Powered by Deep Web Technologies
Note: This page contains sample records for the topic "niger rwanda samoa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

CO2 Emissions - Rwanda  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Rwanda Graphics CO2 Emissions from Rwanda Data graphic Data CO2 Emissions from Rwanda image Per capita CO2 Emission Estimates for Rwanda...

2

American Samoa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

territory of the United States.1 Energy Incentives for American Samoa American Samoa - Net Metering (American Samoa) Utility Companies in American Samoa American Samoa Power...

3

American Samoa Profile  

U.S. Energy Information Administration (EIA)

American Samoa Quick Facts. American Samoa is nearly 100 percent dependent on imported fossil fuels, including diesel fuel for its electric power ...

4

American Samoa- Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

The American Samoa Power Authority (ASPA), a government-owned electric utility, is the only power provider in this U.S. territory of almost 70,000 people. ASPA's "Interconnection and Net Energy...

5

CO2 Emissions - Rwanda-Urundi  

NLE Websites -- All DOE Office Websites (Extended Search)

Rwanda-Urundi Graphics CO2 Emissions from Rwanda-Urundi Data graphic Data CO2 Emissions from Rwanda-Urundi image Per capita CO2 Emission Estimates for Rwanda-Urundi...

6

CO2 Emissions - Niger  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Niger Graphics CO2 Emissions from Niger Data graphic Data CO2 Emissions from Niger image Per capita CO2 Emission Estimates for Niger...

7

Geothermal energy for American Samoa  

SciTech Connect

The geothermal commercialization potential in American Samoa was investigated. With geothermal energy harnessed in American Samoa, a myriad of possibilities would arise. Existing residential and business consumers would benefit from reduced electricity costs. The tuna canneries, demanding about 76% of the island's process heat requirements, may be able to use process heat from a geothermal source. Potential new industries include health spas, aquaculture, wood products, large domestic and transhipment refrigerated warehouses, electric cars, ocean nodule processing, and a hydrogen economy. There are no territorial statutory laws of American Samoa claiming or reserving any special rights (including mineral rights) to the territorial government, or other interests adverse to a land owner, for subsurface content of real property. Technically, an investigation has revealed that American Samoa does possess a geological environment conducive to geothermal energy development. Further studies and test holes are warranted.

1980-03-01T23:59:59.000Z

8

Geothermal energy for American Samoa  

DOE Green Energy (OSTI)

The geothermal commercialization potential in American Samoa was investigated. With geothermal energy harnessed in American Samoa, a myriad of possibilities would arise. Existing residential and business consumers would benefit from reduced electricity costs. The tuna canneries, demanding about 76% of the island's process heat requirements, may be able to use process heat from a geothermal source. Potential new industries include health spas, aquaculture, wood products, large domestic and transhipment refrigerated warehouses, electric cars, ocean nodule processing, and a hydrogen economy. There are no territorial statutory laws of American Samoa claiming or reserving any special rights (including mineral rights) to the territorial government, or other interests adverse to a land owner, for subsurface content of real property. Technically, an investigation has revealed that American Samoa does possess a geological environment conducive to geothermal energy development. Further studies and test holes are warranted.

Not Available

1980-03-01T23:59:59.000Z

9

Samoa-Pilot Program for Climate Resilience (PPCR) | Open Energy Information  

Open Energy Info (EERE)

Samoa-Pilot Program for Climate Resilience (PPCR) Samoa-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Samoa-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Samoa UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

10

American Samoa Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Economy ; Population and Industry: American Samoa: United States: Period: Population : 0.1 million 310.2 million 2010 Energy Intensity

11

Rwanda-National Adaptation Programs of Action to Climate Change...  

Open Energy Info (EERE)

Rwanda-National Adaptation Programs of Action to Climate Change Jump to: navigation, search Name Rwanda-National Adaptation Programs of Action to Climate Change AgencyCompany...

12

American Samoa Power Authority | Open Energy Information  

Open Energy Info (EERE)

Samoa Power Authority Samoa Power Authority Jump to: navigation, search Name American Samoa Power Authority Place American Samoa Utility Id 40429 Utility Location Yes Ownership S NERC Location AS Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=American_Samoa_Power_Authority&oldid=408977"

13

American Samoa - U.S. Energy Information Administration (EIA ...  

U.S. Energy Information Administration (EIA)

American Samoa Government Environmental Protection; ... National Association of State Energy Officials ... National Renewable Energy Laboratory (NREL) ...

14

American Samoa Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Samoa Recovery Act State Memo American Samoa Recovery Act State Memo American Samoa Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in American Samoa are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar power and biofuels. Through these investments, American Samoa's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning American Samoa to play an important role in the new energy economy of the future. American Samoa Recovery Act State Memo More Documents & Publications AMERICAN SAMOA RECOVERY ACT SNAPSHOT Guam Recovery Act State Memo State Energy Efficient Appliance Rebate Program (SEEARP) American Recovery

15

Fossil-Fuel CO2 Emissions - American Samoa  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Regional Oceania American Samoa Graphics Fossil-Fuel CO2 Emissions from American Samoa Data graphic Data Total Fossil-Fuel CO2 Emissions from...

16

American Samoa - Territory Energy Profile Overview - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Northern Mariana Islands Puerto Rico US Virgin Islands: Overview; Data; Economy; Reserves & Supply; ... American Samoa Power Authority's largest solar facility, ...

17

American Samoa | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

American Samoa American Samoa Last updated on 2012-08-21 Commercial Residential Code Change Current Code None Statewide DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Current Code None Statewide DOE Determination 2009 IECC: No 2012 IECC: No Code Change Process Legislative Code Change Cycle None Timeline of Cycle None Adoption Process Standards are adopted through legislation. Background The Uniform Building Code is administered and enforced by the government public works department. Popular Links Status of State Energy Codes Status of State Energy Codes Select a state Alabama Alaska American Samoa Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Guam Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana

18

Recovery Act State Memos American Samoa  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American American Samoa For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ................................................................................................ 1 For total Recovery Act jobs numbers in American Samoa go to www.recovery.gov

19

Samoa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Samoa: Energy Resources Samoa: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-13.5833333,"lon":-172.3333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

20

American Samoa Initial Technical Assessment Report  

DOE Green Energy (OSTI)

This document is an initial energy assessment for American Samoa, the first of many steps in developing a comprehensive energy strategy. On March 1, 2010, Assistant Secretary of the Interior Tony Babauta invited governors and their staff from the Interior Insular Areas to meet with senior principals at the National Renewable Energy Laboratory (NREL). Meeting discussions focused on ways to improve energy efficiency and increase the deployment of renewable energy technologies in the U.S. Pacific Territories. In attendance were Governors Felix Camacho (Guam), Benigno Fitial (Commonwealth of the Northern Mariana Islands), and Togiola Tulafono, (American Samoa). This meeting brought together major stakeholders to learn and understand the importance of developing a comprehensive strategic plan for implementing energy efficiency measures and renewable energy technologies. For several decades, dependence on fossil fuels and the burden of high oil prices have been a major concern but never more at the forefront as today. With unstable oil prices, the volatility of fuel supply and the economic instability in American Samoa, energy issues are a high priority. In short, energy security is critical to American Samoa's future economic development and sustainability. Under an interagency agreement, funded by the Department of Interior's Office of Insular Affairs, NREL was tasked to deliver technical assistance to the islands of American Samoa. Technical assistance included conducting an initial technical assessment to define energy consumption and production data, establish an energy consumption baseline, and assist with the development of a strategic plan. The assessment and strategic plan will be used to assist with the transition to a cleaner energy economy. NREL provided an interdisciplinary team to cover each relevant technical area for the initial energy assessments. Experts in the following disciplines traveled to American Samoa for on-island site assessments: (1) Energy Efficiency and Building Technologies; (2) Integrated Wind-Diesel Generation; (3) Transmission and Distribution; (4) Solar Technologies; and (5) Biomass and Waste-to-Energy. In addition to these core disciplines, team capabilities also included expertise in program analysis, project financing, energy policy and energy planning. The intent of the technical assessment was to provide American Samoa with a baseline energy assessment. From the baseline, various scenarios and approaches for deploying cost effective energy efficiency and renewable energy technologies could be created to meet American Samoa's objectives. The information provided in this energy assessment will be used as input in the development of a draft strategic plan and the development of scenarios and strategies for deploying cost-effective energy efficiency and renewable products.

Busche, S.; Conrad, M.; Funk, K.; Kandt, A.; McNutt, P.

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "niger rwanda samoa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

American Samoa Initial Technical Assessment Report  

SciTech Connect

This document is an initial energy assessment for American Samoa, the first of many steps in developing a comprehensive energy strategy. On March 1, 2010, Assistant Secretary of the Interior Tony Babauta invited governors and their staff from the Interior Insular Areas to meet with senior principals at the National Renewable Energy Laboratory (NREL). Meeting discussions focused on ways to improve energy efficiency and increase the deployment of renewable energy technologies in the U.S. Pacific Territories. In attendance were Governors Felix Camacho (Guam), Benigno Fitial (Commonwealth of the Northern Mariana Islands), and Togiola Tulafono, (American Samoa). This meeting brought together major stakeholders to learn and understand the importance of developing a comprehensive strategic plan for implementing energy efficiency measures and renewable energy technologies. For several decades, dependence on fossil fuels and the burden of high oil prices have been a major concern but never more at the forefront as today. With unstable oil prices, the volatility of fuel supply and the economic instability in American Samoa, energy issues are a high priority. In short, energy security is critical to American Samoa's future economic development and sustainability. Under an interagency agreement, funded by the Department of Interior's Office of Insular Affairs, NREL was tasked to deliver technical assistance to the islands of American Samoa. Technical assistance included conducting an initial technical assessment to define energy consumption and production data, establish an energy consumption baseline, and assist with the development of a strategic plan. The assessment and strategic plan will be used to assist with the transition to a cleaner energy economy. NREL provided an interdisciplinary team to cover each relevant technical area for the initial energy assessments. Experts in the following disciplines traveled to American Samoa for on-island site assessments: (1) Energy Efficiency and Building Technologies; (2) Integrated Wind-Diesel Generation; (3) Transmission and Distribution; (4) Solar Technologies; and (5) Biomass and Waste-to-Energy. In addition to these core disciplines, team capabilities also included expertise in program analysis, project financing, energy policy and energy planning. The intent of the technical assessment was to provide American Samoa with a baseline energy assessment. From the baseline, various scenarios and approaches for deploying cost effective energy efficiency and renewable energy technologies could be created to meet American Samoa's objectives. The information provided in this energy assessment will be used as input in the development of a draft strategic plan and the development of scenarios and strategies for deploying cost-effective energy efficiency and renewable products.

Busche, S.; Conrad, M.; Funk, K.; Kandt, A.; McNutt, P.

2011-09-01T23:59:59.000Z

22

Rwanda-Developing a Strategic Climate Change Framework | Open Energy  

Open Energy Info (EERE)

Rwanda-Developing a Strategic Climate Change Framework Rwanda-Developing a Strategic Climate Change Framework Jump to: navigation, search Name CDKN-Rwanda-Developing a Strategic Climate Change Framework and Design of a Climate Change and Environmental Fund Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development Partner REMA, Government of Rwanda Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, Pathways analysis Website http://cdkn.org/project/a-stra Program Start 2010 Program End 2012 Country Rwanda UN Region Middle Africa References CDKN-Rwanda-Developing a Strategic Climate Change Framework[1] Rwanda's ambitious Green Growth and Climate Resilience Strategy was launched at a UNFCCC side event at CoP17 in Durban. Rwanda joins Korea,

23

Rwanda-Developing a Strategic Climate Change Framework | Open Energy  

Open Energy Info (EERE)

Rwanda-Developing a Strategic Climate Change Framework Rwanda-Developing a Strategic Climate Change Framework (Redirected from CDKN-Rwanda-Developing a Strategic Climate Change Framework) Jump to: navigation, search Name CDKN-Rwanda-Developing a Strategic Climate Change Framework and Design of a Climate Change and Environmental Fund Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development Partner REMA, Government of Rwanda Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, Pathways analysis Website http://cdkn.org/project/a-stra Program Start 2010 Program End 2012 Country Rwanda UN Region Middle Africa References CDKN-Rwanda-Developing a Strategic Climate Change Framework[1] Rwanda's ambitious Green Growth and Climate Resilience Strategy was

24

American Samoa's Rebate Program Brings ENERGY STAR to Island | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Samoa's Rebate Program Brings ENERGY STAR to Island American Samoa's Rebate Program Brings ENERGY STAR to Island American Samoa's Rebate Program Brings ENERGY STAR to Island August 13, 2010 - 12:00pm Addthis American Samoa is located in the South Pacific Ocean, with temperature around 80 degrees year round. | Photo courtesy of Maleleg American Samoa is located in the South Pacific Ocean, with temperature around 80 degrees year round. | Photo courtesy of Maleleg Lindsay Gsell American Samoa, a small island of 66,000 residents in the Pacific Ocean, is a warm 80 degrees almost year round, but during the summer, the humidity can make it feel downright hot. Because of its remote location, appliances and electricity are costly - and until recently, home air conditioning units were fairly rare. Now thanks to a $100,000 grant through the American Recovery and

25

American Samoa - Territory Energy Profile Data - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, ... CO2 Emissions From Consumption of Coal: American Samoa:

26

American Samoa - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Country Analysis Note. American Samoa is nearly 100 percent dependent on imported fossil fuels, including diesel fuel for its electric power generation.

27

American Samoa - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Russia; Saudi Arabia; Singapore; ... American Samoa is nearly 100 percent dependent on imported fossil fuels, including diesel fuel for its electric power generation.

28

Rwanda: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rwanda: Energy Resources Rwanda: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-2,"lon":30,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

American Samoa - Search - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

American Samoa American Samoa Profile American Samoa American Samoa Profile Territory Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Reserves & Supply Imports & Exports Distribution & Marketing

30

Rwanda - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Africa World. Rank . Rwanda: Production: 0.0000 , 0.0000 , 0.0000 , 0.0000 , 0.0000 , 0.0000 , 0.0000 ...

31

Niger-Pilot Program for Climate Resilience (PPCR) | Open Energy Information  

Open Energy Info (EERE)

Niger-Pilot Program for Climate Resilience (PPCR) Niger-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Niger-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Niger UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

32

Rwanda-UNEP Green Economy Advisory Services | Open Energy Information  

Open Energy Info (EERE)

Rwanda-UNEP Green Economy Advisory Services Rwanda-UNEP Green Economy Advisory Services Jump to: navigation, search Logo: Rwanda-UNEP Green Economy Advisory Services Name Rwanda-UNEP Green Economy Advisory Services Agency/Company /Organization United Nations Environment Programme (UNEP) Partner German Agency for International Cooperation (GIZ), Global Green Growth Knowledge Platform (GGKP), Green Jobs Initiative, United Nations Development Programme (UNDP), United Nations Department of Economic and Social Affairs (UNDESA) Sector Climate, Energy, Land, Water Focus Area People and Policy Topics Co-benefits assessment, Low emission development planning, -LEDS Country Rwanda Eastern Africa References UNEP Green Economy Advisory Services[1] Overview "UNEP Green Economy Advisory Services consist of policy advice, technical

33

Rwanda-Climate Technology Initiative Private Financing Advisory Network  

Open Energy Info (EERE)

Rwanda-Climate Technology Initiative Private Financing Advisory Network Rwanda-Climate Technology Initiative Private Financing Advisory Network (CTI PFAN) Jump to: navigation, search Logo: Rwanda-Climate Technology Initiative Private Financing Advisory Network (CTI PFAN) Name Rwanda-Climate Technology Initiative Private Financing Advisory Network (CTI PFAN) Agency/Company /Organization Climate Technology Initiative (CTI), United States Agency for International Development (USAID), Renewable Energy and Energy Efficiency Partnership (REEEP) Partner International Centre for Environmental Technology Transfer Sector Energy Focus Area Agriculture, Biomass, - Biofuels, - Landfill Gas, - Waste to Energy, Buildings, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Solar, Transportation, Water Power, Wind Topics Adaptation, Co-benefits assessment, - Energy Access, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, Implementation, Low emission development planning, -NAMA, -TNA

34

Genocide, Nuptiality, and Fertility in Rwanda and Bosnia-Herzegovina.  

E-Print Network (OSTI)

??How does exposure to genocide affect nuptiality and fertility among the surviving population? Genocides in Rwanda and in Bosnia-Herzegovina in the early 1990s caused high… (more)

Staveteig, Sarah Elizabeth

2011-01-01T23:59:59.000Z

35

Renewable energy plan of action for American Samoa  

Science Conference Proceedings (OSTI)

American Samoa has no indigenous fossil fuels and is almost totally dependent for energy on seaborne petroleum. However, the seven Pacific Islands located at 14 degrees south latitude that constitute American Samoa have a wide variety of renewable resources with the potential for substituting for imported oil. Included as possible renewable energy conversion technologies are solar thermal, photovoltaics, wind, geothermal, ocean thermal, and waste-to-energy recovery. This report evaluates the potential of each of these renewable energy alternatives and establishes recommended priorities for their development in American Samoa. Rough cost estimates are also included. Although renewable energy planning is highly site specific, information in this report should find some general application to other tropical insular areas.

Shupe, J.W. (USDOE San Francisco Operations Office, Honolulu, HI (USA). Pacific Site Office); Stevens, J.W. (Sandia National Labs., Albuquerque, NM (USA))

1990-11-01T23:59:59.000Z

36

Proceedings of the American Samoa Coral Reef Fishery Workshop  

E-Print Network (OSTI)

an inverse relationship between island populations and fish biomass for the outer reef slope habitat. In comparison to the other islands of American Samoa, Tutuila revealed the lowest total fish biomass, the lowest apex predator biomass, and the lowest snapper, grouper and soliderfish biomass. Demography of a target

37

Anaerobic digestion as a waste disposal option for American Samoa  

DOE Green Energy (OSTI)

Tuna sludge and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal problem as well as an emerging opportunity for use in renewable fuel production. This research project focuses on the biological conversion of the organic fraction of these wastes to useful products including methane and fertilizer-grade residue through anaerobic high solids digestion. In this preliminary study, the anaerobic bioconversion of tuna sludge with MSW appears promising.

Rivard, C

1993-01-01T23:59:59.000Z

38

The social relations of e-government diffusion in developing countries: the case of Rwanda  

Science Conference Proceedings (OSTI)

Rwanda has undergone a rapid turnaround from one of the most technologically deficient countries only a decade ago to a country where legislative business is conducted online and wireless access to the Internet is available anywhere in the country. This ... Keywords: Rwanda, e-government diffusion, norms, social theory, sub-Saharan Africa

Wagaki Mwangi

2006-05-01T23:59:59.000Z

39

Analysis and design of household rainwater catchment systems for rural Rwanda  

E-Print Network (OSTI)

The Dian Fossey Gorilla Fund International (DFGFI) contacted MIT in September 2006 for technical assistance to analyze the water-supply potential within the Bisate Sector, Musanze District, Rwanda. The present study focuses ...

Cresti, Daria

2007-01-01T23:59:59.000Z

40

Rwanda-Project to Develop a National Strategy on Climate Change and Low  

Open Energy Info (EERE)

Rwanda-Project to Develop a National Strategy on Climate Change and Low Rwanda-Project to Develop a National Strategy on Climate Change and Low Carbon Development Jump to: navigation, search Name SSEE-Project to Develop a Rwandan National Strategy on Climate Change and Low Carbon Development Agency/Company /Organization United Kingdom Department for International Development, United Nations Development Programme (UNDP) Partner Smith School for Enterprise and Environment, University of Oxford Sector Climate, Energy, Land Topics Implementation, Low emission development planning, Policies/deployment programs Website http://www.smithschool.ox.ac.u Program Start 2010 Country Rwanda UN Region Middle Africa References SSEE-Project to Develop a Rwandan National Strategy on Climate Change and Low Carbon Development[1] SSEE-Project to Develop a Rwandan National Strategy on Climate Change and Low Carbon Development Screenshot

Note: This page contains sample records for the topic "niger rwanda samoa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Niger: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Niger: Energy Resources Niger: Energy Resources (Redirected from ECOWAS Gateway-Niger) Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":16,"lon":8,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

42

AMF Deployment, Niamey, Niger, West Africa  

NLE Websites -- All DOE Office Websites (Extended Search)

West Africa West Africa Niamey Deployment AMF Home Niamey Home Data Plots and Baseline Instruments RADAGAST Website Rainfall Record (PDF) Publications List, (PDF) Experiment Planning RADAGAST Proposal Outreach Fact Sheets RADAGAST (PDF) Annual Climate Cycle in Niger, Africa (PDF) Posters AMF Poster, French Version We're Going to Sample the Sky in Africa! News Campaign Images AMMA International News AMF Deployment, Niamey, Niger, West Africa In 2006, the ARM Mobile Facility is collecting cloud and atmospheric property measurements from a location near the airport in Niamey, Niger, West Africa. Main Site: 13° 28' 39.15" N, 2° 10' 27.62" E Altitude: 205 meters Ancillary Site: 13° 31' 19.14" N, 2° 37' 56.46" E Altitude: 228.29 meters In January 2006, the second deployment of the ARM Mobile Facility (AMF)

43

Niger: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Niger: Energy Resources Niger: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":16,"lon":8,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Rwanda-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rwanda-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Jump to: navigation, search Name Rwanda-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Agency/Company /Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy, Land, Water Focus Area Non-renewable Energy, Agriculture, Buildings, Economic Development, Energy Efficiency, Forestry, Greenhouse Gas, Grid Assessment and Integration, Industry, Land Use, Offsets and Certificates, Transportation

45

PRESSURE PREDICTION AND UNDERBALANCED DRILLING IN THE DEEPWATER NIGER DELTA.  

E-Print Network (OSTI)

??The mechanisms that cause overpressure can be broadly classified into two categories: loading and unloading. This study looks at eight wells from the deepwater Niger… (more)

GOODWYNE, OLAR,KAMAL

2012-01-01T23:59:59.000Z

46

Niger - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Africa World. Rank . Niger: Production: 0.0220 , 0.0331 , 0.0496 , 0.1433 , 0.1653 , 0.1664 , 0.1367 ...

47

Gourmet and Health-Promoting Specialty OilsChapter 9 Niger Seed Oil  

Science Conference Proceedings (OSTI)

Gourmet and Health-Promoting Specialty Oils Chapter 9 Niger Seed Oil Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press Downloadable pdf of Chapter 9 Niger Seed Oil from the b

48

Production of extremophilic bacterial cellulase enzymes in aspergillus niger.  

SciTech Connect

Enzymes can be used to catalyze a myriad of chemical reactions and are a cornerstone in the biotechnology industry. Enzymes have a wide range of uses, ranging from medicine with the production of pharmaceuticals to energy were they are applied to biofuel production. However, it is difficult to produce large quantities of enzymes, especially if they are non-native to the production host. Fortunately, filamentous fungi, such as Aspergillus niger, are broadly used in industry and show great potential for use a heterologous enzyme production hosts. Here, we present work outlining an effort to engineer A. niger to produce thermophilic bacterial cellulases relevant to lignocellulosic biofuel production.

Gladden, John Michael

2013-09-01T23:59:59.000Z

49

Mobile Facility Records Annual Climate Cycle in Niger, Africa  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Records Annual Facility Records Annual Climate Cycle in Niger, Africa Because dust can block incoming solar energy, and because solar energy drives weather and climate, scientists around the world are looking for ways to better understand these natural phenomena. In 2006, scientists sponsored by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility conducted a year-long field campaign in Niamey, Niger, to provide key information for the African Monsoon Multidisciplinary Analyses, or AMMA, project. During the 12-month experiment at the airport in Niamey, researchers used a portable atmospheric laboratory, airplanes, and satellites to collect information about clouds, aerosols, and solar and terrestrial energy in the skies above the site. Measurements obtained

50

Oil enclave economy and sexual liaisons in Nigeria's Niger Delta region.  

E-Print Network (OSTI)

??This thesis examines the intersection of oil enclave economy and the phenomenon of sexual liaisons in Nigeria’s Niger Delta region. The particular focus of this… (more)

Gandu, Yohanna Kagoro

2011-01-01T23:59:59.000Z

51

www.eia.gov  

U.S. Energy Information Administration (EIA)

Kenya Lesotho Liberia Libya Madagascar Malawi Mali Mauritania Mauritius Morocco Mozambique Namibia Niger Nigeria Reunion Rwanda Saint Helena Sao Tome and Principe ...

52

Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88  

E-Print Network (OSTI)

expression  profiles.   Mol.   Genet.   Genomics  279: Comparative genomics of citric-acid producing Aspergillus2006.  Aspergillus niger genomics: past, present and into 

Grigoriev, Igor V.

2011-01-01T23:59:59.000Z

53

An Economic Analysis of Research and Technology Transfer of Millet, Sorghum, and Cowpeas in Niger  

E-Print Network (OSTI)

This paper has primarily been funded by the Food Security in Africa Cooperative Agreement (DAN-1190-A-00-4092-00) between Michigan State University and the United States Agency for International Development and has received supplementary funding from the Government of Belgium. The work was carried out by the International Service for National Agricultural Research and the Institut National de la Recherche Agronomique du Niger under contracts with Michigan State University with the supervision of Philip Pardey and Eric Crawford. * Research Policies and System Strategies Program, ISNAR ** Dpartement de Recherches en Economie Rurale, INRAN ii

Cowpeas In Niger; Valentina Mazzucato; Samba Ly; Carl Liedholm; Michael T. Weber

1994-01-01T23:59:59.000Z

54

Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-?-pyrone.  

