National Library of Energy BETA

Sample records for nitrate rates soil

  1. Effect of Phosphate, Fluoride, and Nitrate on Gibbsite Dissolution Rate and Solubility

    SciTech Connect (OSTI)

    Herting, Daniel L.

    2014-01-29

    Laboratory tests have been completed with simulated tank waste samples to investigate the effects of phosphate, fluoride, and nitrate on the dissolution rate and equilibrium solubility of gibbsite in sodium hydroxide solution at 22 and 40{degrees}C. Results are compared to relevant literature data and to computer model predictions. The presence of sodium nitrate (3 M) caused a reduction in the rate of gibbsite dissolution in NaOH, but a modest increase in the equilibrium solubility of aluminum. The increase in solubility was not as large, though, as the increase predicted by the computer model. The presence of phosphate, either as sodium phosphate or sodium fluoride phosphate, had a negligible effect on the rate of gibbsite dissolution, but caused a slight increase in aluminum solubility. The magnitude of the increased solubility, relative to the increase caused by sodium nitrate, suggests that the increase is due to ionic strength (or water activity) effects, rather than being associated with the specific ion involved. The computer model predicted that phosphate would cause a slight decrease in aluminum solubility, suggesting some Al-PO4 interaction. No evidence was found of such an interaction.

  2. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    SciTech Connect (OSTI)

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir E.; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; Wullschleger, Stan D.

    2015-06-08

    The nitrate (NO??) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO?? derived from at NO?? signal with ??N averaging 4.8 1.0 (standard error of the mean) and ??O averaging 70.2 1.7. In active layer pore waters, NO?? primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average ??N and ??O of NO?? from high-centered polygons were 0.5 1.1 and 4.1 0.6, respectively. When compared to the ??N of reduced nitrogen (N) sources, and the ??O of soil pore waters, it was evident that NO?? in high-centered polygons was primarily from microbial nitrification. Permafrost NO?? had ??N ranging from approximately 6 to 10, similar to atmospheric and microbial NO??, and highly variable ??O ranging from approximately 2 to 38. Permafrost ice wedges contained a significant atmospheric component of NO??, while permafrost textural ice contained a greater proportion of microbially derived NO??. Large-scale permafrost thaw in this environment would release NO?? with a ??O signature intermediate to that of atmospheric and microbial NO?. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO?? dual isotope technique in tundra environments, attribution of NO?? from thawing permafrost will not be straightforward. The NO?? isotopic signature, however, appears useful in identifying NO?? sources in extant permafrost ice.

  3. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; et al

    2015-05-13

    The nitrate (NO3–) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO3– derived from atmospheric deposition versus that derived from microbial nitrification.

  4. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir E.; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; et al

    2015-06-08

    The nitrate (NO₃⁻) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO₃⁻ derived from at NO₃⁻ signal with δ¹⁵N averaging –4.8 ± 1.0‰ (standard error of the mean) and δ¹⁸O averaging 70.2 ±1.7‰. In active layer pore waters, NO₃⁻ primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average δ¹⁵N and δ¹⁸O of NO₃⁻ from high-centered polygons were 0.5 ± 1.1‰ and –4.1 ± 0.6‰, respectively. When compared to the δ¹⁵N of reduced nitrogen (N) sources,more » and the δ¹⁸O of soil pore waters, it was evident that NO₃⁻ in high-centered polygons was primarily from microbial nitrification. Permafrost NO₃⁻ had δ¹⁵N ranging from approximately –6‰ to 10‰, similar to atmospheric and microbial NO₃⁻, and highly variable δ¹⁸O ranging from approximately –2‰ to 38‰. Permafrost ice wedges contained a significant atmospheric component of NO₃⁻, while permafrost textural ice contained a greater proportion of microbially derived NO₃⁻. Large-scale permafrost thaw in this environment would release NO₃⁻ with a δ¹⁸O signature intermediate to that of atmospheric and microbial NO₃. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO₃⁻ dual isotope technique in tundra environments, attribution of NO₃⁻ from thawing permafrost will not be straightforward. The NO₃⁻ isotopic signature, however, appears useful in identifying NO₃⁻ sources in extant permafrost ice.« less

  5. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    SciTech Connect (OSTI)

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir E.; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; Wullschleger, Stan D.

    2015-06-08

    The nitrate (NO₃⁻) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO₃⁻ derived from at NO₃⁻ signal with δ¹⁵N averaging –4.8 ± 1.0‰ (standard error of the mean) and δ¹⁸O averaging 70.2 ±1.7‰. In active layer pore waters, NO₃⁻ primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average δ¹⁵N and δ¹⁸O of NO₃⁻ from high-centered polygons were 0.5 ± 1.1‰ and –4.1 ± 0.6‰, respectively. When compared to the δ¹⁵N of reduced nitrogen (N) sources, and the δ¹⁸O of soil pore waters, it was evident that NO₃⁻ in high-centered polygons was primarily from microbial nitrification. Permafrost NO₃⁻ had δ¹⁵N ranging from approximately –6‰ to 10‰, similar to atmospheric and microbial NO₃⁻, and highly variable δ¹⁸O ranging from approximately –2‰ to 38‰. Permafrost ice wedges contained a significant atmospheric component of NO₃⁻, while permafrost textural ice contained a greater proportion of microbially derived NO₃⁻. Large-scale permafrost thaw in this environment would release NO₃⁻ with a δ¹⁸O signature intermediate to that of atmospheric and microbial NO₃. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO₃⁻ dual isotope technique in tundra environments, attribution of NO₃⁻ from thawing permafrost will not be straightforward. The NO₃⁻ isotopic signature, however, appears useful in identifying NO₃⁻ sources in extant permafrost ice.

  6. The Impact of Soil Sampling Errors on Variable Rate Fertilization

    SciTech Connect (OSTI)

    R. L. Hoskinson; R C. Rope; L G. Blackwood; R D. Lee; R K. Fink

    2004-07-01

    Variable rate fertilization of an agricultural field is done taking into account spatial variability in the soils characteristics. Most often, spatial variability in the soils fertility is the primary characteristic used to determine the differences in fertilizers applied from one point to the next. For several years the Idaho National Engineering and Environmental Laboratory (INEEL) has been developing a Decision Support System for Agriculture (DSS4Ag) to determine the economically optimum recipe of various fertilizers to apply at each site in a field, based on existing soil fertility at the site, predicted yield of the crop that would result (and a predicted harvest-time market price), and the current costs and compositions of the fertilizers to be applied. Typically, soil is sampled at selected points within a field, the soil samples are analyzed in a lab, and the lab-measured soil fertility of the point samples is used for spatial interpolation, in some statistical manner, to determine the soil fertility at all other points in the field. Then a decision tool determines the fertilizers to apply at each point. Our research was conducted to measure the impact on the variable rate fertilization recipe caused by variability in the measurement of the soils fertility at the sampling points. The variability could be laboratory analytical errors or errors from variation in the sample collection method. The results show that for many of the fertility parameters, laboratory measurement error variance exceeds the estimated variability of the fertility measure across grid locations. These errors resulted in DSS4Ag fertilizer recipe recommended application rates that differed by up to 138 pounds of urea per acre, with half the field differing by more than 57 pounds of urea per acre. For potash the difference in application rate was up to 895 pounds per acre and over half the field differed by more than 242 pounds of potash per acre. Urea and potash differences accounted

  7. Radon exhalation rates from some soil samples of Kharar, Punjab

    SciTech Connect (OSTI)

    Mehta, Vimal; Singh, Tejinder Pal; Chauhan, R. P.; Mudahar, G. S.

    2015-08-28

    Radon and its progeny are major contributors in the radiation dose received by general population of the world. Because radon is a noble gas, a large portion of it is free to migrate away from radium. The primary sources of radon in the houses are soils and rocks source emanations, emanation from building materials, and entry of radon into a structure from outdoor air. Keeping this in mind the study of radon exhalation rate from some soil samples of the Kharar, Punjab has been carried out using Can Technique. The equilibrium radon concentration in various soil samples of Kharar area of district Mohali varied from 12.7 Bqm{sup −3} to 82.9 Bqm{sup −3} with an average of 37.5 ± 27.0 Bqm{sup −3}. The radon mass exhalation rates from the soil samples varied from 0.45 to 2.9 mBq/kg/h with an average of 1.4 ± 0.9 mBq/kg/h and radon surface exhalation rates varied from 10.4 to 67.2 mBq/m{sup 2}/h with an average of 30.6 ± 21.8 mBq/m{sup 2}/h. The radon mass and surface exhalation rates of the soil samples of Kharar, Punjab were lower than that of the world wide average.

  8. Nitrate reduction

    DOE Patents [OSTI]

    Dziewinski, Jacek J. (Los Alamos, NM); Marczak, Stanislaw (Los Alamos, NM)

    2000-01-01

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

  9. Complementary system for long term measurements of radon exhalation rate from soil

    SciTech Connect (OSTI)

    Mazur, J.; Kozak, K.

    2014-02-15

    A special set-up for continuous measurements of radon exhalation rate from soil is presented. It was constructed at Laboratory of Radiometric Expertise, Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN), Krakow, Poland. Radon exhalation rate was determined using the AlphaGUARD PQ2000 PRO (Genitron) radon monitor together with a special accumulation container which was put on the soil surface during the measurement. A special automatic device was built and used to raise and lower back onto the ground the accumulation container. The time of raising and putting down the container was controlled by an electronic timer. This set-up made it possible to perform 4–6 automatic measurements a day. Besides, some additional soil and meteorological parameters were continuously monitored. In this way, the diurnal and seasonal variability of radon exhalation rate from soil can be studied as well as its dependence on soil properties and meteorological conditions.

  10. TREATMENT OF AMMONIUM NITRATE SOLUTIONS

    DOE Patents [OSTI]

    Boyer, T.W.; MacHutchin, J.G.; Yaffe, L.

    1958-06-10

    The treatment of waste solutions obtained in the processing of neutron- irradiated uranium containing fission products and ammonium nitrate is described. The object of this process is to provide a method whereby the ammonium nitrate is destroyed and removed from the solution so as to permit subsequent concentration of the solution.. In accordance with the process the residual nitrate solutions are treated with an excess of alkyl acid anhydride, such as acetic anhydride. Preferably, the residual nitrate solution is added to an excess of the acetic anhydride at such a rate that external heat is not required. The result of this operation is that the ammonium nitrate and acetic anhydride react to form N/sub 2/ O and acetic acid.

  11. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel

    SciTech Connect (OSTI)

    Ligotke, M.W.; Klopfer, D.C.

    1990-08-01

    Protective barriers have been identified as integral components of plans to isolate defense waste on the Hanford Site. The use of natural materials to construct protective barriers over waste site is being considered. Design requirements for protective barriers include preventing exposure of buried waste, and restricting penetration or percolation of surface waters through the waste zone. Studies were initiated to evaluate the effects of wind erosion on candidate protective barrier surfaces. A wind tunnel was used to provide controlled erosive stresses and to investigate the erosive effects of wind forces on proposed surface layers for protective barriers. Mixed soil and gravel surfaces were prepared and tested for resistance to wind erosion at the Pacific Northwest Laboratory Aerosol Wind Tunnel Research Facility. These tests were performed to investigate surface deflation caused by suspension of soil from various surface layer configurations and to provide a comparison of the relative resistance of the different surfaces to wind erosion. Planning, testing, and analyzing phases of this wind erosion project were coordinated with other tasks supporting the development of protective barriers. These tasks include climate-change predictions, field studies and modeling efforts. This report provides results of measurements of deflation caused by wind forces over level surfaces. Section 2.0 reviews surface layer characteristics and previous relevant studies on wind erosion, describes effects of erosion, and discusses wind tunnel modeling. Materials and methods of the wind tunnel tests are discussed in Section 3.0. Results and discussion are presented in Section 4.0, and conclusions and recommendations Section 5.0. 53 refs., 29 figs., 7 tabs.

  12. Alkali metal nitrate purification

    DOE Patents [OSTI]

    Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  13. WIPP Nitrate Updates 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 WIPP Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update, July 23, 2015 Waste Isolation Pilot Plant EPA I.D. Number: NM4890139088-TSDF WIPP Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update, July 16, 2015 Waste Isolation Pilot Plant EPA I.D. Number: NM4890139088-TSDF WIPP Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update, July 9, 2015 Waste Isolation Pilot Plant EPA I.D. Number: NM4890139088-TSDF WIPP Nitrate Salt Bearing

  14. Use of tensiometer for in situ measurement of nitrate leaching

    SciTech Connect (OSTI)

    Li, K.; Reddy, M.R.

    1999-07-01

    In order to monitor nitrate leaching from non-point source pollution, this study used tensiometers to measure in situ nitrate concentration and soil-moisture potential. Instead of filling the tensiometers with pure water, the study filled the tensiometers with nitrate ionic strength adjuster (ISA, 1 M (NH{sub 4}){sub 2}SO{sub 4}). After the installation of the tensiometers at various depths along soil profiles, a portable pressure transducer was used to measure the soil moisture potential, and a nitrate electrode attached to an ion analyzer was used to measure the nitrate concentration in situ. The measurement was continuous and non-destructive. To test this method in the laboratory, eight bottles filled with pure sand were treated with known nitrate solutions, and a tensiometer was placed in each bottle. Measurements were taken every day for 30 days. Laboratory test showed a linear relationship between the known nitrate concentration and the tensiometer readings (R{sup 2} = 0.9990). Then a field test was conducted in a watermelon field with green manure mulch. Field data indicated a potential of nitrate leaching below the soil depth of 100 cm when crop uptake of nutrients was low.

  15. Thermochemical nitrate destruction

    DOE Patents [OSTI]

    Cox, John L. (Richland, WA); Hallen, Richard T. (Richland, WA); Lilga, Michael A. (Richland, WA)

    1992-01-01

    A method is disclosed for denitrification of nitrates and nitrates present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200.degree. C. to about 600.degree. C., and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  16. Thermochemical nitrate destruction

    DOE Patents [OSTI]

    Cox, J.L.; Hallen, R.T.; Lilga, M.A.

    1992-06-02

    A method is disclosed for denitrification of nitrates and nitrites present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200 C to about 600 C, and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  17. WIPP Nitrate Updates 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Update, December 4, 2014 Waste Isolation Pilot Plant EPA I.D. Number: NM4890139088-TSDF Jose R. FrancoCBFO and Robert L. McQuinnNWP dated December 5, 2014 WIPP Nitrate Salt...

  18. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    SciTech Connect (OSTI)

    Maher, K.; Steefel, C. I.; White, A.F.; Stonestrom, D.A.

    2009-02-25

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka marine terrace chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized (White et al., 2008, GCA) and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisser and [2006] or the aluminum inhibition model proposed by Oelkers et al. [1994], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO{sub 2}(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total

  19. Soil erosion rates caused by wind and saltating sand stresses in a wind tunnel

    SciTech Connect (OSTI)

    Ligotke, M.W.

    1993-02-01

    Wind erosion tests were performed in a wind tunnel in support of the development of long-term protective barriers to cap stabilized waste sites at the Hanford Site. Controlled wind and saltating sand erosive stresses were applied to physical models of barrier surface layers to simulate worst-case eolian erosive stresses. The goal of these tests was to provide information useful to the design and evaluation of the surface layer composition of an arid-region waste site barrier concept that incorporates a deep fine-soil reservoir. A surface layer composition is needed that will form an armor resistant to eolian erosion during periods of extreme dry climatic conditions, especially when such conditions result in the elimination or reduction of vegetation by water deprivation or wildfire. Because of the life span required of Hanford waste barriers, it is important that additional work follow these wind tunnel studies. A modeling effort is planned to aid the interpretation of test results with respect to the suitability of pea gravel to protect the finite-soil reservoir during long periods of climatic stress. It is additionally recommended that wind tunnel tests be continued and field data be obtained at prototype or actual barrier sites. Results wig contribute to barrier design efforts and provide confidence in the design of long-term waste site caps for and regions.

  20. Purification of alkali metal nitrates

    DOE Patents [OSTI]

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  1. Final Report for DOE grant no. DE-FG02-04ER63883: Can soil genomics predict the impact of precipitation on nitrous oxide flux from soil

    SciTech Connect (OSTI)

    Egbert Schwartz

    2008-12-15

    Nitrous oxide is a potent greenhouse gas that is released by microorganisms in soil. However, the production of nitrous oxide in soil is highly variable and difficult to predict. Future climate change may have large impacts on nitrous oxide release through alteration of precipitation patterns. We analyzed DNA extracted from soil in order to uncover relationships between microbial processes, abundance of particular DNA sequences and net nitrous oxide fluxes from soil. Denitrification, a microbial process in which nitrate is used as an electron acceptor, correlated with nitrous oxide flux from soil. The abundance of ammonia oxidizing archaea correlated positively, but weakly, with nitrous oxide production in soil. The abundance of bacterial genes in soil was negatively correlated with gross nitrogen mineralization rates and nitrous oxide release from soil. We suggest that the most important control over nitrous oxide production in soil is the growth and death of microorganisms. When organisms are growing nitrogen is incorporated into their biomass and nitrous oxide flux is low. In contrast, when microorganisms die, due to predation or infection by viruses, inorganic nitrogen is released into the soil resulting in nitrous oxide release. Higher rates of precipitation increase access to microorganisms by predators or viruses through filling large soil pores with water and therefore can lead to large releases of nitrous oxide from soil. We developed a new technique, stable isotope probing with 18O-water, to study growth and mortality of microorganisms in soil.

  2. Remediated Nitrate Salt Drums Background

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Providing Additional Pressure Relief to the Remediated Nitrate Salt Drums Background After the radiological event on February 14, 2014 at the Waste Isolation Pilot Plant (WIPP), Department of Energy (DOE) scientists from several national laboratories conducted extensive experiments and modeling studies to determine what caused the drum to breach. These investigations indicated that an incompatible mixture of nitrate salts and an organic absorbent created the conditions that resulted in an

  3. Plutonium nitrate bottle counter manual

    SciTech Connect (OSTI)

    Menlove, H.O.; Adams, E.L.; Holbrooks, O.R.

    1984-03-01

    A neutron coincidence counter has been designed for plutonium nitrate assay in large storage bottles. This assay system can be used in the reprocessing plant or in the nitrate-to-oxide conversion facility. The system is based on the family of neutron detectors similar to the high-level neutron coincidence counter. This manual describes the system and gives performance and calibration parameters for typical applications. 4 references, 11 figures, 9 tables.

  4. Corrosion of aluminides by molten nitrate salt

    SciTech Connect (OSTI)

    Tortorelli, P.F.; Bishop, P.S.

    1990-01-01

    The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

  5. Process for reducing aqueous nitrate to ammonia

    DOE Patents [OSTI]

    Mattus, Alfred J.

    1993-01-01

    Powdered aluminum is added to a nitrate-containing alkaline, aqueous solution to reduce the nitrate and/or nitrite to ammonia and co-produce a sinterable ceramic product.

  6. Process for reducing aqueous nitrate to ammonia

    DOE Patents [OSTI]

    Mattus, A.J.

    1993-11-30

    Powdered aluminum is added to a nitrate-containing alkaline, aqueous solution to reduce the nitrate and/or nitrite to ammonia and co-produce a sinterable ceramic product. 3 figures.

  7. Biological denitrification of high concentration nitrate waste

    DOE Patents [OSTI]

    Francis, Chester W.; Brinkley, Frank S.

    1977-01-01

    Biological denitrification of nitrate solutions at concentrations of greater than one kilogram nitrate per cubic meter is accomplished anaerobically in an upflow column having as a packing material a support for denitrifying bacteria.

  8. Method of producing thin cellulose nitrate film

    DOE Patents [OSTI]

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  9. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry

    SciTech Connect (OSTI)

    Meusinger, Carl; Johnson, Matthew S. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joel, E-mail: jsavarino@lgge.obs.ujf-grenoble.fr [Univ. Grenoble Alpes, LGGE, F-38000 Grenoble (France); CNRS, LGGE, F-38000 Grenoble (France)

    2014-06-28

    Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude apparently a result of whether nitrate is located at the air-ice interface or in the ice matrix constituting the largest uncertainty in models of snowpack NO{sub x} emissions. Here, a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by flushing the snow during irradiation with UV light. A selection of UV filters allowed examination of the effects of the 200 and 305nm absorption bands of nitrate. Nitrate concentration and photon flux were measured in the snow. The quantum yield for loss of nitrate was observed to decrease from 0.44 to 0.003 within what corresponds to days of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate, and one of buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NO{sub x} emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200nm band was found to be ?1%, much lower than reported for aqueous chemistry. A companion paper presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study.

  10. STANDARDS CONTROLLING AIR EMISSIONS FOR THE SOIL DESICCATION PILOT TEST

    SciTech Connect (OSTI)

    BENECKE MW

    2010-09-08

    This air emissions document supports implementation of the Treatability Test Plan for Soil Desiccation as outlined in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau (DOE/RL-2007-56). Treatability testing supports evaluation of remedial technologies for technetium-99 (Tc-99) contamination in the vadose zone at sites such as the BC Cribs and Trenches. Soil desiccation has been selected as the first technology for testing because it has been recommended as a promising technology in previous Hanford Site technology evaluations and because testing of soil desiccation will provide useful information to enhance evaluation of other technologies, in particular gas-phase remediation technologies. A soil desiccation pilot test (SDPT) will evaluate the desiccation process (e.g., how the targeted interval is dried) and the long-term performance for mitigation of contaminant transport. The SDPT will dry out a moist zone contaminated by Tc-99 and nitrate that has been detected at Well 299-E13-62 (Borehole C5923). This air emissions document applies to the activities to be completed to conduct the SDPT in the 200-BC-1 operable unit located in the 200 East Area of the Hanford Site. Well 299-E13-62 is planned to be used as an injection well. This well is located between and approximately equidistant from cribs 216-B-16, 216-B-17, 216-B-18. and 216-B-19. Nitrogen gas will be pumped at approximately 300 ft{sup 3}/min into the 299-EI3-62 injection well, located approximately 12 m (39 ft) away from extraction well 299-EI3-65. The soil gas extraction rate will be approximately 150 ft{sup 3}/min. The SDPT will be conducted continuously over a period of approximately six months. The purpose of the test is to evaluate soil desiccation as a potential remedy for protecting groundwater. A conceptual depiction is provided in Figure 1. The soil desiccation process will physically dry, or evaporate, some of the water from the moist zone of interest. As such, it is

  11. Nitrate removal from drinking water -- Review

    SciTech Connect (OSTI)

    Kapoor, A.; Viraraghavan, T.

    1997-04-01

    Nitrate concentrations in surface water and especially in ground water have increased in Canada, the US, Europe, and other areas of the world. This trend has raised concern because nitrates cause methemoglobiinemia in infants. Several treatment processes including ion exchange, biological denitrification, chemical denitrification, reverse osmosis, electrodialysis, and catalytic denitrification can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that ion exchange and biological denitrification are more acceptable for nitrate removal than reverse osmosis. Ion exchange is more viable for ground water while biological denitrification is the preferred alternative for surface water. This paper reviews the developments in the field of nitrate removal processes.

  12. PREPARATION OF DIBASIC ALUMINUM NITRATE

    DOE Patents [OSTI]

    Gresky, A.T.; Nurmi, E.O.; Foster, D.L.; Wischow, R.P.; Savolainen, J.E.

    1960-04-01

    A method is given for the preparation and recovery of basic aluminum nltrates having an OH: Al ratio of at least two, comprising two steps. First, metallic aluminum is dissolved in aqueous Al(NO/sub 3/)/sub 3/, in the presence of a small quantity of elemental or ionic mercury, to increase its Al: NO/sub 3/ ratio into the range 1 to 1.2. The resulting aqueous solution is then added to an excess of a special organic solvent, typically a mixture of five parts methanol and six parts diethyl ether, whereupon the basic aluminum nitrate, e.g. Al/sub 6/(OH)/sub 13/-(NO/sub 3/)/sub 5/, recoverably precipitates.

  13. Remediated Nitrate Salt Drums Safety Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediated Nitrate Salt Drums Safety Update Remediated Nitrate Salt Drums Safety Update Topic: Mr. Nickless, Environmental Management Los Alamos, Provided a presentation on the status of the Nitrate Salt waste at Los Alamos.

  14. [Task 1.] Biodenitrification of low nitrate solar pond waters using sequencing batch reactors. [Task 2.] Solidification/stabilization of high strength and biodenitrified heavy metal sludges with a Portland cement/flyash system

    SciTech Connect (OSTI)

    Figueroa, L.; Cook, N.E.; Siegrist, R.L.; Mosher, J.; Terry, S.; Canonico, S.

    1995-09-22

    Process wastewater and sludges were accumulated on site in solar evaporation ponds during operations at the Department of Energy's Rocky Flats Plant (DOE/RF). Because of the extensive use of nitric acid in the processing of actinide metals, the process wastewater has high concentrations of nitrate. Solar pond waters at DOE/RF contain 300-60,000 mg NO{sub 3}{sup {minus}}/L. Additionally, the pond waters contain varying concentrations of many other aqueous constituents, including heavy metals, alkali salts, carbonates, and low level radioactivity. Solids, both from chemical precipitation and soil material deposition, are also present. Options for ultimate disposal of the pond waters are currently being evaluated and include stabilization and solidification (S/S) by cementation. Removal of nitrates can enhance a wastes amenability to S/S, or can be a unit operation in another treatment scheme. Nitrate removal is also a concern for other sources of pollution at DOE/RF, including contaminated groundwater collected by interceptor trench systems. Finally, nitrate pollution is a problem at many other DOE facilities where actinide metals were processed. The primary objective of this investigation was to optimize biological denitrification of solar pond waters with nitrate concentrations of 300--2,100 mg NO{sub 3}{sup {minus}}/L to below the drinking water standard of 45 mg NO{sub 3}{sup {minus}}/L (10 mg N/L). The effect of pH upon process stability and denitrification rate was determined. In addition, the effect Cr(VI) on denitrification and fate of Cr(VI) in the presence of denitrifying bacteria was evaluated.

  15. Sandia Energy - Molten Nitrate Salt Initial Flow Testing is a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nitrate Salt Initial Flow Testing is a Tremendous Success Home Renewable Energy News Concentrating Solar Power Solar Molten Nitrate Salt Initial Flow Testing is a Tremendous...

  16. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the ...

  17. Remediated Nitrate Salt Drums Storage at Los Alamos National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory As a part of its national security ...

  18. Synthesis of a new energetic nitrate ester

    SciTech Connect (OSTI)

    Chavez, David E

    2008-01-01

    Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

  19. Energetic Material - Electro Nitration - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electro Nitration Idaho National Laboratory Contact INL About This Technology Technology Marketing SummaryINL has developed an improved method of nitrating a nitro compound by oxidizing a chemical mediator in the presence of a voltage in order to produce an oxidizing agent. Then, the agent reacts with a nitro compound and ion source in a solution in order to form a geminaldinitro compound. The electrochemical synthesis of geminaldinitro results in the formation of a nitro compound that may be

  20. Process for the preparation of an energetic nitrate ester

    DOE Patents [OSTI]

    Chavez, David E; Naud, Darren L; Hiskey, Michael A

    2013-12-17

    A process for the preparation of an energetic nitrate ester compound and related intermediates is provided.

  1. Treatment of Remediated Nitrate Salts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Treatment of Remediated Nitrate Salts Treatment of Remediated Nitrate Salts Topic: Plan for remediation the nitrate salt waste from the 3706 campaign that is currently stored at Material Disposal Area G, presenter was David Funk, LANS. Nitrate Salts - November 18, 2015 (1 MB

  2. Process for decomposing nitrates in aqueous solution

    DOE Patents [OSTI]

    Haas, Paul A.

    1980-01-01

    This invention is a process for decomposing ammonium nitrate and/or selected metal nitrates in an aqueous solution at an elevated temperature and pressure. Where the compound to be decomposed is a metal nitrate (e.g., a nuclear-fuel metal nitrate), a hydroxylated organic reducing agent therefor is provided in the solution. In accordance with the invention, an effective proportion of both nitromethane and nitric acid is incorporated in the solution to accelerate decomposition of the ammonium nitrate and/or selected metal nitrate. As a result, decomposition can be effected at significantly lower temperatures and pressures, permitting the use of system components composed of off-the-shelf materials, such as stainless steel, rather than more costly materials of construction. Preferably, the process is conducted on a continuous basis. Fluid can be automatically vented from the reaction zone as required to maintain the operating temperature at a moderate value--e.g., at a value in the range of from about 130.degree.-200.degree. C.

  3. Lithium-boron anodes in nitrate thermal battery cells

    SciTech Connect (OSTI)

    McManis III, G. E.; Fletcher, A. N.; Miles, M. H.

    1985-08-13

    A thermally activated electrochemical cell utilizes a lithium-boron anode and a molten nitrate electrolyte selected from the group consisting of lithium nitrate, a mixture of lithium nitrate and sodium nitrate, a mixture of lithium nitrate and potassium nitrate, and a mixture of lithium nitrate and sodium nitrate with potassium nitrate, to provide improved cell electrical performance. The electrolyte is contained on a fiberglass separator and the electrolyte adjacent to the cathode may contain silver nitrate as well. Current densities over 300 mA/cm/sup 2/ with a usable temperature range of over 150/sup 0/ C. have been obtained. Anode open circuit potentials of about 3.2 V were found with little polarization at 100 mA/cm/sup 2/ and with very slight polarization at 300 mA/cm/sup 2/.

  4. SEPARATION OF URANYL NITRATE BY EXTRACTION

    DOE Patents [OSTI]

    Stoughton, R.W.; Steahly, F.L.

    1958-08-26

    A process is presented for obtaining U/sup 233/ from solutions containing Pa/sup 233/. A carrier precipitate, such as MnO/sub 2/, is formed in such solutions and carries with it the Pa/sup 233/ present. This precipitate is then dissolved in nitric acid and the solution is aged to allow decay of the Pa/ sup 233/ into U/sup 233/. After a sufficient length of time the U/sup 233/ bearing solution is made 2.5 to 4.5 Molar in manganese nitrate by addition thereof, and the solution is then treated with ether to obtain uranyl nitrate by solvent extraction techniques.

  5. Automated soil gas monitoring chamber

    DOE Patents [OSTI]

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  6. Nitrate Salt Surrogate Blending Scoping Test Plan

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-13

    Test blending equipment identified in the “Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing”. Determine if the equipment will provide adequate mixing of zeolite and surrogate salt/Swheat stream; optimize equipment type and operational sequencing; impact of baffles and inserts on mixing performance; and means of validating mixing performance

  7. Denitration of High Nitrate Salts Using Reductants

    SciTech Connect (OSTI)

    HD Smith; EO Jones; AJ Schmidt; AH Zacher; MD Brown; MR Elmore; SR Gano

    1999-05-03

    This report describes work conducted by Pacific Northwest National Laboratory (PNNL), in conjunction with Idaho National Engineering and Environmental Laboratory (INEEL), to remove nitrates in simulated low-activity waste (LAW). The major objective of this work was to provide data for identifying and demonstrating a technically viable and cost-effective approach to condition LAW for immobilization (grout).

  8. NITRATE DESTRUCTION LITERATURE SURVEY AND EVALUATION CRITERIA

    SciTech Connect (OSTI)

    Steimke, J.

    2011-02-01

    This report satisfies the initial phase of Task WP-2.3.4 Alternative Sodium Recovery Technology, Subtask 1; Develop Near-Tank Nitrate/Nitrite Destruction Technology. Some of the more common anions in carbon steel waste tanks at SRS and Hanford Site are nitrate which is corrosive, and nitrite and hydroxide which are corrosion inhibitors. At present it is necessary to periodically add large quantities of 50 wt% caustic to waste tanks. There are three primary reasons for this addition. First, when the contents of salt tanks are dissolved, sodium hydroxide preferentially dissolves and is removed. During the dissolution process the concentration of free hydroxide in the tank liquid can decrease from 9 M to less than 0.2 M. As a result, roughly half way through the dissolution process large quantities of sodium hydroxide must be added to the tank to comply with requirements for corrosion control. Second, hydroxide is continuously consumed by reaction with carbon dioxide which occurs naturally in purge air used to prevent buildup of hydrogen gas inside the tanks. The hydrogen is generated by radiolysis of water. Third, increasing the concentration of hydroxide increases solubility of some aluminum compounds, which is desirable in processing waste. A process that converts nitrate and nitrite to hydroxide would reduce certain costs. (1) Less caustic would be purchased. (2) Some of the aluminum solid compounds in the waste tanks would become more soluble so less mass of solids would be sent to High Level Vitrification and therefore it would be not be necessary to make as much expensive high level vitrified product. (3) Less mass of sodium would be fed to Saltstone at SRS or Low Level Vitrification at Hanford Site so it would not be necessary to make as much low level product. (4) At SRS less nitrite and nitrate would be sent to Defense Waste Processing Facility (DWPF) so less formic acid would be consumed there and less hydrogen gas would be generated. This task involves

  9. Atmospheric formation and removal of C3-C5 peroxyacyl nitrates

    SciTech Connect (OSTI)

    Grosjean, D.

    1993-12-31

    The C3-C5 peroxyacyl nitrates RC(O)OONO{sub 2} (R=Et, n-Pr, i-Pr, n-Bu, i-Bu, sec-Bu, t-Bu, Ch{sub 2}=CH- and CH{sub 2}=C(CH{sub 3})-) have been synthesized and prepared in situ and have been characterized by electron capture gas chromatography. Their thermal decomposition rates have been measured and are similar to that of PAN (R = CH{sub 3}). Carbonyl products have been identified and the corresponding reaction mechanisms have been outlined. Ambient levels of several peroxyacyl nitrates (R =CH{sub 3}, Et, n-Pr and CH{sub 2}=(CH{sub 3})-) have been measured. The results are discussed with focus on atmospheric hydrocarbons as precursors to C3-C5 peroxyacyl nitrates in the atmosphere.

  10. Nitrate to ammonia ceramic (NAC) bench scale stabilization study

    SciTech Connect (OSTI)

    Caime, W.J.; Hoeffner, S.L.

    1995-10-01

    Department of Energy (DOE) sites such as the Hanford site, Idaho National Engineering Laboratory (INEL), Savannah River site, Oak Ridge National Laboratory (ORNL) have large quantities of sodium-nitrate based liquid wastes. A process to reduce the nitrates to ammonia has been developed at ORNL. This technology creates a sludge lower in nitrates. This report describes stabilization possibilities of the sludge.

  11. Toluene nitration in irradiated nitric acid and nitrite solution

    SciTech Connect (OSTI)

    Gracy Elias; Bruce J. Mincher; Stephen P. Mezyk; Jim Muller; Leigh R. Martin

    2011-04-01

    The kinetics, mechanisms, and stable products produced for the aryl alkyl mild ortho-para director - toluene, in irradiated nitric acid and neutral nitrite solutions were investigated using ?, and pulse radiolysis. Electron pulse radiolysis was used to determine the bimolecular rate constants for the reaction of toluene with different transient species produced by irradiation. HPLC with UV detection was primarily used to assess the stable reaction products. GC-MS and LC-MS were used to confirm the results from HPLC. Free-radical nitration reaction products were found in irradiated acidic and neutral media. In acidic medium, the ring substitution and side chain substitution and oxidation produced different nitro products. In ring substitution, nitrogen oxide radicals were added mainly to hydroxyl radical-produced cyclohexadienyl radical, and in side chain substitution they were added to the carbon-centered benzyl radical produced by H-atom abstraction. In neutral nitrite toluene solution, radiolytic ring nitration products approached a statistically random distribution, suggesting a free-radical reaction involving addition of the NO2 radical.

  12. Soils Soil Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soils Soil Series and Phase DBaC i:JFu IIiiiiIO!:l _PK _TuE _Ud DVeD o o o 1180 Meters o 590 \' Community _ Loblolly Pine D Mixed Pine/Hardwood D Upland Hardwood D Bonomland Hardwood iiiI Bonomland HardwoodlPine N Streams * TES Plants (1) D TES Plants (2) U Monitoring Wells o SRS Bays 6 ~ Utili1y ROW !.! Openwells tit NPDES outfalls ** Areas WI Roads rnOther Set-Asides ~ Hydric Soils Figure 15-1. Plant cOllllllunities and soils associated with the WhippldOH ER Study Site Set-Aside Area. 15-7

  13. Soils Soil Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Soils Soil Series and Phase D Fa D LaB _ TrB D TrC _ VeC .Wm '" Vegetation Compartment 28 Community D Mixed Pine/Hardwood D Upland Hardwod D Bottomland Hardwood _Water D Sandhill Scrub oak/Pine D Sandhill Pine/Scrub oak N Streams Roads _Water [2LJ Other Set-Asides DTES Plants (2) llilliJ Hydric Soils Road 8.11 560 Meters Figure 29-1. Plant cOllll1lunities and soils associated with the Scrub Oak Natural Area. 29-5 Set-Aside 29: Scrub Oak Natural Area

  14. Supplemental Cooling for Nitrate Salt Waste

    SciTech Connect (OSTI)

    Goldberg, Mitchell S.

    2015-08-19

    In July 2015, Los Alamos National Laboratory completed installation of a supplemental cooling system in the structure where remediated nitrate salt waste drums are stored. Although the waste currently is in a safe configuration and is monitored daily,controlling the temperature inside the structure adds another layer of protection for workers, the public,and the environment.This effort is among several layers of precautions designed to secure the waste.

  15. GRAPHITE PRODUCTION UTILIZING URANYL NITRATE HEXAHYDRATE CATALYST

    DOE Patents [OSTI]

    Sheinberg, H.; Armstrong, J.R.; Schell, D.H.

    1964-03-10

    ABS>The graphitizing of a mixture composed of furfuryl alcohol binder and uranyl nitrate hexahydrate hardener and the subsequent curing, baking, and graphitizing with pressure being initially applied prior to curing are described. The pressure step may be carried out by extrusion, methyl cellulose being added to the mixture before the completion of extrusion. Uranium oxide may be added to the graphitizable mixture prior to the heating and pressure steps. The graphitizable mixture may consist of discrete layers of different compositions. (AEC)

  16. Biological Redox Cycling Of Iron In Nontronite And Its Potential Application In Nitrate Removal

    SciTech Connect (OSTI)

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.; Zeng, Qiang; Edelmann, Richard E.; Pentrak, Martin; Agrawal, Abinash

    2015-05-05

    Redox cycling of structural Fe in phyllosilicates provides a potential method to remediate nitrate contamination in natural environment. Past research has only studied chemical redox cycles or a single biologically mediated redox cycle of Fe in phyllosilicates. The objective of this research was to study three microbially driven redox cycles of Fe in one phyllosilicate, nontronite (NAu-2). During the reduction phase structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacteria Shewanella putrefaciens CN32 as mediator in bicarbonate-buffered and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served an electron donor, nitrate as electron acceptor, and nitrate-dependent Fe(II)-oxidizing bacteria Pseudogulbenkiania sp. strain 2002 as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo 3 redox cycles without significant reductive or oxidative dissolution. X-ray diffraction and scanning and transmission electron microscopy revealed that NAu-2 was the dominant residual mineral throughout the 3 redox cycles with some dissolution textures but no significant secondary mineralization. Mssbauer spectroscopy revealed that Fe(II) in bio-reduced samples likely occurred in two distinct environments, at edges and the interior of the NAu-2 structure. Nitrate was completely reduced to nitrogen gas under both buffer conditions and this extent and rate did not change with Fe redox cycles. Mssbauer spectroscopy further revealed that nitrate reduction was coupled to predominant/preferred oxidation of edge Fe(II). These results suggest that structural Fe in phyllosilicates may represent a renewable source to continuously remove nitrate in natural environments.

