange resin, it will also be possible to selectively remove perchlorate from nitrate-contaminated water. Annual operation and maintenance costs are estimated to be $0.02 per gallon of water treated. Option 3: Another alternative is to treat both perchlorate and nitrate. A three column unit would be built. The first column would capture perchlorate and the resin would be replaced rather than regenerated. The second and third column would be operated as under Option 1 to treat nitrate. Annual operation and maintenance costs are estimated to be $0.14 per gallon of water treated.

Burge, S; Halden, R

1999-09-15T23:59:59.000Z

51

Procedures to predict vertical differential soil movement for expansive soils  

E-Print Network (OSTI)

Damage to lightly loaded structures, paving and service piping in areas of expansive clay soils has occurred throughout the world. The cause of this damage has been the inability to accurately model expansive soil movement so that foundations are adequately designed to withstand the movement. The amount and rate of differential soil movement for expansive soils is due to a combination of soil characteristics, namely: suction compression index, unsaturated permeability, and diffusivity. Currently, geotechnical engineers run tests to measure the soil properties required to estimate differential soil movements. However, there seems to be apprehension toward attempting these soil movement calculations due to the perceived complexity of the calculations or a simple lack of understanding of the theory. The procedures delineating the step by step process used to calculate suction profiles and volume strains of expansive soils is presented. These procedures include the methodology to predict soil heave and shrink underneath shallow foundations which generate maximum center lift and maximum edge lift slab distortion modes. The main contributions of this research are: equations and procedures to calculate the equilibrium suction profile and depth to constant suction for a particular soil profile and location, equations to calculate the horizontal velocity flow of water in unsaturated soils, the methodology to predict differential soil movement shortly after a slab has been constructed and before the soil under the slab has reached an equilibrium moisture content, and the procedures to apply differential soil movement theory to soil profiles with shallow foundation design.

Naiser, Donald David

1997-01-01T23:59:59.000Z

52

SEPARATION OF URANYL NITRATE BY EXTRACTION  

DOE Patents (OSTI)

A process is presented for obtaining U/sup 233/ from solutions containing Pa/sup 233/. A carrier precipitate, such as MnO/sub 2/, is formed in such solutions and carries with it the Pa/sup 233/ present. This precipitate is then dissolved in nitric acid and the solution is aged to allow decay of the Pa/ sup 233/ into U/sup 233/. After a sufficient length of time the U/sup 233/ bearing solution is made 2.5 to 4.5 Molar in manganese nitrate by addition thereof, and the solution is then treated with ether to obtain uranyl nitrate by solvent extraction techniques.

Stoughton, R.W.; Steahly, F.L.

1958-08-26T23:59:59.000Z

53

SunShot Initiative: Advanced Nitrate Salt Central Receiver Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Nitrate Salt Central Receiver Power Plant to someone by E-mail Share SunShot Initiative: Advanced Nitrate Salt Central Receiver Power Plant on Facebook Tweet about SunShot...

54

Formation mechanisms and quantification of organic nitrates in atmospheric aerosol  

E-Print Network (OSTI)

limonene-1-nitrate, 1-hydroxy-butane- 2-nitrate, 3-hydroxy-our measured spectra of the butane hydroxynitrate we foundstandards except for the butane hydroxynitrate the O/C based

Rollins, Andrew Waite

2010-01-01T23:59:59.000Z

55

Formation mechanisms and quantification of organic nitrates in atmospheric aerosol  

E-Print Network (OSTI)

Atmospheric submicron aerosol . . . . . . . 2.3 Partitioningon SOA organic aerosol formation alkyl nitrate and secondaryPeroxy radical fate . . . . . . Aerosol . . . . . . . .

Rollins, Andrew Waite

2010-01-01T23:59:59.000Z

56

Nitrate Removal in NITREXTM Permeable Reactive Barriers  

E-Print Network (OSTI)

was originally the injection site for our tracer solution, but instead it became our lone up-gradient well) and ~48 hours (low tide) after injection. At every time point, samples were collected from all wells and nitrate concentrations were estimated from samples taken from the injection well right before the solution

Vallino, Joseph J.

57

NITRATE DESTRUCTION LITERATURE SURVEY AND EVALUATION CRITERIA  

DOE Green Energy (OSTI)

This report satisfies the initial phase of Task WP-2.3.4 Alternative Sodium Recovery Technology, Subtask 1; Develop Near-Tank Nitrate/Nitrite Destruction Technology. Some of the more common anions in carbon steel waste tanks at SRS and Hanford Site are nitrate which is corrosive, and nitrite and hydroxide which are corrosion inhibitors. At present it is necessary to periodically add large quantities of 50 wt% caustic to waste tanks. There are three primary reasons for this addition. First, when the contents of salt tanks are dissolved, sodium hydroxide preferentially dissolves and is removed. During the dissolution process the concentration of free hydroxide in the tank liquid can decrease from 9 M to less than 0.2 M. As a result, roughly half way through the dissolution process large quantities of sodium hydroxide must be added to the tank to comply with requirements for corrosion control. Second, hydroxide is continuously consumed by reaction with carbon dioxide which occurs naturally in purge air used to prevent buildup of hydrogen gas inside the tanks. The hydrogen is generated by radiolysis of water. Third, increasing the concentration of hydroxide increases solubility of some aluminum compounds, which is desirable in processing waste. A process that converts nitrate and nitrite to hydroxide would reduce certain costs. (1) Less caustic would be purchased. (2) Some of the aluminum solid compounds in the waste tanks would become more soluble so less mass of solids would be sent to High Level Vitrification and therefore it would be not be necessary to make as much expensive high level vitrified product. (3) Less mass of sodium would be fed to Saltstone at SRS or Low Level Vitrification at Hanford Site so it would not be necessary to make as much low level product. (4) At SRS less nitrite and nitrate would be sent to Defense Waste Processing Facility (DWPF) so less formic acid would be consumed there and less hydrogen gas would be generated. This task involves literature survey of technologies to perform the nitrate to hydroxide conversion, selection of the most promising technologies, preparation of a flowsheet and design of a system. The most promising technologies are electrochemical reduction of nitrates and chemical reduction with hydrogen or ammonia. The primary reviewed technologies are listed and they aredescribed in more detail later in the report: (1) Electrochemical destruction; (2) Chemical reduction with agents such as ammonia, hydrazine or hydrogen; (3) Hydrothermal reduction process; and (4) Calcination. Only three of the technologies on the list have been demonstrated to generate usable amounts of caustic; electrochemical reduction and chemical reduction with ammonia, hydrazine or hydrogen and hydrothermal reduction. Chemical reduction with an organic reactant such as formic acid generates carbon dioxide which reacts with caustic and is thus counterproductive. Treatment of nitrate with aluminum or other active metals generates a solid product. High temperature calcination has the potential to generate sodium oxide which may be hydrated to sodium hydroxide, but this is unproven. The following criteria were developed to evaluate the most suitable option. The numbers in brackets after the criteria are relative weighting factors to account for importance: (1) Personnel exposure to radiation for installation, routine operation and maintenance; (2) Non-radioactive safety issues; (3) Whether the technology generates caustic and how many moles of caustic are generated per mole of nitrate plus nitrite decomposed; (4) Whether the technology can handle nitrate and nitrite at the concentrations encountered in waste; (5) Maturity of technology; (6) Estimated annual cost of operation (labor, depreciation, materials, utilities); (7) Capital cost; (8) Selectivity to nitrogen as decomposition product (other products are flammable and/or toxic); (9) Impact of introduced species; (10) Selectivity for destruction of nitrate vs. nitrite; and (11) Cost of deactivation and demolition. Each technology was given a score from one

Steimke, J.

2011-02-01T23:59:59.000Z

58

Solubilty and growth kinetics of silver nitrate in ethanol  

Science Conference Proceedings (OSTI)

The solubility of silver nitrate in ethanol was determined at various temperatures. The growth kinetics of silver nitrate in ethanol were then determined using initial derivaties of temperature and desupersaturation in a mixed-batch crystallizer. For ... Keywords: ethanol, growth kinetics, initial derivatives, silver nitrate, solubility

M. Manteghian; A. Ebrahimi

2002-08-01T23:59:59.000Z

59

FLAME DENITRATION AND REDUCTION OF URANIUM NITRATE TO URANIUM DIOXIDE  

DOE Patents (OSTI)

A process is given for converting uranyl nitrate solution to uranium dioxide. The process comprises spraying fine droplets of aqueous uranyl nitrate solution into a hightemperature hydrocarbon flame, said flame being deficient in oxygen approximately 30%, retaining the feed in the flame for a sufficient length of time to reduce the nitrate to the dioxide, and recovering uranium dioxide. (AEC)

Hedley, W.H.; Roehrs, R.J.; Henderson, C.M.

1962-06-26T23:59:59.000Z

60

Molten nitrate salt technology development status report  

SciTech Connect

Recognizing thermal energy storage as potentially critical to the successful commercialization of solar thermal power systems, the Department of Energy (DOE) has established a comprehensive and aggressive thermal energy storage technology development program. Of the fluids proposed for heat transfer and energy storage molten nitrate salts offer significant economic advantages. The nitrate salt of most interest is a binary mixture of NaNO/sub 3/ and KNO/sub 3/. Although nitrate/nitrite mixtures have been used for decades as heat transfer and heat treatment fluids the use has been at temperatures of about 450/sup 0/C and lower. In solar thermal power systems the salts will experience a temperature range of 350 to 600/sup 0/C. Because central receiver applications place more rigorous demands and higher temperatures on nitrate salts a comprehensive experimental program has been developed to examine what effects, if any, the new demands and temperatures have on the salts. The experiments include corrosion testing, environmental cracking of containment materials, and determinations of physical properties and decomposition mechanisms. This report details the work done at Sandia National Laboratories in each area listed. In addition, summaries of the experimental programs at Oak Ridge National Laboratory, the University of New York, EIC Laboratories, Inc., and the Norwegian Institute of Technology on molten nitrate salts are given. Also discussed is how the experimental programs will influence the near-term central receiver programs such as utility repowering/industrial retrofit and cogeneration. The report is designed to provide easy access to the latest information and data on molten NaNO/sub 3//KNO/sub 3/ for the designers and engineers of future central receiver projects.

Carling, R.W.; Kramer, C.M.; Bradshaw, R.W.; Nissen, D.A.; Goods, S.H.; Mar, R.W.; Munford, J.W.; Karnowsky, M.M.; Biefeld, R.N.; Norem, N.J.

1981-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Soil washing: A preliminary assessment of its applicability to Hanford  

Science Conference Proceedings (OSTI)

Soil washing is being considered for treating soils at the US Department of Energy's (DOE) Hanford Site. As a result of over 50 years of operations to produce plutonium for the US Department of Defense and research for DOE, soils in areas within the Site are contaminated with hazardous wastes and radionuclides. In the soil washing process, contaminated soil is mixed with a liquid and then physically and/or chemically treated to dissolve the contaminants into solution and/or concentrate them in a small fraction of the soil. The purpose of this procedure is to separate the contaminants from the bulk of the soil. The key to successful application is to match the types of contaminants and soil characteristics with physical-chemical methods that perform well under the existing conditions. The applicability of soil washing to Hanford Site contaminated soils must take into account both the characteristics of the oil and the type of contamination. Hanford soils typically contain up to 90% sand, gravel, and cobbles, which generally are favorable characteristics for soil washing. For example, in soil samples from the north pond in the 300 Area, 80% to 90% of the soil particles were larger than 250 {mu}m. The principal contaminants in the soil are radionuclides, heavy metals, and nitrate and sulfate salts. For most of the sites, organic contaminants are either not present or are found in very low concentration. 28 refs., 5 figs., 10 tabs.

Gerber, M A; Freeman, H D; Baker, E G; Riemath, W F

1991-09-01T23:59:59.000Z

62

Soiling of building envelope surfaces and its effect on solar reflectance Part I: Analysis of roofing product databases  

E-Print Network (OSTI)

decreased with aging. Soiling resistance was high ( ? ? ?gained solar reflectance. Soiling resistance ( ? ? ? 0 . 20rate (%) CRRC (n=44) Soiling resistance ? (d) Overprediction

Sleiman, Mohamad

2013-01-01T23:59:59.000Z

63

A proposal for the analysis of nitrocellulose in soil or compost  

Science Conference Proceedings (OSTI)

Currently, there is no ``standard`` analytical method for the measurement of nitrocellulose (NC) in soil or compost. At the present, an indirect method is used. This method extracts the NC from soil or compost, separates out nitrate or nitrite ions, hydrolyzes the NC nitrogroups, and measures the liberated nitrite colorimetrically. Major weaknesses are that the %N content or degree of nitrate substitution (DS) of the NC must be known to convert the nitrate measurements to NC concentrations, incomplete separation of nitrate/nitrite ions coextracted from the soil leads to over-estimation of NC, and incomplete extraction and/or hydrolysis of the NC cause a low bias to the NC estimations. Additionally, the method provides no information about the condition of the NC. Characterization of the molecular weight distribution and detection of functional groups in addition to nitrate ester would be highly useful in developing and applying remediation technologies. This paper proposes a size exclusion chromatography (SEC)-based method for analysis of NC in soil, compost, or other sample matrices. The method has the potential to provide both quantitative and qualitative information. The proposed method is described and some of the factors which must be addressed in method development and validation are discussed. SEC has much potential as a tool for guiding the development and application of remediation technologies for NC contaminated soils and other matrices. The extraction of NC from soil without deterioration is probably the main technical difficulty to overcome. Development of an analytical method is encouraged.

Griest, W.H.

1993-12-31T23:59:59.000Z

64

Surface Soil  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface Soil Surface Soil Surface Soil We compare local soil samples with samples collected from northern New Mexico locations that are beyond the range of potential influence from normal Laboratory operations. April 12, 2012 Farm soil sampling Two LANL environmental field team members take soil samples from a farm. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Measurements are compared to samples from the regional sites and compared to averages over time to see if there are changes in concentrations. Monitoring surface soil LANL has monitored surface soils since the early 1970s. Institutional surface soil samples are collected from 17 on-site, 11 perimeter, and six regional (background) locations every three years.

65

Containerized Wetland Bioreactor Evaluated for Perchlorate and Nitrate Degradation  

SciTech Connect

The U.S. Department of Energy (DOE) and Lawrence Livermore Laboratory (LLNL) designed and constructed an innovative containerized wetlands (bioreactor) system that began operation in November 2000 to biologically degrade perchlorate and nitrate under relatively low-flow conditions at a remote location at Site 300 known as Building 854. Since initial start-up, the system has processed over 3,463,000 liters of ground water and treated over 38 grams of perchlorate and 148 kilograms of nitrate. Site 300 is operated by the University of California as a high-explosives and materials testing facility supporting nuclear weapons research. The 11-square mile site located in northern California was added to the NPL in 1990 primarily due to the presence of elevated concentrations of volatile organic compounds (VOCs) in ground water. At the urging of the regulatory agencies, perchlorate was looked for and detected in the ground water in 1999. VOCs, nitrate and perchlorate were released into the soil and ground water in the Building 854 area as the result of accidental leaks during stability testing of weapons or from waste discharge practices that are no longer permitted at Site 300. Design of the wetland bioreactors was based on earlier studies showing that indigenous chlorate-respiring bacteria could effectively degrade perchlorate into nontoxic concentrations of chlorate, chlorite, oxygen, and chloride. Studies also showed that the addition of organic carbon would enhance microbial denitrification. Early onsite testing showed acetic acid to be a more effective carbon source than dried leaf matter, dried algae, or milk replacement starter; a nutrient and carbon source used in a Department of Defense phytoremediation demonstration. No inocula were added to the system. Groundwater was allowed to circulate through the bioreactor for three weeks to acclimate the wetland plants and to build a biofilm from indigenous flora. Using solar energy, ground water is pumped into granular activated carbon canisters to remove VOCs (Figure x). Following solar treatment, ground water containing approximately 46 mg/L of nitrate and 13 {micro}g/L of perchlorate is gravity-fed continuously into two parallel series of two-1,900 liter tank bioreactors. Each bioreactor contains coarse, aquarium-grade gravel and locally-obtained plant species such as cattails (Typha spp.), sedges (Cyperus spp.), and indigenous denitrifying microorganisms. No inocula were added to the system. Groundwater was allowed to circulate through the bioreactor for three weeks to acclimate the wetland plants and to build a biofilm from indigenous flora. Sodium acetate is added to the first bioreactor in each of the two series to promote growth and metabolic activity of rhizome microorganisms. The split flow from each series is combined, and flows through two back-up ion exchange columns to assure complete perchlorate removal. Effluent from the ground water treatment system is monitored and discharged an infiltration trench in accordance with the Substantive Requirements for Waste Discharge issued by the California Regional Water Quality Control Board.

Dibley, V R; Krauter, P W

2004-12-02T23:59:59.000Z

66

GRAPHITE PRODUCTION UTILIZING URANYL NITRATE HEXAHYDRATE CATALYST  

DOE Patents (OSTI)

ABS>The graphitizing of a mixture composed of furfuryl alcohol binder and uranyl nitrate hexahydrate hardener and the subsequent curing, baking, and graphitizing with pressure being initially applied prior to curing are described. The pressure step may be carried out by extrusion, methyl cellulose being added to the mixture before the completion of extrusion. Uranium oxide may be added to the graphitizable mixture prior to the heating and pressure steps. The graphitizable mixture may consist of discrete layers of different compositions. (AEC)

Sheinberg, H.; Armstrong, J.R.; Schell, D.H.

1964-03-10T23:59:59.000Z

67

FURTHER EVALUATIONS OF RADIONUCLIDE PHYTOEXTRACTION FEASIBILITY USING SOILS FROM THE U.S. DEPARTMENT OF ENERGY COMPLEX  

DOE Green Energy (OSTI)

Fiscal Year 98 (FY98) radionuclide phytoextraction studies involved resumption of the radiocesium-137 ({sup 137}Cs) investigations at Brookhaven National Laboratory (BNL) and the total uranium (U{sub t}) investigations at the Fernald Environmental Management Project (FEMP) site. This project was a collaborative effort involving scientists and engineers from MSE Technology Applications, Inc.; the US Department of Agriculture (USDA) Plant Growth Laboratory at Cornell University; Phytotech, Inc.; BNL; and FEMP. In both cases, the essential goal was to improve bioavailability, uptake, and transport of these contaminants from soil to leaf-and-stalk biomass (LSB). In particular, the practical goal was to demonstrate that about half the radionuclide contaminant mass present in near surface [{le}30 centimeters (cm) below ground surface (bgs)] soils could be transferred into LSB in approximately 5 years. Based on previous (1996) study results, it would require concentration ratios (CRs) of at 5-to-10 to achieve this goal. In addition, the rate of {sup 137}Cs removal must be {ge} 2.3% per year{sup -1} [i.e., (0.693/30.2) {center_dot} 100] to equal or exceed the loss of this radionuclide through natural decay. This report first presents and discusses the results from greenhouse and field evaluations of {sup 137}Cs uptake from rooting zone soils (0-15 cm bgs) located near the Medical/Biological Research Building (No. 490) at BNL. Contamination of this site resulted from the use of near surface soils originating at the former Hazardous Waste Management Facility (HWMF), which served as a source of landscaping materials for erosion control, etc. Project personnel from USDA evaluated various combinations of nonradioactive solutions of cesium chloride (CsCl) and rubidium chloride, ammonium nitrate solution (NH{sub 4}NO{sub 3}), and humic acid suspensions to enhance and sustain {sup 137}Cs levels in soil solution. Of the plants grown in such amended soils, the highest CRs occurred in the golden pigweed (Amaranthus aureus L.) with an overall CR of 3.0 (and 275 picoCurie/gram {sup 137}Cs in soil). The maximum CR (3.8) was associated with dosing this species with 100 millimole (mM) CsCl solution. However, this treatment was immediately toxic to all the species evaluated. Thus, continued use of ammonium nitrate (NH{sub 4}NO{sub 3}) (CR=2.9) or humic acid (CR=3.2) and golden pigweed appeared to be the best approach for removing {sup 137}Cs from test site soils.

Jay Cornish

1999-01-01T23:59:59.000Z

68

Sampling – Soil  

INL has developed a method for sampling soil to determine the presence of extremely fine particles such as absorbents.

69

Toward a Robust Phenomenological Expression of Evaporation Efficiency for Unsaturated Soil Surfaces  

Science Conference Proceedings (OSTI)

The evaporation rates of water from several soil types were measured under controlled conditions. When the layer of soil is sufficiently thin, the evaporation efficiency ?, the ratio of the evaporation rate from the soil surface relative to that ...

Teruhisa S. Komatsu

2003-09-01T23:59:59.000Z

70

Stainless steel corrosion by molten nitrates : analysis and lessons learned.  

SciTech Connect

A secondary containment vessel, made of stainless 316, failed due to severe nitrate salt corrosion. Corrosion was in the form of pitting was observed during high temperature, chemical stability experiments. Optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were all used to diagnose the cause of the failure. Failure was caused by potassium oxide that crept into the gap between the primary vessel (alumina) and the stainless steel vessel. Molten nitrate solar salt (89% KNO{sub 3}, 11% NaNO{sub 3} by weight) was used during chemical stability experiments, with an oxygen cover gas, at a salt temperature of 350-700 C. Nitrate salt was primarily contained in an alumina vessel; however salt crept into the gap between the alumina and 316 stainless steel. Corrosion occurred over a period of approximately 2000 hours, with the end result of full wall penetration through the stainless steel vessel; see Figures 1 and 2 for images of the corrosion damage to the vessel. Wall thickness was 0.0625 inches, which, based on previous data, should have been adequate to avoid corrosion-induced failure while in direct contact with salt temperature at 677 C (0.081-inch/year). Salt temperatures exceeding 650 C lasted for approximately 14 days. However, previous corrosion data was performed with air as the cover gas. High temperature combined with an oxygen cover gas obviously drove corrosion rates to a much higher value. Corrosion resulted in the form of uniform pitting. Based on SEM and EDS data, pits contained primarily potassium oxide and potassium chromate, reinforcing the link between oxides and severe corrosion. In addition to the pitting corrosion, a large blister formed on the side wall, which was mainly composed of potassium, chromium and oxygen. All data indicated that corrosion initiated internally and moved outward. There was no evidence of intergranular corrosion nor were there any indication of fast pathways along grain boundaries. Much of the pitting occurred near welds; however this was the hottest region in the chamber. Pitting was observed up to two inches above the weld, indicating independence from weld effects.

Kruizenga, Alan Michael

2011-09-01T23:59:59.000Z

71

Production and Handling Slide 15: Yellow Cake, Uranyl Nitrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Yellow Cake, Uranyl Nitrate, ADU, UO2 Refer to caption below for image...

72

Production and Handling Slide 13: Yellow Cake, Uranyl Nitrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

ADU Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Yellow Cake, Uranyl Nitrate, ADU Refer to caption below for image...

73

Soil Minerals  

NLE Websites -- All DOE Office Websites (Extended Search)

Soil Minerals Soil Minerals Nature Bulletin No. 707 March 2, 1963 Forest Preserve District of Cook County Seymour Simon, President Roberts Mann, Conservation Editor SOIL MINERALS We all depend upon the land Our food is obtained from plants and animals -- bread and meat, potatoes and fish, fruit and eggs and milk and the rest of it. Our livestock feed on plants and plant products such as grass and grain. Plants, by means of their root systems, take moisture and nutrients from the soils on which they grow. Their food values, for us or for animals that furnish us food, depend upon the available nutrients in those soils. Soils contain solids, water and air. The solids, the bulk of a soil -- except in purely organic types such as peat and muck -- are mostly mineral materials. Ordinarily they also contain some organic material: decayed and decaying remains of plants and animals.

74

Electrochemical processing of nitrate waste solutions  

SciTech Connect

The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F[sup [minus

Genders, D.; Weinberg, N.; Hartsough, D. (Electrosynthesis Co., Inc., Cheektowaga, NY (United States))

1992-10-07T23:59:59.000Z

75

Crystallization of sodium nitrate from radioactive waste  

SciTech Connect

From the 1940s to the 1980s, the Institute of Physical Chemistry of the Russian Academy of Sciences (IPC/RAS) conducted research and development on processes to separate acetate and nitrate salts and acetic acid from radioactive wastes by crystallization. The research objective was to decrease waste volumes and produce the separated decontaminated materials for recycle. This report presents an account of the IPC/RAS experience in this field. Details on operating conditions, waste and product compositions, decontamination factors, and process equipment are described. The research and development was generally related to the management of intermediate-level radioactive wastes. The waste solutions resulted from recovery and processing of uranium, plutonium, and other products from irradiated nuclear fuel, neutralization of nuclear process solutions after extractant recovery, regeneration of process nitric acid, equipment decontamination, and other radiochemical processes. Waste components include nitric acid, metal nitrate and acetate salts, organic impurities, and surfactants. Waste management operations generally consist of two stages: volume reduction and processing of the concentrates for storage, solidification, and disposal. Filtration, coprecipitation, coagulation, evaporation, and sorption were used to reduce waste volume. 28 figs., 40 tabs.

Krapukhin, V.B.; Krasavina, E.P. Pikaev, A.K. [Russian Academy of Sciences, Moscow (Russian Federation). Institute of Physical Chemistry

1997-07-01T23:59:59.000Z

76

Utilizing Animal Waste Amendments to Impaired Rangeland Soils to Reduce Runoff  

E-Print Network (OSTI)

Composted biological wastes contain vital plant nutrients that assist in plant growth as well as contain organic matter that promotes good soil conditions; both aid in rangeland restoration. Most importantly, it has the potential to restore water availability through increased infiltration and reduced runoff. In this thesis, local sources of composted dairy manure are utilized for application onto the degraded Fort Hood Western Training Grounds in central Texas in hopes to restore the rangeland for continued military training. Small scale rainfall simulations are applied two and eight months post-application of seven different agronomic rates of composted waste treatment (0, 5, 10, 15, 20, 25, and 30 y^3/acre) in order to determine changes in infiltration rates. July 2004 rainfall simulations, two months post application, indicate that composted wastes have not had sufficient time to incorporate into the soil matrix. Percent organic matter of the parent soil is the only significant variable of impact on maximum infiltration capacity. Composted waste treatments are concluded to have no effect on infiltration rates for any of the application rates in the summer rainfall simulations and are observed to exhibit very high variability in the amount of infiltration by a plot. January 2005 rainfall simulations, eight months post waste application, are observed to continue the trend of high variability across all treatment application rates. This variability is attributed to masking any potential effects from the treatment applications. Overall, this high natural variability disables the detection of potential effects of waste application treatments leading to the conclusion that composted waste applications do not affect infiltration on the Fort Hood Western Training Grounds. Runoff nutrient analysis observed nitrate-N to be well below Texas drinking water standards for all plots and phosphate to be above non-standardized values known to cause problematic algal growth. Natural rainfall events at intensities needed to generate runoff observed in this study are rare; therefore, nutrient pollution concern for local water bodies is low.

Thomas, Diana M.

2011-05-01T23:59:59.000Z

77

Nitrate-Cancrinite Precipitation on Quartz Sand in Simulated Hanford  

E-Print Network (OSTI)

Nitrate-Cancrinite Precipitation on Quartz Sand in Simulated Hanford Tank Solutions B A R R Y R . B minerals at the U.S. Department of Energy's Hanford site in Washington. Nitrate-cancrinite began's (DOE) Hanford Site in southeast Washington since the late 1950s (1). To predict the fate

Illinois at Chicago, University of

78

Method for improved decomposition of metal nitrate solutions  

DOE Patents (OSTI)

A method for co-conversion of aqueous solutions of one or more heavy metal nitrates is described, wherein thermal decomposition within a temperature range of about 300 to 800/sup 0/C is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

Haas, P.A.; Stines, W.B.

1981-01-21T23:59:59.000Z

79

Method for improved decomposition of metal nitrate solutions  

DOE Patents (OSTI)

A method for co-conversion of aqueous solutions of one or more heavy metal nitrates wherein thermal decomposition within a temperature range of about 300.degree. to 800.degree. C. is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

Haas, Paul A. (Knoxville, TN); Stines, William B. (Knoxville, TN)

1983-10-11T23:59:59.000Z

80

Corrosion of stainless and carbon steels in molten mixtures of industrial nitrates  

DOE Green Energy (OSTI)

Corrosion behavior of two stainless steels and carbon steel in mixtures of NaNO{sub 3} and KNO{sub 3} was evaluated to determine if impurities found in commodity grades of alkali nitrates aggravate corrosivity as applicable to an advanced solar thermal energy system. Corrosion tests were conducted for 7000 hours with Types 304 and 316 stainless steels at 570C and A36 carbon steel at 316C in seven mixtures of NaNO{sub 3} and KNO{sub 3} containing variations in impurity concentrations. Corrosion tests were also conducted in a ternary mixture of NaNO{sub 3}, KNO{sub 3}, and Ca(NO{sub 3}){sub 2}. Corrosion rates were determined by descaled weight losses while oxidation products were examined by scanning electron microscopy, electron microprobe analysis, and X-ray diffraction. The nitrate mixtures were periodically analyzed for changes in impurity concentrations and for soluble corrosion products.

Goods, S.H.; Bradshaw, R.W. [Sandia National Labs., Livermore, CA (United States); Prairie, M.R.; Chavez, J.M. [Sandia National Labs., Albuquerque, NM (United States)

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Thermal decomposition study of hydroxylamine nitrate during storage and handling  

E-Print Network (OSTI)

Hydroxylamine nitrate (HAN), an important agent for the nuclear industry and the U.S. Army, has been involved in several costly incidents. To prevent similar incidents, the study of HAN safe storage and handling boundary has become extremely important for industries. However, HAN decomposition involves complicated reaction pathways due to its autocatalytic behavior and therefore presents a challenge for definition of safe boundaries of HAN storage and handling. This research focused on HAN decomposition behavior under various conditions and proposed isothermal aging testing and kinetic-based simulation to determine safety boundaries for HAN storage and handling. Specifically, HAN decomposition in the presence of glass, titanium, stainless steel with titanium, or stainless steel was examined in an Automatic Pressure Tracking Adiabatic Calorimeter (APTAC). n-th order kinetics was used for initial reaction rate estimation. Because stainless steel is a commonly used material for HAN containers, isothermal aging tests were conducted in a stainless steel cell to determine the maximum safe storage time of HAN. Moreover, by changing thermal inertia, data for HAN decomposition in the stainless steel cell were examined and the experimental results were simulated by the Thermal Safety Software package. This work offers useful guidance for industries that manufacture, handle, and store HAN. The experimental data acquired not only can help with aspects of process safety design, including emergency relief systems, process control, and process equipment selection, but also is a useful reference for the associated theoretical study of autocatalytic decomposition behavior.

Zhang, Chuanji

2003-05-01T23:59:59.000Z

82

Production and Handling Slide 17: Yellow Cake, Uranyl Nitrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

, UF4 Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Yellow Cake, Uranyl Nitrate, ADU, UO2, UF4 Refer to caption below for...

83

Decontamination of water using nitrate selective ion exchange resin  

DOE Patents (OSTI)

A method for nitrate decontamination of water which involves passing the water through a bed of alkyl phosphonium anion exchange resin which has pendant alkyl groups of C[sub 3] or larger.

Lockridge, J.E.; Fritz, J.S.

1990-07-31T23:59:59.000Z

84

Decontamination of water using nitrate selective ion exchange resin  

DOE Patents (OSTI)

A method for nitrate decontamination of water which involves passing the water through a bed of alkyl phosphonium anion exchange resin which has pendant alkyl groups of C.sub.3 or larger.

Lockridge, James E. (Ames, IA); Fritz, James S. (Ames, IA)

1990-07-31T23:59:59.000Z

85

Effects of soil substrate and nitrogen fertilizer on biomass production of  

E-Print Network (OSTI)

Effects of soil substrate and nitrogen fertilizer on biomass production of Acacia senegal;Effects of soil substrate and nitrogen fertilizer on biomass production of Acacia senegal and Acacia, biomass allocation, fertilizer, growth rate, nitrogen, soil substrate Sveriges lantbruksuniversitet

86

Effects of 2-Ethylhexyl Nitrate on Diesel-Spray Processes  

DOE Green Energy (OSTI)

Diesel fuel ignition-enhancing additives, such as 2-ethylhexyl nitrate, are known to reduce emissions from diesel engines; however, the mechanisms by which the emissions reduction occur are not understood. This report covers the first phase of a research project supported by Ethyl Corporation that is aimed at developing a detailed understanding of how 2-ethylhexyl nitrate alters in-cylinder injection, ignition, and combustion processes to reduce diesel engine emissions.

Higgins, B.; Mueller, C.; Siebers, D.

1998-08-01T23:59:59.000Z

87

Nonaqueous purification of mixed nitrate heat transfer media  

DOE Patents (OSTI)

A nonaqueous, in-line method for removing carbonate and hydroxide contamination from a molten mixed sodium nitrate/potassium nitrate heat transfer salt. The method comprises dissolving a stoichiometric quantity of anhydrous Ca(NO.sub.3).sub.2 in the melt whereby an insoluble CaCO.sub.3 and Ca(OH).sub.2 precipitate is formed. The precipitate can be removed by settling, filtration or floatation techniques.

Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

1983-12-20T23:59:59.000Z

88

THE SENSITIVITY OF CARBON STEELS' SUSCEPTIBILITY TO LOCALIZED CORROSION TO THE PH OF NITRATE BASED NUCLEAR WASTES  

SciTech Connect

The Hanford tank reservation contains approximately 50 million gallons of liquid legacy radioactive waste from cold war weapons production, which is stored in 177 underground storage tanks. The tanks will be in use until waste processing operations are completed. The wastes tend to be high pH (over 10) and nitrate based. Under these alkaline conditions carbon steels tend to be passive and undergo relatively slow uniform corrosion. However, the presence of nitrate and other aggressive species, can lead to pitting and stress corrosion cracking. This work is a continuation of previous work that investigated the propensity of steels to suffer pitting and stress corrosion cracking in various waste simulants. The focus of this work is an investigation of the sensitivity of the steels' pitting and stress corrosion cracking susceptibility tosimulant pH. Previous work demonstrated that wastes that are high in aggressive nitrate and low in inhibitory nitrite are susceptible to localized corrosion. However, the previous work involved wastes with pH 12 or higher. The current work involves wastes with lower pH of 10 or 11. It is expected that at these lower pHs that a higher nitrite-to-nitrate ratio will be necessary to ensure tank integrity. This experimental work involved both electrochemical testing, and slow strain rate testing at either the free corrosion potential or under anodic polarization. The results of the current work will be discussed, and compared to work previously presented.

BOOMER KD

2010-01-14T23:59:59.000Z

89

Benchmark Evaluation of Plutonium Nitrate Solution Arrays  

Science Conference Proceedings (OSTI)

In October and November of 1981 thirteen approach-to-critical experiments were performed on a remote split table machine (RSTM) in the Critical Mass Laboratory of Pacific Northwest Laboratory (PNL) in Richland, Washington, using planar arrays of polyethylene bottles filled with plutonium (Pu) nitrate solution. Arrays of up to sixteen bottles were used to measure the critical number of bottles and critical array spacing with a tight fitting Plexiglas{reg_sign} reflector on all sides of the arrays except the top. Some experiments used Plexiglas shells fitted around each bottles to determine the effect of moderation on criticality. Each bottle contained approximately 2.4 L of Pu(NO3)4 solution with a Pu content of 105 g Pu/L and a free acid molarity H+ of 5.1. The plutonium was of low 240Pu (2.9 wt.%) content. These experiments were performed to fill a gap in experimental data regarding criticality limits for storing and handling arrays of Pu solution in reprocessing facilities. Of the thirteen approach-to-critical experiments eleven resulted in extrapolations to critical configurations. Four of the approaches were extrapolated to the critical number of bottles; these were not evaluated further due to the large uncertainty associated with the modeling of a fraction of a bottle. The remaining seven approaches were extrapolated to critical array spacing of 3-4 and 4-4 arrays; these seven critical configurations were evaluation for inclusion as acceptable benchmark experiments in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook. Detailed and simple models of these configurations were created and the associated bias of these simplifications was determined to range from 0.00116 and 0.00162 {+-} 0.00006 ?keff. Monte Carlo analysis of all models was completed using MCNP5 with ENDF/BVII.0 neutron cross section libraries. A thorough uncertainty analysis of all critical, geometric, and material parameters was performed using parameter perturbation methods. It was found that uncertainty in the impurities in the polyethylene bottles, reflector position, bottle outer diameter, and critical array spacing had the largest effect. The total uncertainty ranged from 0.00651 to 0.00920 ?keff. Evaluation methods and results will be presented and discussed in greater detail in the full paper.

M. A. Marshall; J. D. Bess

2011-09-01T23:59:59.000Z

90

Soils Collections Project Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Soil Collections Soil Collections Soil Collections Overview Soil covers a major portion of the Earth's surface, and is an important natural resource that either directly or indirectly supports most of the planet's life. Soil is a mixture of mineral and organic materials plus air and water. The contents of soil vary by location and are constantly changing. The ORNL DAAC Soil Collections archive contains data on the physical and chemical properties of soils, including: soil carbon and nitrogen soil water-holding capacity soil respiration soil texture Most data sets are globally gridded, while a few are of a regional nature. Get Soils Data Find and order data sets: See list of data sets and download data Browse Soils Data Holdings by selected attributes Retrieve Soils data by FTP browse

91

Thermophysical Properties of Sodium Nitrate and Sodium Chloride  

Office of Scientific and Technical Information (OSTI)

Thermophysical Properties of Sodium Nitrate and Sodium Chloride Thermophysical Properties of Sodium Nitrate and Sodium Chloride Solutions and Their Effects on Fluid Flow in Unsaturated Media Tianfu Xu and Karsten Pruess Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 ABSTRACT. Understanding movement of saline sodium nitrate (NaNO 3 ) waste solutions is important for assessing the contaminant migration near leaking waste storage tanks in the unsaturated zone at the Hanford site (Washington, USA). The purpose of this study is to contribute a basic understanding of effects of the thermophysical behavior of NaNO 3 solutions on fluid flow in unsaturated media. We first present mathematical expressions for the dependence of density, viscosity, solubility and vapor pressure of

92

Thorium Nitrate Stockpile--From Here to Eternity  

Science Conference Proceedings (OSTI)

The Defense National Stockpile Center (DNSC), a field level activity of the Defense Logistics Agency (DLA) has stewardship of a stockpile of thorium nitrate that has been in storage for decades. The stockpile is made up of approximately 3.2 million kg (7 million lb) of thorium nitrate crystals (hydrate form) stored at two depot locations in the United States. DNSC sought technical assistance from Oak Ridge National Laboratory (ORNL) to define and quantify the management options for the thorium nitrate stockpile. This paper describes methodologies and results comprising the work in Phase 1 and Phase 2. The results allow the DNSC to structure and schedule needed tasks to ensure continued safe long-term storage and/or phased disposal of the stockpile.

Hermes, W. H.; Hylton, T. D.; Mattus, C.H.; Storch, S. N.; Singley, P.S.; Terry. J. W.; Pecullan, M.; Reilly, F. K.

2003-02-26T23:59:59.000Z

93

Nitrate Anion Exchange in Pu-238 Aqueous Scrap Recovery Operations  

SciTech Connect

Strong base, nitrate anion exchange (IX) is crucial to the purification of {sup 238}Pu solution feedstocks with gross levels of impurities. This paper discusses the work involved in bench scale experiments to optimize the nitrate anion exchange process. In particular, results are presented of experiments conducted to (a) demonstrate that high levels of impurities can be separated from {sup 238}Pu solutions via nitrate anion exchange and, (b) work out chemical pretreatment methodology to adjust and maintain {sup 238}Pu in the IV oxidation state to optimize the Pu(IV)-hexanitrato anionic complex sorption to Reillex-HPQ resin. Additional experiments performed to determine the best chemical treatment methodology to enhance recovery of sorbed Pu from the resin, and VIS-NIR absorption studies to determine the steady state equilibrium of Pu(IV), Pu(III), and Pu(VI) in nitric acid are discussed.

Pansoy-Hjelvik, M.E.; Silver, G.L.; Reimus, M.A.H.; Ramsey, K.B.

1999-01-31T23:59:59.000Z

94

Soil Erosion and Sediment Control Act, Soil and Water Conservation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act, Soil and Water Conservation District, and Council on Soil and Water Conservation Regulations (Connecticut) Soil Erosion and Sediment Control Act, Soil and Water Conservation...

95

Electroactive Materials for Anion Separation - Technetium from Nitrate  

DOE Green Energy (OSTI)

Many contaminants of interest to the U.S. Department of Energy (DOE) exist as anions. These include the high priority pollutants chromate, pertechnetate, and nitrate ions. In addition, there are also industrial and urban applications where the separation of anionic species from aqueous streams is critical. Examples include industrial water recycle and waste water treatment (e.g., chloride ion removal for the pulp and paper industry, borate ion in the chemical and nuclear industries) and drinking water and agricultural waste treatment (e.g., nitrate removal). In the proposed research, technetium is chosen as the target pollutant. Because of its half-life of 213,000 years, technetium (99Tc) presents a long-term hazard for waste disposal. Much of the 99Tc in the tank wastes is present as pertechnetate (TcO4-), accounting for its high solubility and mobility in aqueous systems. Several sorbents are available for removing TcO4- from alkaline waste brines, but each has important drawbacks. The use of commercial ion exchange (IX) resins to extract TcO4-, e.g., Reillex{trademark}-HPQ (Reilly Industries) and ABEC 5000 (Eichrom Industries), generates significant secondary waste. The elution of TcO4- from Reillex{trademark}-HPQ resins requires either concentrated nitric acid or a concentrated caustic solution of ethylene-diamine containing a small amount of tin chloride. This eluant has a short shelf life requiring frequent preparation, and the 99Tc is delivered in a complexed, reduced form. While TcO4- can be eluted from ABEC 5000 resins using de-ionized water, the much-reduced capacity of ABEC 5000 resins in comparison to the Reillex{trademark}-HPQ resins leads to a low column capacity. In general, unwanted secondary wastes are generated because (1) the only effective eluant happens to be hazardous and/or (2) the IX material has a low capacity or selectivity for the target ion, resulting in more frequent elution and column replacements. Alternative IX materials that have high capacities, can be regenerated easily, and are highly selective for TcO4- would avoid these problems. Electrochemically active IX media meet these criteria. Such an IX system uses electrically induced changes in the media to expel sorbed ions through a charge imbalance rather than requiring chemical eluants to ''strip'' them. Therefore, this medium eliminates the need to prepare, store, and dispose of many of the process chemicals normally required for IX operations. The focus of the project is to develop a fundamental understanding of how the physical and chemical properties of electroactive ion exchange (EaIX) materials control their efficiency when used as mass separation agents. Specifically, the desirable characteristics of EaIX materials for separation applications are (1) high reversibility, (2) high selectivity, (3) acceptable physical and chemical stability, (4) rapid intercalation and de-intercalation rates, and (5) high capacity. Because of these requirements, EaIX materials share many properties in common with conventional ion exchangers and electroactive polymers. For example, EaIX materials require the selectivity typically found in ion exchangers; they also require the redox reversibility of electroactive polymers. The results of this work will allow the rational design of new materials and processes tailored for the separation of specific anions.