SciTech Connect

The genome sequencing of the fungus Aspergillus niger, an industrial workhorse, uncovered a large cache of genes encoding enzymes thought to be involved in the production of secondary metabolites yet to be identified. Identification and structural characterization of many of these predicted secondary metabolites are hampered by their low concentration relative to the known A. niger metabolites such as the naphtho-?-pyrone family of polyketides. We deleted a nonreducing PKS gene in A. niger strain ATCC 11414, a daughter strain of A. niger ATCC strain 1015 whose genome was sequenced by the DOE Joint Genome Institute. This PKS encoding gene is a predicted ortholog of alb1 from Aspergillus fumigatus which is responsible for production of YWA1, a precursor of fungal DHN melanin. Our results show that the A. niger alb1 PKS is responsible for the production of the polyketide precursor for DHN melanin biosynthesis. Deletion of alb1 elimnates the production of major metabolites, naphtho-?-pyrones. The generation of an A. niger strain devoid of naphtho-?-pyrones will greatly facilitate the elucidation of cryptic biosynthetic pathways in this organism.

Chiang, Yi Ming; Meyer, Kristen M.; Praseuth , Michael; Baker, Scott E.; Bruno, Kenneth S.; Wang, Clay C.

2010-12-06T23:59:59.000Z

55

On farm yield and water use response of pearl millet to different management practices in Niger  

E-Print Network (OSTI)

Pearl millet [Pennisetum glaucum (L.) R.Br.] production under subsistence farmer management on the sandy soils of southwestern Niger is faced with many challenges, including declining soil fertility, highly variable and scarce rainfall and poor resource base of the peasant farmers in the region. This study was conducted to evaluate the potential of management to increase yield and water use efficiency of pearl millet grown on two farmers’ fields in Niger during two growing seasons, 2003 and 2004. The management practices tested were: 1) Five manure treatments (no manure, transported manure, current corralling, a year after corralling, and two years after corralling); 2) The microdose technology (20 kg di-ammonium phosphate ha-1, and 20 kg di-ammonium phosphate ha-1 + 10 kg urea ha-1); and lastly, 3) Three different pearl millet cultivars (Heini Kirei, Zatib, and ICMV IS 89305). In both growing seasons, manure had the greatest effect on the yield and water use of pearl millet at both sites. In 2003 grain yields were 389 kg ha-1 in the NM treatment and 1495 kg ha-1 in the C0 treatment at Banizoumbou whereas at Bagoua, the NM treatment had 423 kg ha-1 vs. 995 kg ha-1 in the C0 treatment. In 2004, the NM treatment at Banizoumbou had 123 kg ha-1 grain yield and the C0 treatment had 957 kg ha-1 whereas at Bagoua the NM treatment had 506 kg ha-1 vs. 1152 kg ha-1 in the C0 treatment. Residual effects of manure led to grain yields in the C1 and C2 treatments which were more than twice as high as in the NM treatment. The improved cultivars were generally superior for grain yields, whereas the local landrace was superior for straw yields at both sites. Root zone drainage was decreased by between 50 to 100 mm, and water use increased by the same amount in the current corrals at the two sites during the two growing seasons. Increased water use under corralling and presence of residual profile moisture at the end of each of the two seasons suggested that water did not limit pearl millet production at the two sites.

Manyame, Comfort

2006-12-01T23:59:59.000Z

56

Overview of observations from the RADAGAST experiment in Niamey, Niger: Meteorology and thermodynamic variables  

SciTech Connect

An overview is presented of the meteorological and thermodynamic data obtained during the RADAGAST experiment in Niamey, Niger, in 2006. RADAGAST (Radiative Atmospheric Divergence using ARM Mobile Facility, GERB data and AMMA STations), combined data from the Atmospheric Radiation Measurement (ARM) Program Mobile Facility (AMF) at Niamey airport with broadband satellite data from the Geostationary Earth Radiation Budget (GERB) instrument on Meteosat-8. The experiment was conducted in collaboration with the African Monsoon Multidisciplinary Analysis (AMMA) project. The focus in this paper is on the variations through the year of key surface and atmospheric variables. The seasonal advance and retreat of the InterTropical Front (ITF) and the seasonal changes in near-surface variables and precipitation in 2006 are discussed and contrasted with the behavior in 2005 and with long-term averages. Observations from the AMF at Niamey airport are used to document the evolution of near-surface variables and of the atmosphere above the site. There are large seasonal changes in these variables, from the arid and dusty conditions typical of the dry season to the much moister and more cloudy wet season accompanying the arrival and intensification of the West African monsoon. Back trajectories show the origin of the air sampled at Niamey and profiles for selected case studies from rawinsondes and from a MicroPulse Lidar at the AMF site reveal details of typical atmospheric structures. Radiative fluxes and divergences are discussed in the second part of this overview and the subsequent papers in this special section explore other aspects of the measurements and of the associated modeling.

Slingo, A.; Bharmal, N.; Robinson, G. J.; Settle, Jeff; Allan, R. P.; White, H. E.; Lamb, Peter J.; Lele, M.; Turner, David D.; McFarlane, Sally A.; Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Miller, Mark

2008-10-17T23:59:59.000Z

57

International RADAGAST Experiment in Niamey, Niger: Changes and Drivers of Atmospheric Radiation Balance  

Science Conference Proceedings (OSTI)

The Sahara desert is notorious as a source of massive dust storms. This dust dramatically influences the Earth-atmosphere energy budget through reflecting and absorbing the incoming sunlight. However, this budget is poorly understood, and in particular, we lack quantitative understanding of how the diurnal and seasonal variation of meteorological variables and aerosol properties influence the propagation of solar irradiance through the desert atmosphere. To improve our understanding of these influences, coincident and collocated observations of fluxes, measured from both space and the surface, are highly desirable. Recently, the unique capabilities of the African Monsoon Multidisciplinary Analysis (AMMA) Experiment, the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF), the Geostationary Earth Radiation Budget (GERB) instrument, and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) were combined effectively as part of a large international project: the Radiative Atmospheric Divergence using AMF, GERB data and AMMA Stations (RADAGAST), which took place in Niamey, Niger, in 2006. The RADAGAST objectives, instrumentation, and scientific background are presented in [1]. Initial results from RADAGAST documented the strong radiative impact of a major Saharan dust storm on the Earth’s radiation budget [2]. A special issue of the Journal of Geophysical Research will include a collection of papers with the more complete results from RADAGAST (e.g., [1,3], and references therein). In particular, a year-long time series from RADAGAST are used to investigate (i) the factors that control the radiative fluxes and the divergence of radiation across the atmosphere [3-5], (ii) seasonal changes in the surface energy balance and associated variations in atmospheric constituents (water vapor, clouds, aerosols) [6], and (iii) sensitivity of microphysical, chemical and optical properties of aerosols to their sources and the atmospheric conditions [7]. Here we show retrievals of the aerosol properties from spectrally resolved solar measurements, the simulated and observed radiative fluxes at the surface, and outline factors that control the magnitude and variability of aerosol and radiative properties [8].

Kassianov, Evgueni I.; McFarlane, Sally A.; Barnard, James C.; Flynn, Connor J.; Slingo, A.; Bharmal, N.; Robinson, G. J.; Turner, David D.; Miller, Mark; Ackerman, Thomas P.; Miller, R.

2009-03-11T23:59:59.000Z

58

Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger  

SciTech Connect

This study presents ground-based remote sensing measurements of aerosol optical properties and corresponding shortwave surface radiative effect calculations for the deployment of the Atmospheric Radiation Measurement (ARM) Program’s Mobile Facility (AMF) to Niamey, Niger during 2006. Aerosol optical properties including aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry parameter (AP) were derived from multi-filter rotating shadowband radiometer (MFRSR) measurements during the two dry seasons (Jan-Apr and Oct-Dec) at Niamey. The vertical distribution of aerosol extinction was derived from the collocated micropulse lidar (MPL). The aerosol optical properties and vertical distribution of extinction varied significantly throughout the year, with higher AOD, lower SSA, and deeper aerosol layers during the Jan-Apr time period, when biomass burning aerosol layers were more frequent. Using the retrieved aerosol properties and vertical extinction profiles, broadband shortwave surface fluxes and atmospheric heating rate profiles were calculated. Corresponding calculations with no aerosol were used to estimate the aerosol direct radiative effect at the surface. Comparison of the calculated surface fluxes to observed fluxes for non-cloudy periods indicated that the remote sensing retrievals provided a reasonable estimation of the optical properties, with mean differences between calculated and observed fluxes of less than 5 W/m2 and RMS differences less than 25 W/m2. Sensitivity tests for a particular case study showed that the observed fluxes could be matched with variations of < 10% in the inputs to the radiative transfer model. We estimated the daily-averaged aerosol radiative effect at the surface by subtracting the clear calculations from the aerosol calculations. The average daily SW aerosol radiative effect over the study period was -27 W/m2, which is comparable to values estimated from satellite data and from climate models with sophisticated dust parameterizations.

McFarlane, Sally A.; Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Ackerman, Thomas P.

2009-03-18T23:59:59.000Z

59

Overview of observations from the RADAGAST experiment in Niamey, Niger. Part 2: Radiative fluxes and divergences  

SciTech Connect

Broadband shortwave and longwave radiative fluxes observed both at the surface and from space during the RADAGAST experiment in Niamey, Niger in 2006 are presented. The surface fluxes were measured by the Atmospheric Radiation Measurement (ARM) Program Mobile Facility (AMF) at Niamey airport, while the fluxes at the top of the atmosphere (TOA) are from the Geostationary Earth Radiation Budget (GERB) instrument on the Meteosat-8 satellite. The data are analyzed as daily averages, in order to minimise sampling differences between the surface and top of atmosphere instruments, while retaining the synoptic and seasonal changes that are the main focus of this study. A cloud mask is used to identify days with cloud from those with predominantly clear skies. The influence of temperature, water vapor, aerosols and clouds is investigated. Aerosols are ubiquitous throughout the year and have a significant impact on both the shortwave and longwave fluxes. The large and systematic seasonal changes in temperature and column integrated water vapor (CWV) through the dry and wet seasons are found to exert strong influences on the longwave fluxes. These influences are often in opposition to each other, because the highest temperatures occur at the end of the dry season when the CWV is lowest, while in the wet season the lowest temperatures are associated with the highest values of CWV. Apart from aerosols, the shortwave fluxes are also affected by clouds and by the seasonal changes in CWV. The fluxes are combined to provide estimates of the divergence of radiation across the atmosphere throughout 2006. The longwave divergence is remarkably constant through the year, because of a compensation between the seasonal variations in the outgoing longwave radiation (OLR) and surface net longwave radiation. A simple model of the greenhouse effect is used to interpret this result in terms of the dependence of the normalized greenhouse effect at the TOA and of the effective emissivity of the atmosphere at the surface on the CWV. It is shown that, as the CWV increases, the atmosphere loses longwave energy to the surface with about the same increasing efficiency with which it traps the OLR, thus keeping the atmospheric longwave divergence roughly constant. The shortwave divergence is mainly determined by the CWV and aerosol loadings and the effect of clouds is much smaller than on the component fluxes.

Slingo, A.; White, H. E.; Bharmal, N.; Robinson, G. J.

2009-02-25T23:59:59.000Z

60

American Samoa - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

residential and small commercial customers with wind or solar-energy systems up to 30 kilowatts (kW) in capacity, although ASPA may extend the policy to larger systems for larger...

Note: This page contains sample records for the topic "niger rwanda samoa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

American Samoa Initial Technical Assessment Report  

NLE Websites -- All DOE Office Websites (Extended Search)

technologies. For several decades, dependence on fossil fuels and the burden of high oil prices have been a major concern but never more at the forefront as today. With unstable...

62

Newsletter Signup Form  

NLE Websites -- All DOE Office Websites (Extended Search)

EETD NEWSLETTER - MANAGE SUBSCRIPTIONS EETD NEWSLETTER - MANAGE SUBSCRIPTIONS (red fields are required) Manage subscriptions: Subscribe Unsubscribe Name E-Mail Affiliation Address Address (line 2) City State/Province Zip/Postal Code Country (please select a country) none Afghanistan Albania Algeria American Samoa Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia Bosnia and Herzegowina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d'Ivoire Croatia (Hrvatska) Cuba Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic East Timor Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France France, Metropolitan French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guam Guatemala Guinea Guinea-Bissau Guyana Haiti Heard and Mc Donald Islands Holy See (Vatican City State) Honduras Hong Kong Hungary Iceland India Indonesia Iran (Islamic Republic of) Iraq Ireland Israel Italy Jamaica Japan Jordan Kazakhstan Kenya Kiribati Korea, Democratic People's Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People's Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macau Macedonia, The Former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Marshall Islands Martinique Mauritania Mauritius Mayotte Mexico Micronesia, Federated States of Moldova, Republic of Monaco Mongolia Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands Netherlands Antilles New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Northern Mariana Islands Norway Oman Pakistan Palau Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Puerto Rico Qatar Reunion Romania Russian Federation Rwanda Saint Kitts and Nevis Saint LUCIA Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Seychelles Sierra Leone Singapore Slovakia (Slovak Republic) Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands Spain Sri Lanka St. Helena St. Pierre and Miquelon Sudan Suriname Svalbard and Jan Mayen Islands Swaziland Sweden Switzerland Syrian Arab Republic Taiwan, Province of China Tajikistan Tanzania, United Republic of Thailand Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States United States Minor Outlying Islands Uruguay Uzbekistan Vanuatu Venezuela Viet Nam Virgin Islands (British) Virgin Islands (U.S.) Wallis and Futuna Islands Western Sahara Yemen Yugoslavia Zambia Zimbabwe

63

CRC handbook of agricultural energy potential of developing countries  

Science Conference Proceedings (OSTI)

The contents of this book are: Introduction; Kenya; Korea (Republic of); Lesotho; Liberia; Malagasy; Malawi; Mali; Mauritania; Mexico, Mozambique, Nepal; Nicaragua; Niger; Nigeria; Pakistan; Panama; Paraguay; Peru; Philippines; Rwanda; Senegal; Sierra Leone; Somalia; Sri Lanka; Sudana; Surinam; Swaziland; Tanzania; Thailand; Togo; Uganda; Uruguay; Venezuela; Zaire; Zambia; Appendix I. Conventional and Energetic Yields; Appendix II, Phytomass Files; and References.

Duke, J.A.

1986-01-01T23:59:59.000Z

64

High resolution sequence stratigraphic and reservoir characterization studies of D-07, D-08 and E-01 sands, Block 2 Meren field, offshore Niger Delta  

E-Print Network (OSTI)

Meren field, located offshore Niger Delta, is one of the most prolific oil-producing fields in the Niger Delta. The upper Miocene D-07, D-08 and E-01 oil sands comprise a series of stacked hydrocarbon reservoirs in Block 2 of Meren field. These reservoir sandstones were deposited in offshore to upper shoreface environments. Seven depositional facies were identified in the studied interval, each with distinct lithology, sedimentary structures, trace fossils, and wire-line log character. The dominant lithofacies are (1) locally calcite-cemented highly-bioturbated, fine-grained sandstones, (middle to lower shoreface facies); (2) cross-bedded, fine- to medium-grained well-sorted sandstones (upper shoreface facies); (3) horizontal to sub-horizontal laminated, very-fine- to fine-grained sandstone (delta front facies); (4) massive very-fine- to fine-grained poorly-sorted sandstone (delta front facies); (5) muddy silt- to fine-grained wavy-bedded sandstone (lower shoreface facies); (6) very-fine- to fine-grained sandy mudstone (lower shoreface facies); and (7) massive, silty shales (offshore marine facies). Lithofacies have distinct mean petrophysical properties, although there is overlap in the range of values. The highest quality reservoir deposits are cross-bedded sands that were deposited in high-energy upper shoreface environments. Calcite cements in lower shoreface facies significantly reduce porosity and permeability. Integration of core and wire-line log data allowed porosity and permeability to be empirically determined from bulk density. The derived equation indicated that bulk density values could predict 80% of the variance in core porosity and permeability values. Three parasequence sets were interpreted, including one lower progradational and two upper retrogradational parasequence sets. The progradational parasequence set consists of upward-coarsening delta front to upper shoreface facies, whereas the upward-fining retrogradational parasequence sets are composed of middle to lower shoreface deposits overlain by offshore marine shales. The limited amount of core data and the relatively small area of investigation place serious constraints on stratigraphic interpretations. Two possible sequence stratigraphic interpretations are presented. The first interpretation suggests the deposits comprise a highstand systems tract overlain by a transgressive systems tract. A lowstand systems tract is restricted to an incised valley fill at the southeastern end of the study area. The alternate interpretation suggests the deposits comprise a falling stage systems tract overlain by transgressive systems tract.

Esan, Adegbenga Oluwafemi

2002-12-01T23:59:59.000Z

65

Slide23 | OSTI, US Dept of Energy, Office of Scientific and Technical  

Office of Scientific and Technical Information (OSTI)

Slide23 Slide23 Slide23 Developing Country Access Afghanistan Guatemala Nigeria Albania Guinea Pakistan Algeria Guinea-Bissau Palestinian Territories (West Bank/ Gaza) Angola Guyana Papua New Guinea Armenia Haiti Paraguay Azerbaijan Honduras Peru Bangladesh Indonesia Philippines Belize Iraq Rwanda Benin Jordan Samoa Bhutan Kenya Sao Tome and Principe Bolivia Kiribati Senegal Burkina Faso Kyrgyzstan Sierra Leone Burundi Lao People's Democratic Republic Solomon Islands Cambodia Lesotho Somalia Cameroon Liberia Sri Lanka Cape Verde Macedonia, The Former Yugoslav Republic of Swaziland Central African Republic Madagascar Tajikistan Chad Malawi Tanzania, United Republic of Colombia Maldives Thailand Comoros Mali Timor-Leste Congo Marshall Islands Togo Congo, The Democratic Republic of Mauritania Tonga

66

American Samoa - Territory Energy Profile Analysis - U.S ...  

U.S. Energy Information Administration (EIA)

Comprehensive data summaries, comparisons, analysis, ... Profile AnalysisPrint Territory ... use net metering and account for more than 0.5 megawatt ...

67

An analysis of money demand stability in Rwanda.  

E-Print Network (OSTI)

??A stable money demand function and exogeneity of prices is at the core of planning and implementing a monetary policy of monetary targets. This thesis… (more)

Sayinzoga, Aussi.

2005-01-01T23:59:59.000Z

68

Genocide, Nuptiality, and Fertility in Rwanda and Bosnia-Herzegovina  

E-Print Network (OSTI)

Political Economy in Bosnia and Herzegovina: The Spoils ofThe Case of Bosnia and Herzegovina." in The Fourth AnnualWomen and Children Bosnia and Herzegovina 2000: A Multiple

Staveteig, Sarah Elizabeth

2011-01-01T23:59:59.000Z

69

Reply to comment | OSTI, US Dept of Energy, Office of Scientific and  

Office of Scientific and Technical Information (OSTI)

Reply to comment Reply to comment Slide23 Submitted by gibsone on Fri, 2013-08-30 06:22 FY2011-hitson Slide23 Developing Country Access Afghanistan Guatemala Nigeria Albania Guinea Pakistan Algeria Guinea-Bissau Palestinian Territories (West Bank/ Gaza) Angola Guyana Papua New Guinea Armenia Haiti Paraguay Azerbaijan Honduras Peru Bangladesh Indonesia Philippines Belize Iraq Rwanda Benin Jordan Samoa Bhutan Kenya Sao Tome and Principe Bolivia Kiribati Senegal Burkina Faso Kyrgyzstan Sierra Leone Burundi Lao People's Democratic Republic Solomon Islands Cambodia Lesotho Somalia Cameroon Liberia Sri Lanka Cape Verde Macedonia, The Former Yugoslav Republic of Swaziland Central African Republic Madagascar Tajikistan Chad Malawi Tanzania, United Republic of Colombia Maldives Thailand Comoros Mali Timor-Leste

70

Pilot Program for Climate Resilience (PPCR) | Open Energy Information  

Open Energy Info (EERE)

Resilience (PPCR) Resilience (PPCR) Jump to: navigation, search Name Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Bangladesh, Bolivia, Cambodia, Dominica, Grenada, Haiti, Jamaica, Mozambique, Nepal, Niger, Papua New Guinea, Saint Lucia, Saint Vincent and the Grenadines, Samoa, Tajikistan, Tonga, Yemen, Zambia UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea

71

Observations of the Flow of Abyssal Water through the Samoa Passage  

Science Conference Proceedings (OSTI)

During the fall of 1994 a conductivity–temperature–depth/hydrographic survey was carried out as part of the World Ocean Circulation Experiment one-time survey, Line P15N. The survey included standard water properties required by WOCE. Line P15N ...

Howard Freeland

2001-08-01T23:59:59.000Z

72

The Role of Renewable Energies in Energy Supply and Management for Sustainable Development. "case of Rwanda".  

E-Print Network (OSTI)

?? Final Master Thesis report EGI 2010-2013   Thesis Title: The Role of Renewable Energies in Energy supply Planning and   Management for Sustainable    Development “Case… (more)

Rutagengwa, John

2013-01-01T23:59:59.000Z

73

Niger - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

US EIA provides data, forecasts, country analysis brief and other analyses, focusing on the energy industry including oil, natural gas and electricity.

74

Maa-Bara : catalyzing change in Nigeria's Niger delta  

E-Print Network (OSTI)

Can architecture catalyze economic growth? This thesis serves as a design contribution to the war against poverty by proving that small-scale architectural interventions can propagate large-scale economic growth. It ...

Okiomah, Ogheneruno E. (Ogheneruno Elo)

2011-01-01T23:59:59.000Z

75

Papua New Guinea-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Papua New Guinea-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Papau New Guinea-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Papau New Guinea UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa

76

Saint Vincent and the Grenadines-Pilot Program for Climate Resilience  

Open Energy Info (EERE)

Saint Vincent and the Grenadines-Pilot Program for Climate Resilience Saint Vincent and the Grenadines-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Saint Vincent and the Grenadines-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Saint Vincent and the Grenadines UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan

77

U.S. Energy Information Administration - EIA - Independent ...  

U.S. Energy Information Administration (EIA)

American Samoa Power Authority's largest solar facility, ... American Samoa Power Authority has set up 11 measuring stations to assess where wind turbines could be ...

78

Ethnic Fears and Global Engagement: The International Spread and Management of Ethnic Conflict  

E-Print Network (OSTI)

legal existence of Bosnia and Herzegovina with its presentcolonial Algeria, Bosnia-Herzegovina, Burundi, Rwanda, Sri

Lake, David A.; Rothchild, Donald

1996-01-01T23:59:59.000Z

79

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

+ , Panama + , Philippines + , Rwanda + , Senegal + , South Africa + , Tanzania + , Thailand + , Togolese Republic + , Trinidad and Tobago + , Uganda + , Ukraine + , Vietnam + ,...

80

Livelihood Diversity: Causes of Rural-Urban Migration; Why Rwanda's poverty classification does not explain migratin flows.  

E-Print Network (OSTI)

??The central question of this research is: How are rural-based households actively engaged into flows of rural-urban migration and how are these linkages related to… (more)

Schutten, S.M.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "niger rwanda samoa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Sizing the first flush and its effect on the storage-reliability-yield behavior of rainwater harvesting in Rwanda  

E-Print Network (OSTI)

Rainwater harvesting is a technology used to supply water for domestic purposes in developing countries. Rooftop rainwater harvesting involves collection of rainwater from a rooftop via a guttering system and storage in a ...

Doyle, Kelly C. (Kelly Carroll)

2008-01-01T23:59:59.000Z

82

Ihangire Sun Energy | Open Energy Information  

Open Energy Info (EERE)

Ihangire Sun Energy Jump to: navigation, search Name Ihangire Sun Energy Place Rwanda Sector Solar Product Rwanda-based solar start-up. References Ihangire Sun Energy1 LinkedIn...

83

A tsunami is behind the H  

E-Print Network (OSTI)

) PHILIPPINE SEA PACIFIC OCEAN GUAM National Park of American Samoa PAGO PAGO PACIFIC OCEAN AMERICAN SAMOA`uhonua o Honaunau NHP Puukohola Heiau NHS HONOLULU HAWAII HAWAII MAUI OAHU KAUAI NIIHAU MOLOKAI Aniakchak

84

External costs of oil and gas exploration in the Niger Delta Region of Nigeria.  

E-Print Network (OSTI)

?? The purpose of this study was to investigate the phenomenal impact of oil and gas exploration on the host communities, with a central focus… (more)

Amaefule, Ezewuchi Fidelis

2010-01-01T23:59:59.000Z

85

The Impact of Launching Surgery at the District Level in Niger  

E-Print Network (OSTI)

effects of this training program for generalist physiciansDescription of surgical training program Students chosen toSupervision of these training programs in the different

2009-01-01T23:59:59.000Z

86

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Pakistan 186 Papua New Guinea 33 Philippines 273 Samoa 0 Singapore 1,357 Solomon Islands 0 Sri Lanka ...

87

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Production| Annual Monthly/Quarterly. ... Distillate Fuel Oil: Residual Fuel Oil: ... American Samoa 0.600 0.560 0 ...

88

International Energy Statistics - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Electricity Prices ; Petroleum Prices ; Natural Gas Prices ; Heat Content; Country; ... Philippines 0 0 0 Samoa 0 0 0 ...

89

Tropical Africa: Land Use, Biomass, and Carbon Estimates for 1980 (NDP-055)  

SciTech Connect

This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980. The biomass data and carbon estimates are associated with woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with estimating historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth's land surface and is comprised of countries that are located in tropical Africa (Angola, Botswana, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Congo, Benin, Equatorial Guinea, Ethiopia, Djibouti, Gabon, Gambia, Ghana, Guinea, Ivory Coast, Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria, Guinea-Bissau, Zimbabwe (Rhodesia), Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Tanzania, Togo, Uganda, Burkina Faso (Upper Volta), Zaire, and Zambia). The database was developed using the GRID module in the ARC/INFO{trademark} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

Brown, S.