  17. Electrochemical cell having an alkali-metal-nitrate electrode

    DOE Patents [OSTI]

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  18. Project Profile: Advanced Nitrate Salt Central Receiver Power Plant |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nitrate Salt Central Receiver Power Plant Project Profile: Advanced Nitrate Salt Central Receiver Power Plant Abengoa logo Abengoa, under the Baseload CSP FOA, demonstrated a 100-megawatt electrical (MWe) central receiver plant using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator. Approach Photo of two lit towers surrounded by much smaller blue flat plates that are mounted on the ground. Abengoa planned to

  19. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan | Department of Energy Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the Plan required by the New Mexico Environment Department Administrative Order 05-20001 issued on May 20, 2014 to the U. S. Department of Energy and Nuclear Waste Partnership LLC. The Order, at paragraph 22, requires the Permittees to submit a WIPP Nitrate Salt Bearing Waste Container

  20. Stainless steel corrosion by molten nitrates : analysis and lessons learned.

    SciTech Connect (OSTI)

    Kruizenga, Alan Michael

    2011-09-01

    A secondary containment vessel, made of stainless 316, failed due to severe nitrate salt corrosion. Corrosion was in the form of pitting was observed during high temperature, chemical stability experiments. Optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were all used to diagnose the cause of the failure. Failure was caused by potassium oxide that crept into the gap between the primary vessel (alumina) and the stainless steel vessel. Molten nitrate solar salt (89% KNO{sub 3}, 11% NaNO{sub 3} by weight) was used during chemical stability experiments, with an oxygen cover gas, at a salt temperature of 350-700 C. Nitrate salt was primarily contained in an alumina vessel; however salt crept into the gap between the alumina and 316 stainless steel. Corrosion occurred over a period of approximately 2000 hours, with the end result of full wall penetration through the stainless steel vessel; see Figures 1 and 2 for images of the corrosion damage to the vessel. Wall thickness was 0.0625 inches, which, based on previous data, should have been adequate to avoid corrosion-induced failure while in direct contact with salt temperature at 677 C (0.081-inch/year). Salt temperatures exceeding 650 C lasted for approximately 14 days. However, previous corrosion data was performed with air as the cover gas. High temperature combined with an oxygen cover gas obviously drove corrosion rates to a much higher value. Corrosion resulted in the form of uniform pitting. Based on SEM and EDS data, pits contained primarily potassium oxide and potassium chromate, reinforcing the link between oxides and severe corrosion. In addition to the pitting corrosion, a large blister formed on the side wall, which was mainly composed of potassium, chromium and oxygen. All data indicated that corrosion initiated internally and moved outward. There was no evidence of intergranular corrosion nor were there any indication of fast pathways along grain boundaries. Much of the

  1. Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    In addition to the remediated nitrate salt (RNS) waste at the Laboratory, similar drums are underground at WIPP and at Waste Control Specialists (WCS) in Andrews, Texas.

  2. Operating Experience Level 2, Evaluation of Nitrate Bearing Transurani...

    Broader source: Energy.gov (indexed) [DOE]

    015 OE-2 2015-01: Evaluation of Nitrate Bearing Transuranic Waste Streams This Operating Experience Level 2 (OE-2) document provides actions to perform an evaluation of...

  3. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Prepared in Response to New Mexico ... (DOE) and Nuclear Waste Partnership LLC (NWP), collectively referred to as the Permittees. ...

  4. Mass Transport within Soils

    SciTech Connect (OSTI)

    McKone, Thomas E.

    2009-03-01

    on (1) the composition of the soil and physical state of the soil, (2) the chemical and physical properties of the substance of interest, and (3) transformation rates in soil. Our particular focus is on approaches for constructing soil-transport algorithms and soil-transport parameters for incorporation within multimedia fate models. We show how MTC's can be developed to construct a simple two-compartment air-soil system. We then demonstrate how a multi-layer-box-model approach for soil-mass balance converges to the exact analytical solution for concentration and mass balance. Finally, we demonstrate and evaluate the performance of the algorithms in a model with applications to the specimen chemicals benzene, hexachlorobenzene, lindane gammahexachlorocyclohexane, benzo(a)pyrene, nickel, and copper.

  5. Soil washing: A preliminary assessment of its applicability to Hanford

    SciTech Connect (OSTI)

    Gerber, M A; Freeman, H D; Baker, E G; Riemath, W F

    1991-09-01

    Soil washing is being considered for treating soils at the US Department of Energy's (DOE) Hanford Site. As a result of over 50 years of operations to produce plutonium for the US Department of Defense and research for DOE, soils in areas within the Site are contaminated with hazardous wastes and radionuclides. In the soil washing process, contaminated soil is mixed with a liquid and then physically and/or chemically treated to dissolve the contaminants into solution and/or concentrate them in a small fraction of the soil. The purpose of this procedure is to separate the contaminants from the bulk of the soil. The key to successful application is to match the types of contaminants and soil characteristics with physical-chemical methods that perform well under the existing conditions. The applicability of soil washing to Hanford Site contaminated soils must take into account both the characteristics of the oil and the type of contamination. Hanford soils typically contain up to 90% sand, gravel, and cobbles, which generally are favorable characteristics for soil washing. For example, in soil samples from the north pond in the 300 Area, 80% to 90% of the soil particles were larger than 250 {mu}m. The principal contaminants in the soil are radionuclides, heavy metals, and nitrate and sulfate salts. For most of the sites, organic contaminants are either not present or are found in very low concentration. 28 refs., 5 figs., 10 tabs.

  6. Cu(II) - Catalyzed Hydrazine Reduction of Ferrous Nitrate

    SciTech Connect (OSTI)

    Karraker, D.G.

    2001-10-15

    This report discusses the results of a study of catalyzed hydrazine reduction of ferrous nitrate. It is apparent that there is a substantial reaction between hydrazine and nitrate ion (or nitric acid) to produce HN3 during both the reduction of Fe(III) and during storage at room temperature.

  7. Method for improved decomposition of metal nitrate solutions

    DOE Patents [OSTI]

    Haas, P.A.; Stines, W.B.

    1981-01-21

    A method for co-conversion of aqueous solutions of one or more heavy metal nitrates is described, wherein thermal decomposition within a temperature range of about 300 to 800/sup 0/C is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

  8. Method for improved decomposition of metal nitrate solutions

    DOE Patents [OSTI]

    Haas, Paul A.; Stines, William B.

    1983-10-11

    A method for co-conversion of aqueous solutions of one or more heavy metal nitrates wherein thermal decomposition within a temperature range of about 300.degree. to 800.degree. C. is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

  9. Surface Soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Soil Surface Soil We compare local soil samples with samples collected from northern New Mexico locations that are beyond the range of potential influence from normal Laboratory operations. April 12, 2012 Farm soil sampling Two LANL environmental field team members take soil samples from a farm. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Measurements are compared to samples from the regional sites and

  10. A study of the organic emission from a turbocharged diesel engine running on 12 percent hexyl nitrate dissolved in ethanol

    SciTech Connect (OSTI)

    Walde, N.; Westerholm, R.; Persson, K.-A.

    1984-01-01

    A highly rated turbocharged diesel engine adapted for an alternative fuel based on ethanol and hexyl nitrate has been investigated with respect to the emission of organic compounds in the exhausts. The adaption involves: ignition nozzles with larger holes, a change of injection timing and more fuel injected per stroke. Emissions were measured at four different driving modes ie, 1, 8, 10 and 12 respectively, in the California Cycle. The exhaust composition are different compared to conventional diesel emissions. The main part of the organic pollutants consists of unburned ethanol and hexyl nitrate, acetaldehyde being the most abundant aldehyde.

  11. ARRAYS OF BOTTLES OF PLUTONIUM NITRATE SOLUTION

    SciTech Connect (OSTI)

    Margaret A. Marshall

    2012-09-01

    In October and November of 1981 thirteen approaches-to-critical were performed on a remote split table machine (RSTM) in the Critical Mass Laboratory of Pacific Northwest Laboratory (PNL) in Richland, Washington using planar arrays of polyethylene bottles filled with plutonium (Pu) nitrate solution. Arrays of up to sixteen bottles were used to measure the critical number of bottles and critical array spacing with a tight fitting Plexiglas reflector on all sides of the arrays except the top. Some experiments used Plexiglas shells fitted around each bottles to determine the effect of moderation on criticality. Each bottle contained approximately 2.4 L of Pu(NO3)4 solution with a Pu content of 105 g Pu/L and a free acid molarity H+ of 5.1. The plutonium was of low 240Pu (2.9 wt.%) content. These experiments were sponsored by Rockwell Hanford Operations because of the lack of experimental data on the criticality of arrays of bottles of Pu solution such as might be found in storage and handling at the Purex Facility at Hanford. The results of these experiments were used to provide benchmark data to validate calculational codes used in criticality safety assessments of [the] plant configurations (Ref. 1). Data for this evaluation were collected from the published report (Ref. 1), the approach to critical logbook, the experimenters logbook, and communication with the primary experimenter, B. Michael Durst. Of the 13 experiments preformed 10 were evaluated. One of the experiments was not evaluated because it had been thrown out by the experimenter, one was not evaluated because it was a repeat of another experiment and the third was not evaluated because it reported the critical number of bottles as being greater than 25. Seven of the thirteen evaluated experiments were determined to be acceptable benchmark experiments. A similar experiment using uranyl nitrate was benchmarked as U233-SOL-THERM-014.

  12. CONTINUOUS PRECIPITATION METHOD FOR CONVERSION OF URANYL NITRATE TO URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Reinhart, G.M.; Collopy, T.J.

    1962-11-13

    A continuous precipitation process is given for converting a uranyl nitrate solution to uranium tetrafluoride. A stream of the uranyl nitrate solution and a stream of an aqueous ammonium hydroxide solution are continuously introduced into an agitated reaction zone maintained at a pH of 5.0 to 6.5. Flow rates are adjusted to provide a mean residence time of the resulting slurry in the reaction zone of at least 30 minutes. After a startup period of two hours the precipitate is recovered from the effluent stream by filtration and is converted to uranium tetrafluoride by reduction to uranium dioxide with hydrogen and reaction of the uranium dioxide with anhydrous hydrogen fluoride. (AEC)

  13. Nitrate contamination of groundwater: A conceptual management framework

    SciTech Connect (OSTI)

    Almasri, Mohammad N. . E-mail: mnmasri@najah.edu

    2007-04-15

    In many countries, public concern over the deterioration of groundwater quality from nitrate contamination has grown significantly in recent years. This concern has focused increasingly on anthropogenic sources as the potential cause of the problem. Evidence indicates that the nitrate (NO{sub 3}) levels routinely exceed the maximum contaminant level (MCL) of 10 mg/l NO{sub 3}-N in many aquifer systems that underlie agriculture-dominated watersheds. Degradation of groundwater quality due to nitrate pollution along with the increasing demand for potable water has motivated the adoption of restoration actions of the contaminated aquifers. Restoration efforts have intensified the dire need for developing protection alternatives and management options such that the ultimate nitrate concentrations at the critical receptors are below the MCL. This paper presents a general conceptual framework for the management of groundwater contamination from nitrate. The management framework utilizes models of nitrate fate and transport in the unsaturated and saturated zones to simulate nitrate concentration at the critical receptors. To study the impact of different management options considering both environmental and economic aspects, the proposed framework incorporates a component of a multi-criteria decision analysis. To enhance spatiality in model development along with the management options, the utilization of a land use map is depicted for the allocation and computation of on-ground nitrogen loadings from the different sources.

  14. Rate Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  15. Decontamination of water using nitrate selective ion exchange resin

    DOE Patents [OSTI]

    Lockridge, James E.; Fritz, James S.

    1990-07-31

    A method for nitrate decontamination of water which involves passing the water through a bed of alkyl phosphonium anion exchange resin which has pendant alkyl groups of C.sub.3 or larger.

  16. Evaluation of Nitrate-Bearing Transuranic Waste Streams

    Energy Savers [EERE]

    OE-2: 2015-1 June 2015 Evaluation of Nitrate-Bearing Transuranic Waste Streams PURPOSE This Operating Experience Level 2 (OE-2) document provides actions to perform an evaluation...

  17. Decontamination of water using nitrate selective ion exchange resin

    DOE Patents [OSTI]

    Lockridge, J.E.; Fritz, J.S.

    1990-07-31

    A method for nitrate decontamination of water which involves passing the water through a bed of alkyl phosphonium anion exchange resin which has pendant alkyl groups of C[sub 3] or larger.

  18. Nonaqueous purification of mixed nitrate heat transfer media

    DOE Patents [OSTI]

    Fiorucci, Louis C.; Morgan, Michael J.

    1983-12-20

    A nonaqueous, in-line method for removing carbonate and hydroxide contamination from a molten mixed sodium nitrate/potassium nitrate heat transfer salt. The method comprises dissolving a stoichiometric quantity of anhydrous Ca(NO.sub.3).sub.2 in the melt whereby an insoluble CaCO.sub.3 and Ca(OH).sub.2 precipitate is formed. The precipitate can be removed by settling, filtration or floatation techniques.

  19. Molecular recognition of nitrated fatty acids by PPAR[gamma

    SciTech Connect (OSTI)

    Li, Yong; Zhang, Jifeng; Schopfer, Francisco J.; Martynowski, Dariusz; Garcia-Barrio, Minerva T.; Kovach, Amanda; Suino-Powell, Kelly; Baker, Paul R.S.; Freeman, Bruce A.; Chen, Y. Eugene; Xu, H. Eric

    2010-03-08

    Peroxisome proliferator activated receptor-{gamma} (PPAR{gamma}) regulates metabolic homeostasis and adipocyte differentiation, and it is activated by oxidized and nitrated fatty acids. Here we report the crystal structure of the PPAR{gamma} ligand binding domain bound to nitrated linoleic acid, a potent endogenous ligand of PPAR{gamma}. Structural and functional studies of receptor-ligand interactions reveal the molecular basis of PPAR{gamma} discrimination of various naturally occurring fatty acid derivatives.

  20. Artificial Soiling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Artificial Soiling of Photovoltaic Module Surfaces using Traceable Soil Components Patrick D. Burton and Bruce H. King Sandia National Laboratories Albuquerque NM 87185 USA Email: pdburto@sandia.gov Abstract-Effective evaluation and prediction of photovoltaic performance loss due to soiling requires consistent test methods. Natural grime accumulation is time-consuming and location- specific, and thus does not provide reproducible results across different geographic regions. Therefore, we have

  1. Surface Soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environmental field team members take soil samples from a farm. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505)...

  2. Analytical Characterization of the Thorium Nitrate Stockpile

    SciTech Connect (OSTI)

    Mattus, CH

    2003-12-30

    For several years, Oak Ridge National Laboratory (ORNL) has been supporting the Defense Logistics Agency-Defense National Stockpile Center with stewardship of a thorium nitrate (ThN) stockpile. The effort for fiscal year 2002 was to prepare a sampling and analysis plan and to use the activities developed in the plan to characterize the ThN stockpile. The sampling was performed in June and July 2002 by RWE NUKEM with oversight by ORNL personnel. The analysis was performed by Southwest Research Institute of San Antonio, Texas, and data validation was performed by NFT, Inc., of Oak Ridge, Tennessee. Of the {approx} 21,000 drums in the stockpile, 99 were sampled and 53 were analyzed for total metals composition, radiological constituents (using alpha and gamma spectrometry), and oxidizing characteristics. Each lot at the Curtis Bay Depot was sampled. Several of the samples were also analyzed for density. The average density of the domestic ThN was found to be 1.89 {+-} 0.08 g/cm{sup 3}. The oxidizer test was performed following procedures issued by the United Nations in 1999. Test results indicated that none of the samples tested was a Division 5.1 oxidizer per Department of Transportation definition. The samples were analyzed for total metals following the U.S. Environmental Protection Agency methods SW-846-6010B and 6020 (EPA 2003) using a combination of inductively coupled plasma--atomic emission spectroscopy and inductively coupled plasma--mass spectroscopy techniques. The results were used to compare the composition of the eight Resource Conservation and Recovery Act metals present in the sample (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) to regulatory limits. None of the samples was found to be hazardous for toxicity characteristics. The radiological analyses confirmed, when possible, the results obtained by the inductively coupled plasma analyses. These results--combined with the historical process knowledge acquired on the material

  3. THE SENSITIVITY OF CARBON STEELS' SUSCEPTIBILITY TO LOCALIZED CORROSION TO THE PH OF NITRATE BASED NUCLEAR WASTES

    SciTech Connect (OSTI)

    BOOMER KD

    2010-01-14

    The Hanford tank reservation contains approximately 50 million gallons of liquid legacy radioactive waste from cold war weapons production, which is stored in 177 underground storage tanks. The tanks will be in use until waste processing operations are completed. The wastes tend to be high pH (over 10) and nitrate based. Under these alkaline conditions carbon steels tend to be passive and undergo relatively slow uniform corrosion. However, the presence of nitrate and other aggressive species, can lead to pitting and stress corrosion cracking. This work is a continuation of previous work that investigated the propensity of steels to suffer pitting and stress corrosion cracking in various waste simulants. The focus of this work is an investigation of the sensitivity of the steels' pitting and stress corrosion cracking susceptibility tosimulant pH. Previous work demonstrated that wastes that are high in aggressive nitrate and low in inhibitory nitrite are susceptible to localized corrosion. However, the previous work involved wastes with pH 12 or higher. The current work involves wastes with lower pH of 10 or 11. It is expected that at these lower pHs that a higher nitrite-to-nitrate ratio will be necessary to ensure tank integrity. This experimental work involved both electrochemical testing, and slow strain rate testing at either the free corrosion potential or under anodic polarization. The results of the current work will be discussed, and compared to work previously presented.

  4. Potential Radon-222 Emissions from the Thorium Nitrate Stockpile

    SciTech Connect (OSTI)

    Terry, J.W.

    2003-09-04

    The Defense National Stockpile Center (DNSC), a field level activity of the Defense Logistics Agency, has stewardship of a stockpile of thorium nitrate that has been in storage for decades. The thorium nitrate stockpile was produced from 1959 to 1964 for the Atomic Energy Commission and previously has been under the control of several federal agencies. The stockpile consists of approximately 7 million pounds of thorium nitrate crystals (hydrate form) stored at two depot locations in the United States (75% by weight at Curtis Bay, Maryland, and 25% by weight at Hammond, Indiana). The material is stored in several configurations in over 21,000 drums. The U.S. Congress has declared the entire DNSC thorium nitrate stockpile to be in excess of the needs of the Department of Defense. Part of DNSC's mission is to safely manage the continued storage, future sales, and/or disposition of the thorium nitrate stockpile. Historically, DNSC has sold surplus thorium nitrate to domestic and foreign companies, but there is no demand currently for this material. Analyses conducted by Oak Ridge National Laboratory (ORNL) in 2001 demonstrated that disposition of the thorium nitrate inventory as a containerized waste, without processing, is the least complex and lowest-cost option for disposition. A characterization study was conducted in 2002 by ORNL, and it was determined that the thorium nitrate stockpile may be disposed of as low-level waste. The Nevada Test Site (NTS) was used as a case study for the disposal alternative, and special radiological analyses and waste acceptance requirements were documented. Among the special radiological considerations is the emission of {sup 220}Rn and {sup 222}Rn from buried material. NTS has a performance objective on the emissions of radon: 20 pCi m{sup -2} sec{sup -1} at the surface of the disposal facility. The radon emissions from the buried thorium nitrate stockpile have been modeled. This paper presents background information and summarizes

  5. Microbial responses to southward and northward Cambisol soil transplant

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Mengmeng; Liu, Shanshan; Wang, Feng; Sun, Bo; Zhou, Jizhong; Yang, Yunfeng

    2015-10-26

    We report that soil transplant serves as a proxy to simulate climate changes. Recently, we have shown that southward transplant of black soil and northward transplant of red soil altered soil microbial communities and biogeochemical variables. However, fundamental differences in soil types have prevented direct comparison between southward and northward transplants. To tackle it, herein we report an analysis of microbial communities of Cambisol soil in an agriculture field after 4 years of adaptation to southward and northward soil transplants over large transects. Analysis of bare fallow soils revealed concurrent increase in microbial functional diversity and coarse-scale taxonomic diversity atmore » both transplanted sites, as detected by GeoChip 3.0 and DGGE, respectively. Furthermore, a correlation between microbial functional diversity and taxonomic diversity was detected, which was masked in maize cropped soils. Mean annual temperature, soil moisture, and nitrate (NO3¯-N) showed strong correlations with microbial communities. In addition, abundances of ammonium-oxidizing genes (amoA) and denitrification genes were correlated with nitrification capacity and NO3¯-N contents, suggesting that microbial responses to soil transplant could alter microbe-mediated biogeochemical cycle at the ecosystem level.« less

  6. Handling of Ammonium Nitrate Mother-Liquid Radiochemical Production - 13089

    SciTech Connect (OSTI)

    Zherebtsov, Alexander; Dvoeglazov, Konstantine; Volk, Vladimir; Zagumenov, Vladimir; Zverev, Dmitriy; Tinin, Vasiliy; Kozyrev, Anatoly; Shamin, Dladimir; Tvilenev, Konstantin

    2013-07-01

    The aim of the work is to develop a basic technology of decomposition of ammonium nitrate stock solutions produced in radiochemical enterprises engaged in the reprocessing of irradiated nuclear fuel and fabrication of fresh fuel. It was necessary to work out how to conduct a one-step thermal decomposition of ammonium nitrate, select and test the catalysts for this process and to prepare proposals for recycling condensation. Necessary accessories were added to a laboratory equipment installation decomposition of ammonium nitrate. It is tested several types of reducing agents and two types of catalyst to neutralize the nitrogen oxides. It is conducted testing of modes of the process to produce condensation, suitable for use in the conversion of a new technological scheme of production. It is studied the structure of the catalysts before and after their use in a laboratory setting. It is tested the selected catalyst in the optimal range for 48 hours of continuous operation. (authors)

  7. Thorium Nitrate Stockpile--From Here to Eternity

    SciTech Connect (OSTI)

    Hermes, W. H.; Hylton, T. D.; Mattus, C.H.; Storch, S. N.; Singley, P.S.; Terry. J. W.; Pecullan, M.; Reilly, F. K.

    2003-02-26

    The Defense National Stockpile Center (DNSC), a field level activity of the Defense Logistics Agency (DLA) has stewardship of a stockpile of thorium nitrate that has been in storage for decades. The stockpile is made up of approximately 3.2 million kg (7 million lb) of thorium nitrate crystals (hydrate form) stored at two depot locations in the United States. DNSC sought technical assistance from Oak Ridge National Laboratory (ORNL) to define and quantify the management options for the thorium nitrate stockpile. This paper describes methodologies and results comprising the work in Phase 1 and Phase 2. The results allow the DNSC to structure and schedule needed tasks to ensure continued safe long-term storage and/or phased disposal of the stockpile.

  8. Electrochemical reduction of nitrate in the presence of an amide

    DOE Patents [OSTI]

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2002-01-01

    The electrochemical reduction of nitrates in aqueous solutions thereof in the presence of amides to gaseous nitrogen (N.sub.2) is described. Generally, electrochemical reduction of NO.sub.3 proceeds stepwise, from NO.sub.3 to N.sub.2, and subsequently in several consecutive steps to ammonia (NH.sub.3) as a final product. Addition of at least one amide to the solution being electrolyzed suppresses ammonia generation, since suitable amides react with NO.sub.2 to generate N.sub.2. This permits nitrate reduction to gaseous nitrogen to proceed by electrolysis. Suitable amides include urea, sulfamic acid, formamide, and acetamide.

  9. Rate Schedules

    Broader source: Energy.gov [DOE]

    One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

  10. Ferrocyanide Safety Project Dynamic X-Ray Diffraction studies of sodium nickel ferrocyanide reactions with equimolar nitrate/nitrite salts

    SciTech Connect (OSTI)

    Dodds, J.N. |

    1994-07-01

    Dynamic X-ray Diffraction (DXRD) has been to used to identify and quantify the solid state reactions that take place between sodium nickel ferrocyanide, Na{sub 2}NiFe(CN){sub 6}, and equimolar concentrations of sodium nitrate/nitrite, reactions of interest to the continued environmental safety of several large underground waste storage tanks at the Hanford site in eastern Washington. The results are supportive of previous work, which indicated that endothermic dehydration and melting of the nitrates take place before the occurrence of exothermic reactions that being about 300{degrees}C. The DXRD results show that a major reaction set at these temperatures is the occurrence of a series reaction that produces sodium cyanate, NaCNO, as an intermediate in a mildly exothermic first step. In the presence of gaseous oxygen, NaCNO subsequently reacts exothermally and at a faster rate to form metal oxides. Measurements of the rate of this reaction are used to estimate the heat release. Comparisons of this estimated heat release rate with heat transfer rates from a hypothetical ``hot spot`` show that, even in a worst-case scenario, the heat transfer rates are approximately eight times higher than the rate of energy release from the exothermic reactions.

  11. Process for converting sodium nitrate-containing, caustic liquid radioactive wastes to solid insoluble products

    DOE Patents [OSTI]

    Barney, Gary S.; Brownell, Lloyd E.

    1977-01-01

    A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.

  12. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina

    SciTech Connect (OSTI)

    Simpson, Philippa J.L.; Codd, Rachel; School of Medical Sciences and Bosch Institute, University of New South Wales, New South Wales 2006

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Cold-adapted phenotype of NapA from the Antarctic bacterium Shewanella gelidimarina. Black-Right-Pointing-Pointer Protein homology model of NapA from S. gelidimarina and mesophilic homologue. Black-Right-Pointing-Pointer Six amino acid residues identified as lead candidates governing NapA cold adaptation. Black-Right-Pointing-Pointer Molecular-level understanding of designing cool-temperature in situ oxyanion sensors. -- Abstract: The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo-MGD) cofactor and one [4Fe-4S] iron-sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap{sub Sgel}) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap{sub Sput}) was examined at varied temperature. Irreversible deactivation of Nap{sub Sgel} and Nap{sub Sput} occurred at 54.5 and 65 Degree-Sign C, respectively. When Nap{sub Sgel} was preincubated at 21-70 Degree-Sign C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54 Degree-Sign C, which suggested that Nap{sub Sgel} was poised for optimal catalysis at modest temperatures and, unlike Nap{sub Sput}, did not benefit from thermally-induced refolding. At 20 Degree-Sign C, Nap{sub Sgel} reduced selenate at 16% of the rate of nitrate reduction. Nap{sub Sput} did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap{sub Sgel} that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap{sub Sgel} cold-adapted phenotype. Protein homology modeling of Nap{sub Sgel} using a

  13. A Study Plan for Determining Recharge Rates at the Hanford Site Using Environmental Tracers

    SciTech Connect (OSTI)

    Murphy,, E. M.; Szecsody,, J. E.; Phillips,, S. J.

    1991-02-01

    This report presents a study plan tor estimating recharge at the Hanford Site using environmental tracers. Past operations at the Hanford Site have led to both soil and groundwater contamination, and recharge is one of the primary mechanisms for transporting contaminants through the vadose zone and into the groundwater. The prediction of contaminant movement or transport is one aspect of performance assessment and an important step in the remedial investigation/feasibility study (RI/FS) process. In the past, recharge has been characterized by collecting lysimeter data. Although lysimeters can generate important and reliable data, their limitations include 1) fixed location, 2) fixed sediment contents, 3) edge effects, 4) low rates, and 5) relatively short duration of measurement. These limitations impact the ability to characterize the spatial distribution of recharge at the Hanford Site, and thus the ability to predict contaminant movement in the vadose zone. An alternative to using fixed lysimeters for determining recharge rates in the vadose zone is to use environmental tracers. Tracers that have been used to study water movement in the vadose zone include total chloride, {sup 36}CI, {sup 3}H, and {sup 2}H/{sup 18}O. Atmospheric levels of {sup 36}CI and {sup 3}H increased during nuclear bomb testing in the Pacific, and the resulting "bomb pulse" or peak concentration can be measured in the soil profile. Locally, past operations at the Hanford Site have resu~ed in the atmospheric release of numerous chemical and isotopic tracers, including nitrate, {sup 129}I, and {sup 99}Tc. The radionuclides, in particular, reached a well-defined atmospheric peak in 1945. Atmospheric releases of {sup 129}I and {sup 99}Tc were greatly reduced by mid-1946, but nitrogen oxides continued to be released from the uranium separations facilities. As a result, the nitrate concentrations probably peaked in the mid-1950s, when the greatest number of separations facilities were operating

  14. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  15. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  16. Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory Background Technical Area (TA) 54 is Los Alamos National Laboratory's transuranic (TRU) and low-level waste storage, characterization, and remediation area. The 63-acre site is located one mile from the community of White Rock and approximately one-eighth mile from the boundary be- tween Pueblo de San Ildefonso and the Laboratory. As a part of its national security mission, the Laboratory conducts research that generates

  17. WIPP Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update May 12, 2015 Panel 6 and Panel 7, Room 7 a. Rollback * Contamination Assessment-This prerequisite is complete and therefore status updates are no longer required. * Fixing/Decontamination Activities-Decontaminated equipment has been removed from Room 7 of Panel 7 to prepare for Room 7 closure activities. Remaining items in Panel 7, Room 7 include thirteen empty magnesium oxide racks, about 200 roof bolts, nine messenger

  18. Finance & Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all of its costs in the rates it charges customers for wholesale electricity and transmission services. The agency is committed to careful cost management consistent with its...

  19. Baseload Nitrate Salt Central Receiver Power Plant Design Final Report

    SciTech Connect (OSTI)

    Tilley, Drake; Kelly, Bruce; Burkholder, Frank

    2014-12-12

    The objectives of the work were to demonstrate that a 100 MWe central receiver plant, using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator, can 1) operate, at full load, for 6,400 hours each year using only solar energy, and 2) satisfy the DOE levelized energy cost goal of $0.09/kWhe (real 2009 $). To achieve these objectives the work incorporated a large range of tasks relating to many different aspects of a molten salt tower plant. The first Phase of the project focused on developing a baseline design for a Molten Salt Tower and validating areas for improvement. Tasks included a market study, receiver design, heat exchanger design, preliminary heliostat design, solar field optimization, baseline system design including PFDs and P&IDs and detailed cost estimate. The baseline plant met the initial goal of less than $0.14/kWhe, and reinforced the need to reduce costs in several key areas to reach the overall $0.09/kWhe goal. The major improvements identified from Phase I were: 1) higher temperature salt to improve cycle efficiency and reduce storage requirements, 2) an improved receiver coating to increase the efficiency of the receiver, 3) a large receiver design to maximize storage and meet the baseload hours objective, and 4) lower cost heliostat field. The second Phase of the project looked at advancing the baseline tower with the identified improvements and included key prototypes. To validate increasing the standard solar salt temperature to 600 °C a dynamic test was conducted at Sandia. The results ultimately proved the hypothesis incorrect and showed high oxide production and corrosion rates. The results lead to further testing of systems to mitigate the oxide production to be able to increase the salt temperature for a commercial plant. Foster Wheeler worked on the receiver design in both Phase I and Phase II looking at both design and lowering costs utilizing commercial fossil boiler

  20. Soil Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Soil Series and Phase D Bae D Da rn Fa D FuB D LuB ~ 09 _ Pk _ TrB _ TuE DUo _ vee D VeD o o * '='1 ~*.1* **..oC'" ~) OJ rI.:) o.Q 600 1200 Soils n O~:-* ilL 10., 1800 O~ c? ~ 0 ~ O~ Community _ Loblolly Pine D Mixed Pine/Hardwood o Upland Hardwood D Bottomland Hardwood _ Water a Bottomland HardwoodlPine o Monitoringwells .._.' *** TES Plants (1) :l!.-.~I ... 0 TES Plants (2) :='.Y-r::.: ~ Streams ){" ~ Rails . :1'\;:'/ Utility ROW ""If WasteSItes III NPDES outfalls CZI

  1. Real time in situ detection of organic nitrates in atmospheric aerosols

    SciTech Connect (OSTI)

    Rollins, Andrew W.; Smith, Jared D.; Wilson, Kevin R.; Cohen, Ronald C.

    2010-06-11

    A new field instrument is described that quantifies total particle phase organic nitrates. The instrument is based on the thermal dissociation laser induced fluorescence (TD-LIF) method that thermally converts nitrates to NO2 which is then detected by LIF. This instrument is unique in its ability to provide fast sensitive measurements of particle phase organic nitrates, without interference from inorganic nitrate. Here we use it to quantify organic nitrates in SOA generated from high-NOx photooxidation of limonene, a-pinene, D-3-carene, and tridecane. In these experiments the organic nitrate moiety is observed to be 6-15percent of the total SOA mass, depending on the organic precursor.

  2. Effect of composition on the density of multi-component molten nitrate salts.

    SciTech Connect (OSTI)

    Bradshaw, Robert W.

    2009-12-01

    The density of molten nitrate salts was measured to determine the effects of the constituents on the density of multi-component mixtures. The molten salts consisted of various proportions of the nitrates of potassium, sodium, lithium and calcium. Density measurements ere performed using an Archimedean method and the results were compared to data reported in the literature for the individual constituent salts or simple combinations, such as the binary Solar Salt mixture of NaNO3 and KNO3. The addition of calcium nitrate generally ncreased density, relative to potassium nitrate or sodium nitrate, while lithium nitrate decreased density. The temperature dependence of density is described by a linear equation regardless of composition. The molar volume, and thereby, density of multi-component mixtures an be calculated as a function of temperature using a linear additivity rule based on the properties of the individual constituents.

  3. Criticality Calculations Using the Isopiestic Density Law of Actinide Nitrates

    SciTech Connect (OSTI)

    Leclaire, Nicolas P.; Anno, Jacques A.; Courtois, Gerard; Dannus, Pascal; Poullot, Gilles; Rouyer, Veronique

    2003-12-15

    Up to now, criticality safety experts used density laws fitted on experimental data and applied them outside the measurement range. Depending on the case, such an approach could be wrong for nitrate solutions. Seven components are concerned: UO{sub 2}(NO{sub 3}){sub 2}, U(NO{sub 3}){sub 4}, Pu(NO{sub 3}){sub 4}, Pu(NO{sub 3}){sub 3}, Th(NO{sub 3}){sub 4}, Am(NO{sub 3}){sub 3}, and HNO{sub 3}. To obviate this problem, a new methodology based on the thermodynamic concept of mixtures of binary electrolytes solutions (one electrolyte + water) at constant water activity, a so-called 'isopiestic' solution, has been developed by the Institute de Radioprotection et de Surete Nucleaire (IRSN) to calculate the nitrate solutions density. This paper presents its qualification by using criticality experiments. The theory and the implementation are also given.Qualification results of the uranyl and plutonium nitrate solutions show that the new density law (also called the isopiestic law) is in good agreement with the benchmarks. Thus, no bias is put into evidence for the uranium solutions, and a small negative bias equal to 0.2% is found for the plutonium solutions.Moreover, the isopiestic law corrects the observed 1% overestimation of k{sub eff} due to the empirical IRSN Leroy and Jouan density law for uranium solutions and the observed 3.4% underestimation of k{sub eff} due to the ARH-600 density law for plutonium solutions.The isopiestic density law has been implemented in CIGALES V2.0, the graphical user interface of the French criticality safety package CRISTAL that calculates the atom densities of nuclides (and writes the input file for CRISTAL computations)

  4. Laser-induced breakdown spectroscopic study of ammonium nitrate plasma

    SciTech Connect (OSTI)

    Hanif, M.; Salik, M.; Baig, M. A.

    2013-12-15

    We present the optical emission studies of the ammonium nitrate plasma produced by the fundamental (1064 nm) and second (532 nm) harmonics of a Q-switched Nd: YAG laser. The target material was placed in front of the laser beam in an open atmospheric air. The spectrum reveals numerous transitions of neutral nitrogen. We have studied the spatial behavior of the plasma temperature (T{sub e}) and electron number density (N{sub e}) determined using the Boltzmann plot method and Stark broadened line profiles, respectively. Besides, we have studied the variation of the plasma parameters as a function of the laser irradiance.

  5. Low-melting point inorganic nitrate salt heat transfer fluid

    DOE Patents [OSTI]

    Bradshaw, Robert W.; Brosseau, Douglas A.

    2009-09-15

    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  6. Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris

    SciTech Connect (OSTI)

    He, Q.; He, Z.; Joyner, D.C.; Joachimiak, M.; Price, M.N.; Yang, Z.K.; Yen, H.-C. B.; Hemme, C. L.; Chen, W.; Fields, M.; Stahl, D. A.; Keasling, J. D.; Keller, M.; Arkin, A. P.; Hazen, T. C.; Wall, J. D.; Zhou, J.

    2010-07-15

    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.

  7. Watershed scale fungal community characterization along a pH gradient in a subsurface environment co-contaminated with uranium and nitrate

    SciTech Connect (OSTI)

    Jasrotia, Puja; Green, Stefan; Canion, Andy; Overholt, Will; Prakash, Om; Wafula, Dennis; Hubbard, Daniela; Watson, David B; Schadt, Christopher Warren; Brooks, Scott C; Kostka,

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment co-contaminated with uranium and nitrate at the watershed scale, and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution and diversity of fungi in subsurface groundwater samples were determined using quantitative and semi-quantitative molecular techniques, including quantitative PCR of eukaryotic SSU rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH < 4.5) conditions. Fungal isolates recovered from subsurface sediments were shown to reduce nitrate to nitrous oxide, including cultures of the genus Coniochaeta that were detected in abundance in pyrosequence libraries of site groundwater samples. Denitrifying fungal isolates recovered from the site were classified, and found to be distributed broadly within the phylum Ascomycota, and within a single genus within the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.

  8. Investigating In Situ Bioremediation Approaches for Sustained Uranium Immobilization Independent of Nitrate Reduction

    SciTech Connect (OSTI)

    Phelps, Tommy; Balkwill, David

    2006-06-01

    The daunting prospect of complete nitrate removal at DOE sites, such as the ERSP Oak Ridge Field Research Center (FRC), provides strong incentive to explore bioremediation strategies that will allow for uranium bioreduction and long-term stabilization in the presence of nitrate. The cost and effort required for complete nitrate removal from the FRC and similar DOE-contaminated sites may prove to be unworkable. For example, field tests of uranium bioreduction at the FRC have shown that nitrate levels rebound quickly and completely after cessation of active biostimulation.

  9. Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response...

    Broader source: Energy.gov (indexed) [DOE]

    Pilot Plant on February 14, 2014, report in Attachment F. Bibliography and References, are available on various public websites. Technical Area (TA)-54 Area G Nitrate-Salt ...

  10. Memo - Legacy Technical Area (TA)-55 Nitrate Salt Wastes at TA...

    Office of Environmental Management (EM)

    Plant on February 14, 2014, report in Attachment F. Bibliography and References, are available on various public websites. Memo - Legacy Technical Area (TA)-55 Nitrate Salt ...

  11. SEPARATION OF BARIUM VALUES FROM URANYL NITRATE SOLUTIONS

    DOE Patents [OSTI]

    Tompkins, E.R.

    1959-02-24

    The separation of radioactive barium values from a uranyl nitrate solution of neutron-irradiated uranium is described. The 10 to 20% uranyl nitrate solution is passed through a flrst column of a cation exchange resin under conditions favoring the adsorption of barium and certain other cations. The loaded resin is first washed with dilute sulfuric acid to remove a portion of the other cations, and then wash with a citric acid solution at pH of 5 to 7 to recover the barium along with a lesser amount of the other cations. The PH of the resulting eluate is adjusted to about 2.3 to 3.5 and diluted prior to passing through a smaller second column of exchange resin. The loaded resin is first washed with a citric acid solution at a pH of 3 to elute undesired cations and then with citric acid solution at a pH of 6 to eluts the barium, which is substantially free of undesired cations.

  12. Soils | Open Energy Information

    Open Energy Info (EERE)

    Soils Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleSoils&oldid612253" Feedback Contact needs updating Image needs updating Reference...

  13. Thermal properties of soils and soils testing

    SciTech Connect (OSTI)

    Not Available

    1981-02-17

    The thermal properties of soils are reviewed with reference to the use of soils as heat sources, heat sinks, or thermal storage. Specific heat and thermal conductivity are discussed. (ACR)

  14. MCNP5 CALCULATIONS REPLICATING ARH-600 NITRATE DATA

    SciTech Connect (OSTI)

    FINFROCK SH

    2011-10-25

    This report serves to extend the previous document: 'MCNP Calculations Replicating ARH-600 Data' by replicating the nitrate curves found in ARH-600. This report includes the MCNP models used, the calculated critical dimension for each analyzed parameter set, and the resulting data libraries for use with the CritView code. As with the ARH-600 data, this report is not meant to replace the analysis of the fissile systems by qualified criticality personnel. The M CNP data is presented without accounting for the statistical uncertainty (although this is typically less than 0.001) or bias and, as such, the application of a reasonable safety margin is required. The data that follows pertains to the uranyl nitrate and plutonium nitrate spheres, infinite cylinders, and infinite slabs of varying isotopic composition, reflector thickness, and molarity. Each of the cases was modeled in MCNP (version 5.1.40), using the ENDF/B-VI cross section set. Given a molarity, isotopic composition, and reflector thickness, the fissile concentration and diameter (or thicknesses in the case of the slab geometries) were varied. The diameter for which k-effective equals 1.00 for a given concentration could then be calculated and graphed. These graphs are included in this report. The pages that follow describe the regions modeled, formulas for calculating the various parameters, a list of cross-sections used in the calculations, a description of the automation routine and data, and finally the data output. The data of most interest are the critical dimensions of the various systems analyzed. This is presented graphically, and in table format, in Appendix B. Appendix C provides a text listing of the same data in a format that is compatible with the CritView code. Appendices D and E provide listing of example Template files and MCNP input files (these are discussed further in Section 4). Appendix F is a complete listing of all of the output data (i.e., all of the analyzed dimensions and the

  15. Rates Meetings and Workshops (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Case Workshops Other Power Rates-Related Workshops July 1, 2004 - Rates and Finances Workshop (updated June 25, 2004) (financial and rate forecasts and scenarios for FY...