Sukamto, Johanes H.; Smyrl, William H.; McBreen, James; Hubler, Timothy L.; Lilga, Michael A.

2000-06-01T23:59:59.000Z

96

Rate Schedules  

Energy.gov (U.S. Department of Energy (DOE))

One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

97

Embedded Network Sensing of Moisture and Nitrate Propagation During Irrigation with Reclaimed Wastewater  

E-Print Network (OSTI)

operation, thus optimizing discharge of nitrate-laden wastewater. rain gauge D ata acquisition a nd wireless

2004-01-01T23:59:59.000Z

98

A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis  

E-Print Network (OSTI)

and abiological processes, but the reducing power of plant- derived organic matter may build up over seasons often limits rates of plant growth, increased N inputs could affect several ecosystem pro- cesses Science, University of Arizona, Tucson, AZ 85721-0038, USA, {Department of Plant, Soil, and Environmental

Chorover, Jon

99

Rehabilitation of semi-arid coal mine spoil bank soils with mine residues and farm organic by-products  

SciTech Connect

A method of rehabilitating coal mine soils was studied under the conditions of a semi-arid climate, lack of topsoil but availability of farm by-products in NE Spain. The objectives of the research were to assess a new method in order to achieve a suitable substrate for the establishment of native vegetation, to evaluate environmental impacts associated with the reclamation process, and to determine the time necessary to integrate the treated area into the surrounding environment. Eight plots (10 x 35 m{sup 2}) were established in September 1997. Substrate combinations of two types of mine spoil (coal dust and coarse-sized material), two levels of pig slurry (39 and 94 Mg ha{sup -1}dry-wt), and cereal straw (0 and 15 Mg ha{sup -1}) were applied. Monitoring of select physical and chemical soil properties and vegetation characteristics was performed from 1997 until 2005. The bulk density and the saturated hydraulic conductivity measured did not limit plant development and water availability. Initial substrate salinity (1.37 S m{sup -1}) decreased with time and in the long term did not limit plant colonization to salinity-adapted species. Initial nitrate concentration was 298 mg kg{sup -1}, but was reduced significantly to acceptable values in 3 years (55 mg kg{sup -1}) and the measured pH (7.6) was maintained at the level of initial spoil values. Vegetation cover reached up to 90%. In the treated area, spontaneous vegetation cover (15 to 70%) colonized the nonsown areas widely. In the medium term, vegetation cover tended to be higher in plots with a thicker layer of coal dust material and the higher slurry rate. Soil rehabilitation and environmental reintegration, taking into account soil and vegetation indicators, was possible in the studied area with low cost inputs using residual materials from mining activities and animal husbandry by-products.

Salazar, M.; Bosch-Serra, A.; Estudillos, G.; Poch, R.M. [University of Lleida, Lleida (Spain). Dept. of Environmental & Soil Science

2009-07-01T23:59:59.000Z

100

Electrochemical processing of nitrate waste solutions. Phase 2, Final report  

SciTech Connect

The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F{sup {minus}} ions from the synthetic mix migrating across the cation exchange membrane and forming HF in the acid anolyte. Other possibilities for anode materials were explored. A membrane separation process was investigated which employs an anion and cation exchange membrane to remove nitrite and nitrate, recovering caustic and nitric acid. Present research has shown poor current efficiencies for nitrite and nitrate transport across the anion exchange membrane due to co-migration of hydroxide anions. Precipitates form within the anion exchange membranes which would eventually result in the failure of the membranes. Electrochemical processing offers a highly promising and viable method for the treatment of nitrate waste solutions.

Genders, D.; Weinberg, N.; Hartsough, D. [Electrosynthesis Co., Inc., Cheektowaga, NY (US)

1992-10-07T23:59:59.000Z

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Rates - WAPA-137 Rate Order  

NLE Websites -- All DOE Office Websites (Extended Search)

WAPA-137 Rate Order WAPA-137 Rate Order 2009 CRSP Management Center Customer Rates Second Step Presentation from the June 25, 2009, Customer Meeting Handout Materials from the June 25, 2009, Customer Meeting Customer Comment Letters ATEA CREDA Farmington ITCA AMPUA Rate Adjustment Information The second step of WAPA-137 SLCA/IP Firm Power, CRSP Transmission and Ancillary Services rate adjustment. FERC Approval of Rate Order No. WAPA-137 Notice Of Filing for Rate Order No. WAPA-137 Published Final FRN for Rate Order No. WAPA-137 Letter to Customers regarding the published Notice of Extension of Public Process for Rate Order No. WAPA-137 Published Extension of Public Process for Rate Order No. WAPA-137 FRN Follow-up Public Information and Comment Forum Flier WAPA-137 Customer Meetings and Rate Adjustment Schedule

102

Ferrocyanide Safety Project Dynamic X-Ray Diffraction studies of sodium nickel ferrocyanide reactions with equimolar nitrate/nitrite salts  

Science Conference Proceedings (OSTI)

Dynamic X-ray Diffraction (DXRD) has been to used to identify and quantify the solid state reactions that take place between sodium nickel ferrocyanide, Na{sub 2}NiFe(CN){sub 6}, and equimolar concentrations of sodium nitrate/nitrite, reactions of interest to the continued environmental safety of several large underground waste storage tanks at the Hanford site in eastern Washington. The results are supportive of previous work, which indicated that endothermic dehydration and melting of the nitrates take place before the occurrence of exothermic reactions that being about 300{degrees}C. The DXRD results show that a major reaction set at these temperatures is the occurrence of a series reaction that produces sodium cyanate, NaCNO, as an intermediate in a mildly exothermic first step. In the presence of gaseous oxygen, NaCNO subsequently reacts exothermally and at a faster rate to form metal oxides. Measurements of the rate of this reaction are used to estimate the heat release. Comparisons of this estimated heat release rate with heat transfer rates from a hypothetical ``hot spot`` show that, even in a worst-case scenario, the heat transfer rates are approximately eight times higher than the rate of energy release from the exothermic reactions.

Dodds, J.N. [Washington State Univ., Pullman, WA (United States). Dept. of Chemical Engineering]|[UNOCAL, Brea, CA (United States). Hartley Research Center

1994-07-01T23:59:59.000Z

103

Biological Treatment of Petroleum in Radiologically Contaminated Soil  

DOE Green Energy (OSTI)

This chapter describes ex situ bioremediation of the petroleum portion of radiologically co-contaminated soils using microorganisms isolated from a waste site and innovative bioreactor technology. Microorganisms first isolated and screened in the laboratory for bioremediation of petroleum were eventually used to treat soils in a bioreactor. The bioreactor treated soils contaminated with over 20,000 mg/kg total petroleum hydrocarbon and reduced the levels to less than 100 mg/kg in 22 months. After treatment, the soils were permanently disposed as low-level radiological waste. The petroleum and radiologically contaminated soil (PRCS) bioreactor operated using bioventing to control the supply of oxygen (air) to the soil being treated. The system treated 3.67 tons of PCRS amended with weathered compost, ammonium nitrate, fertilizer, and water. In addition, a consortium of microbes (patent pending) isolated at the Savannah River National Laboratory from a petroleum-contaminated site was added to the PRCS system. During operation, degradation of petroleum waste was accounted for through monitoring of carbon dioxide levels in the system effluent. The project demonstrated that co-contaminated soils could be successfully treated through bioventing and bioaugmentation to remove petroleum contamination to levels below 100 mg/kg while protecting workers and the environment from radiological contamination.

BERRY, CHRISTOPHER

2005-11-14T23:59:59.000Z

104

Nitrate Enhanced Microbial Cr(VI) Reduction-Final Report  

Science Conference Proceedings (OSTI)

A major challenge for the bioremediation of radionuclides (i.e., uranium, technetium) and metals (i.e., Cr(VI), Hg) is the co-occurrence of nitrate as it can inhibit metal transformation. Denitrification (nitrate reduction to dinitrogen gas) is considered the most important ecological process. For many metal and metalloid reducing bacteria, however, ammonia is the end product through respiratory nitrate reduction (RNRA). The focus of this work was to determine how RNRA impacts Cr(VI) transformation. The goal was to elucidate the specific mechanism(s) that limits Cr(VI) reduction in the presence of nitrate and to use this information to develop strategies that enhance Cr(VI) reduction (and thus detoxification). Our central hypothesis is that nitrate impacts the biotransformation of metals and metalloids in three ways 1) as a competitive alternative electron acceptor (inhibiting transformation), 2) as a co-metabolite (i.e., concomitant reduction, stimulating transformation), and 3) as an inducer of specific proteins and pathways involved in oxidation/reduction reactions (stimulating transformation). We have identified three model organisms, Geobacter metallireducens (mechanism 1), Sulfurospirillum barnesii, (mechasism 2), and Desulfovibrio desulfuricans (mechanisms 3). Our specific aims were to 1) investigate the role of Cr(VI) concentration on the kinetics of both growth and reduction of nitrate, nitrite, and Cr(VI) in these three organisms; 2) develop a profile of bacterial enzymes involved in nitrate transformation (e.g., oxidoreductases) using a proteomic approach; 3) investigate the function of periplasmic nitrite reductase (Nrf) as a chromate reductase; and 4) develop a strategy to maximize microbial chromium reduction in the presence of nitrate. We found that growth on nitrate by G. metallireducens was inhibited by Cr(VI). Over 240 proteins were identified by LC/MS-MS. Redox active proteins, outer membrane heavy metal efflux proteins, and chemotaxis sensory proteins (Gmet_2478 and Gmet_1641) were up-regulated with exposure to Cr(VI). A nine-heme cytochrome C was purified that could reduce nitrite and could be oxidized by Cr(VI). For D. desulfuricans, we found that confirmed that Cr(VI) induced a prolonged lag period when Cr(VI) was reduced. Over three hundred proteins were unequivocally identified by LC/MS-MS and a significant number of down-regulated proteins for which the levels were changed >2 fold compared to control. Sulfite reductase levels were similar, however, nitrate and nitrite reductase were down-regulated. The supernatant of spent cultures was found to contain a filterable, heat stable compound that rapidly reduced Cr(VI). In addition, desulfoviridin was purified from nitrate grown cells and shown to have nitrite reductase activity that was inhibited by Cr(VI). For S. barnesii, periplasmic nitrate reductase (Nap), nitrite reductase (Nrf), and the metalloid reductase (Rar) were purified and characterized. The supernatant of spent cultures was also found to contain a filterable, heat stable compound that rapidly reduced Cr(VI) but that Rar also reduced Cr(VI). Our results from specific aims 1 through 3 indicate that for G. metallireducens, Cr(VI) inhibits nitrate respiration as it oxidizes cytochromes involved in nitrate respiration. Iron reduction is apparently not affected and the inhibitory affects of Cr(VI) may be attenuated by the addition of sufficient Fe(III) to generate Fe(II) that abiotically reduces the chromium. For S. barnesii, although the enzyme assays indicate that the components of the respiratory pathway for nitrate (e.g. Nap and Nrf) are inhibited by chromate, the organism has a mechanism to prevent this from actually occurring. Our current hypothesis is that the non-specific metalloid reductase (Rar) is providing resistance by reducing the Cr(VI). The strategy here would be to enhance its growth and metabolism in the natural setting. Lactate is a suitable electron donor for S. barnesii but other donors are possible. Although the version of the Phylochip used for monitoring the microb

John F. Stolz

2011-06-15T23:59:59.000Z

105

Process for converting sodium nitrate-containing, caustic liquid radioactive wastes to solid insoluble products  

DOE Patents (OSTI)

A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.

Barney, Gary S. (Richland, WA); Brownell, Lloyd E. (Richland, WA)

1977-01-01T23:59:59.000Z

106

Energy Rating  

E-Print Network (OSTI)

Consistent, accurate, and uniform ratings based on a single statewide rating scale Reasonable estimates of potential utility bill savings and reliable recommendations on cost-effective measures to improve energy efficiency Training and certification procedures for home raters and quality assurance procedures to promote accurate ratings and to protect consumers Labeling procedures that will meet the needs of home buyers, homeowners, renters, the real estate industry, and mortgage lenders with an interest in home energy ratings

Cabec Conference; Rashid Mir P. E

2009-01-01T23:59:59.000Z

107

Insertion Rates  

Science Conference Proceedings (OSTI)

HOME > Insertion Rates. TECH HEADLINES. Research Explores a New Layer in Additive Manufacturin... Grand Opening Slated for Electron Microscopy Facility.

108

Denitrification in bottomland hardwood soils of the Cache River, Arkansas. Final report  

Science Conference Proceedings (OSTI)

To give initial nitrate-N concentrations of about 9 mg L-1, 15N labeled nitrate was added to sediment-water columns containing wetland sediment and river water. Over 40 days, nitrate-N in floodwater decreased by between 82 and 59 percent, which gave estimates of N export from the water column of 11.5 mg N m-2 day -1 and 7.5 mg N m-2 day-1. These values are low compared with wetland systems elsewhere and correlated directly with the organic content of surface sediment, which included the forest litter. Added glucose at least doubled rates of nitrate loss, which were then presumed to have been carbon limited. Nitrification was estimated using changes in atom percent 15NO3 alone and not changes in atom percent NH4, which is a more usual method. Contributions of NO3 to water from nitrification were small related to initial organic contents and were estimated at between 5 and 12 percent of the amounts by which nitrate reduced. Rates of nitrogen transformation in these forested swamps are likely to be set by rate of supply of soluble carbon from tree litter and perhaps canopy leachate, rather than by nitrate concentration in inflowing floodwater. Bottomland hardwoods, Nitrogen cycling, Nitrification-denitrification, Water quality, Nitrogen cycling, Wetlands.

Boar, R.R.; DeLaune, R.D.; Lindau, C.W.; Patrick, W.H.

1993-09-01T23:59:59.000Z

109

Total Carbon Dioxide, Hydrographic, and Nitrate Measurements in the  

NLE Websites -- All DOE Office Websites (Extended Search)

Total Carbon Dioxide, Hydrographic, and Nitrate Measurements in the Southwest Pacific during Austral Autumn, 1990: Results from NOAA/PMEL CGC-90 Cruise. Total Carbon Dioxide, Hydrographic, and Nitrate Measurements in the Southwest Pacific during Austral Autumn, 1990: Results from NOAA/PMEL CGC-90 Cruise. NDP-052 (1995) data Download the Data and ASCII Documentation files of NDP-052 PDF Download a PDF of NDP-052 image Contributed by Marilyn F. Lamb and Richard A. Feely Pacific Marine Environmental Laboratory Seattle, Washington and Lloyd Moore and Donald K. Atwood Atlantic Oceanographic and Meteorological Laboratory Miami, Florida Prepared by Alexander Kozyr* Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge, Tennessee, U.S.A. *Energy, Environment, and Resources Center The University of Tennessee Knoxville, Tennessee Environmental Sciences Division Publication No. 4420 Date Published: September 1995

110

Using solvent extraction to process nitrate anion exchange column effluents  

SciTech Connect

Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), a new organophosphorous extractant, and a new centrifugal mixer-settler both recently developed at Argonne were evaluated for their potential use in the recovery of actinides from nitrate anion exchange column effluents. The performance of the extractant was evaluated by measuring the extraction coefficient values as a function of acid and salt concentration. Additional performance parameters include extraction coefficient behavior as a function of the total metal concentration in the organic phase, and comparison of different stripping and organic scrubbing techniques. A simulated effluent stream was used to evaluate the performance of the centrifugal mixer-settlers by comparing experimental and calculated interstage concentration profiles. Both the CMPO extractant and the centrifugal mixer-settlers have potential for processing nitrate column effluents, particularly if the stripping behavior can be improved. Details of the proposed process are presented in the flowsheet and contactor design analyses.

Yarbro, S.L.

1987-10-01T23:59:59.000Z

111

Rate schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Firm Power Service Provided by Rate/Charges Firm Power Service Provided by Rate/Charges Rate/Charges Effective Through (or until superceded) Firm Sales (SLIP-F9) Composite Rate SLIP 29.62 mills/kWh 9/30/2015 Demand Charge SLIP $5.18/kW-month 9/30/2015 Energy Charge SLIP 12.19 mills/kWh 9/30/2015 Cost Recovery Charge (CRC) SLIP 0 mills/kWh 9/30/2015 Transmission Service Provided by Current Rates effective10/12 - 9/15 (or until superceded) Rate Schedule Effective Through Firm Point-to-Point Transmission (SP-PTP7) CRSP $1.14 per kW-month $13.69/kW-year $0.00156/kW-hour $0.04/kW-day $0.26/kW-week 10/1/2008-9/30/2015 Network Integration Transmission (SP-NW3) CRSP see rate schedule 10/1/2008-9/30/2015 Non-Firm Point-to-Point Transmission (SP-NFT6) CRSP see rate schedule 10/1/2008-9/30/2015 Ancillary Services Provided by Rate Rate Schedule

112

Environmental Soil Chemistry Second Edition Environmental Soil Chemistry illustrates fundamental principles of soil  

E-Print Network (OSTI)

Environmental Soil Chemistry Second Edition Environmental Soil Chemistry illustrates fundamental principles of soil chemistry with respect to environmental reactions between soils and other natural contemporary training in the basics of soil chemistry and applications to real-world environmental concerns

Sparks, Donald L.

113

Shock compression of water and solutions of ammonium nitrate  

E-Print Network (OSTI)

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.4 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5 Shock compression of water 95 5.1 Cell development... .pwcs.com.au/display/assets/download.php?id=498. W. B. Sudweeks. Physical and chemical properties of industrial slurry explo- sives. Industrial & Engineering Chemistry Product Research and Development, 24(3):432–436, 1985. N. Taylor. Hot spots in Ammonium Nitrate. PhD thesis, University of Cam...

Morley, Michael James

2011-07-12T23:59:59.000Z

114

Potential net soil N mineralization and decomposition of glycine-13C in forest soils along an elevation gradient  

SciTech Connect

The objective of this research was to better understand patterns of soil nitrogen (N) availability and soil organic matter (SOM) decomposition in forest soils across an elevation gradient (235-1670 m) in the southern Appalachian Mountains. Laboratory studies were used to determine the potential rate of net soil N mineralization and in situ studies of {sup 13}C-labelled glycine were used to infer differences in decomposition rates. Nitrogen stocks, surface soil (0-5 cm) N concentrations, and the pool of potentially mineralizable surface soil N tended to increase from low to high elevations. Rates of potential net soil N mineralization were not significantly correlated with elevation. Increasing soil N availability with elevation is primarily due to greater soil N stocks and lower substrate C-to-N ratios, rather than differences in potential net soil N mineralization rates. The loss rate of {sup 13}C from labelled soils (0-20 cm) was inversely related to study site elevation (r = -0.85; P < 0.05) and directly related to mean annual temperature (+0.86; P<0.05). The results indicated different patterns of potential net soil N mineralization and {sup 13}C loss along the elevation gradient. The different patterns can be explained within a framework of climate, substrate chemistry, and coupled soil C and N stocks. Although less SOM decomposition is indicated at cool, high-elevation sites, low substrate C-to-N ratios in these N-rich systems result in more N release (N mineralization) for each unit of C converted to CO{sub 2} by soil microorganisms.

Garten Jr, Charles T [ORNL

2004-09-01T23:59:59.000Z

115

SOIL HEALTH AND SOIL QUALITY: A REVIEW  

E-Print Network (OSTI)

Soil health is defined as the continued capacity of soil to function as a vital living system, by recognizing that it contains biological elements that are key to ecosystem function within land-use boundaries (Doran and Zeiss, 2000; Karlen et al., 2001). These functions are able to sustain biological productivity of soil, maintain the quality of surrounding air and water environments, as well as promote plant, animal, and human health (Doran et al., 1996). The concept of soil quality emerged in the literature in the early 1990s (Doran and Safely, 1997; Wienhold et al., 2004), and the first official application of the term was approved by the Soil Science Society of America Ad Hoc Committee on Soil Quality (S-581) and discussed by Karlen et al., (1997). Soil quality was been defined as ‘‘the capacity of a reference soil to function, within natural or managed ecosystem boundaries, to sustain plant and animal productivity, maintain or enhance water and air quality, and support human health and habitation.’ ’ Subsequently the two terms are used interchangeably (Karlen et al., 2001) although it is important to distinguish that, soil quality is related to soil function (Karlen et al., 2003; Letey et al, 2003), whereas soil

James Kinyangi

2007-01-01T23:59:59.000Z

116

Reading Comprehension - Soil  

NLE Websites -- All DOE Office Websites (Extended Search)

Soil Soil What Is Soil? Soil is the loose top layer of Earth's surface. Plants depend on soil. It holds them up. It provides them with food and water. Soil is made of _________ fungi humus particles . These very small pieces mostly come from rocks broken down by weathering. Other soil particles come from rotting remains of plants and animals. The part of soil that comes from living things is called _________ loam organic matter texture . Soil Life Many small organisms live in soil. They include worms, bacteria, and fungi. _________ Fungi Humus Particles are like plants, but they aren't green. And they have no leaves, flowers, or roots. The organisms feed on dead plants and animals. They cause them to _________ decay loam particles , or break down. The decayed plant and animal matter is called _________ fungi humus

117

Modeling soil quality thresholds to ecosystem recovery at Fort Benning, GA, USA  

SciTech Connect

The objective of this research was to use a simple model of soil carbon (C) and nitrogen (N) dynamics to predict nutrient thresholds to ecosystem recovery on degraded soils at Fort Benning, Georgia, in the southeastern USA. Artillery, wheeled, and tracked vehicle training at military installations can produce soil disturbance and potentially create barren, degraded soils. Ecosystem reclamation is an important component of natural resource management at military installations. Four factors were important to the development of thresholds to recovery of aboveground biomass on degraded soils: (1) initial amounts of aboveground biomass, (2) initial soil C stocks (i.e., soil quality), (3) relative recovery rates of biomass, and (4) soil sand content. Forests and old fields on soils with varying sand content had different predicted thresholds for ecosystem recovery. Soil C stocks at barren sites on Fort Benning were generally below predicted thresholds to 100% recovery of desired future ecosystem conditions defined on the basis of aboveground biomass. Predicted thresholds to ecosystem recovery were less on soils with more than 70% sand content. The lower thresholds for old field and forest recovery on more sandy soils were apparently due to higher relative rates of net soil N mineralization. Calculations with the model indicated that a combination of desired future conditions, initial levels of soil quality (defined by soil C stocks), and the rate of biomass accumulation determine the predicted success of ecosystem recovery on disturbed soils.

Garten Jr, Charles T [ORNL; Ashwood, Tom L [ORNL

2004-12-01T23:59:59.000Z

118

One strategy for estimating the potential soil carbon storage due to CO{sub 2} fertilization  

SciTech Connect

Soil radiocarbon measurements can be used to estimate soil carbon turnover rates and inventories. A labile component of soil carbon has the potential to respond to perturbations such as CO{sub 2} fertilization, changing climate, and changing land use. Soil carbon has influenced past and present atmospheric CO{sub 2} levels and will influence future levels. A model is used to calculate the amount of additional carbon stored in soil because of CO{sub 2} fertilization.

Harrison, K.G. [Oak Ridge National Lab., TN (United States); Bonani, G. [Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. fuer Mittelenergiephysik

1994-06-01T23:59:59.000Z

119

Homeowner Soil Sample Information Form  

E-Print Network (OSTI)

Homeowners should submit this form with their soil samples when requesting a soil test from the Texas A&M Soil Testing Laboratory.

Provin, Tony

2007-04-11T23:59:59.000Z

120

Mass Transport within Soils  

Science Conference Proceedings (OSTI)

Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone with three major horizons, the saturated zone can be further divided into other zones based on hydraulic and geologic conditions. Wetland soils are a special and important class in which near-saturation conditions exist most of the time. When a contaminant is added to or formed in a soil column, there are several mechanisms by which it can be dispersed, transported out of the soil column to other parts of the environment, destroyed, or transformed into some other species. Thus, to evaluate or manage any contaminant introduced to the soil column, one must determine whether and how that substance will (1) remain or accumulate within the soil column, (2) be transported by dispersion or advection within the soil column, (3) be physically, chemically, or biologically transformed within the soil (i.e., by hydrolysis, oxidation, etc.), or (4) be transported out of the soil column to another part of the environment through a cross-media transfer (i.e., volatilization, runoff, ground water infiltration, etc.). These competing processes impact the fate of physical, chemical, or biological contaminants found in soils. In order to capture these mechanisms in mass transfer models, we must develop mass-transfer coefficients (MTCs) specific to soil layers. That is the goal of this chapter. The reader is referred to other chapters in this Handbook that address related transport processes, namely Chapter 13 on bioturbation, Chapter 15 on transport in near-surface geological formations, and Chapter 17 on soil resuspention. This chapter addresses the following issues: the nature of soil pollution, composition of soil, transport processes and transport parameters in soil, transformation processes in soil, mass-balance models, and MTCs in soils. We show that to address vertical heterogeneity in soils in is necessary to define a characteristic scaling depth and use this to establish process-based expressions for soil MTCs. The scaling depth in soil and the corresponding MTCs depend strongly on (1) the composition of the soil and physical state of the soil, (2) the chemical and physic

McKone, Thomas E.

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Genome sequences for six Rhodanobacter strains isolated from soils and the terrestrial subsurface with variable denitrification capabilities  

SciTech Connect

We report the first genome sequences for six strains of Rhodanobacter species isolated from a variety of soil and subsurface environments. Three of these strains are capable of complete denitrification and three others are not. However, all six strains contain most of the genes required for the respiration of nitrate to gaseous nitrogen. The nondenitrifying members of the genus lack only the gene for nitrate reduction, the first step in the full denitrification pathway. The data suggest that the environmental role of bacteria from the genus Rhodanobacter should be reevaluated.

Kostka, Joel [Florida State University; Green, Stefan [Florida State University; Rishishwar, Lavanya [Georgia Institute of Technology; Prakash, Om [National Centre for Cell Science, Pune, India; Katz, Lee [Centers for Disease Control and Prevention, Atlanta, Georgia; Marino-Ramirez, Leonardo [National Center for Biotechnology Information, National Institutes of Health; Jordan, King [Georgia Institute of Technology; Munk, Christine [U.S. Department of Energy, Joint Genome Institute; Ivanova, Natalia [United States Department of Energy Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Watson, David B [ORNL; Brown, Steven D [ORNL; Palumbo, Anthony Vito [ORNL; Brooks, Scott C [ORNL

2012-01-01T23:59:59.000Z

122

Assessment of arsenic mobility in the soils of some golf courses in South Florida  

E-Print Network (OSTI)

High concentrations of arsenic have been detected in soils and underlying groundwater of some South Florida golf courses, indicating the possible impact of the application of arsenic-containing herbicides.The mobility of arsenic in the soils from selected golf courses was studied using a simple two-step sequential extraction procedure.Sodium nitrate (0.1 M), potassium dihydrogen phosphate (0.1 M) and concentrated nitric acid were used to obtain mobile, mobilizable, and pseudo total arsenic fractions.Soils were separated into fine (-0.25 mm) and large (0.25–0.75 2 mm) particle size fractions.Arsenic contents were correlated with the distribution of iron (R s0.4827), manganese 2 2 (R s0.7674) and aluminum (R s5459) in the particle size fractions, while such correlation was not observed for soil organic matter, indicating that the oxidesyhydroxides of iron, manganese and aluminum control the distribution of arsenic in these soils.Sodium nitrate and potassium dihydrogen phosphate extractants used in this study extracted large portions of arsenic from most soil samples studied.This is especially true for the fine fraction where the extractable arsenic ranged from 9.2 to 51.3 % with an average of 28.7"13.3%, whereas in the large fraction, arsenic ranged from 7.2 to 24.7 % with an average of 15.4"6.4%. These extractants, however, release only small amounts of iron, manganese, and aluminum.It seems likely that arsenic can be released by sodium nitrate and potassium dihydrogen phosphate without significant dissolution of the oxidesyhydroxides of iron, manganese, and aluminum in

Yong Cai; Julio C. Cabrera; Myron Georgiadis; Krish Jayach

2001-01-01T23:59:59.000Z

123

HYDROGEN PRODUCTION BY THE CYANOBACTERIUM PLECTONEMA BORYANUM: EFFECTS OF INITIAL NITRATE CONCENTRATION, LIGHT INTENSITY, AND INHIBITION OF PHOTOSYSTEM II BY DCMU  

SciTech Connect

The alarming rate at which atmospheric carbon dioxide levels are increasing due to the burning of fossil fuels will have incalculable consequences if disregarded. Fuel cells, a source of energy that does not add to carbon dioxide emissions, have become an important topic of study. Although signifi cant advances have been made related to fuel cells, the problem of cheap and renewable hydrogen production still remains. The cyanobacterium Plectonema boryanum has demonstrated potential as a resolution to this problem by producing hydrogen under nitrogen defi cient growing conditions. Plectonema boryanum cultures were tested in a series of experiments to determine the effects of light intensity, initial nitrate concentration, and photosystem II inhibitor DCMU (3-(3,4- dichlorophenyl)-1,1-dimethylurea) upon hydrogen production. Cultures were grown in sterile Chu. No. 10 medium within photobioreactors constantly illuminated by halogen lights. Because the enzyme responsible for hydrogen production is sensitive to oxygen, the medium was continuously sparged with argon/CO2 (99.7%/0.3% vol/vol) by gas dispersion tubes immersed in the culture. Hydrogen production was monitored by using a gas chromatograph equipped with a thermal conductivity detector. In the initial experiment, the effects of initial nitrate concentration were tested and results revealed cumulative hydrogen production was maximum at an initial nitrate concentration of 1 mM. A second experiment was then conducted at an initial nitrate concentration of 1 mM to determine the effects of light intensity at 50, 100, and 200 ?mole m-2 s-1. Cumulative hydrogen production increased with increasing light intensity. A fi nal experiment, conducted at an initial nitrate concentration of 2 mM, tested the effects of high light intensity at 200 and 400 ?mole m-2 s-1. Excessive light at 400 ?mole m-2 s-1 decreased cumulative hydrogen production. Based upon all experiments, cumulative hydrogen production rates were optimal at an initial nitrate concentration of 1 mM and a light intensity of 100 ?mole m-2 s-1. DCMU was shown in all experiments to severely decrease hydrogen production as time progressed. With the information acquired so far, future experiments with reducing substances could determine maximum rates of hydrogen production. If maximum hydrogen production rates proved to be large enough, Plectonema boryanum could be grown on an industrial scale to provide hydrogen gas as a renewable fuel.

Carter, B.; Huesemann, M.

2008-01-01T23:59:59.000Z

124

Relationships among forest soil C isotopic composition, partitioning, and turnover times  

SciTech Connect

The purpose of this research was to test the hypothesis that vertical enrichment of soil {delta}{sup 13}C values is related to rates of soil C turnover in undisturbed, mature forest ecosystems. Soil C and N were measured at nine sites along an altitudinal gradient in the southern Appalachian Mountains (Tennessee and North Carolina, USA). Measurements indicated greater labile and total soil C stocks with increasing altitude. Laboratory incubations (3 days) of rewetted, air-dry soils indicated potential soil C mineralization ({micro}g CO{sub 2} produced {center_dot} g{sup -1} soil C) declined with elevation. A principal component analysis indicated N availability increased with altitude. At each site, there was a significant relationship between {delta}{sup 13}C and log-transformed C concentrations in the soil profile (30 cm deep). Enrichment factors ({var_epsilon}) from the Rayleigh equation were also equally useful for describing soil {delta}{sup 13}C profiles at each site. Soil C partitioning and turnover times along the gradient were correlated with {sup 13}C-enrichment factors. Greater rates of change in {delta}{sup 13}C through the soil profile were correlated with faster soil C turnover. Environmental factors, soil C partitioning, and the rate of vertical change in soil {sup 13}C abundance are interrelated such that {delta}{sup 13}C measurements are a potential indicator of C dynamics in undisturbed forest soils.

Garten Jr, Charles T [ORNL

2006-09-01T23:59:59.000Z

125

Nitrogen saturation and soil N availability in a high-elevation spruce and fir forest  

Science Conference Proceedings (OSTI)

A field study was conducted during the summer of 1995 to gain abetter understanding of the causes of nitrate (NO{sub 3}-N) leaching and ongoing changes in soil nitrogen (N) availability in high-elevation (1524-2000 m) spruce (Picea rubens) and fir (Abies fraseri) forests of the Great Smoky Mountains National Park, Tennessee and North Carolina, U.S.A. Indicators of soil N availability (total soil N concentrations, extractable NH{sub 4}-N, extractable NO{sub 3}-N, and C/N ratios) were measured in Oa and A horizons at 33 study plots. Dynamic measures included potential net soil N mineralization determined in 12-week aerobic laboratory incubations at 22 C. Potential net nitrification in the A horizon was correlated (r = + 0.83, P < 0.001) with total soil n concentrations. mostmeasures of soil n availability did not exhibit significanttrends with elevation, but there were topographic differences. Potential net soil N mineralization and net nitrification in the A horizon were higher in coves than on ridges. Relative amounts of particulate and organomineral soil organic matter influenced potential net N mineralization and nitrification in the A horizon. Calculations indicate that soil N availability and NO{sub 3}-N leaching in high-elevation spruce and fir forests of the Great Smoky Mountains National Park will increase in response to regional warming.

Garten Jr, Charles T [ORNL

2000-06-01T23:59:59.000Z

126

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Tariff Rates FY 2014 Rates and Rate Schedules FY 2013 Rates and Rate Schedules FY 2012 Rates and Rate Schedules FY 2011 Rates and Rate Schedules FY 2010 Rates and Rate Schedules FY...

127

Low-melting point inorganic nitrate salt heat transfer fluid  

DOE Patents (OSTI)

A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

Bradshaw, Robert W. (Livermore, CA); Brosseau, Douglas A. (Albuquerque, NM)

2009-09-15T23:59:59.000Z

128

A disconnect between O horizon and mineral soil carbon - Implications for soil C sequestration  

Science Conference Proceedings (OSTI)

Changing inputs of carbon to soil is one means of potentially increasing carbon sequestration in soils for the purpose of mitigating projected increases in atmospheric CO{sub 2} concentrations. The effect of manipulations of aboveground carbon input on soil carbon storage was tested in a temperate, deciduous forest in east Tennessee, USA. A 4.5-year experiment included exclusion of aboveground litterfall and supplemental litter additions (three times ambient) in an upland and a valley that differed in soil nitrogen availability. The estimated decomposition rate of the carbon stock in the O horizon was greater in the valley than in the upland due to higher litter quality (i.e., lower C/N ratios). Short-term litter exclusion or addition had no effect on carbon stock in the mineral soil, measured to a depth of 30 cm, or the partitioning of carbon in the mineral soil between particulate- and mineral-associated organic matter. A two-compartment model was used to interpret results from the field experiments. Field data and a sensitivity analysis of the model were consistent with little carbon transfer between the O horizon and the mineral soil. Increasing aboveground carbon input does not appear to be an effective means of promoting carbon sequestration in forest soil at the location of the present study because a disconnect exists in carbon dynamics between O horizon and mineral soil. Factors that directly increase inputs to belowground soil carbon, via roots, or reduce decomposition rates of organic matter are more likely to benefit efforts to increase carbon sequestration in forests where carbon dynamics in the O horizon are uncoupled from the mineral soil.

Garten Jr, Charles T [ORNL

2009-01-01T23:59:59.000Z

129

Carbon Sequestration in Reclaimed Mined Soils of Ohio  

Science Conference Proceedings (OSTI)

This research project was aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites were characterized by distinct age chronosequences of RMS and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. Restoration of disturbed land is followed by the application of nutrients to the soil to promote the vegetation development. Reclamation is important both for preserving the environmental quality and increasing agronomic yields. Since reclamation treatments have significant influence on the rate of soil development, a study on subplots was designed with the objectives of assessing the potential of different biosolids on soil organic C (SOC) sequestration rate, soil development, and changes in soil physical and water transmission properties. All sites are owned and maintained by American Electric Power (AEP). These sites were reclaimed by two techniques: (1) with topsoil application, and (2) without topsoil application, and were under continuous grass or forest cover.

K. Lorenz; R. Lal

2007-12-31T23:59:59.000Z

130

Emulsion explosives containing high concentrations of calcium nitrate  

SciTech Connect

A water-in-oil emulsion blasting agent is described having a discontinuous aqueous oxidizer salt solution phase which contains a calcium nitrate (CN) to ammonium nitrate (AN) weight ratio of 1.5 or greater, a continuous oil or water-immiscible liquid organic phase, an emulsifier, and, optionally, a density reducing agent. It is found that emulsion slurry blasting agents containing this relatively high amount of CN to AN have properties that conventional emulsion slurry explosives, those containing more AN than CN or solely AN, do not. Specifically, one property is that the high-CN emulsion blasting agents of the present composition can have much smaller critical diameters but yet pass the US DOT Blasting Agent tests. This result will be shown in the examples that follow. Thus, if AN is present as the principal oxidizer salt, emulsion explosives that have small critical diameters, and even those with relatively large critical diameters, generally are too sensitive to pass the Blasting Agent tests. If CN is the principal oxidizer, the emulsion blasting agents are less sensitive and more likely to pass the tests. This effect of CN has commercial significance. 10 claims.

Jessop, H.A.; Funk, A.G.

1982-10-26T23:59:59.000Z

131

SEPARATION OF BARIUM VALUES FROM URANYL NITRATE SOLUTIONS  

DOE Patents (OSTI)

The separation of radioactive barium values from a uranyl nitrate solution of neutron-irradiated uranium is described. The 10 to 20% uranyl nitrate solution is passed through a flrst column of a cation exchange resin under conditions favoring the adsorption of barium and certain other cations. The loaded resin is first washed with dilute sulfuric acid to remove a portion of the other cations, and then wash with a citric acid solution at pH of 5 to 7 to recover the barium along with a lesser amount of the other cations. The PH of the resulting eluate is adjusted to about 2.3 to 3.5 and diluted prior to passing through a smaller second column of exchange resin. The loaded resin is first washed with a citric acid solution at a pH of 3 to elute undesired cations and then with citric acid solution at a pH of 6 to eluts the barium, which is substantially free of undesired cations.

Tompkins, E.R.

1959-02-24T23:59:59.000Z

132

A Novel Integration of an Ultraviolet Nitrate Sensor On Board a Towed Vehicle for Mapping Open-Ocean Submesoscale Nitrate Variability  

Science Conference Proceedings (OSTI)

Initial results from a deployment of the SUV-6 ultraviolet spectrophotometer, integrated with the SeaSoar towed vehicle, are presented. The innovative, combined system measures nitrate concentration at high spatial resolution (4 m vertically, 5 ...

Rosalind Pidcock; Meric Srokosz; John Allen; Mark Hartman; Stuart Painter; Matt Mowlem; David Hydes; Adrian Martin

2010-08-01T23:59:59.000Z

133

Soil microbial biomass: an estimator of soil development in reclaimed lignite mine soil  

E-Print Network (OSTI)

A two-year study was conducted at the Big Brown lignite mine in Fairfield, Texas, to determine the rate and extent of recovery of the soil microbial biomass (SMB) in mixed overburden. The relationships between SMB carbon (SMBC), basal respiration and soil organic carbon (SOC) accretion was evaluated using the respiratory quotient (qCO2) and the ratio of the SMB to SOC (SMBC:SOC ratio). Newly leveled, 1-, 3-, 5-, 10-, 15-, and 23-year-old reclaimed mixed overburden as well as an unmined soil were sampled bimonthly to measure SMIBC and other parameters. Three methods [chloroform fumigation incubation (FI), chloroform fumigation extraction (FE), and substrate-induced respiration (SIR)] were used to measure SMB and compared as estimators of SMB in reclaimed mine soils. Basal respiration (CO2 evolved from untreated soil), metabolic quotient (i.e. specific respiratory activity; qCO2; C02 produced per unit mass of SMB), and the SMBC:SOC ratio (the abundance of SMB relative to SOC) were used to determine trends in microbial biomass dynamics relative to SOC accumulation. A nearly linear increase in SMB was observed over the chronosequence of mine soils (r--O.98 to 0.99) for each of the three biomass methods. Mean values of SMB from 12 sample dates ranged from 41 pg SMIBC g-1 at the 0-year site to 291 ptg SMBC g-' at the 23-year site. The unmined reference soil averaged 84 jig SMBC g-1 through the period of the study. The qCO2 declined from 0.24 to 0. 12 Mg C02-C Mg SMBC d-' during the first year and tended to stabilize near 0.06 to 0.09 as reclaimed sites matured. The ratios of SMBC:SOC increased linearly with age of site through 23 years (r--O. 97). A substantial amount of seasonal variation in SMB was observed during the two-year study. Older sites (15-and 23-years) showed significant fluctuations of SMB that correlated well with the growing season of Coastal bermudagrass. Microbial biomass peaked during mid to late summer and declined to a minimum during the cold, wet winter months. Younger sites were less affected by seasonal influences, and changes at these sites appeared more related to changes in soil moisture.

