Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Steps to Commercialization: Nickel Metal Hydride Batteries | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steps to Commercialization: Nickel Metal Hydride Batteries Steps to Commercialization: Nickel Metal Hydride Batteries Steps to Commercialization: Nickel Metal Hydride Batteries October 17, 2011 - 10:42am Addthis Steps to Commercialization: Nickel Metal Hydride Batteries Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs How does it work? Through licensing and collaborative work, Energy Department-sponsored research can yield great economic benefits and help bring important new products to market. The Energy Department funds cutting-edge research on a broad range of topics ranging from advanced battery construction to the modeling of industrial processes and supercomputer simulation of supernovae. But this research is not only about furthering our understanding of the world around

2

Hydridable material for the negative electrode in a nickel-metal hydride storage battery  

SciTech Connect

A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##

Knosp, Bernard (Neuilly-sur-Seine, FR); Bouet, Jacques (Paris, FR); Jordy, Christian (Dourdan, FR); Mimoun, Michel (Neuilly-sur-Marne, FR); Gicquel, Daniel (Lanorville, FR)

1997-01-01T23:59:59.000Z

3

Mathematical modeling of the nickel/metal hydride battery system  

DOE Green Energy (OSTI)

A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

Paxton, B.K. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

1995-09-01T23:59:59.000Z

4

Nickel-metal hydride battery development. Final technical report  

SciTech Connect

Rechargeable batteries are used as the power source for a broad range of portable equipment. Key battery selection criteria typically are weight, volume, first cost, life cycle cost, and environmental impact. Rechargeable batteries are favored from a life cycle cost and environmental impact standpoint over primary batteries. The nickel-metal hydride (Ni-MH) battery system has emerged as the battery of choice for many applications based on its superior characteristics when judged on the above criteria against other battery types. In most cases commercial Ni-MH batteries are constructed with coiled electrodes in cylindrical metal containers. Electro Energy, Inc. (EEI) has been developing a novel flat bipolar configuration of the Ni-MH system that offers weight, volume, and cost advantages when compared to cylindrical cells. The unique bipolar approach consists of fabricating individual flat wafer cells in conductive, carbon-filled, plastic face plates. The individual cells contain a nonconductive plastic border which is heat sealed around the perimeter to make a totally sealed unit cell. Multi-cell batteries are fabricated by stacking the individual wafer cells in such a way that the positive face of one cell contacts the negative face of the adjacent cell. The stack is then contained in an outer housing with end contacts. The purpose of this program was to develop, evaluate, and demonstrate the capabilities of the EEI Ni-MH battery system for consumer applications. The work was directed at the development and evaluation of the compact bipolar construction for its potential advantages of high power and energy density. Experimental investigations were performed on various nickel electrode types, hydride electrode formulations, and alternate separator materials. Studies were also directed at evaluating various oxygen recombination techniques for low pressure operation during charge and overcharge.

1995-06-01T23:59:59.000Z

5

Nickel-Metal-Hydride Batterie--High Energy Storage for Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Freedomcar & Vehicle Technologies Program Freedomcar & Vehicle Technologies Program Nickel-Metal-Hydride Batteries - High Energy Storage for Electric Vehicles Background The key to making electric vehicles (EVs) practical is the development of batteries that can provide performance comparable with that of con ventional vehicles at a similar cost. Most EV batteries have limited energy storage capabili ties, permitting only relatively short driving distances before the batteries must be recharged. In 1991, under a coopera tive agreement with The U.S. Department of Energy (DOE), the United States Advanced Battery Consortium (USABC) initiated development of nickel- metal-hydride (NiMH) battery technology and established it as a prime mid-term candidate for use in EVs. DOE funding has been instru

6

Feasibility study for the recycling of nickel metal hydride electric vehicle batteries. Final report  

DOE Green Energy (OSTI)

This feasibility study examined three possible recycling processes for two compositions (AB{sub 2} and AB{sub 5}) of nickel metal hydride electric vehicle batteries to determine possible rotes for recovering battery materials. Analysts examined the processes, estimated the costs for capital equipment and operation, and estimated the value of the reclaimed material. They examined the following three processes: (1) a chemical process that leached battery powders using hydrochloric acid, (2) a pyrometallurical process, and (3) a physical separation/chemical process. The economic analysis revealed that the physical separation/chemical process generated the most revenue.

Sabatini, J.C.; Field, E.L.; Wu, I.C.; Cox, M.R.; Barnett, B.M.; Coleman, J.T. [Little (Arthur D.), Inc., Cambridge, MA (United States)

1994-01-01T23:59:59.000Z

7

Self-discharge mechanism of sealed-type nickel/metal-hydride battery  

Science Conference Proceedings (OSTI)

Factors affecting the self-discharge rate of a nickel/metal-hydride (Ni-MH) battery, generally much higher than that of nickel/cadmium (Ni-Cd) battery, are investigated, and the self-discharge mechanism is discussed. Ammonia and amine participate in the shuttle reaction like nitrate ion in the Ni-Cd battery, resulting in acceleration of the self-discharge. When nonwoven fabric made of sulfonated-polypropylene is used as a separator instead of conventional polyamide separator, the self-discharge rate of the Ni-MH battery is strongly depressed, to the same level as that of Ni-Cd battery.

Ikoma, Munehisa; Hoshina, Yasuko; Matsumoto, Isao [Matsushita Battery Industrial Co., Ltd., Osaka (Japan); Iwakura, Chiaki [Univ. of Osaka Prefecture, Sakai, Osaka (Japan). Dept. of Applied Chemistry

1996-06-01T23:59:59.000Z

8

Progress in the development of Ovonic nickel-metal hydride batteries  

SciTech Connect

Proprietary, multicomponent hydrogen storage alloys using the principles of atomic engineering form the heart of Ovonic Nickel-Metal Hydride (Ni/MH) battery technology. This battery system, in development for 10 years, has been licensed to several manufacturers both for consumer cells and electric vehicle batteries. These cells have achieved a specific energy of over 80 Wh/kg, a peak power in excess of 200 W/kg, and over 1000 cycles at 100% depth of discharge. They also have an intrinsic ability to withstand overcharge and overdischarge abuse. Ovonic Ni/MH batteries are environmentally friendly and can be recycled. Performance data will be presented showing the successful scale-up of this technology for electric vehicle applications.

Venkatesan, S.; Corrigan, D.A.; Gifford, P.R.; Fetcenko, M.A.; Dhar, S.K.; Ovshinsky, S.R. (Ovonic Battery Co., Troy, MI (United States))

1993-05-01T23:59:59.000Z

9

Current status of environmental, health, and safety issues of nickel metal-hydride batteries for electric vehicles  

Science Conference Proceedings (OSTI)

This report identifies important environment, health, and safety issues associated with nickel metal-hydride (Ni-MH) batteries and assesses the need for further testing and analysis. Among the issues discussed are cell and battery safety, workplace health and safety, shipping requirements, and in-vehicle safety. The manufacture and recycling of Ni-MH batteries are also examined. This report also overviews the ``FH&S`` issues associated with other nickel-based electric vehicle batteries; it examines venting characteristics, toxicity of battery materials, and the status of spent batteries as a hazardous waste.

Corbus, D.; Hammel, C.J.; Mark, J.

1993-08-01T23:59:59.000Z

10

Gas atomization processing of tin and silicon modified LaNi{sub 5} for nickel-metal hydride battery applications  

DOE Green Energy (OSTI)

Numerous researchers have studied the relevant material properties of so-called AB{sub 5} alloys for battery applications. These studies involved LaNi{sub 5} substituted alloys which were prepared using conventional cast and crush alloying techniques. While valuable to the understanding of metal hydride effects, the previous work nearly ignored the potential for alternative direct powder production methods, like high pressure gas atomization (HPGA). Thus, there is a need to understand the relationship between gas atomization processes, powder particle solidification phases, and hydrogen absorption properties of ultra fine (< 25 {micro}m) atomized powders with high surface area for enhanced battery performance. Concurrently, development of a gas atomization nozzle that is more efficient than all current designs is needed to increase the yield of ultrafine AB{sub 5} alloy powder for further processing advantage. Gas atomization processing of the AB{sub 5} alloys was demonstrated to be effective in producing ultrafine spherical powders that were resilient to hydrogen cycling for the benefit of improving corrosion resistance in battery application. These ultrafine powders benefited from the rapid solidification process by having refined solute segregation in the microstructure of the gas atomized powders which enabled a rapid anneal treatment of the powders. The author has demonstrated the ability to produce high yields of ultrafine powder efficiently and cost effectively, using the new HPGA-III technology. Thus, the potential benefits of processing AB{sub 5} alloys using the new HPGA technology could reduce manufacturing cost of nickel-metal hydride powder. In the near future, the manufacture of AB{sub 5} alloy powders could become a continuous and rapid production process. The economic benefit of an improved AB{sub 5} production process may thereby encourage the use of nickel-metal hydride rechargeable batteries in electrical vehicle applications in the foreseeable future.

Ting, J.

1999-02-12T23:59:59.000Z

11

Characteristics of the high-rate discharge capability of a nickel/metal hydride battery electrode  

Science Conference Proceedings (OSTI)

The high rate discharge capability of the negative electrode in a Ni/MH battery is mainly determined by the charge transfer process at the interface between the metal hydride (MH) alloy powder and the electrolyte, and the mass transfer process in the bulk MH alloy powder. In this study, the anodic polarization curves of a MH electrode were measured and analyzed. An alloy of nominal composition Mm{sub 0.95}Ti{sub 0.05}Ni{sub 3.85}Co{sub 0.45}Mn{sub 0.35}Al{sub 0.35} was used as the negative electrode material. With increasing number of charge/discharge cycles, the MH alloy powders microcrack into particles several micrometers in diameter. The decrease in the MH alloy particle size results in an increase in both the activation surface area and the exchange current density of the MH alloy electrode. The electrode overpotentials of the MH electrode decreases with increasing number of cycles at a large value of anodic polarization current. The decrease in electrode overpotential leads to an increase in the high rate discharge capability of the MH electrode. By using the limiting current, the hydrogen diffusion coefficient in the MH alloy was estimated to be 1.2 x 10{sup {minus}11}cm{sup 2}s{sup {minus}1} assuming an average particle radius of 5 {micro}m.

Geng, M.; Han, J.; Feng, F.; Northwood, D.O.

1999-10-01T23:59:59.000Z

12

Advanced nickel-metal hydride cell development. Final report, September 1993--March 1996  

DOE Green Energy (OSTI)

Inert gas atomization using metal hydride alloys for a Ni/MH{sub x}cell was studied. Atomization of the alloys was demonstrated on a small production scale up to batch size of several kg. Relative performance of the atomized and nonatomized alloys was investigated for the electrode material in a Ni/MH{sub x} cell. The study included effects of charge-discharge rates, temperature, and particle size on cell voltage (polarization) and specific capacity. Results show that the specific capacity of the present atomized alloys was apprecialy smaller than that of the nonatomized powder, especially for initial cycles. Full activation of the atomized alloys oftentook several hundreds of cycles. However, no appreciable difference in discharge rate capability was observed with R10 and R12 alloys. Chemical compositions were indistinguishable, although the oxygen contents of the atomized alloys were always higher. Effects of Ni and Cu coating on alloy performance were studied after electroless coating; the coatings noticeably improved the electrode rate capability for all the alloys. The electrode polarization was esecially improved, but not the cycle life. Further studies are needed.

Lim, Hong S.

1996-03-01T23:59:59.000Z

13

Models for Metal Hydride Particle Shape, Packing, and Heat Transfer  

E-Print Network (OSTI)

A multiphysics modeling approach for heat conduction in metal hydride powders is presented, including particle shape distribution, size distribution, granular packing structure, and effective thermal conductivity. A statistical geometric model is presented that replicates features of particle size and shape distributions observed experimentally that result from cyclic hydride decreptitation. The quasi-static dense packing of a sample set of these particles is simulated via energy-based structural optimization methods. These particles jam (i.e., solidify) at a density (solid volume fraction) of 0.665+/-0.015 - higher than prior experimental estimates. Effective thermal conductivity of the jammed system is simulated and found to follow the behavior predicted by granular effective medium theory. Finally, a theory is presented that links the properties of bi-porous cohesive powders to the present systems based on recent experimental observations of jammed packings of fine powder. This theory produces quantitative experimental agreement with metal hydride powders of various compositions.

Kyle C. Smith; Timothy S. Fisher

2012-05-04T23:59:59.000Z

14

Stabilization of Nickel Metal Catalysts for Aqueous ...  

Biomass and Biofuels Stabilization of Nickel Metal Catalysts for Aqueous Processing Systems Pacific Northwest National Laboratory.

15

Stabilization of Nickel Metal Catalysts for Aqueous Processing ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Stabilization of Nickel Metal Catalysts for Aqueous Processing Systems. ...

16

The Evolution of Sustainable Personal Vehicles  

E-Print Network (OSTI)

and a pluggable lithium-ion battery pack capable ofbattery for all BEV, nickel metal hydride and lithium-ionlithium-ion & lithium polymer, and sodium nickel metal chloride. Each of these battery

Jungers, Bryan D

2009-01-01T23:59:59.000Z

17

Mathematical model of a NiOOH/metal hydride cell. Final report, September 15, 1993--November 14, 1996  

DOE Green Energy (OSTI)

One of the objectives of work on the nickel/metal hydride cell has been to develop a mathematical model of the performance of the cell. This is a summary of work to date and is meant to be a Final Report of the BES project. Mathematical model of the nickel/metal hydride cell depends on the kinetics, thermodynamics, and transport properties of the metal hydride electrode. Consequently, investigations were carried out to determine: (1) the exchange current density and the equilibrium potential as a function of hydrogen content in the electrode; (2) the hydrogen diffusion coefficient in the bulk of the alloy; (3) the hydrogen reaction rate order; (4) the symmetry factor for hydrogen evolution reaction and (5) to determine the reaction mechanisms of the hydrogen charge and discharge processes including overcharge and overdischarge mechanism.

White, R.E.; Popov, B.N.

1996-12-31T23:59:59.000Z

18

Hydride compositions  

DOE Patents (OSTI)

A composition for use in storing hydrogen, and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the hydrogen equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to hydrogen and then heating at a temperature below the softening temperature of any of the. constituents so that their chemical and structural integrity is preserved. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P.sub.H.sbsb.2 and determining H/M from the isothermic function of the composition.

Lee, Myung W. (North Augusta, SC)

1995-01-01T23:59:59.000Z

19

Hydride compositions  

DOE Patents (OSTI)

Disclosed are a composition for use in storing hydrogen and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the H equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to H, and then heating below the softening temperature of any of the constituents. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P{sub H}{sub 2} and determining H/M from the isothermic function of the composition.

Lee, Myung, W.

1994-01-01T23:59:59.000Z

20

High cycle life, cobalt free, AB{5} metal hydride electrodes [Revised 11/10/98  

SciTech Connect

Cobalt-free La(Ni,Sn)5+x alloys have been identified as low cost, corrosion resistant electrodes for nickel-metal-hydride batteries. The structure of theses alloys are similar to non-stoichiometric La(Ni,Cu)5+x compounds; i.e., they retain the P6/mmm space group while Ni dumbbells occupy La sites. Electrodes fabricated from some of these novel alloys have capacities and cycle lives equivalent to those made from commercial, battery grade, AB5 alloys with cobalt.

Vogt, Tom; Reilly, J.J.; Johnson, J.R.; Adzic, G.D.; Ticianelli, E.A.; Mukerjee, S.; McBreen, J.

1998-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifi cations Manufacturer: Sanyo Electric Co. Battery Type: Nickel Metal Hydride Rated Capacity: 5.5 Ahr Rated Power: NA Nominal Pack Voltage: 330.0 VDC Nominal Cell...

22

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifications Manufacturer: Cobasys Type: Nickel-Metal Hydride Number of Modules: 240 Weight of Pack: 145 lbs Module Weight: 0.55 lbs Nominal Module Voltage: 1.2 V Nominal...

23

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifi cations Manufacturer: Sanyo Electric Co. Battery Type: Nickel Metal Hydride Rated Capacity: 5.5 Ahr Rated Power: Not Available Nominal Pack Voltage: 330.0 VDC...

24

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifi cations Manufacturer: Sanyo Battery Type: Nickel Metal Hydride Rated Capacity: 6.0 Ahr Rated Power: Not Available Nominal Pack Voltage: 144.0 VDC Nominal Cell...

25

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifi cations Manufacturer: Panasonic Battery Type: Nickel Metal Hydride Rated Capacity: 5.5 Ahr Rated Power: Not Available Nominal Pack Voltage: 158.4 VDC Nominal Cell...

26

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifications Manufacturer: Sanyo Type: Nickel-Metal Hydride Number of Modules: 204 Nominal Module Voltage: 1.35 V Nominal System Voltage: 275 V Nominal Pack Capacity: 5.5...

27

Manufacturer: Panasonic Battery Type: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifi cations Manufacturer: Panasonic Battery Type: Nickel Metal Hydride Rated Capacity: 5.5 Ahr Rated Power: Not Available Nominal Pack Voltage: 158.4 VDC Nominal Cell...

28

Hydride compressor  

DOE Patents (OSTI)

Method of producing high energy pressurized gas working fluid power from a low energy, low temperature heat source, wherein the compression energy is gained by using the low energy heat source to desorb hydrogen gas from a metal hydride bed and the desorbed hydrogen for producing power is recycled to the bed, where it is re-adsorbed, with the recycling being powered by the low energy heat source. In one embodiment, the adsorption-desorption cycle provides a chemical compressor that is powered by the low energy heat source, and the compressor is connected to a regenerative gas turbine having a high energy, high temperature heat source with the recycling being powered by the low energy heat source.

Powell, James R. (Wading River, NY); Salzano, Francis J. (Patchogue, NY)

1978-01-01T23:59:59.000Z

29

Advanced Hydride Laboratory  

DOE Green Energy (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-01-01T23:59:59.000Z

30

Silica Embedded Metal Hydrides  

DOE Green Energy (OSTI)

A method to produce silica embedded metal hydride was developed. The product is a composite in which metal hydride particles are embedded in a matrix of silica. The silica matrix is highly porous. Hydrogen gas can easily reach the embedded metal hydride particles. The pores are small so that the metal hydride particles cannot leave the matrix. The porous matrix also protects the metal hydride particles from larger and reactive molecules such as oxygen, since the larger gas molecules cannot pass through the small pores easily. Tests show that granules of this composite can absorb hydrogen readily and withstand many cycles without making fines.

Heung, L.K. [Westinghouse Savannah River Company, AIKEN, SC (United States); Wicks, G.G.

1998-08-01T23:59:59.000Z

31

Battery pack  

Science Conference Proceedings (OSTI)

A battery pack is described, having a center of mass, for use with a medical instrument including a latch, an ejector, and an electrical connector, the battery pack comprising: energy storage means for storing electrical energy; latch engagement means, physically coupled to the energy storage means, for engaging the latch; ejector engagement means, physically coupled to the energy storage means, for engaging the ejector; and connector engagement means, physically coupled to the energy storage means, for engaging the connector, the latch engagement means, ejector engagement means, and connector engagement means being substantially aligned in a plane offset from the center of mass of the battery pack.

Weaver, R.J.; Brittingham, D.C.; Basta, J.C.

1993-07-06T23:59:59.000Z

32

Transition-Metal Hydrides  

NLE Websites -- All DOE Office Websites (Extended Search)

Transition-Metal Hydride Electrochromics Transition-Metal Hydride Electrochromics A new type of electrochromic hydride material has interesting and unusual properties. Thin Ni-Mg films, for example, are mirror-like in appearance and have very low visible transmittance. On exposure to hydrogen gas or on reduction in alkaline electrolyte, the films become transparent. The transition is believed to result from formation of nickel magnesium hydride, Mg2NiH4. Switchable mirrors based on rare earth hydrides were discovered in 1996 at Vrije University in the Netherlands, Rare earth-magnesium alloy films were subsequently found to be superior to the pure lanthanides in maximum transparency and mirror-state reflectivity by Philips Laboratories. The newer transition-metal types which use less expensive and less reactive materials were discovered at LBNL. This has now become a very active area of study with a network of researchers.

33

Chemistry of intermetallic hydrides  

DOE Green Energy (OSTI)

Certain intermetallic hydrides are safe, convenient and inexpensive hydrogen storage compounds. A particular advantage of such compounds is the ease with which their properties can be modified by small changes in alloy composition or preparation. This quality can be exploited to optimize their storage properties for particular applications, e.g. as intermetallic hydride electrodes in batteries. We will be concerned herein with the more important aspects of the thermodynamic and structural principles which regulate the behavior of intermetallic hydrogen systems and then illustrate their application using the archetype hydrides of LaNi5, FeTi and Mg alloys. The practical utility of these classes of materials will be briefly noted.