  16. Viscosity of multi-component molten nitrate salts : liquidus to 200 degrees C.

    SciTech Connect (OSTI)

    Bradshaw, Robert W.

    2010-03-01

    The viscosity of molten salts comprising ternary and quaternary mixtures of the nitrates of sodium, potassium, lithium and calcium was determined experimentally. Viscosity was measured over the temperature range from near the relatively low liquidus temperatures of he individual mixtures to 200C. Molten salt mixtures that do not contain calcium nitrate exhibited relatively low viscosity and an Arrhenius temperature dependence. Molten salt mixtures that contained calcium nitrate were relatively more viscous and viscosity increased as the roportion of calcium nitrate increased. The temperature dependence of viscosity of molten salts containing calcium nitrate displayed curvature, rather than linearity, when plotted in Arrhenius format. Viscosity data for these mixtures were correlated by the Vogel-Fulcher- ammann-Hesse equation.

  17. Analysis of Enriched Uranyl Nitrate in Nested Annular Tank Array

    SciTech Connect (OSTI)

    John D. Bess; James D. Cleaver

    2009-06-01

    Two series of experiments were performed at the Rocky Flats Critical Mass Laboratory during the 1980s using highly enriched (93%) uranyl nitrate solution in annular tanks. [1, 2] Tanks were of typical sizes found in nuclear production plants. Experiments looked at tanks of varying radii in a co-located set of nested tanks, a 1 by 2 array, and a 1 by 3 array. The co-located set of tanks had been analyzed previously [3] as a benchmark for inclusion within the International Handbook of Evaluated Criticality Safety Benchmark Experiments. [4] The current study represents the benchmark analysis of the 1 by 3 array of a series of nested annular tanks. Of the seventeen configurations performed in this set of experiments, twelve were evaluated and nine were judged as acceptable benchmarks.

  18. Hydroxylamine Nitrate Decomposition under Non-radiological Conditions

    SciTech Connect (OSTI)

    McFarlane, Joanna; Delmau, Laetitia Helene; DePaoli, David W.; Mattus, Catherine H.; Phelps, Clarice E.; Roach, Benjamin D.

    2015-07-01

    Hydroxylamine nitrate (HAN) is used to reduce Pu(IV) to Pu(III) in the separation of plutonium from uranium. HAN becomes unstable under certain conditions and has been known to explode, causing injury to humans including death. Hence, it is necessary to deactivate HAN once the reduction of plutonium is finished. This report reviews what is known about the chemistry of HAN and various methods to achieve a safe decomposition. However, there are areas where more information is needed to make a decision about the handling of HAN in reprocessing of nuclear fuel. Experiments have demonstrated a number of non-radiolytic ways to safely decompose HAN, including heating in HNO3, photolytic oxidation in the presence of H2O2, and the addition of a metal such as Fe(III) that will oxidize the HAN.

  19. Combined Extraction of Cesium and Strontium from Akaline Nitrate Solutions

    SciTech Connect (OSTI)

    Delmau, Laetitia Helene; Bonnesen, Peter V; Engle, Nancy L; Haverlock, Tamara; Sloop Jr, Frederick {Fred} V; Moyer, Bruce A

    2006-01-01

    The combined extraction of cesium and strontium from caustic wastes can be achieved by adding a crown ether and a carboxylic acid to the Caustic-Side Solvent Extraction (CSSX) solvent. The ligand 4,4'(5')-di(tert-butyl)cyclohexano-18-crown-6 and one of four different carboxylic acids were combined with the components of the CSSX solvent optimized for the extraction of cesium, allowing for the simultaneous extraction of cesium and strontium from alkaline nitrate media simulating alkaline high level wastes present at the U.S. Department of Energy Savannah River Site. Extraction and stripping experiments were conducted independently and exhibited adequate results for mimicking waste simulant processing through batch contacts. The promising results of these batch tests showed that the system could reasonably be tested on actual waste.

  20. Preliminary safe-handling experiments on a mixture of cesium nickel ferrocyanide and equimolar sodium nitrate/nitrite

    SciTech Connect (OSTI)

    Scheele, R.D. ); Cady, H.H. )

    1992-01-01

    As part of the Hanford Site's evaluation of the potential hazards associated with the storage of ferrocyanide wastes generated when ferrocyanide was used to scavenge radiocesium from waste supernates in the 1950s, the Pacific Northwest Laboratory (PNL) subcontracted with Los Alamos National Laboratory (LANL) to perform a series of sensitivity tests. These test supplement PNL's thermal sensitivity testing results on the reactivity of cesium nickel ferrocyanide (Cs{sub 2}NiFe(CN){sub 6}) and nitrates and nitrites (Burger and Schelle 1991). LANL used a selected set of their standard tests to determine the sensitivity of a mixture of Cs{sub 2}NiFe(CN){sub 6} (FECN-1) and equimolar sodium nitrate and nitrite oxidant to nonthermal and thermal stimuli. The stoichiometric ratio of oxidant to Cs{sub 2}NiFe(CN){sub 6} in the tested mixture FECN-1 was 1.1:1. The appendix presents the results of the LANL testing of the sensitivity of FECN-1 to initiation by mechanical impact, spark, friction, and various thermal conditions. In addition to the sensitivity testing, LANL used an Accelerating Rate Calorimeter (ARC) to estimate the behavior of large batches of the mixture.

  1. Preliminary safe-handling experiments on a mixture of cesium nickel ferrocyanide and equimolar sodium nitrate/nitrite

    SciTech Connect (OSTI)

    Scheele, R.D.; Cady, H.H.

    1992-01-01

    As part of the Hanford Site`s evaluation of the potential hazards associated with the storage of ferrocyanide wastes generated when ferrocyanide was used to scavenge radiocesium from waste supernates in the 1950s, the Pacific Northwest Laboratory (PNL) subcontracted with Los Alamos National Laboratory (LANL) to perform a series of sensitivity tests. These test supplement PNL`s thermal sensitivity testing results on the reactivity of cesium nickel ferrocyanide (Cs{sub 2}NiFe(CN){sub 6}) and nitrates and nitrites (Burger and Schelle 1991). LANL used a selected set of their standard tests to determine the sensitivity of a mixture of Cs{sub 2}NiFe(CN){sub 6} (FECN-1) and equimolar sodium nitrate and nitrite oxidant to nonthermal and thermal stimuli. The stoichiometric ratio of oxidant to Cs{sub 2}NiFe(CN){sub 6} in the tested mixture FECN-1 was 1.1:1. The appendix presents the results of the LANL testing of the sensitivity of FECN-1 to initiation by mechanical impact, spark, friction, and various thermal conditions. In addition to the sensitivity testing, LANL used an Accelerating Rate Calorimeter (ARC) to estimate the behavior of large batches of the mixture.

  2. Materials corrosion of high temperature alloys immersed in 600C binary nitrate salt.

    SciTech Connect (OSTI)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-03-01

    Thirteen high temperature alloys were immersion tested in a 60/40 binary nitrate salt. Samples were interval tested up to 3000 hours at 600%C2%B0C with air as the ullage gas. Chemical analysis of the molten salt indicated lower nitrite concentrations present in the salt, as predicted by the equilibrium equation. Corrosion rates were generally low for all alloys. Corrosion products were identified using x-ray diffraction and electron microprobe analysis. Fe-Cr based alloys tended to form mixtures of sodium and iron oxides, while Fe-Ni/Cr alloys had similar corrosion products plus oxides of nickel and chromium. Nickel based alloys primarily formed NiO, with chromium oxides near the oxide/base alloy interface. In625 exhibited similar corrosion performance in relation to previous tests, lending confidence in comparisons between past and present experiments. HA230 exhibited internal oxidation that consisted of a nickel/chromium oxide. Alloys with significant aluminum alloying tended to exhibit superior performance, due formation of a thin alumina layer. Soluble corrosion products of chromium, molybdenum, and tungsten were also formed and are thought to be a significant factor in alloy performance.

  3. Soil washing technology evaluation

    SciTech Connect (OSTI)

    Suer, A.

    1995-04-01

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis.

  4. Current BPA Power Rates (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Workshops WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...

  5. Power Rates Announcements (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial Choices (2003-06) Power...

  6. Ab initio calculations of singlet and triplet excited states of chlorine nitrate and nitric acid

    SciTech Connect (OSTI)

    Grana, A.M.; Head-Gordon, M. |; Lee, T.J.

    1995-03-16

    Ab initio calculations of vertical excitations to single and triplet excited states of chlorine nitrate and nitric acid are reported, using the CIS, CIS(D), and CCSD methods. The effects of basis set composition and calculational methods are investigated. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low lying singlet states of chlorine nitrate appear to be directly dissociative in the CIO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied. 70 refs., 2 figs., 6 tabs.

  7. Separation of thorium impurity from plutonium in the nitrate anion exchange process

    SciTech Connect (OSTI)

    Marsh, S.F.; Phillips, B.J.; Aldaz, E.A.; Williams, W.E.

    1989-04-01

    Thorium is a common impurity in many materials processed at the Los Alamos Plutonium Facility. Although the thorium impurity level is usually less than 1000 ppM, it frequently exceeds the maximum allowable limit of 100 ppM. Thorium is especially difficult to separate from plutonium because it accompanies plutonium in the three aqueous nitrate processes used at Los Alamos: nitrate anion exchange, oxalate precipitation, and peroxide precipitation. Nitrate anion exchange, the major aqueous plutonium purification process, has recently been modified to remove most of the thorium from sorbed plutonium by washing the column with 4.7 M nitric acid-0.007 M hydrofluoric acid. This chromatographic washing technique requires careful process control that is readily attainable with the recently developed Los Alamos On-Line Gamma Monitor. The successful separation of thorium using this modification has been demonstrated in routine, full-scale, nitrate anion exchange operations. 3 refs., 8 figs.

  8. EMRTC Report RF 10-13: Application to LANL Evaporator Nitrate...

    Office of Environmental Management (EM)

    and recommendation. Conclusions: 1. Nitrate salts not yet remediated having no free liquid should be mixed with at least 1.2 volumes of Kitty LitterZeolite clay per...

  9. EP-AREAG-PLAN-1248, R.0 TA-54 Area G Nitrate-Salt Waste Container...

    Office of Environmental Management (EM)

    EP-AREAG-PLAN-1248, R.0 TA-54 Area G Nitrate-Salt Waste Container Response Instructions Effective Date: 5282014 The Responsible Manager has determined that the following...

  10. ARM - Campaign Instrument - soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Soil Measurement from the SGP (SOIL) Instrument Categories SurfaceSubsurface Properties Campaigns ...

  11. ARM - Instrument - soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Soil Measurement from the SGP (SOIL) Instrument Categories SurfaceSubsurface ...

  12. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    SciTech Connect (OSTI)

    K. Lorenz; R. Lal

    2007-12-31

    This research project was aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites were characterized by distinct age chronosequences of RMS and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. Restoration of disturbed land is followed by the application of nutrients to the soil to promote the vegetation development. Reclamation is important both for preserving the environmental quality and increasing agronomic yields. Since reclamation treatments have significant influence on the rate of soil development, a study on subplots was designed with the objectives of assessing the potential of different biosolids on soil organic C (SOC) sequestration rate, soil development, and changes in soil physical and water transmission properties. All sites are owned and maintained by American Electric Power (AEP). These sites were reclaimed by two techniques: (1) with topsoil application, and (2) without topsoil application, and were under continuous grass or forest cover.

  13. Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Instructions | Department of Energy Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response Instructions Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response Instructions This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the

  14. VARIATION IN EROSION/DEPOSITION RATES OVER THE LAST FIFTTY YEARS ON ALLUVIAL FAN SURFACES OF L. PLEISTOCENE-MID HOLOCENE AGE, ESTIMATIONS USING 137CS SOIL PROFILE DATA, AMARGOSA VALLEY, NEVADA

    SciTech Connect (OSTI)

    C. Harrington; R. Kelly; K.T. Ebert

    2005-08-26

    Variations in erosion and deposition for the last fifty years (based on estimates from 137Cs profiles) on surfaces (Late Pleistocene to Late Holocene in age) making up the Fortymile Wash alluvial fan south of Yucca Mountain, is a function of surface age and of desert pavement development or absence. For purposes of comparing erosion and deposition, the surfaces can be examined as three groups: (1) Late Pleistocene surfaces possess areas of desert pavement development with thin Av or sandy A horizons, formed by the trapping capabilities of the pavements. These zones of deposition are complemented by coppice dune formation on similar parts of the surface. Areas on the surface where no pavement development has occurred are erosional in nature with 0.0 +/- 0.0 cm to 1.5 +/- 0.5 cm of erosion occurring primarily by winds blowing across the surface. Overall these surfaces may show either a small net depositional gain or small erosional loss. (2) Early Holocene surfaces have no well-developed desert pavements, but may have residual gravel deposits in small areas on the surfaces. These surfaces show the most consistent erosional surface areas on which it ranges from 1.0 +/-.01 cm to 2.0+/- .01 cm. Fewer depositional forms are found on this age of surface so there is probably a net loss of 1.5 cm across these surfaces. (3) The Late Holocene surfaces show the greatest variability in erosion and deposition. Overbank deposition during floods cover many edges of these surfaces and coppice dune formation also creates depositional features. Erosion rates are highly variable and range from 0.0 +/- 0.0 to a maximum of 2.0+/-.01. Erosion occurs because of the lack of protection of the surface. However, the common areas of deposition probably result in the surface having a small net depositional gain across these surfaces. Thus, the interchannel surfaces of the Fortymile Wash fan show a variety of erosional styles as well as areas of deposition. The fan, therefore, is a dynamic

  15. ARM - Measurement - Soil moisture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil moisture The moisture of the soil measured near the surface. This includes soil wetness and soil water potential. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  16. ARM - Datastreams - soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamssoil Documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : SOIL ABLE: soil temperature, moisture, heat flow, 30-min avg Active Dates 1999.05.23 - 2004.04.01 Originating Instrument Soil Measurement from the SGP (SOIL) Measurements The measurements below provided by this product are those considered scientifically relevant. Measurement Variable Locations Southern

  17. Analytical Chemistry and Materials Characterization Results for Debris Recovered from Nitrate Salt Waste Drum S855793

    SciTech Connect (OSTI)

    Martinez, Patrick Thomas; Chamberlin, Rebecca M.; Schwartz, Daniel S.; Worley, Christopher Gordon; Garduno, Katherine; Lujan, Elmer J. W.; Borrego, Andres Patricio; Castro, Alonso; Colletti, Lisa Michelle; Fulwyler, James Brent; Holland, Charlotte S.; Keller, Russell C.; Klundt, Dylan James; Martinez, Alexander; Martin, Frances Louise; Montoya, Dennis Patrick; Myers, Steven Charles; Porterfield, Donivan R.; Schake, Ann Rene; Schappert, Michael Francis; Soderberg, Constance B.; Spencer, Khalil J.; Stanley, Floyd E.; Thomas, Mariam R.; Townsend, Lisa Ellen; Xu, Ning

    2015-09-16

    Solid debris was recovered from the previously-emptied nitrate salt waste drum S855793. The bulk sample was nondestructively assayed for radionuclides in its as-received condition. Three monoliths were selected for further characterization. Two of the monoliths, designated Specimen 1 and 3, consisted primarily of sodium nitrate and lead nitrate, with smaller amounts of lead nitrate oxalate and lead oxide by powder x-ray diffraction. The third monolith, Specimen 2, had a complex composition; lead carbonate was identified as the predominant component, and smaller amounts of nitrate, nitrite and carbonate salts of lead, magnesium and sodium were also identified. Microfocused x-ray fluorescence (MXRF) mapping showed that lead was ubiquitous throughout the cross-sections of Specimens 1 and 2, while heteroelements such as potassium, calcium, chromium, iron, and nickel were found in localized deposits. MXRF examination and destructive analysis of fragments of Specimen 3 showed elevated concentrations of iron, which were broadly distributed through the sample. With the exception of its high iron content and low carbon content, the chemical composition of Specimen 3 was within the ranges of values previously observed in four other nitrate salt samples recovered from emptied waste drums.

  18. Modeling of early age loss of lithium ions from pore solution of cementitious systems treated with lithium nitrate

    SciTech Connect (OSTI)

    Kim, Taehwan Olek, Jan

    2015-01-15

    Addition of lithium nitrate admixture to the fresh concrete mixture helps to minimize potential problems related to alkali-silica reaction. For this admixture to function as an effective ASR control measure, it is imperative that the lithium ions remain in the pore solution. However, it was found that about 50% of the originally added lithium ions are removed from the pore solution during early stages of hydration. This paper revealed that the magnitude of the Li{sup +} ion loss is highly dependent on the concentration of Li{sup +} ions in the pore solution and the hydration rate of the cementitious systems. Using these findings, an empirical model has been developed which can predict the loss of Li{sup +} ions from the pore solution during the hydration period. The proposed model can be used to investigate the effects of mixture parameters on the loss of Li{sup +} ions from the pore solution of cementitious system.

  19. Current Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  20. Current Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  1. Previous Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  2. Previous Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  3. Soil respiration and bacterial structure and function after 17 years of a reciprocal soil transplant experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bond-Lamberty, Benjamin; Bolton, Harvey; Fansler, Sarah J.; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Smith, Jeff L.; Bailey, Vanessa L.

    2016-03-02

    The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampledmore » the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5 °C monthly maximum air temperature, +50 mm yr-1precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. Lastly, these results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even

  4. Uranyl nitrate-exposed rat alveolar macrophages cell death: Influence of superoxide anion and TNF ? mediators

    SciTech Connect (OSTI)

    Orona, N.S.; Tasat, D.R.

    2012-06-15

    Uranium compounds are widely used in the nuclear fuel cycle, military and many other diverse industrial processes. Health risks associated with uranium exposure include nephrotoxicity, cancer, respiratory, and immune disorders. Macrophages present in body tissues are the main cell type involved in the internalization of uranium particles. To better understand the pathological effects associated with depleted uranium (DU) inhalation, we examined the metabolic activity, phagocytosis, genotoxicity and inflammation on DU-exposed rat alveolar macrophages (12.5200 ?M). Stability and dissolution of DU could differ depending on the dissolvent and in turn alter its biological action. We dissolved DU in sodium bicarbonate (NaHCO{sub 3} 100 mM) and in what we consider a more physiological vehicle resembling human internal media: sodium chloride (NaCl 0.9%). We demonstrate that uranyl nitrate in NaCl solubilizes, enters the cell, and elicits its cytotoxic effect similarly to when it is diluted in NaHCO{sub 3}. We show that irrespective of the dissolvent employed, uranyl nitrate impairs cell metabolism, and at low doses induces both phagocytosis and generation of superoxide anion (O{sub 2}{sup ?}). At high doses it provokes the secretion of TNF? and through all the range of doses tested, apoptosis. We herein suggest that at DU low doses O{sub 2}{sup ?} may act as the principal mediator of DNA damage while at higher doses the signaling pathway mediated by O{sub 2}{sup ?} may be blocked, prevailing damage to DNA by the TNF? route. The study of macrophage functions after uranyl nitrate treatment could provide insights into the pathophysiology of uranium?related diseases. -- Highlights: ? Uranyl nitrate effect on cultured macrophages is linked to the doses and independent of its solubility. ? At low doses uranyl nitrate induces generation of superoxide anion. ? At high doses uranyl nitrate provokes secretion of TNF?. ? Uranyl nitrate induces apoptosis through all the range of

  5. PNCA-02 Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposed Adjustment to the Rate for Interchange Energy Imbalances Under the Pacific Northwest Coordination Agreement (PNCA-02 Rate Case) (updated on April 26, 2002) BPA has issued...

  6. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence

    SciTech Connect (OSTI)

    Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joël; Meusinger, Carl; Johnson, Matthew S.; Jost, Rémy; Bhattacharya, S. K.

    2014-06-28

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. [“Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry,” J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate ({sup 15}N, {sup 17}O, and {sup 18}O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ{sup 15}N, δ{sup 18}O, and Δ{sup 17}O). From these measurements an average photolytic isotopic fractionation of {sup 15}ε = (−15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of {sup 15}ε = (−47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from −40 to −74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of {sup 14}NO{sub 3}{sup −} and {sup 15}NO{sub 3}{sup −} in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying

  7. Nitrate Biogeochemistry and Reactive Transport in California Groundwater: LDRD Final Report

    SciTech Connect (OSTI)

    Esser, B K; Beller, H; Carle, S; Cey, B; Hudson, G B; Leif, R; LeTain, T; Moody-Bartel, C; Moore, K; McNab, W; Moran, J; Tompson, A

    2006-02-24

    Nitrate is the number one drinking water contaminant in the United States. It is pervasive in surface and groundwater systems,and its principal anthropogenic sources have increased dramatically in the last 50 years. In California alone, one third of the public drinking-water wells has been lost since 1988 and nitrate contamination is the most common reason for abandonment. Effective nitrate management in groundwater is complicated by uncertainties related to multiple point and non-point sources, hydrogeologic complexity, geochemical reactivity, and quantification of denitrification processes. In this paper, we review an integrated experimental and simulation-based framework being developed to study the fate of nitrate in a 25 km-long groundwater subbasin south of San Jose, California, a historically agricultural area now undergoing rapid urbanization with increasing demands for groundwater. The modeling approach is driven by a need to integrate new and archival data that support the hypothesis that nitrate fate and transport at the basin scale is intricately related to hydrostratigraphic complexity, variability of flow paths and groundwater residence times, microbial activity, and multiple geochemical reaction mechanisms. This study synthesizes these disparate and multi-scale data into a three-dimensional and highly resolved reactive transport modeling framework.

  8. Rate Case Elements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceeding Rate Information Residential Exchange Program Surplus Power Sales Reports Rate Case Elements BPA's rate cases are decided "on the record." That is, in making a decision...

  9. EMRTC Report RF 10-13: Application to LANL Evaporator Nitrate Salts

    Office of Environmental Management (EM)

    Amount of Zeolite Required to Meet the Constraints Established by the EMRTC Report RF 10-13: Application to LANL Evaporator Nitrate Salts 5/8/2012 LANL-Carlsbad Office Difficult Waste Team P2010-3306 Amount of Zeolite Required to Meet the Constraints Established by the EMRTC Report RF 10- 13: Application to LANL Evaporator Nitrate Salts 2 Purpose: The following document was developed in support of the Los Alamos National Laboratory Transuranic Program (LTP) by the LANL-Carlsbad Office, Difficult

  10. Power Rate Cases (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Choices (2003-06) Power Function Review (PFR) Firstgov Power Rate Cases BPA's wholesale power rates are set to recover its costs and repay the U.S. Treasury for the Federal...

  11. Chlorite Dissolution Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

  12. Chlorite Dissolution Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    2013-07-01

    Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

  13. Active Layer Soil Carbon and Nutrient Mineralization, Barrow, Alaska, 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stan D. Wullschleger; Holly M. Vander Stel; Colleen Iversen; Victoria L. Sloan; Richard J. Norby; Mallory P. Ladd; Jason K. Keller; Ariane Jong; Joanne Childs; Deanne J. Brice

    2015-10-29

    This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 day periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopography in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses.

  14. In situ BTEX biotransformation under enhanced nitrate- and sulfate-reducing conditions

    SciTech Connect (OSTI)

    Reinhard, M.; Shang, S.; Kitanidis, P.K.; Orwin, E.; Hopkins, G.D.; LeBron, C.A.

    1997-01-01

    In situ anaerobic biotransformation of BTEX (benzene, toluene, ethylbenzene, o-xylene, and m-xylene) was investigated under enhanced nitrate- and sulfate-reducing conditions. Controlled amounts of BTEX compounds added to slugs of treated groundwater were released into a gasoline-contaminated aquifer at Seal Beach, CA. In a series of studies, the slugs, 470-1700 L in volume, were released into the aquifer through a multi-port injection/extraction well and were subsequently withdrawn over a 2-3 month period. To evaluate unamended in situ conditions, the injectate was treated with granular activated carbon (GAC) and augmented with bromide as a tracer. To evaluate nitrate- and sulfate-reducing conditions, the injectate was also deionized and augmented with 200-300 {mu}g/L BTEX, nitrate or sulfate, and background electrolytes. Under unamended conditions, transformation appeared to be limited to the slow removal of toluene and m,p-xylene (i.e. sum of m+p-xylene). Under nitrate-reducing conditions, toluene, ethylbenzene, and m-xylene were transformed without a lag phase in less than 10 days, and o-xylene was transformed in 72 days. Under sulfate-reducing conditions, toluene, m-xylene and o-xylene were completely transformed in less then 50 days, and ethylbenzene was removed in 60 days. Benzene appeared to be removed under sulfate-reducing conditions, but the trend was pronounced only at some levels. 47 refs., 11 figs., 2 tabs.

  15. Sodium nitrate containing mixture for producing ceramic-glass-ceramic seal by microwave heating

    DOE Patents [OSTI]

    Blake, R.D.; Meek, T.T.

    1984-10-10

    A mixture for, and method of using such a mixture, for producing a ceramic-glass-ceramic seal by the use of microwave energy are disclosed, wherein the mixture comprises a glass sealing material, a coupling agent, and an oxidizer. The seal produced exhibits greater strength due to its different microstructure. Sodium nitrate is the most preferred oxidizer.

  16. Natural and Enhanced Attenuation of Soil and Groundwater at the Monument Valley, Arizona, DOE Legacy Waste Site—10281

    SciTech Connect (OSTI)

    Waugh, W.J.; Miller, D.E.; Morris, S.A.; Sheader, L.R.; Glenn, E.P.; Moore, D.; Carroll, K.C.; Benally, L.; Roanhorse, M.; Bush, R.P.; none,

    2010-03-07

    The U.S. Department of Energy (DOE), the Navajo Nation, and the University of Arizona are exploring natural and enhanced attenuation remedies for groundwater contamination at a former uranium-ore processing site near Monument Valley, Arizona. DOE removed radioactive tailings from the Monument Valley site in 1994. Nitrate and ammonium, waste products of the milling process, remain in an alluvial groundwater plume spreading from the soil source where tailings were removed. Planting and irrigating two native shrubs, fourwing saltbush and black greasewood, markedly reduced both nitrate and ammonium in the source area over an 8-year period. Total nitrogen dropped from 350 mg/kg in 2000 to less than 200 mg/kg in 2008. Most of the reduction is attributable to irrigation-enhanced microbial denitrification rather than plant uptake. However, soil moisture and percolation flux monitoring show that the plantings control the soil water balance in the source area, preventing additional leaching of nitrogen compounds. Enhanced denitrification and phytoremediation also look promising for plume remediation. Microcosm experiments, nitrogen isotopic fractionation analysis, and solute transport modeling results suggest that (1) up to 70 percent of nitrate in the plume has been lost through natural denitrification since the mill was closed in 1968, and (2) injection of ethanol may accelerate microbial denitrification in plume hot spots. A field-scale ethanol injection pilot study is underway. Landscape-scale remote sensing methods developed for the project suggest that transpiration from restored native phreatophyte populations rooted in the aquifer could limit further expansion of the plume. An evaluation of landfarm phytoremediation, the irrigation of native shrub plantings with high nitrate water pumped from the alluvial aquifer, is also underway.

  17. BP-18 Rate Proceeding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  18. BP-12 Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  19. BP-16 Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  20. Before a Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings and Workshops Customer...

  1. Rating Agency Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liabilities Financial Plan Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Residential Exchange Program Surplus Power Sales...

  2. 2012 Transmission Rate Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Transmission, Ancillary, and Control Area Service Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy...

  3. RAPID SEPARATION METHOD FOR 237NP AND PU ISOTOPES IN LARGE SOIL SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.; Culligan, B.; Noyes, G.

    2010-07-26

    A new rapid method for the determination of {sup 237}Np and Pu isotopes in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for large soil samples. The new soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using this two simple precipitations with high chemical recoveries and effective removal of interferences. Vacuum box technology and rapid flow rates are used to reduce analytical time.

  4. Options assessment report: Treatment of nitrate salt waste at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-09-16

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognized that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and the a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL's preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  5. DWPF coupled feed flowsheet material balance with batch one sludge and copper nitrate catalyst

    SciTech Connect (OSTI)

    Choi, A.S.

    1993-09-28

    The SRTC has formally transmitted a recommendation to DWPF to replace copper formate with copper nitrate as the catalyst form during precipitate hydrolysis [1]. The SRTC was subsequently requested to formally document the technical bases for the recommendation. A memorandum was issued on August 23, 1993 detailing the activities (and responsible individuals) necessary to address the impact of this change in catalyst form on process compatibility, safety, processibility environmental impact and product glass quality [2]. One of the activities identified was the preparation of a material balance in which copper nitrate is substituted for copper formate and the identification of key comparisons between this material balance and the current Batch 1 sludge -- Late Wash material balance [3].

  6. Aqueous nitrate waste treatment: Technology comparison, cost/benefit, and market analysis

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitrate waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.

  7. A Solution-Based Approach for Mo-99 Production: Considerations for Nitrate versus Sulfate Media

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Youker, Amanda J.; Chemerisov, Sergey D.; Kalensky, Michael; Tkac, Peter; Bowers, Delbert L.; Vandegrift, George F.

    2013-01-01

    Molybdenum-99 is the parent of Technetium-99m, which is used in nearly 80% of all nuclear medicine procedures. The medical community has been plagued by Mo-99 shortages due to aging reactors, such as the NRU (National Research Universal) reactor in Canada. There are currently no US producers of Mo-99, and NRU is scheduled for shutdown in 2016, which means that another Mo-99 shortage is imminent unless a potential domestic Mo-99 producer fills the void. Argonne National Laboratory is assisting two potential domestic suppliers of Mo-99 by examining the effects of a uranyl nitrate versus a uranyl sulfate target solution configuration onmore » Mo-99 production. Uranyl nitrate solutions are easier to prepare and do not generate detectable amounts of peroxide upon irradiation, but a high radiation field can lead to a large increase in pH, which can lead to the precipitation of fission products and uranyl hydroxides. Uranyl sulfate solutions are more difficult to prepare, and enough peroxide is generated during irradiation to cause precipitation of uranyl peroxide, but this can be prevented by adding a catalyst to the solution. A titania sorbent can be used to recover Mo-99 from a highly concentrated uranyl nitrate or uranyl sulfate solution; however, different approaches must be taken to prevent precipitation during Mo-99 production.« less

  8. TREATMENT TESTS FOR EX SITU REMOVAL OF CHROMATE & NITRATE & URANIUM (VI) FROM HANFORD (100-HR-3) GROUNDWATER FINAL REPORT

    SciTech Connect (OSTI)

    BECK MA; DUNCAN JB

    1994-01-03

    This report describes batch and ion exchange column laboratory scale studies investigating ex situ methods to remove chromate (chromium [VI]), nitrate (NO{sub 3}{sup -}) and uranium (present as uranium [VI]) from contaminated Hanford site groundwaters. The technologies investigated include: chemical precipitation or coprecipitation to remove chromate and uranium; and anion exchange to remove chromate, uranium and nitrate. The technologies investigated were specified in the 100-HR-3 Groundwater Treatability Test Plan. The method suggested for future study is anion exchange.

  9. Phytoremediation of a nitrogen-contaminated desert soil by native shrubs and microbial processes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Glenn, Edward P.; Jordan, Fiona; Waugh, W. Joseph

    2016-02-24

    Here, we combined phytoremediation and soil microbial nitrification and denitrification cycles to reduce nitrate and ammonium levels at a former uranium mill site near Monument Valley, Arizona. Ammonia used in uranium extraction was present throughout the soil profile. Sulfate,applied as sulfuric acid to solubilize uranium, was also present in the soil. These contaminants were leaching from a denuded area where a tailings pile had been removed and were migrating away from the site in groundwater. We planted the source area with two deep-rooted native shrubs, Atriplex cansescens and Sarcobatus vermiculatus, and irrigated transplants for 11 years at 20% the ratemore » of potential evapotranspiration to stimulate growth, then discontinued irrigation for 4 years. Over 15 years, total nitrogen levels dropped 82%, from 347 to 64 mg kg–1. Analysis of δ15N supported our hypothesis that coupled microbial nitrification and denitrification processes were responsible for the loss of N. Soil sulfate levels changed little; however, evapotranspiration reduced sulfate leaching into the aquifer. For arid sites where traditional pump-and-treat methods are problematic, the Monument Valley data suggest that alternatives that incorporate native plants and rely on vadose zone biogeochemistry and hydrology could be a sustainable remediation for nitrogen contaminated soil.« less

  10. Microbial Mechanisms Enhancing Soil C Storage

    SciTech Connect (OSTI)

    Zak, Donald

    2015-09-24

    Human activity has globally increased the amount of nitrogen (N) entering ecosystems, which could foster higher rates of C sequestration in the N-limited forests of the Northern Hemisphere. Presently, these ecosystems are a large global sink for atmospheric CO2, the magnitude of which could be influenced by the input of human-derived N from the atmosphere. Nevertheless, empirical studies and simulation models suggest that anthropogenic N deposition could have either an important or inconsequential effect on C storage in forests of the Northern Hemisphere, a set of observations that continues to fuel scientific discourse. Although a relatively simple set of physiological processes control the C balance of terrestrial ecosystems, we still fail to understand how these processes directly and indirectly respond to greater N availability in the environment. The uptake of anthropogenic N by N-limited forest trees and a subsequent enhancement of net primary productivity have been the primary mechanisms thought to increase ecosystem C storage in Northern Hemisphere forests. However, there are reasons to expect that anthropogenic N deposition could slow microbial activity in soil, decrease litter decay, and increase soil C storage. Fungi dominate the decay of plant detritus in forests and, under laboratory conditions, high inorganic N concentrations can repress the transcription of genes coding for enzymes which depolymerize lignin in plant detritus; this observation presents the possibility that anthropogenic N deposition could elicit a similar effect under field conditions. In our 18-yr-long field experiment, we have been able to document that simulated N deposition, at a rate expected in the near future, resulted in a significant decline in cellulolytic and lignolytic microbial activity, slowed plant litter decay, and increased soil C storage (+10%); this response is not portrayed in any biogeochemical model simulating the effect of atmospheric N deposition on ecosystem C

  11. Strontium Sorption onto SRP Soils

    SciTech Connect (OSTI)

    Hoeffner, S.L.

    2001-07-02

    This report discusses the effect of water and soil quality variables on the sorption of strontium onto SRP soils. The variables cover the range of conditions observed in the low-level waste burial ground.

  12. Soil metagenomics and carbon cycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services » Soil and Groundwater Soil and Groundwater Soil and Groundwater Legacy soil and groundwater remediation activities at Los Alamos National Laboratory (LANL) are conducted in accordance with regulatory requirements, DOE regulations, and other applicable environmental laws. The scope of work requires investigation and remediation of contaminated sites known as solid waste management units (SWMUs) or areas of concern (AOCs). The protection of surface water and groundwater is also within

  13. Fernald Environmental Management Project Archived Soil & Groundwater...

    Office of Environmental Management (EM)

    Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald ...

  14. Miamisburg Environmental Management Project Archived Soil & Groundwate...

    Office of Environmental Management (EM)

    Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports ...

  15. Crystal structure of a new amine nitrate: 4-dimethylaminopyridinium nitrate (C{sub 7}H{sub 11}N{sub 2})NO{sub 3}

    SciTech Connect (OSTI)

    Benhassan, D. Rekik, W.; Naïli, H.; Ślepokura, Katarzyna

    2015-12-15

    The title compound (C{sub 7}H{sub 11}N{sub 2})NO{sub 3} (I) was obtained by the slow evaporation method at room temperature. Its crystal structure consists of organic cations (C{sub 7}H{sub 11}N{sub 2}){sup +} and nitrate anions (NO{sub 3}){sup –} linked by two types of hydrogen bonds. Each monoprotonated nitrogen atom, called bifurcated, is engaged in two N–H···O hydrogen bonds with two symmetric oxygen atoms. In addition, the crystal structure stability is established by C–H···O hydrogen bonds that ensure the formation of infinite layers, parallel to (001) plane. These layers are related together through π···π interactions established between aromatic amines.

  16. Effects of PV Module Soiling on Glass Surface Resistance and Potential-Induced Degradation

    SciTech Connect (OSTI)

    Hacke, Peter; Button, Patrick; Hendrickson, Alex; Spataru, Sergiu; Glick, Stephen

    2015-06-14

    The goals of the project were: Determine applicability of transmission line method (TLM) to evaluate sheet resistance of soils on module glass;
    Evaluate various soils on glass for changes in surface resistance and their ability to promote potential-induced degradation with humidity (PID);
    Evaluate PID characteristics, rate, and leakage current increases on full-size mc-Si modules associated with a conductive soil on the surface.

  17. MOLECULAR APPROACHES FOR IN SITU IDENTIFCIATION OF NITRATE UTILIZATION BY MARINE BACTERIA AND PHYTOPLANKTON

    SciTech Connect (OSTI)

    Frischer, Marc E.; Verity, Peter G.; Gilligan, Mathew R.; Bronk, Deborah A.; Zehr, Jonathan P.; Booth, Melissa G.

    2013-09-12

    Traditionally, the importance of inorganic nitrogen (N) for the nutrition and growth of marine phytoplankton has been recognized, while inorganic N utilization by bacteria has received less attention. Likewise, organic N has been thought to be important for heterotrophic organisms but not for phytoplankton. However, accumulating evidence suggests that bacteria compete with phytoplankton for nitrate (NO3-) and other N species. The consequences of this competition may have a profound effect on the flux of N, and therefore carbon (C), in ocean margins. Because it has been difficult to differentiate between N uptake by heterotrophic bacterioplankton versus autotrophic phytoplankton, the processes that control N utilization, and the consequences of these competitive interactions, have traditionally been difficult to study. Significant bacterial utilization of DIN may have a profound effect on the flux of N and C in the water column because sinks for dissolved N that do not incorporate inorganic C represent mechanisms that reduce the atmospheric CO2 drawdown via the ?biological pump? and limit the flux of POC from the euphotic zone. This project was active over the period of 1998-2007 with support from the DOE Biotechnology Investigations ? Ocean Margins Program (BI-OMP). Over this period we developed a tool kit of molecular methods (PCR, RT-PCR, Q-PCR, QRT-PCR, and TRFLP) and combined isotope mass spectrometry and flow-cytometric approaches that allow selective isolation, characterization, and study of the diversity and genetic expression (mRNA) of the structural gene responsible for the assimilation of NO3- by heterotrophic bacteria (nasA). As a result of these studies we discovered that bacteria capable of assimilating NO3- are ubiquitous in marine waters, that the nasA gene is expressed in these environments, that heterotrophic bacteria can account for a significant fraction of total DIN uptake in different ocean margin systems, that the expression of nasA is

  18. Final Report - National Database of Utility Rates and Rate Structure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Database of Utility Rates and Rate Structure Final Report - National Database of Utility Rates and Rate Structure Awardee: Illinois State University Location: Normal, IL ...

  19. Biodegradation of jet fuel in vented columns of water-unsaturated sandy soil. Master's thesis

    SciTech Connect (OSTI)

    Coho, J.W.

    1990-01-01

    The effect of soil water content on the rate of jet fuel (JP-4) biodegradation in air-vented, water-unsaturated columns of sandy soil was investigated. The contaminated soil was obtained from a spill site located on Tyndall AFB, Fla. The initial soil loading was 4590 mg of JP-4/kg of dry soil. Three laboratory columns were packed with the contaminated soil, saturated and drained for periods of 81-89 days. Two columns were continuously vented with air, and the third, intended to provide an anaerobic control, was vented with nitrogen. The venting gas flows were maintained between 1 and 2.5 soil pore volume changeouts per day. The total JP-4 removal in the air-vented columns averaged 44% of the mass originally present. Biodegradation and volatilization accounted for 93% and 7% of the total removal, respectively. A maximum biodegradation rate of 14.3 mg of JP-4/kg of moist soil per day was observed at a soil water content of approximately 72% saturation. Soil drainage characteristics indicated that this water content may have corresponded to 100% of the in situ field capacity water content. Theses.

  20. Improving Entrainment Rate Parameterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Entrainment Rate Parameterization For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Parameterization of entrainment rate is critical for improving representation of cloud- and convection-related processes in climate models; however, much remains unclear. This work seeks to improve understanding and parameterization of entrainment rate by use of aircraft observations and large-eddy simulations of shallow cumulus clouds over

  1. Resonant thermonuclear reaction rate

    SciTech Connect (OSTI)

    Haubold, H.J.; Mathai, A.M.

    1986-08-01

    Basic physical principles for the resonant and nonresonant thermonuclear reaction rates are applied to find their standard representations for nuclear astrophysics. Closed-form representations for the resonant reaction rate are derived in terms of Meijer's G-italic-function. Analytic representations of the resonant and nonresonant nuclear reaction rates are compared and the appearance of Meijer's G-italic-function is discussed in physical terms.