2002-04-16T23:59:59.000Z

90

Yemen-Pilot Program for Climate Resilience (PPCR) | Open Energy Information  

Open Energy Info (EERE)

Yemen-Pilot Program for Climate Resilience (PPCR) Yemen-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Yemen-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Yemen UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

91

Nepal-Pilot Program for Climate Resilience (PPCR) | Open Energy Information  

Open Energy Info (EERE)

Nepal-Pilot Program for Climate Resilience (PPCR) Nepal-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Nepal-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Nepal UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

92

Tajikistan-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Tajikistan-Pilot Program for Climate Resilience (PPCR) Tajikistan-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Tajikistan-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Tajikistan UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

93

Bolivia-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Bolivia-Pilot Program for Climate Resilience (PPCR) Bolivia-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Bolivia-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Bolivia UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

94

Bangladesh-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Bangladesh-Pilot Program for Climate Resilience (PPCR) Bangladesh-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Bangladesh-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Bangladesh UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

95

Zambia-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Zambia-Pilot Program for Climate Resilience (PPCR) Zambia-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Zambia-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Zambia UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

96

Jamaica-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Jamaica-Pilot Program for Climate Resilience (PPCR) Jamaica-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Jamaica-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Jamaica UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

97

Haiti-Pilot Program for Climate Resilience (PPCR) | Open Energy Information  

Open Energy Info (EERE)

Haiti-Pilot Program for Climate Resilience (PPCR) Haiti-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Haiti-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Haiti UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

98

Saint Lucia-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Saint Lucia-Pilot Program for Climate Resilience (PPCR) Saint Lucia-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Saint Lucia-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Saint Lucia UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

99

Grenada-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Grenada-Pilot Program for Climate Resilience (PPCR) Grenada-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Grenada-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Grenada UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

100

Mozambique-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Mozambique-Pilot Program for Climate Resilience (PPCR) Mozambique-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Mozambique-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Mozambique UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

Note: This page contains sample records for the topic "niger rwanda samoa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Dominica-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Dominica-Pilot Program for Climate Resilience (PPCR) Dominica-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Dominica-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Dominica UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

102

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American American Samoa go to www.recovery.gov DOE Recovery Act projects in American Samoa: 4 U.S. DEPARTMENT OF ENERGY * AMERICAN SAMOA RECOVERY ACT SNAPSHOT The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in American Samoa are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar power and biofuels. Through these investments, American Samoa's businesses, universities, non- profits, and local governments are creating quality jobs today and positioning American Samoa to play an important role in the new energy economy of the future. EXAMPLES OF AMERICAN SAMOA FORMULA GRANTS Program Award (in millions) State Energy Program Weatherization Assistance

103

Country Names used in SPIRES  

NLE Websites -- All DOE Office Websites (Extended Search)

Nigeria North Korea Norway Oman Pakistan Palestine Papua New Guinea Peru Philippines Poland Polynesia Portugal Qatar Romania Russia Rwanda Saudi Arabia Senegal Serbia and...

104

WorldWideScience.org | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Mexico, Nepal, The Netherlands, New Zealand, Nicaragua, Nigeria, Norway, Philippines, Poland, Portugal, Russia, Rwanda, Senegal, Sierra Leone, South Africa, Sierra Leone, Spain,...

105

Waste Management Sector Network (WMSN) | Open Energy Information  

Open Energy Info (EERE)

Mozambique Nepal Nigeria Panama Philippines Rwanda Senegal South Africa Tanzania Thailand Togolese Republic Trinidad and Tobago Uganda Ukraine Vietnam Zambia Climate...

106

Emulating the fast-start swimming performance of the Chain Pickerel (Esox niger) using a mechanical fish design  

E-Print Network (OSTI)

Mean maximum start-up accelerations and velocities achieved by the fast-start specialist, northern pike, are reported at 120 ms-2 and 4 ms-1, respectively (Harper and Blake, 1990). In this thesis, a simple mechanical system ...

Watts, Matthew Nicholas

2006-01-01T23:59:59.000Z

107

Characterization and space/time downscaling of the inundation extent over the Inner Niger Delta using GIEMS and MODIS data  

Science Conference Proceedings (OSTI)

Our objective is to develop downscaling methodologies to obtain long time record of inundation extent at high spatial resolution, based on the existing low spatial resolution results of the Global Inundation Extent from Multi-Satellite dataset. In ...

Filipe Aires; Fabrice Papa; Catherine Prigent; Jean-François Crétaux; Muriel Berge-Nguyen

108

Atmospheric Radiation Measurement (ARM) Data from Niamey, Niger for the Radiative Atmospheric Divergence using AMF, GERB and AMMA Stations (RADAGAST)  

DOE Data Explorer (OSTI)

The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory.

109

A geospatial analysis of market integration: the case of the 2004/5 food crisis in Niger  

E-Print Network (OSTI)

The Agricultural Market Information System (SIMA) of Nigerinfrastructure and information may inhibit market integra-the absence of information about how markets are related and

Shin, Michael

2010-01-01T23:59:59.000Z

110

Imagined Islands: American Empire and Identity in the Postcolonial Pacific  

E-Print Network (OSTI)

Interview with Albert Wendt. ” Inside Out: Literature,of the Contemporary Pacific” Wendt, Albert. Leaves of theof Sia Figiel and Albert Wendt of Samoa display some of the

Solar, Valerie Chihiro

2010-01-01T23:59:59.000Z

111

U.S. Energy Information Administration - EIA - Independent ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... American Samoa Power Authority has set up 11 measuring stations to assess where wind turbines ...

112

Obama Administration Delivers More than $60 Million for Weatherization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

assistance programs in American Samoa, Northern Arapaho Tribe, Northern Mariana Islands, Puerto Rico, Tennessee, and the U.S. Virgin Islands. The funding, along with additional...

113

International Energy Statistics - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Pakistan 22.269 Papua New Guinea 0.700 Philippines 16.320 Samoa 0.041 Singapore 10.250 Solomon Islands ...

114

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Pakistan 60.6 Papua New Guinea 30.4 Philippines 32.9 Samoa 0 Singapore 0 Solomon Islands 0 Sri Lanka 0 ...

115

CARTOGRAPHIC BASE FILES AT LAWRENCE BERKELEY LABORATORY: 1978. INVENTORY  

E-Print Network (OSTI)

Delware Mexico . . . . . . Puerto Rico/Virgin Islands SamoaFiles Alaska/Hawaii/Puerto Rico California . . . . . . .Region II (includes Puerto Rico and Virgin Islands) Region

Burkhart, B.R.

2011-01-01T23:59:59.000Z

116

Circa 1898: Overseas Empire and Transnational American Studies  

E-Print Network (OSTI)

in Panama, Cuba, Puerto Rico, American Samoa, Guam, Hawai’i,in the Philippines and Puerto Rico), Mark Rice shows howhow representations of Puerto Rico (unlike more primitivist

Hsu, Hsuan L.

2011-01-01T23:59:59.000Z

117

Site Map | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Adoption State Technical Assistance Status of State Energy Code Adoption Adoption Process State Pages Alabama Louisiana Oklahoma Alaska Maine Oregon American Samoa Maryland...

118

Weatherization & Intergovernmental Program: Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Program and the Energy Efficiency and Conservation Block Grant Program. AS GU MP PR VI State: Select one... Alaska Alabama Arkansas American Samoa Arizona California Colorado...

119

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Total Renewable Electricity Net Generation (Billion Kilowatthours) ... Philippines 18.789 18.224 20.359 18.752 20.529 Samoa ...

120

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Pakistan 90.802 Papua New Guinea 3.327 Philippines 57.080 Samoa 0.113 Singapore 39.640 Solomon Islands ...

Note: This page contains sample records for the topic "niger rwanda samoa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Minnesota - EIA  

U.S. Energy Information Administration (EIA)

South Carolina South Dakota Tennessee Texas: Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming: U.S. Territories American Samoa Guam Northern Mariana ...

122

U.S. Energy Information Administration - EIA - Independent ...  

U.S. Energy Information Administration (EIA)

South Carolina South Dakota Tennessee Texas: Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming: U.S. Territories American Samoa Guam Northern Mariana ...

123

U.S. States - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

South Carolina South Dakota Tennessee Texas: Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming: U.S. Territories American Samoa Guam Northern Mariana ...

124

Strategies for International Cooperation in Support of Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

rule; for example, Fiji and Samoa produce significant percentages of their power from hydro. The opportunities for wind, solar PV, solar water heating 4 (SWH), waste to energy...

125

Total Net Imports of Crude Oil and Petroleum Products into the U.S.  

U.S. Energy Information Administration (EIA) Indexed Site

Country: Total All Countries Persian Gulf OPEC Algeria Angola Ecuador Iran Iraq Kuwait Libya Nigeria Qatar Saudi Arabia United Arab Emirates Venezuela Non OPEC Afghanistan Albania Andora Anguilla Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bolivia Bosnia and Herzegovina Brazil Brunei Bulgaria Burma Cambodia Cameroon Canada Cayman Islands Chad Chile China Colombia Congo (Brazzaville) Congo (Kinshasa) Cook Islands Costa Rica Croatia Cyprus Czech Republic Denmark Djbouti Dominica Dominican Republic Egypt El Salvador Equatorial Guinea Ethiopia Eritrea Estonia Fiji Finland France French Pacific Islands French Guiana Gabon Georgia, Republic of Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guinea Guyana Haiti Honduras Hong Kong Hungary Iceland India Indonesia Ireland Israel Italy Ivory Coast Jamaica Japan Jordan Kazakhstan Kenya Korea, South Kutubu Kyrgyzstan Latvia Lebanon Liberia Lithuania Macau S.A.R. Macedonia Madagascar Malaysia Maldives Mali Malta Marshall Islands Mauritania Mauritius Mexico Micronesia, Federated States of Midway Islands Moldova Monaco Mongolia Montenegro Montserrat Morocco Mozambique Namibia Nepal Netherlands Netherlands Antilles New Caledonia New Zealand Nicaragua Niger Niue Norway Oman Pakistan Panama Papau New Guinea Paracel Islands Paraguay Peru Philippines Poland Portugal Puerto Rico Romania Russia St. Kitts and Nevis St. Lucia St. Pierre and Miquelon St. Vincent and the Grenadines Samoa San Marino Senegal Serbia and Montenegro Sierra Leone Singapore Slovakia Slovenia South Africa Spain Spratly Islands Sri Lanka Suriname Swaziland Sweden Switzerland Syria Taiwan Tanzania Thailand Togo Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Uganda Ukraine United Kingdom Uruguay Uzbekistan Vanuatu Vietnam Virgin Islands (British) Virgin Islands (U.S.) Yemen Yugoslavia Other Non OPEC Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day

126

Total All Countries Exports of Crude Oil and Petroleum Products by  

U.S. Energy Information Administration (EIA) Indexed Site

Destination: Total All Countries Afghanistan Albania Algeria Andora Angola Anguilla Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahama Islands Bahrain Barbados Belarus Belgium Belize Benin Bolivia Bosnia and Herzegovina Brazil Brunei Bulgaria Burma Bermuda Cambodia Cameroon Canada Cayman Islands Chad Chile China Colombia Congo (Brazzaville) Congo (Kinshasa) Costa Rica Croatia Cyprus Czech Republic Denmark Djbouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Fiji Finland France French Guiana French Pacific Islands Gabon Georgia, Republic of Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guinea Guyana Haiti Honduras Hong Kong Hungary Iceland India Indonesia Iran Iraq Ireland Israel Italy Ivory Coast Jamaica Japan Jordon Kazakhstan Kenya Korea, South Korea, North Kyrgyzstan Kutubu Kuwait Latvia Lebanon Liberia Libya Lithuania Macau S.A.R. Macedonia Madagascar Malaysia Maldives Mali Malta Marshall Islands Mauritania Mauritius Mexico Micronesia, Federated States of Midway Islands Moldova Monaco Mongolia Montenegro Montserrat Morocco Mozambique Namibia Nepal Netherlands Netherlands/Antilles New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norway Oman Pakistan Panama Papau New Guinea Paracel Islands Paraguay Peru Philippines Poland Portugal Puerto Rico Qatar Romania Russia St. Kitts and Nevis St. Lucia St. Pierre and Miquelon St. Vincent and the Grenadines Samoa San Marino Saudi Arabia Senegal Serbia and Montenegro Seychelles Sierra Leone Singapore Slovakia Slovenia Soloman Islands South Africa Spain Spratly Islands Sri Lanka Sudan Suriname Swaziland Sweden Switzerland Syria Taiwan Tanzania Thailand Tonga Togo Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Uganda Ukraine United Arab Emirates United Kingdom Uruguay Uzbekistan Vanuatu Venezuela Vietnam Virgin Islands (British) Virgin Islands (U.S.) Yemen Yugoslavia Zambia Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

127

CX-007384: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Categorical Exclusion Determination 4: Categorical Exclusion Determination CX-007384: Categorical Exclusion Determination Improving Recycling Capacity and Solid Waste Education in American Samoa CX(s) Applied: B1.31, B1.35, A9 Date: 12/21/2011 Location(s): American Samoa Offices(s): Golden Field Office The U.S. Department of Energy (DOE) provided funding to the American Samoa Government Territorial Energy Office under DOE's American Recovery and Reinvestment Act of 2009 Energy Efficiency and Conservation Block Grant (EECBG) Program. The American Samoa Government Territorial Energy Office is proposing to use $500,000 of that funding for the "Improving Recycling Capacity and Solid Waste Education in American Samoa" project. CX-007384.pdf More Documents & Publications CX-009566: Categorical Exclusion Determination

128

Business | Embassy of the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

Tanzania, and Uganda) and aims to double intra-regional trade in the EAC, increase EAC exports to the United States by 40%, and make it easier for goods to reach Uganda, Rwanda,...

129

The Combined Sensor Program: An Air–Sea Science Mission in the Central and Western Pacific Ocean  

Science Conference Proceedings (OSTI)

Twelve national research organizations joined forces on a 30-day, 6800 n mi survey of the Central and Tropical Western Pacific on NOAA's Research Vessel Discoverer. The Combined Sensor Program (CSP), which began in American Samoa on 14 March 1996,...

Madison J. Post; Christopher W. Fairall; Jack B. Snider; Yong Han; Allen B. White; Warner L. Ecklund; Klaus M. Weickmann; Patricia K. Quinn; Daniel I. Cooper; Steven M. Sekelsky; Robert E. McIntosh; Peter Minnett; Robert O. Knuteson

1997-12-01T23:59:59.000Z

130

UNITED STATES DEPARTMENT OF COMMERCE  

E-Print Network (OSTI)

/PACIFIC OCEAN India Australia Indonesia American Samoa (US) Burma Japan Philippines Trust Territories (US) China plants (50 to 100 MWe-net) for the larger communities in Oahu (~ 800,000 residents), Kauai, Maui

131

Influence of ENSO on Tropical Cyclone Intensity in the Fiji Region  

Science Conference Proceedings (OSTI)

This study examines the variation in tropical cyclone (TC) intensity for different phases of the El Niño–Southern Oscillation (ENSO) phenomenon in the Fiji, Samoa, and Tonga (FST) region. The variation in TC intensity is inferred from the ...

Savin S. Chand; Kevin J. E. Walsh

2011-08-01T23:59:59.000Z

132

--No Title--  

U.S. Energy Information Administration (EIA) Indexed Site

mapping@eia.gov Quick Facts American Samoa is nearly 100 percent dependent on imported fossil fuels, including diesel fuel for its electric power generation. As of January 2012,...

133

Forecasting Tropical Cyclone Formation in the Fiji Region: A Probit Regression Approach Using Bayesian Fitting  

Science Conference Proceedings (OSTI)

An objective methodology for forecasting the probability of tropical cyclone (TC) formation in the Fiji, Samoa, and Tonga regions (collectively the FST region) using antecedent large-scale environmental conditions is investigated. Three separate ...

Savin S. Chand; Kevin J. E. Walsh

2011-04-01T23:59:59.000Z

134

Modeling Seasonal Tropical Cyclone Activity in the Fiji Region as a Binary Classification Problem  

Science Conference Proceedings (OSTI)

This study presents a binary classification model for the prediction of tropical cyclone (TC) activity in the Fiji, Samoa, and Tonga regions (the FST region) using the accumulated cyclone energy (ACE) as a proxy of TC activity. A probit regression ...

Savin S. Chand; Kevin J. E. Walsh

2012-07-01T23:59:59.000Z

135

A Bayesian Regression Approach to Seasonal Prediction of Tropical Cyclones Affecting the Fiji Region  

Science Conference Proceedings (OSTI)

This study presents seasonal prediction schemes for tropical cyclones (TCs) affecting the Fiji, Samoa, and Tonga (FST) region. Two separate Bayesian regression models are developed: (i) for cyclones forming within the FST region (FORM) and (ii) ...

Savin S. Chand; Kevin J. E. Walsh; Johnny C. L. Chan

2010-07-01T23:59:59.000Z

136

National Parks in the U.S.  

NLE Websites -- All DOE Office Websites (Extended Search)

National Parks National Parks are natural areas that are protected by the United States Government, and controlled by the National Park Service. These parks offer a great deal of information about different habitats, wildlife, and how to plan a trip. These parks also have many educational activities that are available to both teachers and students! All links below are provided by the National Park Service (http://www.nps.gov) Acadia National Park Acadia National Park Maine Home Page : http://www.nps.gov/acad/index.htm For Teachers! For Students! American Samoa National Park American Samoa National Park American Samoa, USA Home Page : http://www.nps.gov/npsa/index.htm For Teachers! For Students! Arches National Park Arches National Park Utah Home Page : http://www.nps.gov/arch/index.htm

137

Uncertainty analysis of the mud infill prediction of the Olokola LNG terminal.  

E-Print Network (OSTI)

??For a proposed liquefied natural gas export facility, Olokola LNG (OKLNG), located at the western limits of the Niger Delta in Nigeria a 10 km… (more)

Bakker, S.A.

2009-01-01T23:59:59.000Z

138

Moving Images Against The Current: The Aesthetics and Geopolitics of (Im)mobility in Contemporary Europe  

E-Print Network (OSTI)

the labor force at the uranium mine in Arlit. 143 Simone’sThe French built a uranium mine at Arlit in Niger during the

Bayraktar, Nilgun

2011-01-01T23:59:59.000Z

139

Biosciences Center, National Renewable Energy Laboratory, Golden...  

NLE Websites -- All DOE Office Websites (Extended Search)

nidulans , A. niger Soil, wood rot Cellulomonas fimi Soil Agaricus bisporus Compost Cellvibrio japonicus Soil Coprinus truncorum Soil, compost Cytophaga hutchinsonii ...

140

Die Jontophorese der mit medikamentö  

Science Conference Proceedings (OSTI)

Flora, 131. N.F. 31, 87--112, 1936. Die bevorzugte Aufnahme saurer Farbstoffe bei hoher Wasserstoffionen- konzentration der die Zellen yon Asperffillus niger ...

Note: This page contains sample records for the topic "niger rwanda samoa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

include extended operations in the diverse environments of Niamey, Niger and Germany's Black Forest. Capitalizing on the AMF's continuous record of vertically pointing 95 GHz...

142

DNN Cover(pg1).indd  

National Nuclear Security Administration (NNSA)

Mongolia Montenegro Morocco Namibia Nepal Netherlands Nicaragua Niger Nigeria North Korea Norway Oman Pakistan Panama Papua New Guinea Paraguay Peru Philippines Poland Portugal...

143

Influences of media on social movements: Problematizing hyperbolic inferences about impacts  

Science Conference Proceedings (OSTI)

Pronouncements about the value of information and communication technology (ICT) (hereafter traditional, new, and social media) to social movements - hyperbolic in popular media references to new and social media (e.g., Facebook revolution, Twitter revolution, ... Keywords: Digital divide, Egypt, Empowerment, Facebook revolution, Kenya, Mobile telephone SMS, Rwanda, Social movements, South Africa, Soweto Uprising, Technological determinism, Twitter revolution

Anthony A. Olorunnisola; Brandie L. Martin

2013-08-01T23:59:59.000Z

144

Shell structures for biogas plants  

Science Conference Proceedings (OSTI)

The shell structures designed for biogas plants of the fixed-dome type by the Bremen Overseas Research and Development Association are described. Biogas digesters of the design described have been successfully tested in Rwanda and India without structural or contractural problems.

Sasse, L.

1982-01-01T23:59:59.000Z

145

Controlled Clocks: Recommended Practices  

E-Print Network (OSTI)

) Letter Abbreviation Name Areas Include ­10:00 W HST or Hawaii­Aleutian Central French HAST Standard Time West ­11:00 X SST Samoa Midway Islands Standard Time ­10:00 W HST or Hawaii-Aleutian Central French

Magee, Joseph W.

146

Precious Coral Fisheries of Hawaii and the U.S. Pacific Islands Introduction  

E-Print Network (OSTI)

,India,Kenya,LesserSunda Islands,Malaysia,NewCaledonia,New Guinea,Nicaragua,Philippines,Samoa. Solomon.Trop.Bot.Gard.(740137-001)from seedcollectedfromcultivatedplantson Kauai,parentplantfromMoorea,French Polynesia Andaman,MalukuIslands,MascareneIslands, NewCaledonia,NewGuinea,NicobarIslands, Philippines,RyukyuIslands,Seychelles, Sri

147

Congratulations!2010KaIpuKukuiFellows 2010 Graduation  

E-Print Network (OSTI)

are summarized in the Appendix. #12;2 OTC 21016 100 MW floating plants for the larger communities in Oahu, Kauai ____________________________________________________________________________________________________ INDIAN/PACIFIC OCEAN India Australia Indonesia American Samoa Burma Japan Philippines Northern Marianas encompassing per capita consumption in developing countries like the Philippines. In addition, the OC

Olsen, Stephen L.

148

Hindawi Publishing Corporation Journal of Marine Biology  

E-Print Network (OSTI)

, the Philippines, Samoa, and the Hawaiian Islands (Kami 1973). In the Hawaiian Islands it occurs in significant, Hawaii, and 25 specimens from Kauai. 706 #12;SHAKLEE and SAMOLLOW: GENETIC VARIATION IN A DEEPWATER scored. 'Including 25 fish from Kauai. 'Consisting of fish from Maro Reef, French Frigate Shoals

Baum, Julia K.

149

OBSERVING THE OCEAN IN THE 2000'S: A STRATEGY FOR THE ROLE OF ACOUSTIC TOMOGRAPHY  

E-Print Network (OSTI)

,India,Kenya,LesserSunda Islands,Malaysia,NewCaledonia,New Guinea,Nicaragua,Philippines,Samoa. Solomon.Trop.Bot.Gard.(740137-001)from seedcollectedfromcultivatedplantson Kauai,parentplantfromMoorea,French Polynesia Andaman,MalukuIslands,MascareneIslands, NewCaledonia,NewGuinea,NicobarIslands, Philippines,RyukyuIslands,Seychelles, Sri

Dushaw, Brian

150

The importance of context in delivering effective EIA: Case studies from East Africa  

SciTech Connect

This paper reviews and compares the condition of the environmental impact assessment (EIA) system in three countries in the East Africa region: Kenya, Rwanda and Tanzania. The criteria used for the evaluation and the comparison of each system are based on the elements of the legal, administrative and procedural frameworks, as well as the context in which they operate. These criteria are adapted from the evaluation and quality control criteria derived from a number of literature sources. The study reveals that the EIA systems of Kenya and Tanzania are at a similar stage in their development. The two countries, the first to introduce the EIA concept into their jurisdiction in this part of Africa, therefore have more experience than Rwanda in the practice of environmental impact assessment, where the legislation and process requires more time to mature both from the governmental and societal perspective. The analysis of the administrative and procedural frameworks highlights the weakness in the autonomy of the competent authority, in all three countries. Finally a major finding of this study is that the contextual set up i.e. the socio-economic and political situation plays an important role in the performance of an EIA system. The context in developing countries is very different from developed countries where the EIA concept originates. Interpreting EIA conditions in countries like Kenya, Rwanda and Tanzania requires that the analysis for determining the effectiveness of their systems should be undertaken within a relevant framework, taking into account the specific requirements of those countries.