Reilly, J.J.

1991-01-01T23:59:59.000Z

34

Hydride heat pump  

DOE Patents (OSTI)

Method and apparatus for the use of hydrides to exhaust heat from one temperature source and deliver the thermal energy extracted for use at a higher temperature, thereby acting as a heat pump. For this purpose there are employed a pair of hydridable metal compounds having different characteristics working together in a closed pressure system employing a high temperature source to upgrade the heat supplied from a low temperature source.

Cottingham, James G. (Center Moriches, NY)

1977-01-01T23:59:59.000Z

35

Boron hydride polymer coated substrates  

DOE Patents (OSTI)

A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

Pearson, R.K.; Bystroff, R.I.; Miller, D.E.

1986-08-27T23:59:59.000Z

36

Boron hydride polymer coated substrates  

DOE Patents (OSTI)

A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

Pearson, Richard K. (Pleasanton, CA); Bystroff, Roman I. (Livermore, CA); Miller, Dale E. (Livermore, CA)

1987-01-01T23:59:59.000Z

37

Develop improved metal hydride technology for the storage of hydrogen. Final technical report  

DOE Green Energy (OSTI)

The overall objective was to develop commercially viable metal hydrides capable of reversibly storing at least 3 wt.% hydrogen for use with PEM fuel cells and hydrogen fueled internal combustion engine (HICE) applications. Such alloys are expected to result in system capacities of greater than 2 wt.%, making metal hydride storage systems (MHSS`s) a practical means of supplying hydrogen for many consumer applications. ECD`s (Energy Conversion Devices, Inc.) past work on sputtered thin films of transition metal-based alloys led to the commercialization of it`s nickel/metal hydride batteries, and similar work on thin film Mg-based alloys demonstrated potential to achieve very high gravimetric and volumetric energy densities approaching 2,500 Wh/Kg and 2,500 Wh/M{sup 3} respectively. Under this 2-year cost shared project with the DOE, the authors have successfully demonstrated the feasibility of scaling up the Mg-based hydrides from thin film to bulk production without substantial loss of storage capacity. ECD made progress in alloy development by means of compositional and process modification. Processes used include Mechanical Alloying, Melt spinning and novel Gas Phase Condensation. It was showed that the same composition when prepared by melt-spinning resulted in a more homogeneous material having a higher PCT plateau pressure as compared to mechanical alloying. It was also shown that mechanically alloyed Mg-Al-Zn results in much higher plateau pressures, which is an important step towards reducing the desorption temperature. While significant progress has been made during the past two years in alloy development and understanding the relationship between composition, structure, morphology, and processing parameters, additional R and D needs to be performed to achieve the goals of this work.

Sapru, K.

1998-12-04T23:59:59.000Z

38

Method for preparing porous metal hydride compacts  

DOE Patents (OSTI)

A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

1980-01-21T23:59:59.000Z

39

Hydrogen Outgassing from Lithium Hydride  

DOE Green Energy (OSTI)

Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

2006-04-20T23:59:59.000Z

40

Activated aluminum hydride hydrogen storage compositions and ...  

In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of ...

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Dimensionally stable metal hydrides - major problem with hydrides is resolved  

SciTech Connect

A patented innovation designed to stabilize metal hydrides and prevent breakbown is described. The innovation is a five step process: reduction of the metal hydride to a particle size less than 10 microns in size; oxidation of particle surfaces; blending of the particles with a porous component and a ballast metal; compression into pellets; calcination of the pellets.

McCarthy, K.

1995-11-01T23:59:59.000Z

42

Dimensionally stable metallic hydride composition  

SciTech Connect

A stable, metallic hydride composition and a process for making such a composition. The composition comprises a uniformly blended mixture of a metal hydride, kieselguhr, and a ballast metal, all in the form of particles. The composition is made by subjecting a metal hydride to one or more hydrogen absorption/desorption cycles to disintegrate the hydride particles to less than approximately 100 microns in size. The particles are partly oxidized, then blended with the ballast metal and the kieselguhr to form a uniform mixture. The mixture is compressed into pellets and calcined. Preferably, the mixture includes approximately 10 vol. % or more kieselguhr and approximately 50 vol. % or more ballast. Metal hydrides that can be used in the composition include Zr, Ti, V, Nb, Pd, as well as binary, tertiary, and more complex alloys of La, Al, Cu, Ti, Co, Ni, Fe, Zr, Mg, Ca, Mn, and mixtures and other combinations thereof. Ballast metals include Al, Cu and Ni.

Heung, Leung K. (Aiken, SC)

1994-01-01T23:59:59.000Z

43

Dimensionally stable metallic hydride composition  

SciTech Connect

A stable, metallic hydride composition and a process for making such a composition are described. The composition comprises a uniformly blended mixture of a metal hydride, kieselguhr, and a ballast metal, all in the form of particles. The composition is made by subjecting a metal hydride to one or more hydrogen absorption/desorption cycles to disintegrate the hydride particles to less than approximately 100 microns in size. The particles are partly oxidized, then blended with the ballast metal and the kieselguhr to form a uniform mixture. The mixture is compressed into pellets and calcined. Preferably, the mixture includes approximately 10 vol. % or more kieselguhr and approximately 50 vol. % or more ballast. Metal hydrides that can be used in the composition include Zr, Ti, V, Nb, Pd, as well as binary, tertiary, and more complex alloys of La, Al, Cu, Ti, Co, Ni, Fe, Zr, Mg, Ca, Mn, and mixtures and other combinations thereof. Ballast metals include Al, Cu and Ni.

Heung, L.K.

1994-03-22T23:59:59.000Z

44

Erbium hydride decomposition kinetics.  

DOE Green Energy (OSTI)

Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

Ferrizz, Robert Matthew

2006-11-01T23:59:59.000Z

45

Complex Hydrides for Hydrogen Storage  

DOE Green Energy (OSTI)

This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

Slattery, Darlene; Hampton, Michael

2003-03-10T23:59:59.000Z

46

Electronically configured battery pack  

DOE Green Energy (OSTI)

Battery packs for portable equipment must sometimes accommodate conflicting requirements to meet application needs. An electronically configurable battery pack was developed to support two highly different operating modes, one requiring very low power consumption at a low voltage and the other requiring high power consumption at a higher voltage. The configurable battery pack optimizes the lifetime and performance of the system by making the best use of all available energy thus enabling the system to meet its goals of operation, volume, and lifetime. This paper describes the cell chemistry chosen, the battery pack electronics, and tradeoffs made during the evolution of its design.

Kemper, D.

1997-03-01T23:59:59.000Z

47

ENVIRONMENTAL REACTIVITY OF SOLID STATE HYDRIDE MATERIALS  

DOE Green Energy (OSTI)

In searching for high gravimetric and volumetric density hydrogen storage systems, it is inevitable that higher energy density materials will be used. In order to make safe and commercially acceptable condensed phase hydrogen storage systems, it is important to understand quantitatively the risks involved in using and handling these materials and to develop appropriate mitigation strategies to handle potential material exposure events. A crucial aspect of the development of risk identification and mitigation strategies is the development of rigorous environmental reactivity testing standards and procedures. This will allow for the identification of potential risks and implementation of risk mitigation strategies. Modified testing procedures for shipping air and/or water sensitive materials, as codified by the United Nations, have been used to evaluate two potential hydrogen storage materials, 2LiBH{sub 4} {center_dot} MgH{sub 2} and NH{sub 3}BH{sub 3}. The modified U.N. procedures include identification of self-reactive substances, pyrophoric substances, and gas-emitting substances with water contact. The results of these tests for air and water contact sensitivity will be compared to the pure material components where appropriate (e.g. LiBH{sub 4} and MgH{sub 2}). The water contact tests are divided into two scenarios dependent on the hydride to water mole ratio and heat transport characteristics. Air contact tests were run to determine whether a substance will spontaneously react with air in a packed or dispersed form. In the case of the 2LiBH{sub 4} {center_dot} MgH{sub 2} material, the results from the hydride mixture compared to the pure materials results showed the MgH{sub 2} to be the least reactive component and LiBH{sub 4} the more reactive. The combined 2LiBH{sub 4} {center_dot} MgH{sub 2} resulted in a material having environmental reactivity between these two materials. Relative to 2LiBH{sub 4} {center_dot} MgH{sub 2}, the chemical hydride NH{sub 3}BH{sub 3} was observed to be less environmentally reactive.

Gray, J; Donald Anton, D

2009-04-23T23:59:59.000Z

48

Office of Technology Transfer Composite Electrodes for Rechargeable Lithium-  

E-Print Network (OSTI)

of this technology. Page 6 Lithium-ion Batteries Could Hold the Key to 100-MPG Hybrids Lithium-ion batteries are a promising alternative to the nickel metal hydride batteries used in current-generation HEVs. Lithium-ion batteries pack more power and energy into a smaller battery package. But there's work to do before lithium-ion

Kemner, Ken

49

Hydride Rim Formation in Unirradiated Zircaloy  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this work is to develop the means of pre-hydriding unirradiated Zircaloy cladding such that a high concentration, or rim, of hydrides is formed at the cladding outside diameter.

50

DEVELOPMENT OF A FABRICATION PROCESS FOR SOL-GEL/METAL HYDRIDE COMPOSITE GRANULES  

DOE Green Energy (OSTI)

An external gelation process was developed to produce spherical granules that contain metal hydride particles in a sol-gel matrix. Dimensionally stable granules containing metal hydrides are needed for applications such as hydrogen separation and hydrogen purification that require columns containing metal hydrides. Gases must readily flow through the metal hydride beds in the columns. Metal hydrides reversibly absorb and desorb hydrogen and hydrogen isotopes. This is accompanied by significant volume changes that cause the metal hydride to break apart or decrepitate. Repeated cycling results in very fine metal hydride particles that are difficult to handle and contain. Fine particles tend to settle and pack making it more difficult to flow gases through a metal hydride bed. Furthermore, the metal hydrides can exert a significant force on the containment vessel as they expand. These problems associated with metal hydrides can be eliminated with the granulation process described in this report. Small agglomerates of metal hydride particles and abietic acid (a pore former) were produced and dispersed in a colloidal silica/water suspension to form the feed slurry. Fumed silica was added to increase the viscosity of the feed slurry which helped to keep the agglomerates in suspension. Drops of the feed slurry were injected into a 27-foot tall column of hot ({approx}70 C), medium viscosity ({approx}3000 centistokes) silicone oil. Water was slowly evaporated from the drops as they settled. The drops gelled and eventually solidified to form spherical granules. This process is referred to as external gelation. Testing was completed to optimize the design of the column, the feed system, the feed slurry composition, and the operating parameters of the column. The critical process parameters can be controlled resulting in a reproducible fabrication technique. The residual silicone oil on the surface of the granules was removed by washing in mineral spirits. The granules were dried in air at 40 C. The granules were heated to 230 C for 30 minutes in argon to remove the remaining water and organic materials. The resulting product was spherical composite granules (100 to 2000 micron diameter) with a porous silica matrix containing small agglomerates of metal hydride particles. Open porosity in the silica matrix allows hydrogen to permeate rapidly through the matrix but the pores are small enough to contain the metal hydride particles. Additional porosity around the metal hydride particles, induced using abietic acid as a pore former, allows the particles to freely expand and contract without fracturing the brittle sol-gel matrix. It was demonstrated that the granules readily absorb and desorb hydrogen while remaining integral and dimensionally stable. Microcracking was observed after the granules were cycled in hydrogen five times. The strength of the granules was improved by coating them with a thin layer of a micro-porous polymer sol-gel that would allow hydrogen to freely pass through the coating but would filter out metal hydride poisons such as water and carbon monoxide. It was demonstrated that if a thin sol-gel coating was applied after the granules were cycled, the coating not only improved the strength of the granules but the coated granules retained their strength after additional hydrogen cycling tests. This additional strength is needed to extend the lifetime of the granules and to survive the compressive load in a large column of granules. Additional hydrogen adsorption tests are planned to evaluate the performance of coated granules after one hundred cycles. Tests will also be performed to determine the effects of metal hydride poisons on the granules. The results of these tests will be documented in a separate report. The process that was developed to form these granules could be scaled to a production process. The process to form granules from a mixture of metal hydride particles and pore former such as abietic acid can be scaled up using commercial granulators. The current laboratory-scale external gelation column produc

Hansen, E; Eric Frickey, E; Leung Heung, L

2004-02-23T23:59:59.000Z

51

Vanadium hydride deuterium-tritium generator  

DOE Patents (OSTI)

A pressure controlled vanadium hydride gas generator to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

Christensen, Leslie D. (Livermore, CA)

1982-01-01T23:59:59.000Z

52

Method of producing a chemical hydride  

DOE Patents (OSTI)

A method of producing a chemical hydride is described and which includes selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of a hydrocarbon; and reacting the composition with the source of the hydrocarbon to generate a chemical hydride.

Klingler, Kerry M. (Idaho Falls, ID); Zollinger, William T. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); Wendt, Kraig M. (Idaho Falls, ID)

2007-11-13T23:59:59.000Z

53

Graphitic packing removal tool  

DOE Patents (OSTI)

Graphitic packing removal tools are described for removal of the seal rings in one piece from valves and pumps. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

Meyers, K.E.; Kolsun, G.J.

1996-12-31T23:59:59.000Z

54

Rigidity of packings  

Science Conference Proceedings (OSTI)

In Ludwig Danzer's Habilitatiionsschrift [L. Danzer, Endliche Punktmengen auf der 2-Sphare mit moglichst grossem minimalabstand, Habilitationsschrift, Gottingen, 1963] he initiated a study of the local nature of the packings from the point of view of ...

Robert Connelly

2008-11-01T23:59:59.000Z

55

Packing sets of patterns  

Science Conference Proceedings (OSTI)

Packing density is a permutation occurrence statistic which describes the maximal number of permutations of a given type that can occur in another permutation. In this article we focus on containment of sets of permutations. Although this question has ...

Alexander Burstein; Peter Hst

2010-01-01T23:59:59.000Z

56

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

M. (2008) Emerging lithium-ion battery technologies forbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (battery chemistries, including nickel-metal hydride (NiMH) and several lithium-ion (

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

57

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

M. (2008) Emerging lithium-ion battery technologies forbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (battery chemistries, including nickel-metal hydride (NiMH) and several lithium-ion (

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

58

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

M. , 2008. Emerging lithium-ion battery technologies forbattery chemistries: nickel- metal hydride (NiMH) and lithium-ion (battery chemistries, including nickel- metal hydride (NiMH) and several lithium-ion (

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

59

Complex Hydrides for Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrides for Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories G. J. Thomas Efficient onboard hydrogen storage is a critical enabling technology for the use of hydrogen in vehicles * The low volumetric density of gaseous fuels requires a storage method which densifies the fuel. - This is particularly true for hydrogen because of its lower energy density relative to hydrocarbon fuels. * Storage methods result in additional weight and volume above that of the fuel. How do we achieve adequate stored energy in an efficient, safe and cost-effective system? G. J. Thomas However, the storage media must meet certain requirements: - reversible hydrogen uptake/release - lightweight - low cost - cyclic stability - rapid kinetic properties - equilibrium properties (P,T) consistent

60

Vanadium hydride deuterium-tritium generator  

DOE Patents (OSTI)

A pressure controlled vanadium hydride gas generator was designed to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

Christensen, L.D.

1980-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network (OSTI)

unlikely). For electric vehicles the primary safety concernsand safety issues of nickel metal-hydride batteries for electric vehicles.

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

62

Activated Aluminum Hydride Hydrogen Storage Compositions ...  

Aluminum hydride is the best known alane and has been known for over 60 years. It is potentially a very attractive medium for onboard automotive hydrogen storage ...

63

Phase Field Modeling of Coherent Zirconium Hydrides ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Mechanical properties of hydrided Zircaloy claddings under external load lie in the center of nuclear reactor safety. Numerous experimental...

64

Hydrogen Storage property of sandwiched magnesium hydride naoparticle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage property of sandwiched magnesium hydride naoparticle thin film Title Hydrogen Storage property of sandwiched magnesium hydride naoparticle thin film Publication Type...

65

Optimization of blended battery packs  

E-Print Network (OSTI)

This thesis reviews the traditional battery pack design process for hybrid and electric vehicles, and presents a dynamic programming (DP) based algorithm that eases the process of cell selection and pack design, especially ...

Erb, Dylan C. (Dylan Charles)

2013-01-01T23:59:59.000Z

66

Packed Bed Combustion: An Overview  

E-Print Network (OSTI)

Packed Bed Combustion: An Overview William Hallett Dept. of Mechanical Engineering Université d'Ottawa - University of Ottawa #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Introduction air fuel feedproducts xbed grate Packed Bed Combustion: fairly large particles of solid fuel on a grate, air supplied

Hallett, William L.H.

67

Development of encapsulated lithium hydride thermal energy storage for space power systems  

DOE Green Energy (OSTI)

Inclusion of thermal energy storage in a pulsed space power supply will reduce the mass of the heat rejection system. In this mode, waste heat generated during the brief high-power burst operation is placed in the thermal store; later, the heat in the store is dissipated to space via the radiator over the much longer nonoperational period of the orbit. Thus, the radiator required is of significantly smaller capacity. Scoping analysis indicates that use of lithium hydride as the thermal storage medium results in system mass reduction benefits for burst periods as long as 800 s. A candidate design for the thermal energy storage component utilizes lithium hydride encapsulated in either 304L stainless steel or molybdenum in a packed-bed configuration with a lithium or sodium-potassium (NaK) heat transport fluid. Key issues associated with the system design include phase-change induced stresses in the shell, lithium hydride and shell compatibility, lithium hydride dissociation and hydrogen loss from the system, void presence and movement associated with the melt-freeze process, and heat transfer limitations on obtaining the desired energy storage density. 58 refs., 40 figs., 11 tabs.

Morris, D.G.; Foote, J.P.; Olszewski, M.

1987-12-01T23:59:59.000Z

68

Hydrogen storage technology for metal hydrides  

DOE Green Energy (OSTI)

The advantages of using hydrogen as a secondary energy carrier are stated, and numerous factors pertinent to the technology of hydrogen storage via metal hydrides are briefly described. The technology is centered on iron-titanium hydride, FeTiH/sub x/, as the most practical choice for the safe and compact storage of hydrogen. Uses of hydride hydrogen as a fuel or energy carrier are given. The features of hydride reservoir designs are explained, and some performance data are given for two reservoirs constructed at BNL. Results of tests on the long-term behavior of FeTiH/sub x/ are presented along with information on pressure drop in a hydride bed. Two methods of accommodating hydride expansion are described. Other topics include: container materials selection, safety testing of FeTiH/sub x/, hydride materials development, storage systems work at BNL, the proposed Hydrogen-Halogen Energy Storage System, a proposed technique of storing hydrogen in hollow glass microspheres at very high pressure, and information on the commercial availability of materials and equipment for hydride hydrogen. Current development needs are included in the various sections.

Strickland, G

1978-06-01T23:59:59.000Z

69

Superdense Crystal Packings of Ellipsoids  

E-Print Network (OSTI)

Particle packing problems have fascinated people since the dawn of civilization, and continue to intrigue mathematicians and scientists. Resurgent interest has been spurred by the recent proof of Kepler's conjecture: the face-centered cubic lattice provides the densest packing of equal spheres with a packing fraction $\\phi\\approx0.7405$ \\cite{Kepler_Hales}. Here we report on the densest known packings of congruent ellipsoids. The family of new packings are crystal (periodic) arrangements of nearly spherically-shaped ellipsoids, and always surpass the densest lattice packing. A remarkable maximum density of $\\phi\\approx0.7707$ is achieved for both prolate and oblate ellipsoids with aspect ratios of $\\sqrt{3}$ and $1/\\sqrt{3}$, respectively, and each ellipsoid has 14 touching neighbors. Present results do not exclude the possibility that even denser crystal packings of ellipsoids could be found, and that a corresponding Kepler-like conjecture could be formulated for ellipsoids.