  2. Estimated recharge rates at the Hanford Site

    SciTech Connect (OSTI)

    Fayer, M.J.; Walters, T.B.

    1995-02-01

    The Ground-Water Surveillance Project monitors the distribution of contaminants in ground water at the Hanford Site for the U.S. Department of Energy. A subtask called {open_quotes}Water Budget at Hanford{close_quotes} was initiated in FY 1994. The objective of this subtask was to produce a defensible map of estimated recharge rates across the Hanford Site. Methods that have been used to estimate recharge rates at the Hanford Site include measurements (of drainage, water contents, and tracers) and computer modeling. For the simulations of 12 soil-vegetation combinations, the annual rates varied from 0.05 mm/yr for the Ephrata sandy loam with bunchgrass to 85.2 mm/yr for the same soil without vegetation. Water content data from the Grass Site in the 300 Area indicated that annual rates varied from 3.0 to 143.5 mm/yr during an 8-year period. The annual volume of estimated recharge was calculated to be 8.47 {times} 10{sup 9} L for the potential future Hanford Site (i.e., the portion of the current Site bounded by Highway 240 and the Columbia River). This total volume is similar to earlier estimates of natural recharge and is 2 to 10x higher than estimates of runoff and ground-water flow from higher elevations. Not only is the volume of natural recharge significant in comparison to other ground-water inputs, the distribution of estimated recharge is highly skewed to the disturbed sandy soils (i.e., the 200 Areas, where most contaminants originate). The lack of good estimates of the means and variances of the supporting data (i.e., the soil map, the vegetation/land use map, the model parameters) translates into large uncertainties in the recharge estimates. When combined, the significant quantity of estimated recharge, its high sensitivity to disturbance, and the unquantified uncertainty of the data and model parameters suggest that the defensibility of the recharge estimates should be improved.

  3. LCC Guidance Rates

    Broader source: Energy.gov [DOE]

    Notepad text file provides the LCC guidance rates in a numbered format for the various regions throughout the U.S.

  4. Draft Tiered Rate Methodology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Regional Dialogue Discussion Purposes Only Pre-Decisional Draft Tiered Rates Methodology March 7, 2008 Pre-decisional, Deliberative, For Discussion Purposes Only March 7,...

  5. Measuring Static and Dynamic Properties of Frozen Silty Soils

    SciTech Connect (OSTI)

    Furnish, M.D.

    1998-09-30

    A mechanical characterization of frozen silty soils has been conducted to support computer modeling of penetrators. The soils were obtained from the Eilson AFB (Alaska) vicinity. Quasi-static testing with a multiaxial system in a cold room and intermediate strain rate testing with a split Hopkinson pressure bar were conducted. Maximum stresses achieved were slightly above 1 GPa, apparently limiting the observed behavior primarily to elastic compression and pore crushing phenomena. Lower temperatures seem to increase the strength of the material markedly, although not by a simple factor. Lower temperatures and higher strain rates increase the apparent Young's and bulk moduli as well (an increase of {approximately} a factor of two is observed for strain rate increasing from 0.001 s{sup {minus}1} to 800 s{sup {minus}1}). The strength also depends strongly on strain rate. Increasing the strain rate from 0.001 {sup {minus}1} to 0.07 {sup {minus}1} increases the strength by a factor of five to ten (to values of order 1 GPa). However,only a small increase in strength is seen as strain rate is increased to {approximately} 10{sup 2}--10{sup 3} s{sup {minus}1}. The reliability of the strength measurements at strain rates< 1 s{sup {minus}1} is decreased due to details of the experimental geometry, although general trends are observable. A recipe is provided for a simulant soil based on bentonite, sand, clay-rich soil and water to fit the {approximately} 6% air-filled porosity, density and water content of the Alaska soils, based on benchtop mixing and jacketed compression testing of candidate mixes.

  6. Permafrost soils and carbon cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2015-02-05

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore » this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  7. Comparison of FTIR and Particle Mass Spectrometry for the Measurement of Paticulate Organic Nitrates

    SciTech Connect (OSTI)

    Bruns, Emily; Perraud, Veronique; Zelenyuk, Alla; Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Imre, D.; Finlayson-Pitts, Barbara J.; Alexander, M. L.

    2010-02-01

    While multifunctional organic nitrates are formed during the atmospheric oxidation of volatile organic compounds, relatively little is known about their signatures in particle mass spectrometers. High resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) was applied to NH4NO3, NaNO3 and isosorbide 5-mononitrate (IMN) particles, and to secondary organic aerosol (SOA) from NO3 radical reactions at 22 C and 1 atm in air with and pinene, 3-carene, limonene and isoprene. For comparison, single particle laser ablation mass spectra (SPLAT II) were also obtained for IMN and SOA from the pinene reaction. The mass spectra of all particles exhibit significant intensity at m/z 30, and for the SOA, weak peaks corresponding to various organic fragments containing nitrogen [CxHyNzOa]+ were identified using HR-ToF-AMS. The NO+/NO2+ ratios from HR-ToF-AMS were 10-15 for IMN and the SOA from the and pinene, 3-carene and limonene reactions, ~5 for the isoprene reaction, 2.4 for NH4NO3 and 80 for NaNO3. The N/H ratios from HR-ToF-AMS for the SOA were smaller by a factor of 2 to 4 than the -ONO2/C-H ratios measured using FTIR on particles impacted on ZnSe windows. While the NO+/NO2+ ratio may provide a generic indication of organic nitrates under some conditions, specific identification of particulate organic nitrates awaits further development of particle mass spectrometry techniques.

  8. Conversion of actinide and RE oxides into nitrates and their recovery into fluids

    SciTech Connect (OSTI)

    Bondin, V.V.; Bychkov, S.I.; Efremov, I.G.; Revenko, Y.A.; Babain, V.A.; Murzin, A.A.; Romanovsky, V.N; Fedorov, Y.S.; Shadrin, A.Y.; Ryabkova, N.V.; Li, E.N.

    2007-07-01

    The conditions for uranium oxides completely convert into uranyl nitrate hexahydrate in nitrogen tetra-oxide media (75 deg. C, 0,5-3,0 MPa, [UO{sub x}]:[H{sub 2}O]:[NO{sub 2}]=1:8:6) were found out. The conversion of Pu contained simulator of oxide spent nuclear fuel of thermal reactors was successfully demonstrated. The possibility of uranium recovery up to 95% from TR SNF without plutonium separation from FP is practically showed, what corresponds with Non-proliferation Treaty. (authors)

  9. Investigations on spectral and dielectric properties of semi-organic single crystal – morpholinium nitrate

    SciTech Connect (OSTI)

    Arul, H.; Babu, D. Rajan Vizhi, R. Ezhil

    2015-06-24

    Semi organic nonlinear optical crystal Morpholinium nitrate (MN) was synthesized and subsequently grown from the solution by slow evaporation method. The sample has been subjected to powder X-ray diffraction to identify the crystalline nature and the prominent peaks were indexed. The crystal belongs to the monoclinic system with a space group P2{sub 1}/C. Carbon NMR analysis confirms the presence of carbon in the structure of the title compound. Dielectric studies have been carried out on the grown crystal as a function of frequencies at different temperatures. Dielectric constant, dielectric loss and AC conductivity were also calculated.

  10. The gas-phase bis-uranyl nitrate complex [(UO2)2(NO3)5]-: infrared spectrum and structure

    SciTech Connect (OSTI)

    Groenewold, G. S.; van Stipdonk, Michael J.; Oomens, Jos; De Jong, Wibe A.; McIIwain, Michael E.

    2011-12-01

    The infrared spectrum of the bis-uranyl nitrate complex [(UO2)2(NO3)5]- was measured in the gas phase using multiple photon dissociation (IRMPD). Intense absorptions corresponding to the nitrate symmetric and asymmetric vibrations, and the uranyl asymmetric vibration were observed. The nitrate v3 vibrations indicate the presence of nitrate in a bridging configuration bound to both uranyl cations, and probably two distinct pendant nitrates in the complex. The coordination environment of the nitrate ligands and the uranyl cations were compared to those in the mono-uranyl complex. Overall, the uranyl cation is more loosely coordinated in the bis-uranyl complex [(UO2)2(NO3)5]- compared to the mono-complex [UO2(NO3)3]-, as indicated by a higher O-U-O asymmetric stretching (v3) frequency. However, the pendant nitrate ligands are more strongly bound in the bis-complex than they are in the mono-uranyl complex, as indicated by the v3 frequencies of the pendant nitrate, which are split into nitrosyl and O-N-O vibrations as a result of bidentate coordination. These phenomena are consistent with lower electron density donation per uranyl by the nitrate bridging two uranyl centers compared to that of a pendant nitrate in the mono-uranyl complex. The lowest energy structure predicted by density functional theory (B3LYP functional) calculations was one in which the two uranyl molecules bridged by a single nitrate coordinated in a bis-bidentate fashion. Each uranyl molecule was coordinated by two pendant nitrate ligands. The corresponding vibrational spectrum was in excellent agreement with the IRMPD measurement, confirming the structural assignment.

  11. Pneumatic soil removal tool

    DOE Patents [OSTI]

    Neuhaus, J.E.

    1992-10-13

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw. 3 figs.

  12. Pneumatic soil removal tool

    DOE Patents [OSTI]

    Neuhaus, John E.

    1992-01-01

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw.

  13. ARM - Measurement - Soil characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characteristics ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil characteristics Includes available water capacity, bulk density, permeability, porosity, rock fragment classification, rock fragment volume, percent clay, percent sand, and texture classification Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer

  14. Remote sensing of soil radionuclide fluxes in a tropical ecosystem

    SciTech Connect (OSTI)

    Clegg, B.; Koranda, J.; Robinson, W.; Holladay, G.

    1980-11-06

    We are using a transponding geostationary satellite to collect surface environmental data to describe the fate of soil-borne radionuclides. The remote, former atomic testing grounds at the Eniwetok and Bikini Atolls present a difficult environment in which to collect continuous field data. Our land-based, solar-powered microprocessor and environmental data systems remotely acquire measurements of net and total solar radiation, rain, humidity, temperature, and soil-water potentials. For the past year, our water flux model predicts wet season plant transpiration rates nearly equal to the 6 to 7 mm/d evaporation pan rate, which decreases to 2 to 3 mm/d for the dry season. Radioisotopic analysis confirms the microclimate-estimated 1:3 to 1:20 soil to plant /sup 137/Cs dry matter concentration ratio. This ratio exacerbates the dose to man from intake of food plants. Nephelometer measurements of airborne particulates presently indicate a minimum respiratory radiological dose.

  15. Soil microbial responses to nitrogen addition in arid ecosystems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sinsabaugh, Robert L.; Belnap, Jayne; Rudgers, Jennifer; Kuske, Cheryl R.; Martinez, Noelle; Sandquist, Darren

    2015-08-14

    The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH, and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts). We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg N ha-1 y-1 from March 2012 to March 2013. In March 2013, biocrust (0–0.5 cm) and bulk soils (0–10 cm) were collected beneath Ambrosia canopies and in the interspaces betweenmore » plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities and rates of N transformation. With most measures, nutrient availability, microbial biomass, and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N amendment that included data from 14 other studies. Effect sizes were calculated for biomass and metabolic responses. Regressions of effect sizes, calculated for biomass, and metabolic responses, showed similar trends in relation to N application rate and N load (rate × duration). The critical points separating positive from negative treatment effects were 88 kg ha-1 y-1 and 159 kg ha-1, respectively, for biomass, and 70 kg ha-1 y-1 and 114 kg ha-1, respectively, for metabolism. These critical values are comparable to those for microbial biomass, decomposition rates and respiration reported in broader meta-analyses of N amendment effects in mesic ecosystems. The large effect sizes at low N

  16. Soil microbial responses to nitrogen addition in arid ecosystems

    SciTech Connect (OSTI)

    Sinsabaugh, Robert L.; Belnap, Jayne; Rudgers, Jennifer; Kuske, Cheryl R.; Martinez, Noelle; Sandquist, Darren

    2015-08-14

    The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH, and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts). We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg N ha-1 y-1 from March 2012 to March 2013. In March 2013, biocrust (0–0.5 cm) and bulk soils (0–10 cm) were collected beneath Ambrosia canopies and in the interspaces between plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities and rates of N transformation. With most measures, nutrient availability, microbial biomass, and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N amendment that included data from 14 other studies. Effect sizes were calculated for biomass and metabolic responses. Regressions of effect sizes, calculated for biomass, and metabolic responses, showed similar trends in relation to N application rate and N load (rate × duration). The critical points separating positive from negative treatment effects were 88 kg ha-1 y-1 and 159 kg ha-1, respectively, for biomass, and 70 kg ha-1 y-1 and 114 kg ha-1, respectively, for metabolism. These critical values are comparable to those for microbial biomass, decomposition rates and respiration

  17. The Effect of Steady Winds on Radon-222 Entry from soil into houses

    SciTech Connect (OSTI)

    Riley, W.J.; Gadgil, A.J.; Bonnefous, Y.C.; Nazaroff, W.W.

    1994-10-01

    Wind affects the radon-222 entry rate from soil into buildings and the resulting indoor concentrations. To investigate this phenomenon, we employ a previously tested three-dimensional numerical model of soil-gas Bow around houses, a commercial computational fluid dynamics code, an established model for determining ventilation rates in the presence of wind, and new wind tunnel results for the ground-surface pressure field caused by wind. These tools and data, applied under steady-state conditions to a prototypical residential building, allow us (1) to determine the complex soil-gas flow patterns that result from the presence of wind-generated ground-surface pressures, (2) to evaluate the effect of these flows on the radon concentration in the soil, and (3) to calculate the effect of wind on the radon entry rate and indoor concentration. For a broad range of soil permeabilities, two wind speeds, and two wind directions, we quantify the"flushing" effect of wind on the radon in the soil surrounding a house, and the consequent sharp decrease in radon entry rates. Experimental measurements of the time-dependent radon concentration in soil gas beneath houses confirm the existence of wind-induced flushing. Comparisons are made to modeling predictions obtained while ignoring the effect of the wind-generated ground-surface pressures. These investigations lead to the conclusion that wind-generated ground-surface pressures play a significant role in determining radon entry rates into residential buildings. [References: 26

  18. Soil and fertilizer amendments and edge effects on the floral succession of pulverized fuel ash

    SciTech Connect (OSTI)

    Shaw, P.

    2009-01-15

    Plots of fresh pulverized fuel ash (PFA, an industrial waste) were inoculated with soils from existing PFA sites and fertilizers in a factorial design, then left unmanaged for 12 years during which time the floral development and soil chemistry were monitored annually. For the first 3 years, the site supported a sparse mix of chenopods (including the scarce Chenopodium glaucum) and halophytes. As salinity declined, ruderals, legumes, and grasses plus the fire-site moss Funaria hygrometrica colonized, followed by Festuca arundinacea grassland (NVC community MG12) and Hippophae rhamnoides scrub. Dactylorhiza incarnata (orchidacea) appeared after 7 years, but only in plots that had received soil from existing orchid colonies. Four years later, a larger second generation of Dactylorhiza appeared, but only in the central zone of the site where vegetation was thinnest. By year 12, the site was dominated by coarse grasses and scrub, with early successional species persisting only in the sparsely vegetated center, where nitrate levels were lowest. This edge effect is interpreted as centripetal encroachment, a process of potentially wider concern for the conservation of low-fertility habitat patches. Overall, seed bank inoculation seems to have introduced few but desirable species (D. incarnata, Pyrola rotundifolia, some halophytes, and annuals), whereas initial application of organic fertilizer had long-lasting ({ge} 10 years) effects on cover and soil composition.

  19. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  20. Efficient frequency conversion by stimulated Raman scattering in a sodium nitrate aqueous solution

    SciTech Connect (OSTI)

    Ganot, Yuval E-mail: ibar@bgu.ac.il; Bar, Ilana E-mail: ibar@bgu.ac.il

    2015-09-28

    Frequency conversion of laser beams, based on stimulated Raman scattering (SRS) is an appealing technique for generating radiation at new wavelengths. Here, we investigated experimentally the SRS due to a single pass of a collimated frequency-doubled Nd:YAG laser beam (532 nm) through a saturated aqueous solution of sodium nitrate (NaNO{sub 3}), filling a 50 cm long cell. These experiments resulted in simultaneous generation of 1st (564 nm) and 2nd (599 nm) Stokes beams, corresponding to the symmetric stretching mode of the nitrate ion, ν{sub 1}(NO{sub 3}{sup −}), with 40 and 12 mJ/pulse maximal converted energies, equivalent to 12% and 4% efficiencies, respectively, for a 340 mJ/pulse pump energy. The results indicate that the pump and SRS beams were thermally defocused and that four-wave mixing was responsible for the second order Stokes process onset.

  1. Speciation model selection by Monte Carlo analysis of optical absorption spectra: Plutonium(IV) nitrate complexes

    SciTech Connect (OSTI)

    Berg, John M.; Veirs, D. Kirk; Vaughn, Randolph B.; Cisneros, Michael R.; Smith, Coleman A.

    2000-06-01

    Standard modeling approaches can produce the most likely values of the formation constants of metal-ligand complexes if a particular set of species containing the metal ion is known or assumed to exist in solution equilibrium with complexing ligands. Identifying the most likely set of species when more than one set is plausible is a more difficult problem to address quantitatively. A Monte Carlo method of data analysis is described that measures the relative abilities of different speciation models to fit optical spectra of open-shell actinide ions. The best model(s) can be identified from among a larger group of models initially judged to be plausible. The method is demonstrated by analyzing the absorption spectra of aqueous Pu(IV) titrated with nitrate ion at constant 2 molal ionic strength in aqueous perchloric acid. The best speciation model supported by the data is shown to include three Pu(IV) species with nitrate coordination numbers 0, 1, and 2. Formation constants are {beta}{sub 1}=3.2{+-}0.5 and {beta}{sub 2}=11.2{+-}1.2, where the uncertainties are 95% confidence limits estimated by propagating raw data uncertainties using Monte Carlo methods. Principal component analysis independently indicates three Pu(IV) complexes in equilibrium. (c) 2000 Society for Applied Spectroscopy.

  2. LITERATURE SURVEY FOR GROUNDWATER TREATMENT OPTIONS FOR NITRATE IODINE-129 AND URANIUM 200-ZP-1 OPERABLE UNIT HANFORD SITE

    SciTech Connect (OSTI)

    BYRNES ME

    2008-06-05

    This literature review presents treatment options for nitrate, iodine-129, and uranium, which are present in groundwater at the 200-ZP-I Groundwater Operable Unit (OU) within the 200 West Area of the Hanford Site. The objective of this review is to determine available methods to treat or sequester these contaminants in place (i.e., in situ) or to pump-and-treat the groundwater aboveground (i.e., ex situ). This review has been conducted with emphasis on commercially available or field-tested technologies, but theoretical studies have, in some cases, been considered when no published field data exist. The initial scope of this literature review included only nitrate and iodine-I 29, but it was later expanded to include uranium. The focus of the literature review was weighted toward researching methods for treatment of nitrate and iodine-129 over uranium because of the relatively greater impact of those compounds identified at the 200-ZP-I OU.

  3. Best Practices: Escalation Rates

    Office of Environmental Management (EM)

    Best Practices Escalation Rates Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 3-4, 2015 Houston, TX Federal Utility Partnership Working Group November 3-4, 2015 Houston, TX Federal Utility Partnership Working Group November 3-4, 2015 Houston, TX Best Practices: Escalation Rate Value of future energy savings * Provides purchasing power for implementing a robust, comprehensive and customized ECM set * Provides an option for paying back financing in the shortest possible

  4. 2007-2009 Power Rate Adjustments (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Function Review (PFR) Firstgov FY 2007 2009 Power Rate Adjustments BPA's 2007-2009 Wholesale Power Rate Schedules and General Rate Schedule Provisions (GRSPs) took effect on...

  5. WP-07 Power Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meetings & Workshops Rate Case Parties Web Site WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...

  6. In-situ vitrification of soil

    DOE Patents [OSTI]

    Brouns, Richard A.; Buelt, James L.; Bonner, William F.

    1983-01-01

    A method of vitrifying soil at or below a soil surface location. Two or more conductive electrodes are inserted into the soil for heating of the soil mass between them to a temperature above its melting temperature. Materials in the soil, such as buried waste, can thereby be effectively immobilized.

  7. Experimental observation of signature changes in bulk soil electrical conductivity in response to engineered surface CO2 leakage

    SciTech Connect (OSTI)

    Zhou X.; Wielopolski L.; Lakkaraju, V. R.; Apple, M.; Dobeck, L. M.; Gullickson, K.; Shaw, J. A.; Cunningham, A. B.; Spangler, L. H.

    2012-03-01

    Experimental observations of signature changes of bulk soil electrical conductivity (EC) due to CO{sub 2} leakage were carried out at a field site at Bozeman, Montana, to investigate the change of soil geophysical properties in response to possible leakage of geologically sequestered CO{sub 2}. The dynamic evolution of bulk soil EC was measured during an engineered surface leakage of CO{sub 2} through in situ continuous monitoring of bulk soil EC, soil moisture, soil temperature, rainfall rate, and soil CO{sub 2} concentration to investigate the response of soil bulk EC signature to CO{sub 2} leakage. Observations show that: (1) high soil CO{sub 2} concentration due to CO{sub 2} leakage enhances the dependence of bulk soil EC on soil moisture. The bulk soil EC is a linear multivariate function of soil moisture and soil temperature, the coefficient for soil moisture increased from 2.111 dS for the non-leaking phase to 4.589 dS for the CO{sub 2} leaking phase; and the coefficient for temperature increased from 0.003 dS/C for the non-leaking phase to 0.008 dS/C for the CO{sub 2} leaking phase. The dependence of bulk soil EC on soil temperature is generally weak, but leaked CO{sub 2} enhances the dependence, (2) after the CO{sub 2} release, the relationship between soil bulk EC and soil CO{sub 2} concentration observes three distinct CO{sub 2} decay modes. Rainfall events result in sudden changes of soil moisture and are believed to be the driving forcing for these decay modes, and (3) within each mode, increasing soil CO{sub 2} concentration results in higher bulk soil EC. Comparing the first 2 decay modes, it is found that the dependence of soil EC on soil CO{sub 2} concentration is weaker for the first decay mode than the second decay mode.

  8. A literature review of radiolytic gas generation as a result of the decomposition of sodium nitrate wastes

    SciTech Connect (OSTI)

    Kasten, J.L.

    1991-01-01

    The objective of this literature review is to determine expected chemical reactions and the gas generation associated with radiolytic decomposition of radioactive sodium nitrate wastes such as the wastes stored in the Melton Valley Storage Tanks (MVST) at Oak Ridge National Laboratory (ORNL). The literature survey summarizes expected chemical reactions and identifies the gases expected to be generated as a result of the radiolytic decomposition. The literature survey also identifies G values, which are the expression for radiation chemical yields as molecules of gas formed per 100 eV of absorbed energy, obtained from experimental studies of the radiolytic decomposition of water and sodium nitrate. 2 tabs., 32 refs.

  9. Permafrost carbon—climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    SciTech Connect (OSTI)

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-03-09

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon–nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. The future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.

  10. Permafrost carbon—climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-03-09

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon–nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost regionmore » is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. The future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.« less

  11. Permafrost soils and carbon cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2014-10-30

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon (OC) stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous OC stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global C cycle and the potential vulnerability of the region's soil OC stocks to changing climatic conditions. In this review,more » we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of OC stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this OC to permafrost thaw under a warming climate.« less

  12. Formation of Chloropyromorphite in a Lead-Contaminated Soil Amended with Hydroxyapatite

    SciTech Connect (OSTI)

    RYAN,JAMES A.; ZHANG,PENGCHU; HESTERBERG,DEAN; ZHOU,WEIQING; SAYERS,DALE E.

    2000-07-14

    To confirm conversion of soil Pb to pyromorphite [Pb{sub 5}(PO{sub 4}){sub 3}Cl], a Pb contaminated soil collected adjacent to a historical smelter was reacted with hydroxyapatite in slurries of soil and hydroxyapatite separated by a dialysis membrane and incubated. A crystalline precipitate formed on the dialysis membrane in the slurry systems was identified as chloropyromorphite. Soluble species measured in the soil slurry indicated that dissolution of solid-phase soil Pb was the rate-limiting step for pyromorphite formation. Additionally samples reacted with hydroxyapatite were incubated at field-capacity moisture content. The sequential chemical extraction used to identify species in the field-moist soil incubation experiment showed that hydroxyapatite treatment reduced the first four fractions of extractable Pb and correspondingly increased the recalcitrant extraction residue fraction by 35% of total Pb at 0 d incubation and by 45% after 240 d incubation. the increase in the extraction residue fraction in the 240 d incubation as compared to the 0 d incubation implies that the reaction occurs in the soil but the increase in the hydroxyapatite amended 0 d incubated soil as compared to the control soil illustrates the chemical extraction procedure caused changes in the extractability. Thus, the chemical extraction procedure cannot easily be utilized to confirm changes occurring in the soil as a result of incubation. Extended x-ray absorption fine structure (EXAFS) spectroscopy indicated that the 240 d incubated hydroxyapatite treatment caused a change in the average, local molecular bonding environment of soil Pb. Low-temperature EXAFS spectra (chi data and radial structure functions - RSFs) showed a high degree of similarity between the chemical extraction residue and synthetic pyromorphite. Thus, confirming that the change of soil Pb to pyromorphite is possible by simple amendments of hydroxyapatite to soil.

  13. Thermal behavior of glassy phase stabilized ammonium nitrate (PSAN) thin films

    SciTech Connect (OSTI)

    Yeager, J. D.; Chellappa, R.; Singh, S.; Majewski, J.

    2015-06-01

    Ammonium nitrate (AN) is a high interest material because of its wide usage in propellants and explosives but can be difficult to handle from a formulation standpoint. It is soluble in many common solvents and has complex phase behavior. Here, we formulate phase stabilized AN (PSAN) films in a polymer matrix and characterize thermal and phase behavior using neutron reflectometry and ellipsometry. Our PSAN films are generally stable up to 160 °C, though we observe small material loss between 60 and 100 °C, which we attribute to solvent interactions with the PSAN. Crystallization of AN from supersaturated polymer is most common at thicker regions of the film, suggesting a critical nucleation thickness for the AN which can be avoided by making very thin films.

  14. Thermal behavior of glassy phase stabilized ammonium nitrate (PSAN) thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yeager, J. D.; Chellappa, R.; Singh, S.; Majewski, J.

    2015-06-01

    Ammonium nitrate (AN) is a high interest material because of its wide usage in propellants and explosives but can be difficult to handle from a formulation standpoint. It is soluble in many common solvents and has complex phase behavior. Here, we formulate phase stabilized AN (PSAN) films in a polymer matrix and characterize thermal and phase behavior using neutron reflectometry and ellipsometry. Our PSAN films are generally stable up to 160 °C, though we observe small material loss between 60 and 100 °C, which we attribute to solvent interactions with the PSAN. Crystallization of AN from supersaturated polymer is mostmore » common at thicker regions of the film, suggesting a critical nucleation thickness for the AN which can be avoided by making very thin films.« less

  15. Thermal behavior of glassy phase stabilized ammonium nitrate (PSAN) thin films

    SciTech Connect (OSTI)

    Yeager, J. D.; Chellappa, R.; Singh, S.; Majewski, J.

    2015-06-01

    Ammonium nitrate (AN) is a high interest material because of its wide usage in propellants and explosives but can be difficult to handle from a formulation standpoint. It is soluble in many common solvents and has complex phase behavior. Here, we formulate phase stabilized AN (PSAN) films in a polymer matrix and characterize thermal and phase behavior using neutron reflectometry and ellipsometry. Our PSAN films are generally stable up to 160 C, though we observe small material loss between 60 and 100 C, which we attribute to solvent interactions with the PSAN. Crystallization of AN from supersaturated polymer is most common at thicker regions of the film, suggesting a critical nucleation thickness for the AN which can be avoided by making very thin films.

  16. Structural Aspects of Hydrogen Bonding with Nitrate and Sulfate: Design Criteria for Polyalcohol Hosts

    SciTech Connect (OSTI)

    Hay, Benjamin P.; Dixon, David A.; Lumetta, Gregg J.; Vargas, Rubicelia; Garza, Jorge

    2004-01-01

    Organic hosts for oxyanion complexation can be constructed by combining two or more hydrogen bonding sites. The deliberate design of architectures for such hosts requires knowledge of the optimal geometry for the hydrogen bonds formed between the host and the guest. Important structural parameters include the O--H distance, the O--H-D angle, the X-O--H angle, and the X-O--H-D dihedral angle (H-D=hydrogen bond donor, X=any atom). This information can be obtained through the analysis of hydrogen bonding observed in crystal structures and electronic structure calculations on simple gas-phase complexes. In this chapter, we present an analysis of hydrogen bonding structural parameters for alcohol hydrogen donors and the oxygen atom acceptors in nitrate and sulfate.

  17. FLUIDIZED BED STEAM REFORMING TECHNOLOGY FOR ORGANIC AND NITRATE SALT SUPERNATE

    SciTech Connect (OSTI)

    Jantzen, C; Michael02 Smith, M

    2007-03-30

    About two decades ago a process was developed at the Savannah River Site (SRS) to remove Cs137 from radioactive high level waste (HLW) supernates so the supernates could be land disposed as low activity waste (LAW). Sodium tetraphenylborate (NaTPB) was used to precipitate Cs{sup 137} as CsTPB. The flowsheet called for destruction of the organic TPB by acid hydrolysis so that the Cs{sup 137} enriched residue could be mixed with other HLW sludge, vitrified, and disposed of in a federal geologic repository. The precipitation process was demonstrated full scale with actual HLW waste and a 2.5 wt% Cs137 rich precipitate containing organic TPB was produced admixed with 240,000 gallons of salt supernate. Organic destruction by acid hydrolysis proved to be problematic and other disposal technologies were investigated. Fluidized Bed Steam Reforming (FBSR), which destroys organics by pyrolysis, is the current baseline technology for destroying the TPB and the waste nitrates prior to vitrification. Bench scale tests were designed and conducted at the Savannah River National Laboratory (SRNL) to reproduce the pyrolysis reactions. The formation of alkali carbonate phases that are compatible with DWPF waste pre-processing and vitrification were demonstrated in the bench scale tests. Test parameters were optimized for a pilot scale FBSR demonstration that was performed at the SAIC Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003. An engineering scale demonstration was completed by THOR{reg_sign} Treatment Technologies (TTT) and SRNL in 2006 at the Hazen Research, Inc. test facility in Golden, CO. The same mineral carbonate phases, the same organic destruction (>99.99%) and the same nitrate/nitrite destruction (>99.99%) were produced at the bench scale, pilot scale, and engineering scale although different sources of carbon were used during testing.

  18. Contrasting soil microbial community functional structures in...

    Office of Scientific and Technical Information (OSTI)

    Contrasting soil microbial community functional structures in two major landscapes of the Tibetan alpine meadow Prev Next Title: Contrasting soil microbial community...

  19. Uranyl nitrate inhibits lactate gluconeogenesis in isolated human and mouse renal proximal tubules: A {sup 13}C-NMR study

    SciTech Connect (OSTI)

    Renault, Sophie; Faiz, Hassan; Gadet, Rudy; Ferrier, Bernard; Martin, Guy; Baverel, Gabriel; Conjard-Duplany, Agnes

    2010-01-01

    As part of a study on uranium nephrotoxicity, we investigated the effect of uranyl nitrate in isolated human and mouse kidney cortex tubules metabolizing the physiological substrate lactate. In the millimolar range, uranyl nitrate reduced lactate removal and gluconeogenesis and the cellular ATP level in a dose-dependent fashion. After incubation in phosphate-free Krebs-Henseleit medium with 5 mM L-[1-{sup 13}C]-, or L-[2-{sup 13}C]-, or L-[3-{sup 13}C]lactate, substrate utilization and product formation were measured by enzymatic and NMR spectroscopic methods. In the presence of 3 mM uranyl nitrate, glucose production and the intracellular ATP content were significantly reduced in both human and mouse tubules. Combination of enzymatic and NMR measurements with a mathematical model of lactate metabolism revealed an inhibition of fluxes through lactate dehydrogenase and the gluconeogenic enzymes in the presence of 3 mM uranyl nitrate; in human and mouse tubules, fluxes were lowered by 20% and 14% (lactate dehydrogenase), 27% and 32% (pyruvate carboxylase), 35% and 36% (phosphoenolpyruvate carboxykinase), and 39% and 45% (glucose-6-phosphatase), respectively. These results indicate that natural uranium is an inhibitor of renal lactate gluconeogenesis in both humans and mice.

  20. Enhanced liquid-liquid anion exchange using macrocyclic anion receptors: effect of receptor structure on sulphate-nitrate exchange selectivity

    SciTech Connect (OSTI)

    Moyer, Bruce A; Sloop Jr, Frederick {Fred} V; Fowler, Christopher J; Haverlock, Tamara; Kang, Hyun Ah; Delmau, Laetitia Helene; Bau, Diadra; Hossain, Alamgir; Bowman-James, Kristin; Shriver, James A.; Gross, Mr. Dustin E.; Bill, Nathan; Marquez, Manuel; Lynch, Vincent M.; Sessler, Jonathan L.

    2010-01-01

    When certain macrocyclic anion receptors are added to a chloroform solution of the nitrate form of a lipophilic quaternary ammonium salt (methyltri-C8,10-ammonium nitrate, Aliquat 336N), the extraction of sulphate from an aqueous sodium nitrate solution via exchange with the organic-phase nitrate is significantly enhanced. Eight macrocycles were surveyed, including two derivatives of a tetraamide macrocycle, five derivatives of calix[4]pyrrole and -decafluorocalix[5]pyrrole. Under the hypothesis that the enhancement originates from sulphate binding by the anion receptors in the chloroform phase, it was possible to obtain reasonable fits to the sulphate distribution survey data based on the formation of 1:1 and 2:1 receptor:sulphate complexes in the chloroform phase. Apparent 1:1 sulphate-binding constants obtained from the model in this system fell in the range . Comparison of the results for the various anion receptors included in this study reveals that sulphate binding is sensitive to the nature of the substituents on the parent macrocycle scaffolds in a way that does not follow straightforwardly from simple chemical expectations, such as electron-withdrawing effects on hydrogen-bond donor strength.

  1. Draft Genome Sequence for Microbacterium laevaniformans Strain OR221, a Bacterium Tolerant to Metals, Nitrate, and Low pH

    SciTech Connect (OSTI)

    Brown, Steven D; Palumbo, Anthony Vito; Panikov, Nikolai; Ariyawansa, Thilini; Klingeman, Dawn Marie; Johnson, Courtney M; Land, Miriam L; Utturkar, Sagar M; Epstein, Slava

    2012-01-01

    Microbacterium laevaniformans strain OR221 was isolated from subsurface sediments obtained from the Field Research Center (FRC) in Oak Ridge, TN. It was characterized as a bacterium tolerant to heavy metals such as uranium, nickel, cobalt, cadmium, as well as nitrate and low pH. We present its draft genome sequence.

  2. Soil carbon sequestration and land use change associated with biofuel production: Empirical evidence

    SciTech Connect (OSTI)

    Qin, Zhangcai; Dunn, Jennifer B.; Kwon, Hoyoung; Mueller, Steffen; Wander, Michelle M.

    2016-01-01

    Soil organic carbon (SOC) change can be a major impact of land use change (LUC) associated with biofuel feedstock production. By collecting and analyzing data from worldwide field observations with major LUCs from cropland, grassland and forest to lands producing biofuel crops (i.e., corn, switchgrass, Miscanthus, poplar and willow), we were able to estimate SOC response ratios and sequestration rates and evaluate the effects of soil depth and time scale on SOC change. Both the amount and rate of SOC change were highly dependent on the specific land transition. Irrespective of soil depth or time horizon, cropland conversions resulted in an overall SOC gain of 6-14% relative to initial SOC level, while conversion from grassland or forest to corn (without residue removal) or poplar caused significant carbon loss (9-35%). No significant SOC changes were observed in land converted from grasslands or forests to switchgrass, Miscanthus or willow. The SOC response ratios were similar in both 0-30 and 0-100 cm soil depths in most cases, suggesting SOC changes in deep soil and that use of top soil only for SOC accounting in biofuel life cycle analysis (LCA) might underestimate total SOC changes. Soil carbon sequestration rates varied greatly among studies and land transition types. Generally, the rates of SOC change tended to be the greatest during the 10 years following land conversion, and had declined to approach 0 within about 20 years for most LUCs. Observed trends in SOC change were generally consistent with previous reports. Soil depth and duration of study significantly influence SOC change rates and so should be considered in carbon emission accounting in biofuel LCA. High uncertainty remains for many perennial systems, field trials and modeling efforts are needed to determine the site- and system-specific rates and direction of change associated with their production.

  3. Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality

    SciTech Connect (OSTI)

    Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch; Douglas L. Karlen

    2014-06-01

    Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion T values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.

  4. Sequoia Messaging Rate Benchmark

    Energy Science and Technology Software Center (OSTI)

    2008-01-22

    The purpose of this benchmark is to measure the maximal message rate of a single compute node. The first num_cores ranks are expected to reside on the 'core' compute node for which message rate is being tested. After that, the next num_nbors ranks are neighbors for the first core rank, the next set of num_nbors ranks are neighbors for the second core rank, and so on. For example, testing an 8-core node (num_cores = 8)more » with 4 neighbors (num_nbors = 4) requires 8 + 8 * 4 - 40 ranks. The first 8 of those 40 ranks are expected to be on the 'core' node being benchmarked, while the rest of the ranks are on separate nodes.« less

  5. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Valuation Rates Karl R. Rábago Rábago Energy LLC 1 The Ideal Residential Solar Tariff ‣ Fair to the utility and non-solar customers ‣ Fair compensation to the solar customer ‣ Decouple compensation from incentives ‣ Align public policy goals (decouple compensation from consumption) ‣ Intuitively sound and administratively simple 2 Historical Antecedents ‣ Externalities ‣ Price ≠ Cost ‣ Green Power ‣ Small Is Profitable (http://www.smallisprofitable.org/) ‣ Local

  6. Rotational rate sensor

    DOE Patents [OSTI]

    Hunter, Steven L. (Livermore, CA)

    2002-01-01

    A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.

  7. Barley seedling growth in soils amended with fly ash or agricultural lime followed by acidification

    SciTech Connect (OSTI)

    Renken, R.R.; McCallister, D.L.; Tarkalson, D.D.; Hergert, G.W.; Marx, D.B.

    2006-05-15

    Calcium-rich coal combustion fly ash can be used as an amendment to neutralize soil acidity because of its oxides and carbonate content, but its aluminum content could inhibit plant growth if soil pH values fall below optimal agronomic levels. This study measured root and shoot growth of an acid-sensitive barley (Hordeum vulgare L. 'Kearney') grown in the greenhouse on three naturally acid soils. The soils were either untreated or amended with various liming materials (dry fly ash, wet fly ash, and agricultural lime) at application rates of 0, .5, 1, and 1.5 times the recommended lime requirement, then treated with dilute acid solutions to simulate management-induced acidification. Plant growth indexes were measured at 30 days after planting. Root mass per plant and root length per plant were greater for the limed treatments than in the acidified check. Root growth in the limed treatments did not differ from root growth in the original nonacidified soils. Top mass per plant in all limed soils was either larger than or not different from that in the original nonacidified soils. Based on top mass per plant, no liming material or application rate was clearly superior. Both fly ash and agricultural lime reduced the impact of subsequent acidification on young barley plants. Detrimental effects of aluminum release on plant growth were not observed. Calcium-rich fly ash at agronomic rates is an acceptable acid-neutralizing material with no apparent negative effects.

  8. Uranium soils integrated demonstration: Soil characterization project report

    SciTech Connect (OSTI)

    Cunnane, J.C.; Gill, V.R.; Lee, S.Y.; Morris, D.E.; Nickelson, M.D.; Perry, D.L.; Tidwell, V.C.

    1993-08-01

    An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP.

  9. Writing Effective Initial Summary Ratings Initial Summary Rating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initial Summary Ratings Initial Summary Rating (ISR) At the end of the performance cycle, the rating official must prepare an ISR in ePerformance for each SES member who has ...