Marara, Madeleine; Okello, Nick; Kuhanwa, Zainab; Douven, Wim; Beevers, Lindsay, E-mail: l.beevers@hw.ac.uk; Leentvaar, Jan

2011-04-15T23:59:59.000Z

151

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 - 24790 of 26,764 results. 81 - 24790 of 26,764 results. Download CX-007384: Categorical Exclusion Determination Improving Recycling Capacity and Solid Waste Education in American Samoa CX(s) Applied: B1.31, B1.35, A9 Date: 12/21/2011 Location(s): American Samoa Offices(s): Golden Field Office http://energy.gov/nepa/downloads/cx-007384-categorical-exclusion-determination Download CX-007389: Categorical Exclusion Determination Advances in Hydrogeochemical Indicators for the Discovery of New Geothermal Resources in the Great Basin CX(s) Applied: A9, B3.6 Date: 12/21/2011 Location(s): Colorado Offices(s): Golden Field Office http://energy.gov/nepa/downloads/cx-007389-categorical-exclusion-determination Download CX-007390: Categorical Exclusion Determination Hot Carrier Collection in Thin Film Silicon with Tailored

152

Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

INDIA BANGLADESH CHINA DAYA BAY CHINA RUSSIA SIBERIA JAPAN SAMOA HAWAII INDIA BANGLADESH CHINA DAYA BAY CHINA RUSSIA SIBERIA JAPAN SAMOA HAWAII SOUTH POLE ANTARCTICA NEW MEXICO SOUTH DAKOTA TEXAS GULF OF MEXICO NEW YORK PUERTO RICO AMAZON RAIN FOREST CANARY ISLANDS SWITZERLAND ETHIOPIA JOHANNESBURG ERITREA Lawrence Berkeley National Laboratory's science is a global enterprise. From the Lab's site in the hills overlooking the University of California Berkeley campus, to locations across the continent and around the world, Berkeley Lab scientists are working at the frontiers of knowledge to better understand our universe and to address the challenges facing our nation and our planet. Roll your mouse across the map to see how the Lab is making a difference. gulf-oil-spill_2 Understanding the Effects of the Gulf Oil Spill / Gulf of Mexico

153

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

91 - 8900 of 29,416 results. 91 - 8900 of 29,416 results. Download CX-007384: Categorical Exclusion Determination Improving Recycling Capacity and Solid Waste Education in American Samoa CX(s) Applied: B1.31, B1.35, A9 Date: 12/21/2011 Location(s): American Samoa Offices(s): Golden Field Office http://energy.gov/nepa/downloads/cx-007384-categorical-exclusion-determination Download EA-0915: Final Environmental Assessment Waste Tank Safety Program Hanford Site, Richland, Washington http://energy.gov/nepa/downloads/ea-0915-final-environmental-assessment Download EA-1683: Finding of No Significant Impact Abengoa Solar Inc., the Solana Thermal Electric Power Project near Gila Bend, Arizona http://energy.gov/nepa/downloads/ea-1683-finding-no-significant-impact Download EIS-0265-SA-91: Supplement Analysis

154

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 12440 of 31,917 results. 31 - 12440 of 31,917 results. Download EIS-0285-SA-78: Supplement Analysis Transmission System Vegetation Management Program http://energy.gov/nepa/downloads/eis-0285-sa-78-supplement-analysis Download American Samoa Recovery Act State Memo http://energy.gov/downloads/american-samoa-recovery-act-state-memo Download Virgin Islands Recovery Act State Memo http://energy.gov/downloads/virgin-islands-recovery-act-state-memo Rebate Forestry Policies (Michigan) Michigan's 19 million acres of forests are managed by the Department of Natural Resources, Forestry and Water Division. The Department issued its Forest Resource Assessment and Strategy document... http://energy.gov/savings/forestry-policies-michigan Article New Research Center to Increase Safety and Power Output of U.S.

155

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51 - 4960 of 29,416 results. 51 - 4960 of 29,416 results. Download CX-009007: Categorical Exclusion Determination Northeast Provider of Solar Photovoltaic Instructor Training CX(s) Applied: A9, A11, B5.16 Date: 08/08/2012 Location(s): New York Offices(s): Golden Field Office http://energy.gov/nepa/downloads/cx-009007-categorical-exclusion-determination Download CX-009138: Categorical Exclusion Determination American Samoa Government State Energy Program· Annual Grant CX(s) Applied: A9, A11 Date: 09/06/2012 Location(s): American Samoa Offices(s): Golden Field Office http://energy.gov/nepa/downloads/cx-009138-categorical-exclusion-determination Download CX-007385: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants

156

Categorical Exclusion Determinations: Golden Field Office | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 6, 2012 September 6, 2012 CX-009147: Categorical Exclusion Determination Delaware State Energy Program Formula Grant Application CX(s) Applied: A9, A11 Date: 09/06/2012 Location(s): Delaware Offices(s): Golden Field Office September 6, 2012 CX-009138: Categorical Exclusion Determination American Samoa Government State Energy Program· Annual Grant CX(s) Applied: A9, A11 Date: 09/06/2012 Location(s): American Samoa Offices(s): Golden Field Office September 6, 2012 CX-009163: Categorical Exclusion Determination Ohio State Energy Program Year 2012 Formula Grants CX(s) Applied: A9, A11 Date: 09/06/2012 Location(s): Ohio Offices(s): Golden Field Office September 6, 2012 CX-009159: Categorical Exclusion Determination Montana Formaul State Energy Program CX(s) Applied: A9, A11 Date: 09/06/2012

157

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - 8470 of 31,917 results. 61 - 8470 of 31,917 results. Download CX-009026: Categorical Exclusion Determination "A New Method for Low-cost Production of Titanium Alloys for Reducing Energy Consumption of Mechanical Systems CX(s) Applied: A9, B3.6 Date: 08/14/2012 Location(s): Utah Offices(s): Golden Field Office" http://energy.gov/nepa/downloads/cx-009026-categorical-exclusion-determination Download CX-009138: Categorical Exclusion Determination American Samoa Government State Energy Program· Annual Grant CX(s) Applied: A9, A11 Date: 09/06/2012 Location(s): American Samoa Offices(s): Golden Field Office http://energy.gov/nepa/downloads/cx-009138-categorical-exclusion-determination Download CX-007867: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider

158

Property:Incentive/AggrCapLimit | Open Energy Information  

Open Energy Info (EERE)

AggrCapLimit AggrCapLimit Jump to: navigation, search Property Name Incentive/AggrCapLimit Property Type Text Description Aggregate Capacity Limit. Pages using the property "Incentive/AggrCapLimit" Showing 25 pages using this property. (previous 25) (next 25) A APS - Net Metering (Arizona) + 15 MW American Samoa - Net Metering (American Samoa) + 5% of utility's peak demand Ames Electric Department - Net Metering (Iowa) + Carried month to month at retail rate, granted to utility after 12 months Ashland Electric - Net Metering (Oregon) + No limit specified Aspen Electric - Net Metering (Colorado) + Credited to customer's next bill Austin Energy - Net Metering (Texas) + No limit specified (program will be re-evaluated after 1% of load is met) Avista Utilities - Net Metering (Idaho) + 0.1% of utility's peak demand in 1996 (in Idaho)

159

CX-006874: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

74: Categorical Exclusion Determination 74: Categorical Exclusion Determination CX-006874: Categorical Exclusion Determination Renewable Energy: Ground Mounted Photovoltaic Grid System CX(s) Applied: B5.1 Date: 10/17/2011 Location(s): Tafuna International Airport, America Samoa Office(s): Energy Efficiency and Renewable Energy, Sandia Site Office This National Environmental Policy Act determination is a re-scope for GFO-OOOO218-007 (CX B5.1) signed on March 3, 2011 to install 1 megawatt of ground-mounted, photovoltaic (PV) solar panels adjacent to Runway 5/23 on the west side of the Tafuna International Airport. The Department of Energy is proposing to provide $9,000,000 in State Energy Program American Recovery and Reinvestment Act funding (the original funding amount) to American Samoa Power Authority (ASPA) to install 1.5 megawatts of PV

160

U.S. DEP.~TMENT OF ENERGY EERE PROJECT MA,\jAGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MA,\jAGEMENT CENTER MA,\jAGEMENT CENTER NEPA DETERMINATION Page I of2 RECIPIENT: EECBG - American Samoa Government Territorial Energy Office STATE: AS PROJECT TITLE: Improving Recycling Capacity and Solid Waste Education in American Samoa Funding Opportunity Announcement Number PrO(urement Instrument Number DE-EEOOOOB34 NEPA Control Number GFO-OOOO634.Q01 em Number o Based on my review oftbe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4S1.1A), I have made the (ollowing determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 81 .31 installation or relocation of machinery and equipment Installation or relocation and operation of machinery and equipment (including, but not limited la, laboratory equipment, electronic hardware, manufacturing machinery, maintenance equipment, and health and safety equipment), provided that

Note: This page contains sample records for the topic "niger rwanda samoa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Comparison of Simulated and Observed Continental Tropical Anvil Clouds and Their Radiative Heating Profiles  

Science Conference Proceedings (OSTI)

Vertically pointing millimeter-wavelength radar observations of anvil clouds extending from mesoscale convective systems (MCSs) that pass over an Atmospheric Radiation Measurement Program (ARM) field site in Niamey, Niger, are compared to anvil ...

Scott W. Powell; Robert A. Houze Jr.; Anil Kumar; Sally A. McFarlane

2012-09-01T23:59:59.000Z

162

Soil Moisture Modeling Based on Multiyear Observations in the Sahel  

Science Conference Proceedings (OSTI)

Two simple soil moisture models useful for drought monitoring and climate change studies were proposed, based on 4-yr ground observations of root-zone soil moisture in Sahelian Niger. One is a water balance model that calculates soil moisture ...

Y. Yamaguchi; M. Shinoda

2002-11-01T23:59:59.000Z

163

A Comparison of the Water Budgets between Clouds from AMMA and TWP-ICE  

Science Conference Proceedings (OSTI)

Two field campaigns, the African Monsoon Multidisciplinary Analysis (AMMA) and the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), took place in 2006 near Niamey, Niger, and Darwin, Northern Territory, Australia, providing extensive ...

Xiping Zeng; Wei-Kuo Tao; Scott W. Powell; Robert A. Houze Jr.; Paul Ciesielski; Nick Guy; Harold Pierce; Toshihisa Matsui

2013-02-01T23:59:59.000Z

164

Radar Observations of Convective System Variability in Relationship to African Easterly Waves during the 2006 AMMA Special Observing Period  

E-Print Network (OSTI)

A radar-based analysis of the structure, motion, and rainfall variability of westward-propagating squall-line mesoscale convective systems (SLMCSs) in Niamey, Niger, during the African Monsoon Multidisciplinary Activities ...

Williams, Earle R.

165

ARM - Instrument - irt  

NLE Websites -- All DOE Office Websites (Extended Search)

Niger OLI M1 Browse Data Oliktok Point, Alaska PVC M1 Browse Data Highland Center, Cape Cod MA; AMF 1 PYE M1 Browse Data Point Reyes, CA Contact(s) Victor Morris (509) 372-6144...

166

ARM - Instrument - mwrp  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Niamey, Niger PGH M1 Browse Data ARIES Observatory, Nainital, Uttarkhand, India PVC M1 Browse Data Highland Center, Cape Cod MA; AMF 1 PYE M1 Browse Data Point Reyes, CA...

167

Diurnal and Seasonal Cycles of Cloud Occurrences, Types, and Radiative Impact over West Africa  

Science Conference Proceedings (OSTI)

This study focuses on the occurrence and type of clouds observed in West Africa, a subject that has been neither much documented nor quantified. It takes advantage of data collected above Niamey, Niger, in 2006 with the Atmospheric Radiation ...

Dominique Bouniol; Fleur Couvreux; Pierre-Honoré Kamsu-Tamo; Madeleine Leplay; Françoise Guichard; Florence Favot; Ewan J. O’Connor

2012-03-01T23:59:59.000Z

168

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Adieu to Niger, Guten Tag to Germany Bookmark and Share The AMF decommissioning team poses for a group photo at the AMF site near the airport in Niamey. The AMF decommissioning...

169

Radar Observations of Convective System Variability in Relationship to African Easterly Waves during the 2006 AMMA Special Observing Period  

Science Conference Proceedings (OSTI)

A radar-based analysis of the structure, motion, and rainfall variability of westward-propagating squall-line mesoscale convective systems (SLMCSs) in Niamey, Niger, during the African Monsoon Multidisciplinary Activities (AMMA) 2006 special ...

Rosana Nieto Ferreira; Thomas Rickenbach; Nick Guy; Earle Williams

2009-12-01T23:59:59.000Z

170

PUBLICATIONS RECORD The University of British Columbia -Department of Civil Engineering  

E-Print Network (OSTI)

imparting substances in biologically treated pulp mill effluent using Aspergillus niger fungal biomass and requirements for jobs. Water Science and Technology, 59(4): 745-753. 61. Geng, Z., E.R. Hall and P. Bérubé

Froese, Thomas

171

Observations of Saharan Aerosols: Results of ECLATS Field Experiment. Part I: Optical Thicknesses and Aerosol Size Distributions  

Science Conference Proceedings (OSTI)

A series of ground-based and airborne observations of desert aerosols, the ECLATS experiment was carried out in December 1980 in the vicinity of Niamey (Niger). This paper deals with aerosol optical thicknesses and size distributions derived from ...

Y. Fouquart; B. Bonnel; M. Chaoui Roquai; R. Santer; A. Cerf

1987-01-01T23:59:59.000Z

172

www.eia.gov  

U.S. Energy Information Administration (EIA)

PU Kenya KE Lesotho LT Liberia LI Libya LY Madagascar MA Malawi MI Mali ML Mauritania MR Mauritius MP Morocco MO Mozambique MZ Namibia WA Niger NG Nigeria NI Reunion ...

173

Interactions between the Land Surface and Mesoscale Rainfall Variability during HAPEX-Sahel  

Science Conference Proceedings (OSTI)

The Hydrological Atmospheric Pilot Experiment in the Sahel (HAPEX-Sahel) was designed to investigate land–atmosphere interactions in the semiarid conditions of southwest Niger. During the intensive observation period (IOP) in 1992, a pronounced ...

Christopher M. Taylor; Frédérique Saïd; Thierry Lebel

1997-09-01T23:59:59.000Z

174

ARM - Niamey News  

NLE Websites -- All DOE Office Websites (Extended Search)

RADAGAST Proposal Outreach Fact Sheets RADAGAST (PDF) Annual Climate Cycle in Niger, Africa (PDF) Posters AMF Poster, French Version We're Going to Sample the Sky in Africa News...

175

United Nations Food and Agriculture Organization Economic Commission for Europe of the United Nations  

E-Print Network (OSTI)

Sri Lanka 32 Armenia 34 Nigeria 33 Peru 34 Syrian Arab 33 Azerbaijan Republic 35 Reunion 34 Suriname.00 Former U.S.S.R.-- Armenia 6.19 5.90 5.90 Azerbaijan 8.90 11.63 11.63 Belarus .24 4.60 4.60 Estonia 4.00 5.69 Sri Lanka 1.29 Armenia 0.20 Reunion 0.00 Peru 0.61 Syrian Arab Rep 0.50 Azerbaijan 0.20 Rwanda 0

176

UNEP Green Economy Advisory Services | Open Energy Information  

Open Energy Info (EERE)

Logo: UNEP Green Economy Advisory Services Name UNEP Green Economy Advisory Services Agency/Company /Organization United Nations Environment Programme (UNEP) Partner German Agency for International Cooperation (GIZ), Global Green Growth Knowledge Platform (GGKP), Green Jobs Initiative, United Nations Development Programme (UNDP), United Nations Department of Economic and Social Affairs (UNDESA) Sector Climate, Energy, Land, Water Focus Area People and Policy Topics Low emission development planning Country Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia, Montenegro, Morocco, Namibia, Nepal, Peru, Philippines, Russia, Rwanda, Senegal, Serbia, South Africa, Ukraine

177

Primer_Summer_2011_061011_v2.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Volume 8 Issue 3 1 Volume 8 Issue 3 For decades, citric acid has been produced on a commercial- scale basis with the help of the fungus Aspergillus niger. Outside industry, A. niger is also known to be involved in the global carbon cycle, and its enzymes can be used to break down plant cell walls and get at the sugars that can in turn be fermented for use as biofuels. "Aspergillus niger is an industrial workhorse for enzymes and small molecules such as organic acids," said Scott Baker of the Pacific Northwest National Laboratory. "We know that this single organism is used for production of organic acids and for enzymes, and it can degrade plant cell wall matter for sugar production. For biofuels it's a highly relevant organism since it's already been

178

DOE Joint Genome Institute: Same Fungus, Different Strains: A Comparative  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 2011 3, 2011 Same Fungus, Different Strains: A Comparative Genomics Approach for Improved "Green" Chemical Production WALNUT CREEK, Calif.-Fungi play key roles in nature and are valued for their great importance in industry. Consider citric acid, a key additive in several foods and pharmaceuticals produced on a large-scale basis for decades with the help of the filamentous fungus Aspergillus niger. While A. niger is an integral player in the carbon cycle, it possesses an arsenal of enzymes that can be deployed in breaking down plant cell walls to free up sugars that can then be fermented and distilled into biofuel, a process being optimized by U.S. Department of Energy researchers. Susannah Tringe Photo: Aspergillus niger conidiospore by Kathie T. Hodges, Cornell.

179

 

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts Massachusetts Profile Massachusetts Massachusetts Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing

180

 

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Pennsylvania Profile Pennsylvania Pennsylvania Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing

Note: This page contains sample records for the topic "niger rwanda samoa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Regional Planning | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Planning Regional Planning Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov » Communities » Ocean Regional Planning Efforts Alias (field_alias) Apply California, Oregon, Washington Regional Ocean Partnership West Coast Governors' Alliance Regional Data Portal In Development U.S. Virgin Islands, Puerto Rico Regional Ocean Partnership U.S. Caribbean Regional Ocean Partnership-currently being formally established Regional Data Portal To be developed Georgia, Florida, North Carolina, South Carolina Regional Ocean Partnership Governors' South Atlantic Alliance Regional Data Portal Currently in development American Samoa, Commonwealth of the Northern Mariana Islands (CNMI), Federated States of Micronesia, Guam, Hawaii, Marshall Islands, Palau

182

RomanowiczFrenchRev.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

and Calibration of Mantle Structure at and Calibration of Mantle Structure at Global and Regional Scales Using
 Full-Waveform Seismic Tomography" Scott French! sfrench@seismo.berkeley.edu! Romanowicz Group! Berkeley Seismological Laboratory! UC Berkeley! NERSC BES Requirements for 2017! October 8-9, 2013! Gaithersburg, MD! Present and Future Computing Requirements Seismological Laboratory Berkeley University of California Project Description! PI: Prof. Barbara Romanowicz Berkeley Seismological Laboratory, UC Berkeley; Institute de Physique du Globe de Paris, Paris, France; Collège de France, Paris, France 1 / 8 1000 km Deep mantle Ocean Hawaii Marquesas Tahiti Samoa Pitcairn Macdonald Hotspot volcanic islands North Seismic shear-wave velocity

183

 

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Connecticut Profile Connecticut Connecticut Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing

184

Puerto Rico and the Outlying Areas Chapter 7 Background  

E-Print Network (OSTI)

States], Guam, the Commonwealth of the Northern Mariana Islands, and the Commonwealth of Puerto Rico, and as may be determined by the Secretary [of Commerce], such other possessions and areas over which the United States exercises jurisdiction, control, or sovereignty. Inclusion of other areas …shall be subject to the concurrence of the Secretary of State. ” Accordingly, for the 1990 census, the Bureau of the Census enumerated and tabulated data for the following entities, and treated each as the statistical equivalent of a State for consistency in its data presentations and tabulations: • American Samoa • Guam

unknown authors

1920-01-01T23:59:59.000Z

185

Observation of the Diurnal Cycle in the Low Troposphere of West Africa  

Science Conference Proceedings (OSTI)

The authors give an overview of the diurnal cycle of the low troposphere during 2006 at two different sites, Niamey (Niger) and Nangatchori (Benin). This study is partly based on the first observations of UHF wind profilers ever made in West ...

Marie Lothon; Frédérique Saïd; Fabienne Lohou; Bernard Campistron

2008-09-01T23:59:59.000Z

186

Industrial Oil Products Division List  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountryIndustrial Oil Products Division2013 Members241 Members as of July 1, 2013Abend, SvenKolb Distribution LtdHedingen, SwitzerlandAbraham, TimothyCargill IncHopkins, MN, USAAkinrinade, FrancisNational Open University, Niger

187

Application of Evapoclimatonomy to Monthly Surface Water Balance Calculations at the HAPEX-Sahel Supersites  

Science Conference Proceedings (OSTI)

In this paper a revised verstion of Lettau's evapoclimatonomy model is used to simulate climate in West Africa. The model is applied specifically to the study sites of the HAPEX-Sahel region in Niger, an international regional experiment to study ...

JoséA. Marengo; Sharon E. Nicholson; Andrew R. Lare; Bruno A. Monteny; Sylvie Galle

1996-04-01T23:59:59.000Z

188

The Potential of Infrared Satellite Data for the Retrieval of Saharan-Dust Optical Depth over Africa  

Science Conference Proceedings (OSTI)

Optical depth of Saharan dust derived from photometric measurements made during the dry season at a Sahelian site (Niamey, Republic of Niger) is compared with METEOSAT-2 radiance in the 10.5–12.5 ?m channel for different times of the daily cycle. ...

M. Legrand; J. J. Bertrand; M. Desbois; L. Menenger; Y. Fouquart

1989-04-01T23:59:59.000Z

189

A Political Ecology of Hydraulic Fracturing for Natural Gas in  

E-Print Network (OSTI)

[:] shale gas in the US, sand mines in Wisconsin, oil in the Ecuadoran Amazon, oil in the Niger Delta's Marcellus Shale Laura J. Stroup, Ph.D. Dept. of Geography, Texas State University Michael H. Finewood, Ph ! Background of Marcellus Shale Gas Play ! Current Events: The Case of PA ! Geography of Fracking in Study

Scott, Christopher

190

Effective sea-level rise and deltas: Causes of change and human dimension implications  

E-Print Network (OSTI)

deltas are the site of significant oil and gas accumulations and extraction as in the Niger, Magdalena rates of wetland loss resulting from ESLR are as high as 100 km2 /yr in the delta. Day et al., 2000 construction on the Volta River. Subsidence in the delta is attributed to the extraction of oil, which provides

New Hampshire, University of

191

License Exceptions Supplement No. 1 to Part 740 page 1 Export Administration Regulations September 28, 2001  

E-Print Network (OSTI)

Group Nuclear Suppliers Group Argentina X X X Australia X X X X Austria1 X X X Belgium X X X X Brazil X Netherlands New Zealand Nicaragua Niger Nigeria Norway Oman Pakistan Palau Panama Papua New Guinea Paraguay Group D [D: 1] [D: 2] [D: 3] [D: 4] Country National Nuclear Chemical & Missile Security Biological

Bernstein, Daniel

192

Strategies for Adapting to Climate Change in Rural Sub-Saharan Africa |  

Open Energy Info (EERE)

Adapting to Climate Change in Rural Sub-Saharan Africa Adapting to Climate Change in Rural Sub-Saharan Africa Jump to: navigation, search Name Strategies for Adapting to Climate Change in Rural Sub-Saharan Africa Agency/Company /Organization International Food Policy Research Institute Sector Land Focus Area Agriculture Topics Co-benefits assessment, GHG inventory Resource Type Publications Website http://www.ifpri.org/sites/def Country Burundi, Democratic Republic of Congo, Eritrea, Ethiopia, Kenya, Madagascar, Rwanda, Sudan, Tanzania, Uganda UN Region "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

193

Central African Regional Program for the Environment (CARPE) | Open Energy  

Open Energy Info (EERE)

the Environment (CARPE) the Environment (CARPE) Jump to: navigation, search Name Central African Regional Program for the Environment (CARPE) Agency/Company /Organization U.S. Agency for International Development, United States Forest Service, University of Maryland Sector Land Focus Area Forestry Topics Implementation, Policies/deployment programs, Background analysis Resource Type Dataset, Maps, Software/modeling tools Website http://carpe.umd.edu/ Country Gabon, Rwanda, Burundi, Sao Tome and Principe, Central African Republic, Democratic Republic of Congo, Republic of the Congo, Equatorial Guinea, Cameroon Middle Africa, Eastern Africa, Eastern Africa, Middle Africa, Middle Africa, Middle Africa, Middle Africa, Middle Africa, Middle Africa References Central African Regional Program for the Environment (CARPE)[1]

194

SSEE-Project to Develop a Rwandan National Strategy on Climate Change and  

Open Energy Info (EERE)

SSEE-Project to Develop a Rwandan National Strategy on Climate Change and SSEE-Project to Develop a Rwandan National Strategy on Climate Change and Low Carbon Development Jump to: navigation, search Name SSEE-Project to Develop a Rwandan National Strategy on Climate Change and Low Carbon Development Agency/Company /Organization United Kingdom Department for International Development, United Nations Development Programme (UNDP) Partner Smith School for Enterprise and Environment, University of Oxford Sector Climate, Energy, Land Topics Implementation, Low emission development planning, Policies/deployment programs Website http://www.smithschool.ox.ac.u Program Start 2010 Country Rwanda UN Region Middle Africa References SSEE-Project to Develop a Rwandan National Strategy on Climate Change and Low Carbon Development[1]

195

Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin | Open  

Open Energy Info (EERE)

Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Jump to: navigation, search Name Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Agency/Company /Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy, Land, Water Focus Area Non-renewable Energy, Agriculture, Buildings, Economic Development, Energy Efficiency, Forestry, Greenhouse Gas, Grid Assessment and Integration, Industry, Land Use, Offsets and Certificates, Transportation Topics Adaptation, Background analysis, Baseline projection, GHG inventory, Low emission development planning, -NAMA, Pathways analysis, Policies/deployment programs Program Start 2012 Program End 2013 Country Angola, Burundi, Cameroon, Central African Republic, Democratic Republic of Congo, Republic of Congo, Rwanda

196

CARPE-IUCN Small Grants Program | Open Energy Information  

Open Energy Info (EERE)

CARPE-IUCN Small Grants Program CARPE-IUCN Small Grants Program Jump to: navigation, search Name CARPE-IUCN Small Grants Program Agency/Company /Organization Central African Regional Program for the Environment (CARPE) Topics Finance Website http://www.iucn.org/fr/propos/ Country Burundi, Central African Republic, Chad, Democratic Republic of the Congo, Rwanda UN Region "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

197

 

U.S. Energy Information Administration (EIA) Indexed Site

US Virgin Islands US Virgin Islands Profile US Virgin Islands US Virgin Islands Profile Territory Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Reserves & Supply Imports & Exports

198

 