Aleksandar Donev; Frank H. Stillinger; P. M. Chaikin; Salvatore Torquato

2004-03-10T23:59:59.000Z

70

Hydrogenation using hydrides and acid  

DOE Patents (OSTI)

The present invention relates to a very rapid, non-catalytic process for hydrogenating unsaturated organic compounds that can be carried out at temperatures generally lower than previously utilized. In this process organic compounds which contain at least one reducible functional group are hydrogenated non-catalytically by reacting them with a hydride complex and a strong acid. The reducible functional group may be, for example, C=C, C-OH, C-O-C, or a strained cyclic structure. If the reactants are not mutually soluble, they are dissolved in an appropriate inert solvent. 3 tabs.

Bullock, R.M.

1989-12-13T23:59:59.000Z

71

Wire Wrapped Hexagonal Pin Arrays for Hydride Fueled PWRs  

E-Print Network (OSTI)

This work contributes to the Hydride Fuels Project, a collaborative effort between UC Berkeley and MIT

Diller, Peter

72

Activated aluminum hydride hydrogen storage compositions and uses thereof  

DOE Patents (OSTI)

In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

Sandrock, Gary (Ringwood, NJ); Reilly, James (Bellport, NY); Graetz, Jason (Mastic, NY); Wegrzyn, James E. (Brookhaven, NY)

2010-11-23T23:59:59.000Z

73

Hydrogen-storing hydride complexes  

SciTech Connect

A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

Srinivasan, Sesha S. (Tampa, FL); Niemann, Michael U. (Venice, FL); Goswami, D. Yogi (Tampa, FL); Stefanakos, Elias K. (Tampa, FL)

2012-04-10T23:59:59.000Z

74

Chemical Hydride Slurry for Hydrogen Production and Storage  

DOE Green Energy (OSTI)

?\tDuring the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering hydrogen. Further evaluation and development of this concept will be performed as follow-on work under a

McClaine, Andrew W.

2008-09-30T23:59:59.000Z

75

Liquid suspensions of reversible metal hydrides  

DOE Patents (OSTI)

The reversibility of the process M + x/2 H/sub 2/ ..-->.. MH/sub x/, where M is a metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under a liquid, thereby to reduce contamination, provide better temperature control and provide in situ mobility of the reactants. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen (at high pressures) and to release (at low pressures) previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the former is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the H/sub 2/ pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

Reilly, J.J.; Grohse, E.W.; Winsche, W.E.

1983-12-08T23:59:59.000Z

76

Computational Modeling of Uranium Hydriding and Complexes  

DOE Green Energy (OSTI)

Uranium hydriding is one of the most important processes that has received considerable attention over many years. Although many experimental and modeling studies have been carried out concerning thermochemistry, diffusion kinetics and mechanisms of U-hydriding, very little is known about the electronic structure and electronic features that govern the U-hydriding process. Yet it is the electronic feature that controls the activation barrier and thus the rate of hydriding. Moreover the role of impurities and the role of the product UH{sub 3} on hydriding rating are not fully understood. An early study by Condon and Larson concerns with the kinetics of U-hydrogen system and a mathematical model for the U-hydriding process. They proposed that diffusion in the reactant phase by hydrogen before nucleation to form hydride phase and that the reaction is first order for hydriding and zero order for dehydriding. Condon has also calculated and measures the reaction rates of U-hydriding and proposed a diffusion model for the U-hydriding. This model was found to be in excellent agreement with the experimental reaction rates. From the slopes of the Arrhenius plot the activation energy was calculated as 6.35 kcal/mole. In a subsequent study Kirkpatrick formulated a close-form for approximate solution to Condon's equation. Bloch and Mintz have proposed the kinetics and mechanism for the U-H reaction over a wide range of pressures and temperatures. They have discussed their results through two models, one, which considers hydrogen diffusion through a protective UH{sub 3} product layer, and the second where hydride growth occurs at the hydride-metal interface. These authors obtained two-dimensional fits of experimental data to the pressure-temperature reactions. Kirkpatrick and Condon have obtained a linear solution to hydriding of uranium. These authors showed that the calculated reaction rates compared quite well with the experimental data at a hydrogen pressure of 1 atm. Powell et al. have studied U-hydriding in ultrahigh vacuum and obtained the linear rate data over a wide range of temperatures and pressures. They found reversible hydrogen sorption on the UH{sub 3} reaction product from kinetic effects at 21 C. This demonstrates restarting of the hydriding process in the presence of UH{sub 3} reaction product. DeMint and Leckey have shown that Si impurities dramatically accelerate the U-hydriding rates. We report our recent results of relativistic computations that vary from complete active space multi-configuration interaction (CAS-MCSCF) followed by multi-reference configuration interaction (MRSDCI) computations that included up to 50 million configurations for modeling of uranium-hydriding with cluster models will be presented.

Balasubramanian, K; Siekhaus, W J; McLean, W

2003-02-03T23:59:59.000Z

77

What to Pack for Mars  

E-Print Network (OSTI)

De Weck, O.L. What to Pack for Mars. Spectrum, IEEE 46.6 (2009): 39. 2009 Institute of Electrical and Electronics Engineers

De Weck, Olivier L.

78

Valve stem and packing assembly  

DOE Patents (OSTI)

A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele`s pivot. The Schiele`s pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele`s pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele`s pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

Wordin, J.J.

1990-12-31T23:59:59.000Z

79

Optimization of hydride fueled pressurized water reactor cores  

E-Print Network (OSTI)

This thesis contributes to the Hydride Fuels Project, a collaborative effort between UC Berkeley and MIT aimed at investigating the potential benefits of hydride fuel use in light water reactors (LWRs). This pursuit involves ...

Shuffler, Carter Alexander

2004-01-01T23:59:59.000Z

80

Thermal hydraulic analysis of hydride fuels in BWR's  

E-Print Network (OSTI)

This thesis contributes to the hydride nuclear fuel project being completed by UC Berkeley and MIT to assess the possible benefits of using hydride fuel in light water nuclear reactors (LWR's). More specifically, this ...

Creighton, John Everett

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Test problems for quasi-satellite packing????  

E-Print Network (OSTI)

1. Test problems for quasi-satellite packing: Cylinders packing with behavior constraints and all the optimal solutions known. Chao Che. School of Mechanical ...

82

Using Metal Hydride to Store Hydrogen  

DOE Green Energy (OSTI)

Hydrogen is the lightest element. At ambient conditions on a volume basis it stores the least amount of energy compared to other fuel carriers such as natural gas and gasoline. For hydrogen to become a practical fuel carrier, a way must be found to increase its volumetric energy density to a practical level. Present techniques being developed include compressed gas, cryogenic liquid and absorbed solid. Each of these techniques has its advantages and disadvantages. And none of them appears to be satisfactory for use in a hydrogen economy. In the interim all of them are used for demonstration purposes. Metal hydrides store hydrogen in a solid form under moderate temperature and pressure that gives them a safety advantage. They require the least amount of energy to operate. Their stored hydrogen density is nearing that of liquid hydrogen. But they are heavy and the weight is their main disadvantage. Current usable metal hydrides can hold no more than about 1.8 percent hydrogen by weight. However much effort is underway to find lighter materials. These include other solid materials other than the traditional metal hydrides. Their operation is expected to be similar to that of metal hydride and can use the technology developed for metal hydrides.

Heung, L.K.

2003-03-12T23:59:59.000Z

83

Valve stem and packing assembly  

SciTech Connect

A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

Wordin, John J. (Bingham County, ID)

1991-01-01T23:59:59.000Z

84

Valve stem and packing assembly  

DOE Patents (OSTI)

A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents over tightening of the retaining nut and the resulting excessive friction between stem and stem packing. 2 figures.

Wordin, J.J.

1991-09-03T23:59:59.000Z

85

Valve stem and packing assembly  

DOE Patents (OSTI)

A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

Wordin, J.J.

1990-01-01T23:59:59.000Z

86

Hydrogen isotope exchange in metal hydride columns  

DOE Green Energy (OSTI)

Several metal hydrides were shown to act as chromatographic media for hydrogen isotopes. The procedure was to equilibrate a column of hydride with flowing hydrogen, inject a small quantity of tritium tracer, and observe its elution behavior. Characteristic retention times were found. From these and the extent of widening of the tritium band, the heights equivalent to a theoretical plate could be calculated. Values of around 1 cm were obtained. The following are the metals whose hydrides were studied, together with the temperature ranges in which chromatographic behavior was observed: vanadium, 0 to 70/sup 0/C; zirconium, 500 to 600/sup 0/C; LaNi/sub 5/, -78 to +30/sup 0/C; Mg/sub 2/Ni, 300 to 375/sup 0/C; palladium, 0 to 70/sup 0/C. A dual-temperature isotope separation process based on hydride chromatography was demonstrated. In this, a column was caused to cycle between two temperatures while being supplied with a constant stream of tritium-traced hydrogen. Each half-cycle was continued until ''breakthrough,'' i.e., until the tritium concentration in the effluent was the same as that in the feed. Up to that point, the effluent was enriched or depleted in tritium, by up to 20%.

Wiswall, R; Reilly, J; Bloch, F; Wirsing, E

1977-11-21T23:59:59.000Z

87

Metal hydride fuel storage and method thereof  

DOE Patents (OSTI)

Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan F. (Livermore, CA); Yu, Conrad (Antioch, CA)

2006-10-17T23:59:59.000Z

88

Kold Pack: Order (2013-CE-5323)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Kold Pack, Inc. to pay a $8,000 civil penalty after finding Kold Pack had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

89

Recovering hydrogen from gas stream using metal hydride  

SciTech Connect

This invention relates to an improved adiabatic process for separating hydrogen from mixed gas streams using hydridable materials as the absorbing medium. The improvement comprises utilizing a composite comprising a thermal ballast in admixture with the hydride material to absorb the heat of reaction and to aid in desorption. By virtue of the intimate contact of the ballast with the hydridable material rapid cycle times plus good bed utilization are achieved.

Cheng, G.C.; Eisenberg, F.G.; Huston, E.L.; Sandrock, G.D.; Sheridan, J.J.; Snape, E.; Stickles, R.P.

1982-11-23T23:59:59.000Z

90

Dissipative hydride precipitates in superconducting niobium cavities  

Science Conference Proceedings (OSTI)

We report the first direct observation of the microstructural features exhibiting RF losses at high surface magnetic fields of above 100 mT in field emission free superconducting niobium cavities. The lossy areas were identified by advanced thermometry. Surface investigations using different techniques were carried out on cutout samples from lossy areas and showed the presence of dendritic niobium hydrides. This finding has possible implications to the mechanisms of RF losses in superconducting niobium at all field levels.

Romanenko, A.; Cooley, L.D.; /Fermilab; Ciovati, G.; / /Jefferson Lab; Wu, G.; /Argonne

2011-10-01T23:59:59.000Z

91

Metal hydride fuel storage and method thereof - Energy ...  

Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel ...

92

Materials compatibility of hydride storage materials with austenitic stainless steels  

DOE Green Energy (OSTI)

This task evaluated the materials compatibility of LaNi[sub 5-x]Al[sub x] (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

Clark, E.A.

1992-09-21T23:59:59.000Z

93

Materials compatibility of hydride storage materials with austenitic stainless steels  

DOE Green Energy (OSTI)

This task evaluated the materials compatibility of LaNi{sub 5-x}Al{sub x} (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

Clark, E.A.

1992-09-21T23:59:59.000Z

94

METHOD AND APPARATUS FOR MAKING URANIUM-HYDRIDE COMPACTS  

DOE Patents (OSTI)

A method and apparatus are presented for making compacts of pyrophoric hydrides in a continuous operation out of contact with air. It is particularly useful for the preparation of a canned compact of uranium hydride possessing high density and purity. The metallic uranium is enclosed in a container, positioned in a die body evacuated and nvert the uranium to the hydride is admitted and the container sealed. Heat is applied to bring about the formation of the hydride, following which compression is used to form the compact sealed in a container ready for use.

Wellborn, W.; Armstrong, J.R.

1959-03-10T23:59:59.000Z

95

Development of a Passively Cooled, Electrically Heated Hydride (PACE) Bed  

Science Conference Proceedings (OSTI)

Hydride and Storage / Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001

J. E. Klein; J. R. Brenner; E. F. Dyer

96

Gravel packing method and apparatus  

Science Conference Proceedings (OSTI)

A method is described of gravel packing a well formation intersected by a well bore, the method comprising: forming a gel for transporting solids; mixing the solids with the gel; pumping the gel and solids mixed through a tool string disposed in the well bore to a subterranean position above the formation; pumping a breaker fluid to the subterranean position through an annulus breaker between the tool string and the wall of the well bore; introducing the breaker fluid into the tool string at the subterranean position and mixing the breaker fluid with the gel and solids whereby the gel is broken into a low viscosity fluid; and transporting the resultant low viscosity fluid and solids mixed to the formation for packing.

Bolin, M.L.

1987-05-05T23:59:59.000Z

97

Purifying Decane A. Prepare Packing Material  

E-Print Network (OSTI)

to prevent escape of packing material. 4. Seal bottom of column and fill column with packing material to the remaining space at the top of the column. 2. Seal top of column and connect to nitrogen tank. Set with decane. Note: Never allow top of packing material to contact the air after it has been wetted by decane 4

Buckley, Jill S.

98

Jammed Packings of Hard Particles Aleksandar Donev  

E-Print Network (OSTI)

of disordered and ordered hard-sphere and hard-ellipsoid packings. In the first part of this dissertation-equilibrium) free energy of nearly jammed packings of hard particles is designed and implemented. In the second partJammed Packings of Hard Particles Aleksandar Donev A Dissertation Presented to the Faculty

Mohri, Mehryar

99

Pack Cementation Aluminizing of Steels  

Science Conference Proceedings (OSTI)

Table 3   Partial list of commercial applications of pack cementation aluminizing...Carbon and stainless steels Steam power and cogeneration Waterwall tubes 2 % Cr-1% Mo steel Fluidized bed combustor tubes 2 % Cr-1% Mo steel Waste heat boiler tubes Carbon steel Economizer and air preheater tubes 2 % Cr-1% Mo steel Superheater tubes 2 % Cr-1% Mo steel Aerospace (a) Turbine blades...

100

Development of encapsulated lithium hydride sink-side thermal energy storage for pulsed space power systems  

DOE Green Energy (OSTI)

Value analysis indicates that inclusion of thermal energy storage (TES) as an element in a pulsed space power supply will reduce the mass of the heat rejection system. A candidate design for the TES component utilizes lithium hydride (LiH) encapsulated in 304L stainless steel or molybdenum in a packed-bed configuration with a lithium or sodium-potassium (NaK) heat transport fluid. Critical concerns with this concept are the need to (1) accommodate shell stresses induced by volumetric expansion of the melting salt or surface gripping by the freezing salt and (2) minimize hydrogen loss through the shell due to LiH dissociation at high temperatures. Experimental observation of significant cracking of the LiH during cooling mitigates the first of these issues by providing a leakage path into the interior void as melting occurs at the salt-containment interface, thus allowing use of thin shells.

Morris, D.G.; Foote, J.P.; Olszewski, M.; Whittaker, J.W.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems  

SciTech Connect

HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the sun is not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNLs metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800C). A high-temperature tank in PNNLs storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNLs thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

None

2011-12-05T23:59:59.000Z

102

Method of making crack-free zirconium hydride  

DOE Patents (OSTI)

Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

Sullivan, Richard W. (Denver, CO)

1980-01-01T23:59:59.000Z

103

Nano-engineering of magnesium hydride for hydrogen storage  

Science Conference Proceedings (OSTI)

The destabilization of magnesium hydride (MgH"2) by solid-state reaction with Si in a nanoscale under vacuum was studied. The nanostructured Si films were deposited on the nanocrystalline MgH"2/Mg composite substrate by the pulsed laser deposition (PLD). ... Keywords: Destabilization, Magnesium hydride, Microstructure, Nano-engineering, Silicon

J. Bystrzycki; T. P?oci?ski; W. Zieli?ski; Z. Winiewski; M. Polanski; W. Mrz; Z. Bojar; K. J. Kurzd?owski

2009-04-01T23:59:59.000Z

104

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Irradiation is known to have a significant impact on the properties and performance of Zircaloy cladding and structural materials (material degradation processes, e.g., effects of hydriding). This UFD study examines the behavior and performance of unirradiated cladding and actual irradiated cladding through testing and simulation. Three capsules containing hydrogen-charged Zircaloy-4 cladding material have been placed in the High Flux Isotope Reactor (HFIR). Irradiation of the capsules was conducted for post-irradiation examination (PIE) metallography. Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of

105

Porous metal hydride composite and preparation and uses thereof  

DOE Patents (OSTI)

A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

Steyert, William A. (Los Alamos, NM); Olsen, Clayton E. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

106

Porous metal hydride composite and preparation and uses thereof  

DOE Patents (OSTI)

A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

Steyert, W.A.; Olsen, C.E.

1980-03-12T23:59:59.000Z

107

Recent advances in metal hydrides for clean energy applications  

SciTech Connect

Metal hydrides are a fascinating class of materials that can be utilized for a surprising variety of clean energy applications, including smart solar collectors, smart windows, sensors, thermal energy storage, and batteries, in addition to their traditional application for hydrogen storage. Over the past decade, research on metal hydrides for hydrogen storage increased due to global governmental incentives and an increased focus on hydrogen storage research for polymer electrolyte membrane fuel cell operation. Tremendous progress has been made in so-called complex metal hydrides for hydrogen storage applications with the discovery of many new hydrides containing covalently bound complex anions. Many of these materials have applications beyond hydrogen storage and are being investigated for lithium-ion battery separator and anode materials. In this issue of MRS Bulletin , we present the state of the art of key evolving metal-hydride-based clean energy technologies with an outlook toward future needs.

Ronnebro, Ewa; Majzoub, Eric H.

2013-06-01T23:59:59.000Z

108

Modular hydride beds for mobile applications  

DOE Green Energy (OSTI)

Design, construction, initial testing and simple thermal modeling of modular, metal hydride beds have been completed. Originally designed for supplying hydrogen to a fuel cell on a mobile vehicle, the complete bed design consists of 8 modules and is intended for use on the Palm Desert Vehicle (PDV) under development at the Schatz Energy Center, Humbolt State University. Each module contains approximately 2 kg of a commercially available, low temperature, hydride-forming metal alloy. Waste heat from the fuel cell in the form of heated water is used to desorb hydrogen from the alloy for supplying feed hydrogen to the fuel cell. In order to help determine the performance of such a modular bed system, six modules were constructed and tested. The design and construction of the modules is described in detail. Initial testing of the modules both individually and as a group showed that each module can store {approximately} 30 g of hydrogen (at 165 PSIA fill pressure, 17 C), could be filled with hydrogen in 6 minutes at a nominal, 75 standard liters/min (slm) fueling rate, and could supply hydrogen during desorption at rates of 25 slm, the maximum anticipated hydrogen fuel cell input requirement. Tests made of 5 modules as a group indicated that the behavior of the group run in parallel both in fueling and gas delivery could be directly predicted from the corresponding, single module characteristics by using an appropriate scaling factor. Simple thermal modeling of a module as an array of cylindrical, hydride-filled tubes was performed. The predictions of the model are in good agreement with experimental data.

Malinowski, M.E.; Stewart, K.D.

1997-08-01T23:59:59.000Z

109

An Ultracapacitor - Battery Energy Storage System for Hybrid Electric Vehicles.  

E-Print Network (OSTI)

??The nickel metal hydride (NiMH) batteries used in most hybrid electric vehicles (HEVs) provide satisfactory performance but are quite expensive. In spite of their lower (more)

Stienecker, Adam W

2005-01-01T23:59:59.000Z

110

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

research in both the private and public sectors led to battery technology that made electric cars possible. October 17, 2011 Steps to Commercialization: Nickel Metal Hydride...

111

aqueous and electrochemical processing ii  

Science Conference Proceedings (OSTI)

A Dynamic LCA Model For Assessing The Impact Of Lead Free Solder [pp. .... For Recycling Of Spent Nickel-Metal Hydride Secondary Battery (Invited) [pp.

112

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bipolar Nickel Metal Hydride Battery Development and Testing DOE ENERGY STORAGE SYSTEMS RESEARCH PROGRAM ANNUAL PEER REVIEW November 2 - 3, 2006, Washington, D.C. James Landi...

113

table of contents  

Science Conference Proceedings (OSTI)

Hydrometallurgical Treatment of Nickel-Metal Hydride Battery Electrodes J.W. Lyman ... Recycling Process of Used Ni-MH Rechargeable Batteries T. Yoshida...

114

FY 2001 Budget Highlights  

Science Conference Proceedings (OSTI)

... automatically shifted manual transmissions, nickel-metal-hydride batteries for energy ... inaugurated NIST F-1, a laser-cooled atomic fountain clock ...