  10. Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum)

    SciTech Connect (OSTI)

    Garten Jr, Charles T [ORNL

    2012-01-01

    Abstract. A simple, multi-compartment model was developed to predict soil carbon sequestration beneath switchgrass (Panicum virgatum) plantations in the southeastern United States. Soil carbon sequestration is an important component of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was included for the purpose of model parameterization and five model-based experiments were conducted to predict how changes in environment (temperature) or crop management (cultivar, fertilization, and harvest efficiency) might affect soil carbon storage and nitrogen losses. Predictions of soil carbon sequestration were most sensitive to changes in annual biomass production, the ratio of belowground to aboveground biomass production, and temperature. Predictions of ecosystem nitrogen loss were most sensitive to changes in annual biomass production, the soil C/N ratio, and nitrogen remobilization efficiency (i.e., nitrogen cycling within the plant). Model-based experiments indicated that 1) soil carbon sequestration can be highly site specific depending on initial soil carbon stocks, temperature, and the amount of annual nitrogen fertilization, 2) response curves describing switchgrass yield as a function of annual nitrogen fertilization were important to model predictions, 3) plant improvements leading to greater belowground partitioning of biomass could increase soil carbon sequestration, 4) improvements in harvest efficiency have no indicated effects on soil carbon and nitrogen, but improve cumulative biomass yield, and 5) plant improvements that reduce organic matter decomposition rates could also increase soil carbon sequestration, even though the latter may not be consistent with desired improvements in plant tissue chemistry to maximize yields of cellulosic ethanol.

  11. Writing Effective Initial Summary Ratings Initial Summary Rating (ISR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initial Summary Ratings Initial Summary Rating (ISR) At the end of the performance cycle, the rating official must prepare an ISR in ePerformance for each SES member who has completed at least 90 days on an established performance plan. Rating officials must take into account the SES member's accomplishments achieved during the performance cycle and the impact to the organization's performance. Rating officials must appraise executives realistically and fairly and avoid ratings inflation.

  12. RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY SOIL SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.; Culligan, B.; Noyes, G.

    2009-11-09

    A new rapid method for the determination of actinides in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for samples up to 2 grams in emergency response situations. The actinides in soil method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride soil matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha sources are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency soil samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinides in soil results were reported within 4-5 hours with excellent quality.

  13. October 1996 - September 2001 Wholesale Power Rates (rates/previous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    affecting a specific power purchase. For more specific information see: 1996 Final Wholesale Power and Transmission Rate Schedules: Power Rates (PDF, 84 pages, 188 kb) Ancillary...

  14. Soil & Groundwater Home - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soil & Groundwater Home Soil & Groundwater Home Annual Reports Environmental Data Access Administrative Record Soil & Groundwater Home Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Soil & Groundwater Home Annual Reports Environmental Data Access Administrative Record Share on Last Updated 08/28/2016 4:15

  15. Waste tank ventilation rates measured with a tracer gas method

    SciTech Connect (OSTI)

    Huckaby, J.L.; Evans, J.C.; Sklarew, D.S.; Mitroshkov, A.V.

    1998-08-01

    Passive ventilation with the atmosphere is used to prevent accumulation of waste gases and vapors in the headspaces of 132 of the 177 high-level radioactive waste Tanks at the Hanford Site in Southeastern Washington State. Measurements of the passive ventilation rates are needed for the resolution of two key safety issues associated with the rates of flammable gas production and accumulation and the rates at which organic salt-nitrate salt mixtures dry out. Direct measurement of passive ventilation rates using mass flow meters is not feasible because ventilation occurs va multiple pathways to the atmosphere (i.e., via the filtered breather riser and unsealed tank risers and pits), as well as via underground connections to other tanks, junction boxes, and inactive ventilation systems. The tracer gas method discussed in this report provides a direct measurement of the rate at which gases are removed by ventilation and an indirect measurement of the ventilation rate. The tracer gas behaves as a surrogate of the waste-generated gases, but it is only diminished via ventilation, whereas the waste gases are continuously released by the waste and may be subject to depletion mechanisms other than ventilation. The fiscal year 1998 tracer studies provide new evidence that significant exchange of air occurs between tanks via the underground cascade pipes. Most of the single-shell waste tanks are connected via 7.6-cm diameter cascade pipes to one or two adjacent tanks. Tracer gas studies of the Tank U-102/U-103 system indicated that the ventilation occurring via the cascade line could be a significant fraction of the total ventilation. In this two-tank cascade, air evidently flowed from Tank U-103 to Tank U-102 for a time and then was observed to flow from Tank U-102 to Tank U-103.

  16. PULSE RATE DIVIDER

    DOE Patents [OSTI]

    McDonald, H.C. Jr.

    1962-12-18

    A compact pulse-rate divider circuit affording low impedance output and high input pulse repetition rates is described. The circuit features a single secondary emission tube having a capacitor interposed between its dynode and its control grid. An output pulse is produced at the anode of the tube each time an incoming pulse at the control grid drives the tube above cutoff and the duration of each output pulse corresponds to the charging time of the capacitor. Pulses incoming during the time the grid bias established by the discharging capacitor is sufficiently negative that the pulses are unable to drive the tube above cutoff do not produce output pulses at the anode; these pulses are lost and a dividing action is thus produced by the circuit. The time constant of the discharge path may be vanied to vary in turn the division ratio of the circuit; the time constant of the charging circuit may be varied to vary the width of the output pulses. (AEC)

  17. Worldwide organic soil carbon and nitrogen data

    SciTech Connect (OSTI)

    Zinke, P.J.; Stangenberger, A.G.; Post, W.M.; Emanual, W.R.; Olson, J.S.

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  18. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    SciTech Connect (OSTI)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  19. Time dependence in atmospheric carbon inputs from drainage of organic soils

    SciTech Connect (OSTI)

    Rojstaczer, S.; Deverel, S.J. )

    1993-07-09

    The authors report the results of a study in the San Joaquin-Sacramento Delta of CO[sub 2] emission from drained soils relative to the rate of subsidence of the land. Their interest is in quantifying the rate carbon is freed from soils which are being drained, primarily for agricultural purposes, relative to the observed subsidence rates. This information is one of the inputs in the global carbon cycle. It is argued that most subsidence is the result of carbon oxidation. The fact that subsidence rates correlate with carbon dioxide emission rates supports this argument. In this Delta, subsidence rates have been decreasing in recent years, and measurements indicate that present carbon dioxide emission rates are lower than previous estimates by a factor or 3 or 4.

  20. ARM - Measurement - Soil moisture flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moisture flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil moisture flux A quantity measured according to the formula B = {lambda}(dq/dz), where {lambda} is the conductivity of the soil that the moisture is moving through. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file

  1. ARM - Measurement - Soil surface temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surface temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil surface temperature The temperature of the soil measured near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  2. Soil Moisture Sensor - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soil & Groundwater Remediation Soil & Groundwater Remediation Soil & Groundwater Remediation The U.S. Department of Energy (DOE) manages one of the largest groundwater and soil remediation efforts in the world. The inventory at the DOE sites includes 6.5 trillion liters of contaminated groundwater, an amount equal to about four times the daily U.S. water consumption, and 40 million cubic meters of soil and debris contaminated with radionuclides, metals, and organics. The Office of

  3. Nuclear forensics: Soil content

    SciTech Connect (OSTI)

    Beebe, Merilyn Amy

    2015-08-31

    Nuclear Forensics is a growing field that is concerned with all stages of the process of creating and detonating a nuclear weapon. The main goal is to prevent nuclear attack by locating and securing nuclear material before it can be used in an aggressive manner. This stage of the process is mostly paperwork; laws, regulations, treaties, and declarations made by individual countries or by the UN Security Council. There is some preliminary leg work done in the form of field testing detection equipment and tracking down orphan materials; however, none of these have yielded any spectacular or useful results. In the event of a nuclear attack, the first step is to analyze the post detonation debris to aid in the identification of the responsible party. This aspect of the nuclear forensics process, while reactive in nature, is more scientific. A rock sample taken from the detonation site can be dissolved into liquid form and analyzed to determine its chemical composition. The chemical analysis of spent nuclear material can provide valuable information if properly processed and analyzed. In order to accurately evaluate the results, scientists require information on the natural occurring elements in the detonation zone. From this information, scientists can determine what percentage of the element originated in the bomb itself rather than the environment. To this end, element concentrations in soils from sixty-nine different cities are given, along with activity concentrations for uranium, thorium, potassium, and radium in various building materials. These data are used in the analysis program Python.

  4. Combined uranous nitrate production consisting of undivided electrolytic cell and divided electrolytic cell (Electrolysis ? Electrolytic cell)

    SciTech Connect (OSTI)

    Yuan, Zhongwei; Yan, Taihong; Zheng, Weifang; Li, Xiaodong; Yang, Hui; Xian, Liang

    2013-07-01

    The electrochemical reduction of uranyl nitrate is a green, mild way to make uranous ions. Undivided electrolyzers whose maintenance is less but their conversion ratio and current efficiency are low, have been chosen. However, at the beginning of undivided electrolysis, high current efficiency can also be maintained. Divided electrolyzers' conversion ratio and current efficiency is much higher because the re-oxidation of uranous on anode is avoided, but their maintenance costs are more, because in radioactive environment the membrane has to be changed after several operations. In this paper, a combined method of uranous production is proposed which consists of 2 stages: undivided electrolysis (early stage) and divided electrolysis (late stage) to benefit from the advantages of both electrolysis modes. The performance of the combined method was tested. The results show that in combined mode, after 200 min long electrolysis (80 min undivided electrolysis and 120 min divided electrolysis), U(IV) yield can achieve 92.3% (500 ml feed, U 199 g/l, 72 cm{sup 2} cathode, 120 mA/cm{sup 2}). Compared with divided mode, about 1/3 working time in divided electrolyzer is reduced to achieve the same U(IV) yield. If 120 min long undivided electrolysis was taken, more than 1/2 working time can be reduced in divided electrolyzer, which means that about half of the maintenance cost can also be reduced. (authors)

  5. Polyethylene encapsulatin of nitrate salt wastes: Waste form stability, process scale-up, and economics

    SciTech Connect (OSTI)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1991-07-01

    A polyethylene encapsulation system for treatment of low-level radioactive, hazardous, and mixed wastes has been developed at Brookhaven National Laboratory. Polyethylene has several advantages compared with conventional solidification/stabilization materials such as hydraulic cements. Waste can be encapsulated with greater efficiency and with better waste form performance than is possible with hydraulic cement. The properties of polyethylene relevant to its long-term durability in storage and disposal environments are reviewed. Response to specific potential failure mechanisms including biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation are examined. These data are supported by results from extensive waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. The bench-scale process has been successfully tested for application with a number of specific problem'' waste streams. Quality assurance and performance testing of the resulting waste form confirmed scale-up feasibility. Use of this system at Rocky Flats Plant can result in over 70% fewer drums processed and shipped for disposal, compared with optimal cement formulations. Based on the current Rocky Flats production of nitrate salt per year, polyethylene encapsulation can yield an estimated annual savings between $1.5 million and $2.7 million, compared with conventional hydraulic cement systems. 72 refs., 23 figs., 16 tabs.

  6. Solidification of Acidic, High Nitrate Nuclear Wastes by Grouting or Absorption on Silica Gel

    SciTech Connect (OSTI)

    A. K. Herbst; S. V. Raman; R. J. Kirkham

    2004-01-01

    The use of grout and silica gel were explored for the solidification of four types of acidic, high nitrate radioactive wastes. Two methods of grouting were tested: direct grouting and pre-neutralization. Two methods of absorption on silica gel were also tested: direct absorption and rotary spray drying. The waste simulant acidity varied between 1 N and 12 N. The waste simulant was neutralized by pre-blending calcium hydroxide with Portland cement and blast furnace slag powders prior to mixing with the simulant for grout solidification. Liquid sodium hydroxide was used to partially neutralize the simulant to a pH above 2 and then it was absorbed for silica gel solidification. Formulations for each of these methods are presented along with waste form characteristics and properties. Compositional variation maps for grout formulations are presented which help determine the optimum "recipe" for a particular waste stream. These maps provide a method to determine the proportions of waste, calcium hydroxide, Portland cement, and blast furnace slag that provide a waste form that meets the disposal acceptance criteria. The maps guide researchers in selecting areas to study and provide an operational envelop that produces acceptable waste forms. The grouts both solidify and stabilize the wastes, while absorption on silica gel produces a solid waste that will not pass standard leaching procedures (TCLP) if required. Silica gel wastes can be made to pass most leach tests if heated to 600C.

  7. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier5Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier5Rate Jump to: navigation, search This is a property of type...

  8. Property:OpenEI/UtilityRate/DemandRateStructure/Tier1Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateDemandRateStructureTier1Rate Jump to: navigation, search This is a property of type...

  9. Property:OpenEI/UtilityRate/DemandRateStructure/Tier3Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateDemandRateStructureTier3Rate Jump to: navigation, search This is a property of type...

  10. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier3Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier3Rate Jump to: navigation, search This is a property of type...

  11. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier4Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier4Rate Jump to: navigation, search This is a property of type...

  12. Soil Gas Sampling At Kilauea East Rift Geothermal Area (Cox,...

    Open Energy Info (EERE)

    the ground in the Lower East Rift Zone were measured using alpha particle sensitive cellulose nitrate films. The survey was successful in defining an area of geothermal...

  13. EP-AREAG-PLAN-1248, R.0 TA-54 Area G Nitrate-Salt Waste Container Response Instructions

    Office of Environmental Management (EM)

    EP-AREAG-PLAN-1248, R.0 TA-54 Area G Nitrate-Salt Waste Container Response Instructions Effective Date: 5/28/2014 The Responsible Manager has determined that the following organizations' review/concurrence is required for the initial document and for major revisions a same type and level review is required. Review documentation is contained in the Document History File: EWMO Engineering LANL TRU Programs - Shipping and Safe Storage Disposition LANL TRU Programs - Drum Disposition Project LANL

  14. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    SciTech Connect (OSTI)

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60{degree}C) or long extraction times (23 h). Adding KMnO{sub 4} in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

  15. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    SciTech Connect (OSTI)

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60[degree]C) or long extraction times (23 h). Adding KMnO[sub 4] in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

  16. Category:Soil Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    Soil Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Soil Gas Sampling page? For detailed information on Soil Gas...

  17. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    SciTech Connect (OSTI)

    Rigby, H.; Smith, S.R.

    2013-12-15

    , indicating greater microbial activity in amended soil and reflecting the lower stability of this OM source, compared to the other, anaerobic digestate types, which showed no consistent effects on MBN compared to the control. Thus, the overall net release of digestate N in different soil types was not regulated by N transfer into the soil microbial biomass, but was determined primarily by digestate properties and the capacity of the soil type to process and turnover digestate N. In contrast to the sandy soil types, where nitrate (NO{sub 3}{sup -}) concentrations increased during incubation, there was an absence of NO{sub 3}{sup -} accumulation in the silty clay soil amended with LTAD and DMADMSW. This provided indirect evidence for denitrification activity and the gaseous loss of N, and the associated increased risk of greenhouse gas emissions under certain conditions of labile C supply and/or digestate physical structure in fine-textured soil types. The significance and influence of the interaction between soil type and digestate stability and physical properties on denitrification processes in digestate-amended soils require urgent investigation to ensure management practices are appropriate to minimise greenhouse gas emissions from land applied biowastes.

  18. Influence of ground water on soil-structure interaction

    SciTech Connect (OSTI)

    Costantino, C.J.; Philippacopoulos, A.J.

    1987-12-01

    This report presents a summary of the second year's effort on the subject of the influence of foundation ground water on the SSI phenomenon. A finite element computer program, developed during the first year's effort, was used to study the impact of depth to the ground water surface on the SSI problem. The formulation used therein is based on the Biot dynamic equations of motion for both the solid and fluid phases of a typical soil. Frequency dependent interaction coefficients were then generated for the two-dimensional plane problem of a rigid surface footing moving against a linear soil. The soil is considered dry above the GWT and fully saturated below. The results indicate that interaction coefficients are significantly modified as compared to the comparable values for a dry soil, particularly for the rocking mode of response, if the GWT is close to the foundation. As the GWT moves away from the foundation, these effects decrease in a relatively orderly fashion for both the horizontal and rocking modes of response. For the vertical interaction coefficients, the rate of convergence to the dry solution is frequency dependent. Calculations were made to study the impact of the modified interaction coefficients on the response of a typical nuclear reactor building. The amplification factors for a stick model placed atop a dry and saturated soil were computed. It was found that pore water caused the rocking response to decrease and translational response to increase over the frequency range of interest, as compared to the response on dry soil. 30 refs., 31 figs.

  19. Treatment of radionuclide contaminated soils

    SciTech Connect (OSTI)

    Pettis, S.A.; Kallas, A.J.; Kochen, R.L.; McGlochlin, S.C.

    1988-06-01

    Rockwell, International, Rocky Flats Plants, is committed to remediating within the scope of RCRA/CERCLA, Solid Waste Managements Units (SWMUs) at Rocky Flats found to be contaminated with hazardous substances. SWMUs fund to have radionuclide (uranium, plutonium, and/or americium) concentrations in the soils and/or groundwater that exceed background levels or regulatory limits will also be included in this remediation effort. This paper briefly summarizes past and present efforts by Rockwell International, Rocky Flats Plant, to identify treatment technologies appropriate for remediating actinide contaminated soils. Many of the promising soil treatments evaluated in Rocky Flats' laboratories during the late 1970's and early 1980's are currently being revisited. These technologies are generally directed toward substantially reducing the volume of contaminated soils, with the subsequent intention of disposing of a small remaining concentrated fraction of contaminated soil in a facility approved to receive radioactive wastes. Treatment processes currently will be treated to remove actinides, and recycled back to the process. Past investigations have included evaluations of dry screening, wet screening, scrubbing, ultrasonics, chemical oxidation, calcination, desliming, flotation, and heavy-liquid density separation. 8 refs., 2 figs.

  20. Detection of explosives in soils

    DOE Patents [OSTI]

    Chambers, William B.; Rodacy, Philip J.; Phelan, James M.; Woodfin, Ronald L.

    2002-01-01

    An apparatus and method for detecting explosive-indicating compounds in subsurface soil. The apparatus has a probe with an adsorbent material on some portion of its surface that can be placed into soil beneath the ground surface, where the adsorbent material can adsorb at least one explosive-indicating compound. The apparatus additional has the capability to desorb the explosive-indicating compound through heating or solvent extraction. A diagnostic instrument attached to the probe detects the desorbed explosive-indicating compound. In the method for detecting explosive-indicating compounds in soil, the sampling probe with an adsorbent material on at least some portion of a surface of the sampling probe is inserted into the soil to contact the adsorbent material with the soil. The explosive-indicating compounds are then desorbed and transferred as either a liquid or gas sample to a diagnostic tool for analysis. The resulting gas or liquid sample is analyzed using at least one diagnostic tool selected from the group consisting of an ion-mobility spectrometer, a gas chromatograph, a high performance liquid chromatograph, a capillary electrophoresis chromatograph, a mass spectrometer, a Fourier-transform infrared spectrometer and a Raman spectrometer to detect the presence of explosive-indicating compounds.

  1. Lasagna{trademark} soil remediation

    SciTech Connect (OSTI)

    1996-04-01

    Lasagna{trademark} is an integrated, in situ remediation technology being developed which remediates soils and soil pore water contaminated with soluble organic compounds. Lasagna{trademark} is especially suited to sites with low permeability soils where electroosmosis can move water faster and more uniformly than hydraulic methods, with very low power consumption. The process uses electrokinetics to move contaminants in soil pore water into treatment zones where the contaminants can be captured and decomposed. Initial focus is on trichloroethylene (TCE), a major contaminant at many DOE and industrial sites. Both vertical and horizontal configurations have been conceptualized, but fieldwork to date is more advanced for the vertical configuration. Major features of the technology are electrodes energized by direct current, which causes water and soluble contaminants to move into or through the treatment layers and also heats the soil; treatment zones containing reagents that decompose the soluble organic contaminants or adsorb contaminants for immobilization or subsequent removal and disposal; and a water management system that recycles the water that accumulates at the cathode (high pH) back to the anode (low pH) for acid-base neutralization. Alternatively, electrode polarity can be reversed periodically to reverse electroosmotic flow and neutralize pH.

  2. Baseline geochemistry of soil and bedrock Tshirege Member of the Bandelier Tuff at MDA-P

    SciTech Connect (OSTI)

    Warren, R.G.; McDonald, E.V.; Ryti, R.T.

    1997-08-01

    This report provides baseline geochemistry for soils (including fill), and for bedrock within three specific areas that are planned for use in the remediation of Material Disposal Area P (MDA-P) at Technical Area 16 (TA-16). The baseline chemistry includes leachable element concentrations for both soils and bedrock and total element concentrations for all soil samples and for two selected bedrock samples. MDA-P operated from the early 1950s to 1984 as a landfill for rubble and debris generated by the burning of high explosives (HE) at the TA-16 Burning Ground, HE-contaminated equipment and material, barium nitrate sand, building materials, and trash. The aim of this report is to establish causes for recognizable chemical differences between the background and baseline data sets. In many cases, the authors conclude that recognizable differences represent natural enrichments. In other cases, differences are best attributed to analytical problems. But most importantly, the comparison of background and baseline geochemistry demonstrates significant contamination for several elements not only at the two remedial sites near the TA-16 Burning Ground, but also within the entire region of the background study. This contamination is highly localized very near to the surface in soil and fill, and probably also in bedrock; consequently, upper tolerance limits (UTLs) calculated as upper 95% confidence limits of the 95th percentile are of little value and thus are not provided. This report instead provides basic statistical summaries and graphical comparisons for background and baseline samples to guide strategies for remediation of the three sites to be used in the restoration of MDA-P.

  3. Enhanced Attenuation Technologies: Passive Soil Vapor Extraction

    SciTech Connect (OSTI)

    Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

    2010-03-15

    Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE

  4. October 2005 - March 2006 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 30.56% non-Slice LB + FB + SN CRAC adjustment for each month of the six-month rate period. The table below...

  5. April - September 2002 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 40.77% non-Slice LB CRAC adjustment for each month of the six-month rate period. The table below is simply a...

  6. October 2004 - March 2005 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The PDF documents above provide tables of monthly Slice, PF, RL, and IP rates with the LB + FB + SN CRAC adjustments for each month of the rate period. The table below is simply...

  7. April - September 2005 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 36.93% non-Slice LB + FB + SN CRAC adjustment for each month of the six-month rate period. The table below...

  8. October 2003 - March 2004 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 43.66% non-Slice LB + FB + SN CRAC adjustment for each month of the rate period. The table below is simply a...

  9. October 2002 - March 2003 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 43.91% non-Slice LB + FB CRAC adjustment for each month of the six-month rate period. The table below is...

  10. October 2001 - March 2002 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 46% non-Slice LB CRAC adjustment for each month of the six-month rate period. The table below is simply a...

  11. April - September 2003 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 49.50% non-Slice LB + FB CRAC adjustment for each month of the six-month rate period. The table below is...

  12. April - September 2004 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 47.00% non-Slice LB + FB + SN CRAC adjustment for each month of the six-month rate period. The table below...

  13. FPS-96R Rate Adjustment (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final Firm Power Products and Services (FPS-96R) Rate Adjustment In August 1999, BPA proposed to correct errors in the Firm Power Products and Services rate schedule (FPS-96), and...

  14. WP-02 Power Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WP-02 Power Rate Case (Updated on May 7, 2004) In May of 2000, the BPA Administrator signed a Record of Decision (ROD) on the 2002 Final Power Rate Proposal for the October 2001...

  15. 2007-2009 Power Rates Quarterly Updates (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PFR) Firstgov FY 2007 2009 Power Rates Quarterly Updates In BPAs 2007-2009 Wholesale Power Rate Case (WP-07), BPA agreed that it would post reports about BPAs power...

  16. Description of Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer

    SciTech Connect (OSTI)

    Prakash, Om; Green, Stefan; Jasrotia, Puja; Overholt, Will; Canion, Andy; Watson, David B; Brooks, Scott C; Kostka,

    2012-01-01

    Bacterial strains 2APBS1T and 116-2 were isolated from the subsurface of a nuclear legacy waste site where sediments are co-contaminated with large amounts of acidity, nitrate, metal radionuclides and other heavy metals. A combination of physiological and genetic assays indicated that these strains represent the first members of the Rhodanobacter genus shown to be capable of complete denitrification. Cells of strain 2APBS1T and 116-2 were Gram negative, non-spore-forming, rods, 3-5 micro;m long and 0.25-0.5 m in diameter. The isolates were facultative anaerobes, and had temperature and pH optima for growth at 30 C and pH 6.5, respectively, and could tolerate up to 2.0 % NaCl, though growth improved in its absence. Strains 2APBS1T and 116-2 contained fatty acid profiles and 100 % Q-8 ubiquinone, that are characteristic features of the genus Rhodanobacter. Although strains 2APBS1T and 116-2 share high SSU rRNA gene sequence similarity to R. thiooxydans (>99%), DNA-DNA hybridization values were substantially below the 70% threshold used to designate novel species. Thus, based on genotypic, phylogenetic, chemotaxonomic and physiological differences, strains 2APBS1T and 116-2 are considered to represent a novel species of the genus Rhodanobacter, for which the name Rhodanobacter denitrificans sp. nov is proposed. The type strain is 2APBS1T (=DSM 23569T =JCM 17641T). Strain 116-2 (=DSM 24678 = JCM 17642) is a reference strain.

  17. Biosurfactant-enhanced soil bioremediation

    SciTech Connect (OSTI)

    Kosaric, N.; Lu, G.; Velikonja, J.

    1995-12-01

    Bioremediation of soil contaminated with organic chemicals is a viable alternative method for clean-up and remedy of hazardous waste sites. The final objective in this approach is to convert the parent toxicant into a readily biodegradable product which is harmless to human health and/or the environment. Biodegradation of hydrocarbons in soil can also efficiently be enhanced by addition or in-situ production of biosufactants. It was generally observed that the degradation time was shortened and particularly the adaptation time for the microbes. More data from our laboratories showed that chlorinated aromatic compounds, such as 2,4-dichlorophenol, a herbicide Metolachlor, as well as naphthalene are degraded faster and more completely when selected biosurfactants are added to the soil. More recent data demonstrated an enhanced biodegradation of heavy hydrocarbons in petrochemical sludges, and in contaminated oil when biosurfactants were present or were added prior to the biodegradation process.

  18. National Utility Rate Database: Preprint

    SciTech Connect (OSTI)

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  19. ARM - Measurement - Soil heat flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil heat flux A quantity measured according to the formula B = {lambda}(dT/dz), where {lambda} is the conductivity of the soil that the heat is moving through. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  20. Extractability of zinc, cadmium, and nickel in soils amended with EDTA

    SciTech Connect (OSTI)

    Li, Zhenbin; Shuman, L.M.

    1996-04-01

    Synthetic chelating agents are produced in large quantities for use in many industrial applications. Certain chelates, such as ethylenediaminetetraacetic acid (EDTA), are persistent in the environment. The presence of EDTA in soil may alter the mobility and transport of Zn, Cd, and Ni in soils because of the formation of water soluble chelates, thus increasing the potential for metal pollution of natural waters. Mobility of metals is related to their extractability. To investigate metal extractability affected by EDTA, Zn, Cd, and Ni were added to a portion of eight Georgia topsoil samples at rates of 75.9, 1.62, and 4.30 mg kg{sup -1}, respectively. Both natural and metal-amended soils were treated with Na{sub 2-}EDTA at rates of 0, 1.0, and 2.0 g kg{sup -1}. After 5 months of incubation, soil samples were extracted with Mehlich-1, DTPA (diethylenetriamine-pentaacetic acid) and 1 M Mg(NO{sub 3}){sub 2}, the latter of which extracts the exchangeable form of metals. Results showed that Zn and Ni in Mehlich-1 and DTPA extractions increased with increasing rates of EDTA. The increase for Cd was not as great as for Zn or Ni. Similar changes were found for the Mg(NO{sub 3}){sub 2} extraction. As a percentage of total metal concentration, the Mehlich-1 and DTPA extractable Zn was greater than Ni in the natural soils, and the order for the metal-amended soils was Cd > Zn > Ni. The results also suggested that EDTA significantly elevated the extractability of Zn and Ni in both natural and metal-amended soils. The order of mobility based on extractability was: Cd > Zn > Ni for metals added to soils, but when EDTA was present, added Ni was more extractable than Zn or Cd. 36 refs., 5 tabs.

  1. Automated soil gas monitoring chamber (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Title: Automated soil gas monitoring chamber A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within ...

  2. Warming increases methylmercury production in an Arctic soil

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Ziming; Fang, Wei; Lu, Xia; Sheng, Guo-Ping; Graham, David E.; Liang, Liyuan; Wullschleger, Stan D.; Gu, Baohua

    2016-04-29

    The rapid temperature rise in Arctic permafrost concerns not only the degradation of stored soil organic carbon (SOC) and climate feedback, but also the production and bioaccumulation of methylmercury (MeHg) that may endanger humans, as well as wildlife in terrestrial, aquatic, and marine ecosystems. Decomposition of SOC provides an energy source for microbial methylation, although little is known how rapid permafrost thaw affects Hg methylation and how SOC degradation is coupled to MeHg biosynthesis. We describe rates of MeHg production in Arctic soils from an 8-month warming microcosm experiment under anoxic conditions. MeHg production increased >10 fold in both organic-more » and the mineral-rich soil layers at a warmer temperature (8 C) compared to a sub-zero temperature ( 2 C). MeHg production was positively correlated to methane and ferrous ion concentrations, suggesting that Hg methylation is coupled with methanogenesis and iron reduction. Labile SOC, such as reducing sugars and alcohol, were particularly effective in fueling the initial rapid biosynthesis of MeHg. In freshly amended Hg we found that there was more bioavailable than existing Hg in the mineral soil. Finally, the data indicate that climate warming and permafrost thaw could greatly enhance MeHg production, thereby impacting Arctic aquatic and marine ecosystems through biomagnification in the food web.« less

  3. Project Definition Rating Index Workbook

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Project Definition Rating Index (PDRI) Workbook is a tool that was developed to support DOE G-413.3-12A, U. S. Department of Energy Project Definition Rating Index Guide for Traditional Nuclear...

  4. Soil Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    "normal" background soil gas contents of a particular geothermal area. References Toxic Substances Hydrology Program 2.0 2.1 The Application of Soil-Gas Technique to...

  5. Multiple soil nutrient competition between plants, microbes,...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several...

  6. Chemotactic selection of pollutant degrading soil bacteria (Patent...

    Office of Scientific and Technical Information (OSTI)

    RADIATION SOURCES; BACTERIA; EVALUATION; POLLUTANTS; BIODEGRADATION; SOILS; NUTRIENTS; COLONY FORMATION; INVENTIONS; SOIL CHEMISTRY; MINERALIZATION; LAND POLLUTION 540120; 053003; ...

  7. Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems | Department of Energy Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy,

  8. Shiprock Archived Soil & Groundwater Master Reports | Department of Energy

    Office of Environmental Management (EM)

    Shiprock Archived Soil & Groundwater Master Reports Shiprock Archived Soil & Groundwater Master Reports Shiprock Archived Soil & Groundwater Master Reports Shiprock - Shiprock (19.31 KB) More Documents & Publications Slick Rock Archived Soil & Groundwater Master Reports Tuba City Archived Soil & Groundwater Master Reports Spook Archived Soil & Groundwater Master Reports

  9. Spook Archived Soil & Groundwater Master Reports | Department of Energy

    Office of Environmental Management (EM)

    Spook Archived Soil & Groundwater Master Reports Spook Archived Soil & Groundwater Master Reports Spook Archived Soil & Groundwater Master Reports Spook - Spook (17.91 KB) More Documents & Publications Tuba City Archived Soil & Groundwater Master Reports Slick Rock Archived Soil & Groundwater Master Reports Weldon Spring Site Archived Soil & Groundwater Master Reports

  10. Criticality experiments with planar arrays of three-liter bottles containing plutonium nitrate solution

    SciTech Connect (OSTI)

    Durst, B.M.; Clayton, E.D.; Smith, J.H.

    1985-01-01

    The objective of these experiments was to provide benchmark data to validate calculational codes used in critically safety assessments of plant configurations. Arrays containing up to as many as sixteen three-liter bottles filled with plutonium nitrate were used in the experiments. A split-table device was used in the final assembly of the arrays. Ths planar arrays were reflected with close fitting plexiglas on each side and on the bottom but not the top surface. The experiments addressed a number of factors effecting criticality: the critical air gap between bottles in an array of fixed number of bottles, the number of bottles required for criticality if the bottles were touching, and the effect on critical array spacing and critical bottle number due to the insertion of an hydrogeneous substance into the air gap between bottles. Each bottle contained about 2.4l of Pu(NO{sub 3}){sub 4} solution at a Pu concentration of 105g Pu/l, with the {sup 240}Pu content being 2.9 wt% at a free acid molarity H{sup +} of 5.1. After the initial series of experiments were performed with bottles separated by air gaps, plexiglas shells of varying thicknesses were placed around each bottle to investigate how moderation between bottles affects both the number of bottles required for criticality and the critical spacing between each bottle. The minimum of bottles required for criticality was found to be 10.9 bottles, occurring for a square array with bottles in contact. As the bottles were spaced apart, the critical number increased. For sixteen bottles in a square array, the critical separation between surfaces in both x and y direction was 0.96 cm. The addition of plexiglas around each bottle decreased the critical bottle number, compared to those separated in air, but the critical bottle number, even with interstitial plastic in place was always greater than 10.9 bottles. The most reactive configuration was a tightly packed array of bottles with no intervening material.

  11. Fluidized Bed Steam Reforming (FBSR) Mineralization for High Organic and Nitrate Waste Streams for the Global Nuclear Energy Partnership (GNEP)

    SciTech Connect (OSTI)

    Jantzen, C.M.; Williams, M.R. [Savannah River National Laboratory, Aiken, SC (United States)

    2008-07-01

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NOx in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 deg. C) compared to vitrification (1150-1300 deg. C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {>=}1000 deg. C. Pollucite mineralization creates secondary aqueous waste streams and NOx. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O. (authors)

  12. FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP

    SciTech Connect (OSTI)

    Jantzen, C; Michael Williams, M

    2008-01-11

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

  13. Highly Enriched Uranyl Nitrate in Annular Tanks with Concrete Reflection: 1 x 3 Line Array of Nested Pairs of Tanks

    SciTech Connect (OSTI)

    James Cleaver; John D. Bess; Nathan Devine; Fitz Trumble

    2009-09-01

    A series of seven experiments were performed at the Rocky Flats Critical Mass Laboratory beginning in August, 1980 (References 1 and 2). Highly enriched uranyl nitrate solution was introduced into a 1-3 linear array of nested stainless steel annular tanks. The tanks were inside a concrete enclosure, with various moderator and absorber materials placed inside and/or between the tanks. These moderators and absorbers included boron-free concrete, borated concrete, borated plaster, and cadmium. Two configurations included placing bottles of highly enriched uranyl nitrate between tanks externally. Another experiment involved nested hemispheres of highly enriched uranium placed between tanks externally. These three configurations are not evaluated in this report. The experiments evaluated here are part of a series of experiments, one set of which is evaluated in HEU-SOL-THERM-033. The experiments in this and HEU-SOL-THERM-033 were performed similarly. They took place in the same room and used the same tanks, some of the same moderators and absorbers, some of the same reflector panels, and uranyl nitrate solution from the same location. There are probably additional similarities that existed that are not identified here. Thus, many of the descriptions in this report are either the same or similar to those in the HEU-SOL-THERM-033 report. Seventeen configurations (sixteen of which were critical) were performed during seven experiments; six of those experiments are evaluated here with thirteen configurations. Two configurations were identical, except for solution height, and were conducted to test repeatability. The solution heights were averaged and the two were evaluated as one configuration, which gives a total of twelve evaluated configurations. One of the seventeen configurations was subcritical. Of the twelve critical configurations evaluated, nine were judged as acceptable as benchmarks.

  14. Solvent Modification in Ion-Pair Extraction: Effect on Sodium Nitrate Transport in Nitrobenzene Using a Crown Ether

    SciTech Connect (OSTI)

    Levitskaia, Tatiana G.; Lumetta, Gregg J.

    2005-10-31

    A comparative quantitative analysis of the effect of solvent modifiers on an ion-pair extraction of an inorganic salt by a crown ether was conducted. Two classes of the solvent modifiers that possess electron-pair donor (EPD) or hydrogen-bond donor (HBD) groups were investigated. The equilibrium constants corresponding to the extraction of sodium nitrate into nitrobenzene (NB) employing model neutral host cis-syn-cis-dicyclohexano-18-crown-6 (1) with and without solvent modifier were determined using the SXLSQI computer model. For a series of EPD modifiers—including tri-n-butyl- and tri-phenylphosphate, tri-n-butyl- and tri-phenylphosphine oxide, N,N-di-n-butyl- and N,N-di-phenyl acetamide—the enhancement of the NaNO3 extraction by 1 was found to be dependent on the hydrogen-bond acceptance ability of the modifier quantified by the b solvatochromic parameter. Application of the solvent EPD modifier improved solvation of the sodium ion, lowering the large energy barrier of Na+ partitioning into the extraction phase. A HBD modifier 3,5-di-t-butylphenol 8 that forms strong hydrogen bonds with nitrate anion in NB, exhibited even greater enhancement of the NaNO3 extraction by 1. The determined extraction constants were correlated with the b or a solvatochromic parameters of the solvent modifiers and linear trends were observed. Hydrogen bond interaction between 3,5-di-t-butylphenol 8 and nitrate anion in the presence of the sodium-loaded crown ether in the extraction phases was studied by vibrational spectroscopy. Formation of the simple 1:1 adduct was demonstrated.

  15. SN-03 Rate Case Workshops (rates/meetings)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Related Link: SN-03 Power Rate Case May 1 & 13, 2003 - Debt and Liquidity Strategies workshops (on BPA Corporate web site) March 27, 2003 - SN CRAC Prescheduling...

  16. What Is the Right Rate? Loan Rates and Demand

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Financing Peer Exchange Call: “What is the Right Rate?” call slides and discussion summary, December 1, 2011.

  17. Surface study of stainless steel electrode deposition from soil electrokinetic (EK) treatment using X-ray photoelectron spectroscopy (XPS)

    SciTech Connect (OSTI)

    Embong, Zaidi; Johar, Saffuwan; Tajudin, Saiful Azhar Ahmad; Sahdan, Mohd Zainizan

    2015-04-29

    Electrokinetic (EK) remediation relies upon application of a low-intensity direct current through the soil between stainless steel electrodes that are divided into a cathode array and an anode array. This mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions and positively charged organic compounds move toward the cathode. Anions such as chloride, fluoride, nitrate, and negatively charged organic compounds move toward the anode. Here, this remediation techniques lead to a formation of a deposition at the both cathode and anode surface that mainly contributed byanion and cation from the remediated soil. In this research, Renggam-Jerangau soil species (HaplicAcrisol + RhodicFerralsol) with a surveymeter reading of 38.0 ± 3.9 μR/hr has been investigation in order to study the mobility of the anion and cation under the influence electric field. Prior to the EK treatment, the elemental composition of the soil and the stainless steel electrode are measured using XRF analyses. Next, the soil sample is remediated at a constant electric potential of 30 V within an hour of treatment period. A surface study for the deposition layer of the cathode and anode using X-ray Photoelectron spectroscopy (XPS) revealed that a narrow photoelectron signal from oxygen O 1s, carbon, C 1s silica, Si 2p, aluminium, Al 2p and chromium, Cr 2p exhibited on the electrode surface and indicate that a different in photoelectron intensity for each element on both electrode surface. In this paper, the mechanism of Si{sup 2+} and Al{sup 2+} cation mobility under the influence of voltage potential between the cathode and anode will be discussed in detail.

  18. Qualitative evaluation of heavy metals in soils using portable XRF instruments

    SciTech Connect (OSTI)

    McCain, R.G.

    1993-10-01

    Portable isotope-source energy dispersive x-ray fluorescence (XRF) analyzers can provide rapid on site screening for heavy metals in soils. Their use generally involves empirical calibration to a suite of representative soil samples spiked with a range of concentrations of the analytes of interest. In most cases, only a limited number of analytes can be measured with this approach, because of constraints imposed by the operational software and costs associated with preparing the calibration suite. A simple approach is described that provides a qualitative indication of anomalous concentrations of heavy metals based on numeric comparison of gross count rates to background values. This approach can rapidly identify contaminated soils and does not depend on a suite of calibration samples. Direct measurements can be made to rapidly map soil contamination without sample collection, and the method can also be applied to other surfaces such as concrete.

  19. Pattern Effects of Soil on Photovoltaic Surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burton, Patrick D.; Hendrickson, Alex; Ulibarri, Stephen Seth; Riley, Daniel; Boyson, William E.; King, Bruce H.