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia District of Columbia Profile District of Columbia District of Columbia Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing

199

 

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Louisiana Profile Louisiana Louisiana Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

200

 

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee Tennessee Profile Tennessee Tennessee Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

Note: This page contains sample records for the topic "niger rwanda samoa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Phases Energy Services County Electric Power Assn A N Electric Coop  

Open Energy Info (EERE)

Alliant Energy Alliant Energy Alpena Power Co Altamaha Electric Member Corp Amana Society Service Co Ambit Energy L P Ambit Energy L P Maryland Ambit Energy L P New York Ameren Energy Marketing Ameren Energy Marketing Illinois Ameren Illinois Company Ameren Illinois Company Illinois AmeriPower LLC American Electric Power Co Inc American Mun Power Ohio Inc American PowerNet American PowerNet District of Columbia American PowerNet Maine American PowerNet Maryland American PowerNet New Jersey American Samoa Power Authority American Transmission Systems Inc Amicalola Electric Member Corp Amigo Energy Anadarko Public Works Auth Anchorage Municipal Light and Power Aniak Light Power Co Inc Anoka Electric Coop Anthracite Power Light Anza Electric Coop Inc Appalachian Electric Coop

202

 

Gasoline and Diesel Fuel Update (EIA)

Overview Overview U.S. Territories: American Samoa | Guam | Northern Mariana Islands | Puerto Rico | U.S. Virgin Islands More State Data & Analysis by Source Petroleum Natural Gas Electricity Coal Renewable & Alternative Fuels Nuclear Environment Total Energy Summary Reports Household Energy Use State Electricity Summaries State Renewable Electricity Statistics State Nuclear Summaries Natural Gas Summary Statistics Today In Energy U.S. crude oil production growth contributes to global oil price stability in 2013 Jan 08, 2014 State Energy Profiles enhanced and renewables sections added Dec 19, 2013 See all state articles › Household Energy Use Arizona household graph See state fact sheets › U.S. Energy Mapping System U.S. Energy Mapping System Choose your energy view... Energy Infrastructure Biomass Coal Electricity

203

 

Gasoline and Diesel Fuel Update (EIA)

Alabama Alabama Profile Alabama Alabama Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

204

 

U.S. Energy Information Administration (EIA) Indexed Site

Florida Florida Profile Florida Florida Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

205

 

U.S. Energy Information Administration (EIA) Indexed Site

Guam Guam Profile Guam Guam Profile Territory Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Reserves & Supply Imports & Exports Distribution & Marketing

206

Obama Administration Delivers More than $60 Million for Weatherization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Obama Administration Delivers More than $60 Million for Obama Administration Delivers More than $60 Million for Weatherization Programs in Six States and Territories Obama Administration Delivers More than $60 Million for Weatherization Programs in Six States and Territories September 14, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced that the Department of Energy is providing more than $60 million in funding from the American Recovery and Reinvestment Act to expand weatherization assistance programs in American Samoa, Northern Arapaho Tribe, Northern Mariana Islands, Puerto Rico, Tennessee, and the U.S. Virgin Islands. The funding, along with additional funds to be disbursed after the grantees meet certain Recovery Act milestones, will help to weatherize nearly 17,000 homes, lowering energy costs for low-income

207

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

391 - 400 of 9,640 results. 391 - 400 of 9,640 results. Rebate On-Site Small Wind Incentive Program Note: On February 14, 2013, the New York Public Service Commission (PSC) issued [http://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId={87075233-68E0-4B64-A293-23D19BECB802} an order]... http://energy.gov/savings/site-small-wind-incentive-program Page OE Recovery Act Archive 2011 http://energy.gov/oe/information-center/recovery-act/oe-recovery-act-archive Article Obama Administration Delivers More than $60 Million for Weatherization Programs in Six States and Territories Recovery Act funding to expand weatherization assistance programs, create jobs and weatherize nearly 17,000 homes in American Samoa, Northern Arapahoe Tribe, Northern Mariana Islands, Puerto Rico, Tennessee and the

208

 

U.S. Energy Information Administration (EIA) Indexed Site

Mexico New Mexico Profile Mexico New Mexico Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

209

 

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Arkansas Profile Arkansas Arkansas Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

210

 

U.S. Energy Information Administration (EIA) Indexed Site

Georgia Georgia Profile Georgia Georgia Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

211

Northern Mariana Islands - Search - U.S. Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Northern Mariana Islands Northern Mariana Islands Profile Northern Mariana Islands Northern Mariana Islands Profile Territory Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Reserves & Supply Imports & Exports

212

 

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky Kentucky Profile Kentucky Kentucky Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

213

Guam - Search - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Guam Guam Profile Guam Guam Profile Territory Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Reserves & Supply Imports & Exports Distribution & Marketing

214

 

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Michigan Profile Michigan Michigan Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

215

 

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Nebraska Profile Nebraska Nebraska Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

216

 

Gasoline and Diesel Fuel Update (EIA)

Alabama Alabama Profile Alabama Alabama Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

217

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 14, 2009 September 14, 2009 Obama Administration Delivers More than $60 Million for Weatherization Programs in Six States and Territories Recovery Act funding to expand weatherization assistance programs, create jobs and weatherize nearly 17,000 homes in American Samoa, Northern Arapahoe Tribe, Northern Mariana Islands, Puerto Rico, Tennessee and the U.S. Virgin Islands September 14, 2009 DOE Delivers More than $354 Million for Energy Efficiency and Conservation Projects in 22 States Washington, DC - Energy Secretary Steven Chu announced today that more than $354 million in funding from the American Recovery and Reinvestment Act is being awarded to 22 states to support energy efficiency and conservation activities. Under the Department of Energy's Efficiency and Conservation

218

Property:CommercialAvgRate | Open Energy Information  

Open Energy Info (EERE)

CommercialAvgRate CommercialAvgRate Jump to: navigation, search Property Name CommercialAvgRate Property Type Number Description Commercial Average Rate Subproperties This property has the following 279 subproperties: A AEP Generating Company AEP Texas Central Company AEP Texas North Company AES Eastern Energy LP APN Starfirst, L.P. Accent Energy Holdings, LLC Alabama Municipal Elec Authority Alaska Electric & Energy Coop Alaska Energy Authority Alaska Power and Telephone Co Allegheny Electric Coop Inc Alliant Energy Ameren Energy Marketing Ameren Illinois Company American Electric Power Co., Inc. American Mun Power-Ohio, Inc American Samoa Power Authority American Transmission Systems Inc Anoka Electric Coop Appalachian Power Co Aquila Inc Aquila Inc (Missouri) Arizona Electric Pwr Coop Inc

219

Globally Averaged Atmospheric CFC-11 Concentrations: Monthly and Annual  

NLE Websites -- All DOE Office Websites (Extended Search)

Chlorofluorocarbons » Chlorofluorocarbons » Atmospheric CFC-11 Concentrations Globally Averaged Atmospheric CFC-11 Concentrations: Monthly and Annual Data for the Period 1975-1992 DOI: 10.3334/CDIAC/atg.db1010 data Data (DB1010) Investigator M. A. K. Khalil and R. A. Rasmussen Description This data set presents globally averaged atmospheric concentrations of chlorofluorocarbon 11, known also as CFC-11 or F-11 (chemical name: trichlorofluoromethane; formula: CCl3F). The monthly global average data are derived from flask air samples collected at eight sites in six locations over the period August 1980-July 1992. The sites are Barrow (Alaska), Cape Meares (Oregon), Cape Kumukahi and Mauna Loa (Hawaii), Cape Matatula (American Samoa), Cape Grim (Tasmania), Palmer Station, and the

220

clements-99.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

Nauru: The Second ARM Tropical Western Pacific Site Nauru: The Second ARM Tropical Western Pacific Site W. E. Clements, F. J. Barnes, and L. Jones ARM Tropical Western Pacific Program Office University of California Los Alamos National Laboratory Los Alamos, New Mexico M. Ivey Sandia National Laboratories Livermore, California A. Koontz Pacific Northwest National Laboratory Richland, Washington T. P. Ackerman and J. H. Mather The Pennsylvania State University University Park, Pennsylvania P. Lefale South Pacific Regional Environmental Progamme Apia, Western Samoa A. Pitcher and J. Cain Nauru Department of Island Development and Industry Nauru Introduction The U.S. Department of Energy's Atmospheric Radiation (a) Measurement (ARM) Program was created in 1989 as part of the U.S. Global Change Research Program to improve the treatment of atmospheric

Note: This page contains sample records for the topic "niger rwanda samoa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Atmospheric CO2 From Flask Air Samples at 10 Sites in the SIO Air Sampling  

NLE Websites -- All DOE Office Websites (Extended Search)

Flask Air Samples, SIO Network Flask Air Samples, SIO Network Atmospheric CO2 From Flask Air Samples at 10 Sites in the SIO Air Sampling Network Scripps Institution of Oceanography Monitoring Sites Scripps Institution of Oceanography Monitoring Sites Mauna Loa, Hawaii Mauna Loa weekly average CO2 concentrations derived from continuous air samples Barrow, Alaska American Samoa South Pole Daily average CO2 concentrations derived from continuous air samples Alert, NWT, Canada Cape Kumukahi Christmas Island Baring Head Kermadec Island La Jolla Pier La Jolla Pier weekly average CO2 concentrations derived from continuous air samples PDF Documentation available as Atmospheric Carbon Dioxide Concentrations at 10 Locations Spanning Latitudes 82°N to 90°S, (NDP-001a) For information on calibration and some additional literature, go to

222

Recovery Act State Summaries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act State Summaries Recovery Act State Summaries Recovery Act State Summaries Alabama Recovery Act State Memo Alaska Recovery Act State Memo American Samoa Recovery Act State Memo Arizona Recovery Act State Memo Arkansas Recovery Act State Memo California Recovery Act State Memo Colorado Recovery Act State Memo Connecticut Recovery Act State Memo Delaware Recovery Act State Memo District of Columbia Recovery Act State Memo Florida Recovery Act State Memo Georgia Recovery Act State Memo Guam Recovery Act State Memo Hawaii Recovery Act State Memo Idaho Recovery Act State Memo Illinois Recovery Act State Memo Indiana Recovery Act State Memo Iowa Recovery Act State Memo Kansas Recovery Act State Memo Kentucky Recovery Act State Memo Louisiana Recovery Act State Memo Maine Recovery Act State Memo

223

Guam Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guam Recovery Act State Memo Guam Recovery Act State Memo Guam Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful downpayment on the nation's energy and environmental future. The Recovery Act investments in Guam are supporting abroad range of clean energy projects, from solar power and wind. Through these investments, Guam's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Guam to play an important role in the new energy economy of the future. Guam Recovery Act State Memo More Documents & Publications GUAM RECOVERY ACT SNAPSHOT State Energy Efficient Appliance Rebate Program (SEEARP) American Recovery and Reinvestment Act (ARRA) Funding Opportunity Number: DE-FOA-0000119 American Samoa Recovery Act State Memo

224

U.S. DEPARTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lAI.CIJ) lAI.CIJ) U.S. DEPARTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:American Samoa Govemment· TEO PROJECT TITLE: State Energy Program· Annual Grant Page 1 of2 STATE : AS Funding Opportunity Announnment Number Procurement Instrument Number NEPA Control Number elD Number DE-FQA.()()()()643 DE-EEOCXl4509 GFO-OOO4509-001 GO Baud on my review orthe information concrrning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4SI.1A), I have made tbe rollowing determination: ex, EA, EIS APPENDIX AND ""UMBER: Description: A9 Information gathering, analysis, and dissemination A11 Technical advice and assistance to organizations Rational lor detennination: Infoonabon gathenng (indudlng, but not limited to, literature surveys, Inventanes, Site viSits, and

225

 

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Maryland Profile Maryland Maryland Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

226

 

U.S. Energy Information Administration (EIA) Indexed Site

Puerto Rico Puerto Rico Profile Puerto Rico Puerto Rico Profile Territory Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Reserves & Supply Imports & Exports Distribution & Marketing

227

 

U.S. Energy Information Administration (EIA) Indexed Site

Northern Mariana Islands Northern Mariana Islands Profile Northern Mariana Islands Northern Mariana Islands Profile Territory Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Reserves & Supply Imports & Exports

228

 

U.S. Energy Information Administration (EIA) Indexed Site

South Dakota South Dakota Profile South Dakota South Dakota Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing

229

 

U.S. Energy Information Administration (EIA) Indexed Site

Utah Utah Profile Utah Utah Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

230

 

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island Rhode Island Profile Rhode Island Rhode Island Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing

231

 

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Missouri Profile Missouri Missouri Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

232

 

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Overview U.S. Overview U.S. Territories: American Samoa | Guam | Northern Mariana Islands | Puerto Rico | U.S. Virgin Islands More State Data & Analysis by Source Petroleum Natural Gas Electricity Coal Renewable & Alternative Fuels Nuclear Environment Total Energy Summary Reports Household Energy Use State Electricity Summaries State Renewable Electricity Statistics State Nuclear Summaries Natural Gas Summary Statistics Today In Energy State Energy Profiles enhanced and renewables sections added Dec 19, 2013 Petroleum's share of Florida's electric generation mix dwindles as natural gas grows Dec 17, 2013 See all state articles › Household Energy Use Arizona household graph See state fact sheets › U.S. Energy Mapping System U.S. Energy Mapping System Choose your energy view... Energy Infrastructure Biomass Coal Electricity

233

 

U.S. Energy Information Administration (EIA) Indexed Site

Montana Montana Profile Montana Montana Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

234

 

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Alabama Profile Alabama Alabama Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

235

 

U.S. Energy Information Administration (EIA) Indexed Site

Texas Texas Profile Texas Texas Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

236

 

U.S. Energy Information Administration (EIA) Indexed Site

North Carolina North Carolina Profile North Carolina North Carolina Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing

237

U.S. States - Compare - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

U.S. States U.S. States Profile U.S. States U.S. States Profile State Profiles and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing

238

Non Annex B Countries List  

NLE Websites -- All DOE Office Websites (Extended Search)

Non Annex B Countries A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, Y, Z A Afghanistan (1949-2007) Albania (1933-2007) Algeria (1900-2007) American Samoa (1954-2007) Angola (1950-2007) Antarctic Fisheries (1970-2007) Antigua & Barbuda (1957-2007) Argentina (1887-2007) Armenia (1992-2007) Aruba (1986-2007) Azerbaijan (1992-2007) B Bahamas (1950-2007) Bahrain (1933-2007) Bangladesh (1972-2007) Barbados (1928-2007) Belarus (1992-2007) Belize (1950-2007) Benin (1958-2007) Bermuda (1950-2007) Bhutan (1970-2007) Bolivia (1928-2007) Bosnia-Herzegovinia (1992-2007) Botswana (1950-2007) Brazil (1901-2007) British Virgin Islands (1957-2007) Brunei (Darussalam) (1930-2007) Burkina Faso (1958-2007) Burundi (1962-2007) C Cambodia (1955-2007) Cameroon (1950-2007)

239

Property:IndustrialAvgRate | Open Energy Information  

Open Energy Info (EERE)

IndustrialAvgRate IndustrialAvgRate Jump to: navigation, search Property Name IndustrialAvgRate Property Type Number Description Industrial Average Rate Subproperties This property has the following 279 subproperties: A AEP Generating Company AEP Texas Central Company AEP Texas North Company AES Eastern Energy LP APN Starfirst, L.P. Accent Energy Holdings, LLC Alabama Municipal Elec Authority Alaska Electric & Energy Coop Alaska Energy Authority Alaska Power and Telephone Co Allegheny Electric Coop Inc Alliant Energy Ameren Energy Marketing Ameren Illinois Company American Electric Power Co., Inc. American Mun Power-Ohio, Inc American Samoa Power Authority American Transmission Systems Inc Anoka Electric Coop Appalachian Power Co Aquila Inc Aquila Inc (Missouri) Arizona Electric Pwr Coop Inc

240

Countries - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Countries Countries Glossary › FAQS › Overview Data Reports Analysis Briefs Countries Algeria Angola Argentina Australia Azerbaijan Brazil Canada China Colombia Congo (Brazzaville) Ecuador Egypt Gabon India Indonesia Iran Iraq Japan Kazakhstan Korea, South Kuwait Libya Malaysia Mexico Nigeria Norway Oman Qatar Russia Saudi Arabia Singapore South Africa Sudan and South Sudan Syria Thailand Turkey United Arab Emirates United Kingdom Venezuela Yemen Regional Caribbean Caspian Sea East China Sea Eastern Mediterranean Middle East & North Africa South China Sea Special Topics Emerging East Africa Energy OPEC Revenues Fact Sheet World Oil Transit Chokepoints World Regions Oil Production Oil Consumption Proved Reserves Click country for more information | Zoom Out | Zoom to: Zoom to Country: Afghanistan Albania Algeria American Samoa Angola

Note: This page contains sample records for the topic "niger rwanda samoa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ARM Tropical Western Pacific (TWP) Operations Management and Support: Securing ARM Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Western Pacific (TWP) Operations Tropical Western Pacific (TWP) Operations Management and Support: Securing ARM Data K. L. Nitschke South Pacific Regional Environment Programme Apia, Samoa L. Jones Los Alamos National Laboratory Los Alamos, New Mexico C. N. Long Pacific Northwest National Laboratory Richland, Washington Introduction The Tropical Western Pacific Office (TWPO) (a) has been tasked with providing operational management and support for three (b) climate station instrument facilities in the Tropical Western pacific (TWP) locale. The TWPO has the distinctive purview in ensuring data availability from two remote Pacific Islands and Australia to support the continued national and international scientific collaboration that exemplifies the Atmospheric Radiation Measurement (ARM) Program. Data from the international sites have been

242

EPA Launches New Online Mapping Tool for Environmental Impact Statements |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches New Online Mapping Tool for Environmental Impact Launches New Online Mapping Tool for Environmental Impact Statements EPA Launches New Online Mapping Tool for Environmental Impact Statements September 10, 2013 - 6:11pm Addthis Streets Imagery Topography Go To: Select a State/Territory Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming American Samoa Federated States of Micronesia Guam

243

Obama Administration Delivers More than $60 Million for Weatherization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Obama Administration Delivers More than $60 Million for Obama Administration Delivers More than $60 Million for Weatherization Programs in Six States and Territories Obama Administration Delivers More than $60 Million for Weatherization Programs in Six States and Territories September 14, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced that the Department of Energy is providing more than $60 million in funding from the American Recovery and Reinvestment Act to expand weatherization assistance programs in American Samoa, Northern Arapaho Tribe, Northern Mariana Islands, Puerto Rico, Tennessee, and the U.S. Virgin Islands. The funding, along with additional funds to be disbursed after the grantees meet certain Recovery Act milestones, will help to weatherize nearly 17,000 homes, lowering energy costs for low-income

244

Obama Administration Awards More than $119 Million for State Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19 Million for State Energy 19 Million for State Energy Programs in Seven States and Territories Obama Administration Awards More than $119 Million for State Energy Programs in Seven States and Territories August 14, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced more than $119 million in funding from the American Recovery and Reinvestment Act to support energy efficiency and renewable energy projects in Alabama, American Samoa, the District of Columbia, Illinois, Maryland, North Dakota, and Wyoming. Under DOE's State Energy Program, states and territories have proposed statewide plans that prioritize energy savings, create or retain jobs, increase the use of renewable energy, and reduce carbon pollution. "This funding will provide an important boost for state economies, help to

245

 

U.S. Energy Information Administration (EIA) Indexed Site

West Virginia West Virginia Profile West Virginia West Virginia Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing

246

 

U.S. Energy Information Administration (EIA) Indexed Site

New York New York Profile New York New York Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

247

 

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire New Hampshire Profile Hampshire New Hampshire Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing

248

U.S. Virgin Islands - Search - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

US Virgin Islands US Virgin Islands Profile US Virgin Islands US Virgin Islands Profile Territory Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Reserves & Supply Imports & Exports

249

 

U.S. Energy Information Administration (EIA) Indexed Site

Vermont Vermont Profile Vermont Vermont Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

250

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51 - 23660 of 26,764 results. 51 - 23660 of 26,764 results. Download CX-009127: Categorical Exclusion Determination Georgia Environmental Finance Authority's 2012 State Energy Program CX(s) Applied: A9, A11 Date: 08/30/2012 Location(s): Georgia Offices(s): Golden Field Office http://energy.gov/nepa/downloads/cx-009127-categorical-exclusion-determination Download CX-009133: Categorical Exclusion Determination New York Program Year 2012 Formula Grants - State Energy Program CX(s) Applied: A9, A11 Date: 08/07/2012 Location(s): New York Offices(s): Golden Field Office http://energy.gov/nepa/downloads/cx-009133-categorical-exclusion-determination Download CX-009138: Categorical Exclusion Determination American Samoa Government State Energy Program· Annual Grant CX(s) Applied: A9, A11 Date: 09/06/2012

251

Obama Administration Awards More than $119 Million for State Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Obama Administration Awards More than $119 Million for State Energy Obama Administration Awards More than $119 Million for State Energy Programs in Seven States and Territories Obama Administration Awards More than $119 Million for State Energy Programs in Seven States and Territories August 14, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced more than $119 million in funding from the American Recovery and Reinvestment Act to support energy efficiency and renewable energy projects in Alabama, American Samoa, the District of Columbia, Illinois, Maryland, North Dakota, and Wyoming. Under DOE's State Energy Program, states and territories have proposed statewide plans that prioritize energy savings, create or retain jobs, increase the use of renewable energy, and reduce

252

Energy Savings Performance Contract Federal Financing Specialists |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Savings Performance Contract Federal Financing Specialists Energy Savings Performance Contract Federal Financing Specialists Energy Savings Performance Contract Federal Financing Specialists October 7, 2013 - 1:38pm Addthis The Federal Energy Management Program's Federal financing specialists (FFSs) help agencies launch energy savings performance contract (ESPC) projects. These specialists assist agencies by: Explaining performance contracting to site staff and management Determining whether a ESPC project is feasible Forming an agency acquisition team Determining agency project decision makers Partnering with energy service companies. Contact a FEMP FFS below to get started with an ESPC project. Contacts Name States Served Scott Wolf 360-866-9163 Serving: Montana, Wyoming, Utah, Colorado, North Dakota, South Dakota, Nebraska, Kansas, Minnesota, New Mexico, Alaska, Washington, Oregon, Idaho, California, Nevada, Arizona, Hawaii, North Marianas, Palau, Guam, American Samoa Regions

253

Phases Energy Services County Electric Power Assn A N Electric Coop  

Open Energy Info (EERE)

Alpena Power Co Alpena Power Co Altamaha Electric Member Corp Amana Society Service Co Ambit Energy L P Ambit En ergy L P Maryland Ambit Energy L P New York Ameren Energy Marketing Ameren Energy Marketing Illinois Ameren Illinois Company Ameren Illinois Company Illinois AmeriPower LLC American Electric Power Co Inc American Mun Power Ohio Inc American PowerNet American PowerNet District of Columbia American PowerNet Maine American PowerNet Maryland American PowerNet New Jersey American Samoa Power Authority American Transmission Systems Inc Amicalola Electric Member Corp Amigo Energy Anadarko Public Works Auth Anchorage Municipal Light and Power Aniak Light Power Co Inc Anoka Electric Coop Anthracite Power Light Anza Electric Coop Inc Appalachian Electric Coop

254

 

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Arizona Profile Arizona Arizona Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

255

 

U.S. Energy Information Administration (EIA) Indexed Site

California California Profile California California Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

256

 

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Ohio Profile Ohio Ohio Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

257

 

U.S. Energy Information Administration (EIA) Indexed Site

Virginia Virginia Profile Virginia Virginia Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

258

 

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin Wisconsin Profile Wisconsin Wisconsin Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing Consumption & Expenditures

259

Puerto Rico - Search - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Puerto Rico Puerto Rico Profile Puerto Rico Puerto Rico Profile Territory Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Reserves & Supply Imports & Exports Distribution & Marketing

260

Countries - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Countries Countries Glossary › FAQS › Overview Data Reports Analysis Briefs Countries Algeria Angola Argentina Australia Azerbaijan Brazil Canada China Colombia Congo (Brazzaville) Ecuador Egypt Gabon India Indonesia Iran Iraq Japan Kazakhstan Korea, South Kuwait Libya Malaysia Mexico Nigeria Norway Oman Qatar Russia Saudi Arabia Singapore South Africa Sudan and South Sudan Syria Thailand Turkey United Arab Emirates United Kingdom Venezuela Yemen Regional Caribbean Caspian Sea East China Sea Eastern Mediterranean Middle East & North Africa South China Sea Special Topics Emerging East Africa Energy OPEC Revenues Fact Sheet World Oil Transit Chokepoints World Regions Oil Production Oil Consumption Proved Reserves Click country for more information | Zoom Out | Zoom to: Zoom to Country: Afghanistan Albania Algeria American Samoa Angola

Note: This page contains sample records for the topic "niger rwanda samoa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

1  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Pacific 2000 Western Pacific 2000 W. E. Clements, F. J. Barnes, L. Jones, and A. Haruta University of California Los Alamos National Laboratory Los Alamos, New Mexico M. Ivey Sandia National Laboratories Albuquerque, New Mexico P. Lefale South Pacific Regional Environment Programme Apia, Samoa Introduction The Atmospheric Radiation Measurement (ARM) Program's Tropical Western Pacific (TWP) Program is currently operating two Atmospheric Radiation and Cloud Stations (ARCS) in the TWP locale. The first ARCS site was installed on Los Negros Island in Manus Province, Papua New Guinea (PNG), in October 1996. The Tropical Western Pacific Program Office (TWPPO) and the PNG National Weather Service (NWS) have collaborated in operating the Manus site since its installation. Located on Nauru