Swanson, Eric Scott

1996-01-01T23:59:59.000Z

134

Hanford Waste Vitrification Plant hydrogen generation study: Formation of ammonia from nitrate and nitrate in hydrogen generating systems  

DOE Green Energy (OSTI)

The Hanford Waste Vitrification Plant (HWVP) is being designed for the Departrnent of Energy (DOE) to immobilize pretreated highly radioactive wastes in glass for permanent disposal in the HWVP, formic acid is added to the waste before vitrification to adjust glass redox and melter feed rheology. The operation of the glass melter and durability of the glass are affected by the glass oxidation state. Formation of a conductive metallic sludge in an over-reduced melt can result in a shortened melter lifetime. An over-oxidized melt may lead to foaming and loss of ruthenium as volatile RuO{sub 4}. Historically, foaming in the joule heated ceramic melter has been attributed to gas generation in the melt which is controlled by instruction of a reductant such as formic acid into the melter feed. Formic acid is also found to decrease the melter feed viscosity thereby facilitating pumping. This technical report discusses the noble metal catalyzed formic acid reduction of nitrite and/or nitrate to ammonia, a problem of considerable concern because of the generation of a potential ammonium nitrate explosion hazard in the plant ventilation system.

King, R.B.; Bhattacharyya, N.K.

1996-02-01T23:59:59.000Z

135

Correction to ``Nitrate and colloid transport through coarse Hanford sediments under steady state,  

E-Print Network (OSTI)

Correction to ``Nitrate and colloid transport through coarse Hanford sediments under steady state), Correction to ``Nitrate and colloid transport through coarse Hanford sediments under steady state, variably and colloid transport through coarse Hanford sediments under steady state, variably saturated flow'' by Kelly

Flury, Markus

136

Experimental unsaturated soil mechanics  

E-Print Network (OSTI)

In this general report, experimental systems and procedures of investigating the hydro-mechanical behaviour of unsaturated soils are presented. The water retention properties of unsaturated soils are commented and linked to various physical parameters and properties of the soils. Techniques of controlling suction are described together with their adaptation in various laboratory testing devices. Some typical features of the mechanical behaviour of unsaturated soils are presented within an elasto-plastic framework. An attempt to describe the numerous and significant recent advances in the investigation of the behaviour of unsaturated soils, including the contributions to this Conference, is proposed.

Delage, Pierre

2008-01-01T23:59:59.000Z

137

Does nitrate deposition following astrophysical ionizing radiation events pose an additional threat to amphibians?  

E-Print Network (OSTI)

It is known that amphibians are especially susceptible to the combination of heightened UVB radiation and increased nitrate concentrations. Various astrophysical events have been suggested as sources of ionizing radiation that could pose a threat to life on Earth, through destruction of the ozone layer and subsequent increase in UVB, followed by deposition of nitrate. In this study, we investigate whether the nitrate deposition following an ionizing event is sufficiently large to cause an additional stress beyond that of the heightened UVB previously considered. We have converted predicted nitrate depositions to concentration values, utilizing data from the New York State Department of Environmental Conservation Acid Rain Monitoring Network web site. Our results show that the increase in nitrate concentration in bodies of water following the most intense ionization event likely in the last billion years would not be sufficient to cause a serious additional stress on amphibian populations and may actually provide some benefit by acting as fertilizer.

Brian C. Thomas; Michelle D. Honeyman

2008-04-22T23:59:59.000Z

138

Amphibian nitrate stress as an additional terrestrial threat from astrophysical ionizing radiation events?  

E-Print Network (OSTI)

As diversity in amphibian species declines, the search for causes has intensified. Work in this area has shown that amphibians are especially susceptible to the combination of heightened UVB radiation and increased nitrate concentrations. Various astrophysical events have been suggested as sources of ionizing radiation that could pose a threat to life on Earth, through destruction of the ozone layer and subsequent increase in UVB, followed by deposition of nitrate. In this study, we investigate whether the nitrate deposition following an ionizing event is sufficiently large to cause an additional stress beyond that of the heightened UVB previously considered. We have converted predicted nitrate depositions to concentration values, utilizing data from the New York State Department of Environmental Conservation Acid Rain Monitoring Network web site. Our results show that the increase in nitrate concentration in bodies of water following the most intense ionization event likely in the last billion years would no...

Thomas, Brian C

2008-01-01T23:59:59.000Z

139

ARM - Measurement - Soil moisture  

NLE Websites -- All DOE Office Websites (Extended Search)

moisture moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil moisture The moisture of the soil measured near the surface. This includes soil wetness and soil water potential. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AMC : Ameriflux Measurement Component CO2FLX : Carbon Dioxide Flux Measurement Systems SOIL : Soil Measurement from the SGP SWATS : Soil Water and Temperature System SEBS : Surface Energy Balance System

140

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Customer Letter - Preliminary Review of Drought Adder Component for 2011 Firm Power Rates 2010 Rates and Rate Schedule - Current * 2009 Rates and Rate Schedule 2008 Rates and...

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Analysis of Enriched Uranyl Nitrate in Nested Annular Tank Array  

SciTech Connect

Two series of experiments were performed at the Rocky Flats Critical Mass Laboratory during the 1980s using highly enriched (93%) uranyl nitrate solution in annular tanks. [1, 2] Tanks were of typical sizes found in nuclear production plants. Experiments looked at tanks of varying radii in a co-located set of nested tanks, a 1 by 2 array, and a 1 by 3 array. The co-located set of tanks had been analyzed previously [3] as a benchmark for inclusion within the International Handbook of Evaluated Criticality Safety Benchmark Experiments. [4] The current study represents the benchmark analysis of the 1 by 3 array of a series of nested annular tanks. Of the seventeen configurations performed in this set of experiments, twelve were evaluated and nine were judged as acceptable benchmarks.

John D. Bess; James D. Cleaver

2009-06-01T23:59:59.000Z

142

Methane, Nonmethane Hydrocarbons, Alkyl Nitrates, and Chlorinated Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases in Whole-Air Samples Atmospheric Trace Gases in Whole-Air Samples Methane, Nonmethane Hydrocarbons, Alkyl Nitrates, and Chlorinated Carbon Compounds including 3 Chlorofluorocarbons (CFC-11, CFC-12, and CFC-113) in Whole-air Samples graphics Graphics data Data Investigator Donald Blake Department of Chemistry, University of California Irvine, California, 92697 USA Period of Record April 1979 - December 2012 Methods Whole-air samples are collected in conditioned, evacuated, 2-L stainless steel canisters; each canister is filled to ambient pressure over a period of about 1 minute (approximately 20 seconds to 2 minutes). These canisters are returned to the University of California at Irvine for chromatographic analysis. Analysis for methane includes gas chromatography with flame ionization, as

143

Industrial use of molten nitrate/nitrite salts  

DOE Green Energy (OSTI)

Nitrate salts have been used for years as a high-temperature heat transfer medium in the chemical and metal industries. This experience is often cited as an argument for the use of these salts in large-scale solar energy systems. However, this industrial experience has not been well documented and a study was carried out to provide such information to the solar community and to determine the applicability of this data base. Seven different industrial plants were visited and the plant operators were interviewed with regard to operating history and experience. In all cases the molten salt systems operate without problems. However, it is not possible to apply the base of industrial experience directly to solar thermal energy applications because of differences in operating temperature, salt composition, alloys used, and thermal/mechanical conditions.

Carling, R.W.; Mar, R.W.

1981-12-01T23:59:59.000Z

144

IMPORTED SOIL OR SOIL-FORMING MATERIALS  

E-Print Network (OSTI)

depending on local availability. An automated version of the soil textural classification triangle shownNeill, J. (1994). Reclaiming disturbed land for forestry. Forestry Commission Bulletin 110. HMSO, London

145

Plant and Soil An International Journal on Plant-Soil  

E-Print Network (OSTI)

1 23 Plant and Soil An International Journal on Plant-Soil Relationships ISSN 0032-079X Plant Soil DOI 10.1007/s11104-012-1353-x Seedling growth and soil nutrient availability in exotic and native tree growth and soil nutrient availability in exotic and native tree species: implications for afforestation

Neher, Deborah A.

146

Shear Strength Evaluation of an Erosional Soil System at Fourchon Beach.  

E-Print Network (OSTI)

??South Louisiana is vanishing. Subsidence due to relative sea level rise with erosion of weak wetland soils together produce devastating rates of land loss for… (more)

Boudreaux, Jacques Pierre

2012-01-01T23:59:59.000Z

147

VARIATION IN EROSION/DEPOSITION RATES OVER THE LAST FIFTTY YEARS ON ALLUVIAL FAN SURFACES OF L. PLEISTOCENE-MID HOLOCENE AGE, ESTIMATIONS USING 137CS SOIL PROFILE DATA, AMARGOSA VALLEY, NEVADA  

DOE Green Energy (OSTI)

Variations in erosion and deposition for the last fifty years (based on estimates from 137Cs profiles) on surfaces (Late Pleistocene to Late Holocene in age) making up the Fortymile Wash alluvial fan south of Yucca Mountain, is a function of surface age and of desert pavement development or absence. For purposes of comparing erosion and deposition, the surfaces can be examined as three groups: (1) Late Pleistocene surfaces possess areas of desert pavement development with thin Av or sandy A horizons, formed by the trapping capabilities of the pavements. These zones of deposition are complemented by coppice dune formation on similar parts of the surface. Areas on the surface where no pavement development has occurred are erosional in nature with 0.0 +/- 0.0 cm to 1.5 +/- 0.5 cm of erosion occurring primarily by winds blowing across the surface. Overall these surfaces may show either a small net depositional gain or small erosional loss. (2) Early Holocene surfaces have no well-developed desert pavements, but may have residual gravel deposits in small areas on the surfaces. These surfaces show the most consistent erosional surface areas on which it ranges from 1.0 +/-.01 cm to 2.0+/- .01 cm. Fewer depositional forms are found on this age of surface so there is probably a net loss of 1.5 cm across these surfaces. (3) The Late Holocene surfaces show the greatest variability in erosion and deposition. Overbank deposition during floods cover many edges of these surfaces and coppice dune formation also creates depositional features. Erosion rates are highly variable and range from 0.0 +/- 0.0 to a maximum of 2.0+/-.01. Erosion occurs because of the lack of protection of the surface. However, the common areas of deposition probably result in the surface having a small net depositional gain across these surfaces. Thus, the interchannel surfaces of the Fortymile Wash fan show a variety of erosional styles as well as areas of deposition. The fan, therefore, is a dynamic system that primarily responds to the incising of the channels into the upper fan surface, and the development of protecting desert pavements with time.

C. Harrington; R. Kelly; K.T. Ebert

2005-08-26T23:59:59.000Z

148

APPENDIX K: SOILS INFORMATION  

NLE Websites -- All DOE Office Websites (Extended Search)

limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants;...

149

Building Fertile Soil  

E-Print Network (OSTI)

soil amendments such as compost, manure, cover crops, andare some readily available sources: j Compost is rich inorganic matter, and making compost is a great way to recycle

Lindsey, Ann

2008-01-01T23:59:59.000Z

150

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates Loveland Area Project Firm Power Rates Transmission and Ancillary Services Rates 2012 Rate Adjustment-Transmission and Ancillary Services 2010 Rate Adjustment-Firm Power 2009...

151

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates and Repayment Services Consolidated Rate Schedules FY 2014 Rates BCP Annual Rate Process Central Arizona Project Transmission Rate Process DSW Multiple System Transmission...

152

NITRATE CONVERSION OF HB-LINE REILLEXTM HPQ RESIN  

SciTech Connect

Reillex{trademark} HPQ ion exchange resin is used by HB Line to remove plutonium from aqueous streams. Reillex{trademark} HPQ resin currently available from Vertellus Specialties LLC is a chloride ionic form, which can cause stress corrosion cracking in stainless steels. Therefore, HB Line Engineering requested that Savannah River National Laboratory (SRNL) convert resin from chloride form to nitrate form in the Engineering Development Laboratory (EDL). To perform this task, SRNL treated two batches of resin in 2012. The first batch of resin from Reilly Industries Batch 80302MA was initially treated at SRNL in 2001 to remove chloride. This batch of resin, nominally 30 liters, has been stored wet in carboys since that time until being retreated in 2012. The second batch of resin from Batch 23408 consisted of 50 kg of new resin purchased from Vertellus Specialties in 2012. Both batches were treated in a column designed to convert resin using downflow of 1.0 M sodium nitrate solution through the resin bed followed by rinsing with deionized water. Both batches were analyzed for chloride concentration, before and after treatment, using Neutron Activation Analysis (NAA). The resin specification [Werling, 2003] states the total chlorine and chloride concentration shall be less than 250 ppm. The resin condition for measuring this concentration is not specified; however, in service the resin would always be fully wet. Measurements in SRNL showed that changing from oven dry resin to fully wet resin, with liquid in the particle interstices but no supernatant, increases the total weight by a factor of at least three. Therefore, concentration of chlorine or chloride expressed as parts per million (ppm) decreases by a factor of three. Therefore, SRNL recommends measuring chlorine concentration on an oven dry basis, then dividing by three to estimate chloride concentration in the fully wet condition. Chloride concentration in the first batch (No.80302MA) was nearly the same before the current treatment (759 ppm dry) and after treatment (745 ppm dry or {approx}248 ppm wet). Treatment of the second batch of resin (No.23408) was very successful. Chloride concentration decreased from 120,000 ppm dry to an average of 44 ppm dry or {approx}15ppm wet, which easily passes the 250 ppm wet criterion. Per guidance from HB Line Engineering, SRNL blended Batch 80302 resin with Batch P9059 resin which had been treated previously by ResinTech to remove chloride. The chloride concentrations for the two drums of Batch P9059 were 248 ppm dry ({approx}83 ppm wet) {+-}22.8% and 583 ppm dry ({approx}194 ppm wet) {+-} 11.8%. The blended resin was packaged in five gallon buckets.

Steimke, J.; Williams, M.; Steeper, T.; Leishear, R.

2012-05-29T23:59:59.000Z

153

NON-DESTRUCTIVE SOIL CARBON ANALYZER.  

Science Conference Proceedings (OSTI)

This report describes the feasibility, calibration, and safety considerations of a non-destructive, in situ, quantitative, volumetric soil carbon analytical method based on inelastic neutron scattering (INS). The method can quantify values as low as 0.018 gC/cc, or about 1.2% carbon by weight with high precision under the instrument's configuration and operating conditions reported here. INS is safe and easy to use, residual soil activation declines to background values in under an hour, and no radiological requirements are needed for transporting the instrument. The labor required to obtain soil-carbon data is about 10-fold less than with other methods, and the instrument offers a nearly instantaneous rate of output of carbon-content values. Furthermore, it has the potential to quantify other elements, particularly nitrogen. New instrumentation was developed in response to a research solicitation from the U.S. Department of Energy (DOE LAB 00-09 Carbon Sequestration Research Program) supporting the Terrestrial Carbon Processes (TCP) program of the Office of Science, Biological and Environmental Research (BER). The solicitation called for developing and demonstrating novel techniques for quantitatively measuring changes in soil carbon. The report includes raw data and analyses of a set of proof-of-concept, double-blind studies to evaluate the INS approach in the first phase of developing the instrument. Managing soils so that they sequester massive amounts of carbon was suggested as a means to mitigate the atmospheric buildup of anthropogenic CO{sub 2}. Quantifying changes in the soils' carbon stocks will be essential to evaluating such schemes and documenting their performance. Current methods for quantifying carbon in soil by excavation and core sampling are invasive, slow, labor-intensive and locally destroy the system being observed. Newly emerging technologies, such as Laser Induced Breakdown Spectroscopy and Near-Infrared Spectroscopy, offer soil-carbon analysis; however, these also are invasive and destructive techniques. The INS approach permits quantification in a relatively large volume of soil without disrupting the measurement site. The technique is very fast and provides nearly instantaneous results thereby reducing the cost, and speeding up the rate of analysis. It also has the potential to cover large areas in a mobile scanning mode. These capabilities will significantly advance the tracking carbon sequestration and offer a tool for research in agronomy, forestry, soil ecology and biogeochemistry.

WIELOPOLSKI,L.MITRA,S.HENDREY,G.ORION,I.ROGERS,H.TORBERT,A.PRIOR,S.RUNION,B.

2004-02-01T23:59:59.000Z

154

SunShot Initiative: Advanced Nitrate Salt Central Receiver Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Nitrate Salt Central Receiver Power Plant Advanced Nitrate Salt Central Receiver Power Plant Abengoa logo Photo of two lit towers surrounded by much smaller blue flat plates that are mounted on the ground. Commercial central receiver plant designs Abengoa, under the Baseload CSP FOA, will demonstrate a 100-megawatt electrical (MWe) central receiver plant using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator. Approach The plan is to operate the plant at full load for 6,400 hours each year using only solar energy. Abengoa is working to create a team of suppliers capable of deploying a commercially ready nitrate salt central receiver technology that can be competitive in the current power marketplace. Innovation Abengoa is developing a new molten-salt power tower technology with a surround heliostat field. Key components include:

155

Soil samples at the APS  

NLE Websites -- All DOE Office Websites (Extended Search)

harmful pests or diseases. Examples of soil are: topsoil, forest litter, wood or plant compost, humus, and earthworm castings." 3. What is not soil? Materials free of organic...

156

Soil and Water Conservation (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Indiana Association of Soil and Water Conservation Districts is an association of the 92 soil and water conservation districts, each representing one of the 92 Indiana counties.

157

Soil carbon storage beneath recently established tree plantations in Tennessee and South Carolina, USA  

Science Conference Proceedings (OSTI)

Rates of soil carbon (C) accumulation under 7 recently established tree plantations in Tennessee and South Carolina (USA) were estimated by comparing soil C stocks under the plantations to adjacent reference (nonplantation) sites. Estimated rates of C accumulation in surface (0-40 cm) mineral soil were 40-170 gCm{sup -2} yr{sup -1} during the first decade following plantation establishment. Most soil C at each site was found in mineral-associated organic matter (i.e., soil C associated with the silt-clay fraction). Soils with high sand content and low initial C stocks exhibited the greatest gains in particulate organic matter C (POM-C). Labile soil C stocks (consisting of forest floor and mineral soil POM-C) became an increasingly important component of soil C storage as loblolly pine stands aged. Rates of mineral soil C accumulation were highly variable in the first decade of plantation growth, depending on location, but the findings support a hypothesis that farm to tree plantation conversions can result in high initial rates of soil C accumulation in the southeastern United States.

Garten Jr, Charles T [ORNL

2002-02-01T23:59:59.000Z

158

Fine Particles in Soils  

NLE Websites -- All DOE Office Websites (Extended Search)

Fine Particles in Soils Fine Particles in Soils Nature Bulletin No. 582 November 28, 1959 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist FINE PARTICLES IN SOILS If a farmer, while plowing, is visited in the field by another farmer, invariably the visitor will pick up a handful of turned over earth and knead it with his fingers while they talk. The "feel" of it tells him a lot about the texture and structure of that soil. He knows that both are important factors in the growth of plants and determine the crops that may be obtained from the land. Soil is a combination of three different things About half of it is solid matter; the other half consists of air and water The solid portion is composed of organic and inorganic materials.

159

Soil Classification Using GATree  

E-Print Network (OSTI)

This paper details the application of a genetic programming framework for classification of decision tree of Soil data to classify soil texture. The database contains measurements of soil profile data. We have applied GATree for generating classification decision tree. GATree is a decision tree builder that is based on Genetic Algorithms (GAs). The idea behind it is rather simple but powerful. Instead of using statistic metrics that are biased towards specific trees we use a more flexible, global metric of tree quality that try to optimize accuracy and size. GATree offers some unique features not to be found in any other tree inducers while at the same time it can produce better results for many difficult problems. Experimental results are presented which illustrate the performance of generating best decision tree for classifying soil texture for soil data set.

Bhargavi, P

2010-01-01T23:59:59.000Z

160

Rates & Repayment  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Rates and Repayment Services Rates Current and Historical Rate Information Collbran Power Rates CRSP Power Rates CRSP Transmission System Rates CRSP Management Center interest rates Falcon-Amistad Power Rates Provo River Power Rates Rio Grande Power Rates Seedskadee Power Rates SLCA/IP Power Rates Rate Schedules & Supplemental Rate Information Current Rates for Firm Power, Firm & Non-firm Transmission Service, & Ancillary Services Current Transmission & Ancillary Services Rates Tariffs Components of the SLCA/IP Existing Firm Power Rate Cost Recovery Charge (CRC) Page MOA Concerning the Upper Colorado River Basin

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Modeling Soil Quality Thresholds to Ecosystem Recovery at Fort Benning, Georgia, USA  

DOE Green Energy (OSTI)

The objective of this research was to use a simple model of soil C and N dynamics to predict nutrient thresholds to ecosystem recovery on degraded soils at Fort Benning, Georgia, in the southeastern USA. The model calculates aboveground and belowground biomass, soil C inputs and dynamics, soil N stocks and availability, and plant N requirements. A threshold is crossed when predicted soil N supplies fall short of predicted N required to sustain biomass accrual at a specified recovery rate. Four factors were important to development of thresholds to recovery: (1) initial amounts of aboveground biomass, (2) initial soil C stocks (i.e., soil quality), (3) relative recovery rates of biomass, and (4) soil sand content. Thresholds to ecosystem recovery predicted by the model should not be interpreted independent of a specified recovery rate. Initial soil C stocks influenced the predicted patterns of recovery by both old field and forest ecosystems. Forests and old fields on soils with varying sand content had different predicted thresholds to recovery. Soil C stocks at barren sites on Fort Benning generally lie below predicted thresholds to 100% recovery of desired future ecosystem conditions defined on the basis of aboveground biomass (18000 versus 360 g m{sup -2} for forests and old fields, respectively). Calculations with the model indicated that reestablishment of vegetation on barren sites to a level below the desired future condition is possible at recovery rates used in the model, but the time to 100% recovery of desired future conditions, without crossing a nutrient threshold, is prolonged by a reduced rate of forest growth. Predicted thresholds to ecosystem recovery were less on soils with more than 70% sand content. The lower thresholds for old field and forest recovery on more sandy soils are apparently due to higher relative rates of net soil N mineralization in more sandy soils. Calculations with the model indicate that a combination of desired future conditions, initial levels of soil quality (defined by soil C stocks), and the rate of biomass accumulation determines the predicted success of ecosystem recovery on disturbed soils.

Garten Jr., C.T.

2004-03-08T23:59:59.000Z

162

Impaired mitochondrial respiration and protein nitration in the rat hippocampus after acute inhalation of combustion smoke  

SciTech Connect

Survivors of massive inhalation of combustion smoke endure critical injuries, including lasting neurological complications. We have previously reported that acute inhalation of combustion smoke disrupts the nitric oxide homeostasis in the rat brain. In this study, we extend our findings and report that a 30-minute exposure of awake rats to ambient wood combustion smoke induces protein nitration in the rat hippocampus and that mitochondrial proteins are a sensitive nitration target in this setting. Mitochondria are central to energy metabolism and cellular signaling and are critical to proper cell function. Here, analyses of the mitochondrial proteome showed elevated protein nitration in the course of a 24-hour recovery following exposure to smoke. Mass spectrometry identification of several significantly nitrated mitochondrial proteins revealed diverse functions and involvement in central aspects of mitochondrial physiology. The nitrated proteins include the ubiquitous mitochondrial creatine kinase, F1-ATP synthase {alpha} subunit, dihydrolipoamide dehydrogenase (E3), succinate dehydrogenase Fp subunit, and voltage-dependent anion channel (VDAC1) protein. Furthermore, acute exposure to combustion smoke significantly compromised the respiratory capacity of hippocampal mitochondria. Importantly, elevated protein nitration and reduced mitochondrial respiration in the hippocampus persisted beyond the time required for restoration of normal oxygen and carboxyhemoglobin blood levels after the cessation of exposure to smoke. Thus, the time frame for intensification of the various smoke-induced effects differs between blood and brain tissues. Taken together, our findings suggest that nitration of essential mitochondrial proteins may contribute to the reduction in mitochondrial respiratory capacity and underlie, in part, the brain pathophysiology after acute inhalation of combustion smoke.

Lee, Heung M.; Reed, Jason; Greeley, George H. [Department of Surgery, University of Texas Medical Branch (United States); Englander, Ella W. [Department of Surgery, University of Texas Medical Branch (United States); Shriners Hospitals for Children, Galveston, TX (United States)], E-mail: elenglan@utmb.edu

2009-03-01T23:59:59.000Z

163

The effect of young biochar on soil respiration  

Science Conference Proceedings (OSTI)

The low temperature pyrolysis of organic material produces biochar, a charcoal like substance. Biochar is being promoted as a soil amendment to enhance soil quality, it is also seen as a mechanism of lomg-term sequestration of carbon. Our experiments tested the hypothesis that biochar is inert in soil. However, we measured an increase in CO2 production from soils after biochar amendment which increased with increasing rates of biochar. The ?13C signature of the CO2 evolved in the first several days of the incubation was the same as the ?13C signature of the biochar, confirming that biochar contributed to the CO2 flux. This effect diminished by day 6 of the incubation suggesting that most of the biochar C is slowly decomposing. Thus, aside from this short term mineralization increasing soil C with biochar may indeed be a long term C storage mechanism.

Smith, Jeffery L.; Collins, Harold P.; Bailey, Vanessa L.

2010-12-01T23:59:59.000Z

164

Hydrogen generation rates in Savannah River Site high-level nuclear waste  

DOE Green Energy (OSTI)

High-level nuclear waste (HLW) is stored at the Savannah River Site (SRS) as alkaline, high-nitrate slurries in underground carbon steel tanks. Hydrogen is continuously generated in the waste tanks as a result of the radiolysis of water. Hydrogen generation rates have recently been measured in several waste tanks containing different types of waste. The measured rates ranged from 1.1 to 6.7 cubic feet per million Btu of decay heat. The measured rates are consistent with laboratory data which show that the hydrogen generation rate depends on the nitrate concentration and the decay heat content of the waste. Sampling at different locations indicated that the hydrogen is uniformly distributed radially within the tank.

Hobbs, D.T.; Norris, P.W.; Pucko, S.A.; Bibler, N.E.; Walker, D.D.; d'Entremont, P.D.

1992-01-01T23:59:59.000Z

165

Combined effects of short-term rainfall patterns and soil texture on nitrogen cycling -- A Modeling Analysis  

E-Print Network (OSTI)

O partial pressure in the sandy loam soil with 15-day vs. 5-rates of NO and N 2 O in the sandy loam soil with 15-day vs.er (DEN) concentration from sandy loam soil for 5-day and

Gu, C.

2010-01-01T23:59:59.000Z

166

Soil Salinity Abatement Following Hurricane Ike  

E-Print Network (OSTI)

In September 2008 Hurricane Ike hit the Texas Gulf Coast with a force stronger than the category 2 storm at which it was rated. With a 3.8 m (12.5 ft) storm surge, the agricultural industry in the area was devastated. The goal of this research was to determine the length of time required to reduce the salt levels brought by the storm surge to near pre-hurricane levels. To do this, four sets of samples were taken across two years and analyzed for salinity using the saturated paste extract method. The initial salt levels in November 2008 had an electrical conductivity (ECe) of the inundated soils as high as 26.7 dS/m. Fifty-four percent of the soils sampled in the 0-15 cm horizons and 9% in the 15-30 cm horizons of the edge area had an ECe >= 4 dS/m. In the surge area 79% of the soils sampled in the 0-15 cm horizons and 30% in the 15-30 cm horizons had an ECe >= 4 dS/m. In April 2009, 38% of the soils sampled in the 0-15 cm horizons and 13% in the 15-30 cm horizons of the edge area had an ECe >= 4 dS/m. In the surge area 71% of the soils sampled in the 0-15 cm horizons and 39% in the 15-30 cm horizons had an ECe >= 4 dS/m. By December 2009, none of the soils sampled in the edge area had an ECe >= 4 dS/m. In the surge area 21% of the soils sampled in the 0-15 cm horizons and 33% in the 15-30 cm horizons had an ECe >= 4 dS/m. By October 2010, all soils sampled had leached sufficient salts to be classified as non-saline to very slightly saline soils. Utilizing the November 2008 data set, 28 random samples were selected for exchangeable Na percent (ESP) in order to develop the ESP-SAR (Na adsorption ratio) predictive equation, ESP= 1.19(SAR)^0.82. The SAR-ESP relationship is statistically significant (95% confidence level), with a correlation coefficient of 0.964 (df=26).

Mueller, Ryan

2012-08-01T23:59:59.000Z

167

Soil Erosion and Sediment Control Act, Soil and Water Conservation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Sediment Control Act, Soil and Water Conservation and Sediment Control Act, Soil and Water Conservation District, and Council on Soil and Water Conservation Regulations (Connecticut) Soil Erosion and Sediment Control Act, Soil and Water Conservation District, and Council on Soil and Water Conservation Regulations (Connecticut) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity

168

Using Nitrogen and Oxygen Isotope Compositions of Nitrate to Distinguish Contaminant Sources in Hanford Soil and Groundwater  

E-Print Network (OSTI)

stable isotopes at the Hanford Site, WA: Environ. Sci.Contaminant Transport at the Hanford Site, WA: Vadose ZoneRev. 0, Lockheed Martin Hanford Corporation, Richland, WA.

Conrad, Mark

2008-01-01T23:59:59.000Z

169

Kinetics of Cd Release from Some Contaminated Calcareous Soils  

SciTech Connect

Contamination of soils with heavy metals may pose long-term risk to groundwater quality leading to health implications. Bioavailability of heavy metals, like cadmium (Cd) is strongly affected by sorption and desorption processes. The release of heavy metals from contaminated soils is a major contamination risks to natural waters. The release of Cd from contaminated soils is strongly influenced by its mobility and bioavailability. In this study, the kinetics of Cd desorption from ten samples of contaminated calcareous soils, with widely varying physicochemical properties, were studied using 0.01 M EDTA extraction. The median percentage of Cd released was about 27.7% of the total extractable Cd in the soils. The release of Cd was characterized by an initial fast release rate (of labile fractions) followed by a slower release rate (of less labile fractions) and a model of two first-order reactions adequately describes the observed release of Cd from the studied soil samples. There was positive correlation between the amount of Cd released at first phase of release and Cd in exchangeable fraction, indicating that this fraction of Cd is the main fraction controlling the Cd in the kinetic experiments. There was strongly negative correlation between the amount of Cd released at first and second phases of release and residual fraction, suggesting that this fraction did not contribute in Cd release in the kinetic experiments. The results can be used to provide information for evaluation of Cd potential toxicity and ecological risk from contaminated calcareous soils.

Sajadi Tabar, S.; Jalali, M., E-mail: jalali@basu.ac.ir [Bu-Ali Sina University, Department of Soil Science, College of Agriculture (Iran, Islamic Republic of)

2013-03-15T23:59:59.000Z

170

Straw Compost and Bioremediated Soil as Inocula for the Bioremediation of Chlorophenol-Contaminated Soil  

E-Print Network (OSTI)

Straw compost and bioremediated soil as inocula for the bioremediation of chlorophenol-contaminated soil.

M M Laine; K S Jorgensen; M. Minna; Laine; Kirsten S. Jørgensen

1995-01-01T23:59:59.000Z

171

Soil mechanics and analysis of soils overlying cavitose bedrock  

SciTech Connect

The stability of the residual soils existing at the West Chestnut Ridge Site, Oak Ridge Reservation, Tennessee, was evaluated. The weathered bedrock below this residual soil contains numerous solution cavities, and several karst features were identified. The West Chestnut Ridge site was evaluated with respect to deformation and collapse of the residual soil into the bedrock cavities. A finite element analysis investigated the effects of bedrock cavity radius, thickness of soil overburden, and surface surcharge upon the deformational and stability characteristics of the residual soil. The results indicate that for small cavity radii, the thickness of the soil cover has little effect on the zone of yielded soil. For large cavity radii, a smaller zone of distressed soil occurs under thick soil cover than under thin soil cover. Dimensionless curves are presented to enable the prediction of the vertical extent of the zone of yielded soil for a range of site geometries. Although the thick soil deposits (100 feet or greater) typically found on the ridges result in high stresses adjacent to the cavity, the area of the distressed or yielded soil is small and unlikely to extend to the surface. In addition, the surface deformation or subsidence is expected to be minimal. Thus, the siting of waste facilities on the ridges where the overburden is maximum would tend to reduce the effects of deformation into the cavities. 29 refs., 37 figs., 7 tabs.

Drumm, E.C.

1987-08-01T23:59:59.000Z

172

Atomic structure of nitrate-binding protein crucial for photosynthetic productivity  

DOE Green Energy (OSTI)

Cyanobacteria, blue-green algae, are the most abundant autotrophs in aquatic environments and form the base of all aquatic food chains by fixing carbon and nitrogen into cellular biomass. The single most important nutrient for photosynthesis and growth is nitrate, which is severely limiting in many aquatic environments particularly the open ocean (1, 2). It is therefore not surprising that NrtA, the solute-binding component of the high-affinity nitrate ABC transporter, is the single-most abundant protein in the plasma membrane of these bacteria (3). Here we describe the first structure of a nitratespecific receptor, NrtA from Synechocystis sp. PCC 6803, complexed with nitrate and determined to a resolution of 1.5Å. NrtA is significantly larger than other oxyanionbinding proteins, representing a new class of transport proteins. From sequence alignments, the only other solute-binding protein in this class is CmpA, a bicarbonatebinding protein. Therefore, these organisms created a novel solute-binding protein for two of the most important nutrients; inorganic nitrogen and carbon. The electrostatic charge distribution of NrtA appears to force the protein off of the membrane while the flexible tether facilitates the delivery of nitrate to the membrane pore. The structure not only details the determinants for nitrate selectivity in NrtA, but also the bicarbonate specificity in CmpA. Nitrate and bicarbonate transport are regulated by the cytoplasmic proteins NrtC and CmpC, respectively. Interestingly, the residues lining the ligand binding pockets suggest that they both bind nitrate. This implies that the nitrogen and carbon uptake pathways are synchronized by intracellular nitrate and nitrite.3 The nitrate ABC transporter of cyanobacteria is composed of four polypeptides (Figure 1): a high-affinity periplasmic solute-binding lipoprotein (NrtA), an integral membrane permease (NrtB), a cytoplasmic ATPase (NrtD), and a unique ATPase/solute-binding fusion protein (NrtC) that regulates transport (4). NrtA binds both nitrate and nitrite (Kd = 0.3 mM) and is necessary for cell survival when nitrate is the primary nitrogen source (5). The role of NrtA is to scavenge nitrate/nitrite from the periplasm for delivery to the membrane permease, NrtB. The passage of solute through the transmembrane pore is linked to ATP hydrolysis by NrtC and NrtD. NrtD consists of a single ATPase domain. In contrast, NrtC contains both an ATPase domain and a Cterminal solute-binding domain that shares 50% amino acid sequence similarity with NrtA, and is required for the ammonium-mediated inhibition of nitrate transport (6, 7). Aside from the homologous transporter for bicarbonate, CmpABCD, there are no other known examples of ABC transporters that have an ATPase/solute-binding fusion component. The specificity of the nitrate transporter is conferred by NrtA (4). NrtA is ~49% identical (60% similar) in amino acid sequence to the bicarbonate receptor CmpA. In its entirety, it does not have significant homology to any other known protein. To elucidate the molecular determinants of nitrate specificity, we determined the crystal structure of the Synechocystis 6803 NrtA to 1.5 Å. While the general shape of NrtA is akin to that of other solute binding proteins, NrtA clearly represents a new and unique structural variant of these ‘C clamp’ proteins. From this structure and sequence alignments of other bicarbonate and nitrate transporters, the molecular basis for solute selectivity is clear and suggests that regulatory domains of both icarbonate and nitrate transport systems bind nitrate. Based on these findings, a model is presented that 4 demonstrates how such synergistic regulation of bicarbonate and nitrate transport is important in conserving energy during the process of carbon fixation and nitrogen assimilation.

Koropatkin, Nicole M.; Pakrasi, Himadri B.; Smith, Thomas J.

2006-06-27T23:59:59.000Z

173

Influence of attrition scrubbing, ultrasonic treatment, and oxidant additions on uranium removal from contaminated soils  

SciTech Connect

As part of the Uranium in Soils Integrated Demonstration Project being conducted by the US Department of Energy, bench-scale investigations of selective leaching of uranium from soils at the Fernald Environmental Management Project site in Ohio were conducted at Oak Ridge National Laboratory. Two soils (storage pad soil and incinerator soil), representing the major contaminant sources at the site, were extracted using carbonate- and citric acid-based lixiviants. Physical and chemical processes were used in combination with the two extractants to increase the rate of uranium release from these soils. Attrition scrubbing and ultrasonic dispersion were the two physical processes utilized. Potassium permanganate was used as an oxidizing agent to transform tetravalent uranium to the hexavalent state. Hexavalent uranium is easily complexed in solution by the carbonate radical. Attrition scrubbing increased the rate of uranium release from both soils when compared with rotary shaking. At equivalent extraction times and solids loadings, however, attrition scrubbing proved effective only on the incinerator soil. Ultrasonic treatments on the incinerator soil removed 71% of the uranium contamination in a single extraction. Multiple extractions of the same sample removed up to 90% of the uranium. Additions of potassium permanganate to the carbonate extractant resulted in significant changes in the extractability of uranium from the incinerator soil but had no effect on the storage pad soil.

Timpson, M.E.; Elless, M.P.; Francis, C.W.

1994-06-01T23:59:59.000Z

174

Complexation of Lanthanides with Nitrate at Variable Temperatures: Thermodynamics and Coordination Modes  

SciTech Connect

Complexation of neodymium(III) with nitrate was studied at variable temperatures (25, 40, 55 and 70 C) by spectrophotometry and microcalorimetry. The NdNO{sub 3}{sup 2+} complex is weak and becomes slightly stronger as the temperature is increased. The enthalpy of complexation at 25 C was determined by microcalorimetry to be small and positive, (1.5 {+-} 0.2) kJ {center_dot} mol{sup -1}, in good agreement with the trend of the stability constant at variable temperatures. Luminescence emission spectra and lifetime of Eu(III) in nitrate solutions suggest that inner-sphere and bidentate complexes form between trivalent lanthanides (Nd{sup 3+} and Eu{sup 3+}) and nitrate in aqueous solutions. Specific Ion Interaction approach (SIT) was used to obtain the stability constants of NdNO{sub 3}{sup 2+} at infinite dilution and variable temperatures.

Rao, Linfeng; Tian, Guoxin

2008-12-10T23:59:59.000Z

175

Development of Clemson variable-rate lateral irrigation system  

Science Conference Proceedings (OSTI)

Crops in the Southern United States are generally produced in fields which are known to have a high degree of variability in soil type, water holding capacity, infiltration rates, and other major factors which affect crop production. In these fields, ... Keywords: Instrumentation, Irrigation, Lateral-move, Precision agriculture, Variable-rate irrigation

Young J. Han; Ahmad Khalilian; Tom O. Owino; Hamid J. Farahani; Sam Moore

2009-08-01T23:59:59.000Z

176

New Soil Property Database Improves Oklahoma Mesonet Soil Moisture Estimates  

Science Conference Proceedings (OSTI)

Soil moisture data from the Oklahoma Mesonet are widely used in research efforts spanning many disciplines within Earth Sciences. These soil moisture estimates are derived by translating measurements of matric potential into volumetric water ...

Bethany L. Scott; Tyson E. Ochsner; Bradley G. Illston; Christopher A. Fiebrich; Jeffery B. Basara; Albert J. Sutherland

177

Plant Communities, Soil Carbon, and Soil Nitrogen Properties in a ...  

Science Conference Proceedings (OSTI)

Brye KR, Kucharik CJ (2003) Carbon and nitrogen sequestration in two prairie topochronosequences on contrasting soils in Southern. Wisconsin. American ...

178

The behavior of soil-applied cyclotri- and cyclotetraphosphate in Texas soils  

E-Print Network (OSTI)

Cyclotriphosphate (C3P) is of interest to soil scientists because it demonstrates little or no retention by soil constituents. Non-sorption is desirable in the development of mobile P fertilizers. Work was expanded to include cyclotetraphosphate (C4P), a larger but commercially unavailable cyclic P compound that is more stable than C3P in solution. High-purity C4P was prepared by ethanol precipitation of the hydrolysis products Of P4010. Improved methods of ion chromatography were applied to the analysis of cyclic P and all hydrolysis products extracted from soil using a water/0-5 M H2SO4/1 .0 M NAOH extraction procedure developed for this work. Separation and direct quantitative analysis of linear and cyclic polyphosphates were accomplished in less than 15 minutes. The rapidity and ease of these analyses represent a vast improvement over previous methods of polyphosphate analysis. Four diverse Texas soils received 1 00 and 400 gg cyclic P g-1 soil as either C3P or C4P and were incubated under different water, temperature, biological activity, and time regimes. The larger C4P was not appreciably sorbed in soil and was more stable than C3P under all conditions. Rate constants and the time to one half of initial P concentration were determined for each P. Kinetic data suggested that the hydrolysis of cyclic P in soils is complex, but cyclic P hydrolysis most likely follows first-order kinetics. The mechanism of C4P hydrolysis- particularly at low P application rates-may involve direct conversion of C4P to diphosphate and triphosphate (in addition to tetraphosphate), possibly due to phosphatase action in C4P hydrolysis. Temperature dependency of C3P and C4P hydrolysis was examined. All treatments showed Qlo treatments on Branyon clay). Nineteen soil parameters were examined for correlation with C3P and C4P hydrolysis. Numerous significant correlations (P < 0.05) were reported, but high intercorrelation among related soil factors was suspected, thus reducing the value of correlation analysis.