    2016-06-06

    The texture or patterning of soil on PV surfaces may influence light capture at various angles of incidence (AOI). Accumulated soil can be considered a microshading element, which changes with respect to AOI. Laboratory deposition of simulated soil was used to prepare test coupons for simultaneous AOI and soiling loss experiments. A mixed solvent deposition technique was used to consistently deposit patterned test soils onto glass slides. Transmission decreased as soil loading and AOI increased. Dense aggregates significantly decreased transmission. But, highly dispersed particles are less prone to secondary scattering, improving overall light collection. In order to test AOI losses on relevant systems, uniform simulated soil coatings were applied to split reference cells to further examine this effect. Finally, the measured optical transmission and area coverage correlated closely to the observedmore » $$I_{{rm SC}}$$. Angular losses were significant at angles as low as 25°.« less

  20. ARM - Measurement - Radiative heating rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Radiometric, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  1. Large enhancement in the heterogeneous oxidation rate of organic aerosols by hydroxyl radicals in the presence of nitric oxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Richards-Henderson, Nicole K.; Goldstein, Allen H.; Wilson, Kevin R.

    2015-10-27

    In this paper we report an unexpectedly large acceleration in the effective heterogeneous OH reaction rate in the presence of NO. This 10–50 fold acceleration originates from free radical chain reactions, propagated by alkoxy radicals that form inside the aerosol by the reaction of NO with peroxy radicals, which do not appear to produce chain terminating products (e.g., alkyl nitrates), unlike gas phase mechanisms. Lastly, a kinetic model, constrained by experiments, suggests that in polluted regions heterogeneous oxidation plays a much more prominent role in the daily chemical evolution of organic aerosol than previously believed.

  2. Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Repayment studies prepared by the agency determine revenue requirements and appropriate rate levels and these studies for each of Southeastern's four power marketing systems are ...

  3. Sustainable Building Rating Systems Summary

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Rauch, Emily M.

    2006-07-01

    The purpose of this document is to offer information that could be used to compare and contrast sustainable building rating systems.

  4. Wholesale Power Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rate Schedules Wholesale Power Rate Schedules Wholesale Power Rate Schedules October 1, 2012 ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System:...

  5. Assessing Fossil and New Carbon in Reclaimed Mined Soils

    SciTech Connect (OSTI)

    Rattan Lal; David Ussiri

    2008-09-30

    Soil organic carbon (SOC) pool in the reclaimed minesoils (RMS) is the mixture of coal C originating from mining and reclamation activities and recent plant-derived organic carbon (OC). Accurate estimates of OC pools and sequestration rates in the RMS are limited by lack of standard and cost-effective method for determination of coal-C concentration. The main objective of this project was to develop and test analytical procedures for quantifying pool sizes of coal-derived C in RMS and to partition organic C in RMS into coal-derived and newly deposited SOC fractions. Analysis of soil and coal artificial mixtures indicated that the {Delta}{sup 13}C method developed was very effective in estimating coal C added in the mixtures, especially soils under C4 plants. However, most of the reclaimed sites in Ohio are under C3 plants with range of {Delta}{sup 13}C signal falling within ranges of coal. The wide range of {Delta}{sup 13}C signal observed in minesoils, (i.e. -26 to -30 for plants and -23 to -26 for coal) limits the ability of this approach to be used for southeast Ohio minesoils. This method is applicable for reclaimed prime farm land under long term corn or corn soybean rotation. Chemi-thermal method was very effective in quantifying coal-C fraction in both soil-coal artificial mixtures and minesoils. The recovery of coal-C from the mixture ranged from 93 to 100% of coal. Cross-validation of chemi-thermal method with radiocarbon analysis revealed that chemi-thermal method was as effective as radiocarbon analysis in quantifying coal-C in RMS. Coal C determined after chemi-thermal treatment of samples was highly correlated with coal C concentration calculated by radiocarbon activity (r{sup 2} = 0.95, P < 0.01). Therefore, both radiocarbon activity and chemi-thermal method were effective in estimating coal carbon concentration in reclaimed minesoils of southeast Ohio. Overall, both coal-C and recent OC fraction exhibited high spatial and depth variation, suggesting

  6. Innovative Vitrification for Soil Remediation

    SciTech Connect (OSTI)

    Hnat, James G.; Patten, John S.; Jetta, Norman W.

    1996-12-31

    Vortec has successfully completed Phases 1 and 2 of a technology demonstration program for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation.'' The principal objective of the program is to demonstrate the ability of a Vortec Cyclone Melting System (CMS) to remediate DOE contaminated soils and other waste forms containing TM RCRA hazardous materials, low levels of radionuclides and TSCA (PCB) containing wastes. The demonstration program will verify the ability of this vitrification process to produce a chemically stable glass final waste form which passes both TCLP and PCT quality control requirements, while meeting all federal and state emission control regulations. The demonstration system is designed to process 36 ton/day of as-received drummed or bulk wastes. The processing capacity equates to approximately 160 barrels/day of waste materials containing 30% moisture at an average weight of 450 lbs./barrel.

  7. Development of site-specific soil cleanup criteria: New Brunswick Laboratory, New Jersey site

    SciTech Connect (OSTI)

    Veluri, V.R.; Moe, H.J.; Robinet, M.J.; Wynveen, R.A.

    1983-03-01

    The potential human exposure which results from the residual soil radioactivity at a decommissioned site is a prime concern during D and D projects. To estimate this exposure, a pathway analysis approach is often used to arrive at the residual soil radioactivity criteria. The development of such a criteria for the decommissioning of the New Brunswick Laboratory, New Jersey site is discussed. Contamination on this site was spotty and located in small soil pockets spread throughout the site area. Less than 1% of the relevant site area was contaminated. The major contaminants encountered at the site were /sup 239/Pu, /sup 241/Am, normal and natural uranium, and natural thorium. During the development of the pathway analysis to determine the site cleanup criteria, corrections for the inhomogeneity of the contamination were made. These correction factors and their effect upon the relevant pathway parameters are presented. Major pathways by which radioactive material may reach an individual are identified and patterns of use are specified (scenario). Each pathway is modeled to estimate the transfer parameters along the given pathway, such as soil to air to man, etc. The transfer parameters are then combined with dose rate conversion factors (ICRP 30 methodology) to obtain soil concentration to dose rate conversion factors (pCi/g/mrem/yr). For an appropriate choice of annual dose equivalent rate, one can then arrive at a value for the residual soil concentration. Pathway modeling, transfer parameters, and dose rate factors for the three major pathways; inhalation, ingestion and external exposure, which are important for the NBL site, are discussed.

  8. Corrosion resistance of stainless steels during thermal cycling in alkali nitrate molten salts.

    SciTech Connect (OSTI)

    Bradshaw, Robert W.; Goods, Steven Howard

    2001-09-01

    The corrosion behavior of three austenitic stainless steels was evaluated during thermal cycling in molten salt mixtures consisting of NaNO{sub 3} and KNO{sub 3}. Corrosion tests were conducted with Types 316, 316L and 304 stainless steels for more than 4000 hours and 500 thermal cycles at a maximum temperature of 565 C. Corrosion rates were determined by chemically descaling coupons. Metal losses ranged from 5 to 16 microns and thermal cycling resulted in moderately higher corrosion rates compared to isothermal conditions. Type 316 SS was somewhat more corrosion resistant than Type 304 SS in these tests. The effect of carbon content on corrosion resistance was small, as 316L SS corroded only slightly slower than 316 SS. The corrosion rates increased as the dissolved chloride content of the molten salt mixtures increased. Chloride concentrations approximating 1 wt.%, coupled with thermal cycling, resulted in linear weight loss kinetics, rather than parabolic kinetics, which described corrosion rates for all other conditions. Optical microscopy and electron microprobe analysis revealed that the corrosion products consisted of iron-chromium spinel, magnetite, and sodium ferrite, organized as separate layers. Microanalysis of the elemental composition of the corrosion products further demonstrated that the chromium content of the iron-chromium spinel layer was relatively high for conditions in which parabolic kinetics were observed. However, linear kinetics were observed when the spinel layer contained relatively little chromium.

  9. BPA revises oversupply rate proposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    comments until May 22, 2013. The rate-setting process will end with the administrator making a decision based on the record developed in the case. BPA expects to issue a final...

  10. Tier 2 Vintage Rate Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at a Tier 2 rate 3) Combination of the two On Nov 1, 2009, customers made their elections for how they will serve their Above-RHWM Load during the FY 2012-2014 purchase...

  11. DOE Guidance-Category Rating

    Broader source: Energy.gov (indexed) [DOE]

    August 27, 2010 MEMORANDUM FOR HUMAN RESOURCES DIRECTORS FROM: SARA"iJ. Boku1, DIRECToR OF HUMAN CTAL MANAGEMENT SUBJECT: GUIDANCE MEMORANDUM 10 CATEGORY RATING The purpose of ...

  12. Effect of soil erosion on the long-term stability of FUSRAP near-surface waste-burial sites

    SciTech Connect (OSTI)

    Knight, M.J.

    1983-04-01

    Decontamination of FUSRAP sites could result in the generation of large volumes (in excess of 400,000 m/sup 3/) of low-activity radioactive wastes (primarily contaminated soil and building materials) requiring subsequent disposal. It is likely that near-surface burial will be seriously considered as an option for disposal of these materials. A number of factors - including soil erosion - could adversely affect the long-term stability of a near-surface waste-burial site. The majority of FUSRAP sites are located in the humid eastern United States, where the principal cause of erosion is the action of water. This report examines the effect of soil erosion by water on burial-site stability based on analysis of four hypothetical near-surface burial sites. The Universal Soil Loss Equation was employed to estimate average annual soil loss from burial sites and the 1000-year effects of soil loss on the soil barrier (burial trench cap) placed over low-activity wastes. Results suggest that the land use of the burial site and the slope gradient of the burial trench cap significantly affect the rate of soil erosion. The development of measures limiting the potential land use of a burial site (e.g., mixing large rocks into the burial trench cap) may be required to preserve the integrity of a burial trench for long periods of time.

  13. Agriculture intensifies soil moisture decline in Northern China

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Yaling; Pan, Zhihua; Zhuang, Qianlai; Miralles, Diego; Teuling, Adriann; Zhang, Tonglin; An, Pingli; Dong, Zhiqiang; Zhang, Jingting; He, Di; et al

    2015-07-09

    Northern China is one of the most densely populated regions in the world. Agricultural activities have intensified since the 1980s to provide food security to the country. However, this intensification has likely contributed to an increasing scarcity in water resources, which may in turn be endangering food security. Based on in-situ measurements of soil moisture collected in agricultural plots during 1983–2012, we find that topsoil (0–50 cm) volumetric water content during the growing season has declined significantly (p<0.01), with a trend of -0.011 to -0.015 m3 m-3 per decade. Observed discharge declines for the three large river basins are consistentmore » with the effects of agricultural intensification, although other factors (e.g. dam constructions) likely have contributed to these trends. Practices like fertilizer application have favoured biomass growth and increased transpiration rates, thus reducing available soil water. In addition, the rapid proliferation of water-expensive crops (e.g., maize) and the expansion of the area dedicated to food production have also contributed to soil drying. Adoption of alternative agricultural practices that can meet the immediate food demand without compromising future water resources seem critical for the sustainability of the food production system.« less

  14. Agriculture intensifies soil moisture decline in Northern China

    SciTech Connect (OSTI)

    Liu, Yaling; Pan, Zhihua; Zhuang, Qianlai; Miralles, Diego; Teuling, Adriann; Zhang, Tonglin; An, Pingli; Dong, Zhiqiang; Zhang, Jingting; He, Di; Wang, Liwei; Pan, Xuebiao; Bai, Wei; Niyogi, Dev

    2015-07-09

    Northern China is one of the most densely populated regions in the world. Agricultural activities have intensified since the 1980s to provide food security to the country. However, this intensification has likely contributed to an increasing scarcity in water resources, which may in turn be endangering food security. Based on in-situ measurements of soil moisture collected in agricultural plots during 1983–2012, we find that topsoil (0–50 cm) volumetric water content during the growing season has declined significantly (p<0.01), with a trend of -0.011 to -0.015 m3 m-3 per decade. Observed discharge declines for the three large river basins are consistent with the effects of agricultural intensification, although other factors (e.g. dam constructions) likely have contributed to these trends. Practices like fertilizer application have favoured biomass growth and increased transpiration rates, thus reducing available soil water. In addition, the rapid proliferation of water-expensive crops (e.g., maize) and the expansion of the area dedicated to food production have also contributed to soil drying. Adoption of alternative agricultural practices that can meet the immediate food demand without compromising future water resources seem critical for the sustainability of the food production system.

  15. Soil Machine Dynamics Ltd | Open Energy Information

    Open Energy Info (EERE)

    Machine Dynamics Ltd Jump to: navigation, search Name: Soil Machine Dynamics Ltd Region: United Kingdom Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  16. Performance evaluation soil samples utilizing encapsulation technology

    DOE Patents [OSTI]

    Dahlgran, James R.

    1999-01-01

    Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

  17. Performance evaluation soil samples utilizing encapsulation technology

    DOE Patents [OSTI]

    Dahlgran, J.R.

    1999-08-17

    Performance evaluation soil samples and method of their preparation uses encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration. 1 fig.

  18. Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural...

    Broader source: Energy.gov (indexed) [DOE]

    Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems presentation at the April 2013 peer ...

  19. Enhanced durability transparent superhydrophobic anti-soiling...

    Office of Scientific and Technical Information (OSTI)

    Title: Enhanced durability transparent superhydrophobic anti-soiling coatings for CSP applications Authors: Polyzos, Georgios 1 ; Schaeffer, Daniel A 1 ; Smith, Barton Barton ...

  20. Nitric oxide emissions from engineered soil systems

    SciTech Connect (OSTI)

    Peirce, J.J.; Aneja, V.P.

    2000-03-01

    Sophisticated laboratory equipment and procedures are developed and used in controlled experiments to measure nitric oxide (NO) emissions ranging from 42 to 75 ng N/m{sup 2}{center_dot}s from sludge-amended soil of concern to environmental engineers because nitric oxide emitted to the troposphere is a precursor to troublesome ozone formation and also of concern to agricultural engineers because valuable nitrogen as fertilizer is lost from the soil. Water-filled pore space is confirmed to be of critical importance to NO flux, and the upper layers of soil are determined to contribute the larger portion of the NO fluxing from the soil to the troposphere. More than 42% of the total NO flux comes from the top 1 cm of soil, with NO contributions decreasing exponentially with soil depth and very little if any tropospheric NO contributed from soil at a depth of 20 cm or greater. The results are discussed in terms of microbiological, chemical, and soil transport processes that influence NO flux from sludge-amended soil.

  1. Contrasting soil microbial community functional structures in...

    Office of Scientific and Technical Information (OSTI)

    two major landscapes of the Tibetan alpine meadow Prev Next Title: Contrasting soil microbial community functional structures in two major landscapes of the Tibetan alpine...

  2. In situ warming and soil venting to enhance the biodegradation of JP-4 in cold climates: A critical study and analysis. Master`s thesis

    SciTech Connect (OSTI)

    Cox, R.D.

    1995-12-01

    In cold climates, bioremediation is limited to the summer when soil temperatures are sufficient to support microbial growth. Laboratory studies directly correlate increased biodegradation rates with temperature. By raising soil temperatures, in situ jet fuel remediation can be accelerated which was shown by a bioventing project conducted in 1991 at Eielson AFB, Alaska, where three soil warming techniques were used. This study critically analyzes the project data to determine its effectiveness in enhancing biodegradation. This study also models the temperature-biodegradation relationship at the test plots using the van`t Hoff-Arrhenius equation. Using paired oxygen consumption rates and temperatures, application of the equation was valid only for the warm water and passive warming plots. This study demonstrates that bioremediation is feasible in cold climates and can be enhanced by soil warming. Soil warming can significantly decrease remediation time with acceptable cost increases.

  3. Increase of available phosphorus by fly-ash application in paddy soils

    SciTech Connect (OSTI)

    Lee, C.H.; Lee, H.; Lee, Y.B.; Chang, H.H.; Ali, M.A.; Min, W.; Kim, S.; Kim, P.J.

    2007-07-01

    Fly ash from the coal- burning industry may be a potential inorganic soil amendment to increase rice productivity and to restore the soil nutrient balance in paddy soil. In this study, fly ash was applied at rates of 0, 40, 80, and 120 Mg ha{sup -1} in two paddy soils (silt loam in Yehari and loamy sand in Daegok). During rice cultivation, available phosphorus (P) increased significantly with fly ash application, as there was high content of P (786 mg kg{sup -1}) in the applied fly ash. In addition, high content of silicon (Si) and high pH of fly ash contributed to increased available-P content by ion competition between phosphate and silicate and by neutralization of soil acidity, respectively. With fly-ash application, water-soluble P (W-P) content increased significantly together with increasing aluminum- bound P (Al- P) and calcium- bound P (Ca- P) fractions. By contrast, iron- bound P (Fe- P) decreased significantly because of reduction of iron under the flooded paddy soil during rice cultivation. The present experiment indicated that addition of fly ash had a positive benefit on increasing the P availability.

  4. The effect of compost on carbon cycling and the active soil microbiota

    SciTech Connect (OSTI)

    Singer, Esther; Woyke, Tanja; Ryals, Rebecca; Silver, Whendee

    2014-09-02

    Rangelands cover an estimated 40-70percent of global landmass, approximately one-third of the landmass of the United States and half of California. The soils of this vast land area has high carbon (C) storage capacity, which makes it an important target ecosystem for the mitigation of greenhouse gas emission and effects on climate change, in particular under land management techniques that favor increased C sequestration rates. While microbial communities are key players in the processes responsible for C storage and loss in soils, we have barely shed light on these highly complex processes in part due to the tremendous and seemingly intractable diversity of microbes, largely uncultured, that inhabit soil ecosystems. In our study, we compare Mediterranean grassland soil plots that were amended with greenwaste compost in a single event 6 years ago. Subsampling of control and amended plots was performed in depth increments of 0-10 cm. We present data on greenhouse gas emissions and budgets of carbon, nitrogen, phosphorus, and micronutrients in dependence of compost amendment. Changes in the active members of the soil microbial community were assessed using a novel approach combining flow cytometry and 16S tag sequencing disclosing who is active. This is the first study revealing the nature of actively metabolizing microbial community members linked to the geochemical characteristics of compost-amended soil.

  5. Passive soil venting at the Chemical Waste Landfill Site at Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Phelan, J.M.; Reavis, B.; Cheng, W.C.

    1995-05-01

    Passive Soil Vapor Extraction was tested at the Chemical Waste Landfill (CWL) site at Sandia National Laboratories, New Mexico (SNLIW). Data collected included ambient pressures, differential pressures between soil gas and ambient air, gas flow rates into and out of the soil and concentrations of volatile organic compounds (VOCS) in vented soil gas. From the differential pressure and flow rate data, estimates of permeability were arrived at and compared with estimates from other studies. Flow, differential pressure, and ambient pressure data were collected for nearly 30 days. VOC data were collected for two six-hour periods during this time. Total VOC emissions were calculated and found to be under the limit set by the Resource Conservation and Recovery Act (RCRA). Although a complete process evaluation is not possible with the data gathered, some of the necessary information for designing a passive venting process was determined and the important parameters for designing the process were indicated. More study is required to evaluate long-term VOC removal using passive venting and to establish total remediation costs when passive venting is used as a polishing process following active soil vapor extraction.

  6. 100 Area soil washing: Bench scale tests on 116-F-4 pluto crib soil

    SciTech Connect (OSTI)

    Field, J.G.

    1994-06-10

    The Pacific Northwest Laboratory conducted a bench-scale treatability study on a pluto crib soil sample from 100 Area of the Hanford Site. The objective of this study was to evaluate the use of physical separation (wet sieving), treatment processes (attrition scrubbing, and autogenous surface grinding), and chemical extraction methods as a means of separating radioactively-contaminated soil fractions from uncontaminated soil fractions. The soil washing treatability study was conducted on a soil sample from the 116-F-4 Pluto Crib that had been dug up as part of an excavation treatability study. Trace element analyses of this soil showed no elevated concentrations above typically uncontaminated soil background levels. Data on the distribution of radionuclide in various size fractions indicated that the soil-washing tests should be focused on the gravel and sand fractions of the 116-F-4 soil. The radionuclide data also showed that {sup 137}Cs was the only contaminant in this soil that exceeded the test performance goal (TPG). Therefore, the effectiveness of subsequent soil-washing tests for 116-F-4 soil was evaluated on the basis of activity attenuation of {sup 137}Cs in the gravel- and sand-size fractions.

  7. Comparison of Laboratory and Field Methods for Determining the Quasi-Saturated Hydraulic Conductivity of Soils

    SciTech Connect (OSTI)

    Faybishenko, Boris

    1997-08-01

    Laboratory and field ponded infiltration tests in quasi-saturated soils (containing entrapped air) exhibit the same three-stage temporal variability for the flow rate and hydraulic conductivity. However, the values for the hydraulic conductivity may differ by as much as two orders of magnitude due to differences in the geometry and physics of flow when different laboratory and field methods are applied. The purpose of this paper is to investigate this variability using a comparison of results of ponded infiltration tests conducted under laboratory conditions using confined cores, with results of field tests conducted using partially isolated cores and double-ring infiltrometers. Under laboratory conditions in confined cores, during the firs stage, the water flux decreases over time because entrapped air plugs the largest pores in the soils; during the second stage, the quasi-saturated hydraulic conductivity increases by one to two orders of magnitude, essentially reaching the saturated hydraulic conductivity, when entrapped air is discharged from the soils; during the third stage, the hydraulic conductivity decreases to minimum values due to sealing of the soil surface and the effect of biofilms sealing the pores within the wetted zone. Under field conditions, the second stage is only partially developed, and when the surface sealing process begins, the hydraulic pressure drops below the air entry value, thereby causing atmospheric air to enter the soils. As a result, the soils become unsaturated with a low hydraulic conductivity, and the infiltration rate consequently decreases. Contrary to the laboratory experiments in confined cores, the saturated hydraulic conductivity cannot be reached under field conditions. In computations of infiltration one has to take into account the variations in the quasi-saturated and unsaturated hydraulic conductivities, moisture and entrapped air content, and the hydraulic gradient in the quasi-saturated or unsaturated soils.

  8. Aqueous Binary Lanthanide(III) Nitrate Ln(NO3)3 Electrolytes Revisited: Extended Pitzer and Bromley Treatments

    SciTech Connect (OSTI)

    Chatterjee, Sayandev; Campbell, Emily L.; Neiner, Doinita; Pence, Natasha; Robinson, Troy; Levitskaia, Tatiana G.

    2015-09-11

    To date, only limited thermodynamic models describing activity coefficients of the aqueous solutions of lanthanide ions are available. This work expands the existing experimental osmotic coefficient data obtained by classical isopiestic technique for the aqueous binary trivalent lanthanide nitrate Ln(NO3)3 solutions using a combination of water activity and vapor pressure osmometry measurements. The combined osmotic coefficient database for each aqueous lanthanide nitrate at 25°C, consisting of literature available data as well as data obtained in this work, was used to test the validity of Pitzer and Bromley thermodynamic models for the accurate prediction of mean molal activity coefficients of the Ln(NO3)3 solutions in wide concentration ranges. The new and improved Pitzer and Bromley parameters were calculated. It was established that the Ln(NO3)3 activity coefficients in the solutions with ionic strength up to 12 mol kg-1 can be estimated by both Pitzer and single-parameter Bromley models, even though the latter provides for more accurate prediction, particularly in the lower ionic strength regime (up to 6 mol kg-1). On the other hand for the concentrated solutions, the extended three-parameter Bromley model can be employed to predict the Ln(NO3)3 activity coefficients with remarkable accuracy. The accuracy of the extended Bromley model in predicting the activity coefficients was greater than ~95% and ~90% for all solutions with the ionic strength up to 12 mol kg-1 and and 20 mol kg-1, respectively. This is the first time that the activity coefficients for concentrated lanthanide solutions have been predicted with such a remarkable accuracy.

  9. Aromatic nitration with ion radical pairs (ArH/sup +/,NO/sub 2/) as reactive intermediates. Time-resolved studies of charge-transfer activation of dialkoxybenzenes

    SciTech Connect (OSTI)

    Sankararaman, S.; Haney, W.A.; Kochi, J.K.

    1987-08-19

    Aromatic nitrations carried out both under electrophilic conditions and by charge-transfer activation afford the same yields and isomer distributions of nitration products from a common series of aromatic ethers (ArH). Time-resolved spectroscopy establishes the charge-transfer nitration to proceed via the ion radical pair (ArH/sup +/,NO/sub 2/), generated by the deliberate excitation of the electron donor-acceptor or ..pi.. complex of the arene with C(NO/sub 2/)/sub 4/. Laser flash photolysis of the charge-transfer band defines the evolution of the arene cation radical ArH/sup +/ and allows its decay kinetics to be delineated in various solvents and with added salts. The internal trapping of ArH/sup +/ is examined in the substituted p-dimethoxybenzenes CH/sub 3/OC/sub 6/H/sub 4/OCH/sub 2/X with X = CO/sub 2/H, CO/sub 2//sup -/, CO/sub 2/Et, and CH/sub 2/OH as the pendant functional groups. The mechanistic relevance of the collapse of (ArH/sup +/, NO/sub 2/) to the Wheland intermediate is discussed in the context of electrophilic aromatic nitrations.

  10. Final Report- National Database of Utility Rates and Rate Structure

    Broader source: Energy.gov [DOE]

    One of the key informational barriers for consumers, installers, regulators and policymakers, is the proper comparison cost of utility-supplied electricity that will be replaced with a Photovoltaic (PV) system. Oftentimes, these comparisons are made with national or statewide averages which results in inaccurate comparisons and conclusions. Illinois State University seeks to meet the need for accurate information about electricity costs and rate structure by building a national database of utility rates and rate structures. The database will build upon the excellent framework that was developed by the OpenEI.org initiative and extend it in several important ways. First, the data will be populated and monitored by a team of trained regulatory economists. Second, the database will be more comprehensive because it will be populated with data from newer competitive retail suppliers for states that have restructured their electricity markets to allow such suppliers. Third, the University and its Institute for Regulatory Policy Studies will maintain the database and ensure that it contains the most recent rate information.

  11. Convergence of microbial assimilations of soil carbon, nitrogen...

    Office of Scientific and Technical Information (OSTI)

    We found a convergence of the relationships between elements in soils and in soil microbial biomass across C, N, P, and S. The element concentrations in soil microbial biomass ...

  12. BPA Power Rates (pbl/main)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rates, please see the transmission rates web site. Inactive Rate Cases Integrated Business Review (IBR) Integrated Program Review (IPR) Quarterly Business Review (QBR) Content...

  13. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G. [Vortec Corp., Collegeville, PA (United States)] [and others

    1996-03-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  14. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G.

    1995-10-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase I consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  15. LINEAR COUNT-RATE METER

    DOE Patents [OSTI]

    Henry, J.J.

    1961-09-01

    A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.

  16. Coal Transportation Rate Sensitivity Analysis

    Reports and Publications (EIA)

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  17. Heterotrophic Soil Respiration in Warming Experiments: Using Microbial Indicators to Partition Contributions from Labile and Recalcitrant Soil Organic Carbon. Final Report

    SciTech Connect (OSTI)

    Bradford, M A; Melillo, J M; Reynolds, J F; Treseder, K K; Wallenstein, M D

    2010-06-10

    microbes absorb BrdU from the soil solution; if they multiply in response to substrate additions, they incorporate the BrdU into their DNA. After allowing soils to incubate, we extracted BrdU-labeled DNA and sequenced the ITS regions of fungal rDNA. Fungal taxa that proliferated following substrate addition were likely using the substrate as a resource for growth. We found that the structure of active fungal communities varied significantly among substrates. The active fungal community under glycine was significantly different from those under other conditions, while the active communities under sucrose and cellulose were marginally different from each other and the control. These results indicate that the overall community structure of active fungi was altered by the addition of glycine, sucrose, and cellulose and implies that some fungal taxa respond to changes in resource availability. The community composition of active fungi is also altered by experimental warming. We found that glycine-users tended to increase under warming, while lignin-, tannin/protein-, and sucrose-users declined. The latter group of substrates requires extracellular enzymes for use, but glycine does not. It is possible that warming selects for fungal species that target, in particular, labile substrates. Linking these changes in microbial communities and resource partitioning to soil carbon dynamics, we find that substrate mineralization rates are, in general, significantly lower in soils exposed to long-term warming. This suggests that microbial use of organic substrates is impaired by warming. Yet effects are dependent on substrate identity. There are fundamental differences in the metabolic capabilities of the communities in the control and warmed soils. These differences might relate to the changes in microbial community composition, which appeared to be associated with groups specialized on different resources. We also find that functional responses indicate temperature acclimation of the

  18. Data management system for organic soil

    SciTech Connect (OSTI)

    Stinnette, P.

    1999-07-01

    A Data Management System for Organic Soil (DMSOS) has been developed that enables the acquisition, management and analysis of organic soil data as well as the presentation of results to be conducted effectively through a common interface. This development was in response to the data management needs of research investigating the engineering properties of organic soil and its extension to the stabilization of organic soil through dynamic replacement (DR). It is shown how the above functions are implemented efficiently using Windows-based software to perform comprehensive data management and analysis of data gathered from both laboratory and field tests. When the engineering properties of a given organic soil deposit are needed, a build-in Computer Advisor for Organic Soil Projects (CAOSP) predicts the properties from DMSOS based correlations. A unique and useful feature of the CAOSP is its ability to estimate the anticipated ultimate settlement of an organic soil deposit given the loading conditions and the moisture or organic content. Also incorporated in the DMSOS is a quality control system that utilizes computerized data acquisition/data management techniques in order to evaluate the degree of improvement of an organic soil layer at a given stage of treatment using DR.

  19. Analysis of large soil samples for actinides

    DOE Patents [OSTI]

    Maxwell, III; Sherrod L.

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  20. Soil washing enhancement with solid sorbents

    SciTech Connect (OSTI)

    El-Shoubary, Y.M.; Woodmansee, D.E.

    1996-12-31

    Soil washing is a dynamic, physical process that remediates contaminated soil through two mechanisms: particle size separation and transfer of the contaminant into the (mostly) liquid stream. The performance of different sorbents and additives to remove motor oil from sea sand was tested. Hydrocyclone, attrition scrubber, and froth flotation equipment were used for the decontamination study. Sorbents and additives were mixed with soils in the attrition scrubber prior to flotation. Sorbents used were granular activated carbon, powder activated carbon, and rubber tires. Chemical additives used were calcium hydroxide, sodium carbonate, Alconox{reg_sign}, Triton{reg_sign} X-100 and Triton{reg_sign} X-114. When a froth flotation run was performed using no additive, washed soils {open_quotes}tails{close_quotes} contained 4000 ppm of total oil and grease (TOG). However, when carbon or rubber (6% by weight) was added to the contaminated soils the washed soils {open_quotes}tails{close_quotes} contained 4000 ppm of total oil and grease (TOG). The addition of sodium carbonate or calcium hydroxide (6% by weight) had same effects as sorbents. In both cases washed soil {open_quotes}tails{close_quotes} contained total oil and grease of less than 1000 ppm. The use of these non-hazardous additives or sorbent can enhance the soil washing process and consequently saves on time (residence time in equipment design) required to achieve the target clean up levels. 18 refs., 12 figs.

  1. NNSS Soils Monitoring: Plutonium Valley (CAU366)

    SciTech Connect (OSTI)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; Campbell, Scott

    2012-02-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

  2. Process for removing polychlorinated biphenyls from soil

    DOE Patents [OSTI]

    Hancher, C.W.; Saunders, M.B.; Googin, J.M.

    1984-11-16

    The present invention relates to a method of removing polychlorinated biphenyls from soil. The polychlorinated biphenyls are extracted from the soil by employing a liquid organic solvent dispersed in water in the ratio of about 1:3 to 3:1. The organic solvent includes such materials as short-chain hydrocarbons including kerosene or gasoline which are immiscible with water and are nonpolar. The organic solvent has a greater affinity for the PCB's than the soil so as to extract the PCB's from the soil upon contact. The organic solvent phase is separated from the suspended soil and water phase and distilled for permitting the recycle of the organic solvent phase and the concentration of the PCB's in the remaining organic phase. The present process can be satisfactorily practiced with soil containing 10 to 20% petroleum-based oils and organic fluids such as used in transformers and cutting fluids, coolants and the like which contain PCB's. The subject method provides for the removal of a sufficient concentration of PCB's from the soil to provide the soil with a level of PCB's within the guidelines of the Environmental Protection Agency.

  3. Effect of Dead Algae on Soil Permeability

    SciTech Connect (OSTI)

    Harvey, R.S.

    2003-02-21

    Since existing basins support heavy growths of unicellular green algae which may be killed by temperature variation or by inadvertent pH changes in waste and then deposited on the basin floor, information on the effects of dead algae on soil permeability was needed. This study was designed to show the effects of successive algal kills on the permeability of laboratory soil columns.

  4. CONTAMINATED SOIL VOLUME ESTIMATE TRACKING METHODOLOGY

    SciTech Connect (OSTI)

    Durham, L.A.; Johnson, R.L.; Rieman, C.; Kenna, T.; Pilon, R.

    2003-02-27

    The U.S. Army Corps of Engineers (USACE) is conducting a cleanup of radiologically contaminated properties under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The largest cost element for most of the FUSRAP sites is the transportation and disposal of contaminated soil. Project managers and engineers need an estimate of the volume of contaminated soil to determine project costs and schedule. Once excavation activities begin and additional remedial action data are collected, the actual quantity of contaminated soil often deviates from the original estimate, resulting in cost and schedule impacts to the project. The project costs and schedule need to be frequently updated by tracking the actual quantities of excavated soil and contaminated soil remaining during the life of a remedial action project. A soil volume estimate tracking methodology was developed to provide a mechanism for project managers and engineers to create better project controls of costs and schedule. For the FUSRAP Linde site, an estimate of the initial volume of in situ soil above the specified cleanup guidelines was calculated on the basis of discrete soil sample data and other relevant data using indicator geostatistical techniques combined with Bayesian analysis. During the remedial action, updated volume estimates of remaining in situ soils requiring excavation were calculated on a periodic basis. In addition to taking into account the volume of soil that had been excavated, the updated volume estimates incorporated both new gamma walkover surveys and discrete sample data collected as part of the remedial action. A civil survey company provided periodic estimates of actual in situ excavated soil volumes. By using the results from the civil survey of actual in situ volumes excavated and the updated estimate of the remaining volume of contaminated soil requiring excavation, the USACE Buffalo District was able to forecast and update project costs and schedule. The soil volume

  5. Clean soil at Eniwetok and Johnston Atolls

    SciTech Connect (OSTI)

    Bramlitt, E.T.

    1990-01-01

    The Defense Nuclear Agency has managed two large-scale soil cleanups (landmass decontaminations) of plutonium contamination. Both are at Pacific Ocean atolls formerly used for nuclear weapons tests. The Eniwetok Atoll (EA) cleanup between 1977 and 1980 evaluated 390 ha of contaminated land and cleaned 50 ha by removing 80,000 m[sup 3] of contaminated soil. The Johnston Atoll (JA) cleanup is in process. It has checked 270 ha, will clean 15 ha, and plans for removal of 80,000 m[sup 3] of soil. The cleanups are similar in other respects including carbonate-based soil, in situ radiation surveys, contamination characteristics, soil excavation methods, safety, and weather. The two cleanups are in contrast relative to planning time, agencies involved, funding, documentation, environmental considerations, cleanup workforce, site beneficiaries, waste characterization, regulatory permits, management, and project duration. The most noteworthy differences are the rationale for cleanup, the cleanup process, the definition of clean, and the cost.

  6. Measuring spatial variability in soil characteristics

    DOE Patents [OSTI]

    Hoskinson, Reed L.; Svoboda, John M.; Sawyer, J. Wayne; Hess, John R.; Hess, J. Richard

    2002-01-01

    The present invention provides systems and methods for measuring a load force associated with pulling a farm implement through soil that is used to generate a spatially variable map that represents the spatial variability of the physical characteristics of the soil. An instrumented hitch pin configured to measure a load force is provided that measures the load force generated by a farm implement when the farm implement is connected with a tractor and pulled through or across soil. Each time a load force is measured, a global positioning system identifies the location of the measurement. This data is stored and analyzed to generate a spatially variable map of the soil. This map is representative of the physical characteristics of the soil, which are inferred from the magnitude of the load force.

  7. System for Analysis of Soil-Structure Interaction (SASSI) Verification...

    Broader source: Energy.gov (indexed) [DOE]

    the System for Analysis of Soil-Structure Interaction, a computer code for performing finite element analyses of soil-structure interaction during seismic ground motions. It was...

  8. Plant stimulation of soil microbial community succession: how...

    Office of Scientific and Technical Information (OSTI)

    Plant stimulation of soil microbial community succession: how sequential expression mediates soil carbon stabilization and turnover Citation Details In-Document Search Title: Plant...

  9. Soil carbon sequestration and land use change associated with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soil carbon sequestration and land use change associated with biofuel production: empirical evidence Title Soil carbon sequestration and land use change associated with biofuel...

  10. EM Soil and Groundwater Database Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM Soil and Groundwater Database Reports EM Soil and Groundwater Database Reports Brookhaven National Laboratory - HFBR Tritium Groundwater Database Report - Brookhaven National ...

  11. Final Report Limited Soil Investigation of Project Chariot Test...

    Office of Legacy Management (LM)

    Limited Soil Investigation of Project Chariot Test Holes Cape Thompson, Alaska December ... Soil Investigation of Project Chariot Test Holes, Cape Thompson, Alaska Fairbanks ...

  12. South Valley Archived Soil & Groundwater Master Reports | Department...

    Broader source: Energy.gov (indexed) [DOE]

    South Valley Archived Soil & Groundwater Master Reports South Valley - South Valley Plume (16.5 KB) More Documents & Publications Slick Rock Archived Soil & Groundwater Master ...

  13. Rocky Flats Environmental Technology Site Archived Soil & Groundwater...

    Office of Environmental Management (EM)

    Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky ...

  14. Non-Linear Seismic Soil Structure Interaction (SSI) Method for...

    Office of Environmental Management (EM)

    Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Non-Linear Seismic Soil Structure Interaction (SSI) Method for ...

  15. Fate of Isolated Spills on Savannah River Site Soils

    SciTech Connect (OSTI)

    Denham, M.

    1998-01-26

    Spills of acids and bases onto Savannah River Site soils will generally be neutralized to acceptable pH levels by passage through the soils.

  16. Bacteria increase arid-land soil surface temperature through...

    Office of Scientific and Technical Information (OSTI)

    Bacteria increase arid-land soil surface temperature through the production of sunscreens Prev Next Title: Bacteria increase arid-land soil surface temperature through the ...

  17. Soil Sampling At Yellowstone Region (Hellman & Ramsey, 2004)...

    Open Energy Info (EERE)

    Soil Sampling At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Yellowstone Region...

  18. Evaluation of the Mercury Soil Mapping Geothermal Exploration...

    Open Energy Info (EERE)

    the Mercury Soil Mapping Geothermal Exploration Techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation of the Mercury Soil...

  19. Mapping Soil Carbon from Cradle to Grave: Identifying the Microbial...

    Office of Scientific and Technical Information (OSTI)

    Conference: Mapping Soil Carbon from Cradle to Grave: Identifying the Microbial Blueprint for Root-carbon Transformations in Soil Citation Details In-Document Search Title: Mapping...

  20. Mapping Soil Carbon from Cradle to Grave: Identifying the Microbial...

    Office of Scientific and Technical Information (OSTI)

    In-Document Search Title: Mapping Soil Carbon from Cradle to Grave: Identifying the Microbial Blueprint for Root-carbon Transformations in Soil Erin Nuccio, Lawrence...

  1. After More Than 20 Years Operating, Hanford's Soil Vapor Extraction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wise, Juan Aguilar, Doug Rybarski, and Christina Agular. The soil vapor extraction trailer is shown near Hanfords Plutonium Finishing Plant. The soil vapor extraction...

  2. Worldwide organic soil carbon and nitrogen data (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Worldwide organic soil carbon and nitrogen data Citation Details In-Document Search Title: Worldwide organic soil carbon and nitrogen data You are accessing a document from the ...

  3. Variable gas leak rate valve

    DOE Patents [OSTI]

    Eernisse, Errol P.; Peterson, Gary D.

    1976-01-01

    A variable gas leak rate valve which utilizes a poled piezoelectric element to control opening and closing of the valve. The gas flow may be around a cylindrical rod with a tubular piezoelectric member encircling the rod for seating thereagainst to block passage of gas and for reopening thereof upon application of suitable electrical fields.

  4. Fast repetition rate (FRR) flasher

    DOE Patents [OSTI]

    Kolber, Zbigniew; Falkowski, Paul

    1997-02-11

    A fast repetition rate (FRR) flasher suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between Successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz.

  5. Fast repetition rate (FRR) flasher

    DOE Patents [OSTI]

    Kolber, Z.; Falkowski, P.