262

Stakeholder Engagement and Outreach: Wind Powering America Past Workshops  

Wind Powering America (EERE)

Events Events Printable Version Bookmark and Share Past Events Wind Powering America Past Workshops This page documents many of the Wind Powering America workshops that have been held across the United States. Audio visual files and text versions of Wind Powering America's monthly webinars are available below and as a series. Filter Past Events Use the drop down lists below to filter the list of past events. Select a Date Range Select a Date Range within 6 months within 1 yr over 1 year and/or Select a Location Select a Location All States Alabama Alaska American Samoa Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Guam Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi

263

Property:EIA/861/ActivityBundledServices | Open Energy Information  

Open Energy Info (EERE)

ActivityBundledServices ActivityBundledServices Jump to: navigation, search This is a property of type Boolean. Description: Activity Bundled Services Entity provides bundled services (Y or N) [1] References ↑ EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA/861/ActivityBundledServices" Showing 25 pages using this property. (previous 25) (next 25) A Ajo Improvement Co + true + Alabama Power Co + true + Amana Society Service Co + true + American Samoa Power Authority + true + Atlantic City Electric Co + true + Auburn Board of Public Works + true + Avista Corp + true + B Bamberg Board of Public Works + true + Barrow Utils & Elec Coop, Inc + true + Basin Electric Power Coop + true + Borough of Wampum, Pennsylvania (Utility Company) + true +

264

Darwin: The Third DOE ARM TWP ARCS Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Darwin: The Third DOE ARM TWP ARCS Site Darwin: The Third DOE ARM TWP ARCS Site W. E. Clements and L. Jones Los Alamos National Laboratory, Los Alamos, New Mexico T. Baldwin Special Services Unit Australian Bureau of Meteorology Melbourne, Australia K. Nitschke South Pacific Regional Environment Programme Apia, Samoa Introduction The U.S. Department of Energy's (DOE's) Atmospheric Radiation Measurement (ARM) Program began operations in its Tropical Western Pacific (TWP) locale in October 1996 when the first Atmospheric Radiation and Cloud Station (ARCS) began collecting data on Manus Island in Papua New Guinea (PNG). Two years later, in November 1998 a second ARCS began operations on the island of Nauru in the Central Pacific. Now a third ARCS has begun collecting data in Darwin, Australia. See Figure 1 for

265

Categorical Exclusion Determinations: A11 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 6, 2012 September 6, 2012 CX-009177: Categorical Exclusion Determination Oregon-County-Lane CX(s) Applied: A9, A11, B2.5, B5.1, B5.23 Date: 09/06/2012 Location(s): Oregon Offices(s): Energy Efficiency and Renewable Energy September 6, 2012 CX-009150: Categorical Exclusion Determination Guam State Energy Program Formula Grant CX(s) Applied: A9, A11 Date: 09/06/2012 Location(s): Guam Offices(s): Golden Field Office September 6, 2012 CX-009147: Categorical Exclusion Determination Delaware State Energy Program Formula Grant Application CX(s) Applied: A9, A11 Date: 09/06/2012 Location(s): Delaware Offices(s): Golden Field Office September 6, 2012 CX-009138: Categorical Exclusion Determination American Samoa Government State Energy Program· Annual Grant CX(s) Applied: A9, A11 Date: 09/06/2012

266

U.S DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DEIEIU.fiNATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEIEIU.fiNATION DEIEIU.fiNATION RECIPIENT:American Samoa Territorial Energy Office PROJECT TITLE: Renewable Energy: Ground Mounted Photovoltaic Grid System Page 1 of2 STATE: AS Funding Opportunity Announ~tmeDt Number Procurement Instrument Number NEPA Control Number CIO Number DE-EEOOOO218 GF0-0000218-006 0 Based on my review oflhe information concerning tbe proposed attion, as NEPA Compliance Officer (authorized under DOE Order 451.1A),1 h .... e made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to oonserve energy. demonstrate potential energy conservation, and promote energy-efficiency thai do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

267

Rainforest composition and succession on a South Pacific island  

E-Print Network (OSTI)

Interest in the dynamics and ecology of tropical forests has increased in recent years. However, the vast majority of studies undertaken by researchers in tropical environments have focused on neotropical forests and ignored old-world paleotropical forests. The rainforest on the Island of Tutuila, American Samoa, is a mixed-species paleotropical rainforest. Because much of the island is still covered by mature, native tropical rainforest, Tutuila represents one of the best locations to study paleotropical rainforest in the South Pacific. This thesis reports on the tree composition of different forest communities on Tutuila and employs indirect ordination tools such as detrended correspondence analysis (DCA) to describe two previously unidentified forest communities. This thesis also identifies the successional pathway followed by the rainforest on Tutuila as it regenerates in abandoned agricultural sites and reverts into mature forest stands.

Heggie, Travis Wade

2001-01-01T23:59:59.000Z

268

West African Clean Energy Gateway-Resource Assessment | Open Energy  

Open Energy Info (EERE)

African Clean Energy Gateway-Resource Assessment African Clean Energy Gateway-Resource Assessment Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo SWERA-thumb.jpg The SWERA landing page allows for the quick browsing of global data layers.

269

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2010 [Facility News] 8, 2010 [Facility News] Europeans Keen to Hear About Effects of Dust Using Data from Africa Bookmark and Share In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. Researcher Xiaohong Liu from Pacific Northwest National Laboratory was

270

ARM - Datastreams - rad  

NLE Websites -- All DOE Office Websites (Extended Search)

Datastreamsrad Datastreamsrad Documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : RAD Radiation measurements at AMF/Niamey, Niger/S1 Active Dates 2006.01.13 - 2008.12.13 Measurement Categories Radiometric Originating Instrument Radiation Measurements at AMF (RAD) Measurements Only measurements considered scientifically relevant are shown below by default. Show all measurements Measurement Units Variable Altitude above mean sea level m alt Base time in Epoch seconds since 1970-1-1 0:00:00 0:00 base_time Longwave broadband downwelling irradiance Downwelling Longwave Hemispheric Irradiance, Pyrgeometer W/m^2 down_long_hemisp ( time ) Downwelling Pyrgeometer Case Thermistor Resistance Kohms down_long_hemisp_case_resist ( time )

271

Could a Common Household Fungus Reduce Oil Imports? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a Common Household Fungus Reduce Oil Imports? a Common Household Fungus Reduce Oil Imports? Could a Common Household Fungus Reduce Oil Imports? June 21, 2011 - 11:37am Addthis A view of Aspergillus niger with the fungus’ DNA highlighted in green | Photo Courtesy of: PNNL. A view of Aspergillus niger with the fungus' DNA highlighted in green | Photo Courtesy of: PNNL. Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy What does this mean for me? The Department's Pacific Northwest National Laboratory (PNNL) are working to harness the natural process that spoils fruits and vegetables as a way to make fuel and other petroleum substitutes from the parts of plants that we can't eat. The genetic bases of the behaviors and abilities of these two industrially relevant fungal strains will allow researchers to exploit

272

ECOWAS Clean Energy Gateway-Links | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » ECOWAS Clean Energy Gateway-Links Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo

273

ECOWAS Clean Energy Gateway-Policy/ProgramDesign | Open Energy Information  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway-Policy/ProgramDesign ECOWAS Clean Energy Gateway-Policy/ProgramDesign Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo Background → Design → Implementation →

274

ECOWAS Clean Energy Gateway-News | Open Energy Information  

Open Energy Info (EERE)

News News Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo Regional News Renewable Energy News Today-West Africa Renewable Energy News Failed to load RSS feed from http://renewableenergy.einnews.com/xml/west-africa/: Error fetching URL: Operation timed out after 5000 milliseconds with 0 bytes received

275

Gateway:ECOWAS Clean Energy Gateway | Open Energy Information  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway ECOWAS Clean Energy Gateway Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo West Africa Organizations, Programs, and Tools Countries (15)

276

Could a Common Household Fungus Reduce Oil Imports? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could a Common Household Fungus Reduce Oil Imports? Could a Common Household Fungus Reduce Oil Imports? Could a Common Household Fungus Reduce Oil Imports? June 21, 2011 - 11:37am Addthis A view of Aspergillus niger with the fungus’ DNA highlighted in green | Photo Courtesy of: PNNL. A view of Aspergillus niger with the fungus' DNA highlighted in green | Photo Courtesy of: PNNL. Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy What does this mean for me? The Department's Pacific Northwest National Laboratory (PNNL) are working to harness the natural process that spoils fruits and vegetables as a way to make fuel and other petroleum substitutes from the parts of plants that we can't eat. The genetic bases of the behaviors and abilities of these two industrially relevant fungal strains will allow researchers to exploit

277

ECOWAS Clean Energy Gateway-Transportation | Open Energy Information  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway-Transportation ECOWAS Clean Energy Gateway-Transportation Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo Introduction→ Step 1 Step 2 Step 3 Step 4

278

ECOWAS Clean Energy Gateway-About | Open Energy Information  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway-About ECOWAS Clean Energy Gateway-About Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo The ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE) is

279

Energy System and Scenario Analysis Toolkit | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo What analysis tools and methods can I use to study my country's energy system? Understanding approaches

280

ECOWAS Clean Energy Gateway-Organizations and Networks | Open Energy  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway-Organizations and Networks ECOWAS Clean Energy Gateway-Organizations and Networks Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo Registered Technical and Research Organizations

Note: This page contains sample records for the topic "niger rwanda samoa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

African Biofuel & Renewable Energy Fund (ABREF) | Open Energy Information  

Open Energy Info (EERE)

Biofuel & Renewable Energy Fund (ABREF) Biofuel & Renewable Energy Fund (ABREF) Jump to: navigation, search Name African Biofuel & Renewable Energy Fund (ABREF) Agency/Company /Organization African Biofuel & Renewable Energy Compnay (ABREC) Sector Energy Focus Area Renewable Energy, Biomass, - Biofuels Website http://www.bidc-ebid.com/en/fo Country Benin, Burkina Faso, Cape Verde, Ivory Coast, Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali, Niger, Nigeria, Senegal, Sierra Leone, Togo Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa References African Biofuel & Renewable Energy Fund (ABREF)[1]

282

BioCarbon Fund Project Portfolio | Open Energy Information  

Open Energy Info (EERE)

Portfolio Portfolio Jump to: navigation, search Name BioCarbon Fund Project Portfolio Agency/Company /Organization World Bank Sector Land Focus Area Forestry Topics Market analysis, Policies/deployment programs, Background analysis Website http://wbcarbonfinance.org/Rou Country Albania, China, Colombia, Costa Rica, Ethiopia, Honduras, India, Kenya, Madagascar, Mali, Moldova, Nicaragua, Niger, Uganda Southern Europe, Eastern Asia, South America, Central America, Eastern Africa, Central America, Southern Asia, Eastern Africa, Eastern Africa, Western Africa, Eastern Europe, Central America, Western Africa, Eastern Africa References BioFund Projects[1] Background "The BioCarbon Fund provides carbon finance for projects that sequester or conserve greenhouse gases in forests, agro- and other ecosystems. Through

283

National Action Programmes on Desertification | Open Energy Information  

Open Energy Info (EERE)

Programmes on Desertification Programmes on Desertification Jump to: navigation, search Name National Action Programmes on Desertification Agency/Company /Organization United Nations Convention to Combat Desertification Sector Land Focus Area Forestry, Agriculture Topics Co-benefits assessment, GHG inventory, Policies/deployment programs, Background analysis Resource Type Publications Website http://www.unccd.int/actionpro Country Algeria, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Chad, Democratic Republic of Congo, Djibouti, Egypt, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Kenya, Lesotho, Madagascar, Malawi, Mali, Mauritania, Morocco, Mozambique, Namibia, Niger, Nigeria, Senegal, South Africa, Sudan, Swaziland, Tanzania, Togo, Tunisia, Uganda, Zambia, Zimbabwe

284

Towards a sustainable future for Africa. Improved natural resources management under the development fund for Africa, 1987 to 1993. Technical paper  

SciTech Connect

Since 1987. A.I.D.'s Development Fund for Africa (DFA) has provided over $300 million to programs supporting environmentally sound development in Africa. The programs have focused on three priority areas -- sustainable agriculture, tropical forestry, and biodiversity -- and have been directed not, as in the past, at helping individual farmers but at promoting the systemic institutional, technical, economic, and political changes needed to support improved natural resource management. The report outlines and exemplifies experiences and successes to date under the DFA and the Africa Bureau's Plan for Supporting Natural Resources in Sub-Saharan Africa. The programs support the work of PVO's at the community level, provide technical assistance to government agencies and others involved in managing the natural resource base, support host-country initiatives in natural resource planning and management, and provide incentives for changing underlying policies such as land tenure. A major initiative has been support for the National Environmental Action Plan (NEAP) process in Madagascar, Uganda, The Gambia, and Rwanda. The report also notes work underway to support other U.S. concerns such as the protection of elephant habitats and the mitigation of global climate change.

Not Available

1993-04-01T23:59:59.000Z

285

Periodic Inspections of Concrete-Armored Coastal Structures  

E-Print Network (OSTI)

information on the long-term structural performance of selected concrete-armored navigation structures to their environment. Inspections of coastal structures at Ofu Harbor, American Samoa; Nawiliwili, Laupahoehoe, and Kahului Harbors, HI; and Manasquan Inlet, NJ, are discussed herein. The response of stone-armored coastal structures to their environment was presented in ERDC/CHL CHETN-III-65. OVERVIEW: In the “Periodic Inspections ” work unit of the Monitoring Completed Navigation Projects (MCNP) Program, selected coastal navigation structures are periodically monitored to gain an understanding of their long-term structural response. Periodic data sets are evaluated to improve knowledge in design, construction, and maintenance of both existing and proposed coastal navigation projects, and will help avoid repeating past designs that have failed and/or resulted in high maintenance costs. Low-cost remote sensing tools and techniques, with limited ground truthing surveys, are the primary inspection tools used in the periodic monitoring efforts. Most periodic inspections consist of capturing above-water conditions of the structures at periodic intervals using high-resolution aerial photography. Structural changes (primary armor unit movement) are quantified through photogrammetric techniques. When a coastal structure is photographed at low

Robert R. Bottin

2003-01-01T23:59:59.000Z

286

Grantee Total Number of Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

287

ARRA Homes Weatherized by Grantee | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Homes Weatherized by Grantee Homes Weatherized by Grantee ARRA Homes Weatherized by Grantee Homes Weatherized by Grantee through 11/30/2011 (Calendar Year) Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638

288

Environmental Measurements Laboratory. Environmental report, September 1, 1980-March 1, 1981  

SciTech Connect

This report presents current information from the EML environmental programs, the Air Monitoring Section of the Bhabha Atomic Research Centre in India, the NASA Lewis Research Center and the Radiological and Environmental Research Division at Argonne National Laboratory. The initial section consists of interpretive reports and notes dealing with global movement of radioactive debris from nuclear tests, vertical distribution of short-lived radionuclides in the lower stratosphere at the end of 1980, stratospheric radionuclide and trace gas inventories, plutonium isotopes in stratospheric filtered air, sulfur dioxide measurements in New York City, estimates of lead, manganese, aluminum and iron in atmospheric deposition at American Samoa, chemical composition of deposition at seven US locations, intercomparison of trace element analyses of commercially available reference materials, evaluation of analytical methods for polycyclic aromatic hydrocarbons in sediment, and quality control assessments of radionuclide analyses of surface air filters, biological and deposition samples and of chemical analyses of precipitation. Subsequent sections include tabulations of Sr-90 fallout, chemical constituents of wet and dry deposition, radionuclides and trace metals in surface air, radioactivity and trace gases sampled in the stratosphere by aircraft and balloons, Sr-90 in San Francisco and New York diet, milk and tap water, and Cs-137 in Chicago foods. A bibliography of recent publications related to environmental studies is also presented.

Hardy, E.P. Jr.

1981-05-01T23:59:59.000Z

289

Public works for water and power development and energy research appropriations for fiscal year 1978. Part I. Corps of Engineers: Lower Mississippi Valley Division; Missouri River Division; North Central Division; Pacific Ocean Division; South Pacific Division; Southwestern Division. Hearings before a Committee on Appropriations, United States Senate, Ninety-Fifth Congress, H. R. 7553  

SciTech Connect

Hearings on Public Works appropriations for fiscal year 1978 were conducted. On February 21, 1977, statements were heard from representatives of the Army Corps of Engineers in support of funds requested for water resources development projects in the Lower Mississippi Valley. On that same date, representatives from the North Central Division of the Corps of Engineers spoke in behalf of their request for funds for 1978. The area covers the north central U.S., from Montana to the St. Lawrence River, and from Canada to within 50 miles of St. Louis. On February 23, 1977, statements were heard from representatives of the South Pacific Division. This area encompasses the states of California, Nevada, Utah, Arizona, and portions of the five adjoining states. The Pacific Ocean Division representatives appeared on that same date before the Senate subcommittee. That area extends over the Pacific Ocean from Hawaii to territories of American Samoa and Guam and the Division is responsible for certain regulatory functions in the navigable waters of the Trust Territory of the Pacific Islands. On February 24, 1977, the subcommittee of the Committee on Appropriations heard representatives of the Southwestern Division covering portions of 8 states. Also on that date, representatives of the Missouri River Division (Nebraska and parts of 9 other states) presented statements concerning the operation of that system in order to justify that request for funds. (MCW)

1977-01-01T23:59:59.000Z

290

ARM Aerosol Working Group Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

and MFRSR Measurements ARM STM 2008 Norfolk, VA Connor Flynn 1 , Annette Koontz 1 , Anne Jefferson 2 , Jim Barnard 1 , Sally McFarlane 1 1 Pacific Northwest National Laboratory 2 CIRES, University of Colorado, Boulder Progress towards ARM DOE 2008 Performance Metric 3 & 4 * Produce and make available new continuous time series of aerosol total column depth, based on results from the AMF deployment in Niger, Africa. * Produce and make available new continuous time series of retrieved dust properties, based on results from the AMF deployment in Niger, Africa. 0 100 200 300 400 0 20 40 60 80 100 ITF movement and surface RH % RH day of year (2006) 0 100 200 300 400 0 50 100 150 200 250 300 350 day of year wind direction (N = 0, E = 90) 2 4 6 8 10 12 14 Wind speed m/s 0 100 200 300 1.4 1.6 1.8 2 MFRSR Vo for filter2, Niamey

291

JGR-Atmospheres Papers from the RADAGAST Research Team  

NLE Websites -- All DOE Office Websites (Extended Search)

JGR-Atmospheres Papers from the RADAGAST Research Team JGR-Atmospheres Papers from the RADAGAST Research Team Bharmal, N.A., A. Slingo, G.J. Robinson, and J.J. Settle, 2009: Simulation of surface and top of atmosphere thermal fluxes and radiances from the RADAGAST experiment. Journal of Geophysical Research-Atmospheres, 114, doi:10.1029/2008JD010504, in press. Kollias, P., M.A. Miller, K.L. Johnson, M.P. Jensen, and D.T. Troyan, 2009: Cloud, thermodynamic, and precipitation observations in West Africa during 2006. Journal of Geophysical Research- Atmospheres, 114, doi: 10.1029/2008JD010641, in press. McFarlane, S.A., E.I. Kassianov, J. Barnard, C. Flynn, and T. Ackerman, 2009: Surface shortwave aerosol forcing during the ARM Mobile Facility deployment in Niamey, Niger. Journal of Geophysical Research-Atmospheres, 114, doi: 10.1029/2008JD010491, 17 pages.

292

ARM - Mobile Aerosol Observing System  

NLE Websites -- All DOE Office Websites (Extended Search)

FacilitiesMobile Aerosol Observing System FacilitiesMobile Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Aerosol Observing System Intensive aerosol observations conducted on the campus of Brookhaven National Laboratory on Long Island, New York, using the ARM Mobile Aerosol Observing System. Intensive aerosol observations conducted on the campus of Brookhaven

293

Impact Assessment Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Impact Assessment Toolkit Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png

294

Creating an Evergreen Agriculture in Africa: for Food Security and  

Open Energy Info (EERE)

Creating an Evergreen Agriculture in Africa: for Food Security and Creating an Evergreen Agriculture in Africa: for Food Security and Environmental Resilience Jump to: navigation, search Name Creating an Evergreen Agriculture in Africa: for Food Security and Environmental Resilience Agency/Company /Organization World Agroforestry Centre Partner Program on Forests Sector Land Focus Area Forestry, Agriculture Topics Co-benefits assessment, Policies/deployment programs, Background analysis Resource Type Publications, Lessons learned/best practices Website http://www.profor.info/profor/ Country Niger, Malawi, Zambia UN Region "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

295

ARM - AMF2 Architecture  

NLE Websites -- All DOE Office Websites (Extended Search)

Architecture Architecture AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 AMF2 Architecture The core AMF2 instrumentation is designed to operate out of modules; small independent climate controlled systems that house instrument computers, data loggers and other support equipment. This design feature sets the AMF2 apart in its flexibility and mobility at deployment sites.

296

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Desert Dust Determines Aerial Spread of Thunderstorm Clouds Desert Dust Determines Aerial Spread of Thunderstorm Clouds Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Zeng X, W Tao, SW Powell, RA Houze, P Ciesielski, N Guy, H Pierce, and T Matsui. 2013. "A comparison of the water budgets between clouds from AMMA and TWP-ICE." Journal of the Atmospheric Sciences, 70(2), doi:10.1175/JAS-D-12-050.1. The sun, seen through a dusty atmosphere, sets at Niamey, the capital of Niger, which is located in the African Sahara. Anvil clouds that accompany thunderstorms. Contrasts often provide unique perspectives, and scientists seize any such opportunity-when it arises. In a new research paper, published in the Journal of Atmospheric Sciences,

297

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Sunphotometer to Obtain Additional Aerosol Data in Niamey Sunphotometer to Obtain Additional Aerosol Data in Niamey Bookmark and Share Located nearby the AMF ground instruments, the sunphotometer, in the foreground, requires an unobstructed hemispheric view of the sky to obtain its measurements. Located nearby the AMF ground instruments, the sunphotometer, in the foreground, requires an unobstructed hemispheric view of the sky to obtain its measurements. In early August, a new Cimel sunphotometer (CSPHOT) was deployed at the ARM Mobile Facility site in Niamey, Niger, as part of the ongoing RADAGAST field campaign. The CSPHOT measures the solar and sky radiance at various wavelengths in the visible and near-infrared spectrum (340, 380, 440, 500, 670, 870, 936, 1020 nm). From these measurements, a number of aerosol

298

ECOWAS Clean Energy Gateway-Finance | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » ECOWAS Clean Energy Gateway-Finance Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png

299

1  

NLE Websites -- All DOE Office Websites (Extended Search)

Dust Properties Derived from Multi-Filter Rotating Dust Properties Derived from Multi-Filter Rotating Shadowband Radiometer Data in Niamey E. Kassianov, T. Ackerman, J. Barnard, C. Flynn, and S. McFarlane Pacific Northwest National Laboratory Richland, Washington Introduction One of the key uncertainties in the earth's radiation balance is the effect of dust on radiative fluxes (aerosol radiative forcing), which in turn affects climatic processes on both planetary and local scales (e.g., Intergovernmental Panel on Climate Change 2001; Sokolik et al. 2001). Since Saharan dust is one of the main sources of dust over the globe, its radiative effect has long been the subject of intensive studies. Recently, the ARM Mobile Facility (AMF) was deployed to Niamey, Niger, to participate in a large field campaign directed at elucidating the radiative effect of Saharan dust

300

1  

NLE Websites -- All DOE Office Websites (Extended Search)

Background Climatology for the Atmospheric Background Climatology for the Atmospheric Radiation Measurement Program Mobile Facility Deployment in Niamey: Mean Annual Cycle and 2004-2005 Interannual Variability P.J. Lamb and M. Issa Lélé Cooperative Institute for Mesoscale Meteorological Studies The University of Oklahoma Norman, Oklahoma Abstract This study is comprised of two parts. The first part provides the long-term mean annual cycle context for the deployment of Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) in Niamey, Niger, Africa, during the entire year of 2006. Documentation includes the annual cycles (calendar month basis) of the following surface meteorological variables that will be important for the ARM deployment-rainfall, visibility (proxy for atmospheric dust), vapor pressure (proxy for column

Note: This page contains sample records for the topic "niger rwanda samoa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ARM_Overview_black_43.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

- In and Out of Africa - In and Out of Africa Gary Robinson, Tony Slingo, Nazim Bharmal and Jeff Settle Environmental Systems Science Centre, Reading University, UK RADAGAST is a collaborative project, involving UK, US and European scientists, to investigate the radiative divergence across the atmosphere. West Africa was chosen as the study area because the combination of wide range of column water vapour, episodic wind-generated dust events and seasonal aerosols from biomass burning presents a particular challenge to radiative transfer models. The primary data inputs are top-of-atmosphere narrow and broad-band observations from METEOSAT Second Generation (MSG) satellites and surface observations from the ARM Mobile Facility (AMF), which was deployed throughout 2006 at Niamey, Niger, in support of RADAGAST.