2010-10-05T23:59:59.000Z

115

The Packing of Granular Polymer Chains  

SciTech Connect

Rigid particles pack into structures, such as sand dunes on the beach, whose overall stability is determined by the average number of contacts between particles. However, when packing spatially extended objects with flexible shapes, additional concepts must be invoked to understand the stability of the resulting structure. Here, we examine the disordered packing of chains constructed out of flexibly connected hard spheres. Using x-ray tomography, we find that long chains pack into a low-density structure whose mechanical rigidity is mainly provided by the backbone. On compaction, randomly oriented, semi-rigid loops form along the chain, and the packing of chains can be understood as the jamming of these elements. Finally, we uncover close similarities between the packing of chains and the glass transition in polymers.

Zou, Ling-Nan; Cheng, Xiang; Rivers, Mark L.; Jaeger, Heinrich M.; Nagel, Sidney R.; UC

2009-12-01T23:59:59.000Z

116

Plug-In Hybrid Electric Vehicle Performance Analysis  

Science Conference Proceedings (OSTI)

This report describes the performance testing of two configurations of the Plug-in Hybrid-Electric Vehicle (PHEV) Sprinter van developed by EPRI and Daimler for use in delivering cargo, carrying passengers, or fulfilling a variety of specialty applications. One configuration, California 1 (CA-1) has a Nickel Metal Hydride (NiMH) battery pack. The other, California 2 (CA-2) has a Lithium Ion (Li-Ion) battery pack. California 2 showed better fuel and energy economy in all aspects of testing.

2008-03-27T23:59:59.000Z

117

Chemical Hydride Slurry for Hydrogen Production and Storage  

Science Conference Proceedings (OSTI)

The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston University have demonstrated the technical viability of the process and have provided data for the cost analyses that have been performed. We also concluded that a carbothermic process could also produce magnesium at acceptable costs. The use of slurry as a medium to carry chemical hydrides has been shown during this project to offer significant advantages for storing, delivering, and distributing hydrogen: Magnesium hydride slurry is stable for months and pumpable. The oils of the slurry minimize the contact of oxygen and moisture in the air with the metal hydride in the slurry. Thus reactive chemicals, such as lithium hydride, can be handled safely in the air when encased in the oils of the slurry. Though magnesium hydride offers an additional safety feature of not reacting readily with water at room temperatures, it does react readily with water at temperatures above the boiling point of water. Thus when hydrogen is needed, the slurry and water are heated until the reaction begins, then the reaction energy provides heat for more slurry and water to be heated. The reaction system can be relatively small and light and the slurry can be stored in conventional liquid fuel tanks. When transported and stored, the conventional liquid fuel infrastructure can be used. The particular metal hydride of interest in this project, magnesium hydride, forms benign byproducts, magnesium hydroxide (Milk of Magnesia) and magnesium oxide. We have estimated that a magnesium hydride slurry system (including the mixer device and tanks) could meet the DOE 2010 energy density goals. ? During the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering hydrogen. Further evaluation and development of this concept will be performed as follow-on work under a

McClaine, Andrew W.

2008-09-30T23:59:59.000Z

118

The Hydriding Kinetics of Organic Hydrogen Getters  

DOE Green Energy (OSTI)

The aging of hermetically sealed systems is often accompanied by the gradual production of hydrogen gas that is a result of the decay of environmental gases and the degradation of organic materials. In particular, the oxygen, water, hydrogen ''equilibrium'' is affected by the removal of oxygen due the oxidation of metals and organic materials. This shift of the above ''equilibrium'' towards the formation of hydrogen gas, particularly in crevices, may eventually reach an explosive level of hydrogen gas or degrade metals by hydriding them. The latter process is generally delayed until the oxidizing species are significantly reduced. Organic hydrogen getters introduced by Allied Signal Aerospace Company, Kansas City Division have proven to be a very effective means of preventing hydrogen gas accumulation in sealed containers. These getters are relatively unaffected by air and environmental gases. They can be packaged in a variety of ways to fit particular needs such as porous pellets, fine or coarse [gravel] powder, or loaded into silicone rubber. The hydrogen gettering reactions are extremely irreversible since the hydrogen gas is converted into an organic hydrocarbon. These getters are based on the palladium-catalyzed hydrogenation of triple bonds to double and then single bonds in aromatic aryl compounds. DEB (1,4 bis (phenyl ethynyl) benzene) typically mixed with 25% by weight carbon with palladium (1% by weight of carbon) is one of the newest and best of these organic hydrogen getters. The reaction mechanisms are complex involving solid state reaction with a heterogeneous catalyst leading to the many intermediates, including mixed alkyl and aryl hydrocarbons with the possibilities of many isomers. The reaction kinetics mechanisms are also strongly influenced by the form in which they are packaged. For example, the hydriding rates for pellets and gravel have a strong dependence on reaction extent (i.e., DEB reduction) and a kinetic order in pressure of 0.76. Silicone rubber based DEB getters hydride at a much lower rate, have little dependence on reaction extent, have a higher kinetic order in pressure (0.87), and have a lower activation energy. The kinetics of the reaction as a function of hydrogen pressure, stoichiometry, and temperature for hydrogen and deuterium near ambient temperature (0 to 75 C) for pressures near or below 100 Pa over a wide range (in some cases, the complete) hydrogenation range are presented along with multi-dimensional rate models.

Powell, G. L.

2002-02-11T23:59:59.000Z

119

Geometrical Properties of Simulated Packings of Spherocylinders  

Science Conference Proceedings (OSTI)

In a wide range of industrial applications there appear systems of hard particles of different shapes and sizes, known as "packings". In this work, the force-biased algorithm, primarily designed to model close packings of equal spheres, is adapted to ...

Monika Bargie?

2008-06-01T23:59:59.000Z

120

Slimhole frac pack tools overcome erosion problems  

SciTech Connect

The application of frac pack technology for stimulation and sand control in the Gulf of Mexico`s unconsolidated formations has steadily increased during the past several years. In addition, re-entry drilling has been one of the fastest growing development techniques used by operators for optimizing reservoir productivity. As such, smaller casing sizes are becoming more common in oil and gas producing wells. Gravel pack tools were being used for frac packing in 7-in. casing sizes and larger, but no tools were available to frac pack in the smaller 5-in. and 5{1/2}-in. casing. The erosion problems operators were experiencing in 7-in. gravel pack tools heightened concerns about fracturing through 5-in. tools with even smaller flow areas. Flow cutting in the 7-in. tools was so severe that it caused fluid communication between the gravel pack ports and the return flow holes in the crossover tool. This allowed fluid and proppant to return to the annulus above the packer, which could cause possible early screen-out and sticking of the crossover tool. The flow cutting could also reduce the tool`s pressure and tensile ratings. Any one of these problems could jeopardize the success of the frac pack operation. Therefore, an erosion resistant crossover tool for slimhole casing was developed to address these problems and optimize frac pack success.

Stout, G. [BJ Services, Tomball, TX (United States). Research and Development Center; Matte, T. [BJ Services, Lafayette, LA (United States); Rogers, B. [Marathon Oil Co., Lafayette, LA (United States)

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

VripPack User's Guide Brian Curless  

E-Print Network (OSTI)

and compiling vrip is fairly straightforward. VripPack depends on Tcl/Tk being installed and has been compiled most recently against Tcl/Tk version 8.4. VripPack comes with these libraries for Linux, but you may. The following web page is a good reference for installing Cygwin and Tcl/Tk as needed for vrip: http

Davis, James E.

122

A new phase in palladium hydride technology  

DOE Green Energy (OSTI)

Two plateaux are observed in both the absorption and desorption isotherms of palladium hydride. For the absorption isotherm, a change in plateau pressure is observed at a hydrogen-to-metal (H/M) ratio of about 0.35 for all temperatures studied. For the desorption isotherm, the change in plateau pressure appears to be a function of temperature, ranging from an H/M ratio of 0.18 at 80{degrees}C to 0.3 at 140{degrees}C. These data are interpreted as being experimentally observed boundaries to an equilibrium phase line located in the miscibility gap of the palladium/hydrogen phase diagram. This new phase does not appear to be a stoichiometric compounds, but rather its composition seems to vary with temperature. 6 refs., 4 figs.

Walters, R.T.

1991-12-31T23:59:59.000Z

123

A new phase in palladium hydride technology  

DOE Green Energy (OSTI)

Two plateaux are observed in both the absorption and desorption isotherms of palladium hydride. For the absorption isotherm, a change in plateau pressure is observed at a hydrogen-to-metal (H/M) ratio of about 0.35 for all temperatures studied. For the desorption isotherm, the change in plateau pressure appears to be a function of temperature, ranging from an H/M ratio of 0.18 at 80{degrees}C to 0.3 at 140{degrees}C. These data are interpreted as being experimentally observed boundaries to an equilibrium phase line located in the miscibility gap of the palladium/hydrogen phase diagram. This new phase does not appear to be a stoichiometric compounds, but rather its composition seems to vary with temperature. 6 refs., 4 figs.

Walters, R.T.

1991-01-01T23:59:59.000Z

124

Hydrogen storage in sodium aluminum hydride.  

DOE Green Energy (OSTI)

Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

2005-11-01T23:59:59.000Z

125

Nonaqueous actinide hydride dissolution and production of actinide $beta$- diketonates  

DOE Patents (OSTI)

Actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a hydride of the actinide material in a mixture of carbon tetrachloride and methanol. (auth)

Crisler, L.R.

1975-11-11T23:59:59.000Z

126

Transient analysis of hydride fueled pressurized water reactor cores  

E-Print Network (OSTI)

This thesis contributes to the hydride nuclear fuel project led by U. C. Berkeley for which MIT is to perform the thermal hydraulic and economic analyses. A parametric study has been performed to determine the optimum ...

Trant, Jarrod Michael

2004-01-01T23:59:59.000Z

127

Metal hydrides: Relevant Materials for Lithium-ion Batteries ...  

Science Conference Proceedings (OSTI)

Reactivity of MgH2 with lithium is a reversible conversion reaction (reversible capacity of 1500 mAh/g) generalized to many hydrides as: MHx + xLi+ + xe- ? M +...

128

Method for gravel packing wells  

SciTech Connect

This patent describes a method for gravel packing a well that penetrates an unconsolidated or poorly consolidated subterranean oil or gas reservoir. It comprises: providing a borehole casing through the reservoir; perforating the casing at preselected intervals therealong to form at least one set of longitudinal, perforation tunnels adjacent a substantial portion of the reservoir; locating a sand screen inside the casing and in juxtaposition with the perforation tunnels, an annulus being formed between the sand screen and the casing; positioning a conduit in juxtaposition with the sand screen extending substantially the length of the sand screen and having its upper extremity open to fluids; injecting a fluid slurry containing gravel down through the annulus and conduit whereby the fluid portion of the slurry is forced out of the annulus through the perforation tunnels into the reservoir and the gravel portion of the slurry deposited in the annulus and forced into the perforation tunnels into the formation; sizing the cross-sectional area of the conduit and the annulus so that if gravel forms a bridge in a portion of the annulus thereby blocking the flow of fluid slurry through the the annulus, fluid slurry containing gravel will continue to flow through the conduit and into the annulus around the gravel bridge; and terminating the injection of the slurry.

Jones, L.G.

1990-08-07T23:59:59.000Z

129

Development of the Low-Pressure Hydride/Dehydride Process  

DOE Green Energy (OSTI)

The low-pressure hydride/dehydride process was developed from the need to recover thin-film coatings of plutonium metal from the inner walls of an isotope separation chamber located at Los Alamos and to improve the safety operation of a hydride recovery process using hydrogen at a pressure of 0.7 atm at Rocky Flats. This process is now the heart of the Advanced Recovery and Integrated Extraction System (ARIES) project.

Rueben L. Gutierrez

2001-04-01T23:59:59.000Z

130

Optimization of Hydride Rim Formation in Unirradiated Zr 4 Cladding  

Science Conference Proceedings (OSTI)

The purpose of this work is to build on the results reported in the M2 milestone M2FT 13PN0805051, document number FCRD-USED-2013-000151 (Hanson, 2013). In that work, it was demonstrated that unirradiated samples of zircaloy-4 cladding could be pre-hydrided at temperatures below 400C in pure hydrogen gas and that the growth of hydrides on the surface could be controlled by changing the surface condition of the samples and form a desired hydride rim on the outside diameter of the cladding. The work performed at Pacific Northwest National Laboratory since the issuing of the M2 milestone has focused its efforts to optimize the formation of a hydride rim on available zircaloy-4 cladding samples by controlling temperature variation and gas flow control during pre-hydriding treatments. Surface conditioning of the outside surface was also examined as a variable. The results of test indicate that much of the variability in the hydride thickness is due to temperature variation occurring in the furnaces as well as how hydrogen gas flows across the sample surface. Efforts to examine other alloys, gas concentrations, and different surface conditioning plan to be pursed in the next FY as more cladding samples become available

Shimskey, Rick W.; Hanson, Brady D.; MacFarlan, Paul J.

2013-09-30T23:59:59.000Z

131

Electronic structure, bonding and chemisorption in metallic hydrides  

DOE Green Energy (OSTI)

Problems that can arise during the cycling steps for a hydride storage system usually involve events at surfaces. Chemisorption and reaction processes can be affected by small amounts of contaminants that may act as catalytic poisons. The nature of the poisoning process can vary greatly for the different metals and alloys that form hydrides. A unifying concept is offered, which satisfactorily correlates many of the properties of transition-metal, rare-earth and actinide hydrides. The metallic hydrides can be differentiated on the basis of electronegativity, metallic radius (valence) and electronic structure. For those systems where there are d (transition metals) or f (early actinides) electrons near the Fermi level a broad range of chemical and catalytic behaviors are found, depending on bandwidth and energy. The more electropositive metals (rare-earths, actinides, transition metals with d < 5) tend to strongly chemisorb electrophilic molecules; this is a consequence of the manner in which new bonding states are introduced. More electronegative metals (d >> 5) dissolve hydrogen and form hydrides by an electronically somewhat different process, and as a class tend to adsorb electrophobic molecules. The net charge-transfer in either situation is subtle; however, the small differences are responsible for many of the observed structural, chemical, and catalytic properties in these hydride systems.

Ward, J.W.

1980-01-01T23:59:59.000Z

132

Compost Bedded Pack Barns: Management Practices and Economic Implications.  

E-Print Network (OSTI)

??Compost bedded pack (CBP) barn design and pack maintenance procedures vary considerably, making advising and problem-solving challenging. One objective of this research was to characterize (more)

Black, Randi Alyson

2013-01-01T23:59:59.000Z

133

Kold Pack: Proposed Penalty (2013-CE-5323)  

Energy.gov (U.S. Department of Energy (DOE))

DOE alleged in a Notice of Proposed Civil Penalty that Kold Pack, Inc. failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

134

test problem for packing_sumit  

E-Print Network (OSTI)

Test problems of circles in circle packing with constraints and known the optimal solutions*. Hong-fei Teng1, 2**, Chao Che 2, Yu Chen 1, Yi-shou Wang 1. 1.

135

Groundwater well with reactive filter pack  

DOE Patents (OSTI)

A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

Gilmore, Tyler J. (Pasco, WA); Holdren, Jr., George R. (Kennewick, WA); Kaplan, Daniel I. (Richland, WA)

1998-01-01T23:59:59.000Z

136

On universal structural characteristics of granular packs  

E-Print Network (OSTI)

Understanding the dependence of the structure of granular materials on grain parameters is key to predictive modelling of granular matter. Structural characteristics are commonly believed to be sensitive, for a given packing process, to intergranular friction, particle size distribution and initial conditions. We show here that the intergranular friction coefficient and the initial conditions are details, which can be scaled away, and that structures are determined mainly by the packing dynamics and the grain size distribution. This we do using the quadron description to analyse the structures of a number of numerically-generated planar disc packs in mechanical equilibrium, varying all these parameters. Our findings are as follows. 1. The mean coordination number is a universal function of the packing fraction, independent of the initial conditions, intergranular friction and size distribution we used, when "rattlers" are ignored. 2. For a given packing process and disc size distribution, both the total and conditional quadron volume distributions collapse to universal forms, independent of the initial conditions and intergranular friction. 3. The cell order distribution collapses to a universal form for all friction coefficients, initial conditions and for the two disc size distributions we studied. These results suggest that mechanically stable granular structures are determined mainly by the packing dynamics and the grains size / shape distributions - the effects of the intergranular friction and initial state can be scaled away and are therefore predictable.

Takashi Matsushima; Raphael Blumenfeld

2013-05-27T23:59:59.000Z

137

Synthesis and characterization of metal hydride/carbon aerogel composites for hydrogen storage  

Science Conference Proceedings (OSTI)

Two materials currently of interest for onboard lightweight hydrogen storage applications are sodium aluminum hydride (NaAlH4), a complex metal hydride, and carbon aerogels (CAs), a light porous material connected by several spherical nanoparticles. ...

Kuen-Song Lin; Yao-Jen Mai; Su-Wei Chiu; Jing-How Yang; Sammy L. I. Chan

2012-01-01T23:59:59.000Z

138

Synthesis and small molecule chemistry of the niobaziridine-hydride functional group  

E-Print Network (OSTI)

Chapter 1. Synthesis and Divergent Reactivity of the Niobaziridine-Hydride Functional Group The synthesis, characterization and reactivity of the niobaziridine-hydride complex Nb(H)([eta]-t- ]Bu(H)C=NAr)(N[Np]Ar)? (la-H; ...

Figueroa, Joshua S

2005-01-01T23:59:59.000Z

139

Final Report for the DOE Metal Hydride Center of Excellence  

NLE Websites -- All DOE Office Websites (Extended Search)

SANDIA REPORT SANDIA REPORT SAND2012-0786 Unlimited Release Printed February 2012 Final Report for the DOE Metal Hydride Center of Excellence Lennie Klebanoff Director, Metal Hydride Center of Excellence Jay Keller Deputy Director, Metal Hydride Center of Excellence Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy

140

A REVIEW OF THE RARE-EARTH HYDRIDES  

SciTech Connect

Some of the properties of rare earth hydrides are reviewed. Information on the hydrides of Tm, Lu, Tb, and Ho is not included because no work has been done on these elements. Eu and Yb are different from other rare earths in that MH/sub 2/ is their highest hydride and the crystal structures of EuH/sub 2/ and YbH/sub 2/ are orthorhombic. ra, Ce, Pr, and Nd form a dihydride which will take hydrogen into solid solution up to MH/sub 3/ without a change in crystal structure. The heavy rare earths form the same type of dihydride as the light, but as the hydrogen content increases from MH/sub 2/ the cubic structure becomes unstable and is replaced by a hexagonal structare. With increasing atomic number, thermal stability and hydrogen deusity increase. (J.R.D.)

Mulford, R.N.R.

1950-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Heat-actuated metal hydride hydrogen compressor testing  

SciTech Connect

Electric utilities use hydrogen for cooling turbine generators. The majority of the utilities purchase the gas from industrial gas markets. On-site electrolytic hydrogen production may prove advantageous both logistically and economically. In order to demonstrate this concept, Public Service Electric and Gas Co. (PSE and G) and EPRI installed an electrolyzer at the Sewaren (NJ) station. To compress the gas, PSE and G purchased a heat-activated metal hydride compressor from Ergenics, Inc. This report describes closed- and open-cycle tests conducted on this metal hydride hydrogen compressor. Test systems, plans, methodologies, and results are presented. A brief discussion evaluates these performance results, addresses some of the practical problems involved with electrolyzer-compressor interface, and compares the costs and benefits of metal hydride versus mechanical hydrogen compression for utility generator cooling.

Piraino, M.; Metz, P.D.; Nienke, J.L.; Freitelberg, A.S.; Rahaman, R.S.

1985-09-01T23:59:59.000Z

142

High-Spin Cobalt Hydrides for Catalysis  

SciTech Connect

Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

Holland, Patrick L. [Yale University] [Yale University

2013-08-29T23:59:59.000Z

143

METHOD OF PREPARING SINTERED ZIRCONIUM METAL FROM ITS HYDRIDES  

DOE Patents (OSTI)

The invention relates to the preparation of metal shapes from zirconium hydride by powder metallurgical techniques. The zirconium hydride powder which is to be used for this purpose can be prepared by rendering massive pieces of crystal bar zirconium friable by heat treatment in purified hydrogen. This any then be ground into powder and powder can be handled in the air without danger of it igniting. It may then be compacted in the normal manner by being piaced in a die. The compact is sintered under vacuum conditions preferably at a temperature ranging from 1200 to 1300 deg C and for periods of one to three hours.