Trostle, Calvin Lewie

1993-01-01T23:59:59.000Z

179

Role of added carbon in the transformation of surplus soil nitrate-nitrogen to organic forms in an intensively managed calcareous soil  

E-Print Network (OSTI)

was carried out in 1-L glass jars containing 300g 50% WFPSdates, yielding a total of 96 jars. The samples were takenincubation the lids of the jars were closed to create gas-

2009-01-01T23:59:59.000Z

180

Combined effects of short-term rainfall patterns and soil texture on nitrogen cycling -- A Modeling Analysis  

Science Conference Proceedings (OSTI)

Precipitation variability and magnitude are expected to change in many parts of the world over the 21st century. We examined the potential effects of intra-annual rainfall patterns on soil nitrogen (N) transport and transformation in the unsaturated soil zone using a deterministic dynamic modeling approach. The model (TOUGHREACT-N), which has been tested and applied in several experimental and observational systems, mechanistically accounts for microbial activity, soil-moisture dynamics that respond to precipitation variability, and gaseous and aqueous tracer transport in the soil. Here, we further tested and calibrated the model against data from a precipitation variability experiment in a tropical system in Costa Rica. The model was then used to simulate responses of soil moisture, microbial dynamics, nitrogen (N) aqueous and gaseous species, N leaching, and N trace-gas emissions to changes in rainfall patterns; the effect of soil texture was also examined. The temporal variability of nitrate leaching and NO, N{sub 2}, and N{sub 2}O effluxes were significantly influenced by rainfall dynamics. Soil texture combined with rainfall dynamics altered soil moisture dynamics, and consequently regulated soil N responses to precipitation changes. The clay loam soil more effectively buffered water stress during relatively long intervals between precipitation events, particularly after a large rainfall event. Subsequent soil N aqueous and gaseous losses showed either increases or decreases in response to increasing precipitation variability due to complex soil moisture dynamics. For a high rainfall scenario, high precipitation variability resulted in as high as 2.4-, 2.4-, 1.2-, and 13-fold increases in NH{sub 3}, NO, N{sub 2}O and NO{sub 3}{sup -} fluxes, respectively, in clay loam soil. In sandy loam soil, however, NO and N{sub 2}O fluxes decreased by 15% and 28%, respectively, in response to high precipitation variability. Our results demonstrate that soil N cycling responses to increasing precipitation variability depends on precipitation amount and soil texture, and that accurate prediction of future N cycling and gas effluxes requires models with relatively sophisticated representation of the relevant processes.

Gu, C.; Riley, W.J.

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Stochastic hydro-economic modeling for optimal management of agricultural groundwater nitrate pollution under hydraulic conductivity uncertainty  

Science Conference Proceedings (OSTI)

In decision-making processes, reliability and risk aversion play a decisive role. This paper presents a framework for stochastic optimization of control strategies for groundwater nitrate pollution from agriculture under hydraulic conductivity uncertainty. ... Keywords: Fertilizer allocation, Groundwater, Nitrates, Optimization, Stochastic management model, Uncertainty

S. Peña-Haro; M. Pulido-Velazquez; C. Llopis-Albert

2011-08-01T23:59:59.000Z

182

Demonstration, testing, and evaluation of in situ heating of soil. Volume 1, Final report  

SciTech Connect

This document is a final reports in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating.

Dev, H.; Enk, J.; Jones, D.; Sabato, W.

1996-04-05T23:59:59.000Z

183

Sampling – Soil - Energy Innovation Portal  

INL has developed a method for sampling soil to determine the presence of extremely fine particles such as asbestos.

184

California GAMA Special Study: An isotopic and dissolved gas investigation of nitrate source and transport to a public supply well in California's Central Valley  

Science Conference Proceedings (OSTI)

This study investigates nitrate contamination of a deep municipal drinking water production well in Ripon, CA to demonstrate the utility of natural groundwater tracers in constraining the sources and transport of nitrate to deep aquifers in the Central Valley. The goal of the study was to investigate the origin (source) of elevated nitrate and the potential for the deep aquifer to attenuate anthropogenic nitrate. The site is ideal for such an investigation. The production well is screened from 165-325 feet below ground surface and a number of nearby shallow and deep monitoring wells were available for sampling. Furthermore, potential sources of nitrate contamination to the well had been identified, including a fertilizer supply plant located approximately 1000 feet to the east and local almond groves. A variety of natural isotopic and dissolved gas tracers including {sup 3}H-{sup 3}He groundwater age and the isotopic composition of nitrate are applied to identify nitrate sources and to characterize nitrate transport. An advanced method for sampling production wells is employed to help identify contaminant contributions from specific screen intervals. Nitrate transport: Groundwater nitrate at this field site is not being actively denitrified. Groundwater parameters indicate oxic conditions, the dissolved gas data shows no evidence for excess nitrogen as the result of denitrification, and nitrate-N and -O isotope compositions do not display patterns typical of denitrification. Contaminant nitrate source: The ambient nitrate concentration in shallow groundwater at the Ripon site ({approx}12 mg/L as nitrate) is typical of shallow groundwaters affected by recharge from agricultural and urban areas. Nitrate concentrations in Ripon City Well 12 (50-58 mg/L as nitrate) are significantly higher than these ambient concentrations, indicating an additional source of anthropogenic nitrate is affecting groundwater in the capture zone of this municipal drinking water well. This study provides two new pieces of evidence that the Ripon Farm Services Plant is the source of elevated nitrate in Ripon City Well 12. (1) Chemical mass balance calculations using nitrate concentration, nitrate isotopic composition, and initial tritium activity all indicate that that the source water for elevated nitrate to Ripon City Well 12 is a very small component of the water produced by City Well 12 and thus must have extremely high nitrate concentration. The high source water nitrate concentration ({approx}1500 mg/L as nitrate) required by these mass balance calculations precludes common sources of nitrate such as irrigated agriculture, dairy wastewater, and septic discharge. Shallow groundwater under the Ripon Farm Services RFS plant does contain extremely high concentrations of nitrate (>1700 mg/L as nitrate). (2) Nitrogen and oxygen isotope compositions of nitrate indicate that the additional anthropogenic nitrate source to Ripon City Well 12 is significantly enriched in {delta}{sup 18}O-NO{sub 3}, an isotopic signature consistent with synthetic nitrate fertilizer, and not with human or animal wastewater discharge (i.e. dairy operations, septic system discharge, or municipal wastewater discharge), or with organic fertilizer. Monitoring wells on and near the RFS plant also have high {delta}{sup 18}O-NO{sub 3}, and the plant has handled and stored synthetic nitrate fertilizer that will have this isotopic signature. The results described here highlight the complexity of attributing nitrate found in long screened, high capacity wells to specific sources. In this case, the presence of a very high concentration source near the well site combined with sampling using multiple isotopic tracer techniques and specialized depth-specific techniques allowed fingerprinting of the source in the mixed-age samples drawn from the production well.

Singleton, M J; Moran, J E; Esser, B K; Roberts, S K; Hillegonds, D J

2010-04-14T23:59:59.000Z

185

Application of a modified denitrifying bacteria method for analyzing groundwater and vadose zone pore water nitrate at the Hanford Site, WA, USA.  

E-Print Network (OSTI)

zone pore water nitrate at the Hanford Site, WA, USA. Woods,and Conrad, Mark The Hanford Site in southern WashingtonL have been reported for Hanford groundwaters, where nitrate

Woods, Katharine N.; Singleton, Michael J.; Conrad, Mark

2003-01-01T23:59:59.000Z

186

Long-term nitrate measurements in the ocean using the In Situ Ultraviolet Spectrophotometer: sensor integration into the Apex profiling float  

Science Conference Proceedings (OSTI)

Reagent-free, optical nitrate sensors (ISUS: In Situ Ultraviolet Spectrophotometer) can be used to detect nitrate throughout most of the ocean. Although the sensor is a relatively high power device when operated continuously (7.5 W typical), the ...

Kenneth S. Johnson; Luke J. Coletti; Hans W. Jannasch; Carole M. Sakamoto; Dana D. Swift; Stephen C. Riser

187

Soils and the greenhouse effect  

SciTech Connect

This book contains the following topics; Global distribution of the major soils and land cover types, Geographic quantification of soil and changes on their properties, Sources and sinks of greenhouse gases, Partitioning of solar energy, Soils, Greenhouse gasfluxes: Carbon dioxide, Greenhouse gasfluxes: Methane.

Bouwman, A.F.

1990-01-01T23:59:59.000Z

188

Effects of CO{sub 2} and nitrogen fertilization on soils planted with ponderosa pine  

SciTech Connect

The effects of elevated CO{sub 2} (ambient, 525, and 700 {micro}l l{sup -1})and N fertilization (0, 10, and 20 g N m{sup 2} yr{sup -1}) on soil pCO{sub 2}, CO{sub 2} efflux, soil solution chemistry, and soil C and nutrients in an open-top chamber study with Pinus ponderosa are described. Soil pCO{sub 2} and CO{sub 2} efflux were significantly greater with elevated CO{sub 2}, at first (second growing season) in the 525 {micro}l l{sup -1} and later (fourth and fifth growing seasons) in the 700 {micro}l l{sup -1} CO{sub 2} treatments. Soil solution HCO{sub 3}{sup -} concentrations were temporarily elevated in the 525 {micro}l l{sup -1} CO{sub 2} treatment during the second growing season, consistent with the elevated pCO{sub 2}. Nitrogen fertilization had no consistent effect on soil pCO{sub 2} or CO{sub 2} efflux, but did have the expected negative effect on exchangeable Ca{sup 2+}, K{sup +}, and Mg{sup 2+}, presumed to be caused by increased nitrate leaching. Elevated CO{sub 2} had no consistent effects on exchangeable Ca{sup 2+}, K{sup +}, and Mg{sup 2+}, but did cause temporary reductions in soil NO{sup 3{sup -}} (second growing season). Statistically significant negative effects of elevated CO{sub 2} on soil extractable P were noted in the third and sixth growing seasons. However, these patterns in extractable P reflected pre-treatment differences, which, while not statistically significant, followed the same pattern. Statistically significant effects of elevated CO{sub 2} on total C and N in soils were noted in the third and sixth growing seasons, but these effects were inconsistent among N treatments and years. The clearest effect of elevated CO{sub 2} was in the case of C/N ratio in year 6, where there was a consistent, positive effect. The increases in C/N ratio with elevated CO{sub 2} in year six were largely a result of reductions in soil N rather than increases in soil C. Future papers will assess whether this apparent reduction in soil N could have been accounted for by plant uptake.

Johnson, D.W.

1996-12-01T23:59:59.000Z

189

Nitrate and colloid transport through coarse Hanford sediments under steady state, variably saturated flow  

E-Print Network (OSTI)

Nitrate and colloid transport through coarse Hanford sediments under steady state, variably] At the U.S. Department of Energy's Hanford Reservation, colloid-facilitated transport is a potential of colloids through Hanford sediments under steady state, unsaturated flow conditions. We isolated colloids

Flury, Markus

190

RHIZOSPHERE MICROBIOLOGY OF CHLORINATED ETHENE CONTAMINATED SOILS: EFFECTS ON PHOSPHOLIPID FATTY ACID CONTENT  

DOE Green Energy (OSTI)

Microbial degradation of chlorinated ethenes (CE) in rhizosphere soils was investigated at seepline areas impacted by CE plumes. Successful bioremediation of CE in rhizosphere soils is dependent on microbial activity, soil types, plant species, and groundwater CE concentrations. Seepline soils were exposed to trichloroethylene (TCE) and perchloroethylene (PCE) in the 10-50 ppb range. Greenhouse soils were exposed to 2-10 ppm TCE. Plants at the seepline were poplar and pine while the greenhouse contained sweet gum, willow, pine, and poplar. Phospholipid fatty acid (PLFA) analyses were performed to assess the microbial activity in rhizosphere soils. Biomass content was lowest in the nonvegetated control soil and highest in the Sweet Gum soil. Bacterial rhizhosphere densities, as measured by PLFA, were similar in different vegetated soils while fungi biomass was highly variable. The PLFA soil profiles showed diverse microbial communities primarily composed of Gram-negative bacteria. Adaptation of the microbial community to CE was determined by the ratio of {omega}7t/{omega}7c fatty acids. Ratios (16:1{omega}7v16:1{omega}7c and 18:l{omega}7t/18:1{omega}7c) greater than 0.1 were demonstrated in soils exposed to higher CE concentrations (10-50 ppm), indicating an adaptation to CE resulting in decreased membrane permeability. Ratios of cyclopropyl fatty acids showed that the vegetated control soil sample contained the fastest microbial turnover rate and least amount of environmental stress. PLFA results provide evidence that sulfate reducing bacteria (SRB) are active in these soils. Microcosm studies with these soils showed CE dechlorinating activity was occurring. This study demonstrates microbial adaptation to environmental contamination and supports the application of natural soil rhizosphere activity as a remedial strategy.

Brigmon, R. L.; Stanhopc, A.; Franck, M. M.; McKinsey, P. C.; Berry, C. J.

2005-05-26T23:59:59.000Z

191

Evaluation of Composite Alumina Nanoparticle and Nitrate Eutectic Materials for use in Concentrating Solar Power Plants  

E-Print Network (OSTI)

The focus of this research was to create and characterize high temperature alumina and nitrate salt eutectic nanofluids for use in thermal energy storage (TES) systems. The nitrate eutectic was originally used in the TES system demonstrated as part of the Solar Two power tower and is currently employed as the TES material at Andasol 1 in Spain. Concentrations of alumina nanoparticles between 0.1% and 10% by weight were introduced into the base material in an effort to create nanofluids which would exhibit improved specific heat capacity to reduce the $/kWht thermal energy storage system costs. The composite materials were created using an aqueous mixing method in which both the nanoparticles and nitrate eutectic were placed into solution using acidic water. This solution was then sonicated in an ultrasonic bath in an effort to reduce nanoparticle agglomeration and to improve homogeneity. After boiling off the excess water, the nanoparticle-nitrate eutectic composite was recovered for characterization. The thermal properties of both the composite and base materials were characterized using the differential scanning calorimetry techniques outlined in ASTM E 1269. The created nanofluids were not stable and did not offer a cost-effective alternative to the current nitrate eutectic TES material. Despite these setbacks, a positive correlation between alumina concentration and nanofluid specific heat was demonstrated. Additionally, the specific heat capacities of the created nanofluids exceeded that predicted by the current theoretical models. These findings suggest that further work in the field of high temperature nanofluids for use in TES systems is warranted.

Malik, Darren R.

2010-05-01T23:59:59.000Z

192

Data Center Rating Infrastructure Rating Development  

NLE Websites -- All DOE Office Websites (Extended Search)

in Portfolio Manager on June 7, 2010. The questions below are designed to help data center owners and operators better understand the rating and benchmark their buildings in...

193

Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of CO2-enrichment  

Science Conference Proceedings (OSTI)

Increased partitioning of carbon (C) to fine roots under elevated [CO2], especially deep in the soil profile, could alter soil C and nitrogen (N) cycling in forests. After more than 11 years of free-Air CO2 enrichment in a Liquidambar styraciflua L. (sweetgum) plantation in Oak Ridge, TN, USA, greater inputs of fine roots resulted in the incorporation of new C (i.e., C with a depleted 13C) into root-derived particulate organic matter (POM) pools to 90-cm depth. Even though production in the sweetgum stand was limited by soil N availability, soil C and N content increased over time, and were greater throughout the soil profile under elevated [CO2] at the conclusion of the experiment. However, greater C inputs under elevated [CO2] did not result in increased net N immobilization or C mineralization rates in long-term laboratory incubations, and did not appear to prime the decomposition of older SOM. The 13CO2 of the C mineralized from the incubated soil closely tracked the 13C of the labile POM pool in the elevated [CO2] treatment, especially in shallower soil, and did not indicate the decomposition of older (i.e., pre-experiment) SOM. While potential C mineralization rates were positively and linearly related to total soil organic matter (SOM) C content in the top 30 cm of soil, this relationship did not hold in deeper soil. Taken together with an increased mean residence time of C in deeper soil pools, these findings indicate that C inputs from relatively deep roots under elevated [CO2] may have increased potential for long-term storage. Expanded representation of biogeochemical cycling throughout the soil profile may improve model projections of future forest responses to rising atmospheric [CO2].

Iversen, Colleen M [ORNL; Keller, Dr. Jason K. [Chapman University; Garten Jr, Charles T [ORNL; Norby, Richard J [ORNL

2012-01-01T23:59:59.000Z

194

Tracking the Libor Rate  

E-Print Network (OSTI)

Investigating the Libor Rate,” mimeo. Abrantes-Metz, R. ,Libor data: Historial 1 month Libor rates, British Bankers1108R) Tracking the Libor Rate Rosa M. Abrantes-Metz , Sofia

Abrantes-Metz, Rosa; Villas-Boas, Sofia B.; Judge, George G.

2013-01-01T23:59:59.000Z

195

Bioaugmentation of TNT-contaminated soil  

E-Print Network (OSTI)

Microbial transformation of trinitrotoluene (TNT) in phics. contaminated soil was investigated in this research. A Bacillus sp., isolated from soil obtained from an army ammunition facility, was used to enhance the rate of TNT removal over a 360 day test period. The soil treatments in this study included: (1) the Bacillus sp., (2) the existing indigenous microorganisms, and (3) a sterile control. The disappearance of TNT, as measured by high performance liquid chromatography (HPLC), was compared to the reduction in mutagenic activity of hexane:acetone solvent extracts, as measured in the Salmonella/microsome assay with the histidine requiring TA98 tester strain. The results indicated a similar TNT removal rate in all three treatments. The TNT in the microbial treatments started at approximately 47[]13 mg g[] soil. By day 360, this concentration was reduced to 28[]10 mg g soil in the Bacillus sp the indigenous microbial treatment. The sterile control treatment and 26[]8 mg g[] which was reduced to 22[]2 started with a day 0 TNT concentration of 31[]6 mg g [] day 360. This represented a disappearance of between 30-40% of the g [] y original TNT in all three treatments. The reduction in mutagenicity, as indicated by weighted activity calculations, differed between the microbial treatments and the sterile control. A 50-60% reduction was observed in the microbial treatments. In the boxes treated with the addition of the Bacillus sp. the weighted activity at a dose of 16 :g/plate started at 49[]13 net revenants per microgram solvent extract on microgram after 360 days. The solvent extracts from soil treated with indigenous microorganisms went from a weighted activity of 47[]15 net revenants per microgram on day 0 to 17[]5 on day 360. The sterile control did not reduce mutagenicity by any appreciable amount. The day 0 weighted activity was measured to be 44[]11 net revenants per microgram solvent extract and on day 360 it was 50[]1 . The TNT concentrations in the sterile control samples were lowest throughout the study however, the mutagenicity was highest.

Bokelmann, Annamarie

1999-01-01T23:59:59.000Z

196

2012 Rate Adjustments  

NLE Websites -- All DOE Office Websites (Extended Search)

Register Notices Meetings Brochure Brochure Addendum Customer Comment Letter Approved Rate Order FERC Confirmation If you have questions, call Rates and Repayment, 800-472-2306...

197

Rail Coal Transportation Rates  

U.S. Energy Information Administration (EIA)

figure data Figure 7 shows the percent change in average real rates for those state-to-state ... Estimated transportation rates for coal delivered to electric ...

198

Effective Rate Period  

NLE Websites -- All DOE Office Websites (Extended Search)

10012012 - 09302013 Mid-Year Changes (if applicable) 10012012 - 09302013 Power Rates Annual Revenue Requirement Rate Schedule Power Revenue Requirement 73,381,487...

199

Pneumatic soil removal tool  

DOE Patents (OSTI)

A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw.

Neuhaus, John E. (Newport News, VA)

1992-01-01T23:59:59.000Z

200

Pneumatic soil removal tool  

Science Conference Proceedings (OSTI)

A soil tool is provided for removing radioactive soil, rock and debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator value mounted on the handle, to provide movement of the movable jaw.

Neuhaus, J.F.

1991-01-23T23:59:59.000Z

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Pneumatic soil removal tool  

Science Conference Proceedings (OSTI)

A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw. 3 figs.

Neuhaus, J.E.

1992-10-13T23:59:59.000Z

202

Automated Soil Gas Monitoring Chamber - Oak Ridge National ...  

Automated Soil Gas Monitoring Chamber ... A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural

203

WATER AS A REAGENT FOR SOIL REMEDIATION  

SciTech Connect

SRI International is conducting experiments to develop and evaluate hydrothermal extraction technology or hot water extraction (HWE) technology for remediating petroleum-contaminated soils. Most current remediation practices either fail to remove the polycyclic aromatic hydrocarbons (PAHs) found in petroleum-contaminated sites, are too costly, or require the use of organic solvents at the expense of additional contamination and with the added cost of recycling solvents. Hydrothermal extraction offers the promise of efficiently extracting PAHs and other kinds of organics from contaminated soils at moderate temperatures and pressures, using only water and inorganic salts such as carbonate. SRI has conducted experiments to measure the solubility and rate of solubilization of selected PAHs (fluoranthene, pyrene, chrysene, 9,10-dimethylanthracene) in water using SRI's hydrothermal optical cell with the addition of varying amounts of sodium carbonate to evaluate the efficiency of the technology for removing PAHs from the soil. SRI data shows a very rapid increase in solubility of PAHs with increase in temperature in the range 25-275 C. SRI also measured the rate of solubilization, which is a key factor in determining the reactor parameters. SRI results for fluoranthene, pyrene, chrysene, and 9,10-dimethylanthracene show a linear relationship between rate of solubilization and equilibrium solubility. Also, we have found the rate of solubilization of pyrene at 275 C to be 6.5 ppm/s, indicating that the equilibrium solubilization will be reached in less than 3 min at 275 C; equilibrium solubility of pyrene at 275 C is 1000 ppm. Also, pyrene and fluoranthene appear to have higher solubilities in the presence of sodium carbonate. In addition to this study, SRI studied the rate of removal of selected PAHs from spiked samples under varying conditions (temperature, pore sizes, and pH). We have found a higher removal of PAHs in the presence of sodium carbonate in both sand and bentonite systems. Also, sodium carbonate greatly reduces the possible reactor corrosion under hydrothermal conditions. Our results show that a water-to-sand ratio of at least 3:1 is required to efficiently remove PAH from soil under static conditions.

Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

2001-03-29T23:59:59.000Z

204

Radiolytic evolution of gases from Z-9 soils  

DOE Green Energy (OSTI)

The total gas evolution rate was correlated with the plutonium and combined moisture and organic soil content. The maximum measured gas evolution rate was 1.3 x 10/sup -6/ gram-mole/hour - gram of plutonium. The major components of the evolved gas were determined to be 49.5 mole percent, (M%) nitrogen, 23.3 M% hydrogen, 14.1 M% oxygen and 13.1 M% carbon dioxide. This composition was determined from gas evolved by water-rich soil. Soils which are rich in organics may evolve gas with less oxygen. The data established the magnitude of the hydrogen evolution problem. Evolution of both oxygen and hydrogen means that the gas mixture will remain within the explosive range, once the lower explosion limit is exceeded.

Pajunen, A. L.

1977-07-01T23:59:59.000Z

205

The Effect of Steady Winds on Radon-222 Entry from soil into houses  

Science Conference Proceedings (OSTI)

Wind affects the radon-222 entry rate from soil into buildings and the resulting indoor concentrations. To investigate this phenomenon, we employ a previously tested three-dimensional numerical model of soil-gas Bow around houses, a commercial computational fluid dynamics code, an established model for determining ventilation rates in the presence of wind, and new wind tunnel results for the ground-surface pressure field caused by wind. These tools and data, applied under steady-state conditions to a prototypical residential building, allow us (1) to determine the complex soil-gas flow patterns that result from the presence of wind-generated ground-surface pressures, (2) to evaluate the effect of these flows on the radon concentration in the soil, and (3) to calculate the effect of wind on the radon entry rate and indoor concentration. For a broad range of soil permeabilities, two wind speeds, and two wind directions, we quantify the"flushing" effect of wind on the radon in the soil surrounding a house, and the consequent sharp decrease in radon entry rates. Experimental measurements of the time-dependent radon concentration in soil gas beneath houses confirm the existence of wind-induced flushing. Comparisons are made to modeling predictions obtained while ignoring the effect of the wind-generated ground-surface pressures. These investigations lead to the conclusion that wind-generated ground-surface pressures play a significant role in determining radon entry rates into residential buildings. [References: 26

Riley, W.J.; Gadgil, A.J.; Bonnefous, Y.C.; Nazaroff, W.W.

1994-10-01T23:59:59.000Z

206

Soil Sampling | Open Energy Information  

Open Energy Info (EERE)

Soil Sampling Soil Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Soil Sampling Details Activities (10) Areas (9) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Can reveal relatively high permeability zones Hydrological: Thermal: Used to locate active hydrothermal systems Dictionary.png Soil Sampling: Soil sampling is a method that can be used for exploration of geothermal resources that lack obvious surface manifestations. Soils that are above or adjacent to a "hidden" hydrothermal system will have a unique chemistry that can be indicative of a hydrothermal system at depth and a zone of

207

Systematic Variability of Soil Hydraulic Conductivity Across Three Vertisol Catenas  

E-Print Network (OSTI)

Soil hydraulic properties, such as saturated hydraulic conductivity (Ks), have high spatial variation, but little is known about how to vary a few measurements of Ks over an area to model hydrology in a watershed with complex topography and multiple land uses. Variations in soil structure, macropores (especially in soil that shrink and swell), land use, and soil development can cause large variations in Ks within one soil type. Characterizing the impacts of soil properties that might vary systematically with land use and terrain attributes on Ks rates would provide insight on how management and human activity affect local and regional hydrology. The overall objective of this research was to develop a strategy for using published infiltration and Ks measurements by the Natural Resources Conservation Service for watershed hydrology applications in a Vertisol, and to extend this knowledge toward developing recommendations for future infiltration measurements. To achieve this goal, soil infiltration measurements were collected across three catenas of Houston Black and Heiden clays (fine, smectitic, thermic Udic Haplusterts) under three land uses (improved pasture, native prairie, and conventional tillage row crop). Measurement locations were selected to account for variation in terrain attributes. Overall, Ks values were not significantly different across different landscape positions; however, in fields under similar land uses, Ks values were found to be lower in the footslope positions and higher in the backslope positions. The pedotransfer function, ROSETTA, provided estimates of 64 percent of the overall variability in Ks while also providing accurate estimates of the mean of Ks when particle size distribution and bulk density are used as inputs in the model. Through the use of multiple regression analysis, soil antecedent water content, bulk density, clay content, and soil organic carbon along with two indicator variables for the catenas were highly correlated (r2 = 0.59) with Ks. The indicator variables explained 17 percent of the variation in Ks that could not be explained by measured soil properties. It is recommended that when NRCS measures Ks on benchmark soils, especially high clay soils, that they collect particle size distribution, bulk density, organic carbon, and antecedent water content data.

Rivera, Leonardo Daniel

2010-08-01T23:59:59.000Z

208

Wireless sensor networks for soil science  

Science Conference Proceedings (OSTI)

Wireless sensor networks can revolutionise soil ecology by providing measurements at temporal and spatial granularities previously impossible. This paper presents our first steps towards fulfilling that goal by developing and deploying two experimental ... Keywords: WSNs, environmental monitoring, soil moisture, soil monitoring, soil science, soil temperature, urban forests, web services, wireless networks, wireless sensor networks

Andreas Terzis; Razvan Musaloiu-E.; Joshua Cogan; Katalin Szlavecz; Alexander Szalay; Jim Gray; Stuart Ozer; Chieh-Jan Mike Liang; Jayant Gupchup; Randal Burns

2010-02-01T23:59:59.000Z

209

USE OF A UNIQUE BIOBARRIER TO REMEDIATE NITRATE AND PERCHLORATE IN GROUNDWATER  

SciTech Connect

Research was conducted to evaluate a multiple-layer system of volcanic rock, limestone, Apatite mineral and a 'biobarrier' to impede migration of radionuclides, metals and colloids through shallow alluvial groundwater, while simultaneously destroying contaminants such as nitrate and perchlorate. The 'bio' portion of this Multi-Barrier system uses highly porous, slowly degradable, carbon-based material (pecan shells) that serves as an energy source and supports the growth of indigenous microbial populations capable of destroying biodegradable compounds. The studies, using elevated nitrate concentrations in groundwater, have demonstrated reduction from levels of 6.5-9.7 mM nitrate (400-600 mg/L) to below discharge limits (0.16 mM nitrate). Perchlorate levels of 4.3 {micro}M (350 {micro}g/L) were also greatly reduced. Elevated levels of nitrate in drinking water are a public health concern, particularly for infants and adults susceptible to gastric cancer. Primary sources of contamination include feedlots, agriculture (fertilization), septic systems, mining and nuclear operations. A major source of perchlorate contamination in water is ammonium perchlorate from manufacture/use of rocket propellants. Perchlorate, recently identified as an EPA contaminant of concern, may affect thyroid function and cause tumor formation. A biobarrier used to support the growth of microbial populations (i.e. a biofilm) is a viable and inexpensive tool for cleaning contaminated groundwater. Aquatic ecosystems and human populations worldwide are affected by contaminated water supplies. One of the most frequent contaminants is nitrate. Remediation of nitrate in groundwater and drinking water by biodegradation is a natural solution to this problem. Microbial processes play an extremely important role in in situ groundwater treatment technologies. The assumption of carbon limitation is the basis for addition of carbon-based substrates to a system in the development of bioremediation schemes for nitrate-contaminated groundwater. The biobarrier concept typically involves construction of a wall of porous carbon-based material that is placed in a trench perpendicular to the direction of groundwater flow that extends at least the width and depth of the contaminant plume. A biobarrier can be used as a stand-alone system when biodegradable materials are the only contaminants, or it can be used along with other barriers, as has been done in the LANL Multi-Barrier system, designed to remediate multiple contaminants. The groundwater system must be reasonably well characterized in terms of direction of flow, width and depth of plume, concentrations along the plume, flow velocity and hydraulic conductivity. Barrier technology is largely applicable to shallow, alluvial plumes (less than 20 feet deep), although permeable reactive barriers (PRBs) have been placed at much greater depths, up to 70 ft. deep. Under these conditions, a barrier could be placed across the plume downstream from the source to prevent migration from a controlled site. The most effective barrier materials are natural waste materials of high porosity, resistant to degradation, that will not require removal or replacement with time. Pecan shells are a significant waste problem in pecan-growing areas. The most commonly used solution is land disposal. Use in biobarriers provides a desirable alternative. Pecan shells are composed of cellulose and lignin, and they degrade very slowly, providing a 'time-release' carbon source. If left uncrushed, they provide a high porosity material. Fishbone is a waste product made of calcium phosphate, or hydroxyapatite, which is very resistant to deterioration. Apatite-II effectively removes dissolved metals and radionuclides from groundwater. The precipitates formed with metals and radionuclides are highly insoluble and very unlikely to leach subsequently from the barrier. The residual tissue associated with the fishbones provides nutrient materials that contribute to formation of a microbial population as an additional benefit. W

Strietelmeier, E. A. (Elizabeth A.); Espinosa, Melissa L. (Melissa L.); Adams, J. D. (Joshua D. ); Leonard, P. A. (Patricia A.); Hodge, E. M. (Evangeline M.)

2001-01-01T23:59:59.000Z

210

Why Sequence Permafrost Soil Microbiota?  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Research Principal Investigators: Mark Waldrop, US Geological Services Program: CSP 2010 Home > Sequencing > Why Sequence Permafrost Soil Microbiota? UC logo DOE logo...

211

Why sequence soil bacterial communities?  

NLE Websites -- All DOE Office Websites (Extended Search)

as part of this project. Principal Investigators: Stephanie Eichorst, Los Alamos National Laboratory Program: CSP 2011 Home > Sequencing > Why sequence soil bacterial communities...

212

Carbon Sequestration in European Soils  

NLE Websites -- All DOE Office Websites (Extended Search)

Preliminary Estimates for Five Scenarios Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments...

213

Treatment of Waste Soils / Solids  

Science Conference Proceedings (OSTI)

About the 1996 International Symposium on Extraction and Processing for the Treatment and Minimization of Wastes: Treatment of Waste Soils / Solids ...

214

Chemistry of organic carbon in soil with relationship to the global carbon cycle  

SciTech Connect

Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs.

Post, W.M. III

1988-01-01T23:59:59.000Z

215

Nitrogen cycling in oxygen deficient zones : insights from [delta]¹?N and [delta]¹?O of nitrite and nitrate  

E-Print Network (OSTI)

The stable isotopes, [delta]¹?N and [delta]¹?O, of nitrite and nitrate can be powerful tools used to interpret nitrogen cycling in the ocean. They are particularly useful in regions of the ocean where there are multiple ...

Buchwald, Carolyn

2013-01-01T23:59:59.000Z

216

Operation Redwing. Project 2. 52. Neutron-induced soil radioactivity  

SciTech Connect

Soil samples were exposed to neutron radiation from Shot Cherokee to help establish the importance of neutron-induced residual gamma radiation. After exposure and recovery, the samples had no detectable activity because the slant range to the nearest sample was nearly 3.5 miles, due to an error in bomb drop. After this failure, an experiment was designed in the field for Shot Yuma in order that induced-activity data could be obtained for a soil other than Nevada Test Site soil. Samples of sodium, manganese, and coral sand from Site Sally were exposed above and below the surface at a slant range of 120 yards. The difference between the effects of pure fission and fission-fusion neutron spectra on induced activity in soil was not measured, since the soil samples on Shot Cehrokee were not activated. However, a method for predicting neutron-induced gamma-radiation intensities was tested for coral soil on Shot Yuma. Predicted values were within + or - 50% of induced dose rates inferred from field measurements.

Cowan, M.

1985-09-01T23:59:59.000Z

217

Equipment evaluation for low density polyethylene encapsulated nitrate salt waste at the Rocky Flats Plant  

SciTech Connect

Mixed wastes at the Rocky Flats Plant (RFP) are subject to regulation by the Resource Conservation and Recovery Act (RCRA). Polymer solidification is being developed as a final treatment technology for several of these mixed wastes, including nitrate salts. Encapsulation nitrate salts with low density polyethylene (LDPE) has been the preliminary focus of the RFP polymer solidification effort. Literature reviews, industry surveys, and lab-scale and pilot-scale tests have been conducted to evaluate several options for encapsulating nitrate salts with LDPE. Most of the effort has focused on identifying compatible drying and extrusion technologies. Other processing options, specifically meltration and non-heated compounding machines, were also investigated. The best approach appears to be pretreatment of the nitrate salt waste brine in either a vertical or horizontal thin film evaporator followed by compounding of the dried waste with LDPE in an intermeshing, co-rotating, twin-screw extruder. Additional pilot-scale tests planned for the fall of 1993 should further support this recommendation. Preliminary evaluation work indicates that meltration is not possible at atmospheric pressure with the LDPE (Chevron PE-1409) provided by RFP. However, meltration should be possible at atmospheric pressure using another LDPE formulation with altered physical and rheological properties: Lower molecular weight and lower viscosity (Epoline C-15). Contract modifications are now in process to allow a follow-on pilot scale demonstration. Questions regarding changed safety and physical properties of the resultant LDPE waste form due to use of the Epoline C-15 will be addressed. No additional work with non-heated mixer compounder machines is planned at this time.

Yamada, W.I.; Faucette, A.M.; Jantzen, R.C.; Logsdon, B.W.; Oldham, J.H.; Saiki, D.M.; Yudnich, R.J.

1993-08-30T23:59:59.000Z

218

The Effect of Nanoparticle Concentration on Thermo-physical Properties of Alumina-nitrate Nanofluid  

E-Print Network (OSTI)

The objective of this study was to determine how Al2O3 nanoparticle concentration affected the specific heat, heat of fusion, melting point, thermal diffusivity and thermal conductivity of Alumina-Nitrate nanofluids. Al2O3 nanoparticles were dispersed in a eutectic of sodium nitrate and potassium nitrate (60:40 for mole fraction) to create nanofluids using a hot plate evaporation method and an air dryer method. The nominal Al2O3 (alumina) mass fraction was between 0 and 2%, and was determined as the ratio of the mass of Al2O3 nanoparticles to the total mass of the nanofluid. After the preparation of the nanofluids, Neutron Activation Analysis (NAA) was used to measure the actual Al2O3 mass fraction in the nanofluids. The specific heat, heat of fusion, and melting point were measured with a Modulated Differential Scanning Calorimeter (MDSC). The thermal diffusivity and thermal conductivity were measured with Laser Flash Analysis (LFA). The MDSC results showed that the addition of Al2O3 nanoparticles enhanced the specific heat of the nanofluids synthesize from both methods. There was a parabolic relation between the specific heat and the Al2O3 mass fraction for the nanofluids synthesized from the hot plate evaporation method, with a maximum 31% enhancement at 0.78% Al2O3 mass fraction. The nanofluids synthesized from the air dryer method also resulted in enhanced specific heats which were higher at the same Al2O3 mass fraction than those of the nanofluids synthesized from the hot plate evaporation method. It was not determined why this enhancement occurred. The results also showed that the introduction of Al2O3 nanoparticles had no significant effect on the heat of fusion and melting point of the nanofluids synthesized from either method. The LFA results showed that adding Al2O3 nanoparticles decreased the thermal diffusivity and the thermal conductivity of the nitrate eutectic.

Shao, Qian

2013-05-01T23:59:59.000Z

219

rates | OpenEI  

Open Energy Info (EERE)

rates rates Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB) text/csv icon Non-IOU rates by zipcode (csv, 2.1 MiB)

220

Aqueous nitrate waste treatment: Technology comparison, cost/benefit, and market analysis  

SciTech Connect

The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitrate waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Reduction of Perchlorate and Nitrate by Aluminum Activated by pH Change and Electrochemically Induced Pitting Corrosion.  

E-Print Network (OSTI)

Highly oxidized species like perchlorate and nitrate that are released into the environment by anthropogenic activities are a source of concern as they have been known to contaminate groundwater. These species are extremely soluble in water and can migrate through aquifer systems, travelling substantial distances from the original site of contamination. Due to their high solubility, these oxy-anions cannot be treated using conventional treatment processes like filtration and sedimentation. Several treatment technologies are currently available to abate the human health risk due to exposure to perchlorate and nitrate. However, most of the existing treatment processes are expensive or have limitations, like generation of brines with high concentrations of perchlorate or nitrate. Aluminum can effectively reduce perchlorate and nitrate, if the protective oxide film that separates the thermodynamically reactive Al0 from most environments is removed. Aluminum was activated by pH change and electrochemically induced, pitting corrosion to remove the passivating oxide layer and expose the underlying, thermodynamically reactive, zero-valent aluminum. A partially oxidized species of aluminum, like monovalent aluminum, is believed to bring about the reduction of perchlorate and nitrate. This research studied the reduction of perchlorate and nitrate by aluminum that was activated by these two mechanisms. Results indicated that aluminum activated by pH change resulted in an instantaneous decrease in perchlorate concentration without any increase in chlorate or chloride concentrations, which suggests that the perchlorate might be adsorbed on the aluminum oxide surface. However, aluminum activated by electrochemically induced pitting corrosion can effectively reduce perchlorate to chlorate. Nitrate, on the other hand, was reduced completely to ammonia by both treatment mechanisms. The studies conducted in this dissertation suggest that aluminum can be effectively used as a reducing agent to develop a treatment process to reduce perchlorate and nitrate.

Raut Desai, Aditya B.

2010-05-01T23:59:59.000Z

222

Historical Interest Rates  

NLE Websites -- All DOE Office Websites (Extended Search)

Current and Historical Interest Rates Current and Historical Interest Rates The table lists interest rates, from the project's inception through the present, for all projects with repayment supervised by the CRSP MC. The latest available interest rate is used for all future interest rate calculations. The Amistad-Falcon, Collbran, Provo River, and Rio Grande Projects are all assigned the average daily "Yield Rate" calculated by the U.S. Treasury, on an annual basis, for Treasury bonds having terms of 15 years or more remaining to maturity. The calculated yield rate is rounded to the nearest one-eighth of one percent. The yield rate is based upon the bond's interest rate, as well as its market value. The Colorado River Storage Project and its participating projects, Dolores and Seedskadee, are assigned the average daily "Coupon Rate," annualized for the same U.S. Treasury bonds used in "Yield Rate" calculations. The coupon rate is the interest rate that the bond carries upon its face.

223

Soil Moisture Memory in Climate Models  

Science Conference Proceedings (OSTI)

Water balance considerations at the soil surface lead to an equation that relates the autocorrelation of soil moisture in climate models to 1) seasonality in the statistics of the atmospheric forcing, 2) the variation of evaporation with soil ...

Randal D. Koster; Max J. Suarez

2001-12-01T23:59:59.000Z

224

Point Probability Distributions of Frozen Soil  

Science Conference Proceedings (OSTI)

In some areas of the Pacific Northwest, frozen soils play a major role in surface runoff, soil erosion and sedimentation, but quantitative descriptions of the frequency and severity of soil frost are lacking.

J. F. Zuzel; J. L. Pikul Jr.; R. N. Greenwalt

1986-11-01T23:59:59.000Z

225

PESTICIDE ACCUMULATION RATES IN A MANAGED MARSH ALONG LAKE ERIE  

E-Print Network (OSTI)

column chromatographic separation and analysis with gas chromatography. Soils in both watersheds have low dedicated to orchards and concurrent increase in residential and road area. The increase in grain size. The pesticide accumulation rates were calculated and indicate an airborne source for HCHs and endrin

Gottgens, Hans

226

Tracking the Libor Rate  

E-Print Network (OSTI)

Paper 1108R2 Paper 1108R) Tracking the Libor Rate Rosa M.revision 2013 by author(s). Tracking the Libor Rate Rosa M.providing a methodology for tracking the dynamic integrity

Abrantes-Metz, Rosa; Villas-Boas, Sofia B.; Judge, George G.

2013-01-01T23:59:59.000Z

227

2009 Rate Adjustments  

NLE Websites -- All DOE Office Websites (Extended Search)

provisional rates will be in effect until the Federal Energy Regulatory Commission (FERC) confirms and approves them on a final basis or until they are replaced by other rates....

228

Mouse heart rate  

NLE Websites -- All DOE Office Websites (Extended Search)

Mouse heart rate Name: amj Status: NA Age: NA Location: NA Country: NA Date: Around 1993 Question: Is it possible to get the heart rate of a mouse without special equipment?...