302

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2006 [Facility News] January 15, 2006 [Facility News] ARM Mobile Facility Begins Year-Long Deployment in Africa Bookmark and Share Beginning on January 9, the ARM Mobile Facility began officially collecting atmospheric data from a location at the airport in Niamey, Niger, Africa. As part of the RADAGAST field campaign, the AMF will measure the effects of absorbing aerosols from desert dust in the dry season, and the effects of deep convective clouds and associated moisture loadings on the transmission of atmospheric radiation during the summer monsoon. These measurements will be combined with associated satellite data to provide the first well-sampled direct estimates of the energy balance across the atmosphere. This dataset will provide valuable information to an ongoing effort called

303

ARM - Datastreams - twrcam3m  

NLE Websites -- All DOE Office Websites (Extended Search)

Datastreamstwrcam3m Datastreamstwrcam3m Documentation Data Quality Plots Citation DOI: 10.5439/1025311 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : TWRCAM3M Three Meter Tower: video camera Active Dates 2002.03.25 - 2013.07.09 Measurement Categories Surface Properties Originating Instrument Tower Camera (TWRCAM) Measurements The measurements below provided by this product are those considered scientifically relevant. Measurement Variable Surface condition jpg Locations North Slope Alaska NSA C2 Browse Data Central Facility, Atqasuk AK ARM Mobile Facility FKB M1 Browse Data Black Forest, Germany GRW M1 Browse Data Graciosa Island, Azores, Portugal NIM M1 Browse Data Niamey, Niger

304

Communications: NREL PowerPoint Presentation Template with Light Background  

NLE Websites -- All DOE Office Websites (Extended Search)

AMF/GNDRAD Reconfiguration: AMF/GNDRAD Reconfiguration: Moving the White CoolCell ARM Radiative Processes Working Group Analyses by Mary Anderberg & Tom Stoffel March 10, 2008 ACRF Upwelling Irradiances Infrared UIR Shortwave US Pt Reyes, CA Banizoumbou Niger AMF Upwelling Irradiances Warren et al. visits FKB... BCR 01402: Move 7 m before on 10 m Tower AMF Upwelling Irradiances July 14, 2007 UIR US AMF Upwelling Irradiances July 15, 2007 UIR US AMF Upwelling Irradiances August 1, 2007 UIR US AMF Upwelling Irradiances August 5, 2007 UIR US Surface Albedo (AM) Surface Albedo (PM) Radiometer View Factors * * * 90% Irradiance Contribution Height (AGL) Effective Radius 3 m 9 m 10 m 29 m Radiometer Sensitivities Pyranometer +/- 10 Wm -2 vs 0.4% of 200 Wm-2 (0.8 Wm

305

American Goldfinch  

NLE Websites -- All DOE Office Websites (Extended Search)

American Goldfinch American Goldfinch Name: Mary-Ellen Location: N/A Country: N/A Date: N/A Question: I happened on an American Goldfinch in my yard last week who could not fly. I captured it and now have it living in a large box. I have been feeding it commericial wild finch seed, niger seed and some sunflower seed. I have also provided a small cup of fine sand and a dish of water. Am I missing anything in it's diet? I had hoped to find someone to take it and care for it until it could fly again but have been unsuccessful so I may end up caring for it. It's wing is not visibly injured, however it can only flutter. I have been caring for it for 6 days now and it appears OK. Have also provided it with a small perch (branch) which it seems to use most of the time. Any other suggestions?

306

USAID West Africa Climate Program | Open Energy Information  

Open Energy Info (EERE)

West Africa Climate Program West Africa Climate Program Jump to: navigation, search Name USAID West Africa Climate Program Agency/Company /Organization U.S. Agency for International Development Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy, Forestry, Agriculture Topics Background analysis Website http://www.usaid.gov/our_work/ Country Ghana, Togo, Benin, Senegal, Niger, Nigeria, Mali, Liberia, Gambia, Ivory Coast, Burkina Faso, Sierra Leone, Mauritania, Guinea, Guinea-Bissau, Cameroon, Gabon, Equatorial Guinea, Chad, Sao Tome and Principe, Cape Verde Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Middle Africa, Middle Africa, Middle Africa, Middle Africa, Middle Africa, Western Africa

307

West African Clean Energy Gateway-Software Analysis Tools | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » West African Clean Energy Gateway-Software Analysis Tools Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png

308

Microsoft PowerPoint - Lamb_et_al_Norfolk_Poster  

NLE Websites -- All DOE Office Websites (Extended Search)

AMF 2006 Niamey Radiosonde AMF 2006 Niamey Radiosonde Data: Some Preliminary Results Peter J. Lamb 1 , Abdelkrim Ben Mohamed 2 , Mark Miller 3 , Ibrah Seidou Sanda 2 , Hamidou Hama 4 , Abebe Abdou Adam 5 1 University of Oklahoma-CIMMS, 2 Université Abdou Moumouni, 3 Rutgers University, 4 ASECNA-Niger, 5 ACMAD Introduction The 2006 ARM Mobile Facility (AMF) deployment in Niamey in support of the RADAGAST component of the AMMA Programme brought out a more complete picture of the Sahelian atmospheric environment. This poster presents an analysis of the AMF rawinsonde soundings made in Niamey between January 07, 2006 and January 07, 2007. This is a comprehensive study of all soundings considered together and at the principal synoptic observation times (0000, 0600, 1200, and 1800 UTC). The analysis focuses on temperature, humidity,

309

ARM - AMF2 Organization and Contact Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization and Contact Information Organization and Contact Information AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 AMF2 Organization and Contact Information The Argonne AMF2 Operations Office manages the operation of the second ARM mobile facility. Basic contact information, phone numbers, email, and shipping information to personnel in this office is available on this page.

310

Mobile Climate Monitoring Facility to Sample Skies in Africa | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mobile Climate Monitoring Facility to Sample Skies in Africa Mobile Climate Monitoring Facility to Sample Skies in Africa Mobile Climate Monitoring Facility to Sample Skies in Africa January 18, 2006 - 10:47am Addthis WASHINGTON, D.C. -- The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program is placing a new, portable atmospheric laboratory with sophisticated instruments and data systems in Niger, Africa, to gain a better understanding of the potential impacts of Saharan dust on global climate. Dust from Africa's Sahara desert-the largest source of dust on the planet-reaches halfway around the globe. Carried by winds and clouds, the dust travels through West African, Mediterranean, and European skies, and across the Atlantic into North America. Unfortunately, Africa is one of the most under-sampled climate regimes in the world, leaving scientists to

311

Layout 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Few stop to consider the consequences Few stop to consider the consequences of their daily ablutions, the washing of clothes, the watering of lawns, and the flush of a toilet. However, wastewater treatment-one of the cornerstones of modern civilization-is inside this issue 2. Finishers Convene in NM Spot Awards 3. Termites in Costa Rica 4. Profile: Erika Lindquist 5. Plant Pathogens Decoded OPA Recipients 6. Young Investigator Winner 8. Spotlight on Safety 9. Hazards of Being a Microbiologist 10. All About Webfeeds 11. Eukaryotic Finishing at Stanford 12. Symbiotic Tree Fungus 17. New CSP Targets 19. Pichia stipitis 20. Aspergillus niger PRIMER the October 2006 Volume 3 Issue 2 First Tree Genome Is Published: Poplar Holds Promise as Renewable Bioenergy Resource Wood from a common tree may one day figure prominently in meeting trans-

312

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2005 [Facility News] 31, 2005 [Facility News] Ancillary Site to Provide Key Data from Africa Bookmark and Share In January 2006, the ARM Mobile Facility (AMF) begins a year-long field campaign in Africa as part of a multi-year international experiment called the African Monsoon Multidisciplinary Analysis (AMMA). The AMF will be placed at the airport in Niamey, Niger, well within view of the Global Earth Radiation Budget (GERB) geostationary satellite. Cloud and radiative property measurements collected by the AMF will be used in conjunction with GERB data for a greater understanding of the atmosphere than could be gained from either dataset alone. While preparing for the campaign, the science team identified the need for instrumentation at an off-site location to compare radiative measurements from the natural environment of

313

ECOWAS Clean Energy Gateway-Help | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » ECOWAS Clean Energy Gateway-Help Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png

314

nab-ARM_land2_v5.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

corresponding result can be seen in the corresponding result can be seen in the top-of-atmosphere long-wave flux. Figure 3 shows the modelled OLR and that measured by the ARG product. The difference is postulated to be because the AMF ground measurements are not representative of the area within the ARG pixel. Figure 4 shows the SEVIRI 10.8μm-derived skin temperatures: over the region, the temperature variations can account for an upwelling flux variation of 70 Wm -2 . At the AMF, Niamey airport site itself, the November-averaged skin temperature is ~319K. Figure 2: 0.6μm SEVIRI radiances. Mean of all times during November 2006 without cloud-cover. The dark band is the Niger river. Figure 1: TOA SW fluxes via two products from satellite measurements: ARG and HR. Figure 5: Daily-averaged down-welling LW flux, from AMF

315

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 15, 2010 [Facility News] April 15, 2010 [Facility News] Second Phase of African Scientific Exchange Underway Bookmark and Share Left to right: Dr. Zewdu Segele and Hama Hamidou examine reflectivity measurements made by the W-band ARM cloud radar in Niamey during July 2006. Left to right: Dr. Zewdu Segele and Hama Hamidou examine reflectivity measurements made by the W-band ARM cloud radar in Niamey during July 2006. Continuing an international collaboration that began with the ARM Mobile Facility deployment to Niamey, Niger, in 2006, meteorologist Hama Hamidou from the University of Niamey recently arrived at the Cooperative Institute for Mesoscale Meteorological Studies at the University of Oklahoma for a six-month scientific exchange. Under the guidance of Dr. Zewdu Segele, a

316

ECOWAS Clean Energy Gateway-Technology Data | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » ECOWAS Clean Energy Gateway-Technology Data Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png

317

Mobile Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Facility AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility is configured in a standard layout. Pictured here in Gan, the second mobile facility is configured in a standard layout. To explore science questions beyond those addressed by ARM's fixed sites at

318

ARM - Surface Aerosol Observing System  

NLE Websites -- All DOE Office Websites (Extended Search)

FacilitiesSurface Aerosol Observing System FacilitiesSurface Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Surface Aerosol Observing System The ARM Mobile Facility (AMF) is equipped to quantify the interaction between clouds and aerosol particles. A counter-flow virtual impactor (CVI) is used to selectively sample cloud drops. The CVI takes advantage of the

319

W-band ARM Cloud Radar (WACR) Update and Status  

NLE Websites -- All DOE Office Websites (Extended Search)

W-band ARM Cloud Radar (WACR) Update and Status W-band ARM Cloud Radar (WACR) Update and Status PopStefanija, Ivan ProSensing, Inc. Mead, James ProSensing Inc. Widener, Kevin Pacific Northwest National Laboratory Category: Instruments Two W-band ARM Cloud Radars (WACR) have been developed for the SGP and the ARM Mobile Facility (AMF) by ProSensing. The SGP WACR was successfully deployed in the same shelter as the MMCR in 2005. It is currently collecting co-polarization and cross-polarization spectral moments (reflectivity, Doppler velocity, and spectral width) along with spectra data. The AMF WACR will be deployed with the AMF in Niamey, Niger early in 2006. We will present ingested WACR data formats available from the ARM Archive, a selected comparisons of WACR and MMCR data at SGP, and data from

320

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2006 [Facility News] 15, 2006 [Facility News] Radar Wind Profiler Joins ARM Mobile Facility Instrument Suite Bookmark and Share This spring, a 915 MHz radar wind profiler (RWP) was successfully installed at the ARM Mobile Facility (AMF) site in Niamey, Niger, West Africa, for the remainder of the 1-year RADAGAST field campaign which started in January. The RWP will provide information about wind speed, wind direction, and wind shear, and also enable measurements of the turbulence in the lower part of the troposphere. This may be a key variable in determining the vertical distribution of dust in the experimental domain. Gradients in the radar's reflectivity spectrum may also help to provide continuous identification of the depth of the boundary layer in the summer months, when refractive gradients are likely to be maximized by low-level moisture.

Note: This page contains sample records for the topic "niger rwanda samoa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

JeffersonSTM09.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

AOS: Measurements of Aerosol Optical and AOS: Measurements of Aerosol Optical and AOS: Measurements of Aerosol Optical and Cloud-forming Properties Cloud-forming Properties Anne Jefferson and John Ogren NOAA Environmental Science Research Laboratory CIRES, University of Colorado ARM STM 2009 Aerosol Observing Systems In-situ surface measurements of aerosol optical, chemical, size, hygroscopic and cloud-forming properties * SGP - ARM central facility Lamont, OK *AMF - Pt Reyes, CA 3/2005 - 9/2005 - Niamey, Niger 12/2005-1/2007 - Murg Valley, Germany 4/2007 -1/2008 - Shouxian China 5/2008 - 12/2008 - Graciosa Island, Azores 4/2009 *BRW/NSA - Barrow Alaska *AMF2 ? Darwin? - What instruments support the science? AMF deployment in Shouxian China, HFE HFE was located at a rural, agricultural area ~120 km from Hefei, ~200 km from Nanking

322

The AMMA mulid network for aerosol characterization in West Africa  

E-Print Network (OSTI)

Three ground based portable low power consumption microlidars (MULID) have been built and deployed at three remote sites in Banizoumbou (Niger), Cinzana (Mali) and M'Bour (Senegal) in the framework of the African Monsoon Multidisciplinary Analyses (AMMA) project for the characterization of aerosols optical properties. A description of the instrument and a discussion of the data inversion method, including a careful analysis of measurement uncertainties (systematic and statistical errors) are presented. Some case studies of typical lidar profiles observed over the Banizoumbou site during 2006 are shown and discussed with respect to the AERONET 7-day back-trajectories and the biomass burning emissions from the Combustion Emission database for the AMMA campaign.

Cavalieri, Olga; Cairo, Francesco; Fierli, Federico; Snels, Marcel; Viterbini, Maurizio; Cardillo, Francesco; Chatenet, Bernadette; Formenti, Paola; Marticorena, Beatrice; Rajot, Jean Louis

2010-01-01T23:59:59.000Z

323

Alcoholic fermentation of raw sweet potato by a nonconventional method using Endomycopsis fibuligera glucoamylase preparation  

Science Conference Proceedings (OSTI)

In recent years, alcoholic fermentation has received much attention as an alternative energy source. In conventional alcoholic fermentation from starchy materials, precooking is necessary for liquefaction and saccharification of the broth, which requires a large amount of heat energy - about 30-40% of all energy spent for alcohol production. Ueda and his co-workers have attempted to produce ethanol from raw starch in a single-step process, which combines liquefaction, saccharification, and yeast fermentation without cooking and autoclaving by using glucoamylase preparation from Aspergillus niger in order to save the cost of energy consumption by cooking. Ueda has also reported alcoholic fermentation of sweet potato without cooking by using Rhizopus glucoamylase preparation. In the present communication, we report the effectiveness of alcoholic fermentation of sweet potato without cooking by using Endomycopsis fibuligers glucoamylase preparation. (Refs. 5).

Saha, B.C.; Ueda, S.

1983-04-01T23:59:59.000Z

324

Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006  

SciTech Connect

This annual report describes the purpose and structure of the ARM Climate Research Facility and ARM Science programs and presents key accomplishments in 2006. Noteworthy scientific and infrastructure accomplishments in 2006 include: • Collaborating with the Australian Bureau of Meteorology to lead the Tropical Warm Pool-International Cloud Experiment, a major international field campaign held in Darwin, Australia • Successfully deploying the ARM Mobile Facility in Niger, Africa • Developing the new ARM Aerial Vehicles Program (AVP) to provide airborne measurements • Publishing a new finding on the impacts of aerosols on surface energy budget in polar latitudes • Mitigating a long-standing double-Intertropical Convergence Zone problem in climate models using ARM data and a new cumulus parameterization scheme.

LR Roeder

2005-11-30T23:59:59.000Z

325

Sunny prospects for heat engines  

SciTech Connect

The world's largest solar power plant is being built at Amilly, France and will be installed next year in Dire, Mali. Its capacity will be 80,000 watts. Each day it will pump 300,000 cubic feet of water up 23 feet from the Niger River to irrigate 37 acres of land. From a well 60 feet deep, it will pump another 21,200 cubic feet daily to supply drinking water for 10,000 people in Dire. It will refrigerate a cold room for an agricultural cooperative and, finally, after sundown, will generate 5 kW of electrical power to light both the cooperative and a 40-room tourist hotel. Jean-Pierre Girardier developed the heat engine utilizing the temperature difference between the hot African sun overhead and the cold water under the ground. (MCW)

Behrman, D.

1978-10-01T23:59:59.000Z

326

Coal as an option for power generation in US territories of the Pacific  

SciTech Connect

A survey of general considerations relating to the use of coal in US territories and trust territories of the Pacific suggests that coal is a viable option for power generation. Future coal supplies, principally from Australia and the west coast of America, promise to be more than adequate, but large bulk carriers will probably not be able to land coal directly because of inadequate port facilities. Hence, smaller than Panamax-class vessels (60,000 dwt) or some arrangement utilizing self-loading barges or lighters would have to be used. Except for Guam, with peak power requirements on the order of 175 MW/sub e/, most territories have current, albeit inadequate, installations of 1 to 25 MW/sub e/ Turnkey, conventional-coal-fired, electrical-power generating systems are available in that size range. US environmental laws are now applicable to Guam and American Samoa; the trust territories are exempt. However, the small power requirements of many small islands will qualify for exemption from the New Source Performance Standards called for in the Clean Air Act. The principal problems with coal use in the territories, apart from the shallow draft of most harbors, are the limited amount of land available and the high capital costs associated with conversion. Ocean dumping of ash and sludge can be permitted under existing Environmental Protection Agency regulations, and barge-mounted power installations are not out of the question. The feasibility of converting from oil-fired to coal-fired electrical-power generating systems must be determined with site-specific information.

Borg, I. Y.

1981-11-30T23:59:59.000Z

327

Energy Vulnerability Assessment for the US Pacific Islands. Technical Appendix 2  

SciTech Connect

The study, Energy Vulnerability Assessment of the US Pacific Islands, was mandated by the Congress of the United States as stated in House Resolution 776-220 of 1992, Section 1406. The resolution states that the US Secretary of Energy shall conduct a study of the implications of the unique vulnerabilities of the insular areas to an oil supply disruption. Such study shall outline how the insular areas shall gain access to vital oil supplies during times of national emergency. The resolution defines insular areas as the US Virgin Islands, Puerto Rico, Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, and Palau. The US Virgin Islands and Puerto Rico are not included in this report. The US Department of Energy (USDOE) has broadened the scope of the study contained in the House Resolution to include emergency preparedness and response strategies which would reduce vulnerability to an oil supply disruption as well as steps to ameliorate adverse economic consequences. This includes a review of alternative energy technologies with respect to their potential for reducing dependence on imported petroleum. USDOE has outlined the four tasks of the energy vulnerability assessment as the following: (1) for each island, determine crude oil and refined product demand/supply, and characterize energy and economic infrastructure; (2) forecast global and regional oil trade flow patterns, energy demand/supply, and economic activities; (3) formulate oil supply disruption scenarios and ascertain the general and unique vulnerabilities of these islands to oil supply disruptions; and (4) outline emergency preparedness and response options to secure oil supplies in the short run, and reduce dependence on imported oil in the longer term.

Fesharaki, F.; Rizer, J.P.; Greer, L.S.

1994-05-01T23:59:59.000Z

328

Ozone observations and a model of marine boundary layer photochemistry during SAGA 3  

SciTech Connect

A major purpose of the third joint Soviet-American Gases and Aerosols (SAGA 3) oceanographic cruise was to examine remote tropical marine O{sub 3} and photochemical cycles in detail. On leg 1, which took place between Hilo, Hawaii, and Pago-Pago, American Samoa, in February and March 1990, shipboard measurements were made of O{sub 3}, CO, CH{sub 4}, nonmethane hydrocarbons (NMHC), NO, dimethyl sulfide (DMS), H{sub 2}S, H{sub 2}O{sub 2}, organic peroxides, and total column O{sub 3}. Postcruise analysis was performed for alkyl nitrates and a set of nonmethane hydrocarbons. A latitudinal gradient in O{sub 3} was observed on SAGA 3, with O{sub 3} north of the intertropical convergence zone (ITCZ) at 15-20 parts per billion by volume (ppbv) and less than 12 ppbv south of the ITCZ but never {le} 3 ppbv as observed on some previous equatorial Pacific cruises. Total column O{sub 3} (230--250 Dobson units (DU)) measured from the Akademik Korolev was within 8% of the corresponding total ozone mapping spectrometer (TOMS) satellite observations and confirmed the equatorial Pacific as a low O{sub 3} region. A one-dimensional photochemical model gives a self-consistent picture of O{sub 3}-NO-CO-hydrocarbon interactions taking place during SAGA 3. At typical equatorial conditions, mean O{sub 3} is 10 ppbv with a 10-15% diurnal variation and maximum near sunrise. Measurements of O{sub 3}, CO, CH{sub 4}, NMHC, and H{sub 2}O constrain model-calculated OH to 9 x 10{sup 5} cm{sup {minus}3} for 10 ppbv O{sub 3} at the equator. The concentrations of alkyl nitrates on SAGA 3 (5-15 pptv total alkyl nitrates) were up to 6 times higher than expected from currently accepted kinetics, suggesting a largely continental source for these species. However, maxima in isopropyl nitrate and bromoform near the equator as well as for nitric oxide may signify photochemical and biological sources of these species. 43 refs., 11 figs., 6 tabs.

Thompson, A.M. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Johnson, J.E.; Bates, T.S.; Kelly, K.C. [NOAA Pacific Marine Environmental Lab., Seattle, WA (United States); Torres, A.L. [NASA Goddard Space Flight Center, Wallops Island, VA (United States); Atlas, E.; Greenberg, J.P. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Donahue, N.M. [Massachusetts Institute of Technology, Cambridge, MA (United States); Yvon, S.A.; Saltzman, E.S. [Univ. of Miami, FL (United States)] [and others

1993-09-20T23:59:59.000Z

329

Comparison of Simulated and Observed Continental Tropical Anvil Clouds and Their Radiative Heating Profiles  

Science Conference Proceedings (OSTI)

Vertically pointing millimeter-wavelength radar observations of anvil clouds extending from mesoscale convective systems (MCSs) that pass over an Atmospheric Radiation Measurement Program (ARM) field site in Niamey, Niger, are compared to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model using six different microphysical schemes. The radar data provide the statistical distribution of the radar reflectivity values as a function of height and anvil thickness. These statistics are compared to the statistics of the modeled anvil cloud reflectivity at all altitudes. Requiring the model to be statistically accurate at all altitudes is a stringent test of the model performance. The typical vertical profile of radiative heating in the anvil clouds is computed from the radar observations. Variability of anvil structures from the different microphysical schemes provides an estimate of the inherent uncertainty in anvil radiative heating profiles. All schemes underestimate the optical thickness of thin anvils and cirrus, resulting in a bias of excessive net anvil heating in all of the simulations.

Powell, Scott W.; Houze, R.; Kumar, Anil; McFarlane, Sally A.

2012-09-06T23:59:59.000Z

330

Mercury concentrations in Maine sport fishes  

Science Conference Proceedings (OSTI)

To assess mercury contamination of fish in Maine, fish were collected from 120 randomly selected lakes. The collection goal for each lake was five fish of the single most common sport fish species within the size range commonly harvested by anglers. Skinless, boneless fillets of fish from each lake were composited, homogenized, and analyzed for total mercury. The two most abundant species, brook trout Salvelinus fontinalis and smallmouth bass Micropterus dolomieu, were also analyzed individually. The composite fish analyses indicate high concentrations of mercury, particularly in large and long-lived nonsalmonid species. Chain pickerel Esox niger, smallmouth bass, largemouth bass Micropterus salmoides, and white perch Morone americana had the highest average mercury concentrations, and brook trout and yellow perch Perca flavescens had the lowest. The mean species composite mercury concentration was positively correlated with a factor incorporating the average size and age of the fish. Lakes containing fish with high mercury concentrations were not clustered near known industrial or population centers but were commonest in the area within 150 km of the seacoast, reflecting the geographical distribution of species that contained higher mercury concentrations. Stocked and wild brook trout were not different in length or weight, but wild fish were older and had higher mercury concentrations. Fish populations maintained by frequent introductions of hatchery-produced fish and subject to high angler exploitation rates may consist of younger fish with lower exposure to environmental mercury and thus contain lower concentrations than wild populations.

Stafford, C.P. [Univ. of Maine, Orono, ME (United States); Haines, T.A. [Geological Survey, Orono, ME (United States)

1997-01-01T23:59:59.000Z

331

Sequencing the Black Aspergilli species complex  

Science Conference Proceedings (OSTI)

The ~15 members of the Aspergillus section Nigri species complex (the "Black Aspergilli") are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as food processing and spoilage agents and agricultural toxigens. Despite their utility and ubiquity, the morphological and metabolic distinctiveness of the complex's members, and thus their taxonomy, is poorly defined. We are using short read pyrosequencing technology (Roche/454 and Illumina/Solexa) to rapidly scale up genomic and transcriptomic analysis of this species complex. To date we predict 11197 genes in Aspergillus niger, 11624 genes in A. carbonarius, and 10845 genes in A. aculeatus. A. aculeatus is our most recent genome, and was assembled primarily from 454-sequenced reads and annotated with the aid of >2 million 454 ESTs and >300 million Solexa ESTs. To most effectively deploy these very large numbers of ESTs we developed 2 novel methods for clustering the ESTs into assemblies. We have also developed a pipeline to propose orthologies and paralogies among genes in the species complex. In the near future we will apply these methods to additional species of Black Aspergilli that are currently in our sequencing pipeline.