Angier, R.P.

1958-02-11T23:59:59.000Z

144

Method for packed column separations and purifications  

DOE Patents (OSTI)

The invention encompasses a method of packing and unpacking a column chamber. A mixture of a fluid and a matrix material are introduced through a column chamber inlet so that the matrix material is packed within a column chamber to form a packed column. The column chamber having the column chamber inlet or first port for receiving the mixture further has an outlet port and an actuator port. The outlet port is partially closed for capturing the matrix material and permitting the fluid to flow therepast by rotating relative one to the other of a rod placed in the actuator port. Further rotation relative one to the other of the rod and the column chamber opens the outlet and permits the matrix material and the fluid to flow therethrough thereby unpacking the matrix material from the column chamber.

Holman, David A. (Richland, WA); Bruckner-Lea, Cynthia J. (Richland, WA); Brockman, Fred J. (Kennewick, WA); Chandler, Darrell P. (Richland, WA)

2006-08-15T23:59:59.000Z

145

OBSERVATION AND MECHANISM OF HYDRIDE IN ZIRCALOY-4 AND LOCAL HYDRIDE RE-ORIENTATION INDUCED BY HIGH PRESSURE AT HIGH TEMPERATURES  

SciTech Connect

Hydrided Zircaloy-4 samples were produced by a gas charging method to desired amounts of hydrogen. For low hydrogen content samples, the hydrided platelets appear elongated and needle-like, orientated in the circumferential direction. Mechanical testing was carried out by the ring compression method at various temperatures. Samples with higher hydrogen concentration resulted in lower strain before fracture and reduced maximum load. The trend between temperature and ductility was also very clear: increasing temperatures resulted in increased ductility of the hydrided cladding. A single through-wall crack was observed for a hydrided sample having very high hydrogen concentration under ring compression testing. For samples having lower hydrogen concentrations, the fracture surfaces traversed both circumferential and radial directions, and for which voids were observed near the hydrides. Mechanical tests to study hydride reorientation in these samples are under way, and the results will be reported in the near future.

Yan, Yong [ORNL; Blackwell, Andrew S [ORNL; Plummer, Lee K [ORNL; Radhakrishnan, Balasubramaniam [ORNL; Gorti, Sarma B [ORNL; Clarno, Kevin T [ORNL

2013-01-01T23:59:59.000Z

146

Analysis of Heat Transfer in Metal Hydride Based Hydrogen Separation  

DOE Green Energy (OSTI)

This thesis presents a transient heat transfer analysis to model the heat transfer in the Pd/k packed column, and the impact of adding metallic foam.

Fleming, W.H. Jr.

1999-10-20T23:59:59.000Z

147

Geometric packing under non-uniform constraints  

Science Conference Proceedings (OSTI)

We study the problem of discrete geometric packing. Here, given weighted regions (say in the plane) and points (with capacities), one has to pick a maximum weight subset of the regions such that no point is covered more than its capacity. We provide ... Keywords: independent set, optimization, rounding scheme

Alina Ene; Sariel Har-Peled; Benjamin Raichel

2012-06-01T23:59:59.000Z

148

Probe with integrated heater and thermocouple pack  

DOE Patents (OSTI)

A probe for measuring heat includes an elongate rod fitted within a sheath, and a plurality of annular recesses are formed on the surface of the rod in a spaced-apart relationship to form annular chambers that are resistant to heat flow. A longitudinal bore extends axially into the rod and within the cylinders defined by the annular chambers, and an integrated heater and thermocouple pack is dimensioned to fit within the bore. In construction, the integrated pack includes a plurality of wires disposed in electrical insulation within a sheath and a heater cable. These wires include one common wire and a plurality of thermocuple wires. The common wire is constructed of one type of conductive material while the thermocouple wires are each constructed of two types of materials so that at least one thermocouple junction is formed therein. All of the wires extend the length of the integrated pack and are connected together at their ends. The thermocouple wires are constructed to form thermocouple junctions proximate to each annular chamber for producing electromotive forces corresponding to the temperature of the rod within the annular chambers relative to outside the chambers. In the preferred embodiment, each thermocouple wire forms two thermocouple junctions, one junction being disposed within an annular chamber and the second junction being disposed outside of, but proximate to, the same annular chamber. In one embodiment two thermocouple wires are configured to double the sensitivity of the probe in one region.

McCulloch, Reg W. (Oak Ridge, TN); Dial, Ralph E. (Concord, TN); Finnell, Wilber K. R. (Kingston, TN)

1990-01-01T23:59:59.000Z

149

Probe with integrated heater and thermocouple pack  

DOE Patents (OSTI)

A probe for measuring heat includes an elongate rod fitted within a sheath, and a plurality of annular recesses are formed on the surface of the rod in a spaced-apart relationship to form annular chambers that are resistant to heat flow. A longitudinal bore extends axially into the rod and within the cylinders defined by the annular chambers, and an integrated heater and thermocouple pack is dimensioned to fit within the bore. In construction, the integrated pack includes a plurality of wires disposed in electrical insulation within a sheath and a heater cable. These wires include one common wire and a plurality of thermocouple wires. The common wire is constructed of one type of conductive material while the thermocouple wires are each constructed of two types of materials so that at least one thermocouple junction is formed therein. All of the wires extend the length of the integrated pack and are connected together at their ends. The thermocouple wires are constructed to form thermocouple junctions proximate to each annular chamber for producing electromotive forces corresponding to the temperature of the rod within the annular chambers relative to outside the chambers. In the preferred embodiment, each thermocouple wire forms two thermocouple junctions, one junction being disposed within an annular chamber and the second junction being disposed outside of, but proximate to, the same annular chamber. In one embodiment two thermocouple wires are configured to double the sensitivity of the probe in one region.

McCulloch, Reginald W. (Oak Ridge, TN); Dial, Ralph E. (Concord, TN); Finnell, Wilber K. R. (Kingston, TN)

1988-01-01T23:59:59.000Z

150

FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL  

Science Conference Proceedings (OSTI)

The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

2009-03-10T23:59:59.000Z

151

Composition and function in AB{sub 5} hydride electrodes  

DOE Green Energy (OSTI)

Multicomponent AB, hydrides are attractive replacements for the cadmium electrode in nickel - cadmium batteries. This paper is concerned with the differential effects of Ni substitution by cobalt, Mn and Al upon electrode corrosion and capacity, using alloys having the generic composition of Al(NiCoMnAl){sub 5} and similar to those used for the preparation of commercial battery electrodes. The corrosion of metal hydride electrodes is determined by two factors, surface passivation due to the presence of surface oxides or hydroxides and crystal lattice expansion - contraction the charge - discharge process. Thus, in addition to determining the effects of Ni substitution we will also address the question of whether an observed change is due to a change lattice expansion or to a change in surface passivation, e.g. the formation a corrosion resistant oxide layer.

Adzic, G.D.; Johnson, J.R.; Mukerjee, S.; McBreen, J.; Reilly, J.J.

1996-12-31T23:59:59.000Z

152

ALUMINUM HYDRIDE: A REVERSIBLE STORAGE MATERIAL FOR HYDROGEN STORAGE  

DOE Green Energy (OSTI)

One of the challenges of implementing the hydrogen economy is finding a suitable solid H{sub 2} storage material. Aluminium (alane, AlH{sub 3}) hydride has been examined as a potential hydrogen storage material because of its high weight capacity, low discharge temperature, and volumetric density. Recycling the dehydride material has however precluded AlH{sub 3} from being implemented due to the large pressures required (>10{sup 5} bar H{sub 2} at 25 C) and the thermodynamic expense of chemical synthesis. A reversible cycle to form alane electrochemically using NaAlH{sub 4} in THF been successfully demonstrated. Alane is isolated as the triethylamine (TEA) adduct and converted to unsolvated alane by heating under vacuum. To complete the cycle, the starting alanate can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride (NaH) This novel reversible cycle opens the door for alane to fuel the hydrogen economy.

Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

2009-01-09T23:59:59.000Z

153

Postirradiation examination of pressure tubes 2954 and 3053: Corrosion, hydriding and fluence measurements  

SciTech Connect

Pressure Tubes 2954 and 3053 were removed from N Reactor in March 1987 for postirradiation examinations (PIE) including hydriding, corrosion, fluence and mechanical property measurements. The results of the corrosion, hydriding, and fluence measurements are the subject of this report. These data will be used to evaluate the trends in corrosion and hydriding behavior which are important to the structural integrity of the tubes. The trend evaluations as well as the mechanical property data are or will be reported elsewhere.

Chastain, S.A.; Trimble, D.J.; Boyd, S.M.

1988-08-01T23:59:59.000Z

154

Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis  

E-Print Network (OSTI)

A thermodynamically consistent mathematical model for hydrogen adsorption in metal hydrides is proposed. Beside hydrogen diffusion, the model accounts for phase transformation accompanied by hysteresis, swelling, temperature and heat transfer, strain, and stress. We prove existence of solutions of the ensuing system of partial differential equations by a carefully-designed, semi-implicit approximation scheme. A generalization for a drift-diffusion of multi-component ionized "gas" is outlined, too.

Tomas Roubicek; Giuseppe Tomassetti

2013-09-12T23:59:59.000Z

155

Measurement and modeling of strain fields in zirconium hydrides precipitated at a stress concentration  

SciTech Connect

Hydrogen adsorption into zirconium, as a result of corrosion in aqueous environments, leads to the precipitation of a secondary brittle hydride phase. These hydrides tend to first form at stress concentrations such as fretting flaws or cracks in engineering components, potentially degrading the structural integrity of the component. One mechanism for component failure is a slow crack growth mechanism known as Delayed Hydride Cracking (DHC), where hydride fracture occurs followed by crack arrest in the ductile zirconium matrix. The current work employs both an experimental and a modeling approach to better characterize the effects and behavior of hydride precipitation at such stress concentrations. Strains around stress concentrations containing hydrides were mapped using High Energy X-ray Diffraction (HEXRD). These studies highlighted important differences in the behavior of the hydride phase and the surrounding zirconium matrix, as well as the strain associated with the precipitation of the hydride. A finite element model was also developed and compared to the X-ray strain mapping results. This model provided greater insight into details that could not be obtained directly from the experimental approaches, as well as providing a framework for future modeling to predict the effects of hydride precipitation under varied conditions.

Allen, Gregory B.; Kerr, Matthew; Daymond, Mark R. (Queens)

2012-10-23T23:59:59.000Z

156

Thermodynamics of metal hydrides for hydrogen storage applications using first principles calculations .  

E-Print Network (OSTI)

??Metal hydrides are promising candidates for H2 storage, but high stability and poor kinetics are the important challenges which have to be solved for vehicular (more)

Kim, Ki Chul

2010-01-01T23:59:59.000Z

157

Electrochromically switched, gas-reservoir metal hydride devices with  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochromically switched, gas-reservoir metal hydride devices with Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows Title Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows Publication Type Journal Article LBNL Report Number LBNL-1089E Year of Publication 2008 Authors Anders, André, Jonathan L. Slack, and Thomas J. Richardson Journal Thin Solid Films Volume 1 Date Published 08/2003 Call Number LBNL-1089E Abstract Proof-of-principle gas-reservoir MnNiMg electrochromic mirror devices have been investigated. In contrast to conventional electrochromic approaches, hydrogen is stored (at low concentration) in the gas volume between glass panes of the insulated glass units (IGUs). The elimination of a solid state ion storage layer simplifies the layer stack, enhances overall transmission, and reduces cost. The cyclic switching properties were demonstrated and system durability improved with the incorporation a thin Zr barrier layer between the MnNiMg layer and the Pd catalyst. Addition of 9% silver to the palladium catalyst further improved system durability. About 100 full cycles have been demonstrated before devices slow considerably. Degradation of device performance appears to be related to Pd catalyst mobility, rather than delamination or metal layer oxidation issues originally presumed likely to present significant challenges.

158

Diffusional exchange of isotopes in a metal hydride sphere.  

DOE Green Energy (OSTI)

This report describes the Spherical Particle Exchange Model (SPEM), which simulates exchange of one hydrogen isotope by another hydrogen isotope in a spherical metal hydride particle. This is one of the fundamental physical processes during isotope exchange in a bed of spherical metal particles and is thus one of the key components in any comprehensive physics-based model of exchange. There are two important physical processes in the model. One is the entropy of mixing between the two isotopes; the entropy of mixing is increased by having both isotopes randomly placed at interstitial sites on the lattice and thus impedes the exchange process. The other physical process is the elastic interaction between isotope atoms on the lattice. The elastic interaction is the cause for {beta}-phase formation and is independent of the isotope species. In this report the coupled diffusion equations for two isotopes in the {beta}-phase hydride are solved. A key concept is that the diffusion of one isotope depends not only on its concentration gradient, but also on the concentration gradient of the other isotope. Diffusion rate constants and the chemical potentials for deuterium and hydrogen in the {beta}-phase hydride are reviewed because these quantities are essential for an accurate model of the diffusion process. Finally, a summary of some of the predictions from the SPEM model are provided.

Wolfer, Wilhelm G.; Hamilton, John C.; James, Scott Carlton

2011-04-01T23:59:59.000Z

159

Packed fluidized bed blanket for fusion reactor  

DOE Patents (OSTI)

A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

Chi, John W. H. (Mt. Lebanon, PA)

1984-01-01T23:59:59.000Z

160

Microsoft Word - s10.html  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevrolet S-10 Electric Chevrolet S-10 Electric w/NiMH VEHICLE SPECIFICATIONS PURPOSE-BUILT VEHICLE Base Vehicle: 1998 S-10 VIN: 1GCDE14H1W8122580 Seatbelt Positions: Three Standard Features: Heat Pump Climate Control System Auxillary Diesel Fuel Fired Heater (Only operates Below 37°F) Cruise Control Power Steering Tilt Steering Wheel 4-wheel Anti-Lock Power Assisted Brakes Regenerative Braking Propulsion Battery Thermal Management System Driver and Passenger-Side Air Bags (w/Passenger-Side Deactivation Switch) AM/FM Stereo Radio Half-Bed Tonneau Cover BATTERY Manufacturer: Ovonic Energy Products Type: Nickel Metal Hydride Number of Modules: 26 Weight of Module: 18.3 kg Weight of Pack(s): 490.5 kg Pack Locations: Underbody Nominal Module Voltage: 13.2 V

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Microsoft Word - solcar95.html  

NLE Websites -- All DOE Office Websites (Extended Search)

FORCE FORCE VEHICLE SPECIFICATIONS CONVERTED VEHICLE Base Vehicle: 1995 Geo Metro VIN:2C1MR529XS6783464 Seatbelt Positions: Three Standard Features: Power Brakes Front Disk Brakes Front Wheel Drive Dual Air Bags AM/FM Stereo Radio w/Cassette Electric Heater Options as Tested: None BATTERY Manufacturer: GM Ovonic Type: 13.2EV85 Nickel Metal Hydride Number of Modules: 14 Weight of Module: 18 kg Weight of Pack(s): 254 kg Pack Locations: Undertrunk/Underhood Nominal Module Voltage: 13.2 V Nominal System Voltage: 185 V Nominal Capacity (1C): 85 Ah WEIGHTS Design Curb Weight: 2246 lbs Delivered Curb Weight: 2304 lbs Distribution F/R: 50/50 % GVWR: 2755 lbs GAWR F/R: 1432/1366 lbs Payload: 451 lbs Performance Goal: 664 lbs DIMENSIONS Wheelbase: 93.5 inches

162

Hydride production in zircaloy-4 as a function of time and temperature  

E-Print Network (OSTI)

The experiments performed for this thesis were designed to define the primary process variables of time, temperature, and atmosphere for an engineering system that will produce metal powder from recycled nuclear fuel cladding. The proposed system will hydride and mill Zircaloy cladding tubes to produce fine hydride powder and then dehydride the powder to produce metal; this thesis is focused on the hydride formation reaction. These experiments were performed by hydriding nuclear grade Zircaloy-4 tubes under flowing argon-5% hydrogen for various times and temperatures. The result of these experiments is a correlation which relates the rate of zirconium hydride formation to the process temperature. This correlation may now be used to design a method to efficiently produce zirconium hydride powder. It was observed that it is much more effective to hydride the Zircaloy-4 tubes at temperatures below the a-B-d eutectoid temperature of 540C. These samples tended to readily disassemble during the hydride formation reaction and were easily ground to powder. Hydrogen pickup was faster above this temperature but the samples were generally tougher and it was difficult to pulverize them into powder.

Parkison, Adam Joseph

2008-05-01T23:59:59.000Z

163

Mathematical Modelling of a Metal Hydride Hydrogen Storage System Brendan David MacDonald  

E-Print Network (OSTI)

Member Abstract In order for metal hydride hydrogen storage systems to compete with existing energyMathematical Modelling of a Metal Hydride Hydrogen Storage System by Brendan David MacDonald B Hydrogen Storage System by Brendan David MacDonald B.A.Sc., University of Waterloo, 2004 Supervisory

Victoria, University of

164

Hydrogen storage material and process using graphite additive with metal-doped complex hydrides  

DOE Patents (OSTI)

A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

Zidan, Ragaiy (Aiken, SC); Ritter, James A. (Lexington, SC); Ebner, Armin D. (Lexington, SC); Wang, Jun (Columbia, SC); Holland, Charles E. (Cayce, SC)

2008-06-10T23:59:59.000Z

165

Analytical and numerical models of uranium ignition assisted by hydride formation  

DOE Green Energy (OSTI)

Analytical and numerical models of uranium ignition assisted by the oxidation of uranium hydride are described. The models were developed to demonstrate that ignition of large uranium ingots could not occur as a result of possible hydride formation during storage. The thermodynamics-based analytical model predicted an overall 17 C temperature rise of the ingot due to hydride oxidation upon opening of the storage can in air. The numerical model predicted locally higher temperature increases at the surface; the transient temperature increase quickly dissipated. The numerical model was further used to determine conditions for which hydride oxidation does lead to ignition of uranium metal. Room temperature ignition only occurs for high hydride fractions in the nominally oxide reaction product and high specific surface areas of the uranium metal.

Totemeier, T.C.; Hayes, S.L. [Argonne National Lab., Idaho Falls, ID (United States). Engineering Div.

1996-05-01T23:59:59.000Z

166

Dense Packings of Superdisks and the Role of Symmetry  

E-Print Network (OSTI)

We construct the densest known two-dimensional packings of superdisks in the plane whose shapes are defined by |x^(2p) + y^(2p)| 0.5, with the circular-disk case p = 1) and concave-shaped particles (0 Donev, Torquato and Stillinger, J. Comput. Phys. 202 (2005) 737] suggest exact constructions of the densest known packings. We find that the packing density (covering fraction of the particles) increases dramatically as the particle shape moves away from the "circular-disk" point (p = 1). In particular, we find that the maximal packing densities of superdisks for certain p 6 = 1 are achieved by one of the two families of Bravais lattice packings, which provides additional numerical evidence for Minkowski's conjecture concerning the critical determinant of the region occupied by a superdisk. Moreover, our analysis on the generated packings reveals that the broken rotational symmetry of superdisks influences the packing characteristics in a non-trivial way. We also propose an analytical method to construct dense packings of concave superdisks based on our observations of the structural properties of packings of convex superdisks.

Y. Jiao; F. H. Stillinger; S. Torquato

2007-12-04T23:59:59.000Z

167

HYDRIDES AND METAL-HYDROGEN SYSTEMS. Final Report  

DOE Green Energy (OSTI)

The work reported deals with the preparation and physical properties, especially thermal dissociation pressures, and densities of hydrides, hydrogen- metal systems, and mixtures of hydrides with other substances. Possible applicatlons as moderators, high-temperature neutron shields, and low-temperature shields are cited and design problems discussed. Most of the data on dissociation pressures cover ranges and compounds not hltherto explored because of experimental difficulties and the basic knowledge of the thermal behavior of hydrides was substantially increased. New hydrldes were prepared and several reported in the literature were shown not to exist. The following compounds, mixtures, and systems were studled: Tl-H, U-H, Ll-H, Na-H, Ca-H, Ba-H, Th-H, Sr- H; NaH-NaF, NaH-NaOH, NaH-CaH/, LlH-LiF, CaH/sub 2/-CaF/sub 2/, CaH/sub 2/-CaC/ sub 2/,CaH/sub 2/-Ca/sub 3/N/sub 2/; FeH/sub 3/ (alleged), NiH/sub 2/ (alleged), Ti(BH/sub 4/)/sub 3/, Th(BH/sub 4/)/sub 4/, WH/sub 4/ (attempted), W(BH/sub 4/)/ sub 4/ (attempted), /sub 4/NBH/sub 4/, (CH , and ydrides are ing an N/sub H/ comparable to water yet stable at red heat, compounds giving a neutron shield weight less than half that of water, and compounds suitable for use as hightemperature moderators containing large amounts of hydrogen. (auth)

Gibb, T.R.P. Jr.