    1997-02-11

    A fast repetition rate (FRR) flasher is described suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz. 14 figs.

  6. Floating Rate Agreement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Floating Rate Agreement Floating Rate Agreement Floating Rate Agreement (99.85 KB) More Documents & Publications Fixed Rate Agreement Energy Efficiency Loan Program Agreement Template Energy Efficiency Loan Program Agreement-Template

  7. Evaluation Ratings Definitions (Excluding Utilization of Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Excluding Utilization of Small Business) Rating Definition Note Exceptional ... Definitions (Utilization of Small Business) Rating Definition Note Exceptional ...

  8. CARBON SEQUESTRATION IN RECLAIMED MINED SOILS OF OHIO

    SciTech Connect (OSTI)

    M.K. Shukla; R. Lal

    2004-10-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites, owned and maintained by the American Electrical Power, are located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites, characterized by age chronosequences, were reclaimed with and without topsoil application and are under continuous grass or forest cover. During this quarter, water infiltration tests were performed on the soil surface in the experimental sites. Soil samples were analyzed for the soil carbon and nitrogen contents, texture, water stable aggregation, and mean weight and geometric mean diameter of aggregates. This report presents the results from two sites reclaimed during 1978 and managed under grass (Wilds) and forest (Cumberland) cover, respectively. The trees were planted in 1982 in the Cumberland site. The analyses of data on soil bulk density ({rho}{sub b}), SOC and total nitrogen (TN) concentrations and stocks were presented in the third quarter report. This report presents the data on infiltration rates, volume of transport and storage pores, available water capacity (AWC) of soil, particle size distribution, and soil inorganic carbon (SIC) and coal carbon contents. The SIC content ranged from 0.04 to 1.68% in Cumberland tree site and 0.01 to 0.65% in the Wilds. The coal content assumed to be the carbon content after oven drying the sample at 350 C varied between 0.04 and 3.18% for Cumberland and 0.06 and 3.49% for Wilds. The sand, silt and clay contents showed moderate to low variability (CV < 0.16) for 0-15 and 15-30 cm depths. The volume of transmission (VTP) and storage pores (VSP) also showed moderate to high variability (CV ranged from 0.22 to 0.39 for Wilds and 0.17 to 0.36 for Cumberland). The CV for SIC was high (0.7) in Cumberland whereas that for coal content was high (0.4) in the Wilds. The steady state infiltration rates (i{sub c}) also showed high variability

  9. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hart, J.G.

    1995-12-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.

  10. Effect of soiling in CPV systems

    SciTech Connect (OSTI)

    Vivar, M.; Herrero, R.; Anton, I.; Martinez-Moreno, F.; Moreton, R.; Sala, G.

    2010-07-15

    The effect of soiling in flat PV modules has been already studied, causing a reduction of the electrical output of 4% on average. For CPV's, as far as soiling produces light scattering at the optical collector surface, the scattered rays should be definitively lost because they cannot be focused onto the receivers again. While the theoretical study becomes difficult because soiling is variable at different sites, it becomes easier to begin the monitoring of the real field performance of concentrators and then raise the following question: how much does the soiling affect to PV concentrators in comparison with flat panels?' The answers allow to predict the PV concentrator electrical performance and to establish a pattern of cleaning frequency. Some experiments have been conducted at the IES-UPM and CSES-ANU sites, consisting in linear reflective concentration systems, a point focus refractive concentrator and a flat module. All the systems have been measured when soiled and then after cleaning, achieving different increases of I{sub SC}. In general, results show that CPV systems are more sensitive to soiling than flat panels, accumulating losses in I{sub SC} of about 14% on average in three different tests conducted at IES-UPM and CSES-ANU test sites in Madrid (Spain) and Canberra (Australia). Some concentrators can reach losses up to 26% when the system is soiled for 4 months of exposure. (author)

  11. 1993 Wholesale Power and Transmission Rate Schedules.

    SciTech Connect (OSTI)

    US Bonneville Power Administration

    1993-10-01

    Bonneville Power Administration 1993 Wholesale Power Rate Schedules and General Rate Schedule Provisions and 1993 Transmission Rate Schedules and General Transmission Rate Schedule Provisions, contained herein, were approved on an interim basis effective October 1, 1993. These rate schedules and provisions were approved by the Federal Energy Commission, United States Department of Energy, in September, 1993. These rate schedules and provisions supersede the Administration`s Wholesale Power Rate Schedules and General Rate Schedule Provisions and Transmission Rate Schedules and General Transmission Rate Schedule Provisions effective October 1, 1991.

  12. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect (OSTI)

    Rachor, Ingke; Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria

    2011-05-15

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity

  13. Long-term soil warming and Carbon Cycle Feedbacks to the Climate System

    SciTech Connect (OSTI)

    Melillo, Jerry M.

    2014-04-30

    The primary objective of the proposed research was to quantify and explain the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem. The research was done at an established soil warming experiment at the Harvard Forest in central Massachusetts – Barre Woods site established in 2001. In the field, a series of plant and soil measurements were made to quantify changes in C storage in the ecosystem and to provide insights into the possible relationships between C-storage changes and nitrogen (N) cycling changes in the warmed plots. Field measurements included: 1) annual woody increment; 2) litterfall; 3) carbon dioxide (CO2) efflux from the soil surface; 4) root biomass and respiration; 5) microbial biomass; and 6) net N mineralization and net nitrification rates. This research was designed to increase our understanding of how global warming will affect the capacity of temperate forest ecosystems to store C. The work explored how soil warming changes the interactions between the C and N cycles, and how these changes affect land-atmosphere feedbacks. This core research question framed the project – What are the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem? A second critical question was addressed in this research – What are the effects of a sustained in situ 5{degrees}C soil temperature increase on nitrogen (N) cycling in a northeastern deciduous forest ecosystem?

  14. Subsurface water flow simulated for hill slopes with spatially dependent soil hydraulic characteristics

    SciTech Connect (OSTI)

    Sharma, M.L.; Luxmoore, R.J.; DeAngelis, R.; Ward, R.C.; Yeh, G.T.

    1987-08-01

    Water flow through hill slopes consisting of five soil layers, with varying spatial dependence in hydraulic characteristics in the lateral plane was simulated by solving Richards' equation in three dimensions under varying rainfall intensities and for two complexities of terrain. By concepts of similar media the variability in soil hydraulic characteristics was expressed by a single dimensionless parameter, the scaling factor ..cap alpha... The moments of log normally distributed ..cap alpha.. were set as: Mean = 1.0 and standard deviation = 1.0. Four cases of spatial dependence of ..cap alpha.. in the lateral plane were selected for simulation, using exponential variogram functions ranging in spatial structure from random (no spatial dependence) to large dependence (large correlation lengths). The simulations showed that the rates of subsurface flow from the 30/sup 0/ hillslope, during and following rainfall, were significantly enhanced with an increase in spatial dependence. Subsurface drainage was also increased with increases in rainfall intensity and slop complexity. For hill slopes the relative effects of spatial dependence in soil hydraulic characteristics was smaller with 30/sup 0/ horizontal pitching than without pitching. Hill slopes with a random distribution of hydraulic characteristics provided greater opportunity for soil units with differing water capacities to interact than in cases with spatially correlated distributions. This greater interaction is associated with a greater lag in subsurface flow generation. These studies illustrate some of the expected effects of spatial dependence of soil hydraulic characteristics of the integrated hydrologic response of land areas.

  15. What Is the Right Rate? Loan Rates and Demand | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Is the Right Rate? Loan Rates and Demand What Is the Right Rate? Loan Rates and Demand Better Buildings Neighborhood Program Financing Peer Exchange Call: "What is the Right Rate?" ...

  16. Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media?

    SciTech Connect (OSTI)

    Thorsten Knappenberger; Markus Flury; Earl D. Mattson; James B. Harsh

    2014-03-01

    Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (? ?r)/(?s ?r)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

  17. Method for treatment of soils contaminated with organic pollutants

    DOE Patents [OSTI]

    Wickramanayake, Godage B.

    1993-01-01

    A method for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil to decompose the organic compounds. The soil may be treated in situ or may be removed for treatment and refilled.

  18. Climate-change effects on soils: Accelerated weathering, soil carbon and elemental cycling

    SciTech Connect (OSTI)

    Qafoku, Nikolla

    2015-04-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2, and create organic carbon (C) that is either reprocessed to CO2 or stored in soils are the subject of active current investigations, with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries, identifies key research needs, and highlights opportunities offered by the climate-change effects on soils.

  19. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  20. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    2014-01-10

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  1. Exometabolite niche partitioning among sympatric soil bacteria

    SciTech Connect (OSTI)

    Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; Hummel, Eric; Da Rocha, Ulisses Nunes; Chakraborty, Romy; Bowen, Benjamin P.; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; Northen, Trent R.

    2015-09-22

    Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine the exometabolite composition of desert biological soil crusts (biocrusts) and the substrate preferences of seven biocrust isolates. The biocrust's main primary producer releases a diverse array of metabolites, and isolates of physically associated taxa use unique subsets of the complex metabolite pool. Individual isolates use only 13-26% of available metabolites, with only 2 out of 470 used by all and 40% not used by any. An extension of this approach to a mesophilic soil environment also reveals high levels of microbial substrate specialization. In conclusion, these results suggest that exometabolite niche partitioning may be an important factor in the maintenance of microbial diversity.

  2. Exometabolite niche partitioning among sympatric soil bacteria

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; Hummel, Eric; Da Rocha, Ulisses Nunes; Chakraborty, Romy; Bowen, Benjamin P.; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; et al

    2015-09-22

    Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine the exometabolite composition of desert biological soil crusts (biocrusts) and the substrate preferences of seven biocrust isolates. The biocrust's main primary producer releases a diverse array of metabolites, and isolates of physically associated taxa use unique subsets of the complex metabolite pool. Individual isolates use only 13-26% of available metabolites,more » with only 2 out of 470 used by all and 40% not used by any. An extension of this approach to a mesophilic soil environment also reveals high levels of microbial substrate specialization. In conclusion, these results suggest that exometabolite niche partitioning may be an important factor in the maintenance of microbial diversity.« less

  3. Upscaling of Bio-mediated Soil Improvement

    SciTech Connect (OSTI)

    J. T. DeJong; B. C. Martinez; B. M. Mortensen; D. C. Nelson; J. T. Waller; M. H. Weil; T. R. Ginn; T. Weathers; T. Barkouki; Y. Fujita; G. Redden; C. Hunt; D. Major; B. Tunyu

    2009-10-01

    As demand for soil improvement continues to increase, new, sustainable, and innocuous methods are needed to alter the mechanical properties of soils. Recent research has demonstrated the potential of bio-mediated soil improvement for geotechnical applications (DeJong et al. 2006, Whiffin et al. 2007). Upscaling the bio-mediated treatment process for in situ implementation presents a number of challenges to be addressed, including soil and pore fluid interactions, bioaugmentation versus biostimulation of microbial communities, controlled distribution of mediated calcite precipitation, and permanence of the cementation. Current studies are utilizing large-scale laboratory experiments, non-destructive geophysical measurements, and modeling, to develop an optimized and predictable bio-mediated treatment method.

  4. Re-passivation Potential of Alloy 22 in Chloride plus Nitrate Solutions using the Potentiodynamic-Galvano-static-Potentiostatic Method

    SciTech Connect (OSTI)

    Evans, Kenneth J.; Rebak, Raul B.

    2007-07-01

    In general, the susceptibility of Alloy 22 to suffer crevice corrosion is measured using the Cyclic Potentiodynamic Polarization (CPP) technique. This is a fast technique that gives rather accurate and reproducible values of re-passivation potential (ER1) in most cases. In the fringes of susceptibility, when the environment is not highly aggressive, the values of re-passivation potential using the CPP technique may not be highly reproducible, especially because the technique is fast. To circumvent this, the re-passivation potential of Alloy 22 was measured using a slower method that combines Potentiodynamic-Galvano-static-Potentiostatic steps (called here the Tsujikawa-Hisamatsu Electrochemical or THE method). The THE method applies the charge to the specimen in a more controlled way, which may give more reproducible re-passivation potential values, especially when the environment is not aggressive. The values of re-passivation potential of Alloy 22 in sodium chloride plus potassium nitrate solutions were measured using the THE and CPP methods. Results show that both methods yield similar values of re-passivation potential, especially under aggressive conditions. (authors)

  5. Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the Midwestern and Northeastern United States

    SciTech Connect (OSTI)

    E.M. Elliott; C. Kendall; S.D. Wanke; D.A. Burns; E.W. Boyer; K. Harlin; D.J. Bain; T.J. Butler

    2007-11-15

    Global inputs of NOx are dominated by fossil fuel combustion from both stationary and vehicular sources and far exceed natural NOx sources. However, elucidating NOx sources to any given location remains a difficult challenge, despite the need for this information to develop sound regulatory and mitigation strategies. We present results from a regional-scale study of nitrogen isotopes (15N) in wet nitrate deposition across 33 sites in the midwestern and northeastern U.S. We demonstrate that spatial variations in 15N are strongly correlated with NOx emissions from surrounding stationary sources and additionally that 15N is more strongly correlated with surrounding stationary source NOx emissions than pH, SO{sub 4}{sup 2-}, or NO{sub 3}{sup -} concentrations. Although emission inventories indicate that vehicle emissions are the dominant NOx source in the eastern U.S., our results suggest that wet NO{sub 3}{sup -} deposition at sites in this study is strongly associated with NOx emissions from power plants. This suggests that large areas of the landscape potentially receive atmospheric NOy deposition inputs in excess of what one would infer from existing monitoring data alone. Moreover, we determined that spatial patterns in 15N values are a robust indicator of stationary NOx contributions to wet NO{sub 3}{sup -} deposition and hence a valuable complement to existing tools for assessing relationships between NO{sub 3}{sup -} deposition, regional emission inventories, and for evaluating progress toward NOx reduction goals. 44 refs., 3 figs.

  6. Rating fenestration for energy efficiency

    SciTech Connect (OSTI)

    Markway, R.

    1993-09-01

    The grading of windows and doors by the National Fenestration Rating Council (NFRC) opens a new era regarding the energy efficiency of fenestration products. For the first time, architects, designers, and other specifiers will find themselves on a level playing field when it comes to comparing the thermal performance of fenestration products. Although only one state, California, now requires the use of fenestration products that have gone through the NFRC's simulation and testing procedures, five other states will soon be doing so, including Washington, Alaska, Oregon, Idaho, and Wisconsin. Others will follow suit; Florida, Arizona, Texas, Louisiana, New York, Massachusetts, and Colorado have shown interest. Exactly what does this mean to architects The NFRC, which was established last year, has developed a procedure to determine accurately the U-value of fenestration products. Under the NFRC program a number of independent simulation and testing laboratories have been approved. These laboratories are charged with the responsibility of determining whether products conform to the U-values represented by the manufacturers. The rating procedure and benefits from it are described.

  7. LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Response to 2010 Flood | Department of Energy Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood October 16, 2012 - 10:50am Addthis LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil

  8. Wholesale Power Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Rate Schedules October 1, 2011 CBR-1-H Wholesale Power Rate Schedule Area: Big Rivers and Henderson, KY System: CU October 1, 2011 CM-1-H Wholesale Power Rate...

  9. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: electric load data Type Term Title Author Replies Last Post sort icon...

  10. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: DOE Type Term Title Author Replies Last Post sort icon Blog entry DOE...

  11. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: API Type Term Title Author Replies Last Post sort icon Blog entry API...

  12. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: EZFeed Type Term Title Author Replies Last Post sort icon Blog entry...

  13. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: Database Type Term Title Author Replies Last Post sort icon Blog entry...

  14. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: bug Type Term Title Author Replies Last Post sort icon Discussion bug...

  15. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: energy efficiency Type Term Title Author Replies Last Post sort icon...

  16. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: clean energy Type Term Title Author Replies Last Post sort icon Blog...

  17. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: datasets Type Term Title Author Replies Last Post sort icon Blog entry...

  18. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: FOA Type Term Title Author Replies Last Post sort icon Blog entry FOA...

  19. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: Illinois State University Type Term Title Author Replies Last Post sort...

  20. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: building load Type Term Title Author Replies Last Post sort icon Blog...

  1. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: building load data Type Term Title Author Replies Last Post sort icon...

  2. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: dataset Type Term Title Author Replies Last Post sort icon Blog entry...

  3. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: Energy Visions Prize Type Term Title Author Replies Last Post sort icon...

  4. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: funding Type Term Title Author Replies Last Post sort icon Blog entry...

  5. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: EIA Type Term Title Author Replies Last Post sort icon Blog entry EIA...

  6. Soils Activity Mobility Study: Methodology and Application

    SciTech Connect (OSTI)

    Silvas, Alissa; Yucel, Vefa

    2014-09-29

    This report presents a three-level approach for estimation of sediment transport to provide an assessment of potential erosion risk for sites at the Nevada National Security Site (NNSS) that are posted for radiological purposes and where migration is suspected or known to occur due to storm runoff. Based on the assessed risk, the appropriate level of effort can be determined for analysis of radiological surveys, field experiments to quantify erosion and transport rates, and long-term monitoring. The method is demonstrated at contaminated sites, including Plutonium Valley, Shasta, Smoky, and T-1. The Pacific Southwest Interagency Committee (PSIAC) procedure is selected as the Level 1 analysis tool. The PSIAC method provides an estimation of the total annual sediment yield based on factors derived from the climatic and physical characteristics of a watershed. If the results indicate low risk, then further analysis is not warranted. If the Level 1 analysis indicates high risk or is deemed uncertain, a Level 2 analysis using the Modified Universal Soil Loss Equation (MUSLE) is proposed. In addition, if a sediment yield for a storm event rather than an annual sediment yield is needed, then the proposed Level 2 analysis should be performed. MUSLE only provides sheet and rill erosion estimates. The U.S. Army Corps of Engineers Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) provides storm peak runoff rate and storm volumes, the inputs necessary for MUSLE. Channel Sediment Transport (CHAN-SED) I and II models are proposed for estimating sediment deposition or erosion in a channel reach from a storm event. These models require storm hydrograph associated sediment concentration and bed load particle size distribution data. When the Level 2 analysis indicates high risk for sediment yield and associated contaminant migration or when there is high uncertainty in the Level 2 results, the sites can be further evaluated with a Level 3 analysis using more complex

  7. Comparison of {sup 241}Am, {sup 239,240}Pu, and {sup 137}Cs concentrations in soil around Rocky Flats

    SciTech Connect (OSTI)

    Hulse, S.E.; Ibrahim, S.A.; Whicker, F.W.; Chapman, P.L.

    1999-03-01

    Gamma spectroscopy measurements were used to estimate concentrations of {sup 241}Am and {sup 137}Cs in soil profiles to depths of 21 cm at on-site and off-site locations around the Rocky Flats Environmental Technology Site and at regional background locations east of the Front Range between Colorado`s borders with New Mexico and Wyoming. Concentrations of these radionuclides were compared with concentrations of {sup 239,240}Pu in the same samples. Concentrations of {sup 241}Am in soil from depths of 0 to 3 cm decreased in an easterly direction from more than 5.3 kBq kg{sup {minus}1} 5 to 7 km away at a rate that was nearly proportional to the inverse square of distance. Deposits of {sup 137}Cs were ubiquitous, averaging 0.12 kBq kg{sup {minus}1} in soil from depths of 0 to 3 cm, but were unevenly distributed around Rocky Flats and the regional background locations. Deviations from the uniform exponential rate at which soil concentrations of {sup 137}Cs typically decreased with depth, {minus}0.25 cm{sup {minus}1} at undisturbed sites, enabled the authors to determine that about 10% of their sampling sites had been disturbed by erosion, tillage, or other factors. The mean rate at which {sup 239,240}Pu decreased with depth was about the same, {minus}0.23 cm{sup {minus}1}, throughout the study area. Soil concentrations of {sup 241}Am decreased with depth at a similar mean rate of {minus}0.22 cm{sup {minus}1} at locations close to the 903 pad where measurements were robust. Ratios between {sup 241}Am or {sup 239,240}Pu and {sup 137}Cs proved more useful for delineating the extent and pattern of contamination from Rocky Flats than did activity concentrations in soil.

  8. LB CRAC Workshops (rates/meetings)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Load-Based (LB) CRAC Power Rate Adjustment Workshop Materials Related Links: Power Rate Adjustments > Load-Based (LB) CRAC December 13, 2006 LB CRAC Workshop Materials (updated...

  9. utility rate | OpenEI Community

    Open Energy Info (EERE)

    utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next...

  10. Residential Solar Valuation Rates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Residential Solar Valuation Rates This presentation summarizes the information discussed by Rabago Energy during the Best Practices in the Design ...

  11. CERC-BEE Cool Roofs and Urban Heat Islands: infrastructure and anti-soiling coatings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ronnen Levinson, Staff Scientist, LBNL RMLevinson@LBL.gov Scott Hunter, Senior Research Scientist, ORNL HunterSR@ORNL.gov CERC-BEE Cool Roofs and Urban Heat Islands: infrastructure and anti-soiling coatings 2014 Building Technologies Office Peer Review 2 Project Summary (Cool Roof Infrastructure) Timeline: Start date: January 2011 Planned end date: December 2015 Key Milestones 1. Initiate natural exposure trials in many Chinese cities for roof product rating (6/2014) 2. Start black/white/garden

  12. Soil Water Balance and Recharge Monitoring at the Hanford Site - FY09 Status Report

    SciTech Connect (OSTI)

    Rockhold, Mark L.; Saunders, Danielle L.; Strickland, Christopher E.; Waichler, Scott R.; Clayton, Ray E.

    2009-09-28

    Recharge provides the primary driving force for transporting contaminants from the vadose zone to underlying aquifer systems. Quantification of recharge rates is important for assessing contaminant transport and fate and for evaluating remediation alternatives. This report describes the status of soil water balance and recharge monitoring performed by Pacific Northwest National Laboratory at the Hanford Site for Fiscal Year 2009. Previously reported data for Fiscal Years 2004 - 2008 are updated with data collected in Fiscal Year 2009 and summarized.

  13. Heavy metal movement in metal-contaminated soil profiles

    SciTech Connect (OSTI)

    Li, Zhenbin; Shuman, L.M.

    1996-10-01

    Heavy metal movement in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. In this study, three metal-contaminated soil (Fuquay, Dothan, and Clarendon) were selected from cropland were a high-metal flue dust had been applied annually for 6 years to raise soil pH, with application ending 4 years before sampling. One uncontaminated soil (Tifton) from the same physiographic area was also sampled as a control. Soil samples were collected in 15-cm increments from the surface to 105 cm in depth. Total contents of Zn, Cd, and Pb in the soils samples were determined. To better understand metal movement in relation to metal fractions in the soil profile, soil samples were also extracted sequentially for exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO), and residual (RES) fractions. 35 refs., 6 figs., 2 tabs.

  14. Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils

    DOE Patents [OSTI]

    Lindgren, Eric R.; Mattson, Earl D.

    1995-01-01

    There is presented an electrokinetic electrode assembly for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. There is further presented an electrode system and method for extraction of soil contaminants, the system and method utilizing at least two electrode assemblies as described above.

  15. Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils

    DOE Patents [OSTI]

    Lindgren, E.R.; Mattson, E.D.

    1995-07-25

    An electrokinetic electrode assembly is described for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. An electrode system and method are also revealed for extraction of soil contaminants. The system and method utilize at least two electrode assemblies as described above. 5 figs.

  16. Soil Vapor Extraction System Optimization, Transition, and Closure Guidance

    SciTech Connect (OSTI)

    Truex, Michael J.; Becker, Dave; Simon, Michelle A.; Oostrom, Martinus; Rice, Amy K.; Johnson, Christian D.

    2013-02-08

    Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants in the vadose zone. A diminishing rate of contaminant extraction over time is typically observed due to 1) diminishing contaminant mass, and/or 2) slow rates of removal for contamination in low-permeability zones. After a SVE system begins to show indications of diminishing contaminant removal rate, SVE performance needs to be evaluated to determine whether the system should be optimized, terminated, or transitioned to another technology to replace or augment SVE. This guidance specifically addresses the elements of this type of performance assessment. While not specifically presented, the approach and analyses in this guidance could also be applied at the onset of remediation selection for a site as a way to evaluate current or future impacts to groundwater from vadose zone contamination. The guidance presented here builds from existing guidance for SVE design, operation, optimization, and closure from the U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, and the Air Force Center for Engineering and the Environment. The purpose of the material herein is to clarify and focus on the specific actions and decisions related to SVE optimization, transition, and/or closure.

  17. Fixed Rate Agreement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fixed Rate Agreement Fixed Rate Agreement Fixed Rate Agreement (110.33 KB) More Documents & Publications Floating Rate Agreement Notice of Proposed Rulemaking (August 6, 2009) Federal Loan Guarantees for Projects that Manufacture Commercial Technology Renewable Energy Systems and Components: August 10, 2010

  18. Combined Retrieval, Microphysical Retrievals and Heating Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Feng, Zhe

    2013-02-22

    Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.

  19. Combined Retrieval, Microphysical Retrievals and Heating Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Feng, Zhe

    Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.

  20. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Marchand, Alan P.

    2001-06-01

    Disposal of high-level nuclear waste is horrendously expensive, in large part because the actual radioactive matter in the tanks has been diluted over 1000-fold by ordinary inorganic chemicals. Treatment processes themselves can exacerbate the problem by adding further volume to the waste. Waste retrieval and sludge washing, for example, will require copious amounts of sodium hydroxide. If the needed sodium hydroxide could be separated from the waste and recycled, however, the addition of fresh sodium hydroxide could be avoided, ultimately reducing the final waste volume and associated disposal costs. The major objective of this research is to explore new liquid-liquid extraction approaches to the selective separation of sodium hydroxide from alkaline high-level wastes stored in underground tanks at the Hanford and Savannah River sites. Consideration is also given to separating potassium and abundant anions, including nitrate, nitrite, aluminate, and carbonate. Salts of these ions represent possible additional value for recycle, alternative disposal, or even use as commodity chemicals. A comprehensive approach toward understanding the extractive chemistry of these salts is envisioned, involving systems of varying complexity, from use of simple solvents to new bifunctional host molecules for ion-pair recognition. These extractants will ideally require no adjustment of the waste composition and will release the extracted salt into water, thereby consuming no additional chemicals and producing no additional waste volume. The overall goal of this research is to provide a scientific foundation upon which the feasibility of new liquid-liquid extraction chemistry applicable to the bulk reduction of the volume of tank waste can be evaluated.

  1. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Marchand, Alan P.

    2000-06-01

    Disposal of high- level waste is horrendously expensive, in large part because the actual radioactive matter in the tanks has been diluted over 1000-fold by ordinary inorganic chemicals. Treatment processes themselves can exacerbate the problem by adding further volume to the waste. Waste retrieval and sludge washing, for example, will require copious amounts of sodium hydroxide. If the needed sodium hydroxide could be separated from the waste and recycled, however, the addition of fresh sodium hydroxide could be avoided, ultimately reducing the final waste volume and associated disposal costs. The major objective of this research is to explore new liquid- liquid extraction approaches to the selective separation of sodium hydroxide from alkaline high-level wastes stored in underground tanks at the Hanford and Savannah River sites. Consideration is also given to separating potassium and abundant anions, including nitrate, nitrite, aluminate, and carbonate. Salts of these ions represent possible additional value for recycle, alternative disposal, or even use as commodity chemicals. A comprehensive approach toward understanding the extractive chemistry of these salts is envisioned, involving systems of varying complexity, from use of simple solvents to new bifunctional host molecules for ion-pair recognition. These extractants will ideally require no adjustment of the waste composition and will release the extracted salt into water, thereby consuming no additional chemicals and producing no additional waste volume. The overall goal of this research is to provide a scientific foundation upon which the feasibility of new liquid-liquid extraction chemistry applicable to the bulk reduction of the volume of tank waste can be evaluated.

  2. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Marchand, Alan P.; Bryan, Jeffrey C.; Bonnesen, Peter V.

    1999-06-01

    The objective of this research is to explore new liquid-liquid extraction approaches to the selective separation of major sodium salts from alkaline high-level wastes stored in underground tanks at Hanford, Savannah River, and Oak Ridge sites. Disposal of high level waste is horrendously expensive, in large part because the actual radioactive matter in the tanks has been diluted over 1000-fold by ordinary inorganic chemicals. Since the residual bulk chemicals must still undergo expensive treatment and disposal after most of the hazardous radionuclides have been removed, large cost savings will result from processes that reduce the overall waste volume. It is proposed that major cost savings can be expected if sodium hydroxide needed for sludge washing can be obtained from the waste itself, thus avoiding the addition of yet another bulk chemical to the waste and still further increase of the waste volume and disposal cost. Secondary priority is given to separating potassium an d abundant anions, including nitrate, nitrite, aluminate, and carbonate. Salts of these ions represent possible additional value for recycle, alternative disposal, or even use as commodity chemicals. A comprehensive approach toward understanding the extractive chemistry of these salts is envisioned, involving systems of varying complexity, from use of simple solvents to new bifunctional host molecules for ion-pair recognition. These extractants will ideally require no adjustment of the waste composition and will release the extracted salt into water, thereby consuming no additional chemicals and producing no additional waste volume. The overall goal of this research is to provide a scientific foundation upon which the feasibility of new liquid-liquid extraction chemistry applicable to the bulk reduction of the volume of tank waste can be evaluated.

  3. Bayesian hierarchical models for soil CO{sub 2} flux and leak detection at geologic sequestration sites

    SciTech Connect (OSTI)

    Yang, Ya-Mei; Small, Mitchell J.; Junker, Brian; Bromhal, Grant S.; Strazisar, Brian; Wells, Arthur

    2011-10-01

    Proper characterizations of background soil CO{sub 2} respiration rates are critical for interpreting CO{sub 2} leakage monitoring results at geologic sequestration sites. In this paper, a method is developed for determining temperature-dependent critical values of soil CO{sub 2} flux for preliminary leak detection inference. The method is illustrated using surface CO{sub 2} flux measurements obtained from the AmeriFlux network fit with alternative models for the soil CO{sub 2} flux versus soil temperature relationship. The models are fit first to determine pooled parameter estimates across the sites, then using a Bayesian hierarchical method to obtain both global and site-specific parameter estimates. Model comparisons are made using the deviance information criterion (DIC), which considers both goodness of fit and model complexity. The hierarchical models consistently outperform the corresponding pooled models, demonstrating the need for site-specific data and estimates when determining relationships for background soil respiration. A hierarchical model that relates the square root of the CO{sub 2} flux to a quadratic function of soil temperature is found to provide the best fit for the AmeriFlux sites among the models tested. This model also yields effective prediction intervals, consistent with the upper envelope of the flux data across the modeled sites and temperature ranges. Calculation of upper prediction intervals using the proposed method can provide a basis for setting critical values in CO{sub 2} leak detection monitoring at sequestration sites.

  4. Wholesale Power Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rate Schedules » Wholesale Power Rate Schedules Wholesale Power Rate Schedules October 1, 2015 KP-AP-1-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott October 1, 2015 KP-AP-2-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott October 1, 2015 KP-AP-3-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott October 1, 2015 CU-CC-1-J Wholesale Power Rate Schedule Area: Duke Energy Progress, Western

  5. Evaluation of the natural biodegradation of jet fuel JP-8 in various soils using respirometry. Master`s thesis

    SciTech Connect (OSTI)

    Baker, J.A.

    1995-12-01

    This research effort used an automated respirometer to evaluate the intrinsic aerobic biodegradation potential of jet fuel JP-8 in various types of natural soils. Four replications of a complete factorial design experiment were accomplished using three levels of fuel and three types of soil in a three by three matrix of treatments. Laboratory microcosms were prepared containing the treatments, using the soils in a close to natural state, and allowed to react for fourteen days. A two-way ANOVA test on the experimental data demonstrated a strong positive correlation between the amount of fuel biodegraded with the initial level of fuel and also with the clay content of the soil. Interaction effects were also observed between the two factors. The continuous oxygen uptake rate curves were used to follow biodegradation of the fuel through the various steps of biological growth. The biokinetics of the observed reactions could be inferred from the oxygen rate curves. Analyses of soil nutrient consumption and the predicted ratio of oxygen uptake to carbon dioxide production were also done. Regression analysis demonstrated a significant reduction in nirates in microcosms with higher initial levels of fuel.

  6. Recovery of Depleted Uranium Fragments from Soil

    SciTech Connect (OSTI)

    Farr, C.P.; Alecksen, T.J.; Heronimus, R.S.; Simonds, M.H.; Farrar, D.R.; Baker, K.R.; Miller, M.L.

    2008-07-01

    A cost-effective method was demonstrated for recovering depleted uranium (DU) fragments from soil. A compacted clean soil pad was prepared adjacent to a pile of soil containing DU fragments. Soil from the contaminated pile was placed on the pad in three-inch lifts using conventional construction equipment. Each lift was scanned with an automatic scanning system consisting of an array of radiation detectors coupled to a detector positioning system. The data were downloaded into ArcGIS for data presentation. Areas of the pad exhibiting scaler counts above the decision level were identified as likely locations of DU fragments. The coordinates of these locations were downloaded into a PDA that was wirelessly connected to the positioning system. The PDA guided technicians to the locations where hand-held trowels and shovels were used to remove the fragments. After DU removal, the affected areas were re-scanned and the new data patched into the data base to replace the original data. This new data set along with soil sample results served as final status survey data. (authors)

  7. Effect of moisture on leaf litter decomposition and its contribution to soil respiration in a temperate forest

    SciTech Connect (OSTI)

    Cisneros-Dozal, Luz Maria; Trumbore, Susan E.; Hanson, Paul J

    2007-01-01

    The degree to which increased soil respiration rates following wetting is caused by plant (autotrophic) versus microbial (heterotrophic) processes, is still largely uninvestigated. Incubation studies suggest microbial processes play a role but it remains unclear whether there is a stimulation of the microbial population as a whole or an increase in the importance of specific substrates that become available with wetting of the soil. We took advantage of an ongoing manipulation of leaf litter 14C contents at the Oak Ridge Reservation, Oak Ridge, Tennessee, to (1) determine the degree to which an increase in soil respiration rates that accompanied wetting of litter and soil, following a short period of drought, could be explained by heterotrophic contributions; and (2) investigate the potential causes of increased heterotrophic respiration in incubated litter and 0-5 cm mineral soil. The contribution of leaf litter decomposition increased from 6 3 mg C m 2 hr 1 during a transient drought, to 63 18 mg C m 2 hr 1 immediately after water addition, corresponding to an increase in the contribution to soil respiration from 5 2% to 37 8%. The increased relative contribution was sufficient to explain all of the observed increase in soil respiration for this one wetting event in the late growing season. Temperature (13 C versus 25 C) and moisture (dry versus field capacity) conditions did not change the relative contributions of different decomposition substrates in incubations, suggesting that more slowly cycling C has at least the same sensitivity to decomposition as faster cycling organic C at the temperature and moisture conditions studied.

  8. Attachments Energy Ratings Council | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attachments Energy Ratings Council Attachments Energy Ratings Council Attachments Energy Ratings Council Lead Performer: Window Covering Manufacturing Association - New York, NY DOE Funding: $1,600,000 Project Term: October 1, 2014 - September 30, 2018 Funding Opportunity Announcement: Certification and Rating Attachments for Fenestration Technologies DE-FOA-001000-1504 Project Objective This project is to develop an independent rating, certification, labeling, and performance verification

  9. Chemotactic selection of pollutant degrading soil bacteria

    DOE Patents [OSTI]

    Hazen, T.C.

    1991-03-04

    A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  10. In situ removal of contamination from soil

    DOE Patents [OSTI]

    Lindgren, E.R.; Brady, P.V.

    1997-10-14

    A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination. The process also uses further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed. 5 figs.

  11. In situ removal of contamination from soil

    DOE Patents [OSTI]

    Lindgren, Eric R.; Brady, Patrick V.

    1997-01-01

    A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination, and further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed.

  12. Development of Alternate Soil Clean-Up Goals for Hanford Waste Sites Using Fate and Transport Modeling

    SciTech Connect (OSTI)

    Hoover, J.D. [Fluor Hanford, Inc. (United States); McMahon, W.J. [CH2M Hill Hanford Group (United States); Leary, K.D. [DOE/RL (United States)

    2008-07-01

    Remedial Action Goals (RAGs) for soil contaminant levels that are protective of groundwater have been determined for the Removal/Treatment/Disposal (RTD) sites at the 200-UW-1 Operable Unit on the Hanford Site. The RAG values were determined using a methodology involving the back-calculation of soil contaminant levels protective of groundwater (i.e., resulting groundwater concentrations are {<=} MCLs) in conjunction with the fate and transport modeling as a risk-based alternative to the currently prescribed use of background or detection limit default values. This methodology is important for waste management activities at the Hanford Site because it provides risk-based metrics and a technical basis for determining the levels of contamination 'left in place' in the Hanford Site vadose zone that are protective of human health and the environment. The methodology and the use of fate and transport modeling described here comply with federal guidelines for the use of environmental models. This approach is also consistent with one of several allowable methods identified in State guidelines for deriving soil concentrations for ground water protection. Federal and state guidelines recommend the use of site-specific information and data in risk-based assessments of risk and/or protectiveness. The site-specific characteristics of the Hanford Site, which include consideration of the semi-arid climate, an unsaturated zone thickness of over 80 m (262 feet), and associated/other site features and processes, are integral for the risk-based assessments associated with the protection of groundwater pathway. This methodology yields soil cleanup values (RAGs) for the 200-UW-1 OU waste sites selected for the removal/treatment/disposal (RTD) remedy. These proposed RAGs for uranium, nitrate, and technetium-99 are derived from soil concentrations calculated not to cause contamination of groundwater at levels that exceed the ground water MCLs, and are 40 to 200 times greater than

  13. SoilSaw{trademark} demonstration. Final report, September 1992--January 1995

    SciTech Connect (OSTI)

    Saugier, K.; Isaac, R.E.

    1996-02-01

    The US Department of Energy (DOE) has identified leaking underground storage tanks and buried mixed waste at numerous sites within the DOE complex. Preventing these wastes from entering the environment is a challenging task. One method of preventing waste migration is to isolate the contaminants using subsurface containment barriers. Isolation and containment can be accomplished by both in situ and ex situ methods. This report describes a novel in situ construction method of forming vertical containment barriers (slurry walls) using the SoilSaw{trademark} Barrier System. The SoilSaw{trademark} Barrier System is shown to be a feasible process for constructing subsurface vertical containment barriers to depths of fifty feet. The process is most efficient in sandy soil (including free flowing sand) with barrier construction rates of over 130 square feet per minute. Productivity diminishes to approximately 30 square feet per minute as soils become harder and more cohesive. The present hardware is designed to form a barrier of approximately 12 inch in width. Additional barrier widths can be constructed with this technology by application of wider jet heads. The requirement for a varied arrangement of barrier widths is an increase in hydraulic horse power and additional jet heads.

  14. Modeling microbial dynamics in heterogeneous environments: Growth on soil carbon sources

    SciTech Connect (OSTI)

    Resat, Haluk; Bailey, Vanessa L.; McCue, Lee Ann; Konopka, Allan

    2012-01-01

    We have developed a new hybrid model to study how microbial dynamics are affected by the heterogeneity in the physical structure of the environment. The modeling framework can represent porous media such as soil. The individual based biological model can explicitly simulate microbial diversity, and cell metabolism is regulated via optimal allocation of cellular resources to enzyme synthesis, control of growth rate by protein synthesis capacity, and shifts to dormancy. This model was developed to study how microbial community functioning is influenced by local environmental conditions and by the functional attributes of individual microbes. Different strategies for acquisition of carbon from polymeric cellulose were investigated. Bacteria that express membrane-associated hydrolase had different growth and survival dynamics in soil pores than bacteria that release extracellular hydrolases. The kinetic differences may suggest different functional roles for these two classes of microbes in cellulose utilization. Our model predicted an emergent behavior in which co-existence led to higher cellulose utilization efficiency and reduced stochasticity. Microbial community dynamics were simulated at two spatial scales: micro-pores that resemble 6-20 {micro}m size portions of the soil physical structure and in 111 {micro}m size soil aggregates with a random pore structure. Trends in dynamic properties were very similar at these two scales, implying that micro-scale studies can be useful approximations to aggregate scale studies when local effects on microbial dynamics are studied.

  15. Carbon Mineralizability Determines Interactive Effects on Mineralization of Pyrogenic Organic Matter and Soil Organic Carbon

    SciTech Connect (OSTI)

    Whitman, Thea L.; Zhu, Zihua; Lehmann, Johannes C.