Kuo, Alan; Salamov, Asaf; Zhou, Kemin; Otillar, Robert; Baker, Scott; Grigoriev, Igor

2011-03-11T23:59:59.000Z

332

Use of solar generators in Africa for broadcasting equipment. [For powering educational tv receivers  

SciTech Connect

In Africa, solar cells were used for the first time in 1968 to provide power supply for the TV receivers in Niger. In that country, school television programs are essentially devised for the schools located in regions not provided with power mains. The transmissions are received by the means of TV sets that are especially devised to operate under warm and wet weather conditions. These receivers, model CATEL CI 17, are equipped with 61-cm screens, and are completely solid-state. They can be powered by a d.c. power supply, between 30 and 36 V. Their consumption, extremely modest, ranges around 32 W. The power supply for these receivers had, at the beginning, been provided by high-capacity alkaline electrolyte cells. In order to secure a more practical and less expensive source of energy, an experimental solar cell was installed in 1968. Following a satisfactory operation of this experimental solar cell, a careful study was conducted, after which some twenty installations were set up, using silicon cells and lead-acid batteries. A description of the installations is presented; and maintenance, reliability, and cost of the installations are discussed. (WHK)

Polgar, S.

1977-01-01T23:59:59.000Z

333

Molecular genetic analysis reveals that a nonribosomal peptide synthetase-like (NRPS-like) gene in Aspergillus nidulans is responsible for microperfuranone biosynthesis  

SciTech Connect

Genome sequencing of Aspergillus species including A. nidulans has revealed that there are far more secondary metabolite biosynthetic gene clusters than secondary metabolites isolated from these organisms. This implies that these organisms can produce additional secondary metabolites have not yet been elucidated. The A. nidulans genome contains twelve nonribosomal peptide synthetase (NRPS), one hybrid polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS), and fourteen NRPS-like genes. The only NRPS-like gene in A. nidulans with a known product is tdiA which is involved in terrequinone A biosynthesis. To attempt to identify the products of these NRPS-like genes, we replaced the native promoters of the NRPS-like genes with the inducible alcohol dehydrogenase (alcA) promoter. Our results demonstrated that induction of the single NRPS-like gene AN3396.4 led to the enhanced production of microperfuranone. Furthermore, heterologous expression of AN3396.4 in A. niger confirmed that only one NRPS-like gene, AN3396.4, is necessary for the production of microperfuranone.

Yeh, Hsu-Hua; Chiang, Yi Ming; Entwistle, Ruth; Ahuja, Mammeet; Lee, Kuan-Han; Bruno, Kenneth S.; Wu, Tung-Kung; Oakley, Berl R.; Wang, Clay C.

2012-04-10T23:59:59.000Z

334

Feasibility of waterflooding Soku E7000 gas-condensate reservoir  

E-Print Network (OSTI)

We performed a simple 3D compositional reservoir simulation study to examine the possibility of waterflooding the Soku E7 gas-condensate reservoir. This study shows that water injection results in higher condensate recovery than natural depletion. To achieve this recovery, the reservoir should return to natural depletion after four years of water injection, before water invades the producing wells. Factors that affect the effectiveness of water injection in this reservoir include aquifer strength, reservoir property distribution, timing of the start of injection, and intra-reservoir shale thickness and continuity. Sensitivity analyses used to quantify the effects of these factors on condensate recovery indicate the need to acquire more production, pressure and log data to reduce the present large uncertainty on aquifer strength before proceeding on waterflooding this reservoir. The study also shows that the injection scheme should be implemented as soon as possible to avoid further loss of condensate recovery. The result of this study is applicable to other gas condensate reservoirs in the Niger delta with similar depositional environments.

Ajayi, Arashi

2002-01-01T23:59:59.000Z

335

Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm  

SciTech Connect

Endo-xylanase (from Bacillus subtilis) or ferulic acid esterase (from Aspergillus niger) were expressed in wheat under the control of the endosperm specific 1DX5 glutenin promoter. Constructs both with and without the endoplasmic reticulum retention signal KDEL were used. Transgenic plants were recovered in all four cases but no qualitative differences could be observed whether KDEL was added or not. Endo-xylanase activity in transgenic grains was increased between two and three fold relative to wild type. The grains were shriveled and had a 25-33% decrease in mass. Extensive analysis of the cell walls showed a 10-15% increase in arabinose to xylose ratio, a 50% increase in the proportion of water extractable arabinoxylan, and a shift in the MW of the water extractable arabinoxylan from being mainly larger than 85 kD to being between 2 kD and 85 kD. Ferulic acid esterase expressing grains were also shriveled and the seed weight was decreased by 20-50%. No ferulic acid esterase activity could be detected in wild type grains whereas ferulic acid esterase activity was detected in transgenic lines. The grain cell walls had 15-40% increase in water unextractable arabinoxylan and a decrease in monomeric ferulic acid between 13 and 34%. In all the plants the observed changes are consistent with a plant response that serves to minimize the effect of the heterologously expressed enzymes by increasing arabinoxylan biosynthesis and cross-linking.

Harholt, Jesper; Bach, Inga C; Lind-Bouquin, Solveig; Nunan, Kylie J.; Madrid, Susan M.; Brinch-Pedersen, Henrik; Holm, Preben B.; Scheller, Henrik V.

2009-12-08T23:59:59.000Z

336

Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model Fourth Quarter 2008  

SciTech Connect

In 2008, the Atmospheric Radiation Measurement (ARM) Program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the metrics will deal with a decade-long control simulation using geodesic grid-coupled climate model. For ARM, the metrics will deal with observations associated with the 2006 deployment of the ARM Mobile Facility (AMF) to Niamey, Niger. Specifically, ARM has been asked to deliver data products for Niamey that describe cloud, aerosol, and dust properties. The first quarter milestone was the initial formulation of the algorithm for retrieval of these properties. The second quarter milestone included the time series of ARM-retrieved cloud properties and a year-long CCPP control simulation. The third quarter milestone included the time series of ARM-retrieved aerosol optical depth and a three-year CCPP control simulation. This final fourth quarter milestone includes the time-series of aerosol and dust properties and a decade-long CCPP control simulation.

JH Mather; DA Randall; CJ Flynn

2008-09-30T23:59:59.000Z

337

Identifying and characterizing the most significant ?-glucosidase of the novel species Aspergillus saccharolyticus  

Science Conference Proceedings (OSTI)

A newly discovered fungal species, Aspergillus saccharolyticus, was found to produce a culture broth rich in beta-glucosidase activity. In this present work, the main beta-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high beta-glucosidase activity and only one visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to beta-glucosidases from aspergilli. Through a PCR approach using degenerate primers and genome walking, a 2919 base pair sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger, respectively, both belonging to Glycoside hydrolase family 3. Homology modeling studies suggested beta-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared to other beta-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, pNPG, and cellodextrins. The enzyme showed good thermostability, was stable at 50°C, and at 60°C it had a half-life of approximately 6 hours.

Sorensen, Anette; Ahring, Birgitte K.; Lubeck, Mette; Ubhayasekera, Wimal; Bruno, Kenneth S.; Culley, David E.; Lubeck, Peter S.

2012-08-20T23:59:59.000Z

338

Aerosol-to-Hydrosol Transfer Stages for use in bioaerosol sampling  

E-Print Network (OSTI)

Single-Jet and Multi-Jet Aerosol to Hydrosol Transfer Stages (AHTS) with cutpoints of 2 and 0.8 []m AD, respectively, were designed and evaluated. Both devices operate at nominal air sampling flow rate of 1 L/min, 0.1% Tween®20, and 0.3 mL/min. collection liquid flow rate. Both systems have an ideal air power consumption of 1.4 mW and 4.5 mW, respectively. The total electrical power consumption, including that needed to heat the airstream and a sampling enclosure, is approximately 55 W at -23°C (-10°F) outside air temperature. The AHTSs were tested using polystyrene solid and oleic acid liquid aerosol particles to determine the collection efficiencies. The effectiveness of the fractional collection efficiency for the Single-Jet and Multi-Jet are 91% over the size range of 2 to 10 []m AD, and 90% over the size range of 1 to 10 []m AD, respectively. The hydrosol collection efficiency of the Multi-Jet is 95% over the size of 1 to 3 []m AD. The influence of a cleaning solution that was comprised of distilled water and 0.1% Tween®20 yielded an average collection efficiency of above 90% for the Single-Jet and 98% for the Multi-Jet. When the liquid flow rate is equal to or greater than 0.3 mL/min, the hydrosol collection efficiency is constant at 90%. The time responses for Single-Jet and Multi-Jet are 1.4 and 0.75 minutes, respectively. Preliminary results of bioaerosol testing with 0.7 []m AD single spores of Bacillus globigii var. niger show efficiencies over 100%. These discrepancies are probably due to the testing procedures at the U.S. Army Research Office, Chemical Biological Center, Edgewood, MD, facilities.

Phan, Huy Ngoc

2002-01-01T23:59:59.000Z

339

U.S. Energy Information Administration / 2012 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

Uranium Marketing Annual Report Uranium Marketing Annual Report Purchases Weighted- Average Price Purchases Weighted- Average Price Purchases Weighted- Average Price Purchases Weighted- Average Price Purchases Weighted- Average Price Australia 12,758 41.59 11,164 52.25 7,112 51.35 6,001 57.47 6,724 51.17 Brazil W W W W W W W W W W Canada 9,791 48.72 8,975 42.25 10,238 50.35 10,832 56.08 13,584 56.75 China 0 -- 0 -- 0 -- W W W W Czech Republic W W W W W W 0 -- 0 -- Germany 0 -- 0 -- W W 0 -- 0 -- Hungary 0 -- 0 -- W W 0 -- 0 -- Kazakhstan 3,818 60.61 4,985 43.41 6,830 47.81 9,728 53.71 6,234 51.69 Malawi 0 -- 0 -- W W 780 65.44 W W Namibia 3,880 54.79 5,732 47.30 4,913 47.90 6,199 56.74 5,986 54.56 Niger W W 2,001 47.55 587 49.00 1,744 54.38 2,133 50.45 Russia 12,080 27.64 7,938 37.98 10,544 50.28 10,199 56.57 7,643 54.40 South Africa 783 27.50 W W W W 1,524 53.62 1,243 56.45 Ukraine 0 -- 0 -- W W W W W W United Kingdom W W 0 -- 0 -- 0 -- 0 -- Uzbekistan

340

Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance  

SciTech Connect

Saharan dust storms transport large quantities of material across the African continent and beyond, causing widespread disruption and hazards to health. The dust may be deposited into the Atlantic Ocean, where it provides an important source of nutrients1, and may be carried as far as the West Indies. Such events may also influence the growth of Atlantic tropical cyclones. Satellite observations have enabled estimates to be made of the effect of the dust on the radiation budget seen from space, but only limited in situ observations have hitherto been made at the surface. Here we present the first simultaneous and continuous observations of the effect of a major dust storm in March 2006 on the radiation budget both at the top of the atmosphere (TOA) and at the surface. We combine data from the Geostationary Earth Radiation Budget (GERB) broadband radiometer and the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on the Meteosat-8 weather satellite with remote sensing and in situ measurements from a new Mobile Facility located in Niamey, Niger (13{sup o} 29'N, 2{sup o} 10'E), operated by the US Atmospheric Radiation Measurement (ARM) program. We show that the dust produced major perturbations to the radiation budget seen from space and from the surface. By combining the two datasets, we estimate the impact on the radiation budget of the atmosphere itself. Using independent data from the Mobile Facility, we derive the optical properties of the dust and input these and other information into radiation codes to simulate the radiative fluxes. Comparisons with the observed fluxes provides a stringent test of the ability of the codes to represent the radiative properties of this important component of the global aerosol burden.

Slingo, A.; Ackerman, Thomas P.; Allan, R. P.; Kassianov, Evgueni I.; McFarlane, Sally A.; Robinson, G. J.; Barnard, James C.; Miller, Mark; Harries, J. E.; Russell, J. E.; Dewitte, S.

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "niger rwanda samoa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Methodology for estimating volumes of flared and vented natural gas  

Science Conference Proceedings (OSTI)

The common perception in the United States that natural gas produced with oil is a valuable commodity probably dates from the 1940's. Before that time, most operators regarded natural gas associated with or dissolved in oil as a nuisance. Indeed, most associated/dissolved natural gas produced in the United States before World War II probably was flared or vented to the atmosphere. This situation has changed in the United States, where flaring and venting have decreased dramatically in recent years, in part because of environmental concerns, but also because of the changing view of the value of natural gas. The idea that gas is a nuisance is beginning to change almost everywhere, as markets for gas have developed in Europe, Japan, and elsewhere, and as operators have increasingly utilized or reinjected associated-dissolved gas in their oil-production activities. Nevertheless, in some areas natural gas continues to be flared or vented to the atmosphere. Gas flares in Russia, the Niger Delta, and the Middle East are some of the brightest lights on the nighttime Earth. As we increasingly consider the global availability and utility of natural gas, and the environmental impacts of the consumption of carbon-based fuels, it is important to know how much gas has been flared or vented, how much gas is currently being flared or vented, and the distribution of flaring or venting through time. Unfortunately, estimates of the volumes of flared and vented gas are generally not available. Despite the inconsistency and inavailability of data, the extrapolation method outlined provides a reliable technique for estimating amounts of natural gas flared and vented through time. 36 refs., 7 figs., 6 tabs.

Klett, T.R.; Gautier, D.L. (Geological Survey, Denver, CO (United States))

1993-01-01T23:59:59.000Z

342

Tourism development, rural livelihoods, and conservation in the Okavango Delta, Botswana  

E-Print Network (OSTI)

This study analyzed changes in livelihoods before and after tourism development at Khwai, Mababe and Sankoyo villages in the Okavango Delta. Specifically, it analyzed how people interacted with species like giraffe (Giraffa camelopardalis), sable antelope (Hippotragus niger) and thatching grass (Cymbopogon excavatus) before and after tourism development. This analysis was expected to measure the effectiveness of tourism development as a tool to improve livelihoods and conservation. The concept of social capital, sustainable livelihoods framework and the Community- Based Natural Resource Management (CBNRM) paradigm informed the study. Qualitative and quantitative data were gathered through field-based research, using tools of participant observation, semi-structured interviews, and key informant interviews. Results indicate that local customs and institutions at Khwai, Mababe and Sankoyo ensured the conservation of resources in pre-colonial Botswana. However, British colonial rule (1885-1966) affected traditional institutions of resource use hence the beginning of resource decline. The British colonial rule and the first 15-20 years after Botswana’s independence from British rule saw an increase in resource degradation. Results also indicate that since CBNRM began in the 1990s, tourism development has positive and negative effects on rural livelihoods. On the positive side, tourism development in some ways is achieving its goals of improved livelihoods and conservation. Residents’ attitudes towards tourism development and conservation have also become positive compared to a decade ago when these communities were not involved in tourism development. On the negative side, tourism is emerging as the single livelihood option causing either a decline or abandonment of traditional options like hunting and gathering and agricultural production. Reliance on tourism alone as a livelihood option is risky in the event of a global social, economic and political instability especially in countries where most tourists that visit the Okavango originate or in Botswana itself. There is need, therefore, for communities to diversify into domestic tourism and small-scale enterprises. On the overall, tourism development through CBNRM indicates that it is a viable tool to achieve improved livelihoods and conservation in the Okavango Delta.

Mbaiwa, Joseph Elizeri

2008-08-01T23:59:59.000Z

343

Seasonal Contrasts in the Surface Energy Balance of the Sahel  

SciTech Connect

Over most of the world ocean, heating of the surface by sunlight is balanced predominately by evaporative cooling. Even over land, moisture for evaporation is available from vegetation or the soil reservoir. However, at the ARM Mobile Facility in Niamey, Niger, soil moisture is so depleted that evaporation makes a significant contribution to the surface energy balance only at the height of the rainy season, when precipitation has replenished the soil reservoir. Using observations at the Mobile Facility from late 2005 to early 2007, we describe how the surface balances radiative forcing. How the surface compensates time-averaged solar heating varies with seasonal changes in atmospheric water vapor, which modulates the greenhouse effect and the ability of the surface to radiate thermal energy directly to space. During the dry season, sunlight is balanced mainly by longwave radiation and the turbulent flux of sensible heat. The ability of longwave radiation to cool the surface drops after the onset of the West African summer monsoon, when moist, oceanic air flows onshore, increasing local column moisture and atmospheric opacity at these wavelengths. After the monsoon onset, but prior to significant rainfall, solar heating is compensated mainly by the sensible heat flux. During the rainy season, the magnitude of evaporation is initially controlled by the supply of moisture from precipitation. However, by the height of the rainy season, sufficient precipitation has accumulated at the surface that evaporation is related to the flux demanded by solar radiation, and radiative forcing of the surface is balanced comparably by the latent, sensible, and longwave fluxes. Radiative forcing of the surface also varies on a subseasonal time scale due to fluctuations in water vapor, clouds, and aerosol concentration. Except at the height of the rainy season, subseasonal forcing is balanced mainly by sensible heating and longwave anomalies. The efficacy of the sensible heat flux depends upon a positive feedback, where forcing changes mixing within the boundary layer and amplifies the sensible heating anomaly. How the surface responds to radiative forcing is fundamental to the climate response to dust and carbonaceous aerosols.

Miller, Ron; Slingo, A.; Barnard, James C.; Kassianov, Evgueni I.

2009-03-14T23:59:59.000Z

344

Evaluation of cowpea (Vigna unguiculata L. Walp) genotypes for adaptation to low soil-phosphorus conditions and to rock phosphate application  

E-Print Network (OSTI)

Cowpea (Vigna ungiculata L. Walp) is a major food and fodder legume in poor countries, particularly Sub-Saharan Africa countries. It is generally produced in sandy, acid soils, deficient in phosphorus (P) which severely limits its production. Because processed phosphate fertilizers are expensive and poorly available to farmers, rock phosphate is viewed as a cheap alternative phosphate source. The present study evaluated 696 U.S Core Collection and IITA cowpea accessions for adaptation to low soil P environments and for response to rock phosphate application. Subsequently, organic acid exudation by selected cowpea genotypes as a mechanism for P acquisition from Fe-oxide and Ca bound P was investigated. A low P soil from Nacogdoches pine forest was used to grow plants. There were two P treatments: 0 and 300 mg P/kg of soil as Tahoua (Niger) rock phosphate. At harvest, plant height, shoot and root dry weights were determined and total biomass and shoot-to-root ratios were computed. Shoot P contents of 100 selected accessions were measured. Sixteen accessions reflecting the wide array of responses observed were selected for the organic acid study. Plants were grown in a growth chamber hydroponically with no P and +P nutrient solutions for 3 weeks. Organic acids were collected in a CaCl2-KCl solution. The nature and quantity of the collected organic acids was determined. Cowpea accessions were significantly different in their ability to adapt to Pdeficiency stress and to acquire P from rock phosphate. The parameters most effective in separating the accessions were shoot mass and total biomass. This data will be potentially useful in the selection of cowpea germplasm for (1) adaptation to West African soils of low P fertility, and (2) ability to utilize P from poorly soluble rock phosphate. The predominant organic acid exuded by cowpea roots was a tricarboxylic acid not yet identified. There was surprisingly more exudation of this acid under +P than under –P conditions. Exudation was more highly correlated to roots than to shoots.

Mahamane, Sabiou

2008-05-01T23:59:59.000Z

345

Canadian National Energy Use Database: Statistics and Analysis | Open  

Open Energy Info (EERE)

Canadian National Energy Use Database: Statistics and Analysis Canadian National Energy Use Database: Statistics and Analysis Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian National Energy Use Database: Statistics and Analysis Focus Area: Energy Efficiency Topics: Potentials & Scenarios Website: oee.nrcan.gc.ca/corporate/statistics/neud/dpa/home.cfm?attr=24 Equivalent URI: cleanenergysolutions.org/content/canadian-national-energy-use-database Language: "English,French" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

346

Improved Biomass Cooking Stoves | Open Energy Information  

Open Energy Info (EERE)

Improved Biomass Cooking Stoves Improved Biomass Cooking Stoves Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Improved Biomass Cooking Stoves Agency/Company /Organization: various Sector: Energy Focus Area: Biomass Phase: Determine Baseline, Evaluate Options, Prepare a Plan, Create Early Successes Topics: Co-benefits assessment, - Energy Access Resource Type: Case studies/examples, Guide/manual, Presentation, Video User Interface: Website Website: ttp://www.bioenergylists.org/ Cost: Free Language: "English, Spanish; Castilian" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

347

Handbook of Emission Factors for Road Transport (HBEFA) | Open Energy  

Open Energy Info (EERE)

of Emission Factors for Road Transport (HBEFA) of Emission Factors for Road Transport (HBEFA) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Handbook of Emission Factors for Road Transport (HBEFA) Focus Area: Clean Transportation Topics: Policy, Deployment, & Program Impact Website: www.hbefa.net/e/index.html Equivalent URI: cleanenergysolutions.org/content/handbook-emission-factors-road-transp Language: "English,French,German" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

348

Renewable Energy and Energy Efficiency Toolkit Website | Open Energy  

Open Energy Info (EERE)

Renewable Energy and Energy Efficiency Toolkit Website Renewable Energy and Energy Efficiency Toolkit Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy and Energy Efficiency Toolkit Website Focus Area: Renewable Energy Topics: Policy Impacts Website: toolkits.reeep.org/ Equivalent URI: cleanenergysolutions.org/content/renewable-energy-and-energy-efficienc Language: "English,Chinese,French,Portuguese,Spanish" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

349

IGES-Market Mechanism Group | Open Energy Information  

Open Energy Info (EERE)

IGES-Market Mechanism Group IGES-Market Mechanism Group Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IGES-Market Mechanism Agency/Company /Organization: Institute for Global Environmental Strategies (IGES) Sector: Climate, Energy Focus Area: Renewable Energy Topics: Market analysis Resource Type: Training materials Website: www.iges.or.jp/en/cdm/index.html Cost: Free Language: "English, Japanese" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

350

Eco TransIT World | Open Energy Information  

Open Energy Info (EERE)

Eco TransIT World Eco TransIT World Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Eco TransIT World Focus Area: Low Carbon Communities Topics: Opportunity Assessment & Screening Website: www.ecotransit.org/index.en.html Equivalent URI: cleanenergysolutions.org/content/eco-transit-world Language: "English,Dutch,French,German,Spanish" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

351

CRiSTAL Project Management Tool | Open Energy Information  

Open Energy Info (EERE)

CRiSTAL Project Management Tool CRiSTAL Project Management Tool Jump to: navigation, search Tool Summary Name: CRiSTAL Project Management Tool Agency/Company /Organization: International Institute for Sustainable Development (IISD) Sector: Climate, Energy, Land Topics: Implementation Resource Type: Guide/manual, Software/modeling tools User Interface: Spreadsheet Website: www.iisd.org/cristaltool/ Cost: Free Language: "English, French, Portuguese, Spanish; Castilian" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

352

Miljoforden Website | Open Energy Information  

Open Energy Info (EERE)

Miljoforden Website Miljoforden Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Miljoforden Website Focus Area: Natural Gas Topics: Deployment Data Website: www.miljofordon.se/in-english/this-is-miljofordon-se Equivalent URI: cleanenergysolutions.org/content/miljoforden-website Language: "English,Swedish" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

353

Overview of China's Vehicle Emission Control Program: Past Successes and  

Open Energy Info (EERE)

Overview of China's Vehicle Emission Control Program: Past Successes and Overview of China's Vehicle Emission Control Program: Past Successes and Future Prospects Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Overview of China's Vehicle Emission Control Program: Past Successes and Future Prospects Focus Area: Propane Topics: Socio-Economic Website: theicct.org/sites/default/files/publications/Retrosp_final_bilingual.p Equivalent URI: cleanenergysolutions.org/content/overview-china's-vehicle-emission-con Language: "English,Chinese" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

354

Photovoltaics Design and Installation Manual | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Design and Installation Manual Photovoltaics Design and Installation Manual Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaics Design and Installation Manual Agency/Company /Organization: Solar Energy International Sector: Energy Focus Area: Renewable Energy, Solar, - Solar PV Resource Type: Training materials User Interface: Other Website: www.solarenergy.org/bookstore/photovoltaics-design-installation-manual Cost: Paid Language: "English, Spanish; Castilian" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

355

OLADE-Solar Thermal World Portal | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » OLADE-Solar Thermal World Portal Jump to: navigation, search Tool Summary Name: OLADE-Solar Thermal World Portal Agency/Company /Organization: Latin American Energy Organization (OLADE) Sector: Energy Focus Area: Renewable Energy, Solar, - Concentrating Solar Power, - Solar Hot Water User Interface: Website Website: www.solarthermalworld.org/ Cost: Free UN Region: Caribbean, South America Language: "English, Spanish; Castilian" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Proven√ßal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volap√ºk, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

356

Freight Best Practice Website | Open Energy Information  

Open Energy Info (EERE)

Freight Best Practice Website Freight Best Practice Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Freight Best Practice Website Focus Area: Public Transit Topics: Policy, Deployment, & Program Impact Website: www.freightbestpractice.org.uk/ Equivalent URI: cleanenergysolutions.org/content/freight-best-practice-website Language: "English,Welsh" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

357

COMFAR III: Computer Model for Feasibility Analysis and Reporting | Open  

Open Energy Info (EERE)

COMFAR III: Computer Model for Feasibility Analysis and Reporting COMFAR III: Computer Model for Feasibility Analysis and Reporting Jump to: navigation, search Tool Summary Name: COMFAR III: Computer Model for Feasibility Analysis and Reporting Agency/Company /Organization: United Nations Industrial Development Organization Focus Area: Industry Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.unido.org/index.php?id=o3470 Language: "Arabic, Chinese, English, French, German, Japanese, Portuguese, Russian, Spanish; Castilian" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

358

Sustainable Logistics Website | Open Energy Information  

Open Energy Info (EERE)

Sustainable Logistics Website Sustainable Logistics Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sustainable Logistics Website Focus Area: Clean Transportation Topics: Best Practices Website: www.duurzamelogistiek.nl/ Equivalent URI: cleanenergysolutions.org/content/sustainable-logistics-website Language: "English,Dutch" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.