1951-04-30T23:59:59.000Z

168

ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE  

DOE Green Energy (OSTI)

Hydrogen storage is one of the challenges to be overcome for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods. The direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali metal alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

2009-01-09T23:59:59.000Z

169

ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE  

DOE Green Energy (OSTI)

Hydrogen storage is one of the greatest challenges for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods; the direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

Fewox, C; Ragaiy Zidan, R; Brenda Garcia-Diaz, B

2008-12-31T23:59:59.000Z

170

Designation of Sites for Remedial Action - Metal Hydrides, Beverly,  

Office of Legacy Management (LM)

T: T: Designation of Sites for Remedial Action - Metal Hydrides, Beverly, MA; Bridgeport Brass, Adrian, MI and Seymour, Chicago, IL CT; National Guard Armory, 0: Joe LaGrone, Manager Oak Ridge Operations Office Based on the attached radiological survey data (Attachments 1 through 3) and an appropriate authority review, the following properties are being authorized for remedial action. It should be noted that the attached survey data are for designation purposes only and that Bechtel National, Inc. (BNI) should conduct appropriate comprehensive characterization studies to determine the extent'and magnitude of contamination on properties. Site Location Priority Former Bridgeport Brass Co. (General Motors) Adrian, MI Low Former Bridgeport Brass Co.

171

Sintering of sponge and hydride-dehydride titanium powders  

Science Conference Proceedings (OSTI)

The sintering behavior of compacts produced from sponge and hydride-dehydride (HDH) Ti powders was examined. Compacts were vacuum sintered at 1200 or 1300 deg C for 30, 60, 120, 240, 480 or 960 minutes. The porosity decreased with sintering time and/or temperature in compacts produced from the HDH powders. Compacts produced from these powders could be sintered to essentially full density. However, the sintering condition did not influence the amount of porosity present in compacts produced from the sponge powders. These samples could only be sintered to a density of 97% theoretical. The sintering behavior was attributed to the chemical impurities in the powders.

Alman, David E.; Gerdemann, Stephen J.

2004-04-01T23:59:59.000Z

172

Metal hydride based isotope separation: Large-scale operations  

DOE Green Energy (OSTI)

A program to develop a metal hydride based hydrogen isotope separation process began at the Savannah River Laboratory in 1980. This semi-continuous gas chromatographic separation process will be used in new tritium facilities at the Savannah River Site. A tritium production unit is scheduled to start operation in 1993. An experimental, large-scale unit is currently being tested using protium and deuterium. Operation of the large-scale unit has demonstrated separation of mixed hydrogen isotopes (55% protium and 45% deuterium), resulting in protium and deuterium product streams with purities better than 99.5%. 3 refs., 4 figs.

Horen, A.S.; Lee, Myung W.

1991-01-01T23:59:59.000Z

173

Metal hydride based isotope separation: Large-scale operations  

DOE Green Energy (OSTI)

A program to develop a metal hydride based hydrogen isotope separation process began at the Savannah River Laboratory in 1980. This semi-continuous gas chromatographic separation process will be used in new tritium facilities at the Savannah River Site. A tritium production unit is scheduled to start operation in 1993. An experimental, large-scale unit is currently being tested using protium and deuterium. Operation of the large-scale unit has demonstrated separation of mixed hydrogen isotopes (55% protium and 45% deuterium), resulting in protium and deuterium product streams with purities better than 99.5%. 3 refs., 4 figs.

Horen, A.S.; Lee, Myung W.

1991-12-31T23:59:59.000Z

174

Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications  

Science Conference Proceedings (OSTI)

Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

2012-04-16T23:59:59.000Z

175

Electrochemical process and production of novel complex hydrides  

SciTech Connect

A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

Zidan, Ragaiy

2013-06-25T23:59:59.000Z

176

Minimizing formation damage during gravel pack operations  

Science Conference Proceedings (OSTI)

A method is described for minimizing formation damage caused by intrusive fluids prior to a gravel packing operation in loosely consolidated formations penetrated by at least one well. The method comprises: filling the casing of the well with an underbalanced completion fluid; placing within the well a removable packer capable of isolating the space between the casing and the formation from the downhole well pressure; setting through the packer a first tubing suitable for perforating and stabilizing the flow of fluids into the well; perforating the casing; and introducing a blocking agent into the formation via the perforations which agent upon solidification is sufficient to minimize formation damage by avoiding the introduction of formation fluids.

Jennings, A.R. Jr.

1987-05-12T23:59:59.000Z

177

Volatile Components from Packing Matrials, Rev. 2  

Science Conference Proceedings (OSTI)

An outgassing study was conducted on five packing materials, comprising two experiments. These materials comprised 277-4 borated concrete, Borobond4 concrete, polyethylene bags, silica-filled silicone rubber seals, and silicone foam padding. The purpose was measure the volume of gases which diffuse from packaging materials when sealed in containers. Two heating profiles were used to study the offgassing quantities in a set of accelerated aging tests. It was determined that the concretes contain a large quantity of water. The plastic materials hold much less moisture, with the silicone materials even consuming water, possibly due to the presence of silica filler. Polyethylene tends to degrade as the temperature is elevated and the foam stiffens.

Smith, R. A.

2006-03-01T23:59:59.000Z

178

Thermal vacancies in close-packing solids  

E-Print Network (OSTI)

Based on Stillinger's version of cell cluster theory, we derive an expression for the equilibrium concentration of thermal monovacancies in solids which allows for a transparent interpretation of the vacancy volume and the energetic/entropic part in the corresponding Gibbs energy of vacancy formation $\\Delta G_{\\rm v}$. For the close--packing crystals of the hard sphere and Lennard--Jones model systems very good agreement with simulation data is found. Application to metals through the embedded--atom method (EAM) reveals a strong sensitivity of the variation of $\\Delta G_{\\rm v}$ with temperature to details of the EAM potential. Our truncation of the cell cluster series allows for an approximate, but direct measurement of crystal free energies and vacancy concentration in colloidal model systems using laser tweezers.

Mostafa Mortazavifar; Martin Oettel

2013-11-20T23:59:59.000Z

179

ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS  

DOE Green Energy (OSTI)

The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

2011-07-18T23:59:59.000Z

180

Method of generating hydrogen-storing hydride complexes  

DOE Patents (OSTI)

A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

Srinivasan, Sesha S; Niemann, Michael U; Goswami, D. Yogi; Stefanakos, Elias K

2013-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Packed bed reactor for photochemical .sup.196 Hg isotope separation  

DOE Patents (OSTI)

Straight tubes and randomly oriented pieces of tubing having been employed in a photochemical mercury enrichment reactor and have been found to improve the enrichment factor (E) and utilization (U) compared to a non-packed reactor. One preferred embodiment of this system uses a moving bed (via gravity) for random packing.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA)

1992-01-01T23:59:59.000Z

182

A DC CIRCUIT BREAKER FOR AN ELECTRIC VEHICLE BATTERY PACK  

E-Print Network (OSTI)

A DC CIRCUIT BREAKER FOR AN ELECTRIC VEHICLE BATTERY PACK Geoff Walker Dept of Computer Science vehicle battery packs require DC circuit breakers for safety. These must break thousands of Amps DC at hundreds of Volts. The Sunshark solar racing car has a 140V 17Ahr battery box which needs such a breaker

Walker, Geoff

183

A Genetic Approach for Two Dimensional Packing with Constraints  

Science Conference Proceedings (OSTI)

In this paper, a new genetic algorithm based method is proposed for packing rectangular cargos of different sizes into a given loading area in a two dimensional framework. A novel penalty function method is proposed for checking the solution strings ... Keywords: genetic algorithm, penalty function, sentry point, two dimensional packing

Wee Sng Khoo; P. Saratchandran; N. Sundararajan

2001-05-01T23:59:59.000Z

184

Packing assembly for use in a plunger bore  

SciTech Connect

A packing assembly is described which is adapted to be installed in a machine, such as a pump, the machine having a housing with a plunger bore and a plunger therin to provide a fluid-tight seal for the machine. The assembly consists of: a packing gland which fastens into one end of the plunger bore; a packing gland spacer positioned adjacent to and in contact with the packing gland; a lubrication gland positioned adjacent to and in contact with the packing gland spacer; a separate stack of packing rings, which includes at least two packing rings, each ring in the stack has a front face defining a concave shape, a rear face defining a convex shape, and a groove, defining a concave shape, in the front face; a female adaptor ring positioned between the lubrication gland and the packing ring stack, the female adaptor ring has a front face with a concave shape, the concave shape defines an angle which substantially conforms to the angle defined by the convex shape of the rear face of the last packing ring in the stack, such that the front face of the female adaptor ring can seat firmly against the rear face of the last packing ring; a male-female adaptor ring positioned between two packing rings in the stack, the male-female adaptor ring has a front face and rear face, the rear face has a convex shape and an integral rib member defining a convex shape, on the rear face, and the front face has a concave shape; the convex shape of the rear face of the male-female adaptor ring defines an angle which substantially conforms to the angle defined by the concave shape of the front face of the last packing ring in the stack and the convex shape of the face of the last packing ring in the stack and the convex shape of the rib member substantially conforms to the concave shape of the groove in the front face of the last packing ring.

Cameron, D.C.; Cobb, H.V.; Winn, F.M.

1986-02-25T23:59:59.000Z

185

Improving the density of jammed disordered packings using ellipsoids  

E-Print Network (OSTI)

Packing problems, such as how densely objects can fill a volume, are among the most ancient and persistent problems in mathematics and science. For equal spheres, it has only recently been proved that the face-centered cubic lattice has the highest possible packing fraction ? = ? / ? 18 ? 0.74. It is also well-known that certain random (amorphous) jammed packings have ? ? 0.64. Here we show experimentally and with a new simulation algorithm that ellipsoids can randomly pack more densely; up to ? = 0.68 ? 0.71 for spheroids with an aspect ratio close to that of M&MS r?Candies, and even approach ? ? 0.74 for general ellipsoids. We suggest that the higher density is directly related to the higher number of degrees of freedom per particle and thus the larger number of particle contacts required to mechanically stabilize the packing. We support this by

Aleksandar Donev; Ibrahim Cisse; David Sachs; Evan A. Variano; Frank H. Stillinger; Robert Connelly; Salvatore Torquato; P. M. Chaikin

2004-01-01T23:59:59.000Z

186

Unconsolidated sand grain shape, size impact frac-pack design  

SciTech Connect

The shape and size of sand grains, as well as the saturating fluid, influence the mechanical properties of unconsolidated sands and need to be considered in frac-pack design. These mechanical properties of unconsolidated properties of unconsolidated sands play an important role in determining the geometry of frac-pack treatments. Stress-strain curves obtained for unconsolidated sands at elevated stresses show highly nonlinear hysteretic behavior. The impact of these findings on frac-pack design can be significant. The nonlinear elastic properties of unconsolidated sand can give rise to some unique features in the pressure response and in the fracture geometry that may not be observed in hard rocks. This article focuses on the impact of mechanical properties of poorly consolidated and unconsolidated sands on the geometry of frac packs. The paper discusses frac packs, mechanical properties (Young`s modulus, shear failure) and effective treatments.

Wang, E.; Sharma, M.M. [Univ. of Texas, Austin, TX (United States)

1997-05-19T23:59:59.000Z

187

Ring type dumped packing saving 30% on tower cost  

SciTech Connect

This article discusses the packing problems of a flue gas processing plant that recovers 90,000 lb/hr of carbon dioxide for use in an enhanced oil recovery (EOR) project. A concentrated absorption solution was needed to keep the liquid circulation low, and a packing with low pressure drop and high effective surface area was needed to keep the fan horsepower and column size down and minimize the amount of CO/sub 2/ that slips through the column. The solution was to use a high concentration CO/sub 2/ recovery solvent and a proprietary ring type packing was used which gives 50% less pressure drop than conventional packing and provides high efficiency. Carbon steel packing rings were used except for two sections.

Wiggins, W.R. III; Hodel, A.E.

1984-02-01T23:59:59.000Z

188

A deformation and thermodynamic model for hydride precipitation kinetics in spent fuel cladding  

DOE Green Energy (OSTI)

Hydrogen is contained in the Zircaloy cladding of spent fuel rods from nuclear reactors. All the spent fuel rods placed in a nuclear waste repository will have a temperature history that decreases toward ambient; and as a result, most all of the hydrogen in the Zircaloy will eventually precipitate as zirconium hydride platelets. A model for the density of hydride platelets is a necessary sub-part for predicting Zircaloy cladding failure rate in a nuclear waste repository. A model is developed to describe statistically the hydride platelet density, and the density function includes the orientation as a physical attribute. The model applies concepts from statistical mechanics to derive probable deformation and thermodynamic functionals for cladding material response that depend explicitly on the hydride platelet density function. From this model, hydride precipitation kinetics depend on a thermodynamic potential for hydride density change and on the inner product of a stress tensor and a tensor measure for the incremental volume change due to hydride platelets. The development of a failure response model for Zircaloy cladding exposed to the expected conditions in a nuclear waste repository is supported by the US DOE Yucca Mountain Project. 19 refs., 3 figs.

Stout, R.B.

1989-10-01T23:59:59.000Z

189

THE PREPARATION OF PLUTONIUM POWDER BY A HYDRIDING PROCESS-INITIAL STUDIES  

DOE Green Energy (OSTI)

Micron-sized plutonium powder was produced by hydriding massive metal, then grinding and decomposing the hydride. An apparatus containing clean plutonium metal was evacuated to a pressure of 10 mu . Dry oxygen-free hydrogen was introduced and the apparatus placed in a furnace. After the reaction started, the apparatus was removed from the furnace and hydrogen added until the reaction was complete. The hydride was decomposed by heating to 400 deg C. Plutonium metal produced in this manner was porous. (C.J.G.)

Stiffler, G.L.; Curtis, M.H.

1960-03-10T23:59:59.000Z

190

Influence of Particle Size Distribution on Random Close Packing  

E-Print Network (OSTI)

The densest amorphous packing of rigid particles is known as random close packing. It has long been appreciated that higher densities are achieved by using collections of particles with a variety of sizes. The variety of sizes is often quantified by the polydispersity of the particle size distribution: the standard deviation of the radius divided by the mean radius. Several prior studies quantified the increase of the packing density as a function of polydispersity. Of course, a particle size distribution is also characterized by its skewness, kurtosis, and higher moments, but the influence of these parameters has not been carefully quantified before. In this work, we numerically generate many packings with different particle radii distributions, varying polydispersity and skewness independently of one another. We find two significant results. First, the skewness can have a significant effect on the packing density and in some cases can have a larger effect than polydispersity. Second, the packing fraction is relatively insensitive to the value of the kurtosis. We present a simple empirical formula for the value of the random close packing density as a function of polydispersity and skewness.

Kenneth W. Desmond; Eric R. Weeks

2013-03-19T23:59:59.000Z

191

HEV Fleet Testing - Honda Civic Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Total miles driven: 161,532 Cumulative MPG: 37.23 Engine: 4-cylinder, 70 kW @ 5700 rpm Electric Motor: 10 kW Battery: Nickel Metal Hydride Seatbelt Positions: Five Payload: 882...

192

TEAM HEV ARC HITECTURE ENGIN E FU EL TRANS MISSION EN ERGY STOR  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi State University Through-the-road Parallel 1.9-L GM Direct Injection Turbo Diesel Bio Diesel (B20) GM F40 6-speed Manual Johnson Controls, Nickel Metal Hydride - 330V...

193

The search for better batteries  

Science Conference Proceedings (OSTI)

To handle small, power-hungry electronic systems, manufacturers of rechargeable batteries are exploring at least five technologies: nickel-cadmium, nickel-metal hydride, lithium-ion, lithium-solid polymer electrolyte, and zinc-air. The author describes ...

M. J. Riezenman

1995-05-01T23:59:59.000Z

194

The 1991 NASA Aerospace Battery Workshop  

SciTech Connect

The proceedings from the workshop are presented. The subjects covered include nickel-cadmium, nickel-hydrogen, silver-zinc, and lithium based technologies, as well as advanced technologies including nickel-metal hydride and sodium-sulfur.

Brewer, J.C.

1992-02-01T23:59:59.000Z

195

INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE N attribu par la bibliothque  

E-Print Network (OSTI)

storage via an input regulator. . . . . 98 4.8 Efficiency curves of a MPPT input regulator [141] versus MPPT Maximum Power POint Tracking NiMH Nickel Metal Hydride NREL National Renewable Energy Laboratory

Paris-Sud XI, Université de

196

Technological assessment and evaluation of high power batteries and their commercial values  

E-Print Network (OSTI)

Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

Teo, Seh Kiat

2006-01-01T23:59:59.000Z

197

TransForum v8n1 - Argonne/Toda Kogyo Partner on Li-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and nickel-metal hydride battery markets. The company recently acquired a plant in the Detroit area that will help serve U.S. automobile manufacturers. Todas plant in Ontario,...

198

ESH100.2.ENV.21  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium. Nickel cadmium. Nickel metal hydride. Lithium ion. Silver. Mercury (i.e., button cells that contain up to 25 mg of mercury). Sealed lead acid batteries less than 2...

199

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicles. In fact, every hybrid vehicle on the market currently uses Nickel-Metal-Hydride high-voltage batteries in its battery system. Lithium ion batteries appear to be the...

200

In a mining accident, first responders are working against  

NLE Websites -- All DOE Office Websites (Extended Search)

- Nickel Metal Hydride (w 4hr minimum battery life) * 4ft x 2ft footprint * 2ft tall at tower * Integrated fiber optic interface Contact Information robotics@sandia.gov...

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Argonne TTRDC - D3 (Downloadable Dynamometer Database) - 2010...  

NLE Websites -- All DOE Office Websites (Extended Search)

charge-sustaining hybrid-electric sedan 2.5L Atkinson-cycle engine with VVT 275-Volt Nickel-Metal-Hydride (NiMH) Features enhanced EV operation, as high as 47 MPH in EV...

202

Final report for the DOE Metal Hydride Center of Excellence.  

DOE Green Energy (OSTI)

This report summarizes the R&D activities within the U.S. Department of Energy Metal Hydride Center of Excellence (MHCoE) from March 2005 to June 2010. The purpose of the MHCoE has been to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE 2010 and 2015 system goals for hydrogen storage materials. The MHCoE combines three broad areas: mechanisms and modeling (which provide a theoretically driven basis for pursuing new materials), materials development (in which new materials are synthesized and characterized) and system design and engineering (which allow these new materials to be realized as practical automotive hydrogen storage systems). This Final Report summarizes the organization and execution of the 5-year research program to develop practical hydrogen storage materials for light duty vehicles. Major results from the MHCoE are summarized, along with suggestions for future research areas.

Keller, Jay O.; Klebanoff, Leonard E.

2012-01-01T23:59:59.000Z

203

Wall pressure exerted by hydrogenation of sodium aluminum hydride.  

DOE Green Energy (OSTI)

Wall pressure exerted by the bulk expansion of a sodium aluminum hydride bed was measured as a function of hydrogen content. A custom apparatus was designed and loaded with sodium alanates at densities of 1.0, 1.1, and 1.16 g/cc. Four complete cycles were performed to identify variations in measured pressure. Results indicated poor correlation between exerted pressure and hydrogen capacity of the sodium alanate beds. Mechanical pressure due to the hydrogenation of sodium alanates does not influence full-scale system designs as it falls within common design factors of safety. Gas pressure gradients within the porous solid were identified and may limit reaction rates, especially for high aspect ratio beds.

Perras, Yon E.; Dedrick, Daniel E.; Zimmerman, Mark D.