229

Dynamics of heart rate  

Science Conference Proceedings (OSTI)

Heart rate oscillates on several different time scales and has long?term variability in the form of 1/fnoise. The physiological control of heart rate is briefly reviewed

Daniel T. Kaplan; Mario Talajic

1991-01-01T23:59:59.000Z

230

Exchangeable sodium accumulation and replacement in Southeast Texas soils under turfgrass  

E-Print Network (OSTI)

Many municipal water supplies in Southeast Texas have a relatively high level of Na+ and low total dissolved solids. Most soils of this area are dominated by smectitic clays that respond to wetting by swelling, especially when wetted with high Na waters of low salinity. This study assessed the degree of Na accumulation in Southeast Texas soils under irrigated turfgrass, tested models predicting Na accumulation, and evaluated response of sodic soil to amendments. The Ap, E, and Bt horizons of 18 turf soils in 10 municipal water districts were studied. Irrigation water sodicity (SARiw) and salinity (ECiw) were strongly correlated with soil sodicity (SARE) and salinity (ECe). The SAR,W was found to be the best single variable to model soil Na accumulation but exchangeable Na also increased as a function of years of irrigation. The multiple regression equation: SARE =-5.16 + 0.53 SARiw + 4.04 In (yr) (R2 = 0.86) best predicted SARE to a depth of 30 cm. This study also compared gypsum, a common amendment for sodic soil reclamation, to langbeinite. A column leaching experiment using sodic water was conducted on a sodic, non-saline Boonville soil (fine, montmorillonitic, thermic Ruptic Vertic Albaqualf) amended with gypsum and langbeinite at rates equivalent to exchangeable Na in soil depths of 15 and 30 cm. The soil water at depths of 7.5, 15 and 22.5 cm and the effluent from each column were collected at intervals of 12 h and analyzed for sodium adsorption ratio (SAR) and soluble bases. Saturated hydraulic conductivity (Ksat) was calculated. At the end of the experiment, soil samples were removed from each column in four depth increments. Significantly less exchangeable Na and lower SAR of the soil waters were found in the lower sections of the soil columns, and Ksat was greater for the amended treatments than for the control.

Najjar, Namir Fouad

1995-01-01T23:59:59.000Z

231

Impact of nitrate-enhanced leachate recirculation on gaseous releases from a landfill bioreactor cell  

SciTech Connect

This study evaluates the impact of nitrate injection on a full scale landfill bioreactor through the monitoring of gaseous releases and particularly N{sub 2}O emissions. During several weeks, we monitored gas concentrations in the landfill gas collection system as well as surface gas releases with a series of seven static chambers. These devices were directly connected to a gas chromatograph coupled to a flame ionisation detector and an electron capture detector (GC-FID/ECD) placed directly on the field. Measurements were performed before, during and after recirculation of raw leachate and nitrate-enhanced leachate. Raw leachate recirculation did not have a significant effect on the biogas concentrations (CO{sub 2}, CH{sub 4} and N{sub 2}O) in the gas extraction network. However, nitrate-enhanced leachate recirculation induced a marked increase of the N{sub 2}O concentrations in the gas collected from the recirculation trench (100-fold increase from 0.2 ppm to 23 ppm). In the common gas collection system however, this N{sub 2}O increase was no more detectable because of dilution by gas coming from other cells or ambient air intrusion. Surface releases through the temporary cover were characterized by a large spatial and temporal variability. One automated chamber gave limited standard errors over each experimental period for N{sub 2}O releases: 8.1 {+-} 0.16 mg m{sup -2} d{sup -1} (n = 384), 4.2 {+-} 0.14 mg m{sup -2} d{sup -1} (n = 132) and 1.9 {+-} 0.10 mg m{sup -2} d{sup -1} (n = 49), during, after raw leachate and nitrate-enhanced leachate recirculation, respectively. No clear correlation between N{sub 2}O gaseous surface releases and recirculation events were evidenced. Estimated N{sub 2}O fluxes remained in the lower range of what is reported in the literature for landfill covers, even after nitrate injection.

Tallec, G.; Bureau, C. [Cemagref, UR HBAN, Parc de Tourvoie, BP44, F-92163 Antony (France); Peu, P.; Benoist, J.C. [Cemagref, UR GERE, 17 Avenue de Cucille, CS 64427, F-35044 Rennes (France); Lemunier, M. [Suez-Environnement, CIRADE, 38 Av. Jean Jaures, 78440 Gargenville (France); Budka, A.; Presse, D. [SITA France, 132 Rue des 3 Fontanot, 92000 Nanterre Cedex (France); Bouchez, T. [Cemagref, UR HBAN, Parc de Tourvoie, BP44, F-92163 Antony (France)], E-mail: theodore.bouchez@cemagref.fr

2009-07-15T23:59:59.000Z

232

Compost Application Practices for Revegetating Disturbed Soils.  

E-Print Network (OSTI)

??Urban development alters the physical and chemical properties of soil which presents challenges for vegetation establishment. Compost, when applied as a soil amendment, can help… (more)

Dunifon, Shea Nicole

2010-01-01T23:59:59.000Z

233

Worldwide Organic Soil Carbon and Nitrogen Data  

NLE Websites -- All DOE Office Websites (Extended Search)

of soil samples from California. Additional data came from soil surveys of Italy, Greece, Iran, Thailand, Vietnam, various tropical Amazonian areas, and U.S. forests and from...

234

ARM - Measurement - Soil surface temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

surface temperature surface temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil surface temperature The temperature of the soil measured near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AMC : Ameriflux Measurement Component CO2FLX : Carbon Dioxide Flux Measurement Systems SOIL : Soil Measurement from the SGP SWATS : Soil Water and Temperature System MET : Surface Meteorological Instrumentation

235

MOLECULAR APPROACHES FOR IN SITU IDENTIFCIATION OF NITRATE UTILIZATION BY MARINE BACTERIA AND PHYTOPLANKTON  

SciTech Connect

Traditionally, the importance of inorganic nitrogen (N) for the nutrition and growth of marine phytoplankton has been recognized, while inorganic N utilization by bacteria has received less attention. Likewise, organic N has been thought to be important for heterotrophic organisms but not for phytoplankton. However, accumulating evidence suggests that bacteria compete with phytoplankton for nitrate (NO3-) and other N species. The consequences of this competition may have a profound effect on the flux of N, and therefore carbon (C), in ocean margins. Because it has been difficult to differentiate between N uptake by heterotrophic bacterioplankton versus autotrophic phytoplankton, the processes that control N utilization, and the consequences of these competitive interactions, have traditionally been difficult to study. Significant bacterial utilization of DIN may have a profound effect on the flux of N and C in the water column because sinks for dissolved N that do not incorporate inorganic C represent mechanisms that reduce the atmospheric CO2 drawdown via the ?biological pump? and limit the flux of POC from the euphotic zone. This project was active over the period of 1998-2007 with support from the DOE Biotechnology Investigations ? Ocean Margins Program (BI-OMP). Over this period we developed a tool kit of molecular methods (PCR, RT-PCR, Q-PCR, QRT-PCR, and TRFLP) and combined isotope mass spectrometry and flow-cytometric approaches that allow selective isolation, characterization, and study of the diversity and genetic expression (mRNA) of the structural gene responsible for the assimilation of NO3- by heterotrophic bacteria (nasA). As a result of these studies we discovered that bacteria capable of assimilating NO3- are ubiquitous in marine waters, that the nasA gene is expressed in these environments, that heterotrophic bacteria can account for a significant fraction of total DIN uptake in different ocean margin systems, that the expression of nasA is differentially regulated in genetically distinct NO3- assimilating bacteria, and that the best predictors of nasA gene expression are either NO3- concentration or NO3- uptake rates. These studies provide convincing evidence of the importance of bacterial utilization of NO3-, insight into controlling processes, and provide a rich dataset that are being used to develop linked C and N modeling components necessary to evaluate the significance of bacterial DIN utilization to global C cycling. Furthermore, as a result of BI-OMP funding we made exciting strides towards institutionalizing a research and education based collaboration between the Skidaway Institute of Oceanography (SkIO) and Savannah State University (SSU), an historically black university within the University System of Georgia with undergraduate and now graduate programs in marine science. The BI-OMP program, in addition to supporting undergraduate (24) graduate (10) and postdoctoral (2) students, contributed to the development of a new graduate program in Marine Sciences at SSU that remains an important legacy of this project. The long-term goals of these collaborations are to increase the capacity for marine biotechnology research and to increase representation of minorities in marine, environmental and biotechnological sciences.

Frischer, Marc E. [Skidaway Institute of Oceanography; Verity, Peter G.; Gilligan, Mathew R.; Bronk, Deborah A.; Zehr, Jonathan P.; Booth, Melissa G.

2013-09-12T23:59:59.000Z

236

FINGERPRINTING SOILS – A PROOF OF CONCEPT  

E-Print Network (OSTI)

Forensic soil characterization is an under-explored field in the forensic sciences. One aspect of forensic sciences is Locard’s Exchange Principle, which states that every contact leaves a trace. As soil characterization technology improves, applications of soil forensics can more accurately identify if a soil sample collected from a suspect corresponds to samples collected at a crime scene. This research focuses on the use of visible near and infrared, diffuse reflectance spectroscopy (VNIR DRS) to develop spectral “fingerprints” of soils. Our hypothesis is that VNIR spectra of soils from a crime scene are unique from other soils, even soils of the same soil series. If soil spectra from a crime scene are unique, this data can be used to accurately assess Locard’s Exchange Principle. Soil samples were collected within in a thirty-mile radius of a designated “crime scene” in the Brazos River floodplain near Texas A

Kobylinski, Catherine

2011-05-01T23:59:59.000Z

237

Mixtures of a Coal Combustion By-Product and Composted Yard Wastes for Use as Soil Substitutes and Amendments  

Science Conference Proceedings (OSTI)

Under certain conditions, the physical and chemical properties of coal combustion by-products (CCBPs) can be conducive to plant growth. As one means of increasing use rates, EPRI and several utilities have studied CCBP applications as a soil amendment and soil substitute when mixed with varying proportions of yard waste compost, sand, and soil. This report presents the results of green-house studies on the use of CCBP mixtures in growing shrubs, trees, and ground cover plants.

1996-10-26T23:59:59.000Z

238

About the Ratings  

NLE Websites -- All DOE Office Websites (Extended Search)

2008 Ratings Changes 2008 Ratings Changes EPA's "New" Fuel Economy Ratings Video about EPA's New Fuel Economy Ratings Windows Media Video (6.8 MB) Quicktime Video (7.8 MB) Text Version EPA changed the way it estimates fuel economy starting with the 2008 model year. This "new" way of estimating fuel economy supplements the previous method by incorporating the effects of Faster speeds and acceleration Air conditioner use Colder outside temperatures What else do I need to know about the "new" ratings? The tests lower MPG estimates for most vehicles. View old/new MPG ratings for a specific vehicle The actual mileage you get will still vary based on your driving habits, traffic conditions, and other factors. All MPG estimates in Find-a-Car have been converted to the new

239

Effective Rate Period  

NLE Websites -- All DOE Office Websites (Extended Search)

Fiscal Year 2014 Fiscal Year 2014 Effective Rate Period As of Beginning of the FY 10/01/2013 - 09/30/2014 Mid-Year Changes (if applicable) 10/01/2013 - 09/30/2014 Power Rates Annual Revenue Requirement Rate Schedule Power Revenue Requirement $73,441,557 CV-F13 Base Resource Revenue Requirement $69,585,875 First Preference Revenue Requirement $3,855,682

240

High Redshift Supernova Rates  

E-Print Network (OSTI)

We use a sample of 42 supernovae detected with the Advanced Camera for Surveys on-board the Hubble Space Telescope as part of the Great Observatories Origins Deep Survey to measure the rate of core collapse supernovae to z~0.7 and type Ia supernovae to z~1.6. This significantly increases the redshift range where supernova rates have been estimated from observations. The rate of core collapse supernovae can be used as an independent probe of the cosmic star formation rate. Based on the observations of 17 core collapse supernovae, we measure an increase in the core collapse supernova rate by a factor of 1.6 in the range 0.3rate. The increase in the rate in this redshift range in consistent with recent measurements of the star formation rate derived from UV-luminosity densities and IR datasets. Based on 25 type Ia supernovae, we find a SN Ia rate that is a factor 3-5 higher at z~1 compared to earlier estimates at lower redshifts (zrate traces a higher star formation rate at redshifts z>1 compared to low redshift. At higher redshift (z>1), we find a suggested decrease in the type Ia rate with redshift. This evolution of the Ia rate with redshift is consistent with a type Ia progenitor model where there is a substantial delay between the formation of the progenitor star and the explosion of the supernova. Assuming that the type Ia progenitor stars have initial main sequence masses 3-8 M_Sun, we find that 5-7% of the available progenitors explode as type Ia supernovae.

Tomas Dahlen; Louis-Gregory Strolger; Adam G. Riess; Bahram Mobasher; Ranga-Ram Chary; Christopher J. Conselice; Henry C. Ferguson; Andrew S. Fruchter; Mauro Giavalisco; Mario Livio; Piero Madau; Nino Panagia; John L. Tonry

2004-06-24T23:59:59.000Z

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Rate Schedule CPP-2  

NLE Websites -- All DOE Office Websites (Extended Search)

or rate schedule accepted or approved by the Federal Energy Regulatory Commission (FERC) or other regulatory bodies will be passed on to each relevant customer. The FERC's or...

242

Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum)  

SciTech Connect

Abstract. A simple, multi-compartment model was developed to predict soil carbon sequestration beneath switchgrass (Panicum virgatum) plantations in the southeastern United States. Soil carbon sequestration is an important component of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was included for the purpose of model parameterization and five model-based experiments were conducted to predict how changes in environment (temperature) or crop management (cultivar, fertilization, and harvest efficiency) might affect soil carbon storage and nitrogen losses. Predictions of soil carbon sequestration were most sensitive to changes in annual biomass production, the ratio of belowground to aboveground biomass production, and temperature. Predictions of ecosystem nitrogen loss were most sensitive to changes in annual biomass production, the soil C/N ratio, and nitrogen remobilization efficiency (i.e., nitrogen cycling within the plant). Model-based experiments indicated that 1) soil carbon sequestration can be highly site specific depending on initial soil carbon stocks, temperature, and the amount of annual nitrogen fertilization, 2) response curves describing switchgrass yield as a function of annual nitrogen fertilization were important to model predictions, 3) plant improvements leading to greater belowground partitioning of biomass could increase soil carbon sequestration, 4) improvements in harvest efficiency have no indicated effects on soil carbon and nitrogen, but improve cumulative biomass yield, and 5) plant improvements that reduce organic matter decomposition rates could also increase soil carbon sequestration, even though the latter may not be consistent with desired improvements in plant tissue chemistry to maximize yields of cellulosic ethanol.

Garten Jr, Charles T [ORNL

2012-01-01T23:59:59.000Z

243

Uranium soils integrated demonstration: Soil characterization project report  

Science Conference Proceedings (OSTI)

An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP.

Cunnane, J.C. [Argonne National Lab., IL (United States); Gill, V.R. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Lee, S.Y. [Oak Ridge National Lab., TN (United States); Morris, D.E. [Los Alamos National Lab., NM (United States); Nickelson, M.D. [HAZWRAP, Oak Ridge, TN (United States); Perry, D.L. [Lawrence Berkeley Lab., CA (United States); Tidwell, V.C. [Sandia National Labs., Albuquerque, NM (United States)

1993-08-01T23:59:59.000Z

244

MILESTONES IN SOIL CHEMISTRY Donald L. Sparks  

E-Print Network (OSTI)

MILESTONES IN SOIL CHEMISTRY Donald L. Sparks An array of pioneering research, dealing with various aspects of soil chemistry, has appeared in Soil Science for the past 90 years. In this review, two papers others that he published in Soil Science established the importance of variable or pH- dependent surface

Sparks, Donald L.

245

Closure of the condensed-phase organic-nitrate reaction USQ at hanford  

Science Conference Proceedings (OSTI)

A discovery Unreviewed Safety Question (USQ) was declared on the underground waste storage tanks at the Hanford Site in May 1996. The USQ was for condensed-phase organic-nitrate reactions (sometimes called organic complexant reactions) in the tanks. This paper outlines the steps taken to close the USQ, and resolve the related safety issue. Several processes were used at the Hanford Site to extract and/or process plutonium. These processes resulted in organic complexants (for chelating multivalent cations) and organic extraction solvents being sent to the underground waste storage tanks. This paper addresses the organic complexant hazard. The organic complexants are in waste matrices that include inert material, diluents, and potential oxidizers. In the presence of oxidizing material, the complexant salts can be made to react exothermically by heating to high temperatures or by applying an external ignition source of sufficient energy. The first organic complexant hazard assessments focused on determining whether a hulk runaway reaction could occur, similar to the 1957 accident at Kyshtm (a reprocessing plant in the former U.S.S.R.). Early analyses (1977 through 1994) examined organic-nitrate reaction onset temperatures and concluded that a bulk runaway reaction could not occur at the Hanford Site because tank temperatures were well below that necessary for bulk runaway. Therefore, it was believed that organic-nitrate reactions were adequately described in the then current Authorization Basis (AB). Subsequent studies examined a different accident scenario, propagation resulting from an external ignition source (e.g., lightning or welding slag) that initiates a combustion front that propagates through the organic waste. A USQ evaluation determined that localized high energy ignition sources were credible, and that point source ignition of organic complexant waste was not adequately addressed i n the then existing AB. Consequently, the USQ was declared on the underground storage tanks in May 1996 for condensed-phase organic-nitrate reactions. At the same time that the operating contractor recommended that the U. S. Department of Energy (DOE) declare a USQ. preventative coiitrols were implemented to minimize potential ignition sources and prevent a possible accident.

COWLEY, W.L.

1999-06-24T23:59:59.000Z

246

An investigation into the reactions of biochar in soil  

Science Conference Proceedings (OSTI)

Interactions between biochar, soil, microbes and plant roots may occur within a short period of time after application to the soil. The extent, rates and implications of these interactions, however, are far from being understood. This review includes a description of the properties of biochars and suggests possible reactions that may occur after the addition of biochars to soil. These include dissolution-precipitation, adsorption-desorption, acid-base and redox reactions. Special attention is given to reactions occurring within pores, and to interactions with roots, microorganisms and soil fauna. The examination of biochars (from chicken litter, greenwaste and paper mill sludges) weathered for one and two years in an Australian Ferrosol provides evidence for some of the mechanisms described in this review and offers an insight to reactions at a molecular scale. These interactions are biochar- and site-specific. Therefore, suitable experimental trials combining biochar types and different pedoclimatic conditions are needed to determine the extent to which these reactions influence the potential of biochar as a soil amendment and C-sequestration tool.

Joseph, Stephen; Camps-Arbestain, Marta; Lin, Yun; Munroe, Paul R.; Chia, C. H.; Hook, James M.; Van Zweiten, Lucas; Kimber, S. W.; Cowie, Annette L.; Singh, B. P.; Lehmann, Johannes C.; Foidl, Nicolas; Smernik, Ron; Amonette, James E.

2010-10-12T23:59:59.000Z

247

RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY SOIL SAMPLES  

Science Conference Proceedings (OSTI)

A new rapid method for the determination of actinides in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for samples up to 2 grams in emergency response situations. The actinides in soil method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride soil matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha sources are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency soil samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinides in soil results were reported within 4-5 hours with excellent quality.

Maxwell, S.; Culligan, B.; Noyes, G.

2009-11-09T23:59:59.000Z

248

Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in  

E-Print Network (OSTI)

Universidad Católica de Chile, Santiago 8331010, Chile; b Department of Plant and Soil Sciences, Delaware activated cell sorter (FACS) and extracted total RNA as described previously (9). KNO3 treat- ment induced

Green, Pamela

249

Worldwide organic soil carbon and nitrogen data  

Science Conference Proceedings (OSTI)

The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

1986-09-01T23:59:59.000Z

250

Exchange Rates and Fundamentals  

E-Print Network (OSTI)

We show analytically that in a rational expectations present-value model, an asset price manifests near–random walk behavior if fundamentals are I(1) and the factor for discounting future fundamentals is near one. We argue that this result helps explain the well-known puzzle that fundamental variables such as relative money supplies, outputs, inflation, and interest rates provide little help in predicting changes in floating exchange rates. As well, we show that the data do exhibit a related link suggested by standard models—that the exchange rate helps predict these fundamentals. The implication is that exchange rates and fundamentals are linked in a way that is broadly consistent with asset-pricing models of the exchange rate. I.

Charles Engel; Kenneth D. West

2005-01-01T23:59:59.000Z

251

Study of the interactions of molten sodium nitrate-potassium nitrate 50 mol % mixture with water vapor and carbon dioxide in air. Final report, June 2, 1980-June 30, 1981  

DOE Green Energy (OSTI)

The interactions of aerial components such as water, carbon dioxide, and oxygen with the binary 50 mol % mixture of sodium nitrate and potassium nitrate have been studied in the temperature range 300 to 600/sup 0/C using electrochemical methods. In addition, the behavior of nitrite ions in this melt was investigated electrochemically. By judicious choice of techniques, in situ electroanalysis was possible and the necessary relevant data to accomplish this is presented, as well as insight into the corresponding electrochemical mechanisms associated with the electroactive species. The influence of each atmospheric component was examined separately. At temperatures above 300/sup 0/C, nitrite ions are found to accumulate due to thermal decomposition of the nitrate. Water is highly soluble in the salt mixture, but no hydrolytic reactions were observed. Two methods of in situ analysis for water are described. Pure carbon dioxide is found to attack the melt at all temperatures above 250/sup 0/C producing carbonate. (LEW)

White, S.H.; Twardoch, U.M.

1981-09-01T23:59:59.000Z

252

Why Sequence an Alaskan Soil?  

NLE Websites -- All DOE Office Websites (Extended Search)

the soil community examined through the lens of one function. Bringing to bear the sequencing power of JGI on this project will enable researchers to obtain a good test of the...

253

Mineralization of hydrocarbons in soils under decreasing oxygen availability  

SciTech Connect

Techniques for remediation of soils contaminated with hydrocarbons (HCs) can be improved when the factors that control the decomposition rate are identified. In this study, the effect of O{sub 2} availability on the decomposition rate of hydrocarbons in soils is examined. A kinetic second-order model with the O{sub 2} concentration and biomass concentration as rate-controlling variables is used to quantify HC decomposition, O{sub 2} consumption, and CO{sub 2} production. Concentrations O{sub 2} and CO{sub 2} are calculated analytically as a function of time in a three-phase closed system. These calculations are compared with measurements of repetitive O{sub 2}-depletion experiments in closed jars containing a layer of soil contaminated with HCs. About 80% of the HC decrease could be attributed to mineralization, while the other 20% was assumed to be converted into biomass and metabolites. After calibration, model calculations agree with the experimental results, which makes the concept of O{sub 2} concentration and biomass concentration as rate-controlling variables plausible. The parameter values that are obtained by calibration have a clear biochemical significance. It is concluded that attention has to be paid to the O{sub 2} supply in closed-jar experiments to avoid erroneous interpretation of the results. 34 refs., 5 figs., 4 tabs.

Freijer, J.I. [Univ. of Amsterdam (Netherlands)

1996-03-01T23:59:59.000Z

254

Acoustically enhanced remediation of contaminated soil and ground water  

SciTech Connect

This program systematically evaluates the use of acoustic excitation fields (AEFs) to increase fluid and contaminant extraction rates from a wide range of unconsolidated soils. Successful completion of this program will result in a commercially-viable, advanced in-situ remediation technology that will significantly reduce clean-up times and costs. This technology should have wide applicability since it is envisioned to augment existing remediation technologies, such as traditional pump and treat and soil vapor extraction, not replace them. The overall program has three phases: Phase 1--laboratory scale parametric investigation; Phase 2--technology scaling study; Phase 3--field demonstration. Phase 1 of the program, corresponding to this period of performance, has as its primary objectives to provide a laboratory-scale proof of concept, and to fully characterize the effects of AEFs on fluid and contaminant extraction rates in a wide variety of soil types. The laboratory measurements of the soil transport properties and process parameters will be used in a computer model of the enhanced remediation process. A Technology Merit and Trade Study will complete Phase 1.

Iovenitti, J.L.; Rynne, T.M.; Spencer, J.W. Jr.

1994-12-31T23:59:59.000Z

255

Moisture retention properties of a mycorrhizal soil  

E-Print Network (OSTI)

The water relations of arbuscular mycorrhizal plants have been compared often, but virtually nothing is known about the comparative water relations of mycorrhizal and nonmycorrhizal soils. Mycorrhizal symbiosis typically affects soil structure, and soil structure affects water retention properties; therefore, it seems likely that mycorrhizal symbiosis may affect soil water relations. We examined the water retention properties of a Sequatchie fine sandy loam subjected to three treatments: seven months of root growth by (1) nonmycorrhizal Vigna unguiculata given low phosphorus fertilization, (2) nonmycorrhizal Vigna unguiculata given high phosphorus fertilization, (3) Vigna unguiculata colonized by Glomus intraradices and given low phosphorus fertilization. Mycorrhization of soil had a slight but significant effect on the soil moisture characteristic curve. Once soil matric potential (\\11m) began to decline, changes in \\II m per unit change in soil water content were smaller in mycorrhizal than in the two nonmycorrhizal soils. Within the range of about-1 to-5 MPa, the mycorrhizal soil had to dry more than the nonmycorrhizal soils to reach the same \\11m. Soil characteristic curves of non mycorrhizal soils were similar, whether they contained roots of plants fed high or low phosphorus. The mycorrhizal soil had significantly more water stable aggregates and substantially higher extraradical hyphal densities than the nonmycorrhizal soils. Importantly, we were able to factor out the possibly confounding influence of differential root growth among mycorrhizal and nonmycorrhizal

Robert M. Augel; Ann L. W. Stodola; Layme E. Tims; Arnold M. Saxton

2000-01-01T23:59:59.000Z

256

LITERATURE SURVEY FOR GROUNDWATER TREATMENT OPTIONS FOR NITRATE IODINE-129 AND URANIUM 200-ZP-1 OPERABLE UNIT HANFORD SITE  

SciTech Connect

This literature review presents treatment options for nitrate, iodine-129, and uranium, which are present in groundwater at the 200-ZP-I Groundwater Operable Unit (OU) within the 200 West Area of the Hanford Site. The objective of this review is to determine available methods to treat or sequester these contaminants in place (i.e., in situ) or to pump-and-treat the groundwater aboveground (i.e., ex situ). This review has been conducted with emphasis on commercially available or field-tested technologies, but theoretical studies have, in some cases, been considered when no published field data exist. The initial scope of this literature review included only nitrate and iodine-I 29, but it was later expanded to include uranium. The focus of the literature review was weighted toward researching methods for treatment of nitrate and iodine-129 over uranium because of the relatively greater impact of those compounds identified at the 200-ZP-I OU.

BYRNES ME

2008-06-05T23:59:59.000Z

257

Micrometeorological and Soil Data for Calculating Evapotranspiration for Rainier Mesa, Nevada Test Site, Nevada 2002-05.  

SciTech Connect

Micrometeorological and soil-moisture data were collected at two instrumented sites on Rainier Mesa at the Nevada Test Site, January 1, 2002/August 23, 2005. Data collected at each site include net radiation, air temperature, and relative humidity at two heights; wind speed and direction; subsurface soil heat flux; subsurface soil temperature; volumetric soil water; and matric water potential. These data were used to estimate 20-minute average and daily average evapotranspiration values. The data presented in this report are collected and calculated evapotranspiration rates.

Guy A. DeMeo; Alan L. Flint; Randell J. Laczniak; Walter E. Nylund

2006-12-28T23:59:59.000Z

258

A Daily Soil Temperature Dataset and Soil Temperature Climatology of the Contiguous United States  

Science Conference Proceedings (OSTI)

Although affected by atmospheric circulations, variations in soil temperature result primarily from the radiation and sensible and latent heat exchanges at the surface and heat transfer in the soils of different thermal properties. Thus, soil ...

Qi Hu; Song Feng

2003-08-01T23:59:59.000Z

259

Using a Soil Hydrology Model to Obtain Regionally Averaged Soil Moisture Values  

Science Conference Proceedings (OSTI)

The Soil Hydrology Model (SHM) was modified, and daily simulations of soil volumetric water content were made at 38 Oklahoma Mesonet sites for July 1997. These model results were compared with soil moisture observations made at the mesonet sites ...

Todd M. Crawford; David J. Stensrud; Toby N. Carlson; William J. Capehart

2000-08-01T23:59:59.000Z

260

Soil Biology & Biochemistry 39 (2007) 21382149 Heterogeneity of soil nutrients and subsurface biota  

E-Print Network (OSTI)

with diethylenetriaminepentaacetic acid (DTPA). Acid-neutralizing potential (ANP, the combina- tion of soil constituents/Mn, ANP) and K availability, N (total ARTICLE IN PRESS Table 2 Soil chemistry by soil crust and microsite

Neher, Deborah A.

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Estimating Soil Water Contents from Soil Temperature Measurements by Using an Adaptive Kalman Filter  

Science Conference Proceedings (OSTI)

A simple soil heat transfer model is used together with an adaptive Kalman filter to estimate the daily averaged soil volumetric water contents from diurnal variations of the soil temperatures measured at different depths. In this method, the ...

Shu-Wen Zhang; Chong-Jian Qiu; Qin Xu

2004-02-01T23:59:59.000Z

262

Comments on “Estimating Soil Water Contents from Soil Temperature Measurements by Using an Adaptive Kalman Filter”  

Science Conference Proceedings (OSTI)

A scheme was proposed by Zhang et al. to estimate soil water content from soil temperature measurements by using an adaptive Kalman filter. Their scheme is based on the fact that soil heat capacity and thermal conductivity are a monotonic ...

Kun Yang; Toshio Koike

2005-04-01T23:59:59.000Z

263

Soil Atlas of Europe European Soil Bureau Network of the European Commission,  

E-Print Network (OSTI)

Soil maps from the same area but different periods show how soils and their distribution were perceived and mapped over time. They tell a bit about developments in soil mapping and soil science in general. The first soil maps of Europe started to appear in the mid-1800s but it was not until the 1920s that a map for the whole continent was produced. Since that time several soil maps were published. In this review, I will first discuss the Soil Atlas of Europe, and then early generations of soil maps of Europe and how they compare. This first Soil Atlas of Europe is slightly bigger than my Times World Atlas but contains less than half of its pages. The primary aim is to provide comprehensive information about the soils of Europe and raising awareness of issues affecting soils; it is part of the European Soil Thematic Strategy that was adopted by the European Union in 2002. Another goal of the

Principal A. Jones; L. Montanarella; R. Jones

2006-01-01T23:59:59.000Z

264

Effects of Frozen Soil on Snowmelt Runoff and Soil Water Storage at a Continental Scale  

Science Conference Proceedings (OSTI)

The presence of ice in soil dramatically alters soil hydrologic and thermal properties. Despite this important role, many recent studies show that explicitly including the hydrologic effects of soil ice in land surface models degrades the ...

Guo-Yue Niu; Zong-Liang Yang

2006-10-01T23:59:59.000Z

265

Speciation model selection by Monte Carlo analysis of optical absorption spectra: Plutonium(IV) nitrate complexes  

Science Conference Proceedings (OSTI)

Standard modeling approaches can produce the most likely values of the formation constants of metal-ligand complexes if a particular set of species containing the metal ion is known or assumed to exist in solution equilibrium with complexing ligands. Identifying the most likely set of species when more than one set is plausible is a more difficult problem to address quantitatively. A Monte Carlo method of data analysis is described that measures the relative abilities of different speciation models to fit optical spectra of open-shell actinide ions. The best model(s) can be identified from among a larger group of models initially judged to be plausible. The method is demonstrated by analyzing the absorption spectra of aqueous Pu(IV) titrated with nitrate ion at constant 2 molal ionic strength in aqueous perchloric acid. The best speciation model supported by the data is shown to include three Pu(IV) species with nitrate coordination numbers 0, 1, and 2. Formation constants are {beta}{sub 1}=3.2{+-}0.5 and {beta}{sub 2}=11.2{+-}1.2, where the uncertainties are 95% confidence limits estimated by propagating raw data uncertainties using Monte Carlo methods. Principal component analysis independently indicates three Pu(IV) complexes in equilibrium. (c) 2000 Society for Applied Spectroscopy.

Berg, John M. [Nuclear Materials Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Veirs, D. Kirk [Nuclear Materials Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Vaughn, Randolph B. [Nuclear Materials Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Cisneros, Michael R. [Nuclear Materials Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Smith, Coleman A. [Nuclear Materials Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2000-06-01T23:59:59.000Z

266

OpenEI - rates  

Open Energy Info (EERE)

U.S. Electric Utility U.S. Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) http://en.openei.org/datasets/node/899 This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011.

267

<RatesMiscInfo>  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates MISCELLANEOUS INFORMATION Power Supply Report June 2013 (53kb pdf) May 2013 (53kb pdf) April 2013 (52kb pdf) March 2013 (54kb pdf) February 2013 (54kb pdf) January 2013 (54kb...

268

Heat Rate Program Guidelines  

Science Conference Proceedings (OSTI)

Power plant facilities with performance or heat rate improvement programs perform better than those that do not have those programs. A heat rate improvement program typically provides sufficient information for decision making with respect to timely maintenance actions and/or operational adjustments. Monitoring the performance of any power plant component includes the trending of parameters that also describe the performance of other plant components, providing insight and information on improving ...

2012-12-31T23:59:59.000Z

269

Cat Heart Rate Monitoring  

NLE Websites -- All DOE Office Websites (Extended Search)

Cat Heart Rate Monitoring Cat Heart Rate Monitoring Name: Shakti Status: student Grade: 9-12 Location: TX Country: USA Date: Summer 2010 Question: What is the best way to find a cat's heart rate using a stethoscope? Because I have tried to hear their heart beat but their purring is all I can hear. If I shouldn't use a stethoscope, then what should I use? Replies: Hi Shakti! If you want to use a stethoscope, the trick is to get your cat to stop purring. Two good ways that I have found to help stop the purring 1. Cover their nose (generally cats don't like this and will stop purring) or 2. Put on the tap to drip or lightly stream water (also, they generally don't like this and will stop purring). Alternatively, you can get their heart rate from feeling their pulse. A good place to try to feel a pulse is right where the leg attaches to the abdomen - in an area called the inguinal region. Now granted there are some heart conditions that will cause an animals pulse and their heart rates don't match up, and it's hard to feel if you have a fat cat, but it's a good place to try if you are really trying to get a heart rate in a healthy kitty!

270

Vineyard nutrient needs vary with rootstocks and soils  

E-Print Network (OSTI)

drain nutrients from sandy soils. CALIFORNIA AGRICULTURE •Chardonnay on Egbert clay (sandy loam variant) soils at onewas Zinfandel on a Sierra sandy loam soil. At all three

Lambert, Jean-Jacques; Anderson, Michael M; Wolpert, J A

2008-01-01T23:59:59.000Z

271

A literature review of radiolytic gas generation as a result of the decomposition of sodium nitrate wastes  

DOE Green Energy (OSTI)

The objective of this literature review is to determine expected chemical reactions and the gas generation associated with radiolytic decomposition of radioactive sodium nitrate wastes such as the wastes stored in the Melton Valley Storage Tanks (MVST) at Oak Ridge National Laboratory (ORNL). The literature survey summarizes expected chemical reactions and identifies the gases expected to be generated as a result of the radiolytic decomposition. The literature survey also identifies G values, which are the expression for radiation chemical yields as molecules of gas formed per 100 eV of absorbed energy, obtained from experimental studies of the radiolytic decomposition of water and sodium nitrate. 2 tabs., 32 refs.

Kasten, J.L.

1991-01-01T23:59:59.000Z

272

Application of the risk-based strategy to the Hanford tank waste organic-nitrate safety issue  

Science Conference Proceedings (OSTI)

This report describes the results from application of the Risk-Based Decision Management Approach for Justifying Characterization of Hanford Tank Waste to the organic-nitrate safety issue in Hanford single-shell tanks (SSTs). Existing chemical and physical models were used, taking advantage of the most current (mid-1997) sampling and analysis data. The purpose of this study is to make specific recommendations for planning characterization to help ensure the safety of each SST as it relates to the organic-nitrate safety issue. An additional objective is to demonstrate the viability of the Risk-Based Strategy for addressing Hanford tank waste safety issues.

Hunter, V.L.; Colson, S.D.; Ferryman, T.; Gephart, R.E.; Heasler, P.; Scheele, R.D.

1997-12-01T23:59:59.000Z

273

ReproducedfromSoilScienceSocietyofAmericaJournal.PublishedbySoilScienceSocietyofAmerica.Allcopyrightsreserved. Rhizosphere Effects on Cesium Fixation Sites of Soil Containing Micaceous Clays  

E-Print Network (OSTI)

ReproducedfromSoilScienceSocietyofAmericaJournal.PublishedbySoilScienceSocietyofAmerica.Allcopyrightsreserved. Rhizosphere Effects on Cesium Fixation Sites of Soil Containing Micaceous Clays Laura A. Wendling,* James B) on rhizosphere soil as compared with bulk soil. This study The strongest association between Cs and the soil

Flury, Markus

274

Global Soils Data, Sept. 5, 2000  

NLE Websites -- All DOE Office Websites (Extended Search)

Soils Data, Sept. 5 Soils Data, Sept. 5 The ORNL DAAC expanded its global data holdings to include the three additional data sets related to soil characteristics. "Global Soil Profile Data (ISRIC-WISE)" This data set consists of homogenized data for 1125 soil profiles, including soil classification, site data, soil horizon data, source of data, and methods used for determining analytical data. The profiles were derived from the World Inventory of Soil Emissions Potentials (WISE) project. The data set contains a selection of 665 profiles from the Natural Resources Conservation Service, 250 profiles from the Food and Agricultural Organization (FAO) of the United Nations, and 210 profiles from the reference collection of the International Soil Reference and Information

275

Demonstration, testing, & evaluation of in situ heating of soil. Draft final report, Volume I  

SciTech Connect

This document is a draft final report (Volume 1) for US DOE contract entitled, {open_quotes}Demonstration Testing and Evaluation of In Situ Soil Heating,{close_quotes} Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120{degrees} to 130{degrees}C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow.

Dev, H.; Enk, J.; Jones, D.; Saboto, W.

1996-02-12T23:59:59.000Z

276

Comparison of Forest Soil Carbon Dynamics at Five Sites Along a Latitudinal Gradient  

SciTech Connect

Carbon stocks, and C:N ratios, were measured in the forest floor, mineral soil, and two mineral soil fractions (particulate and mineral-associated organic matter, POM and MOM, respectively) at five forest sites, ranging from 60 to 100 years old, along a latitudinal gradient in the eastern United States. Sampling at four sites was replicated over two consecutive years. For many measurements (like forest floor carbon stocks, cumulative soil organic carbon stocks to 20 cm, and the fraction of whole soil carbon in POM), there was no significant difference between years at each site despite the use of somewhat different sampling methods. With one exception, forest floor and mineral soil carbon stocks increased from warm, southern, sites (with fine-textured soils) to northern, cool, sites (with more coarse-textured soils). The exception was a northern site, with less than 10% silt-clay content, that had a soil organic carbon stock similar to those measured at southern sites. Soil carbon at each site was partitioned into two pools (labile and stable) on the basis of carbon measured in the forest floor and POM and MOM fractions from the mineral soil. A two-compartment steady-state model, with randomly varying parameter values, was used in probabilistic calculations to estimate the turnover time of labile soil organic carbon (MRTU) and the annual transfer of labile carbon to stable carbon (k2) at each site in two different years. Based on empirical data, the turnover time of stable soil carbon (MRTS) was determined by mean annual temperature and increased from 30 to 100 years from south to north. Moving from south to north, MRTU increased from approximately 5 to 14 years. Consistent with prior studies, 13C enrichment factors ( ) from the Rayleigh equation, that describe the rate of change in 13C through the soil profile, were an indicator of soil carbon turnover times along the latitudinal gradient. Consistent with its role in stabilization of soil organic carbon, silt-clay content along the gradient was positively correlated (r = 0.91; P 0.001) with parameter k2. Mean annual temperature was indicated as the environmental factor most strongly associated with south to north differences in the storage and turnover of labile soil carbon. However, soil texture appeared to override the influence of temperature when there was too little silt-clay content to stabilize labile soil carbon and thereby protect it from decomposition. Irrespective of latitudinal differences in measured soil carbon stocks, each study site had a relatively high proportion of labile soil carbon (approximately 50% of whole soil carbon to a depth of 20 cm). Depending on unknown temperature sensitivities, large labile pools of forest soil carbon are potentially at risk of depletion by decomposition in a warming climate, and losses could be disproportionately higher from coarse textured forest soils.

Garten Jr, Charles T [ORNL

2011-01-01T23:59:59.000Z

277

Systematical Investigations of Cs - 137 Concentration in Soils in Bansko - Razlog Region  

SciTech Connect

Systematical investigations of Cs-137 concentration in soil in Bansko - Razlog region have been performed for the first time on a total area of about 40 km2. By means of high-resolution gamma-ray spectroscopy the radio-nuclide content of soil samples has been determined. The Cs-137 deposition density following the Chernobyl accident has been estimated and compared with results obtained in other countries. The additional dose rate caused by this fallout has been estimated, too.

Kostov, L. K.; Mladenov, Ml. I.; Protochristov, Ch. N.; Stoyanov, Ch. P. [Institute for Nuclear Research and Nuclear Energy, Sofia 1000 (Bulgaria); Kobilarov, R. G. [Department of Applied Physics, Technical University - Sofia, Sofia 1000 (Bulgaria); Kostova, L. G. [HPC - Bulgaria, Sofia 1000 (Bulgaria)

2007-04-23T23:59:59.000Z

278

Long-Term Nitrate Measurements in the Ocean Using the in situ Ultraviolet Spectrophotometer: Sensor Integration into the APEX Profiling Float  

Science Conference Proceedings (OSTI)

Reagent-free optical nitrate sensors [in situ ultraviolet spectrophotometer (ISUS)] can be used to detect nitrate throughout most of the ocean. Although the sensor is a relatively high-power device when operated continuously (7.5 W typical), the ...

Kenneth S. Johnson; Luke J. Coletti; Hans W. Jannasch; Carole M. Sakamoto; Dana D. Swift; Stephen C. Riser

2013-08-01T23:59:59.000Z

279

Validation and Intercomparison of SSM/I Rain-Rate Retrieval Methods over the Continental United States  

Science Conference Proceedings (OSTI)

An important source of error or ambiguity in the satellite passive microwave detection and estimation of precipitation rate over land is variable background emission, reflecting differences in surface temperature and moisture, soil type, and ...