    2014-10-31

    Soil organic carbon (SOC) is a critical and active pool in the global C cycle, and the addition of pyrogenic organic matter (PyOM) has been shown to change SOC cycling, increasing or decreasing mineralization rates (often referred to as priming). We adjusted the amount of easily mineralizable C in the soil, through 1-day and 6-month pre-incubations, and in PyOM made from maple wood at 350°C, through extraction. We investigated the impact of these adjustments on C mineralization interactions, excluding pH and nutrient effects and minimizing physical effects. We found short-term increases (+20-30%) in SOC mineralization with PyOM additions in the soil pre-incubated for 6 months. Over the longer term, both the 6-month and 1-day pre-incubated soils experienced net ~10% decreases in SOC mineralization with PyOM additions. This was possibly due to stabilization of SOC on PyOM surfaces, suggested by nanoscale secondary ion mass spectrometry. Additionally, the duration of pre-incubation affected priming interactions, indicating that there may be no optimal pre-incubation time for SOC mineralization studies. We show conclusively that relative mineralizability of SOC in relation to PyOM-24 C is an important determinant of the effect of PyOM additions on SOC mineralization.

  16. Acoustically enhanced remediation of contaminated soils and ground water. Volume 1

    SciTech Connect (OSTI)

    1995-10-01

    The Phase 1 laboratory bench-scale investigation results have shown that acoustically enhanced remediation (AER) technology can significantly accelerate the ground water remediation of non-aqueous phase liquids (NAPLs) in unconsolidated soils. The testing also determined some of the acoustic parameters which maximize fluid and contaminant extraction rates. A technology merit and trade analysis identified the conditions under which AER could be successfully deployed in the field, and an analysis of existing acoustical sources and varying methods for their deployment found that AER technology can be successfully deployed in-situ. Current estimates of deployability indicate that a NAPL plume 150 ft in diameter can be readily remediated. This program focused on unconsolidated soils because of the large number of remediation sites located in this type of hydrogeologic setting throughout the nation. It also focused on NAPLs and low permeability soil because of the inherent difficult in the remediation of NAPLs and the significant time and cost impact caused by contaminated low permeability soils. This overall program is recommended for Phase 2 which will address the technology scaling requirements for a field scale test.

  17. Self-potential, soil co2 flux, and temperature on masaya volcano, nicaragua

    SciTech Connect (OSTI)

    Lewicki, J.L.; Connor, C.; St-Amand, K.; Stix, J.; Spinner, W.

    2003-07-01

    We investigate the spatial relationship between self-potential (SP), soil CO{sub 2} flux, and temperature and the mechanisms that produce SP anomalies on the flanks of Masaya volcano, Nicaragua. We measured SP, soil CO{sub 2} fluxes (<1 to 5.0 x 10{sup 4} g m{sup -2} d{sup -1}), and temperatures (26 to 80 C) within an area surrounding a normal fault, adjacent to Comalito cinder cone (2002-2003). These variables are well spatially correlated. Wavelengths of SP anomalies are {le}100 m, and high horizontal SP gradients flank the region of elevated flux and temperature. Carbon isotopic compositions of soil CO{sub 2} ({delta}{sup 13}C = -3.3 to -1.1{per_thousand}) indicate a deep gas origin. Given the presence of a deep water table (100 to 150 m), high gas flow rates, and subsurface temperatures above liquid boiling points, we suggest that rapid fluid disruption is primarily responsible for positive SP anomalies here. Concurrent measurement of SP, soil CO{sub 2} flux, and temperature may be a useful tool to monitor intrusive activity.

  18. Uranyl Nitrate Flow Loop

    SciTech Connect (OSTI)

    Ladd-Lively, Jennifer L

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study was sponsored by the U.S. Department of Energy (DOE) NA-241, Office of Dismantlement and Transparency.

  19. Tracing the transport of anthropogenic lead in the atmosphere and in soils using isotopic ratios

    SciTech Connect (OSTI)

    Erel, Y.; Veron, A.; Halicz, L.

    1997-11-01

    The isotopic composition of lead in aerosols and soils in Israel is used to characterize the sources of anthropogenic lead in the region, to ascertain the isotopic composition of natural, rock-derived lead in specific areas, and to determine rates of anthropogenic lead migration in soils. The isotopic composition of lead currently emitted from cars in Israel ({sup 206}Pb/{sup 207}Pb = 1.115 {+-} 2) is controlled by alkyl-lead produced in France and Germany. In addition to petrol-lead, two more sources of anthropogenic lead can be detected in sampled aerosols; the first one has low concentrations of lead ({approximately} ng/m{sup 3}) and {sup 206}Pb/{sup 207}Pb {approximately} 1.157, and is most likely lead, emitted in Turkey, that traveled across the eastern Mediterranean basin; the second type of aerosols contains a mixture of lead emitted in several countries including Turkey, Greece, and Ukraine ({sup 206}Pb/{sup 207}Pb value of 1.155-1.160; [Pb] {approximately}20-30 ng/m{sup 3}). Anthropogenic lead is more accessible for acid leaching than natural lead, therefore, it is more labile in the soil. The isotopic composition of lead in the acid-leached fraction of near-road soil profiles records the history of alkyl-lead emission in the country. Based on changes in the isotopic composition of lead with soil depth, it is estimated that anthropogenic lead migrates into the soil at approximately 0.5 cm/y. A soil profile from a relatively remote area is less contaminated by anthropogenic lead and displays a different distribution of lead isotopic values with depth. The isotopic composition of lead suggests that natural lead in soils developed on carbonate bedrock is derived from clays, either from the rock-residue (the clay fraction in the carbonate bedrock), or from airborne clay, but not from lead released from the carbonate fraction in the rock. 44 refs., 6 figs., 2 tabs.

  20. ARM - Evaluation Product - Critical soil quantities for describing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsCritical soil quantities for describing land properties ARM Data Discovery Browse ... Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Critical soil ...

  1. System for Analysis of Soil-Structure Interaction (SASSI) Verification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System for Analysis of Soil-Structure Interaction (SASSI) Verification & Validation (V&V) Problem Set SASSI is the System for Analysis of Soil-Structure Interaction, a computer ...

  2. Percolation behavior of tritiated water into a soil packed bed...

    Office of Scientific and Technical Information (OSTI)

    Percolation behavior of tritiated water into a soil packed bed Citation Details In-Document Search Title: Percolation behavior of tritiated water into a soil packed bed A large ...

  3. DISSOLUTION OF IRRADIATED MURR FUEL ASSEMBLIES EFFECT OF INCREASED PURGE RATE AND CATALYST CONCENTRATION ON THE BATCH SIZE

    SciTech Connect (OSTI)

    Kyser, E.

    2010-07-22

    Flowsheets for the dissolution of aluminum-clad spent nuclear fuel have been proposed using 0.002 M mercuric nitrate catalyst in 5 to 6 M nitric acid. Previous calculations for flammable gas control during the dissolution of spent nuclear fuel have been extended to cover a range of dissolver purge rates from 40 to 55 scfm. A range of dissolver solution volumes from 12000 to 15000 liters were considered for the large H-Canyon dissolver (6.4D). Depending on the purge rate, anywhere from four to six bundles of MURR fuel can be initially charged to the dissolver (6.4D). For successive charges where the dissolver solution already contains 0.002 M mercury catalyst and the dissolved aluminum from five bundles of MURR fuel, five to nine bundles of additional fuel can be charged depending on the purge rate and the dissolver solution volume. Similar calculations have been performed for the small H-Canyon dissolver (6.1D) for solution volumes that ranged from 6000 to 7500 liters and purge rates from 40 to 55 scfm. The limitations on the initial charge are four to six bundles depending on the purge rate. The aluminum from four bundles of fuel in an initial charge will allow nine to ten bundles in the second charge to 6.1D depending on the purge rate and dissolver solution volume. Solubility or criticality limitations will restrict the second charge on the small dissolver. The concentration of aluminum from previous charges will slow the dissolution rate to extend the cycle time of repeated charges of fuel. Calculations have been performed to allow a second catalyst addition (up to 0.004 M total catalyst) to reduce the cycle time (as necessary) based on the aluminum concentration and the purge rate.

  4. Time-resolved infrared reflectance studies of the dehydration-induced transformation of uranyl nitrate hexahydrate to the trihydrate form

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Edward J. Mausolf; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; Bruce K. McNamara

    2015-09-08

    Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s, the different phases were studied by infrared transmission spectroscopy but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparationmore » and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm–1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm–1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the trihydrate solid. As a result, the phase transformation and crystal structures were confirmed by density functional theory calculations and optical microscopy methods, both of which showed a transformation with two distinct sites for the uranyl cation in the trihydrate, with only one in the hexahydrate.« less

  5. Nitrative DNA damage induced by multi-walled carbon nanotube via endocytosis in human lung epithelial cells

    SciTech Connect (OSTI)

    Guo, Feiye; Ma, Ning; Horibe, Yoshiteru; Kawanishi, Shosuke; Murata, Mariko; Hiraku, Yusuke

    2012-04-15

    Carbon nanotube (CNT) has a promising usage in the field of material science for industrial purposes because of its unique physicochemical property. However, intraperitoneal administration of CNT was reported to cause mesothelioma in experimental animals. Chronic inflammation may contribute to carcinogenesis induced by fibrous materials. 8-Nitroguanine is a mutagenic DNA lesion formed during inflammation and may play a role in CNT-induced carcinogenesis. In this study, we examined 8-nitroguanine formation in A549 human lung alveolar epithelial cells treated with multi-walled CNT (MWCNT) by fluorescent immunocytochemistry. Both MWCNTs with diameter of 2030 nm (CNT20) and 4070 nm (CNT40) significantly induced 8-nitroguanine formation at 5 and 10 ?g/ml (p < 0.05), which persisted for 24 h, although there was no significant difference in DNA-damaging abilities of these MWCNTs. MWCNTs significantly induced the expression of inducible nitric oxide synthase (iNOS) for 24 h (p < 0.05). MWCNTs also significantly increased the level of nitrite, a hydrolysis product of oxidized NO, in the culture supernatant at 4 and 8 h (p < 0.05). MWCNT-induced 8-nitroguanine formation and iNOS expression were largely suppressed by inhibitors of iNOS (1400 W), nuclear factor-?B (Bay11-7082), actin polymerization (cytochalasin D), caveolae-mediated endocytosis (methyl-?-cyclodextrin, MBCD) and clathrin-mediated endocytosis (monodansylcadaverine, MDC). Electron microscopy revealed that MWCNT was mainly located in vesicular structures in the cytoplasm, and its cellular internalization was reduced by MBCD and MDC. These results suggest that MWCNT is internalized into cells via clathrin- and caveolae-mediated endocytosis, leading to inflammatory reactions including iNOS expression and resulting nitrative DNA damage, which may contribute to carcinogenesis. Highlights: ?Multi-walled carbon nanotube (MWCNT) caused DNA damage in A549 cells. ?MWCNT formed 8-nitroguanine, a DNA lesion associated

  6. Time-Resolved Infrared Reflectance Studies of the Dehydration-Induced Transformation of Uranyl Nitrate Hexahydrate to the Trihydrate Form

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Mausolf, Edward J.; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; McNamara, Bruce K.

    2015-10-01

    Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s the different phases were studied by infrared transmission spectroscopy, but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparation and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm-1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm-1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the trihydrate solid. The phase transformation and crystal structures were confirmed by density functional theory calculations and optical microscopy methods, both of which showed a transformation with two distinct sites for the uranyl cation in the trihydrate, with but one in the hexahydrate.

  7. Weldon Spring Site Archived Soil & Groundwater Master Reports | Department

    Office of Environmental Management (EM)

    of Energy Weldon Spring Site Archived Soil & Groundwater Master Reports Weldon Spring Site Archived Soil & Groundwater Master Reports Weldon Spring Site Archived Soil & Groundwater Master Reports Weldon Spring Site - Chemical Plant East Plume (17.9 KB) Weldon Spring Site - Chemical Plant Quarry (17.53 KB) Weldon Spring Site - Chemical Plant VOC (16.06 KB) Weldon Spring Site - Chemical Plant West Plume (18.61 KB) More Documents & Publications South Valley Archived Soil &

  8. Arsenic distribution in soils surrounding the Utah copper smelter

    SciTech Connect (OSTI)

    Ball, A.L.; Rom, W.N.; Glenne, B.

    1983-05-01

    We investigated the extent of arsenic contamination from a Utah copper smelter as reflected by arsenic residue accumulated in the surface soil. The highest arsenic concentrations occurred within 3 km of the smelter. Arsenic soil contamination was evident up to 10 km from the smelter, with the major transport direction being ESE. Data from the subsurface soil samples indicated that arsenic has also leached through the soil.

  9. Soil Organic Carbon Degradation, Barrow, 2013-2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gu, Baohua; Yang, Ziming

    This dataset provides information about soil organic carbon decomposition in Barrow soil incubation studies. The soil cores were collected from low-center polygon (Area A) and were incubated in the laboratory at different temperatures for up to 60 days. Transformations of soil organic carbon were characterized by UV and FT-IR, and small organic acids in water-soluble carbons were quantified by ion chromatography during the incubation

  10. Soil Organic Carbon Degradation, Barrow, 2013-2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gu, Baohua; Yang, Ziming

    2015-03-30

    This dataset provides information about soil organic carbon decomposition in Barrow soil incubation studies. The soil cores were collected from low-center polygon (Area A) and were incubated in the laboratory at different temperatures for up to 60 days. Transformations of soil organic carbon were characterized by UV and FT-IR, and small organic acids in water-soluble carbons were quantified by ion chromatography during the incubation

  11. Soil Separator and Sampler and Method of Sampling - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Soil Separator and Sampler and Method of Sampling Fluidized Bed system Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL has developed a method for sampling soil to determine the presence of extremely fine particles such as asbestos. Description The apparatus uses a fluidized bed for receiving a soil sample, which is connected to a vacuum for drawing air through the bed and suspends particulate matter of the soil sample in the air, and draws

  12. 2014-2015 Power Rate Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Power Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy Bonneville Power Administration 905 N.E. 11th Avenue...

  13. Category:Utility Rates | Open Energy Information

    Open Energy Info (EERE)

    Rates Jump to: navigation, search Add a new Utility Rate This category currently contains no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:Utility...

  14. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: American Clean Skies Foundation Type Term Title Author Replies Last Post sort icon Blog entry...

  15. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Utility Rate Home > Groups > Groups > Utility Rate Content Group Activity By term Q & A Feeds There are no feeds from external sites for this group. Groups Menu You must login in...

  16. Energy Efficiency Interest Rate Reduction Program

    Broader source: Energy.gov [DOE]

    For new and existing home purchases that are rated 6 Star or 5 Star Plus, applicants are eligible for an interest rate reduction for the first $200,000 of the loan amount, with a blended interest...

  17. Dual nitrate isotopes clarify the role of biological processing and hydrologic flow paths on nitrogen cycling in subtropical low-gradient watersheds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Griffiths, Natalie A.; Jackson, C. Rhett; McDonnell, Jeffrey J.; Klaus, Julian; Du, Enhao; Bitew, Menberu M.

    2016-02-08

    Nitrogen (N) is an important nutrient as it often limits productivity but in excess can impair water quality. Most studies on watershed N cycling have occurred in upland forested catchments where snowmelt dominates N export; fewer studies have focused on low-relief watersheds that lack snow. We examined watershed N cycling in three adjacent, low-relief watersheds in the Upper Coastal Plain of the southeastern United States to better understand the role of hydrological flow paths and biological transformations of N at the watershed scale. Groundwater was the dominant source of nitrified N to stream water in two of the three watersheds,more » while atmospheric deposition comprised 28% of stream water nitrate in one watershed. The greater atmospheric contribution may have been due to the larger stream channel area relative to total watershed area or the dominance of shallow subsurface flow paths contributing to stream flow in this watershed. There was a positive relationship between temperature and stream water ammonium concentrations and a negative relationship between temperature and stream water nitrate concentrations in each watershed suggesting that N cycling processes (i.e., nitrification and denitrification) varied seasonally. However, there were no clear patterns in the importance of denitrification in different water pools possibly because a variety of factors (i.e., assimilatory uptake, dissimilatory uptake, and mixing) affected nitrate concentrations. In conclusion, together, these results highlight the hydrological and biological controls on N cycling in low-gradient watersheds and variability in N delivery flow paths among adjacent watersheds with similar physical characteristics.« less

  18. Public Utilities Specialist (Rates) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Area Power Administration Locations Phoenix, Arizona Announcement Number ... Southwest Region, Power Marketing, Rates and Alternative Financing, Phoenix, AZ (G6100). ...

  19. POLICY GUIDANCE MEMORANDUM #10 Category Rating

    Broader source: Energy.gov [DOE]

    This memorandum is to establish the Department of Energy's (DOE's) policy for the use of Category Rating.

  20. Commercial Building Energy Asset Rating Workshop

    Broader source: Energy.gov [DOE]

    DOE commercial building energy asset rating program information presented to stakeholders at the workshop held in Washington, DC, December 2011

  1. Soil sampling kit and a method of sampling therewith

    DOE Patents [OSTI]

    Thompson, Cyril V.

    1991-01-01

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allow an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds.

  2. Soil sampling kit and a method of sampling therewith

    DOE Patents [OSTI]

    Thompson, C.V.

    1991-02-05

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allows an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds. 11 figures.

  3. Archived Soil & Groundwater Master Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Archived Soil & Groundwater Master Reports Archived Soil & Groundwater Master Reports Archived Soil & Groundwater Master Reports Amchitka Ashtabula Fernald Environmental Management Project Maybell Miamisburg Environmental Management Project Rocky Flats Environmental Technology Site Shiprock Slick Rock South Valley Spook Tuba City Weldon Spring Miscellaneous

  4. Sidewall tensiometer and method of determining soil moisture potential in below-grade earthen soil

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2001-01-01

    A sidewall tensiometer to in situ determine below-grade soil moisture potential of earthen soil includes, a) a body adapted for insertion into an opening in earthen soil below grade, the body having lateral sidewalls; b) a laterally oriented porous material provided relative to the body lateral sidewalls, the laterally oriented porous material at least in part defining a fluid chamber within the body; c) a pressure a sensor in fluid communication with the fluid chamber; and d) sidewall engaging means for engaging a portion of a sidewall of an earth opening to laterally urge the porous material into hydraulic communication with earthen soil of another portion of the opening sidewall. Methods of taking tensiometric measurements are also disclosed.

  5. Selenium in Oklahoma ground water and soil

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  6. A Program for Calculating Radiation Dose Rates.

    Energy Science and Technology Software Center (OSTI)

    1986-01-27

    Version 00 SMART calculates radiation dose rate at the center of the outer cask surface. It can be applied to determine the radiation dose rate on each cask if source conditions, characteristic function, and material conditions in the bottle regions are given. MANYCASK calculates radiation dose rate distribution in a space surrounded by many casks. If the dose rate on each cask surface can be measured, MANYCASK can be applied to predict dose spatial dosemore » rate distribution for any case of cask configuration.« less

  7. Chemical-Specific Representation of Air-Soil Exchange and Soil Penetration in Regional Multimedia Models

    SciTech Connect (OSTI)

    McKone, T.E.; Bennett, D.H.

    2002-08-01

    In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analytical solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.

  8. ESTIMATING FATE AND TRANSPORT OF MULTIPLE CONTAMINANTS IN THE VADOSE ZONE USING A MULTI-LAYERED SOIL COLUMN AND THREE-PHASE EQUILIBRIUM PARTITIONING MODEL

    SciTech Connect (OSTI)

    Rucker, G

    2007-05-01

    Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and contaminate drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminates. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: contaminant decay, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use.

  9. Estimating fate and transport of multiple contaminants in the vadose zone using a multi-layered soil column and three-phase equilibrium partitioning model

    SciTech Connect (OSTI)

    Rucker, Gregory G.

    2007-07-01

    Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and pollute drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminants. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: decay processes, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use. (authors)

  10. Apparatus for treatment of soils contaminated with organic pollutants

    DOE Patents [OSTI]

    Wickramanayake, Godage B.

    1993-01-01

    An apparatus for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil in a manner adapted to decompose the organic compounds; one embodiment of the apparatus comprises a means to supply ozone as a gas-ozone mixture, a stability means to treat ozone obtained from the supply and distribution means to apply the stabilized gas-ozone to soil. The soil may be treated in situ or may be removed for treatment and refilled.

  11. Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Penton, Christopher R.; St. Louis, Derek; Pham, Amanda; Cole, James R.; Wu, Liyou; Luo, Yiqi; Schuur, E. A. G.; Zhou, Jizhong; Tiedje, James M.

    2015-07-21

    Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming ismore » under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Lastly, prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations.« less

  12. Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils

    SciTech Connect (OSTI)

    Penton, Christopher R.; St. Louis, Derek; Pham, Amanda; Cole, James R.; Wu, Liyou; Luo, Yiqi; Schuur, E. A. G.; Zhou, Jizhong; Tiedje, James M.

    2015-07-21

    Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming is under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Lastly, prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations.

  13. Soil Management Plan For The Potable Water System Upgrades Project

    SciTech Connect (OSTI)

    Field, S. M.

    2007-04-01

    This plan describes and applies to the handling and management of soils excavated in support of the Y-12 Potable Water Systems Upgrades (PWSU) Project. The plan is specific to the PWSU Project and is intended as a working document that provides guidance consistent with the 'Soil Management Plan for the Oak Ridge Y-12 National Security Complex' (Y/SUB/92-28B99923C-Y05) and the 'Record of Decision for Phase II Interim Remedial Actions for Contaminated Soils and Scrapyard in Upper East Fork Popular Creek, Oak Ridge, Tennessee' (DOE/OR/01-2229&D2). The purpose of this plan is to prevent and/or limit the spread of contamination when moving soil within the Y-12 complex. The major feature of the soil management plan is the decision tree. The intent of the decision tree is to provide step-by-step guidance for the handling and management of soil from excavation of soil through final disposition. The decision tree provides a framework of decisions and actions to facilitate Y-12 or subcontractor decisions on the reuse of excavated soil on site and whether excavated soil can be reused on site or managed as waste. Soil characterization results from soil sampling in support of the project are also presented.

  14. The Unified North American Soil Map and Its Implication on the Soil Organic Carbon Stock in North America

    SciTech Connect (OSTI)

    Liu, Shishi; Wei, Yaxing; Post, Wilfred M; Cook, Robert B; Schaefer, Kevin; Thornton, Michele M

    2013-01-01

    The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art U.S. STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled with the Harmonized World Soil Database version 1.1 (HWSD1.1). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the top soil layer (0-30 cm) and the sub soil layer (30-100 cm) respectively, of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 347.70 Pg, of which 24.7% is under trees, 14.2% is under shrubs, and 1.3% is under grasses and 3.8% under crops. This UNASM data will provide a resource for use in land surface and terrestrial biogeochemistry modeling both for input of soil characteristics and for benchmarking model output.

  15. Predicting the Spectral Effects of Soils on Concentrating Photovoltaic Systems

    SciTech Connect (OSTI)

    Burton, Patrick D.; King, Bruce Hardison; Riley, Daniel M.

    2014-12-15

    The soiling losses on high concentrating photovoltaic (HCPV) systems may be influenced by the spectral properties of accumulated soil. We predicted the response of an isotype cell to changes in spectral content and reduction in transmission due to soiling using measured UV/vis transmittance through soil films. Artificial soil test blends deposited on glass coupons were used to supply the transmission data, which was then used to calculate the effect on model spectra. Moreover, the wavelength transparency of the test soil was varied by incorporating red and yellow mineral pigments into graded sand. The more spectrally responsive (yellow) soils were predicted to alter the current balance between the top and middle subcells throughout a range of air masses corresponding to daily and seasonal variation.

  16. Predicting the Spectral Effects of Soils on Concentrating Photovoltaic Systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burton, Patrick D.; King, Bruce Hardison; Riley, Daniel M.

    2014-12-15

    The soiling losses on high concentrating photovoltaic (HCPV) systems may be influenced by the spectral properties of accumulated soil. We predicted the response of an isotype cell to changes in spectral content and reduction in transmission due to soiling using measured UV/vis transmittance through soil films. Artificial soil test blends deposited on glass coupons were used to supply the transmission data, which was then used to calculate the effect on model spectra. Moreover, the wavelength transparency of the test soil was varied by incorporating red and yellow mineral pigments into graded sand. The more spectrally responsive (yellow) soils were predictedmore » to alter the current balance between the top and middle subcells throughout a range of air masses corresponding to daily and seasonal variation.« less

  17. Flow Partitioning in Fully Saturated Soil Aggregates

    SciTech Connect (OSTI)

    Yang, Xiaofan; Richmond, Marshall C.; Scheibe, Timothy D.; Perkins, William A.; Resat, Haluk

    2014-03-30

    Microbes play an important role in facilitating organic matter decomposition in soils, which is a major component of the global carbon cycle. Microbial dynamics are intimately coupled to environmental transport processes, which control access to labile organic matter and other nutrients that are needed for the growth and maintenance of microorganisms. Transport of soluble nutrients in the soil system is arguably most strongly impacted by preferential flow pathways in the soil. Since the physical structure of soils can be characterized as being formed from constituent micro aggregates which contain internal porosity, one pressing question is the partitioning of the flow among the inter-aggregate and intra-aggregate pores and how this may impact overall solute transport within heterogeneous soil structures. The answer to this question is particularly important in evaluating assumptions to be used in developing upscaled simulations based on highly-resolved mechanistic models. We constructed a number of diverse multi-aggregate structures with different packing ratios by stacking micro-aggregates containing internal pores and varying the size and shape of inter-aggregate pore spacing between them. We then performed pore-scale flow simulations using computational fluid dynamics methods to determine the flow patterns in these aggregate-of-aggregates structures and computed the partitioning of the flow through intra- and inter-aggregate pores as a function of the spacing between the aggregates. The results of these numerical experiments demonstrate that soluble nutrients are largely transported via flows through inter-aggregate pores. Although this result is consistent with intuition, we have also been able to quantify the relative flow capacity of the two domains under various conditions. For example, in our simulations, the flow capacity through the aggregates (intra-aggregate flow) was less than 2% of the total flow when the spacing between the aggregates was larger

  18. Time-resolved infrared reflectance studies of the dehydration-induced transformation of uranyl nitrate hexahydrate to the trihydrate form

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Edward J. Mausolf; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; Bruce K. McNamara

    2015-09-08

    Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s, the different phases were studied by infrared transmission spectroscopy but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparation and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm–1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm–1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the

  19. Studies on lanthanoid complexes of open chain multidentate ligands. VIII. Preparation and structural characterization of the undecacoordinate complex of neodymium nitrate with N,N{prime}-bis(4-methoxyphenyl)tetraglycollic diamide

    SciTech Connect (OSTI)

    Zhijian Liang; Xinmin Gan; Ning Tang; Minyu Tan; Kaibei Yu; Ganzu Tan

    1993-12-31

    The title compound [Nd(L)(NO{sub 3}){sub 3}]2CH{sub 3}CN was formed by reaction of neodymium nitrate with N,N{prime}-bis(4-methoxyphenyl)tetraglycollic diamide (L). The complex crystallizes in the monoclinic system, space group Cc with Z = 4, a = 21.305(6), b = 11.470(4), c = 14.436(3) {angstrom}, {beta} = 97.41(2), V = 3498(2) {angstrom}{sup 3}. The pentadentate organic ligand wraps around the neodymium ion which is also bonded to three bidentate nitrate groups, achieving uncommon undecacoordination with the following mean bond lengths: Nd-O(etheric), 2.703; Nd-O(carbonyl), 2.518; Nd-O(nitrate), 2.546 {angstrom}. 18 refs., 2 figs., 3 tabs.

  20. Isotopic Composition and Origin of Indigenous Natural Perchlorate and Co-Occurring Nitrate in the Southwestern United States

    SciTech Connect (OSTI)

    Jackson, Andrew; Bohlke, J. K.; Gu, Baohua; Hatzinger, Paul B.; Sturchio, N. C.

    2010-01-01

    Perchlorate (ClO4-) has been detected over an expansive area in groundwater and soils in the southwestern United States. Because of its wide distribution, much of the ClO4- is presumed to be from natural sources, primarily atmospheric deposition and accumulation. The objective of this study was to evaluate the range of the isotopic composition of natural ClO4- indigenous to the southwestern U.S. Stable isotope ratios of Cl and O were determined for ClO4- collected from numerous sources, including: groundwater from several locations in the southern high plains (SHP) of Texas and New Mexico and the middle Rio Grande Basin in New Mexico, vadose zone soil from the SHP, and surface NO3--rich caliches from four locations in Death Valley, CA. The data suggest that natural ClO4- in the southwestern U.S. has at least two distinctive isotope signatures that differ both from each other and from those previously reported for natural ClO4- from the Atacama Desert of Chile and all anthropogenic ClO4- sources tested to date. The ClO4- in four caliche samples collected in Death Valley has high 17O values (8.6 to 18.4 ), similar to those described for ClO4- from the Atacama, and suggesting atmospheric formation via reaction with ozone (O3). However, the Death Valley samples have 37Cl values (-3.1 to -0.8 ) and 18O values (+2.9 to +26.1 ), that are appreciably higher than Atacama perchlorate ( 37Cl; -14.3 to -10.2 and 18O; (-10.5 to -2.2 , respectively). In contrast, samples from 8 locations in West Texas and New Mexico were characterized by only a slight elevation in 17O (0.3 to 1.3 ), suggesting either that this material is not primarily generated with O3 as a reactant or that the ClO4- has been consistently altered post-deposition by one or more processes that caused isotopic exchange of O. The 37Cl values in the SHP perchlorate (+ 3.4 to + 5.1 ) were consistently higher than for the Atacama or Death Valley salts, while the 18O values (+ 0.5 to + 4.8 ) overlapped significantly

  1. NREL: Photovoltaics Research - Photovoltaic Energy Ratings Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation Photovoltaic Energy Ratings Methods Validation The Photovoltaic (PV) Engineering group at NREL validates energy ratings methods by standards committees to establish an energy rating methodology. We are evaluating techniques to account for the impact on PV performance from variations in the spectral distribution of solar radiation. Two types of methods were evaluated for correcting the short-circuit current of PV modules for variations in the solar spectrum under clear skies: (1)

  2. Sensitivity of screening-level toxicity tests using soils from a former petroleum refinery

    SciTech Connect (OSTI)

    Pauwels, S.; Bureau, J.; Roy, Y.; Allen, B.; Robidoux, P.Y.; Soucy, M.

    1995-12-31

    The authors tested five composite soil samples from a former refinery. The samples included a reference soil (Mineral Oil and Grease, MO and G < 40 ppm), thermally-treated soil, biotreated soil, and two untreated soils. They evaluated toxicity using the earthworm E. foetida, lettuce, cress, barley, Microtox, green algae, fathead minnow, and D. magna. The endpoints measured were lethality, seed germination, root elongation, growth, and bioluminescence. Toxicity, as measured by the number of positive responses, increased as follows: biotreated soil < untreated soil No. 1 < reference soil < thermally-treated soil and untreated soil No. 2. The biotreated soil generated only one positive response, whereas the thermally-treated soil and untreated soil No. 2 generated five positive responses. The most sensitive and discriminant terrestrial endpoint was lettuce root elongation which responded to untreated soil No. 1, thermally-treated soil, and reference soil. The least sensitive was barley seed germination for which no toxicity was detected. The most sensitive and discriminant aquatic endpoint was green algae growth which responded to untreated soil No. 1, thermally-treated soil, and reference soil. The least sensitive was D. magna for which no toxicity was detected. Overall, soil and aqueous extract toxicity was spotty and no consistent patterns emerged to differentiate the five soils. Biotreatment significantly reduced the effects of the contamination. Aqueous toxicity was measured in the reference soil, probably because of the presence of unknown dissolved compounds in the aqueous extract. Finally, clear differences in sensitivity existed among the test species.

  3. BPA proposes rate increase to bolster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proposed a 9.6 percent average wholesale power rate increase to compensate for reduced revenue expectations from surplus power sales and to continue funding needed investments in...

  4. CM-1-H Wholesale Power Rate Schedule

    Office of Energy Efficiency and Renewable Energy (EERE)

    Availability:This rate schedule shall be available to the South Mississippi Electric Power Association, Municipal Energy Agency of Mississippi, and Mississippi Delta Energy Agency (hereinafter...

  5. Photovoltaic Degradation Rates -- An Analytical Review: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Degradation Rates - An Analytical Review Dirk C. Jordan and Sarah R. Kurtz To ... Abstract As photovoltaic penetration of the power grid increases, accurate predictions of ...

  6. Method of controlling fusion reaction rates

    DOE Patents [OSTI]

    Kulsrud, R.M.; Furth, H.P.; Valeo, E.J.; Goldhaber, M.

    1983-05-09

    This invention relates to a method of controlling the reaction rates in a nuclear fusion reactor; and more particularly, to the use of polarized nuclear fuel.

  7. OpenEI Community - utility rate

    Open Energy Info (EERE)

    title"" >After several months of development and testing, the next generation web service for the utility rate database is finally here I encourage you to check out...

  8. Introducing the Attachments Energy Ratings Council

    Broader source: Energy.gov [DOE]

    In collaboration with the U.S. Department of Energy (DOE), the Window Covering Manufacturers Association (WCMA) has launched the Attachments Energy Ratings Council (AERC).

  9. Combined Retrieval, Microphysical Retrievals and Heating Rates...

    Office of Scientific and Technical Information (OSTI)

    Shortwave broadband total upwelling irradiance; Liquid water content; Liquid water path; Radiative heating rate Dataset File size NAView Dataset View Dataset DOI: 10.5439116949

  10. Photovoltaic Degradation Rates -- An Analytical Review

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2012-06-01

    As photovoltaic penetration of the power grid increases, accurate predictions of return on investment require accurate prediction of decreased power output over time. Degradation rates must be known in order to predict power delivery. This article reviews degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years. Nearly 2000 degradation rates, measured on individual modules or entire systems, have been assembled from the literature, showing a median value of 0.5%/year. The review consists of three parts: a brief historical outline, an analytical summary of degradation rates, and a detailed bibliography partitioned by technology.

  11. BPA issues final decision on oversupply rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is consistent with our multiple statutory responsibilities, is rooted in the basic principles of cost causation and fairness that underlie BPA's rate directives, and...

  12. Remediation of Soil at Nuclear Sites

    SciTech Connect (OSTI)

    Holmes, R.; Boardman, C.; Robbins, R; Fox, Robert Vincent; Mincher, Bruce Jay

    2000-03-01

    As the major nuclear waste and decontamination and decommissioning projects progress, one of the remaining problems that faces the nuclear industry is that of site remediation. The range of contamination levels and contaminants is wide and varied and there is likely to be a significant volume of soil contaminated with transuranics and hazardous organic materials that could qualify as mixed TRU waste. There are many technologies that offer the potential for remediating this waste but few that tackle all or most of the contaminants and even fewer that have been deployed with confidence. This paper outlines the progress made in proving the ability of Supercritical Fluid Extraction as a method of remediating soil, classified as mixed (TRU) transuranic waste.

  13. Remediation of soil at nuclear sites

    SciTech Connect (OSTI)

    R. Holmes; C. Boardman; R. Robbins; R. Fox; B. J. Mincher

    2000-02-28

    As the major nuclear waste and decontamination and decommissioning projects progress, one of the remaining problems that faces the nuclear industry is that of site remediation. The range of contamination levels and contaminants is wide and varied and there is likely to be a significant volume of soil contaminated with transuranics and hazardous organic materials that could qualify as mixed TRU waste. There are many technologies that offer the potential for remediating this waste but few that tackle all or most of the contaminants and even fewer that have been deployed with confidence. This paper outlines the progress made in proving the ability of Supercritical Fluid Extraction as a method of remediating soil, classified as mixed (TRU) transuranic waste

  14. A correlation between soil descriptions and {sup 226}Ra concentrations in Florida soils

    SciTech Connect (OSTI)

    Harrison, D.P.

    1992-12-31

    The soil radium content in Florida is highly variable. The range in radium concentrations, where the samples involved in this study are concerned, is from 0.1 pCi/g to 18.5 pCi/g. Low {sup 226}Ra concentrations (0.1 to 5 pCi/g) are evidenced in sands, moderate concentrations (5 to 11 pCi/g) are found in silt and gravel, and high {sup 226}Ra concentrations (>11 pCi/g) are found in soil horizons with shell, clay, and strata with phosphate. Strata containing phosphate yields a high concentration of {sup 226}Ra. The information obtained in this study, soil descriptions with their corresponding {sup 226}Ra concentrations, comes from geological cores drilled by geotechnical consultants with gamma spectrometry analysis performed by high resolution gamma spectroscopy. Concentration; of {sup 226}Ra generally increase with depth. These cores are usually terminated at 20 feet deep, with some cores being shallower than this due to hitting bedrock or encountering the water table. These frequency distributions give the core-logging geologist an approximate concentration of {sup 226}Ra based on the description of the soil. Since the correlation of {sup 226}Ra and soil descriptions can be used as a tool in assigning indoor radon potential, this study is of importance to land managers, contractors, developers, and regulating agencies who are attempting to place standards on tracts of land with {sup 226}Ra concentration used as a criterion.

  15. Plant stimulation of soil microbial community succession: how sequential expression mediates soil carbon stabilization and turnover

    SciTech Connect (OSTI)

    Firestone, Mary

    2015-03-31

    It is now understood that most plant C is utilized or transformed by soil microorganisms en route to stabilization. Hence the composition of microbial communities that mediate decomposition and transformation of root C is critical, as are the metabolic capabilities of these communities. The change in composition and function of the C-transforming microbial communities over time in effect defines the biological component of soil C stabilization. Our research was designed to test 2 general hypotheses; the first two hypotheses are discussed first; H1: Root-exudate interactions with soil microbial populations results in the expression of enzymatic capacities for macromolecular, complex carbon decomposition; and H2: Microbial communities surrounding roots undergo taxonomic succession linked to functional gene activities as roots grow, mature, and decompose in soil. Over the term of the project we made significant progress in 1) quantifying the temporal pattern of root interactions with the soil decomposing community and 2) characterizing the role of root exudates in mediating these interactions.

  16. Environmental proteomics reveals early microbial community responses to biostimulation at a uranium- and nitrate-contaminated site

    SciTech Connect (OSTI)

    Chourey, Karuna; Nissen, Silke; Vishnivetskaya, T.; Shah, Manesh B; Pffifner, Susan; Hettich, Robert {Bob} L; Loeffler, Frank E

    2013-01-01

    High performance mass spectrometry instrumentation coupled with improved protein extraction techniques enable metaproteomics to identify active members of soil and groundwater microbial communities. Metaproteomics workflows were applied to study the initial responses (i.e., 4 days post treatment) of the indigenous aquifer microbiota to biostimulation with emulsified vegetable oil (EVO) at a uranium-contaminated site. Members of the Betaproteobacteria (i.e., Dechloromonas, Ralstonia, Rhodoferax, Polaromonas, Delftia, Chromobacterium) and Firmicutes dominated the biostimulated aquifer community. Proteome characterization revealed distinct differences in protein expression between the microbial biomass collected from groundwater influenced by biostimulation and groundwater collected up-gradient of the EVO injection points. In particular, proteins involved in ammonium assimilation, EVO degradation, and polyhydroxybutyrate (PHB) granule formation were prominent following biostimulation. Interestingly, the atypical NosZ of a Dechloromonas sp. was highly expressed suggesting active nitrous oxide (N2O) respiration. c-type cytochromes were barely detected, as was citrate synthase, a biomarker for hexavalent uranium reduction activity, suggesting that metal reduction has not commenced 4 days post EVO delivery. Environmental metaproteomics identified microbial community responses to biostimulation and elucidated active pathways demonstrating the value of this technique for complementing nucleic acid-based approaches.

  17. Chemotactic selection of pollutant degrading soil bacteria

    DOE Patents [OSTI]

    Hazen, Terry C.

    1994-01-01

    A method for identifying soil microbial strains which may be bacterial degraders of pollutants comprising the steps of placing a concentration of a pollutant in a substantially closed container, placing the container in a sample of soil for a period of time ranging from one minute to several hours, retrieving the container, collecting the contents of the container, and microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to inoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  18. Method of controlling fusion reaction rates

    DOE Patents [OSTI]

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-03-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  19. Method of controlling fusion reaction rates

    DOE Patents [OSTI]

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-01-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  20. Revenue-stability-target rate making

    SciTech Connect (OSTI)

    Chernick, P.L.

    1983-02-17

    The commonly used rate-making approaches necessarily base themselves on assumptions, vital to their success, about future levels of utility aservice sales. But since sales are a function of random variables beyond the control of the utility as well as actions by the utility itself, the resulting rates fail to protect the utility's revenue stream and its realized rate of return. This article proposes an alternative approach which would decouple utility revenues from sales, thus stabilizing revenue streams with respect to sales fluctuations and rate design changes. Among the benefits would be a lower cost of capital for the utility, as well as decreased utility resistance to conservation by consumers and to efficient rate design.