2009-06-01T23:59:59.000Z

204

Model for Simulation of Hydride Precipitation in Zr-Based Used Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Simulation of Hydride Precipitation in Zr-Based Used Fuel for Simulation of Hydride Precipitation in Zr-Based Used Fuel Claddings: A Status Report on Current Model Capabilities Model for Simulation of Hydride Precipitation in Zr-Based Used Fuel Claddings: A Status Report on Current Model Capabilities The report demonstrates a meso-scale, microstructural evolution model for simulation of zirconium hydride precipitation in the cladding of used fuels during long-term dry-storage. While the Zr-based claddings (regarded as a barrier for containment of radioactive fission products and fuel) are manufactured free of any hydrogen, they absorb hydrogen during service in the reactor. The amount of hydrogen that the cladding picks up is primarily a function of the exact chemistry and microstructure of the claddings and reactor operating conditions, time-temperature history, and

205

Some new techniques in tritium gas handling as applied to metal hydride synthesis  

SciTech Connect

A state-of-the-art tritium Hydride Synthesis System (HSS) was designed and built to replace the existing system within the Tritium Salt Facility (TSF) at the Los Alamos National Laboratory. This new hydriding system utilized unique fast-cycling 5.63 mole uranium beds (50.9 g to T/sub 2/ at 100% loading) and novel gas circulating hydriding furnaces. Tritium system components discussed include fast-cycling uranium beds, circulating gas hydriding furnaces, valves, storage volumes, manifolds, gas transfer pumps, and graphic display and control consoles. Many of the tritium handling and processing techniques incorporated into this system are directly applicable to today's fusion fuel loops.

Nasise, J.E.

1988-09-01T23:59:59.000Z

206

Some new techniques in tritium gas handling as applied to metal hydride synthesis  

SciTech Connect

A state-of-the-art tritium Hydriding Synthesis System (HSS) was designed and built to replace the existing system within the Tritium Salt Facility (TSF) at the Los Alamos National Laboratory. This new hydriding system utilizes unique fast-cycling 7.9 mole uranium beds (47.5g of T at 100% loading) and novel gas circulating hydriding furnaces. Tritium system components discussed include fast-cycling uranium beds, circulating gas hydriding furnaces, valves, storage volumes, manifolds, gas transfer pumps, and graphic display and control consoles. Many of the tritium handling and processing techniques incorporated into this system are directly applicable to today's fusion fuel loops. 12 refs., 7 figs.

Nasise, J.E.

1988-01-01T23:59:59.000Z

207

Development of lightweight hydrides. Annual task report, August 1978-September 1978  

DOE Green Energy (OSTI)

The results of the first years effort to develop lightweight hydrides for automotive storage of hydrogen are described. A test fixture to subject a magnesium alloy hydride to hundreds of hydriding cycles has been designed and is being constructed. Extensive testing of the magnesium lithium and magnesium aluminum alloy hydrides has been performed. Several alloys demonstrate significantly higher hydrogen dissociation pressures than the baseline alloy Mg/sub 2/Ni-Mg. No alloy has yet demonstrated one atmosphere of hydrogen pressure at the goal temperature of 200/sup 0/C. Hydrogen capacity varies greatly with alloy composition. Alloys with high dissociation pressures have hydrogen capacities up to 3.6% by weight. Plans include the reduction of aluminum content in the alloys to increase the hydrogen capacity.

Rohy, D.A.; Nachman, J.F.

1979-10-01T23:59:59.000Z

208

A non-isothermal model of a nickelmetal hydride cell , M. Mohammedb  

E-Print Network (OSTI)

generation during over- charge. Since the metal hydride material gradually loses capacity through usage due KOH solution, which has good electric conductivity for a wide range of temperatures. Some Li

209

Photogeneration of Hydride Donors and Their Use Toward CO2 Reduction  

DOE Green Energy (OSTI)

Despite substantial effort, no one has succeeded in efficiently producing methanol from CO2 using homogeneous photocatalytic systems. We are pursuing reaction schemes based on a sequence of hydride-ion transfers to carry out stepwise reduction of CO2 to methanol. We are using hydride-ion transfer from photoproduced C-H bonds in metal complexes with bio-inspired ligands (i.e., NADH-like ligands) that are known to store one proton and two electrons.

Fujita,E.; Muckerman, J.T.; Polyansky, D.E.

2009-06-07T23:59:59.000Z

210

Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides  

Science Conference Proceedings (OSTI)

HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The teams innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

None

2011-12-01T23:59:59.000Z

211

Leaders of the Fuel Cell Pack | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leaders of the Fuel Cell Pack Leaders of the Fuel Cell Pack Leaders of the Fuel Cell Pack February 17, 2012 - 10:32am Addthis Fuel cell forklifts like the one shown here are used by leading companies across the U.S. as part of their daily business operations. | Energy Department file photo. Fuel cell forklifts like the one shown here are used by leading companies across the U.S. as part of their daily business operations. | Energy Department file photo. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What does the report show? The 34 companies profiled used more than 250 fuel cells totaling 30+ MW of stationary power -- enough to supply electricity for over 21,000 households. What do WalMart, Coca-Cola, Sysco, and Whole Foods have in common? They're leading the pack when it comes to hydrogen and fuel cells.

212

Leaders of the Fuel Cell Pack | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leaders of the Fuel Cell Pack Leaders of the Fuel Cell Pack Leaders of the Fuel Cell Pack February 17, 2012 - 10:32am Addthis Fuel cell forklifts like the one shown here are used by leading companies across the U.S. as part of their daily business operations. | Energy Department file photo. Fuel cell forklifts like the one shown here are used by leading companies across the U.S. as part of their daily business operations. | Energy Department file photo. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What does the report show? The 34 companies profiled used more than 250 fuel cells totaling 30+ MW of stationary power -- enough to supply electricity for over 21,000 households. What do WalMart, Coca-Cola, Sysco, and Whole Foods have in common? They're leading the pack when it comes to hydrogen and fuel cells.

213

LEDS Collaboration in Action Workshop Participant Pack | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDS Collaboration in Action Workshop Participant Pack Jump to: navigation, search LEDSGP Logo.png Advancing climate-resilient low emission development around the world Home About Tools Expert Assistance Events Publications Join Us ACDS Workshop Participant Pack Agenda Accommodations Participants Location Arrival Form Open Space Sessions Speakers Presentations Links Contact Us Participant Pack Pack.pdf Powered by OpenEI ledsgp.org is built on the same platform as the popular Wikipedia site. Like Wikipedia, it is a "wiki" or website developed collaboratively by a community of users. Thanks to our unique relationship with OpenEI.org, you

214

Hazardous Waste: Resource Pack for Trainers and Communicators | Open Energy  

Open Energy Info (EERE)

Hazardous Waste: Resource Pack for Trainers and Communicators Hazardous Waste: Resource Pack for Trainers and Communicators Jump to: navigation, search Tool Summary Name: Hazardous Waste: Resource Pack for Trainers and Communicators Agency/Company /Organization: International Solid Waste Association (ISWA), United Nations Development Programme (UNDP), United Nations Industrial Development Organization (UNIDO) Sector: Energy, Land, Water Focus Area: Renewable Energy, - Waste to Energy Phase: Evaluate Options Topics: Adaptation, Implementation, Low emission development planning, -LEDS Resource Type: Guide/manual, Training materials Website: www.trp-training.info/ Cost: Paid Language: English References: Training Resource Pack[1] "The new TRP+ provides a structured package of notes, technical summaries, visual aids and other training material concerning the (hazardous) waste

215

Nanostructure and Nanomechanics of Cement: Polydisperse Colloidal Packing  

E-Print Network (OSTI)

Cement setting and cohesion are governed by the precipitation and growth of calcium-silicate-hydrate, through a complex evolution of microstructure. A colloidal model to describe nucleation, packing, and rigidity of ...

Masoero, Enrico

216

Frac packs: A specialty option or primary completion technique?  

SciTech Connect

High permeability fracture treatments have taken place at Alaska`s North Slope, in the North Sea, and most recently, in the unconsolidated Miocene formations of the Gulf of Mexico -- where gravel pack completions have historically been used to prevent sand production. In the Gulf of Mexico, attempts were made as early as the mid-1960s to hydraulically fracture sands. However, some of these early treatments failed because of improper techniques, poor candidate selection and lack of understanding of rock property mechanics. Recent developments in fracturing technology, and the use of this technology to fracture through damage has achieved more favorable results than gravel packing and sandstone acidizing, and has led to widespread use of these fracture treatments. The procedure for fracturing high permeability formations is called frac packing. These frac pack treatments are typically used to remove near-wellbore damage that occurs from drilling and completion operations.

NONE

1997-03-01T23:59:59.000Z

217

Investigation on Operating Characteristics of Individual Cell among Battery Pack.  

E-Print Network (OSTI)

??Due to the discrepancy among series-connected cells in a lead-acid battery pack, the restored capacities may not be the same during the charging/discharging processes. Through (more)

Chen, Wen-Chih

2006-01-01T23:59:59.000Z

218

A hybrid heuristic algorithm for the rectangular packing problem  

Science Conference Proceedings (OSTI)

A hybrid heuristic algorithm for the two-dimensional rectangular packing problem is presented. This algorithm is mainly based on divide-and-conquer and greedy strategies. The computational results on a class of benchmark problems have shown that the ...

Defu Zhang; Ansheng Deng; Yan Kang

2005-05-01T23:59:59.000Z

219

Lawrence Pack, train conductor, and Y-12s uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Pack, train conductor, and Y-12's uranium? Trains were the primary means of long haul transportation in the 1940's. Many trains brought building materials to Y-12 and...

220

Direct contact condensation of immiscible fluids in packed beds  

DOE Green Energy (OSTI)

An experimental study of a film type direct contact heat exchanger using immiscible fluids is made. Laboratory experiments were conducted on a R-113-water system using both 2.5 cm Berl saddles and 3.2 cm spheres as packing, in a 14.6 cm diameter column. The configuration was counter flow, with the vapor phase entering at the base of the column, and condensing on the laminar water film that coated the packing surface. Packing height, water temperature and both water and vapor flow rates were varied in obtaining heat transfer data. These and other packed bed heat transfer data published in the literature were reduced and correlated to yield a relationship between the Stanton number and the important vessel operating parameters.

Thomas, K.D.; Jacobs, H.R.; Boehm, R.F.

1978-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Arbitrary Convex and Concave Rectilinear Module Packing Using TCG  

Science Conference Proceedings (OSTI)

In this paper, we deal with arbitrary convex and concave rectilinearmodule packing using the Transitive Closure Graph (TCG) representation.The geometric meanings of modules are transparent to TCG and itsinduced operations, which makes TCG an ideal representation ...

J. Lin; H. Chen; Y. Chang

2002-03-01T23:59:59.000Z

222

Pseudo 3-D simulator optimizes gravel-packed completions  

SciTech Connect

This paper discusses a three-dimensional computer simulation which allows the consistent use of a gravel pack in oil and gas well completions. The primary thrust of the paper is dealing with horizontal oil and gas wells in unconsolidated reservoir rock. The model's objective is to provide an overall computer-aided design and evaluation tool for circulation and squeeze gravel packing. It is based on equations representing conservation of mass, momentum, and energy.

Ali, S.A.; Sanclemente, L.W. (Chevron USA Production Co., New Orleans, LA (United States)); Tupper, M.A. (Dowell, New Orleans, LA (United States))

1994-03-01T23:59:59.000Z

223

Instruction Packing for a 32-bit Stack-Based Processor  

E-Print Network (OSTI)

Abstract- This work proposed a design and development of a 32-bit stack-based processor for embedded systems. A reference processor has a 32-bit stack-based instruction set. This work proposed a technique of instruction packing which packs several instructions into one 32-bit instruction unit. Therefore, the instruction size is reduced. The result of the experiment shows that the proposed technique achieves around 30 % reduction in code size.

Witcharat Lertteerawattana; Tanes Jedsadawaranon; Prabhas Chongstitvatana

2007-01-01T23:59:59.000Z

224

Compilation of COG Packing Reports 2002-2003  

Science Conference Proceedings (OSTI)

Under a technical exchange agreement, EPRI has obtained several reports documenting research conducted by the Candu Owners Group (COG). This report presents a compilation of COG reports documenting research conducted in 20022003 to investigate the frictional performance characteristics of several valve packing materials that contain Teflon (PTFE). The testing conducted by the COG includes the effects of previous ionizing radiation exposure on the frictional performance of these packing materials

2006-05-02T23:59:59.000Z

225

Shock-Induced Flows through Packed Beds: Transient Regimes  

E-Print Network (OSTI)

The early stage of the transient regimes in the shock-induced flows within solid-packed beds are investigated in the linear longwave and high-frequency approximation. The transient resistance law is refined as the Duhameltime integral that follows from the general concept of dynamic tortuosity and compressibility of the packed beds. A closed-form solution is expected to describe accurately the early stage of the transient regime flow and is in qualitative agreement with available experimental data.

Yuri M. Shtemler; Isaac R. Shreiber; Alex Britan

2007-10-15T23:59:59.000Z

226

Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity  

DOE Green Energy (OSTI)

The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ? 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ? 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space between alkaline metal hydrides (AmH), Alkaline earth metal hydrides (AeH2), alane (AlH3), transition metal (Tm) hydrides (TmHz, where z=1-3) and molecular hydrogen (H2). The effort started first with variations of known alanates and subsequently extended the search to unknown compounds. In this stage, the FPM techniques were developed and validated on known alanate materials such as NaAlH4 and Na2LiAlH6. The coupled predictive methodologies were used to survey over 200 proposed phases in six quaternary spaces, formed from various combinations of Na, Li Mg and/or Ti with Al and H. A wide range of alanate compounds was examined using SSP having additions of Ti, Cr, Co, Ni and Fe. A number of compositions and reaction paths were identified having H weight fractions up to 5.6 wt %, but none meeting the 7.5 wt%H reversible goal. Similarly, MSP of alanates produced a number of interesting compounds and general conclusions regarding reaction behavior of mixtures during processing, but no alanate based candidates meeting the 7.5 wt% goal. A novel alanate, LiMg(AlH4)3, was synthesized using SBP that demonstrated a 7.0 wt% capacity with a desorption temperature of 150C. The deuteride form was synthesized and characterized by the Institute for Energy (IFE) in Norway to determine its crystalline structure for related FPM studies. However, the reaction exhibited exothermicity and therefore was not reversible under acceptable hydrogen gas pressures for on-board recharging. After the extensive studies of alanates, the material class of emphasis was shifted to borohydrides. Through SBP, several ligand-stabilized Mg(BH4)2 complexes were synthesized. The Mg(BH4)2*2NH3 complex was found to change behavior with slightly different synthesis conditions and/or aging. One of the two mechanisms was an amine-borane (NH3BH3) like dissociation reaction which released up to 16 wt %H and more conservatively 9 wt%H when not including H2 released from the NH3. From FPM, the stability of the Mg(BH4)2*2NH3 compound was found to increase with the inclusion of NH3 groups in the inner-Mg coordination

Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

2008-02-18T23:59:59.000Z

227

Postirradiation examination of Pressure Tubes 2755 and 1054 Part 1: Dimensional, hydride, inner surface defects, and corrosion measurements: Addendum 1  

Science Conference Proceedings (OSTI)

This addendum is issued to document additional postirradiation examinations that were conducted on Pressure Tubes 2755 and 1054 for evaluation of inner surface defects, corrosion and hydride measurements.

Chastain, S.A.; Trimble, D.J.

1986-04-01T23:59:59.000Z

228

Synthesis and characterization of metal hydride electrodes. Interim report  

DOE Green Energy (OSTI)

The objective of this project is to elucidate the compositional and structural parameters that affect the thermodynamics, kinetics and stability of alloy hydride electrodes and to use this information in the development of new high capacity long life hydride electrodes for rechargeable batteries. The work focuses on the development of AB{sub 5} alloys and the application of in situ methods, at NSLS, such as x-ray absorption (XAS), to elucidate the role of the alloying elements in hydrogen storage and corrosion inhibition. The most significant results to date are: The decay of electrode capacity on cycling was directly related to alloy corrosion. The rate of corrosion depended in part on both the alloy composition and the partial molar volume of hydrogen, V{sub H}. The corrosion rate depended on the composition of the A component in AB{sub 5} (LaNi{sub 5} type) alloys. Partial substitution of La with Ce in AB{sub 5} alloys substantially inhibits electrode corrosion on cycling. Recent results indicate that Co also greatly inhibits electrode corrosion, possibly by minimizing V{sub H}. The AB{sub 5} alloys investigated included LaNi{sub 5}, ternary alloys (e.g. LaN{sub 4.8}Sn{sub 0.2} and La{sub 0.8}Ce{sub 0.2}Ni{sub 5}), alloys with various substitutions for both La and Ni (e.g. La{sub 0.8}Ce{sub 0.2}Ni{sub 4.8}Sn{sub 0.2}) and mischmetal (Mm) alloys of the type normally used in batteries, such as MmB{sub 5} (B = Ni{sub 3.55}Mn{sub 0.4}A1{sub 0.3}Co{sub 0.75}). A major effort was devoted to the effects of La substitution in the A component. Both in situ and ex situ XAS measurements are used to study the electronic effects that occur on the addition of various metal substitutions and on the ingress of hydrogen.

McBreen, J.; Reilly, J.J.

1995-10-01T23:59:59.000Z

229

An Electrolytic Method to Form Zirconium Hydride Phases in Zirconium Alloys with Morphologies Similar to Hydrides Formed in Used Nuclear Fuel  

E-Print Network (OSTI)

An electrolytic cell was designed, built, and tested with several proof-of-concept experiments in which Zircaloy material was charged with hydrogen in order to generate zirconium hydride formations. The Electrolytic Charging with Hydrogen and a Thermal Gradient (ECH-TG) system has the ability to generate static 20C to 120C temperatures for a H2SO4 and H2O bath for isothermal experiment conditions. This system was designed to accommodate a molten salt bath in future experiments to achieve higher isothermal temperatures. Additionally, the design accommodates a cartridge heater, which when placed on the inside of the sample tube, can be set at temperatures up to 350 C and create a thermal gradient across the sample. Finally, a custom LABVIEW VI, L2.vi, was developed to control components and record data during experimentation. This program, along with web cameras and the commercial StirPC software package, enables remote operation for extended periods of time with only minor maintenance during an experiment. While proving the concept for this design, 19 experiments where performed, which form the basis for a future parametric study. Initial results indicate formations of zirconium hydrides which formed rim structures between 8.690 +/- 0.982 ?m and 12.365 +/- 0.635 ?m thick. These electrolytically produced rims were compared with hydrides formed under a previous vapor diffusion experiment via Scanning Electron Microscope (SEM) imaging and Energy dispersive X-ray Spectroscopy (EDS) analysis. While the existing vapor diffusion method formed gradients of zirconium hydride, it failed to produce the gradient in the correct direction and also failed to create a hydride rim. The successful use of the ECH-TG system to create said rim, and some of the methods used to direct that rim to the OD of the tube can be used for future work with the vapor diffusion method in order to create zirconium hydrides of the correct geometry. The procedures and apparatus created for this project represent a reliable method for creating zirconium hydride rim structures.

Kuhr, Samuel Houston

2012-08-01T23:59:59.000Z

230

Alternatives for metal hydride storage bed heating and cooling  

DOE Green Energy (OSTI)

The reaction of hydrogen isotopes with the storage bed hydride material is exothermic during absorption and endothermic during desorption. Therefore, storage bed operation requires a cooling system to remove heat during absorption, and a heating system to add the heat needed for desorption. Three storage bed designs and their associated methods of heating and cooling and accountability are presented within. The first design is the current RTF (Replacement Tritium Facility) nitrogen heating and cooling system. The second design uses natural convection cooling with ambient glove box nitrogen and electrical resistance for heating. This design is referred to as the Naturally Cooled/Electrically Heated (NCEH) design. The third design uses forced convection cooling with ambient glove box nitrogen and electrical resistance for heating. The design is referred to as the Forced Convection Cooled/Electrically Heated (FCCEH) design. In this report the operation, storage bed design, and equipment required for heating, cooling, and accountability of each design are described. The advantages and disadvantages of each design are listed and discussed. Based on the information presented within, it is recommended that the NCEH design be selected for further development.

Fisher, I.A.; Ramirez, F.B.; Koonce, J.E.; Ward, D.E.; Heung, L.K.; Weimer, M.; Berkebile, W.; French, S.T.

1991-10-04T23:59:59.000Z

231

On-board hydrogen storage system using metal hydride  

DOE Green Energy (OSTI)

A hydrogen powered hybrid electric bus has been developed for demonstration in normal city bus service in the City of Augusta, Georgia, USA. The development team, called H2Fuel Bus Team, consists of representatives from government, industry and research institutions. The bus uses hydrogen to fuel an internal combustion engine which drives an electric generator. The generator charges a set of batteries which runs the electric bus. The hydrogen fuel and the hybrid concept combine to achieve the goal of near-zero emission and high fuel efficiency. The hydrogen fuel is stored in a solid form using an on-board metal hydride storage system. The system was designed for a hydrogen capacity of 25 kg. It uses the engine coolant for heat to generate a discharge pressure higher than 6 atm. The operation conditions are temperature from ambient to 70 degrees C, hydrogen discharge rate to 6 kg/hr, and refueling time 1.5 hours. Preliminary tests showed that the performance of the on-board storage system exceeded the design requirements. Long term tests have been planned to begin in 2 months. This paper discusses the design and performance of the on-board hydrogen storage system.