Mark D. Conner; Grant W. Petty

1998-07-01T23:59:59.000Z

280

Mythology of rate design  

SciTech Connect

If power rates are determined by marginal costs with clear signals to the consumer, then the load curve will regulate itself without burdening the public with ethical and patriotic issues. Manipulation of the load factor will only cause hardship and inconvenience, but a choice of rates will allow consumers to determine their own balance between rates and convenience. It makes sense to charge consumers the true cost rather than having the same rate apply during a 24-hour period when costs are not uniform. Discussions of how to determine equitable rate structures flounder because we cannot define equity. Economists, who base their recommendations on the assumption that income distribution is reasonable, believe marginal-cost pricing allows the customer to save whatever the utility is saving. Such a system is economically efficient in that the utility charges 100 percent-load-factor consumers according to a base load plant, while charging peak and offpeak consumers what it costs to add them to the system. Adjustment of prices to cause a minimal distortion of the market is the economists' general rule for handling the balancing of cost increases and regulated profits. (DCK)

Streiter, S.H.

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Trade, Interdependence and Exchange Rates  

E-Print Network (OSTI)

period is 1971-2000. All inflation rates and predictions areof Goods and Real Exchange Rate Fluc- tuations,” mimeo [5]Between Trade and Exchange Rate Volatility,” mimeo [6

Fitzgerald, Doireann

2004-01-01T23:59:59.000Z

282

Exchange Rates, Information, and Crises  

E-Print Network (OSTI)

3 Intervention and Exchange Rate Misalignment 4 Conclusion 5explain the exchange rate determination puzzle? Americanrisk to defend the exchange rate. Universit¨at Trier Working

Fernholz, Ricardo Turrin

2011-01-01T23:59:59.000Z

283

BCP Annual Rate Process  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 BCP Annual Rate Process 2013 BCP Annual Rate Process Informal Process Rate Activity Schedule (doc) Informal Customer Meeting Thursday March 6, 2013 at 10:30 A.M. Conf Rms 3&4 Informal Customer Meeting Presentation (Pdf) PRS Executive Summary (Mar 07, 2013) (Pdf) FY2014 Final Ten Year Operating Plan PRS Executive Summary (PDF) FORM for Foreign Visits (doc) Formal Process Initial Federal Register Notice (pdf) Public Information Forum March 27,2013 at 10:30 A.M. Conf Rms3&4 Customer Meeting Presentation PIF Presentation (PPT) Presentation Details (pdf) Reclamation Fund Status Report PIF PRS Executive Summary (pdf) PIF Transcripts (PDF) Visitor Center Cost Analysis Questions - Responses Public Comment Forum April 10, 2013 at 10:30 A.M. Conf Rms3&4 PCF Transcripts Customer Letters

284

Multiple System Rate Process  

NLE Websites -- All DOE Office Websites (Extended Search)

DSW Multiple System Transmission Rate Process DSW Multiple System Transmission Rate Process Federal Register Notice Withdrawing Rate Proposal (PDF) Formal Process Extension Federal Register Notice (PDF) Customer Savings Under Various MSTR (XLS) Public Information Forum March 29, 2005 Customer Meeting Overview (Power Point) Customer Meeting Overview (PDF) Customer Meeting Transcript (PDF) Public Comment Forum April 6, 2005 Customer Meeting Transcript (PDF) Response Letter 5-17-05 (PDF) Customer Letters Tonopah ID-5/25/05 (PDF) APS-5/26/05 (PDF) SRP-5/27/05 (PDF) RSLynch-6/1/05 (PDF) KRSaline-6/1/05 (PDF) Formal Process Federal Register Notice (Word) Federal Register Notice (PDF) Brochure (Word) Appendices to Brochure: A B C D E1 E2 F1 F2 GH Public Information Forum July 14, 2004 Customer Meeting Overview (Power Point)

285

The effects of harvesting intensity on soil CO2 efflux and carbon content in an east Texas bottomland hardwood ecosystem  

E-Print Network (OSTI)

Soil respiration rates have been used as an indicator of soil community activity around the world. An increasing number of studies have been performed using soil respiration rates as a measure of man's impacts on the environment, including forest land. I examined the effects of harvest intensity on in situ and mineral soil respiration, along with total soil and soluble organic carbon, were examined in a bottomland hardwood forest. Treatments included a clearcut, a partial cut, and a non-harvested control. I hypothesized that respiration rates would vary directly with harvest intensity. The sodalime absorption technique was used for determining in situ respiration and the wet alkali method was used for measuring mineral soil respiration in the lab. Soil temperature and moisture content were also measured. Sampling occurred between 6 and 22 months after harvesting. Total soil and soluble organic carbon analyses were performed every three sampling periods beginning with period 6. Total soil organic carbon content was determined by the Walkley-Black method, an acid digest procedure. Soluble organic carbon content was determined from cold-water extracts analyzed with a total organic carbon analyzer. Results indicated that harvesting significantly (a=0.05) increased in situ respiration during most sampling periods. This effect was attributed to the revegetation of the site creating an increase in live root and associated microflora activity in the soil following harvesting. In situ respiration varied directly with soil temperature and inversely with soil moisture. Harvesting effects on mineral soil respiration were less clear and showed trends in only some months. Harvesting significantly (a=0.05) increased the amount of total organic carbon in the top 15 cm, whereas overall soluble organic carbon levels were not significantly affected. I feel that even though harvesting has significantly effected soil respiration rates, this increase will not adversely affect atmospheric C02 levels. Published data show that when temperate forests are allowed to regrow immediately after harvest, carbon assimilated in growing vegetation is greater than the C02 lost from the soil.

Londo, Andrew James

1995-01-01T23:59:59.000Z

286

Soil structure interaction for shrink-swell soils a new design procedure for foundation slabs on shrink-swell soils  

E-Print Network (OSTI)

Problems associated with shrink-swell soils are well known geotechnical problems that have been studied and researched by many geotechnical researchers for many decades. Potentially shrink-swell soils can be found almost anywhere in the world especially in the semi-arid regions of the tropical and temperate climate. Foundation slabs on grade on shrink-swell soils are one of the most efficient and inexpensive solutions for this kind of problematic soil. It is commonly used in residential foundations or any light weight structure on shrink-swell soils. Many design methods have been established for this specific problem such as Building Research Advisory Board (BRAB), Wire Reinforcement Institute (WRI), Post- Tensioning Institute (PTI), and Australian Standards (AS 2870) design methods. This research investigates most of these methods, and then, proposes a moisture diffusion soil volume change model, a soil-weather interaction model, and a soil-structure interaction model. The proposed moisture diffusion soil volume change model starts with proposing a new laboratory test to determine the coefficient of unsaturated diffusivity for intact soils. Then, it introduces the development of a cracked soil diffusion factor, provides a chart for it, and explains a large scale laboratory test that verifies the proposed moisture diffusion soil volume change model. The proposed soil-weather interaction model uses the FAO 56-PM method to simulate a weightless cover performance for six cities in the US that suffer significantly from shallow foundation problems on shrink-swell soils due to seasonal weather variations. These simulations provide more accurate weather site-specific parameters such as the range of surface suction variations. The proposed weather-site specific parameters will be input parameters to the soil structure models. The proposed soil-structure interaction model uses Mitchell (1979) equations for moisture diffusion under covered soil to develop a new closed form solution for the soil mound shape under the foundation slab. Then, it presents a parametric study by carrying out several 2D finite elements plane strain simulations for plates resting on a semiinfinite elastic continuum and resting on different soil mounds. The parametric study outcomes are then presented in design charts that end with a new design procedure for foundation slabs on shrink-swell soils. Finally, based on the developed weather-soil-structure interaction models, this research details two procedures of a proposed new design method for foundation slabs on grade on shrink-swell soils: a suction based design procedure and a water content based design procedure.

Abdelmalak, Remon Melek

2007-12-01T23:59:59.000Z

287

LAP Transmission Rate  

NLE Websites -- All DOE Office Websites (Extended Search)

LAP Transmission Rate 4.50 4.00 3.82 3.50 3.00 of 2.50 c 0 2.I2 2.68 I 3: 2.00 1.50 1.00 0.50 0.00 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012...

288

Upper Great Plains Rates information  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates and Repayment Services Rates and Repayment Services Rates 2010 Firm Power Rate (effective January 1, 2010) Rate Adjustments 2010 Firm Power Rate Adjustment 2009 Firm Power Rate Adjustment IS Rate Adjustments Rate Adjustment Process Rate Orders Signed, December 23, 2009 (16kb pdf) Announcements Firm Electric Service Customer Letter - Preliminary Review of Drought Adder Component, June 27, 2013 (74kb pdf) Customer Letter - Final Notice of Drought Adder Component, October 2, 2013 (68kb pdf) Integrated System (IS) Rates 2014 IS Rates Customer Information Meeting Presentation, October 15, 2013 (611kb pdf) Customer Letter - Notification of 2014 Rates, September 13, 2013 (160kb pdf) 2014 Transmission and Ancillary Services Rate Calculation and 2012 Rate True-up Calculation (4.9mb pdf) 2013 IS Rates

289

Soils and the greenhouse effect  

SciTech Connect

This work addresses the present status and future trends concerning the effect of soils and their cover on the fluxes of greenhouse gases, the surface energy balance and the water balance. Comprising the proceedings of the conference on soils and the greenhouse effect, the book reviews the background of existing research in the field, while also identifying significant gaps in our understanding of the scientific issues and pointing the way to future work. In addition, the contributors discuss a wide range of topics, including geographic quantification of soil properties involved in fluxes of greenhouse gases; measurement of fluxes and extrapolation to smaller scales; remote sensing of land use; and regional estimation of evaporation and energy fluxes. Throughout, the emphasis is on quantification of greenhouse gas fluxes, evapotranspiration, and energy fluxes.

Bouwman, A.F.

1990-01-01T23:59:59.000Z

290

Enhanced Attenuation Technologies: Passive Soil Vapor Extraction  

SciTech Connect

Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE flowchart provides a structured process to determine if the technology is, or is not, reasonable and defensible for a particular site. The central basis for that decision is the expected performance of PSVE under the site specific conditions. Will PSVE have sufficient mass removal rates to reduce the release, or flux, of contamination into the underlying groundwater so that the site can meet it overall remedial objectives? The summary technical information, case study experiences, and structured decision process provided in this 'user guide' should assist environmental decision-makers, regulators, and engineers in selecting and successfully implementing PSVE at appropriate sites.

Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

2010-03-15T23:59:59.000Z

291

Effects of Nitrate Exposure on the Functional Structure of a Microbial Community in a Uranium-contaminated Aquifer  

E-Print Network (OSTI)

in the final model were COD, iron, and sulfate (p=0.020; f-Samples in FW101-2 and [FW102-2] (µM) Day # COD aSulfate a COD, Sulfide Iron pH Nitrate U(VI) Nitrite NH 4 -H

Van Nostrand, Joy

2010-01-01T23:59:59.000Z

292

Evaluation of a solar intermittent refrigeration system for ice production operating with ammonia/lithium nitrate  

SciTech Connect

A novel solar intermittent refrigeration system for ice production developed in the Centro de Investigacion en Energia of the Universidad Nacional Autonoma de Mexico is presented. The system operates with the ammonia/lithium nitrate mixture. The system developed has a nominal capacity of 8 kg of ice/day. It consists of a cylindrical parabolic collector acting as generator-absorber. Evaporator temperatures as low as -11 C were obtained for several hours with solar coefficients of performance up to 0.08. It was found that the coefficient of performance increases with the increment of solar radiation and the solution concentration. A dependency of the coefficient of performance was not founded against the cooling water temperature. Also it was found that the maximum operating pressure increases meanwhile the generation temperature decreases with an increase of the solution concentration. (author)

Rivera, W.; Moreno-Quintanar, G.; Best, R. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, A.P. 34, 62580 Temixco, Mor. (Mexico); Rivera, C.O.; Martinez, F. [Facultad de Ingenieria Campus Coatzacoalcos, Universidad Veracruzana, Av. Universidad Km 7.5, 96530 Coatzacoalcos, Ver. (Mexico)

2011-01-15T23:59:59.000Z

293

Coordinated safeguards for materials management in a nitrate-to-oxide conversion facility  

SciTech Connect

The conceptual design of a materials management system for safeguarding special nuclear materials in a plutonium nitrate-to-oxide conversion facility is developed and evaluated. Dynamic material balances are drawn from information provided by nondestructive-analysis techniques, process-control instrumentation, and conventional chemical analyses augmented by process-monitoring devices. Powerful statistical methods, cast in the framework of decision analysis and applied to unit-process accounting areas, ensure adequate spatial and temporal quantification of possible diversion with minimal process disruption. Modeling and simulation techniques assist in evaluating the sensitivity of the system to various diversion schemes and in comparing safeguards strategies. Features that would improve the safeguardability of the conversion process are discussed.

Dayem, H.A.; Cobb, D.D.; Dietz, R.J.; Hakkila, E.A.; Kern, E.A.; Shipley, J.P.; Smith, D.B.; Bowersox, D.F.

1977-09-01T23:59:59.000Z

294

Natural Gas Conveyance and Rates  

Reports and Publications (EIA)

Natural gas transportation market; Competition vs. market power; Rate structures Cost-of-service Performance based rates

Information Center

2001-02-01T23:59:59.000Z

295

Nighttime Measurements of Dinitrogen Pentoxide and the Nitrate Radical via Cavity Ring-Down Spectroscopy  

E-Print Network (OSTI)

Development of effective pollution control strategies for urban areas requires accurate predictive models. The ability of models to correctly characterize the atmospheric chemistry, meteorology, and deposition rely on accurate data measurements, both as input and verification of output. Therefore, the measurement techniques must be sensitive, accurate, and capable of resolving the spatial and temporal variations of key chemical species. The application of a sensitive in situ optical absorption technique, known as cavity ring-down spectroscopy, will be introduced for simultaneously measuring the nitrate radical and dinitrogen pentoxide. The cavity ring-down spectrometer was initially designed and constructed based on the experiments by Steven Brown and Akkihebal Ravishankara at the National Oceanic and Atmospheric Administration. The instrument design has since undergone many revisions before attaining the current instrumentation system. Laboratory observations provide verification of accurate N2O5 and NO3 detection with measurements of the nitrate radical absorption spectrum centered at 662 nm, effective chemical zeroing with nitric oxide, and efficient thermal decomposition of N2O5. Field observations at a local park provided further confirmation of the instruments capability in measuring N2O5 and NO3. However, detection limits were too high to detect ambient NO3. Effective and frequent zeroing can easily improve upon the sensitivity of the instrument. Determination of the source of the polluted air masses detected during these studies was unknown since the typical southerly winds from Houston were not observed. Since deployment in the field, instrumentation modifications and laboratory measurements are underway for preparation of the SOOT campaign in Houston, Texas starting April 15, 2009. Current modifications include automation of the titration with a solenoid valve and an automated filter changer. Wall losses and filter transmission for NO3 and N2O5 will be determined through laboratory measurements in coincidence with and ion-drift chemical ionization mass spectrometer prior to the SOOT project. Potential modifications to improve upon the instrument are suggested for future endeavors.

Perkins, Katie C.

2009-08-01T23:59:59.000Z

296

Global Soil Data Release, Dec. 20, 2000  

NLE Websites -- All DOE Office Websites (Extended Search)

Soil Data Available The ORNL DAAC has released a data set entitled "Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS)." The data surfaces were generated by the...

297

Soil & Groundwater Remediation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Soil & Groundwater Soil & Groundwater Remediation Soil & Groundwater Remediation Soil & Groundwater Remediation The U.S. Department of Energy (DOE) manages the largest groundwater and soil remediation effort in the world. The inventory at the DOE sites includes 6.5 trillion liters of contaminated groundwater, an amount equal to about four times the daily U.S. water consumption, and 40 million cubic meters of soil and debris contaminated with radionuclides, metals, and organics. The Office of Groundwater and Soil Remediation is working with DOE site managers around the country regarding specific technical issues. At the large sites such as Hanford, Savannah River, and Oak Ridge, the Office of Groundwater and Soil Remediation has conducted research and demonstration projects to test new technologies and remediation

298

The Global Soil Moisture Data Bank  

Science Conference Proceedings (OSTI)

Soil moisture is an important variable in the climate system. Understanding and predicting variations of surface temperature, drought, and flood depend critically on knowledge of soil moisture variations, as do impacts of climate change and ...

Alan Robock; Konstantin Y. Vinnikov; Govindarajalu Srinivasan; Jared K. Entin; Steven E. Hollinger; Nina A. Speranskaya; Suxia Liu; A. Namkhai

2000-06-01T23:59:59.000Z

299

Analytical Requirements for Petroleum Contaminated Soils  

E-Print Network (OSTI)

Analytical Requirements for Petroleum Contaminated Soils According to 20 NMAC 9.1.704 704. REQUIRED), or other applicable statutes. Page 1 of 1Analytical Requirements for Petroleum Contaminated Soils 4

300

Maryland Soil Conservation Districts Law (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

It is the policy of the state to conserve the soil, water, and related resources of the state through establishing regulations for land-use practices related to soil erosion. This legislation...

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS  

Science Conference Proceedings (OSTI)

Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected VOC soil gas concentrations during ASVE. Five (5) SVE wells that were located closest to the air injection wells were used as monitoring points during the air sparging tests. The air sparging tests lasted 48 hours. Soil gas sample results indicate that sparging did not affect VOC concentrations in four of the five sparging wells, while results from one test did show an increase in soil gas concentrations.

Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

2012-09-20T23:59:59.000Z

302

Experimental Study of Bridge Scour in Cohesive Soil  

E-Print Network (OSTI)

The bridge scour depths in cohesive soil have been predicted using the scour equations developed for cohesionless soils due to scarce of studies about cohesive soil. The scour depths predicted by the conventional methods will result in significant errors. For the cost effective design of bridge scour in cohesive soil, the Scour Rate In COhesvie Soil (SRICOS) for the singular circular pier in deep water condition was released in 1999, and has been developed for complex pier and contraction scour. The present study is the part of SRICOS-EFA method to predict the history of contraction scour, and local scours, such as abutment scour and pier scour. The main objective is to develop the prediction methods for the maximum and the uniform contraction scour depth, the maximum pier scour depth and the maximum abutment using flume test results. The equations are basically composed with the difference between the local Froude number and the critical Froude number. Because the scour happens when the shear stress is bigger than the critical shear stress, which is the maximum shear stress the channel bed material can resist from the erosion, and continues until the shear stress becomes equal to the critical shear stress. All results obtained from flume tests for pier scour have been conducted in Texas A&M University from 1997 to 2002 are collected and reanalyzed in this study. Since the original pier scour equation did not include soil properties. The effect of water depth effect, pier spacing, pier shape and flow attack angle for the rectangular pier are studied and correction factors with respect to the circular pier in deep water condition were newly developed in present study. For the abutment scour, a series of flume tests in large scale was performed in the present study. Two types of channel - rectangular channel, and compound channel - were used. The effect of abutment length, shape and alignment of abutment were studied and the correction factors were developed. The patterns of velocity and of scour were compared, and it was found that the maximum local scour occurred where the maximum turbulence was measured. For the contraction scour, the results obtained from a series of flume tests performed in 2002 and a series of flume tests for the abutment scour in the present study are analyzed. The methodologies to predict the maximum contraction scour and the uniform contraction scour in the compound channel was developed. Although all prediction methods developed in the present study are for the cohesive soils, those methods may be applicable to the cohesionless soils because the critical shear stress is included in the methods. All prediction methods were verified by the comparison with the databases obtained from flume test results and field data.

Oh, Seung Jae

2009-12-01T23:59:59.000Z

303

2010 19th World Congress of Soil Science, Soil Solutions for a Changing World  

E-Print Network (OSTI)

© 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World 1 ­ 6 August 2010, Brisbane, Australia. Published on DVD. 160 Nickel Speciation in Serpentine Soils using Synchrotron Radiation Techniques Matthew Siebecker and Donald L Sparks 152 Townsend Hall, Department of Plant and Soil

Sparks, Donald L.

304

Soil Interfaces in a Changing World International Symposium of Interactions of Soil Minerals with  

E-Print Network (OSTI)

Soil Interfaces in a Changing World 6th ISMOM International Symposium of Interactions of Soil Minerals with Organic Components and Microorganisms 3rd InterCongress of Commission 2.5 IUSS Soil chemical Ginder-Vogel, and Gautier Landrot Delaware Environmental Institute and Department of Plant and Soil

Sparks, Donald L.

305

Characterization of Soil Shrink-Swell Potential Using the Texas VNIR Diffuse Reflectance Spectroscopy Library  

E-Print Network (OSTI)

Shrinking and swelling soils cause extensive infrastructure and economic damage worldwide. Shrink-swell soils are of great concern in Texas for two reasons, 1) Texas has the most acreage of shrink-swell soils in the United States, and 2) yearly evapotranspiration rates exceed those of precipitation creating optimal conditions for soil wetting and drying cycles. This study was conducted to determine if visible near infrared diffuse reflectance spectroscopy (VNIR-DRS) can be used to predict the coefficient of linear extensibility (COLE) of soils. If successful, VNIR-DRS would provide a means to rapidly and inexpensively quantify a soil’s shrink-swell potential real-time. Using soils that have been previously analyzed and archived in the Texas Agrilife Research Soil Characterization Laboratory, our objectives were to: 1) predict the coefficient of linear extractability (COLE) using spectroscopy, 2) predict COLE using measurements of total clay and cation exchange capacity (CEC), and 3) compare the two models. A total of 2454 soil samples were scanned to create the Texas spectral library. Of these samples, 1296 had COLE measurements. Seventy percent of the COLE samples were randomly selected to build a calibration model using partial least squares regression. The remaining thirty percent were used to validate the calibration model. The coefficient of determination (R2), root mean square deviation (RMSD), and relative percent difference (RPD) were calculated to assess the prediction models. The COLE prediction using spectroscopy had an R2, RMSD, and RPD of 0.61, 0.028, and 1.6, respectively. Using stepwise regression and backward elimination, we determined that CEC and total clay together were the best predictors of COLE with R2, RMSD, and RPD of 0.82, 0.019, and 2.3, respectively. According to the RPD, using spectroscopy to predict COLE has some predictive value, while using CEC and total clay is more effective and stable. However, spectroscopy data collection is more rapid and has fixed costs.

Hallmark, C.T.; Morgan, C.L.; Hutchison, K.M.

2011-08-04T23:59:59.000Z

306

Water Infiltration and Permeability of Selected Urban Soils as Affected by Salinity and Sodicity  

E-Print Network (OSTI)

Soil sodicity is known to affect soil structural stability and permeability. However, the impact differs depending on salinity of irrigation water, soil types as well as irrigation management practices. This study examined water infiltration into two alluvial soils (Torrifluvents), and two upland soils (Paleorthid and Calciorthid, Aridisols) placed in greenhouse pots. For the first experiment, irrigation solutions simulating the Rio Grande water, city potable water, and two sources of reclaimed water (EC of 1.4 and 2.2 dS m-1 and SAR of 6 and 11) were applied twice a week at 1.7 cm per application for a total of 27 irrigation events using 46 cm of water. No significant effect of water quality was detected in Delnorte gravelly loam (Paleorthid) and a small effect on infiltration into Harkey silt loam (Torrifluvent). However, the use of distilled water curtailed infiltration mainly in Harkey soil. In the second greenhouse experiment using a carefully crafted soil packing and water application protocols, the impact of water quality on infiltration into two Torrifluvents, Harkey silt loam and Glendale silty clay loam appeared after water application of 40 to 50 cm (16" - 20"). When saline solutions were applied as deep as 10 cm per application, the infiltration time nearly doubled when SAR of the solution increased from 1 to 6 or 12 in alluvial soils, but not in Turney silty clay loam (Calciorthid, Aridisol). When the irrigation depth per application was reduced to 7.5, 5.0, and 2.5 cm per application, the difference in infiltration rate was markedly reduced. The impact of elevated sodicity (SAR of 6 to 12) on infiltration can be an issue in alluvial soils, but unlikely in upland soils at irrigation water salinity of 1 to 2 dS m-1.

Miyamoto, S.

2012-10-05T23:59:59.000Z

307

Poverty, Risk and the Adoption of Soil Carbon  

E-Print Network (OSTI)

In this paper we explore the incentives of low income agricultural producers to adopt soil carbon sequestration, focusing particularly on the impact of risk. A dynamic optimization model of the farm level decision to adopt conservation is then presented, where farmers’ optimize over the expected utility of profits from agricultural and carbon sequestration activities. Carbon sequestration adoption impacts on agricultural productivity are modeled as a combination of the technological impacts of adopting a new farming system and the productivity impacts of changes in soil carbon on agricultural output. Comparative static results indicate that increases in the price for carbon sequestered in the soil and the discount rate have an unambiguous impact on equilibrium soil carbon levels with the former leading to higher carbon levels and the latter leading to lower levels. The impact of increases in the price of agricultural output and risk aversion are ambiguous, depending on the relative strength of the productivity and technology effects of adoption. The paper concludes with a discussion of the implications of the theoretical and empirical findings for the design of payment mechanisms to induce low income farmers to participate in carbon markets. 1

Joshua Graff-zivin

2007-01-01T23:59:59.000Z

308

Solar reflector soiling pattern distributions and reflectance measurement requirements  

DOE Green Energy (OSTI)

Short-term specular reflectance losses from optical surfaces used in the collection or concentration of solar energy results in significant reduction of these systems' output. Losses range from 0.1% to 1.0% per day, approaching asymptotes of 25% to 60% for periods greater than one year, depending onsite and season. To appropriately assess the value of a particular location for the production of power, consideration of the rates of soiling and strategies to minimize losses resulting from soiling must be considered. Strategies for measuring the optical performance of reflector materials to a specified degree of accuracy have been developed, according to the types of soiling patterns observed. It was found most soiling occurs with the accumulation of particulates in spots of different sizes, and the spot sizes follow a lognormal distribution. For most practical situations, it was determined that 10 measurements with a 1-cm-diameter beam are enough to place the average value within 3% of the true value, with a confidence level of 95%.

Kidney, K. (Colorado Univ., Denver, CO (USA))

1990-10-01T23:59:59.000Z

309

The Effects of Nanoparticle Augmentation of Nitrate Thermal Storage Materials for Use in Concentrating Solar Power Applications  

E-Print Network (OSTI)

The Department of Energy funded a project to determine if the specific heat of thermal energy storage materials could be improved by adding nanoparticles. The standard thermal energy storage materials are molten salts. The chosen molten salt was a sodium nitrate and potassium nitrate eutectic, commercially called Hitec Solar Salt. Two nanoparticle types were chosen, alumina and silica. The nanoparticle composite materials were fabricated by mixing the components in an aqueous solution, mixing that solution for a set amount of time using a sonic mixer, then removing the water from the aqueous solution, leaving the composite molten salt behind as a fine white powder. The thermal properties of the composite and plain material were measured using two techniques: American Society for Testing and Materials (ASTM) 1269E and Modulating Differential Scanning Calorimetry (MDSC). These two techniques measured the specific heat and the heat of fusion of the plain and composite materials. The results of all the ASTM and MDSC measurements suggest that the addition of the nanoparticles using the given manufacturing technique increased the specific heat of the molten salt by approximately 20 percent, with both measurement techniques showing approximately the same level of increase. The silica and the alumina improved the specific heat by nearly the same amount over the base material. The heat of fusion did not seem to be significantly altered compared to the observed heat of fusion value of the unmodified material. It was also observed that the nitrate and silica composite material's specific heat decreased if the material was raised to a temperature above 400C. The specific heat was observed to decrease over time, even when the temperature was well below 400C. It is unknown why this occurred. The nitrate plus alumina composite and the plain nitrate were stable to a temperature of 450C for the test duration.

Betts, Matthew

2011-05-01T23:59:59.000Z

310

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Jan. '99 to Feb. '99: -1.7% Feb. '98 to Feb. '99: +19.8% YTD '98 to YTD '99: +15.0% 4,100 4,400 4,700 5,000 5,300 5,600 5,900 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons U.S. Distillate Fuel Sales 2011 2012 2013 Adjusted Growth Rates* Jul '13 to Aug '13: 2.5% Aug '12 to Aug '13: -1.3% YTD '12 to YTD '13: 1.5% 300 400 500 600 700 800 900 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons U.S. Residual Fuel Sales 2011 2012 2013 Adjusted Growth Rates* Jul '13 to Aug '13: -0.8%

311

Rail Coal Transportation Rates  

U.S. Energy Information Administration (EIA) Indexed Site

reports reports Coal Transportation Rates to the Electric Power Sector With Data through 2010 | Release Date: November 16, 2012 | Next Release Date: December 2013 | Correction Previous editions Year: 2011 2004 Go Figure 1. Deliveries from major coal basins to electric power plants by rail, 2010 Background In this latest release of Coal Transportation Rates to the Electric Power Sector, the U.S. Energy Information Administration (EIA) significantly expands upon prior versions of this report with the incorporation of new EIA survey data. Figure 1. Percent of total U.S. rail shipments represented in data figure data Previously, EIA relied solely on data from the U.S. Surface Transportation Board (STB), specifically their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data,

312

Plant Tumor Growth Rates  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Tumor Growth Rates Plant Tumor Growth Rates Name: Gina and Maria Location: N/A Country: N/A Date: N/A Question: We are doing a science fair project on if B. Carotene, Green tea, and Grape Seed Extract helps plants against the crown gall disease. We injected sunflowers with agrobacterium tum. one week ago (Sun. Feb. 27, 2000). Our questions is how long will it take for the tumors to grow? We scratched the surface of the stems and injected the agrobacterium in the wound. Also which do you think, in your opinion, will do the best, if any? Our science fair is April 13, do you think we'll have growth before then, atleast enough time to do our conclusion and results? Thank you, any information you forward will be very helpful. Replies: Sunflowers form galls relatively quickly. I usually get them in two weeks at least. Good luck.

313

Review: Sensor systems for measuring soil compaction: Review and analysis  

Science Conference Proceedings (OSTI)

Spatially variable soil compaction often causes inconsistent growing conditions in many fields. Various soil compaction sensor systems have been deployed to obtain georeferenced maps of certain state and behavioral properties (e.g., soil strength, water ... Keywords: Air permeability, Penetrometer, Sensor fusion, Soil compaction, Soil mechanical resistance, Soil mechanics, Water content

A. Hemmat; V. I. Adamchuk

2008-10-01T23:59:59.000Z

314

Modern Sorters for Soil Segregation on Large Scale Remediation Projects  

Science Conference Proceedings (OSTI)

In the mid-1940's, Dr. C. Lapointe developed a Geiger tube based uranium ore scanner and picker to replace hand-cobbing. In the 1990's, a modern version of the Lapointe Picker for soil sorting was developed around the need to clean the Johnston Atoll of plutonium. It worked well with sand, but these systems are ineffective with soil, especially with wet conditions. Additionally, several other constraints limited throughput. Slow moving belts and thin layers of material on the belt coupled with the use of multiple small detectors and small sorting gates make these systems ineffective for high throughput. Soil sorting of clay-bearing soils and building debris requires a new look at both the material handling equipment, and the radiation detection methodology. A new class of Super-Sorters has attained throughput of one hundred times that of the old designs. Higher throughput means shorter schedules which reduce costs substantially. The planning, cost, implementation, and other site considerations for these new Super-Sorters are discussed. Modern soil segregation was developed by Ed Bramlitt of the Defense Nuclear Agency for clean up at Johnston Atoll. The process eventually became the Segmented Gate System (SGS). This system uses an array of small sodium iodide (NaI) detectors, each viewing a small volume (segment), that control a gate. The volume in the gate is approximately one kg. This system works well when the material to be processed is sand; however, when the material is wet and sticky (soils with clays) the system has difficulty moving the material through the gates. Super-Sorters are a new class of machine designed to take advantage of high throughput aggregate processing conveyors, large acquisition volumes, and large NaI detectors using gamma spectroscopy. By using commercially available material handling equipment, the system can attain processing rates of up to 400 metric tons/hr with spectrum acquisition approximately every 0.5 sec, so the acquisition volume is 50 kilograms or less. Smaller sorting volumes can be obtained with lower throughput or by re-sorting the diverted material. This equipment can also handle large objects. The use of spectroscopy systems allows several regions of- interest to be set. Super-Sorters can bring waste processing charges down to less than $30/ metric ton on smaller jobs and can save hundreds of dollars per metric ton in disposal charges. The largest effect on the overall project cost occurs during planning and implementation. The overall goal is reduction of the length of the project, which dictates the most efficient soil processing. With all sorting systems the parameters that need to be accounted for are matrix type, soil feed rate, soil pre-processing, site conditions, and regulatory issues. The soil matrix and its ability to flow are extremely crucial to operations. It is also important to consider that as conditions change (i.e., moisture), the flowability of the soil matrix will change. Many soil parameters have to be considered: cohesive strength, internal and wall friction, permeability, and bulk density as a function of consolidating pressure. Clay bearing soils have very low permeability and high cohesive strength which makes them difficult to process, especially when wet. Soil feed speed is dependent on the equipment present and the ability to move the soil in the Super-Sorter processing area. When a Super-Sorter is running at 400 metric tons per hour it is difficult to feed the system. As an example, front-end loaders with large buckets would move approximately 5-10 metric tons of material, and 400 metric tons per hour would require 50-100 bucket-loads per hour to attain. Because the flowability of the soil matrix is important, poor material is often pre-processed before it is added to the feed hopper of the 'survey' conveyor. This pre-processing can consist of a 'grizzly' to remove large objects from the soil matrix, followed screening plant to prepare the soil so that it feeds well. Hydrated lime can be added to improve material properties. Site conditions (site

Shonka, J.J.; Kelley, J.E.; O'Brien, J.M. [Shonka Research Associates, Inc., 4939 Lower Roswell Road, Suite 106, Marietta, Georgia 3006 (United States)

2008-01-15T23:59:59.000Z

315

Effects of Biochar Recycling on Switchgrass Growth and Soil and Water Quality in Bioenergy Production Systems  

E-Print Network (OSTI)

Intensive biomass production in emerging bioenergy systems could increase nonpoint-source sediment and nutrient losses and impair surface and groundwater quality. Recycling biochar, a charcoal byproduct from pyrolysis of biomass, provides potential sources of mineral nutrients and organic carbon for sustaining biomass productivity and preserving soil and water. Yet, research is needed to verify that recycling of pyrolysis biochars will enhance crop growth and soil and environmental quality similar to black carbon or biochar derived from burning of biomass in tropical or Terra Preta soils. The experimental design of this study consisted of 3 replications and four biochar rates (0, 4, 16, and 64 Mg ha-1) incorporated in both a sandy loam and clay soil with and without fertilizer sources of N, P, and K. The sandy loam and clay soils were studied in separate experiments within a set of 24 box lysimeters seeded with switchgrass. Simulated rain was applied at 50 percent and 100 percent establishment of switchgrass for each soil type. Runoff and leachate were collected and analyzed for total and dissolved N, P, K and organic C. After the second rain event, each soil type and the accumulated switchgrass was sampled and analyzed. In the Boonville soil, biochar applied at 64 Mg ha-1 decreased switchgrass emergence from 42 percent to 14 percent when compared to soil alone. In the Burleson soil, 64 Mg ha-1 biochar had no effect (P > 0.05) on biomass production or leaf area index (LAI). Fertilizer N, P, and K had no effect (P > 0.05) on switchgrass emergence for either soil, but did increase (P biochar increased (P biochar receiving supplemental N, P, and K fertilizer also resulted in greater runoff concentrations of DRP. Emergence tests under increased heat showed electrical conductivities of soil-water solutions to be as high as 600 microS cm-1, even after biochar was washed with acetone and water to remove residual oils and tars and soluble salts. Increasing biochar rates decreased soil bulk density and increased pH and SOC in the 0- to 5-cm depth of soil. As a result of high nutrient recovery during pyrolysis (58 percent of total N, 86 percent of total P and 101 percent of total K), high rates of biochar applied at 64 Mg ha-1 increased mass losses of TN, TP, and TK from both soils. Yet, the mass balance of nutrients showed a surplus of N, P, and K at 64 Mg ha-1 biochar, which suggests some nutrient inputs are not plant available and remain in soil. Careful management of biochar, especially at high rates with these high nutrient contents, is critical when trying to improve soil fertility while protecting water quality.  

Husmoen, Derek Howard

2011-05-01T23:59:59.000Z

316

Adjusted Growth Rates* Jan.  

U.S. Energy Information Administration (EIA) Indexed Site

Adjusted Adjusted Growth Rates* Jan. '99 to Feb. '99: -1.7% Feb. '98 to Feb. '99: +19.8% YTD '98 to YTD '99: +15.0% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Dec '99 to Jan '00: -7.4% Jan '99 to Jan '00: -0.1% YTD '99 to YTD '00: -0.1% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Dec '99 to Jan '00: -16.8% Jan '99 to Jan '00: -3.2% YTD '99 to YTD '00: -3.2% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Dec '99 to Jan '00: -9.3% Jan '99 to Jan '00: +3.5% YTD '99 to YTD '00: +3.5% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul

317

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

July '99 to Aug. '99: +4.7% July '99 to Aug. '99: +4.7% Aug. '98 to Aug. '99: +1.3% YTD '98 to YTD '99: +4.7% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* July '99 to Aug. '99: -1.9% Aug. '98 to Aug. '99: -0.4% YTD '98 to YTD '99: +0.9% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* July '99 to Aug. '99: -0.1% Aug. '98 to Aug. '99: -1.4% YTD '98 to YTD '99: -0.7% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* July '99 to Aug. '99: +22.3% Aug. '98 to Aug. '99: +21.1%

318

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Aug '99 to Sep '99: +4.9% Aug '99 to Sep '99: +4.9% Sep '98 to Sep '99: +4.7% YTD '98 to YTD '99: +4.7% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Aug '99 to Sep '99: -2.4% Sep '98 to Sep '99: +0.4% YTD '98 to YTD '99: +1.3% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Aug '99 to Sep '99: -2.1% Sep '98 to Sep '99: +4.6% YTD '98 to YTD '99: 0.0% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Aug '99 to Sep '99: +7.3% Sep '98 to Sep '99: +8.4% YTD '98 to YTD '99: +8.3%

319

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Oct '99 to Nov '99: +0.1% Oct '99 to Nov '99: +0.1% Nov '98 to Nov '99: +5.5% YTD '98 to YTD '99: +4.5% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Oct '99 to Nov '99: -0.7% Nov '98 to Nov '99: +1.7% YTD '98 to YTD '99: +1.1% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Oct '99 to Nov '99: +2.5% Nov '98 to Nov '99: +6.0% YTD '98 to YTD '99: +0.8% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Oct '99 to Nov '99: +9.7% Nov '98 to Nov '99: +2.2% YTD '98 to YTD '99: +6.2%

320

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Sep '99 to Oct '99: +3.9% Sep '99 to Oct '99: +3.9% Oct '98 to Oct '99: +2.3% YTD '98 to YTD '99: +4.4% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Sep '99 to Oct '99: -0.2% Oct '98 to Oct '99: -0.9% YTD '98 to YTD '99: +1.0% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Sep '99 to Oct '99: -1.9% Oct '98 to Oct '99: -0.7% YTD '98 to YTD '99: +0.4% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Sep '99 to Oct '99: -2.1% Oct '98 to Oct '99: -6.4% YTD '98 to YTD '99: +6.6%

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

June '99 to July '99: -5.4% June '99 to July '99: -5.4% July '98 to July '99: +3.3% YTD '98 to YTD '99: +6.3% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* June '99 to July '99: -0.5% July '98 to July '99: -0.4% YTD '98 to YTD '99: +1.1% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* June '99 to July '99: +0.5% July '98 to July '99: +1.0% YTD '98 to YTD '99: -0.3% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* June '99 to July '99: +1.5% July '98 to July '99: +10.2% YTD '98 to YTD '99: +7.2%

322

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Nov '99 to Dec '99: +5.3% Nov '99 to Dec '99: +5.3% Dec '98 to Dec '99: +8.7% YTD '98 to YTD '99: +5.0% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Nov '99 to Dec '99: +6.0% Dec '98 to Dec '99: +4.5% YTD '98 to YTD '99: +1.3% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Nov '99 to Dec '99: +2.4% Dec '98 to Dec '99: +3.0% YTD '98 to YTD '99: +0.9% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Nov '99 to Dec '99: +32.3% Dec '98 to Dec '99: +2.0% YTD '98 to YTD '99: +5.5%

323

Soil Moisture: Empirical Data and Model Results  

Science Conference Proceedings (OSTI)

A unique dataset of soil moisture in the upper 1-m soil layer at sites with natural plant cover in the Soviet Union is compared to simulations of soil moisture for the present climate by the Geophysical Fluid Dynamics Laboratory, Oregon State ...

K. Ya Vinnikov; I. B. Yeserkepova

1991-01-01T23:59:59.000Z

324

Carbon and Nitrogen Dynamics in Agricultural Soils  

E-Print Network (OSTI)

Carbon and Nitrogen Dynamics in Agricultural Soils Model Applications at Different Scales in Time Print: SLU Service/Repro, Uppsala 2012 #12;Carbon and Nitrogen Dynamics in Agricultural Soils. Model Applications at Different Scales in Time and Space Abstract An understanding of soil organic carbon (C

325

SOILS--------Bacillus thuringiensis were spliced into  

E-Print Network (OSTI)

SOILS-------- Bacillus thuringiensis were spliced into a maize hybrid, known as Bt corn, to create.geotimes.org Donald L. Sparks N oW is an exciting time to be a soil scientist. We face many chal lenges, the wise use of soil and ecosystems will become ever more important in meet ing food production needs

Sparks, Donald L.

326

A Soil Moisture Climatology of Illinois  

Science Conference Proceedings (OSTI)

Ten years of soil moisture measurements (biweekly from March through September and monthly during winter) within the top 1 m of soil at 17 grass-covered sites across Illinois are analyzed to provide a climatology of soil moisture for this ...

Steven E. Hollinger; Scott A. Isard

1994-05-01T23:59:59.000Z

327

Numerical simulation of unsaturated soil behaviour  

Science Conference Proceedings (OSTI)

The mechanical behaviour of unsaturated soils is one of the challenging topics in the field of geotechnical engineering. The use of finite element techniques is considered to be a promising method to solve settlement and heave problems, which are associated ... Keywords: FEM, constitutive modelling, finite element method, geotechnical engineering, mechanical behaviour, shallow foundation, shallow foundations, soil behaviour, suction variation, unsaturated soils

Ayman A. Abed; Pieter A. Vermeer

2009-01-01T23:59:59.000Z

328

Growth and elemental composition of sorghum sudangrass grown on flyash/organic waste-amended soils  

Science Conference Proceedings (OSTI)

A greenhouse study was conducted to evaluate the potential benefitsof using fly ash/organic waste mixtures amended to soils for growth andcomposition of mineral elements by `sorgrass` (Sorghum vulgaris var.sudanense Hitchc.) a shorghum-sudangrass hybrid plant. This experimentwas conducted using a 1:1 ratio of fly ash to either sewage sludge,poultry manure, or dairy manure at six application rates. Our threeorganic wastes when mixed with fly ash at varied rates of applicationresulted in elevated concentrations of NO{sub 3}, P, K, Ca, Mg, Mn, Fe, B,Cu and Zn in both soil and plants. The data of this study indicated thatthe availability of elements to plants varied according to the organicsource mixed with fly ash and the rate of application. The elements Band Zn were observed to be significantly greater in plant tissuesexposed to fly ash/poultry manure or fly ash/dairy manure mixtures.Soils amended with fly ash/sewage sludge or poultry manure generallyimproved plant growth and enhanced yield when applied at rates of 25tons/acre, and decreased thereafter. However, soils amended with flyash/dairy manure improved plant growth and enhanced yield when appliedat rates upto 50 tons/acre and decreased thereafter. The decreases inyield beyond these application rates were probably due to theaccumulation of high levels of B and Zn which are phytotoxic and/orelevated levels of inorganic dissolved salts. 22 refs., 4 tabs.

Sajwan, K.S. [Savannah State College, GA (United States); Ornes, W.H.; Youngblood, T.V. [Univ. of South Carolina, Aiken, SC (United States)

1996-08-01T23:59:59.000Z

329

Evaluating the Performance of a Surface Barrier on Reducing Soil-Water Flow  

SciTech Connect

One of the most common effective techniques for contaminant remediation in the vadose zone is to use a surface barrier to reduce or eliminate soil-water flow to reduce the contaminant flux to the underlying groundwater. Confirming the reduction of the soil-water flux rate is challenging because of the difficulty of determining the very low soil-water flux beneath the barrier. We propose a hydraulic-conductivity factor, fK, as a conservative indicator for quantifying the reduction of soil-water flow. The factor can be calculated using the measured soil-water content or pressure but does not require the knowledge of the saturated hydraulic conductivity or the hydraulic gradient. The formulas were tested by comparing with changes in hydraulic conductivity, K, from a drainage experiment. The pressure-based formula was further applied to evaluate the performance of the interim surface barrier at T Tank Farm on Hanford Site. Three years after barrier emplacement, the hydraulic conductivity decreased by a factor between 3.8 and 13.0 at the 1-, 2- and 5-m depths. The difference between the conductivity-reduction factor and the flux-rate-reduction factor, fq, was quantified with a numerical simulation. With the calculated fK, the numerically determined fK/fq ratio, and the assumed pre-barrier soil-water flux rate of 100 mm yr-1, the estimated soil-water flux rate 3 years after barrier emplacement was no more than 8.5 mm yr-1 at or above the 5-m depth.

Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.; Clayton, Ray E.

2012-08-31T23:59:59.000Z

330

Soil Dynamics and Earthquake Engineering ] (  

E-Print Network (OSTI)

Agreement, STANAG 4569, [Protection for occupants of logistics and light-armored vehicles] defines the make- up and the conditions of sandy-gravel soil which is used for testing the ability of various armor. Introduction It is well-established that armor used on logistic and light-armored fighting military vehicles

Grujicic, Mica

331

Measurements of waste tank passive ventilation rates using tracer gases  

Science Conference Proceedings (OSTI)

This report presents the results of ventilation rate studies of eight passively ventilated high-level radioactive waste tanks using tracer gases. Head space ventilation rates were determined for Tanks A-101, AX-102, AX-103, BY-105, C-107, S-102, U-103, and U-105 using sulfur hexafluoride (SF{sub 6}) and/or helium (He) as tracer gases. Passive ventilation rates are needed for the resolution of several key safety issues. These safety issues are associated with the rates of flammable gas production and ventilation, the rates at which organic salt-nitrate salt mixtures dry out, and the estimation of organic solvent waste surface areas. This tracer gas study involves injecting a tracer gas into the tank headspace and measuring its concentration at different times to establish the rate at which the tracer is removed by ventilation. Tracer gas injection and sample collection were performed by SGN Eurisys Service Corporation and/or Lockheed Martin Hanford Corporation, Characterization Project Operations. Headspace samples were analyzed for He and SF{sub 6} by Pacific Northwest National Laboratory (PNNL). The tracer gas method was first demonstrated on Tank S-102. Tests were conducted on Tank S-102 to verify that the tracer gas was uniformly distributed throughout the tank headspace before baseline samples were collected, and that mixing was sufficiently vigorous to maintain an approximately uniform distribution of tracer gas in the headspace during the course of the study. Headspace samples, collected from a location about 4 in away from the injection point and 15, 30, and 60 minutes after the injection of He and SF{sub 6}, indicated that both tracer gases were rapidly mixed. The samples were found to have the same concentration of tracer gases after 1 hour as after 24 hours, suggesting that mixing of the tracer gas was essentially complete within 1 hour.

Huckaby, J.L.; Olsen, K.B.; Sklarew, D.S.; Evans, J.C.; Remund, K.M.

1997-09-01T23:59:59.000Z

332

Effects of soil type and farm management on soil ecological functional genes and microbial activities  

Science Conference Proceedings (OSTI)

Relationships between soil microbial diversity and soil function are the subject of much debate. Process-level analyses have shown that microbial function varies with soil type and responds to soil management. However, such measurements cannot determine the role of community structure and diversity in soil function. The goal of this study was to investigate the role of gene frequency and diversity, measured by microarray analysis, on soil processes. The study was conducted in an agro-ecosystem characterized by contrasting management practices and soil types. Eight pairs of adjacent commercial organic and conventional strawberry fields were matched for soil type, strawberry variety, and all other environmental conditions. Soil physical, chemical and biological analyses were conducted including functional gene microarrays (FGA). Soil physical and chemical characteristics were primarily determined by soil textural type (coarse vs fine-textured), but biological and FGA measures were more influenced by management (organic vs conventional). Organically managed soils consistently showed greater functional activity as well as FGA signal intensity (SI) and diversity. Overall FGA SI and diversity were correlated to total soil microbial biomass. Functional gene group SI and/or diversity were correlated to related soil chemical and biological measures such as microbial biomass, cellulose, dehydrogenase, ammonium and sulfur. Management was the dominant determinant of soil biology as measured by microbial gene frequency and diversity, which paralleled measured microbial processes.

Reeve, Jennifer [Washington State University; Schadt, Christopher Warren [ORNL; Carpenter-Boggs, Lynne [Washington State University; Kang, S. [University of Oklahoma; Zhou, Jizhong [University of Oklahoma, Norman; Reganold, John P. [Washington State University

2010-01-01T23:59:59.000Z

333

Field Application of a Rapid Spectrophotometric Method for Determination of Persulfate in Soil  

E-Print Network (OSTI)

Remediation of hydrocarbon contaminated soils can be performed both in situ and ex situ using chemical oxidants such as sodium persulfate. Standard methods for quantifying persulfate require either centrifugation or prolonged settling times. An optimized soil extraction procedure was developed for persulfate involving simple water extraction using a modified disposable syringe. This allows considerable saving of time and removes the need for centrifugation. The extraction time was reduced to only 5 min compared to 15 min for the standard approach. A comparison of the two approaches demonstrated that each provides comparable results. Comparisons were made using high (93 g kg 21 soil) and low (9.3 g kg 21 soil) additions of sodium persulfate to a petroleum hydrocarbon-contaminated soil, as well as sand spiked with diesel. Recoveries of 9561 % and 96610 % were observed with the higher application rate in the contaminated soil and spiked sand, respectively. Corresponding recoveries of 8665 % and 117619 % were measured for the lower application rate. Results were obtained in only 25 min and the method is well suited to batch analyses. In addition, it is suitable for application in a small field laboratory or even a mobile, vehicle-based system, as it requires minimal equipment and reagents.

Colin J. Cunningham; Vanessa Pitschi; Peter Anderson; D. A. Barry; Colin Patterson; Tanya A. Peshkur

2013-01-01T23:59:59.000Z

334

Rate Adjustments and Public Involvement  

NLE Websites -- All DOE Office Websites (Extended Search)

Rate Adjustments and Public Involvement Documents Rate Adjustments and Public Involvement Documents CRSP Transmission 9/16/2013 WAPA-161 FRN, CRSP transmission and ancillary services rates extension Letter announcing two-year extension to CRSP transmission and ancillary services rates Letter announcing revised CRSP transmission rates for FY 2014 Accompanying calculation table for FY 2014 CRSP transmission rate letter Letter announcing revised CRSP transmission rates for FY 2013 Letter announcing revised CRSP transmission rates for FY 2012 Letter announcing revised CRSP transmission rates for FY 2011 Letter announcing revised CRSP transmission rates for FY 2010 SLCA/IP 9/16/2013 WAPA-161 FRN, SLCA/IP firm power rate extension Letter announcing two-year extension to SLCA/IP firm power rate SLCA/IP Tentative Rate Adjustment Schedule

335

Soil Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Soil Gas Sampling Soil Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Soil Gas Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Identify concealed faults that act as conduits for hydrothermal fluids. Hydrological: Identify hydrothermal gases of magmatic origin. Thermal: Differentiate between amagmatic or magmatic sources heat. Dictionary.png Soil Gas Sampling: Soil gas sampling is sometimes used in exploration for blind geothermal resources to detect anomalously high concentrations of hydrothermal gases

336

Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global  

NLE Websites -- All DOE Office Websites (Extended Search)

Tillage and Crop Rotation Tillage and Crop Rotation Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis DOI: 10.3334/CDIAC/tcm.002 PDF file Full text Soil Science Society of America Journal 66:1930-1946 (2002) CSITE image Tristram O. West and Wilfred M. Post DOE Center for Carbon Sequestration in Terrestrial Ecosystems (CSiTE) Environmental Sciences Division Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6290 U.S.A. Sponsor: U.S. Department of Energy's Office of Science, Biological and Environmental Research Program Abstract Global map Changes in agricultural management can potentially increase the accumulation rate of soil organic carbon (SOC), thereby sequestering CO2 from the atmosphere. This study was conducted to quantify potential soil

337

Effects of irrigation on crops and soils with Raft River geothermal water  

DOE Green Energy (OSTI)

The Raft River Irrigation Experiment investigated the suitability of using energy-expended geothermal water for irrigation of selected field-grown crops. Crop and soil behavior on plots sprinkled or surface irrigated with geothermal water was compared to crop and soil behavior on plots receiving water from shallow irrigation wells and the Raft River. In addition, selected crops were produced, using both geothermal irrigation water and special management techniques. Crops irrigated with geothermal water exhibited growth rates, yields, and nutritional values similar to comparison crops. Cereal grains and surface-irrigated forage crops did not exhibit elevated fluoride levels or accumulations of heavy metals. However, forage crops sprinkled with geothermal water did accumulate fluorides, and leaching experiments indicate that new soils receiving geothermal water may experience increased salinity, exchangeable sodium, and decreased permeability. Soil productivity may be maintained by leaching irrigations.

Stanley, N.E.; Schmitt, R.C.

1980-01-01T23:59:59.000Z

338

PULSE RATE DIVIDER  

DOE Patents (OSTI)

A compact pulse-rate divider circuit affording low impedance output and high input pulse repetition rates is described. The circuit features a single secondary emission tube having a capacitor interposed between its dynode and its control grid. An output pulse is produced at the anode of the tube each time an incoming pulse at the control grid drives the tube above cutoff and the duration of each output pulse corresponds to the charging time of the capacitor. Pulses incoming during the time the grid bias established by the discharging capacitor is sufficiently negative that the pulses are unable to drive the tube above cutoff do not produce output pulses at the anode; these pulses are lost and a dividing action is thus produced by the circuit. The time constant of the discharge path may be vanied to vary in turn the division ratio of the circuit; the time constant of the charging circuit may be varied to vary the width of the output pulses. (AEC)

McDonald, H.C. Jr.

1962-12-18T23:59:59.000Z

339

Phytoremediation of Metal-Contaminated Soils  

DOE Green Energy (OSTI)

Recent concerns regarding environmental contamination have necessitated the development of appropriate technologies to assess the presence and mobility of metals in soil and estimate possible ways to decrease the level of soil metal contamination. Phytoremediation is an emerging technology that may be used to cleanup contaminated soils. Successful application of phytoremediation, however, depends upon various factors that must be carefully investigated and properly considered for specific site conditions. To efficiently affect the metal removal from contaminated soils we used the ability of plants to accumulate different metals and agricultural practices to improve soil quality and enhance plant biomass. Pot experiments were conducted to study metal transport through bulk soil to the rhizosphere and stimulate transfer of the metals to be more available for plants' form. The aim of the experimental study was also to find fertilizers that could enhance uptake of metals and their removal from contaminated soil.

Shtangeeva, I.; Laiho, J.V-P.; Kahelin, H.; Gobran, G.R.

2004-03-31T23:59:59.000Z

340

CARBON SEQUESTRATION IN RECLAIMED MINED SOILS OF OHIO  

Science Conference Proceedings (OSTI)

This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed mine soils (RMS). Experimental sites characterized by distinct age chronosequences of reclaimed minesoil were identified. These sites are owned by Americal Electrical Power and are located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. The sites chosen were: (1) reclaimed without topsoil application (three under forest and three under continuous grass cover), (2) reclaimed with topsoil application (three under forest and three under continuous grass cover) and (3) unmined sites (one under forest and another grass cover). Soil samples were collected from 0 to 15 cm and 15 to 30 cm depths from each of the experimental site under continuous grass and SOC and, total nitrogen (TN) concentration, pH and electrical conductivity (EC) were determined. The results of the study for the quarter (30 September to 31 December, 2003) showed that soil pH was > 5.5 and EC reclaimed in 2003 (newly reclaimed and at baseline) to 11.64 g kg{sup -1} for site reclaimed in 1987 (a 5-fold increase) to 20.41 g kg{sup -1} for sites reclaimed in 1978 (a 10- fold increase). However, for sites reclaimed without topsoil application, soil pH, EC, SOC and TN concentrations were similar for both depths. The SOC concentrations in reclaimed sites with topsoil application in 0 to 15 cm depth increased from a base value of 0.7 g kg{sup -1} at the rate of 0.76 g kg{sup -1} yr{sup -1}. The high SOC concentration for 0-15 cm layer for site reclaimed in 1978 showed the high carbon sequestration potential upon reclamation and establishment of the grass cover on minesoils.

M. K. Shukla; R. Lal

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Specification for soil multisensor and soil sampling cone penetrometer probes  

SciTech Connect

Specification requirements for engineering, fabrication, and performance of cone penetrometer (CP) soil multisensor and sampling probes (CP-probes) which are required to support contract procurement for services are presented. The specification provides a documented technical basis of quality assurance that is required to use the probes in an operating Hanford tank farm. The documentation cited in this specification will be incorporated into an operational fielding plan that will address all activities associated with the use of the CP-probes. The probes discussed in this specification support the Hanford Tanks Initiative AX-104 Tank Plume Characterization Sub-task. The probes will be used to interrogate soils and vadose zone surrounding tank AX-104.

Iwatate, D.F.

1997-05-02T23:59:59.000Z

342

Ice-lens formation and geometrical supercooling in soils and other colloidal materials  

E-Print Network (OSTI)

We present a new, physically-intuitive model of ice-lens formation and growth during the freezing of soils and other dense, particulate suspensions. Motivated by experimental evidence, we consider the growth of an ice-filled crack in a freezing soil. At low temperatures, ice in the crack exerts large pressures on the crack walls that will eventually cause the crack to split open. We show that the crack will then propagate across the soil to form a new lens. The process is controlled by two factors: the cohesion of the soil, and the geometrical supercooling of the water in the soil; a new concept introduced to measure the energy available to form a new ice lens. When the supercooling exceeds a critical amount (proportional to the cohesive strength of the soil) a new ice lens forms. This condition for ice-lens formation and growth does not appeal to any ad hoc, empirical assumptions, and explains how periodic ice lenses can form with or without the presence of a frozen fringe. The proposed mechanism is in good agreement with experiments, in particular explaining ice-lens pattern formation, and surges in heave rate associated with the growth of new lenses. Importantly for systems with no frozen fringe, ice-lens formation and frost heave can be predicted given only the unfrozen properties of the soil. We use our theory to estimate ice-lens growth temperatures obtaining quantitative agreement with the limited experimental data that is currently available. Finally we suggest experiments that might be performed in order to verify this theory in more detail. The theory is generalizable to complex natural-soil scenarios, and should therefore be useful in the prediction of macroscopic frost heave rates.

Robert W. Style; Stephen S. L. Peppin; Alan C. F. Cocks; John S. Wettlaufer

2011-09-09T23:59:59.000Z

343

Assessing Fossil and New Carbon in Reclaimed Mined Soils  

SciTech Connect

Soil organic carbon (SOC) pool in the reclaimed minesoils (RMS) is the mixture of coal C originating from mining and reclamation activities and recent plant-derived organic carbon (OC). Accurate estimates of OC pools and sequestration rates in the RMS are limited by lack of standard and cost-effective method for determination of coal-C concentration. The main objective of this project was to develop and test analytical procedures for quantifying pool sizes of coal-derived C in RMS and to partition organic C in RMS into coal-derived and newly deposited SOC fractions. Analysis of soil and coal artificial mixtures indicated that the {Delta}{sup 13}C method developed was very effective in estimating coal C added in the mixtures, especially soils under C4 plants. However, most of the reclaimed sites in Ohio are under C3 plants with range of {Delta}{sup 13}C signal falling within ranges of coal. The wide range of {Delta}{sup 13}C signal observed in minesoils, (i.e. -26 to -30 for plants and -23 to -26 for coal) limits the ability of this approach to be used for southeast Ohio minesoils. This method is applicable for reclaimed prime farm land under long term corn or corn soybean rotation. Chemi-thermal method was very effective in quantifying coal-C fraction in both soil-coal artificial mixtures and minesoils. The recovery of coal-C from the mixture ranged from 93 to 100% of coal. Cross-validation of chemi-thermal method with radiocarbon analysis revealed that chemi-thermal method was as effective as radiocarbon analysis in quantifying coal-C in RMS. Coal C determined after chemi-thermal treatment of samples was highly correlated with coal C concentration calculated by radiocarbon activity (r{sup 2} = 0.95, P < 0.01). Therefore, both radiocarbon activity and chemi-thermal method were effective in estimating coal carbon concentration in reclaimed minesoils of southeast Ohio. Overall, both coal-C and recent OC fraction exhibited high spatial and depth variation, suggesting that approaches used to obtain representative samples in undisturbed soils may not be effective in RMS sites. Analysis of coal-C fraction in RMS indicated that the contribution of coal C to SOC increased with increase in soil depth, accounting for up to 92% of SOC in the sub-soil. Our data indicated that land use and land management practices plays significant role in enhancing SOC sequestration in reclaimed mined lands.

Rattan Lal; David Ussiri

2008-09-30T23:59:59.000Z

344

Assessing Fossil and New Carbon in Reclaimed Mined Soils  

Science Conference Proceedings (OSTI)

Soil organic carbon (SOC) pool in the reclaimed minesoils (RMS) is the mixture of coal C originating from mining and reclamation activities and recent plant-derived organic carbon (OC). Accurate estimates of OC pools and sequestration rates in the RMS are limited by lack of standard and cost-effective method for determination of coal-C concentration. The main objective of this project was to develop and test analytical procedures for quantifying pool sizes of coal-derived C in RMS and to partition organic C in RMS into coal-derived and newly deposited SOC fractions. Analysis of soil and coal artificial mixtures indicated that the {Delta}{sup 13}C method developed was very effective in estimating coal C added in the mixtures, especially soils under C4 plants. However, most of the reclaimed sites in Ohio are under C3 plants with range of {Delta}{sup 13}C signal falling within ranges of coal. The wide range of {Delta}{sup 13}C signal observed in minesoils, (i.e. -26 to -30 for plants and -23 to -26 for coal) limits the ability of this approach to be used for southeast Ohio minesoils. This method is applicable for reclaimed prime farm land under long term corn or corn soybean rotation. Chemi-thermal method was very effective in quantifying coal-C fraction in both soil-coal artificial mixtures and minesoils. The recovery of coal-C from the mixture ranged from 93 to 100% of coal. Cross-validation of chemi-thermal method with radiocarbon analysis revealed that chemi-thermal method was as effective as radiocarbon analysis in quantifying coal-C in RMS. Coal C determined after chemi-thermal treatment of samples was highly correlated with coal C concentration calculated by radiocarbon activity (r{sup 2} = 0.95, P reclaimed minesoils of southeast Ohio. Overall, both coal-C and recent OC fraction exhibited high spatial and depth variation, suggesting that approaches used to obtain representative samples in undisturbed soils may not be effective in RMS sites. Analysis of coal-C fraction in RMS indicated that the contribution of coal C to SOC increased with increase in soil depth, accounting for up to 92% of SOC in the sub-soil. Our data indicated that land use and land management practices plays significant role in enhancing SOC sequestration in reclaimed mined lands.

Rattan Lal; David Ussiri

2008-09-30T23:59:59.000Z

345

Soil physical and hydrological properties under three biofuel crops in Ohio  

Science Conference Proceedings (OSTI)

While biofuel crops are widely studied and compared for their energy and carbon footprints, less is known about their effects on other soil properties, particularly hydrologic characteristics. Soils under three biofuel crops, corn (Zea mays), switchgrass (Panicum virgatum), and willow (Salix spp.), were analyzed seven years after establishment to assess the effects on soil bulk density ({rho}{sub b}), penetration resistance (PR), water-holding capacity, and infiltration characteristics. The PR was the highest under corn, along with the lowest associated water content, while PR was 50-60% lower under switchgrass. In accordance with PR data, surface (0-10 cm) bulk density also tended to be lower under switchgrass. Both water infiltration rates and cumulative infiltration amounts varied widely among and within the three crops. Because the Philip model did not fit the data, results were analyzed using the Kostiakov model instead. Switchgrass plots had an average cumulative infiltration of 69 cm over 3 hours with a constant infiltration rate of 0.28 cm min{sup -1}, compared with 37 cm and 0.11 cm min{sup -1} for corn, and 26 cm and 0.06 cm min{sup -1} for willow, respectively. Results suggest that significant changes in soil physical and hydrologic properties may require more time to develop. Soils under switchgrass may have lower surface bulk density, higher field water capacity, and a more rapid water infiltration rate than those under corn or willow.

Bonin, Catherine [Ohio State University; Lal, Dr. Rattan [Ohio State University; Schmitz, Matthias [Rheinsche Friedrich/Wilhelms Universitaet Boon; Wullschleger, Stan D [ORNL

2012-01-01T23:59:59.000Z

346

Survey of innovative rates, 1991  

SciTech Connect

Current innovative rate data from 135 major utilities throughout the United States were gathered and analyzed. Over 1000 innovative rates that were in use by the utilities in 1990 and 1991 were identified, abstracted and entered into a database. Survey results indicate that over 616 million MWh were sold to the nearly five million customers using the innovative rates offered. From an annual sales perspective, the most widely used rates are demand-side management rates -- rates intended to change customer energy use -- and rates that are market-driven.'' The survey identified 525 demand-side management rates serving our four million customers with reported sales of approximately 520 million MWh. These rates serve over 80% of the total innovative rate customers and account for 84% of the total MWh sales. Also important in terms of MWh sales they represent are market-driven rates, which accounted for sales of 48 million MWh in 1990. Both demand-side management and market-driven rates show a 20% customer growth rate between 1988 and 1990. Other innovative rates examined in the survey included: prepaid service; load retention incentive rates; technology specific rates; and those rates related expressly to non-utility generators -- namely buy-back and standby rates.

White, L.J.; Wakefield, R.A.; McVicker, C.M.

1992-04-01T23:59:59.000Z

347

Survey of innovative rates, 1991  

Science Conference Proceedings (OSTI)

Current innovative rate data from 135 major utilities throughout the United States were gathered and analyzed. Over 1000 innovative rates that were in use by the utilities in 1990 and 1991 were identified, abstracted and entered into a database. Survey results indicate that over 616 million MWh were sold to the nearly five million customers using the innovative rates offered. From an annual sales perspective, the most widely used rates are demand-side management rates -- rates intended to change customer energy use -- and rates that are market-driven.'' The survey identified 525 demand-side management rates serving our four million customers with reported sales of approximately 520 million MWh. These rates serve over 80% of the total innovative rate customers and account for 84% of the total MWh sales. Also important in terms of the MWh sales they represent are market-driven rates, which accounted for sales of 48 million MWh in 1990. Both demand-side management and market-driven rates show a 20% customer growth rate between 1988 and 1990. Other innovative rates examined in the survey included: prepaid service; load retention incentive rates; technology specific rates; and those rates related expressly to non-utility generators -- namely buy-back and standby rates.

White, L.J.; Wakefield, R.A.; McVicker, C.M.

1992-04-01T23:59:59.000Z

348

Deriving the Surface Soil Heat Flux from Observed Soil Temperature and Soil Heat Flux Profiles Using a Variational Data Assimilation Approach  

Science Conference Proceedings (OSTI)

A novel approach to infer surface soil heat fluxes from measured profiles of soil temperature, soil heat flux, and observations of the vegetation canopy temperature and the incoming shortwave radiation is evaluated for the Cabauw measurement ...

R. J. Ronda; F. C. Bosveld

2009-03-01T23:59:59.000Z

349

ARM - Measurement - Soil heat flux  

NLE Websites -- All DOE Office Websites (Extended Search)

heat flux heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil heat flux A quantity measured according to the formula B = {lambda}(dT/dz), where {lambda} is the conductivity of the soil that the heat is moving through. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems EBBR : Energy Balance Bowen Ratio Station SEBS : Surface Energy Balance System External Instruments

350

ARM - Measurement - Soil moisture flux  

NLE Websites -- All DOE Office Websites (Extended Search)

moisture flux moisture flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil moisture flux A quantity measured according to the formula B = {lambda}(dq/dz), where {lambda} is the conductivity of the soil that the moisture is moving through. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems External Instruments ECMWFDIAG : European Centre for Medium Range Weather Forecasts

351

Innovative Vitrification for Soil Remediation  

DOE Green Energy (OSTI)

Vortec has successfully completed Phases 1 and 2 of a technology demonstration program for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation.'' The principal objective of the program is to demonstrate the ability of a Vortec Cyclone Melting System (CMS) to remediate DOE contaminated soils and other waste forms containing TM RCRA hazardous materials, low levels of radionuclides and TSCA (PCB) containing wastes. The demonstration program will verify the ability of this vitrification process to produce a chemically stable glass final waste form which passes both TCLP and PCT quality control requirements, while meeting all federal and state emission control regulations. The demonstration system is designed to process 36 ton/day of as-received drummed or bulk wastes. The processing capacity equates to approximately 160 barrels/day of waste materials containing 30% moisture at an average weight of 450 lbs./barrel.

Hnat, James G.; Patten, John S.; Jetta, Norman W.

1996-12-31T23:59:59.000Z

352

Characterization of the nitrate complexes of Pu(IV) using absorption spectroscopy, {sup 15}N NMR, and EXAFS  

Science Conference Proceedings (OSTI)

Nitrate complexes of Pu(IV) are studied in solutions containing nitrate up to 13 molar (M). Three major nitrato complexes are observed and identified using absorption spectroscopy, {sup 15}N nuclear magnetic resonance (NMR), and extended x-ray absorption fine structure (EXAFS) as Pu(NO{sub 3}){sub 2}{sup 2+}, Pu(NO{sub 3}){sub 4}, and Pu(NO{sub 3}){sub 6}{sup 2{minus}}. The possibility that Pu(NO{sub 3}){sub 1}{sup 3+}, Pu(NO{sub 3}){sub 3}{sup 1+} and Pu(NO{sub 3}){sub 5}{sup 1{minus}} are major species in solution is not consistent with these results and an upper limit of 0.10 can be set on the fraction for each of these three nitrate complexes in nitrate containing solutions. Fraction of the three major species in nitric acid over the 1--13 M range were calculated from absorption spectra data. The fraction of Pu(NO{sub 3}){sub 6}{sup 2{minus}} as a function of nitric acid concentration is in good agreement with the literature, whereas the fraction of Pu(NO{sub 3}){sub 2}{sup 2+} and Pu(NO{sub 3}){sub 4} species differ from previous studies. We have modeled the chemical equilibria up to moderate ionic strength ( < 6 molal) using the specific ion interaction theory (SM. Comparison of our experimental observations to literature stability constants that assume the presence of mononitrate species is poor. Stability constant at zero ionic strength for the dinitrato complex is determined to be log({beta}{sub 2}{sup 0})=3.77 {plus_minus} 0.14 (2{sigma}).

Veirs, D.K.; Smith, C.A.; Zwick, B.D.; Marsh, S.F.; Conradson, S.D.

1993-12-01T23:59:59.000Z

353

Critical Parameters of Complex Geometry Intersecting Cylinders Containing Uranyl Nitrate Solution  

SciTech Connect

About three dozen previously unreported critical configurations are presented for very complex geometries filled with high concentration enriched uranyl nitrate solution. These geometries resemble a tall, thin Central Column (or trunk of a "tree") having long, thin arms (or "branches") extending up to four directions off the column. Arms are equally spaced from one another in vertical planes; and that spacing ranges from arms in contact to quite wide spacings. Both the Central Column and the many different arms are critically safe by themselves when each, alone, is filled with fissile solution; but, in combination, criticality occurs due to the interactions between arms and the column. Such neutronic interactions formed the principal focus of this study. While these results are fresh to the nuclear criticality safety industry and to those seeking novel experiments against which to validate computer codes, the experiments, themselves, are not recent. Over 100 experiments were performed at the Rocky Flats Critical Mass Laboratory between September, 1967, and February of the following year.

Rothe, Robert Emil; Briggs, Joseph Blair

1999-06-01T23:59:59.000Z

354

Solidification of Acidic, High Nitrate Nuclear Wastes by Grouting or Absorption on Silica Gel  

Science Conference Proceedings (OSTI)

The use of grout and silica gel were explored for the solidification of four types of acidic, high nitrate radioactive wastes. Two methods of grouting were tested: direct grouting and pre-neutralization. Two methods of absorption on silica gel were also tested: direct absorption and rotary spray drying. The waste simulant acidity varied between 1 N and 12 N. The waste simulant was neutralized by pre-blending calcium hydroxide with Portland cement and blast furnace slag powders prior to mixing with the simulant for grout solidification. Liquid sodium hydroxide was used to partially neutralize the simulant to a pH above 2 and then it was absorbed for silica gel solidification. Formulations for each of these methods are presented along with waste form characteristics and properties. Compositional variation maps for grout formulations are presented which help determine the optimum "recipe" for a particular waste stream. These maps provide a method to determine the proportions of waste, calcium hydroxide, Portland cement, and blast furnace slag that provide a waste form that meets the disposal acceptance criteria. The maps guide researchers in selecting areas to study and provide an operational envelop that produces acceptable waste forms. The grouts both solidify and stabilize the wastes, while absorption on silica gel produces a solid waste that will not pass standard leaching procedures (TCLP) if required. Silica gel wastes can be made to pass most leach tests if heated to 600ºC.

A. K. Herbst; S. V. Raman; R. J. Kirkham

2004-01-01T23:59:59.000Z

355

Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil  

Science Conference Proceedings (OSTI)

The carbon monoxide consumption rates of the carboxydobacteria Pseudomonas (Seliberia) carboxydohydrogena, P. carboxydovorans, and P. carboxydoflava were measured at high (50%) and low (0.5 ..mu..l liter/sup -1/) mixing ratios of CO in air. CO was only consumed when the bacteria had been grown under CO-autotrophic conditions. At low cell densities the CO comsumption rates measured at low CO mixing ratios were similar in cell suspensions and in mixtures of bacteria in soil. CO consumption observed in natural soil (loess, eolian sand, chernozem) as well as in suspensions or soil mixtures of carboxydobacteria showed Michaelis-Menten kinetics. Considering the difference of the K/sub m/, values and the observed V/sub max/ values, carboxydobacteria cannot contribute significantly to the consumption of atmospheric CO.

Conrad, R. (Max-Planck-Institut fuer Chemie, Mainz, Germany); Meyer, O.; Seiler, W.

1981-08-01T23:59:59.000Z

356

Alcohol fuel use: Implications for atmospheric levels of aldehydes, organic nitrates, pans, and peroxides: Separating sources using carbon isotopes  

DOE Green Energy (OSTI)

We have developed DiNitroPhenylHydrazone (DNPH) derivatization--high performance liquid chromatographic methods for measuring aldehydes in ambient samples with detection limits of approximately 1ppbV. These methods can be used for air or precipitation studies, and have been used for indoor measurements at much higher levels using shorter integration times. We are using gas chromatographs with electron capture detection (GCECD) to measure ambient levels of peroxyacyl nitrates and organic nitrates. Diffusion tubes with synthetically produced organic nitrates in n-tridecane solution are used to calibrate these systems. These compounds are important means of transporting NO/sub x/ over large scales due to their reduced tropospheric reactivity, low water solubilities, photolytic, and thermal stability. Their chemistries are coupled to aldehyde chemistry and are important greenhouse gases as well as phytotoxins. We have completed preliminary studies in Rio de Janeiro examining the atmospheric chemistry consequences of ethanol fuel usage. The urban air mass has been effected by the direct uncontrolled usage of ethanolgasoline and ethanoldiesel mixtures. We are exploring the use of luminol chemiluminescent detection of peroxides using gas chromatography to separate the various organic and inorganic peroxides. These compounds are coupled to the aldehyde chemistry, particularly in remote chemistries down-wind of urban sources. 13 refs.

Gaffney, J.S.; Tanner, R.L.

1988-01-01T23:59:59.000Z

357

Influence of microstructure on stress corrosion cracking of mild steel in synthetic caustic-nitrate nuclear waste solution  

DOE Green Energy (OSTI)

The influence of alloy microstructure on stress corrosion cracking of mild steel in caustic-nitrate synthetic nuclear waste solutions was studied. An evaluation was made of the effect of heat treatment on a representative material (ASTM A 516 Grade 70) used in the construction of high activity radioactive waste storage tanks at Savannah River Plant. Several different microstructures were tested for susceptibility to stress corrosion cracking. Precracked fracture specimens loaded in either constant load or constant crack opening displacement were exposed to a variety of caustic-nitrate and nitrate solutions. Results were correlated with the mechanical and corrosion properties of the microstructures. Crack velocity and crack arrest stress intensity were found to be related to the yield strength of the steel microstructures. Fractographic evidence indicated pH depletion and corrosive crack tip chemistry conditions even in highly caustic solutions. Experimental results were compatible with crack growth by a strain- assisted anodic dissolution mechanism; however, hydrogen embrittlement also was considered possible. (auth)

Sarafian, P.G.

1975-12-01T23:59:59.000Z

358

Woodland development and soil carbon and nitrogen dynamics and storage in a subtropical savanna ecosystem  

E-Print Network (OSTI)

Woody plant invasion of grasslands is prevalent worldwide, but the biogeochemical consequences of this vegetation shift remain largely unquantified. In the Rio Grande Plains, TX, grasslands and savannas dominated by C4 grasses have undergone succession over the past century to subtropical thorn woodlands dominated by C3 trees/shrubs. To elucidate mechanisms of soil organic carbon (SOC) and soil total N (STN) storage and dynamics in this ecosystem, I measured the mass and isotopic composition (?13C, ?15N) of C and N in whole-soil and soil size/density fractions in chronosequences consisting of remnant grasslands (Time 0) and woody plant stands ranging in age from 10-130 years. Rates of SOC and STN storage averaged 10-30 g C m-2yr-1 and 1-3 g N m-2yr-1, respectively. These accumulation rates increased soil C and N pools 80-200% following woody encroachment. Soil microbial biomass (SMB-C) also increased after woody invasion. Decreasing Cmic/C org and higher qCO2 in woodlands relative to grasslands suggests that woody litter is of poorer quality than grassland litter. Greater SOC and STN following woody invasion may also be due to increased protection of organic matter by stable soil structure. Soil aggregation increased following woody encroachment; however, most of the C and N accumulated in free particulate organic matter (POM) fractions not protected within aggregates. Mean residence times (MRTs) of soil fractions were calculated based on changes in their ?13C with time after woody encroachment. Free POM had the shortest average MRTs (30 years) and silt+clay the longest (360 years). Fine POM had MRTs of about 60 years, reflecting protection by location within aggregates. ?15N values of soil fractions were positively correlated with their MRTs, suggesting that higher ?15N values reflect an increased degree of humification. Increases in SOC and STN are probably being sustained by greater inputs, slower turnover of POM (some biochemical recalcitrance), and protection of organic matter in aggregates and association with silt and clay. Grassland-to-woodland conversion during the past century has been geographically extensive in grassland ecosystems worldwide, suggesting that changes in soil C and N dynamics and storage documented here could have significance for global C and N cycles.

Liao, Julia Den-Yue

2004-12-01T23:59:59.000Z

359

Heterotrophic Soil Respiration in Warming Experiments: Using Microbial Indicators to Partition Contributions from Labile and Recalcitrant Soil Organic Carbon. Final Report  

SciTech Connect

The central objective of the proposed work was to develop a genomic approach (nucleic acid-based) that elucidates the mechanistic basis for the observed impacts of experimental soil warming on forest soil respiration. The need to understand the mechanistic basis arises from the importance of such information for developing effective adaptation strategies for dealing with projected climate change. Specifically, robust predictions of future climate will permit the tailoring of the most effective adaptation efforts. And one of the greatest uncertainties in current global climate models is whether there will be a net loss of carbon from soils to the atmosphere as climate warms. Given that soils contain approximately 2.5 times as much carbon as the atmosphere, a net loss could lead to runaway climate warming. Indeed, most ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon, producing such a positive feedback to rising global temperatures. Yet the IPCC highlights the uncertainty regarding this projected feedback. The uncertainty arises because although warming-experiments document an initial increase in the loss of carbon from soils, the increase in respiration is short-lived, declining to control levels in a few years. This attenuation could result from changes in microbial physiology with temperature. We explored possible microbial responses to warming using experiments and modeling. Our work advances our understanding of how soil microbial communities and their activities are structured, generating insight into how soil carbon might respond to warming. We show the importance of resource partitioning in structuring microbial communities. Specifically, we quantified the relative abundance of fungal taxa that proliferated following the addition of organic substrates to soil. We added glycine, sucrose, cellulose, lignin, or tannin-protein to soils in conjunction with 3-bromo-deoxyuridine (BrdU), a nucleotide analog. Active microbes absorb BrdU from the soil solution; if they multiply in response to substrate additions, they incorporate the BrdU into their DNA. After allowing soils to incubate, we extracted BrdU-labeled DNA and sequenced the ITS regions of fungal rDNA. Fungal taxa that proliferated following substrate addition were likely using the substrate as a resource for growth. We found that the structure of active fungal communities varied significantly among substrates. The active fungal community under glycine was significantly different from those under other conditions, while the active communities under sucrose and cellulose were marginally different from each other and the control. These results indicate that the overall community structure of active fungi was altered by the addition of glycine, sucrose, and cellulose and implies that some fungal taxa respond to changes in resource availability. The community composition of active fungi is also altered by experimental warming. We found that glycine-users tended to increase under warming, while lignin-, tannin/protein-, and sucrose-users declined. The latter group of substrates requires extracellular enzymes for use, but glycine does not. It is possible that warming selects for fungal species that target, in particular, labile substrates. Linking these changes in microbial communities and resource partitioning to soil carbon dynamics, we find that substrate mineralization rates are, in general, significantly lower in soils exposed to long-term warming. This suggests that microbial use of organic substrates is impaired by warming. Yet effects are dependent on substrate identity. There are fundamental differences in the metabolic capabilities of the communities in the control and warmed soils. These differences might relate to the changes in microbial community composition, which appeared to be associated with groups specialized on different resources. We also find that functional responses indicate temperature acclimation of the microbial community. There are distinct seasonal patterns and to long-term soil warming, with

Bradford, M A; Melillo, J M; Reynolds, J F; Treseder, K K; Wallenstein, M D

2010-06-10T23:59:59.000Z

360

An Analysis of Simulated Long-Term Soil Moisture Data for Three Land Uses under Contrasting Hydroclimatic Conditions in the Northern Great Plains  

Science Conference Proceedings (OSTI)

Soil moisture (SM) plays an important role in land surface and atmosphere interactions. It modifies energy balance near the surface and the rate of water cycling between land and atmosphere. The lack of observed SM data prohibits understanding of ...

Rezaul Mahmood; Kenneth G. Hubbard

2004-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Environment - Nano soil science | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment - Nano soil science Environment - Nano soil science Cross-disciplinary research at Oak Ridge National Laboratory is yielding new insight into the carbon cycle, contaminated soils and soil fertility. An ORNL team is using a novel combination of neutron reflectometry experiments and supercomputer simulations to provide a detailed view of the interactions between organic matter and minerals in soil. The research suggests that relationships among these compounds are governed by simpler principles than previously thought. "It changes the whole way we think about how carbon, nutrients and contaminants interact with soils, which therefore affects fertility, water quality, and the terrestrial carbon cycle," said ORNL's Loukas Petridis. "We don't understand these topics very well because until now we haven't had the techniques capable

362

Soil Moisture Monitorization Using GNSS Reflected Signals  

E-Print Network (OSTI)

The use of GNSS signals as a source of opportunity for remote sensing applications, GNSS-R, has been a research area of interest for more than a decade. One of the possible applications of this technique is soil moisture monitoring. The retrieval of soil moisture with GNSS-R systems is based on the variability of the ground dielectric properties associated to soil moisture. Higher concentrations of water in the soil yield a higher dielectric constant and reflectivity, which incurs in signals that reflect from the Earth surface with higher peak power. Previous investigations have demonstrated the capability of GPS bistatic scatterometers to obtain high enough signal to noise ratios in order to sense small changes in surface reflectivity. Furthermore, these systems present some advantages with respect to others currently used to retrieve soil moisture. Upcoming satellite navigation systems, such as the European Galileo, will represent an excellent source of opportunity for soil moisture remote sensing for vario...

Egido, Alejandro; Caparrini, Marco; Martin, Cristina; Farres, Esteve; Banque, Xavier

2008-01-01T23:59:59.000Z

363

A Precision Agriculture Approach to Managing Cotton Fiber Quality as a Function of Variable Soil Properties  

E-Print Network (OSTI)

Cotton producers can maximize yield and fiber quality by understanding soil variability throughout the fields, thus receiving premium prices for the cotton lint. A better understanding of how soil water holding capacity affects cotton lint yield and quality can result in improved management practices that can maximize fiber quality while minimizing inputs. The objectives of this study were to 1) create management zones using a soil ECa map, 2) test the usefulness of this map using measurements of lint quality and lint quantity in both irrigated and dryland fields, and 3) determine a relationship between soil water holding capacity fiber quality parameters. The selected site was Texas A&M University s IMPACT center which is located nine miles west of College Station, TX in the Brazos River floodplain. In the 2006 and 2007 growing seasons, 24 measurement locations were selected in a dryland and irrigated cotton field, 12 locations in each field. The sites were selected using a map of soil ECa, three ECa categories and four replications. At each location soil texture, soil water holding capacity, and lint quality (HVI) and quantity were measured. The ECa categories successfully identified significant differences in clay content water holding capacity, lint yield, lint quality, and loan values. The 2006 season was relatively dry. Weather, soil variability, and management affected the yield and yield quality responses. Water availability was not a factor for lint yield or quality in 2007. In this situation, the soil was the primary factor for field heterogeneity. The cotton yield still responded to soil variability but lint quality and loan value was uniform. The uniformity of lint quality and non-uniformity of lint quantity leads to the conclusion that these soils have individual yield thresholds, but without water stress the quality threshold is uniform. This conclusion illuminates opportunities for precision management strategies. One management strategy that may result from this work is to reduce seeding rates in lower production areas of the field, if the plants will compensate for yield to still reach the soils yield potential, perhaps less competition for water would improve lint quality.

Stanislav, Scott

2011-08-04T23:59:59.000Z

364

In-situ vitrification of soil. [Patent application  

DOE Patents (OSTI)

A method of vitrifying soil at or below a soil surface location. Two or more conductive electrodes are inserted into the soil for heating of the soil mass between them to a temperature above its melting temperature. Materials in the soil, such as buried waste, can thereby be effectively immobilized.

Brouns, R.A.; Buelt, J.L.; Bonner, W.F.

1981-04-06T23:59:59.000Z

365

Non-Traditional Soil Additives: Can They Improve Crop Production?  

E-Print Network (OSTI)

Non-traditional soil additives include soil conditioners such as organic materials and minerals, soil activators that claim to stimulate soil microbes or inoculate soil with new beneficial organisms, and wetting agents that may be marketed to improve crop yields. As this publication advises, growers should evaluate such products carefully and conduct field trials to determine their merit.

McFarland, Mark L.; Stichler, Charles; Lemon, Robert G.

2002-06-26T23:59:59.000Z

366

Parameter Sensitivity in LSMs: An Analysis Using Stochastic Soil Moisture Models and ELDAS Soil Parameters  

Science Conference Proceedings (OSTI)

Integration of simulated and observed states through data assimilation as well as model evaluation requires a realistic representation of soil moisture in land surface models (LSMs). However, soil moisture in LSMs is sensitive to a range of ...

Adriaan J. Teuling; Remko Uijlenhoet; Bart van den Hurk; Sonia I. Seneviratne

2009-06-01T23:59:59.000Z

367

Effects of Soil Moisture on the Responses of Soil Temperatures to Climate Change in Cold Regions  

Science Conference Proceedings (OSTI)

At high latitudes, changes in soil moisture could alter soil temperatures independently of air temperature changes by interacting with the snow thermal rectifier. The authors investigated this mechanism with model experiments in the Community Land ...

Zachary M. Subin; Charles D. Koven; William J. Riley; Margaret S. Torn; David M. Lawrence; Sean C. Swenson

2013-05-01T23:59:59.000Z

368

A Comparison of Soil Moisture Models Using Soil Climate Analysis Network Observations  

Science Conference Proceedings (OSTI)

Because of the lack of field measurements, models are often used to monitor soil moisture conditions. Therefore, it is important to find a model that can accurately simulate soil moisture under a variety of land surface conditions. In this paper, ...

Lei Meng; Steven M. Quiring

2008-08-01T23:59:59.000Z

369

Effects of Weather Variability and Soil Parameter Uncertainty on the Soil-Crop-Climate System  

Science Conference Proceedings (OSTI)

The variability of crop and soil states due to uncertain climatic inputs and soil properties is quantified using a mathematical representation of the physiological, biochemical, hydrological, and physical processes related to plant growth. The ...

Angelos L. Protopapas; Rafael L. Bras

1993-04-01T23:59:59.000Z

370

Investigation of exposure rates and radionuclide and trace metal distributions along the Hanford Reach of the Columbia River  

SciTech Connect

Studies have been conducted to investigate exposure rates, and radionuclide and trace metal distributions along the Columbia River where it borders the Hanford Site. The last major field study was conducted in 1979. With recently renewed interest in various land use and resource protection alternatives, it is important to have data that represent current conditions. Radionuclides and trace metals were surveyed in Columbia River shoreline soils along the Hanford Site (Hanford Reach). The work was conducted as part of the Surface Environmental Surveillance Project, Pacific Northwest Laboratory. The survey consisted of taking exposure rate measurements and soil samples primarily at locations known or expected to have elevated exposure rates.

Cooper, A.T.; Woodruff, R.K.

1993-09-01T23:59:59.000Z

371

Landscape level differences in soil carbon and nitrogen: implications for soil carbon sequestration  

SciTech Connect

The objective of this research was to understand how land cover and topography act, independently or together, as determinants of soil carbon and nitrogen storage over a complex terrain. Such information could help to direct land management for the purpose of carbon sequestration. Soils were sampled under different land covers and at different topographic positions on the mostly forested 14,000 ha Oak Ridge Reservation in Tennessee, USA. Most of the soil carbon stock, to a 40-cm soil depth, was found to reside in the surface 20 cm of mineral soil. Surface soil carbon and nitrogen stocks were partitioned into particulate ({ge}53 {micro}m) and mineral-associated organic matter (<53 {micro}m). Generally, soils under pasture had greater nitrogen availability, greater carbon and nitrogen stocks, and lower C:N ratios than soils under transitional vegetation and forests. The effects of topography were usually secondary to those of land cover. Because of greater soil carbon stocks, and greater allocation of soil carbon to mineral-associated organic matter (a long-term pool), we conclude that soil carbon sequestration, but not necessarily total ecosystem carbon storage, is greater under pastures than under forests. The implications of landscape-level variation in soil carbon and nitrogen for carbon sequestration are discussed at several different levels: (1) nitrogen limitations to soil carbon storage; (2) controls on soil carbon turnover as a result of litter chemistry and soil carbon partitioning; (3) residual effects of past land use history; and (4) statistical limitations to the quantification of soil carbon stocks.

Garten Jr, Charles T [ORNL; Ashwood, Tom L [ORNL

2002-12-01T23:59:59.000Z

372

electric rates | OpenEI  

Open Energy Info (EERE)

electric rates electric rates Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB) text/csv icon Non-IOU rates by zipcode (csv, 2.1 MiB)

373

Rate Schedules | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rate Schedules Rate Schedules Rate Schedules One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate levels and these studies for each of Southeastern's four power marketing systems are updated annually. They demonstrate the adequacy of the rates for each system. Rates are considered to be adequate when revenues are sufficient to repay all costs associated with power production and transmission costs, which include the amortization of the Federal investment allocated to power. Latest Rate Schedules October 1, 2012 ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System: Georgia-Alabama-South Carolina October 1, 2012

374

Data Assimilation of Satellite-Derived Heating Rates as Proxy Surface Wetness Data into a Regional Atmospheric Mesoscale Model. Part I: Methodology  

Science Conference Proceedings (OSTI)

A satellite data assimilation method is developed which incorporates satellite-observed infrared heating rates into a mesoscale atmospheric model to retrieve model soil moisture. The method builds upon previous work with the model’s surface ...

Andrew S. Jones; Ingrid C. Guch; Thomas H. Vonder Haar

1998-03-01T23:59:59.000Z

375

Data Assimilation of Satellite-Derived Heating Rates as Proxy Surface Wetness Data into a Regional Atmospheric Mesoscale Model. Part II: A Case Study  

Science Conference Proceedings (OSTI)

A satellite data assimilation method is applied which incorporates satellite-observed heating infrared rates into a mesoscale atmospheric model to retrieve model soil moisture. In a 3D case study, the method is successful at retrieving realistic ...

Andrew S. Jones; Ingrid C. Guch; Thomas H. Vonder Haar

1998-03-01T23:59:59.000Z

376

Soil Moisture Sensor - Home - Energy Innovation Portal  

Technology Marketing Summary In the agriculture industry, it is critical to know the water content in the soil in order to maintain the viability and profitability of ...

377

Samples of Soil from Arco, Idaho  

SciTech Connect

Samples from a single drilling made at Arco, Idaho were submitted to determine the adsorptive capacity of soil at Arco, Idaho for radioactive elements.

Stewart, G. D.

1949-11-22T23:59:59.000Z

378

Performance evaluation soil samples utilizing encapsulation technology  

DOE Patents (OSTI)

Performance evaluation soil samples and method of their preparation uses encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration. 1 fig.

Dahlgran, J.R.

1999-08-17T23:59:59.000Z

379

Performance evaluation soil samples utilizing encapsulation technology  

DOE Patents (OSTI)

Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

Dahlgran, James R. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

380

Soil-Structure Interaction for Building Structures  

Science Conference Proceedings (OSTI)

... Explicit computational tools that can be used in engineering practice are provided ... For typical building structures on soil and weathered rock sites, h ...

2013-08-28T23:59:59.000Z

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ASSESSMENT OF ABORIGINAL SMALLHOLDER SOILS FOR  

E-Print Network (OSTI)

interbed- ded shales, and granitic intrusions. Tointerbedded tuffs and shales of the same age. The Mendoi-terraces, the quartzite and shale-derived soils on the high

Kurt A. Schwabe

2006-01-01T23:59:59.000Z

382

Performance evaluation soil samples utilizing encapsulation technology  

DOE Patents (OSTI)

Performance evaluation soil samples and method of their preparation are described using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

Dahlgran, James R.

1997-12-01T23:59:59.000Z

383

Changes in Soil Carbon Following Afforestation  

NLE Websites -- All DOE Office Websites (Extended Search)

Report No. 20, Australian Greenhouse Office. Paule et al. (2003) Predicted change in soil carbon following afforestation or reforestation, and analysis of controlling factors by...

384

Soiling patterns on a tall limestone building: Changes over 60 years  

SciTech Connect

Soiling of limestone caused by air pollution has been studied at the Cathedral of Learning on the University of Pittsburgh campus. The Cathedral was constructed in the 1930s during a period of heavy pollution in Pittsburgh, PA. Archival photographs show that the building became soiled while it was still under construction. Reductions in air pollutant concentrations began in the late 1940s and 1950s and have continued to the present day. Concurrent with decreasing pollution, soiled areas of the stone have been slowly washed by rain, leaving a white, eroded surface. The patterns of white areas in archival photographs of the building are consistent with computer modeling of rain impingement showing greater wash off rates at higher elevations and on the corners of the building. Winds during the rainstorms are predominantly form the quadrant SW to NW at this location, and wind speeds as well as rain intensities are greater when winds are from this quadrant as compared with other quadrants; the sides of the building facing these directions are much less soiled than the opposing sides. Overall, these results suggest that rain washing of soiled areas on buildings occurs over a period of decades, in contrast to the process of soiling that occurs much more rapidly.

Davidson, C.I.; Tang, W.; Finger, S.; Etyemezian, V.; Striegel, M.F.; Sherwood, S.I.

2000-02-15T23:59:59.000Z

385

Field Demonstration of Acetone Pretreatment and Composting of Particulate-TNT-Contaminated Soil  

Science Conference Proceedings (OSTI)

Solid fragments of explosives in soil are common in explosives testing and training areas. In this study we initially sieved the upper 6 in of contaminated soil through a 3-mm mesh, and found 2, 4, 6-trinitrotoluene (TNT) fragments. These contributed to an estimated concentration of 1.7 kg per cubic yard soil, or for 2000 ppm TNT in the soil. Most of the fragments ranged 4 mm to 10 mm diameter in size, but explosives particles weighing up to 56 g (about 4 cm diameter) were frequently observed. An acetone pretreatment/composting system was then demonstrated at field scale. The amount of acetone required for a TNT-dissolving slurry process was controlled by the viscosity of the soil/acetone mix rather than the TNT dissolution rate. The amount needed was estimated at about 55 gallons acetone per cubic yard soil. Smaller, 5- to 10-mm-diameter fragments went into solution in less than 15 min at a mixer speed of 36 rpm, with a minimum of 2 g TNT going into solution per 30 min for the larger chunks. The slurries were than mixed with compost starting materials and composted in a vented 1 yd3 container. After 34 days incubation time TNT was below the site-specific regulatory threshold of 44 ppm. TNT metabolites and acetone were also below their regulatory thresholds established for the site.

Radtke, Corey William; Smith, D.; Owen, S.; Roberto, Francisco Figueroa

2002-02-01T23:59:59.000Z

386

Soil-Web: An online soil survey for California, Arizona, and Nevada  

Science Conference Proceedings (OSTI)

Digital soil survey products represent one of the largest and most comprehensive inventories of soils information currently available. The complex structure of these databases, intensive use of codes and scientific jargon make it difficult for non-specialists ... Keywords: Education, Online database, Outreach, Soil survey, Spatial database, Visualization

D. E. Beaudette; A. T. O'Geen

2009-10-01T23:59:59.000Z

387

Nitrogen Fixation and Leaching of Biological Soil Crust Communities in Mesic Temperate Soils  

E-Print Network (OSTI)

Microbial Ecology Nitrogen Fixation and Leaching of Biological Soil Crust Communities in Mesic Temperate Soils Roberta M. Veluci1,2 , Deborah A. Neher1,3 and Thomas R. Weicht1,3 (1) Department of Earth, FL 32611-0760, USA (3) Department of Plant and Soil Science, University of Vermont, 105 Carrigan Dr

Neher, Deborah A.

388

Bio-Char Soil Management on Highly Weathered Soils in the Humid Tropics  

E-Print Network (OSTI)

in the original biomass,- biochar. This biochar can be returned to soil and not only make this type of bioenergy carbon-negative but also avoid soil degradation on bioenergy plantations. Biochar has a range of properties that make it a very efficient soil improver. Biochar is able to retain nutrients, keep them

Lehmann, Johannes

389

100 Area soil washing: Bench scale tests on 116-F-4 pluto crib soil  

SciTech Connect

The Pacific Northwest Laboratory conducted a bench-scale treatability study on a pluto crib soil sample from 100 Area of the Hanford Site. The objective of this study was to evaluate the use of physical separation (wet sieving), treatment processes (attrition scrubbing, and autogenous surface grinding), and chemical extraction methods as a means of separating radioactively-contaminated soil fractions from uncontaminated soil fractions. The soil washing treatability study was conducted on a soil sample from the 116-F-4 Pluto Crib that had been dug up as part of an excavation treatability study. Trace element analyses of this soil showed no elevated concentrations above typically uncontaminated soil background levels. Data on the distribution of radionuclide in various size fractions indicated that the soil-washing tests should be focused on the gravel and sand fractions of the 116-F-4 soil. The radionuclide data also showed that {sup 137}Cs was the only contaminant in this soil that exceeded the test performance goal (TPG). Therefore, the effectiveness of subsequent soil-washing tests for 116-F-4 soil was evaluated on the basis of activity attenuation of {sup 137}Cs in the gravel- and sand-size fractions.

Field, J.G.

1994-06-10T23:59:59.000Z

390

In situ warming and soil venting to enhance the biodegradation of JP-4 in cold climates: A critical study and analysis. Master`s thesis  

Science Conference Proceedings (OSTI)

In cold climates, bioremediation is limited to the summer when soil temperatures are sufficient to support microbial growth. Laboratory studies directly correlate increased biodegradation rates with temperature. By raising soil temperatures, in situ jet fuel remediation can be accelerated which was shown by a bioventing project conducted in 1991 at Eielson AFB, Alaska, where three soil warming techniques were used. This study critically analyzes the project data to determine its effectiveness in enhancing biodegradation. This study also models the temperature-biodegradation relationship at the test plots using the van`t Hoff-Arrhenius equation. Using paired oxygen consumption rates and temperatures, application of the equation was valid only for the warm water and passive warming plots. This study demonstrates that bioremediation is feasible in cold climates and can be enhanced by soil warming. Soil warming can significantly decrease remediation time with acceptable cost increases.

Cox, R.D.

1995-12-01T23:59:59.000Z

391

National Utility Rate Database: Preprint  

DOE Green Energy (OSTI)

When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

Ong, S.; McKeel, R.

2012-08-01T23:59:59.000Z

392

Using Legumes to Enhance Sustainability of Sorghum Cropping Systems in the East Texas Pineywoods Ecoregion: Impacts on Soil Nitrogen, Soil Carbon, and Crop Yields  

E-Print Network (OSTI)

Overall soil productivity is declining in the U.S. due to loss of soil organic matter (SOM). Decreased SOM lowers soil water storage, reduces water infiltration, slows aggregate formation, and depletes soil of nutrients. In many systems, crop nutrients are replaced by expensive synthetic fertilizers that can lead to environmental concerns. This practice is not economically or environmentally sustainable in the long term. To secure future soil use and crop production, sustainable management practices are needed to prevent further SOM depletion. Incorporating legumes into cropping systems is one alternative that can bolster soil organic C (SOC) (key indicator of SOM) and reduce N fertilizer applications through symbiotic legume N fixation. Three studies were conducted over multiple years at the Texas A&M AgriLife Research and Extension Center near Overton, TX. Annual cool- and warm-season legumes were evaluated as potential green manure crops and intercrops under grain sorghum [Sorghum bicolor (L.) Moench], high-biomass sorghum [Sorghum bicolor (L.) Moench], and annual forage cropping systems. These studies quantified legume soil moisture usage and C and N contributions to the soil and subsequent crop yields in East Texas. Primary project objectives were to maintain or maximize primary crop yields at reduced N fertilizer rates and to build SOC through the integration of legume green manures and intercrops. Green manuring cool-season legumes showed the most beneficial effect on SOC, soil total N, and crop yields; however, significant increases in yield were only detected after three years in rotation. Intercropping Iron-and-Clay cowpea (Vigna unguiculata L. [Walp]) decreased yield of both high-biomass sorghum and grain sorghum due to competitive vegetative growth. Iron-and-Clay did however improve biomass yields of high-biomass sorghum in two subsequent years when implemented as a green manure. Despite large N yields as high as 310 kg ha-1, impacts of legumes on annual forage crops was limited. Poor response was likely a result of previous field history in which a permanent warm-season grass pasture was cultivated for site preparation and mineralized SOC released substantial amounts of available N. Under low soil N conditions, legume green manures produce enough N to likely reduce N fertilizer requirements cost-effectively for subsequent crops in East Texas.

Neely, Clark B

2013-05-01T23:59:59.000Z

393

Initial characterization of processes of soil carbon stabilization using forest stand-level radiocarbon enrichment  

Science Conference Proceedings (OSTI)

Although the rates and mechanisms of soil organic matter (SOM) stabilization are difficult to observe directly, radiocarbon has proven an effective tracer of soil C dynamics, particularly when coupled with practical fractionation schemes. To explore the rates of C cycling in temperate forest soils, we took advantage of a unique opportunity in the form of an inadvertent stand-level {sup 14}C-labeling originating from a local industrial release. A simple density fractionation scheme separated SOM into inter-aggregate particulate organic matter (free light fraction, free LF), particulate organic matter occluded within aggregates (occluded LF), and organic matter that is complexed with minerals to form a dense fraction (dense fraction, DF). Minimal agitation and density separation was used to isolate the free LF. The remaining dense sediment was subjected to physical disruption and sonication followed by density separation to separate it into occluded LF and DF. The occluded LF had higher C concentrations and C:N ratios than the free LF, and the C concentration in both light fractions was ten times that of the DF. As a result, the light fractions together accounted for less than 4% of the soil by weight, but contained 40% of the soil C in the 0-15 cm soil increment. Likewise, the light fractions were less than 1% weight of the 15-30 cm increment, but contained more than 35% of the soil C. The degree of SOM protection in the fractions, as indicated by {Delta}{sup 14}C, was different. In all cases the free LF had the shortest mean residence times. A significant depth by fraction interaction for {sup 14}C indicates that the relative importance of aggregation versus organo-mineral interactions for overall C stabilization changes with depth. The rapid incorporation of {sup 14}C label into the otherwise depleted DF shows that this organo-mineral fraction comprises highly stable material as well as more recent inputs.

Swanston, C W; Torn, M S; Hanson, P J; Southon, J R; Garten, C T; Hanlon, E M; Ganio, L

2004-01-15T23:59:59.000Z

394

Initial characterization of processes of soil carbon stabilizaton using forest satnd-level radiocarbon enrichment  

Science Conference Proceedings (OSTI)

Although the rates and mechanisms of soil organic matter (SOM) stabilization are difficult to observe directly, radiocarbon has proven an effective tracer of soil C dynamics, particularly when coupled with practical fractionation schemes. To explore the rates of C cycling in temperate forest soils, we took advantage of a unique opportunity in the form of an inadvertent standlevel 14C-labeling originating from a local industrial release. A simple density fractionation scheme separated SOM into interaggregate particulate organic matter (free light fraction, free LF), particulate organic matter occluded within aggregates (occluded LF), and organic matter that is complexed with minerals to form a dense fraction (dense fraction, DF). Minimal agitation and density separation was used to isolate the free LF. The remaining dense sediment was subjected to physical disruption and sonication followed by density separation to separate it into occluded LF and DF. The occluded LF had higher C concentrations and C:N ratios than the free LF, and the C concentration in both light fractions was ten times that of the DF. As a result, the light fractions together accounted for less than 4% of the soil by weight, but contained 40% of the soil C in the 0-15 cm soil increment. Likewise, the light fractions were less than 1% weight of the 15-30 cm increment, but contained more than 35% of the soil C. The degree of SOM protection in the fractions, as indicated by D14C, was different. In all cases the free LF had the shortest mean residence times. A significant depth by fraction interaction for 14C indicates that the relative importance of aggregation versus organo-mineral interactions for overall C stabilization changes with depth. The rapid incorporation of 14C label into the otherwise depleted DF shows that this organo-mineral fraction comprises highly stable material as well as more recent inputs.

Swanston, Christopher W. [Lawrence Livermore National Laboratory (LLNL); Torn, Margaret S. [Lawrence Berkeley National Laboratory (LBNL); Hanson, Paul J [ORNL; Southon, John R. [University of California, Irvine; Garten Jr, Charles T [ORNL; Hanlon, Erin M. [Lawrence Berkeley National Laboratory (LBNL); Ganio, L. [University of California, Irvine

2005-01-01T23:59:59.000Z

395

Initial characterizaiton of processes of soil carbon stabilization using forest stand-level radiocarbon enrichment  

SciTech Connect

Although the rates and mechanisms of soil organic matter (SOM) stabilization are difficult to observe directly, radiocarbon has proven an effective tracer of soil C dynamics, particularly when coupled with practical fractionation schemes. To explore the rates of C cycling in temperate forest soils, we took advantage of a unique opportunity in the form of an inadvertent stand level 14C-labeling originating from a local industrial release. A simple density fractionation scheme separated SOM into interaggregate particulate organic matter (free light fraction, free LF), particulate organic matter occluded within aggregates (occluded LF), and organic matter that is complexed with minerals to form a dense fraction (dense fraction, DF). Minimal agitation and density separation was used to isolate the free LF. The remaining dense sediment was subjected to physical disruption and sonication followed by density separation to separate it into occluded LF and DF. The occluded LF had higher C concentrations and C:N ratios than the free LF, and the C concentration in both light fractions was ten times that of the DF. As a result, the light fractions together accounted for less than 4 percent of the soil by weight, but contained 40 percent of the soil C in the 0 15 cm soil increment. Likewise, the light fractions were less than 1 percent weight of the 15 30 cm increment, but contained more than 35 percent of the soil C. The degree of SOM protection in the fractions, as indicated by D14C, was different. In all cases the free LF had the shortest mean residence times. A significant depth by fraction interaction for 14C indicates that the relative importance of aggregation versus organo-mineral interactions for overall C stabilization changes with depth. The rapid incorporation of 14C label into the otherwise depleted DF shows that this organo-mineral fraction comprises highly stable material as well as more recent inputs.

Swanston, Christopher W.; Torn, Margaret S.; Hanson, Paul J.; Southon, John R.; Garten, Charles T.; Hanlon, Erin M.; Ganio, Lisa

2003-12-01T23:59:59.000Z

396

Carbon Sequestration in Reclaimed Mined Soils of Ohio  

SciTech Connect

This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites, owned and maintained by the American Electrical Power, are located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites, characterized by age chronosequences, were reclaimed with and without topsoil application and are under continuous grass or forest cover. Among the three sites chosen for this study one was reclaimed in 1978 (Cumberland), one in 1987 (Switch Grass) and one site was reclaimed in 1994 (Tilton's Run). All three sites were reclaimed with topsoil application and were under continuous grass cover. Eighteen experimental plots were developed on each site. Five fertilization treatments were applied in triplicate on each experimental site. During this quarter, water infiltration tests were performed on the soil surface in the experimental plots. Soil samples were analyzed for soil moisture characteristics. This report presents the data on infiltration rates, volume of transport and storage pores, and available water capacity (AWC) of soil. The infiltration rates after 5 min (i{sub 5}) showed high statistical variability (CV > 0.62) among the three sites. Both steady state infiltration rate and cumulative infiltration showed moderate to high variability (CV > 0.35). The mean values for the infiltration rate after 5 min, steady state infiltration rate, and cumulative infiltration were higher for Switch Grass (2.93 {+-} 2.05 cm min{sup -1}; 0.63 {+-} 0.34 cm min{sup -1}; 113.07 {+-} 39.37 cm) than for Tilton's Run (1.76 {+-} 1.42 cm min{sup -1}; 0.40 {+-} 0.18 cm min{sup -1}; 73.68 {+-} 25.94 cm), and lowest for Cumberland (0.63 {+-} 0.34 cm min{sup -1}; 0.27 {+-} 0.19 cm min{sup -1}; 57.89 {+-} 31.00 cm). The AWC for 0-15 cm soil was highest at Tilton's Run (4.21 {+-} 1.75 cm) followed by Cumberland (3.83 {+-} 0.77 cm) and Switch Grass (3.31 {+-} 0.10 cm). In 15-30 cm depth Switch Grass had higher AWC (3.15 {+-} 0.70 cm) than Tilton's Run (3.00 {+-} 0.43 cm) and Cumberland (2.78 {+-} 0.34 cm). In 30-50 cm depth Tilton's Run had higher AWC (4.31 {+-} 1.25 cm) than Switch Grass (3.18 {+-} 0.70 cm) and Cumberland (2.95 {+-} 1.07 cm). The volumes of transport and storage pores were fairly similar among sites up to 30 cm depth, but were variable for 30-50 cm depth. These preliminary results along with those reported earlier for the third quarter suggest that the management effects are important and indicative of these sources of variability.

M.K. Shukla; K. Lorenz; R. Lal

2005-10-01T23:59:59.000Z

397

Field test of Six-Phase Soil Heating and evaluation of engineering design code  

SciTech Connect

A field test was conducted to evaluate the performance of Six-Phase Soil Heating to enhance the removal of contaminants. The purpose of the test was to determine the scale-up characteristics of the Six-Phase Soil Heating technology and to evaluate a computer process simulator developed for the technology. The test heated a 20-ft diameter cylinder of uncontaminated soil to a 10-ft depth. Six-phase ac power was applied at a rate of 30--35 kW using a power system built from surplus electrical components. The test ran unattended, using a computer-based system to record data, alert staff of any excursions in operating conditions via telephone, and provide automatic shut-off of power depending on the type of excursion. The test data included in situ soil temperatures, voltage profiles, and moisture profiles (using a neutron-probetechnique). After 50 days of heating, soil in the center of the array at the 6-ft depth reached 80[degrees]C. Soil temperatures between the two electrodes at this depth reached approximately 75[degrees]C. Data from this test were compared with those predicted by a computer process simulator. The computer process simulator is a modified version of the TOUGH2 code, a thermal porous media code that can be used to determine the movement of air and moisture in soils. The code was modified to include electrical resistive heating and configured such that an application could be run quickly on a workstation (approximately 5 min for 1 day of field operation). Temperature and soil resistance data predicted from the process simulations matched actual data fairly closely. A series of parametric studies was performed to assess the affect of simulation assumptions on predicted parameters.

Bergsman, T.M.; Roberts, J.S.; Lessor, D.L.; Heath, W.O.

1993-02-01T23:59:59.000Z

398

Field test of Six-Phase Soil Heating and evaluation of engineering design code  

SciTech Connect

A field test was conducted to evaluate the performance of Six-Phase Soil Heating to enhance the removal of contaminants. The purpose of the test was to determine the scale-up characteristics of the Six-Phase Soil Heating technology and to evaluate a computer process simulator developed for the technology. The test heated a 20-ft diameter cylinder of uncontaminated soil to a 10-ft depth. Six-phase ac power was applied at a rate of 30--35 kW using a power system built from surplus electrical components. The test ran unattended, using a computer-based system to record data, alert staff of any excursions in operating conditions via telephone, and provide automatic shut-off of power depending on the type of excursion. The test data included in situ soil temperatures, voltage profiles, and moisture profiles (using a neutron-probetechnique). After 50 days of heating, soil in the center of the array at the 6-ft depth reached 80{degrees}C. Soil temperatures between the two electrodes at this depth reached approximately 75{degrees}C. Data from this test were compared with those predicted by a computer process simulator. The computer process simulator is a modified version of the TOUGH2 code, a thermal porous media code that can be used to determine the movement of air and moisture in soils. The code was modified to include electrical resistive heating and configured such that an application could be run quickly on a workstation (approximately 5 min for 1 day of field operation). Temperature and soil resistance data predicted from the process simulations matched actual data fairly closely. A series of parametric studies was performed to assess the affect of simulation assumptions on predicted parameters.

Bergsman, T.M.; Roberts, J.S.; Lessor, D.L.; Heath, W.O.

1993-02-01T23:59:59.000Z

399

Soil Moisture Modeling Based on Multiyear Observations in the Sahel  

Science Conference Proceedings (OSTI)

Two simple soil moisture models useful for drought monitoring and climate change studies were proposed, based on 4-yr ground observations of root-zone soil moisture in Sahelian Niger. One is a water balance model that calculates soil moisture ...

Y. Yamaguchi; M. Shinoda

2002-11-01T23:59:59.000Z

400

Comparison of Soil Hydraulic Parameterizations for Mesoscale Meteorological Models  

Science Conference Proceedings (OSTI)

Soil water contents, calculated with seven soil hydraulic parameterizations, that is, soil hydraulic functions together with the corresponding parameter sets, are compared with observational data. The parameterizations include the Campbell/Clapp–...

Frank J. Braun; Gerd Schädler

2005-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nitrate rates soil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Sensible Heat Observations Reveal Soil-Water Evaporation Dynamics  

Science Conference Proceedings (OSTI)

Soil-water evaporation is important at scales ranging from microbial ecology to large-scale climate. Yet routine measurements are unable to capture rapidly shifting near-surface soil heat and water processes involved in soil-water evaporation. ...

J. L. Heitman; R. Horton; T. J. Sauer; T. M. DeSutter

2008-02-01T23:59:59.000Z

402

Operational Soil Moisture Estimation for the Midwestern United States  

Science Conference Proceedings (OSTI)

An operational soil moisture monitoring capability for the midwestern United States is developed using a multilayer soil water balance model which incorporates daily weather data to calculate precipitation, soil evaporation, plant transpiration, ...

Kenneth E. Kunkel

1990-11-01T23:59:59.000Z

403

Operational dose rate visualization techniques  

SciTech Connect

The analysis of the gamma ray dose rate in the vicinity of a radiation source can be greatly aided by the use of recent state-of-the-art visualization techniques. The method involves calculating dose rates at thousands of locations within a complex geometry system. This information is then processed to create contour plots of the dose rate. Additionally, when these contour plots are created, animations can be created that dynamically display the dose rate as the shields or sources are moved.

Schwarz, R.A.; Morford, R.J.; Carter, L.L.; Jones, G.B.; Greenborg, J.

1994-01-01T23:59:59.000Z

404

DOE Guidance-Category Rating  

Energy.gov (U.S. Department of Energy (DOE))

This memorandum is to establish the Department of Energy's (DOE's) policy for the use of Category Rating.

405

ARCS – Access Rate Control System  

protected steel housing. ... Access Rate Control System This rugged, maintenance- ... Y-12 is seeking an industry partner to fully com-

406

ReproducedfromSoilScienceSocietyofAmericaJournal.PublishedbySoilScienceSocietyofAmerica.Allcopyrightsreserved. Hydraulic Properties in a Silt Loam Soil under Natural Prairie,  

E-Print Network (OSTI)

ReproducedfromSoilScienceSocietyofAmericaJournal.PublishedbySoilScienceSocietyofAmerica.Allcopyrightsreserved. Hydraulic Properties in a Silt Loam Soil under Natural Prairie, Conventional Till, and No-Till Juan P. Fuentes, Markus Flury,* and David F. Bezdicek ABSTRACT undergo this dramatic cyclic change in soil

Flury, Markus

407

Rapid Changes in Soil Carbon and Structural Properties Due to Stover Removal from No-Till Corn Plots  

SciTech Connect

Harvesting corn (Zea mays L.) stover for producing ethanol may be beneficial to palliate the dependence on fossil fuels and reduce CO2 emissions to the atmosphere, but stover harvesting may deplete soil organic carbon (SOC) and degrade soil structure. We investigated the impacts of variable rates of stover removal from no-till (NT) continuous corn systems on SOC and soil structural properties after 1 year of stover removal in three soils in Ohio: Rayne silt loam (fine-loamy, mixed, active, mesic Typic Hapludults) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. This study also assessed relationships between SOC and soil structural properties as affected by stover management. Six stover treatments that consisted of removing 100, 75, 50, 25, and 0, and adding 100% of corn stover corresponding to 0 (T0), 1.25 (T1.25), 2.50 (T2.5), 3.75 (T3.75), 5.00 (T5), and 10.00 (T10) Mg haj1 of stover, respectively, were studied for their total SOC concentration, bulk density (>b), aggregate stability, and tensile strength (TS) of aggregates. Effects of stover removal on soil properties were rapid and significant in the 0- to 5-cm depth, although the magnitude of changes differed among soils after only 1 year of stover removal. The SOC concentration declined with increase in removal rates in silt loams but not in clay loam soils. It decreased by 39% at Coshocton and 30% at Charleston within 1 year of complete stover removal. At the same sites, macroaggregates contained 10% to 45% more SOC than microaggregates. Stover removal reduced 94.75-mm macroaggregates and increased microaggregates (P G 0.01). Mean weight diameter (MWD) and TS of aggregates in soils without stover (T0) were 1.7 and 3.3 times lower than those in soils with normal stover treatments (T5) across sites. The SOC concentration was negatively correlated with >b and positively with MWD and LogTS. Stover removal at rates as low as 1.25 Mg haj1 reduced SOC and degraded soil structure even within 1 year, but further monitoring is needed to establish threshold levels of stover removal in relation to changes in soil quality.

Blanco-Canqui, H; Lal, Rattan; Post, W M.; Izaurralde, R Cesar C.; Owens, L B.

2006-06-01T23:59:59.000Z

408

The Influence of the Inclusion of Soil Freezing on Simulations by a Soil–Vegetation–Atmosphere Transfer Scheme  

Science Conference Proceedings (OSTI)

The interactions between the soil, biosphere, and atmosphere (ISBA) land surface parameterization scheme has been modified to include soil ice. The liquid water equivalent volumetric ice content is modeled using two reservoirs within the soil: a ...

A. Boone; V. Masson; T. Meyers; J. Noilhan

2000-09-01T23:59:59.000Z

409

An Investigation of Linked Physical And Biogeochemical Processes In Heterogeneous Soils In The Vadose Zone  

E-Print Network (OSTI)

Chemical dynamics in the vadose zone are poorly understood due to the transient nature of chemical and hydrologic conditions, but are nonetheless critical to understanding contaminant fate and transport. This work explored the effects of soil structure (i.e. layers, lenses) on linked geochemical, hydrological, and microbiological processes under changing hydrologic conditions (e.g. rainfall, introduction of groundwater, and fluctuating water table heights). A homogenized medium-grained sand, homogenized organic-rich loam and a sand-over-loam layered column were constructed for the first series of experiments. The second series of experiments employed two soil columns with lenses that were packed identically with sterilized and untreated sediments. Each consisted of two lenses of organic-rich loam in a medium-grained sand matrix. Lenses were located at different vertical depths and were horizontally offset. In-situ collocated probes collected soil hydrologic and chemical data. In the layered column, enhanced biogeochemical cycling was observed over the texturally homogeneous soil columns. Enumerations of Fe(III) and SO42- reducing microorganisms also show 1-2 orders of magnitude greater community numbers in the layered column. The greatest concentrations of aqueous FeS clusters (FeSaq) were observed in close proximity to the soil interface. To our knowledge, this was the first documentation of FeSaq in partially saturated sediments. Mineral and soil aggregate composite layers were also most abundant near the soil layer interface; the presence of which, likely contributed to an order of magnitude decrease of hydraulic conductivity. In the live lens column, Fe-oxide bands formed at the fringes of the lenses that retarded water flow rates by an order of magnitude compared to the sterilized column. Microbial activity also produced insoluble gases and that led to the creation of a separate gas phase that reduced hydraulic conductivity. This limited the interaction between groundwater with soil-pore waters that led to the formation of geochemically distinct water masses in relatively close proximity to one another. No such changes were observed in the sterilized column. When compared to homogenous columns, the presence of soil heterogeneities altered biogeochemical and hydrologic processes considerably which highlights the need to consider soil heterogeneity in contaminant fate and transport models. These findings suggest that quantifying coupled hydrologic-biogeochemical processes occurring at small scale soil interfaces is critical to accurately describing and predicting chemical changes at the larger system scale.

Hansen, David Joseph

2011-08-01T23:59:59.000Z

410

Effect of Dead Algae on Soil Permeability  

SciTech Connect

Since existing basins support heavy growths of unicellular green algae which may be killed by temperature variation or by inadvertent pH changes in waste and then deposited on the basin floor, information on the effects of dead algae on soil permeability was needed. This study was designed to show the effects of successive algal kills on the permeability of laboratory soil columns.

Harvey, R.S.

2003-02-21T23:59:59.000Z

411

Irrigation Monitoring with Soil Water Sensors  

E-Print Network (OSTI)

Monitoring soil water content is essential if growers want to optimize production, conserve water, reduce environmental impacts and save money. This publication illustrates how soil moisture monitoring can improve irrigation decisions and how it also can prevent irrigating the crop too much or too little.

Enciso, Juan; Porter, Dana; Peries, Xavier

2007-01-19T23:59:59.000Z

412

Estimating the Soil Surface Specific Humidity  

Science Conference Proceedings (OSTI)

Based on the recent experiment results, a formula is proposed to be used in numerical weather-climate models to estimate the soil surface humidity. The formula has a very simple form and shows a smooth transition in the soil surface specific ...

Tsengdar J. Lee; Roger A. Pielke

1992-05-01T23:59:59.000Z

413

Mathematics: Food, Soil, Water, Air, Free Speech  

E-Print Network (OSTI)

and Atrazine in Contaminated Soils Using Dairy-Manure Biochar Xinde Cao,*, Lena Ma, Yuan Liang, Bin Gao, Florida 32611 bS Supporting Information ' INTRODUCTION Biochar is increasingly receiving attention, and crop residues have been used for biochar production.1 Biochar is produced as a soil amendment

Russo, Bernard

414

Data Mining Soil Characteristics Affecting Corn Yield  

E-Print Network (OSTI)

Ten soil characteristic variables and corn yield were measured in a field located in southeastern Boone County, Iowa. Measurements were made on a grid of 215 locations throughout the field. We use graphical and simple numerical methods to obtain an understanding of the relationship between the soil characteristics and corn yield.

William F. Christensen; Di Cook

1998-01-01T23:59:59.000Z

415

NNSS Soils Monitoring: Plutonium Valley (CAU366)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

Miller Julianne J.,Mizell Steve A.,Nikolich George, Campbell Scott

2012-02-01T23:59:59.000Z

416

Process for removing polychlorinated biphenyls from soil  

DOE Patents (OSTI)

The present invention relates to a method of removing polychlorinated biphenyls from soil. The polychlorinated biphenyls are extracted from the soil by employing a liquid organic solvent dispersed in water in the ratio of about 1:3 to 3:1. The organic solvent includes such materials as short-chain hydrocarbons including kerosene or gasoline which are immiscible with water and are nonpolar. The organic solvent has a greater affinity for the PCB's than the soil so as to extract the PCB's from the soil upon contact. The organic solvent phase is separated from the suspended soil and water phase and distilled for permitting the recycle of the organic solvent phase and the concentration of the PCB's in the remaining organic phase. The present process can be satisfactorily practiced with soil containing 10 to 20% petroleum-based oils and organic fluids such as used in transformers and cutting fluids, coolants and the like which contain PCB's. The subject method provides for the removal of a sufficient concentration of PCB's from the soil to provide the soil with a level of PCB's within the guidelines of the Environmental Protection Agency.

Hancher, C.W.; Saunders, M.B.; Googin, J.M.

1984-11-16T23:59:59.000Z

417

Certification of Three NIST Renewal Soil Standard Reference ...  

Science Conference Proceedings (OSTI)

... a baseline agricultural soil, a highly contaminated soil ... g of the 201Hg enriched isotope ... primary reference materials including high-purity compounds ...

2010-07-27T23:59:59.000Z

418

Soiling of building envelope surfaces and its effect on solar...  

NLE Websites -- All DOE Office Websites (Extended Search)

Soiling of building envelope surfaces and its effect on solar reflectance-Part I: Analysis of roofing product databases Title Soiling of building envelope surfaces and its effect...