Heung, L.K.

1997-07-01T23:59:59.000Z

232

Down hole packing gland and method for long stroke pumper  

SciTech Connect

A packing gland is positioned down within an oil well hole and is held in place by elastomeric sealing and locking devices which are actuated from above the hole through a torque tube. Rotation of the torque tube in one direction lowers the tube axially relative to the elastomers and causes them to expand radially thus locking and sealing the stuffing gland assembly in the well head equipment at a depth of about 100 feet below the ground surface. Counter rotation of the torque tube allows the elastomers to retract radially thus releasing the stuffing gland assembly. Once the stuffing gland assembly is released, a union joint assembly is moved downward relative to the stuffing gland assembly and a unique spring ring slides over a cylindrical boss on the packing gland assembly to couple the union joint assembly with the packing gland assembly. The packing gland assembly then is raised above the ground surface simultaneously with lifting the polish rod from the hole. A drain port is provided between the elastomer locking and sealing devices to provide a flow passage back into the well when the packing gland is removed allowing the portion of the casing housing the wire rope to drain dry.

Hollenbeck, A.L.; De Tuerk, A.V.; Cooper, J.T.

1978-07-11T23:59:59.000Z

233

X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films Title X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films Publication Type Journal Article LBNL Report Number LBNL-50574 Year of Publication 2002 Authors Richardson, Thomas J., Baker Farangis, Jonathan L. Slack, Ponnusamy Nachimuthu, Rupert C. C. Perera, Nobumichi Tamura, and Michael D. Rubin Journal Journal of Alloys and Compounds Volume 356-357 Start Page 204 Pagination 204-207 Date Published 08/2003 Keywords A. hydrogen storage materials, NEXAFS, thin film s; C. EXAFS, x-ray diffraction Abstract Mixed metal thin films containing magnesium and a first-row transition element exhibit very large changes in both reflectance and transmittance on exposure to hydrogen gas. Changes in electronic structure and coordination of the magnesium and transition metal atoms during hydrogen absorption were studied using dynamic in situ transmission mode X-ray absorption spectroscopy. Mg K-edge and Ni, Co, and Ti L-edge spectra reflect both reversible and irreversible changes in the metal environments. A significant shift in the nickel L absorption edge shows it to be an active participant in hydride formation. The effect on cobalt and titanium is much less dramatic, suggesting that these metals act primarily as catalysts for formation of magnesium hydride.

234

HYCSOS: a chemical heat pump and energy conversion system based on metal hydrides. 1979 status report  

DOE Green Energy (OSTI)

The current status of the HYCSOS chemical heat pump and energy conversion system based on metal hydrides is described. Heat transfer fluid loops were insulated and modified for isothermal operation. Software development for HYCSOS manual mode operation was completed. Routines to handle data acquisition, logging, compression, correction and plotting, using a Tektronix Graphics system with flexible disk data storage, provide a rapid and versatile means of presenting HYCSOS data for analysis. Advanced concept heat exchangers to improve the heat transfer of the hydride bed with the heat transfer fluid are discussed. Preliminary tests made with a LaNi/sub 5/ loaded aluminum foam test unit showed that heat transfer properties are very markedly improved. Thermodynamic expressions are applied to the selection of alloys for use in HYCSOS. The substitution of aluminum for nickel in AB/sub 5/ type alloys is shown to reduce hysteresis and permits the use of potentially lower cost materials with added flexibility for the optimization of engineering design and performance characteristics of the hydride heat pump system. Transient thermal measurements on hydride beds of CaNi/sub 5/ and LaNi/sub 5/ show no deterioration with cycling. Relatively slow heat transfer between the hydride beds and heat transfer fluid in the coiled tube heat exchangers is indicated by temperature lag of the bed and heat transfer fluid. Improved heat transfer is anticipated with aluminum foam heat exchangers.

Sheft, I.; Gruen, D.M.; Lamich, G.

1979-04-01T23:59:59.000Z

235

Materials Down-selection Decisions Made within the DOE Metal Hydride Center of Excellence (MHCoE) - September-October 2007  

Fuel Cell Technologies Publication and Product Library (EERE)

Reports on which hydrogen storage materials offer potential for further research as decided by DOE's Metal Hydride Center of Excellence.

236

Hydrogen gettering packing material, and process for making same  

DOE Patents (OSTI)

A hydrogen gettering system for a sealed container is disclosed comprising packing material for use within the sealed container, and a coating film containing hydrogen gettering material on at least a portion of the surface of such packing material. The coating film containing the hydrogen gettering material comprises a mixture of one or more organic materials capable of reacting with hydrogen and one or more catalysts capable of catalyzing the reaction of hydrogen with such one or more organic materials. The mixture of one or more organic materials capable of reacting with hydrogen and the one or more catalysts is dispersed in a suitable carrier which preferably is a curable film-forming material. In a preferred embodiment, the packing material comprises a foam material which is compatible with the coating film containing hydrogen gettering material thereon.

LeMay, James D. (Castro Valley, CA); Thompson, Lisa M. (Knoxville, TN); Smith, Henry Michael (Overland Park, KS); Schicker, James R. (Lee' s Summit, MO)

2001-01-01T23:59:59.000Z

237

Hydrogen gettering packing material and process for making same  

DOE Patents (OSTI)

A hydrogen gettering system for a sealed container is disclosed comprising packing material for use within the sealed container, and a coating film containing hydrogen gettering material on at least a portion of the surface of such packing material. The coating film containing the hydrogen gettering material comprises a mixture of one or more organic materials capable of reacting with hydrogen and one or more catalysts capable of catalyzing the reaction of hydrogen with such one or more organic materials. The mixture of one or more organic materials capable of reacting with hydrogen and the one or more catalysts is dispersed in a suitable carrier which preferably is a curable film-forming material. In a preferred embodiment, the packing material comprises a foam material which is compatible with the coating film containing hydrogen gettering material thereon.

LeMay, James D.; Thompson, Lisa M.; Smith, Henry Michael; Schicker, James R.

1999-09-09T23:59:59.000Z

238

Fluid loss to formation stopped prior to gravel packing  

Science Conference Proceedings (OSTI)

Union Texas Petroleum has combined special techniques in offshore Louisiana gravel-packing operations to combat severe fluid loss that had jeopardized previous gravel-packed completions. By using an annulus pressure-controlled circulation valve and a crosslinked polymer gelled block, Union Texas was able to totally halt loss of fluid to a formation that had an 1,835-psi overbalanced (the hydrostatic pressure of well fluid in the treating string-to-casing annulus exceeded formation pressure by 1,835 psi). The pressure-controlled valve permitted process control without pipe movement, and the gelled block prevented fluid loss to the formation while the gravel pack was being installed. The well was perforated underbalanced, using tubing-conveyed guns, for perforation cleanup.

Quarnstrom, T.F. (Union Texas Petroleum, Houston, TX (US)); Cavender, T.W.; Shelton, G. (Vann Systems Houston, TX (US))

1989-09-25T23:59:59.000Z

239

Packing hyperspheres in high-dimensional Euclidean spaces  

E-Print Network (OSTI)

We present a study of disordered jammed hard-sphere packings in four-, five-, and six-dimensional Euclidean spaces. Using a collision-driven packing generation algorithm, we obtain the first estimates for the packing fractions of the maximally random jammed ?MRJ ? states for space dimensions d=4, 5, and 6 to be ? MRJ?0.46, 0.31, and 0.20, respectively. To a good approximation, the MRJ density obeys the scaling form ? MRJ=c 1/2 d +?c 2d?/2 d, where c 1=?2.72 and c 2=2.56, which appears to be consistent with the highdimensional asymptotic limit, albeit with different coefficients. Calculations of the pair correlation function g 2?r ? and structure factor S?k ? for these states show that short-range ordering appreciably decreases with increasing dimension, consistent with a recently proposed decorrelation principle, which, among other things, states that unconstrained correlations diminish as the dimension increases and vanish entirely in the limit d??. As in three dimensions ?where ? MRJ?0.64?, the packings show no signs of crystallization, are isostatic, and have a power-law divergence in g 2?r ? at contact with power-law exponent ?0.4. Across dimensions, the cumulative number of neighbors equals the kissing number of the conjectured densest packing close to where g 2?r ? has its first minimum. Additionally, we obtain estimates for the freezing and melting packing fractions for the equilibrium hard-sphere fluid-solid transition, ? F?0.32 and ? M ?0.39, respectively, for d=4, and ? F?0.20 and ? M ?0.25, respectively, for d=5. Although our results indicate the stable phase at high

Monica Skoge; Ar Donev; Frank H. Stillinger; Salvatore Torquato

2007-01-01T23:59:59.000Z

240

Titanium tritide radioisotope heat source development : palladium-coated titanium hydriding kinetics and tritium loading tests.  

DOE Green Energy (OSTI)

We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom (Savannah River National Labs, Aiken, SC)

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides  

DOE Green Energy (OSTI)

This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

2007-07-27T23:59:59.000Z

242

Automotive storage of hydrogen using modified magnesium hydrides. Final report, March 1976-March 1978  

DOE Green Energy (OSTI)

Metal hydrides can store more hydrogen per unit volume than normal high pressure or cryogenic techniques. Little energy is required to store the hydrogen in the hydride, and high stability at room temperature ensures low losses over long storage periods. Safety features of metal hydride storage are favorable. Because of its low weight and high hydrogen storage densities, modified magnesium hydride offers the greatest potential for automotive storage of hydrogen. Experimental and analytical work in this program has been directed toward the optimization of this storage system. Due to the relative stability of MgH/sub 2/, modifications of the MgMH/sub x/ (M = metal ion) have been made to decrease the dissociation temperature while retaining high hydrogen capacity. This parameter is crucial since vehicle exhaust will supply the thermal energy to dissociate the hydride in an automobile. System studies indicate that hydride dissociation temperature (T/sub D/) should be 200/sup 0/C to ensure uninterrupted fuel flow at all driving and idle conditions. From experimental data developed in this four task study, we conclude that alloys comprised of Mg, Cu and Ni have come closest to meeting the dissociation temperature goal. Small additions of rare-earth elements to the basic alloy also contribute to a reduction of T/sub D/. The best alloy developed in this program exhibits a T/sub D/ = 223/sup 0/C and a hydrogen capacity near four weight percent compared to a theoretical 7.65 percent for MgH/sub 2/. That alloy has been characterized for dissociation temperature, hydrogen capacity, kinetics, and P-C-T relationships. Dissociation temperature, hydrogen capacity and material cost are reported for each alloy tested in this program.

Rohy, D. A.; Nachman, J. F.; Hammer, A. N.; Duffy, T. E.

1979-01-01T23:59:59.000Z

243

Design of an Integrated System to Recycle Zircaloy Cladding Using a Hydride-Milling-Dehydride Process  

E-Print Network (OSTI)

A process for recycling spent nuclear fuel cladding, a zirconium alloy (Zircaloy), into a metal powder that may be used for advanced nuclear fuel applications, was investigated to determine if it is a viable strategy. The process begins with hydriding the Zircaloy cladding hulls after the spent nuclear fuel has been dissolved from the cladding. The addition of hydrogen atoms to the zirconium matrix stresses the lattice and forms brittle zirconium hydride, which is easily pulverized into a powder. The dehydriding process removes hydrogen by heating the powder in a vacuum, resulting in a zirconium metal powder. The two main objectives of this research are to investigate the dehydriding process and to design, build and demonstrate a specialized piece of equipment to process the zirconium from cladding hulls to metal powder without intermediate handling. The hydriding process (known from literature) took place in a 95 percent argon - 5 percent hydrogen atmosphere at 500 degrees C while the dehydriding process conditions were researched with a Thermogavimetric Analyzer (TGA). Data from the TGA showed the dehydriding process requires vacuum conditions (~0.001 bar) and 800 degrees C environment to decompose the zirconium hydride. Zirconium metal powder was created in two separate experiments with different milling times, 45 minutes (coarse powder) and 12 hours (fine powder). Both powders were analyzed by three separate analytical methods, X-Ray Diffraction (XRD), size characterization and digital micrographs. XRD analysis proved that the process produced a zirconium metal. Additionally, visual observations of the samples silvery color confirmed the presence of zirconium metal. The presence on zirconium metal in the two samples confirmed the operation of the hydriding / milling / hydriding machine. Further refining of the hydride / milling / dehydride machine could make this process commercially favorable when compared to the high cost of storing nuclear waste and its components. An additional important point is that this process can easily be used on other metals that are subject to hydrogen embrittlement, knowing the relevant temperatures and pressures associated with the hydriding / dehydriding of that particular metal.

Kelley, Randy Dean

2010-08-01T23:59:59.000Z

244

INVESTIGATION OF THE THERMODYNAMICS GOVERNING METAL HYDRIDE SYNTHESIS IN THE MOLTEN STATE PROCESS.  

Science Conference Proceedings (OSTI)

Complex metal hydrides have been synthesized for hydrogen storage through a new synthetic technique utilizing high hydrogen overpressure at elevated temperatures (molten state processing). This synthesis technique holds the potential of fusing different complex hydrides at elevated temperatures and pressures to form new species with enhanced hydrogen storage properties. Formation of these compounds is driven by thermodynamic and kinetic considerations. We report on investigations of the thermodynamics. Novel synthetic complexes were formed, structurally characterized, and their hydrogen desorption properties investigated. The effectiveness of the molten state process is compared with mechanicosynthetic ball milling.

Stowe, A; Polly Berseth, P; Ragaiy Zidan, R; Donald Anton, D

2007-08-23T23:59:59.000Z

245

DEFORMATION MODES OF PACKINGS OF FRICTIONLESS POLYDISPERSE SPHERES  

E-Print Network (OSTI)

1 DEFORMATION MODES OF PACKINGS OF FRICTIONLESS POLYDISPERSE SPHERES O. I. IMOLE, N. KUMAR, AND S as a function of volume fraction are reported for both uniaxial and deviatoric deformation modes. Our findings, and pressure (isotropic stress) are reported as function of volume fraction and isotropic strain, while

Luding, Stefan

246

Packed rod neutron shield for fast nuclear reactors  

DOE Patents (OSTI)

A fast neutron nuclear reactor including a core and a plurality of vertically oriented neutron shield assemblies surrounding the core. Each assembly includes closely packed cylindrical rods within a polygonal metallic duct. The shield assemblies are less susceptible to thermal stresses and are less massive than solid shield assemblies, and are cooled by liquid coolant flow through interstices among the rods and duct.

Eck, John E. (Hempfield Township, Westmoreland County, PA); Kasberg, Alvin H. (Murrysville, PA)

1978-01-01T23:59:59.000Z

247

Vibrations of Jammed Disk Packings with Hertzian Interactions  

E-Print Network (OSTI)

Contact breaking and Hertzian interactions between grains can both give rise to nonlinear vibrational response of static granular packings. We perform molecular dynamics simulations at constant energy in 2D of frictionless bidisperse disks that interact via Hertzian spring potentials as a function of energy and measure directly the vibrational response from the Fourier transform of the velocity autocorrelation function. We compare the measured vibrational response of static packings near jamming onset to that obtained from the eigenvalues of the dynamical matrix to determine the temperature above which the linear response breaks down. We compare packings that interact via single-sided (purely repulsive) and double-sided Hertzian spring interactions to disentangle the effects of the shape of the potential from contact breaking. Our studies show that while Hertzian interactions lead to weak nonlinearities in the vibrational behavior (e.g. the generation of harmonics of the eigenfrequencies of the dynamical matrix), the vibrational response of static packings with Hertzian contact interactions is dominated by contact breaking as found for systems with repulsive linear spring interactions.

Carl F. Schreck; Corey S. O'Hern; Mark D. Shattuck

2013-09-03T23:59:59.000Z

248

Energy Saving in Distillation Using Structured Packing and Vapor Recompression  

E-Print Network (OSTI)

"Distillation is a big consumer of energy in process plant operations. A first step to energy cost savings is the use of high efficiency structured packing in place of trays or dumped packings in conventionally operated distillation columns. Larger savings, as much as 80%, may be obtained by using a direct vapor recompression (VRC) heat pump instead of the conventional column operation with a steam heated reboiler. A main criterion of the suitability of a distillation for VRC is a low temperature difference across the column. VRC uses hot compressed overhead vapors, instead of steam, to heat the reboiler. Cost savings are highest when the pressure ratio for the compressor is low. The pressure ratio depends on the boiling point difference of top and bottom products, the reboiler-condenser driving force temperature and the column pressure drop. Structured packing has a low pressure drop; thus increasing the savings obtained with VRC - for retrofits or new columns - and increasing the range of applications where VRC is suitable for distillations. For low pressure distillation application, a column with a small pressure drop is especially important. An example of a vacuum distillation which is made suitable for VRC with use of structured packing is separation of styrene and ethyl benzene. "

Hill, J.H.

1987-09-01T23:59:59.000Z

249

Smart-Grid electricity allocation via strip packing with slicing  

Science Conference Proceedings (OSTI)

One advantage of smart grids is that they can reduce the peak load by distributing electricity-demands over multiple short intervals. Finding a schedule that minimizes the peak load corresponds to a variant of a strip packing problem. Normally, for strip ...

Soroush Alamdari, Therese Biedl, Timothy M. Chan, Elyot Grant, Krishnam Raju Jampani, Srinivasan Keshav, Anna Lubiw, Vinayak Pathak

2013-08-01T23:59:59.000Z

250

Evaluation of Protected Metal Hydride Slurries in a H2 Mini-  

E-Print Network (OSTI)

Evaluation of Protected Metal Hydride Slurries in a H2 Mini- Grid TIAX, LLC Acorn Park Cambridge_MERIT_REVIEW_MAY2003 2 Introduction Hydrogen Mini-Grid Concept Distributed FCPS utilizing a H2 Mini-Grid can provide waste heat can be used for hot water or space heating in buildings (i.e. "cogen") Distributed FCPS

251

Internal hydriding in irradiated defected Zircaloy fuel rods: A review (LWBR Development Program)  

DOE Green Energy (OSTI)

Although not a problem in recent commercial power reactors, including the Shippingport Light Water Breeder Reactor, internal hydriding of Zircaloy cladding was a persistent cause of gross cladding failures during the 1960s. It occurred in the fuel rods of water-cooled nuclear power reactors that had a small cladding defect. This report summarizes the experimental findings, causes, mechanisms, and methods of minimizing internal hydriding in defected Zircaloy-clad fuel rods. Irradiation test data on the different types of defected fuel rods, intentionally fabricated defected and in-pile operationally defected rods, are compared. Significant factors affecting internal hydriding in defected Zircaloy-clad fuel rods (defect hole size, internal and external sources of hydrogen, Zircaloy cladding surface properties, nickel alloy contamination of Zircaloy, the effect of heat flux and fluence) are discussed. Pertinent in-pile and out-of-pile test results from Bettis and other laboratories are used as a data base in constructing a qualitative model which explains hydrogen generation and distribution in Zircaloy cladding of defected water-cooled reactor fuel rods. Techniques for minimizing internal hydride failures in Zircaloy-clad fuel rods are evaluated.

Clayton, J C

1987-10-01T23:59:59.000Z

252

Model for the Prediction of the Hydriding Thermodynamics of Pd-Rh-Co Ternary Alloys  

DOE Green Energy (OSTI)

A dilute solution model (with respect to the substitutional alloying elements) has been developed, which accurately predicts the hydride formation and decomposition thermodynamics and the storage capacities of dilute ternary Pd-Rh-Co alloys. The effect of varying the rhodium and cobalt compositions on the thermodynamics of hydride formation and decomposition and hydrogen capacity of several palladium-rhodium-cobalt ternary alloys has been investigated using pressure-composition (PC) isotherms. Alloying in the dilute regime (<10 at.%) causes the enthalpy for hydride formation to linearly decrease with increasing alloying content. Cobalt has a stronger effect on the reduction in enthalpy than rhodium for equivalent alloying amounts. Also, cobalt reduces the hydrogen storage capacity with increasing alloying content. The plateau thermodynamics are strongly linked to the lattice parameters of the alloys. A near-linear dependence of the enthalpy of hydride formation on the lattice parameter was observed for both the binary Pd-Rh and Pd-Co alloys, as well as for the ternary Pd-Rh-Co alloys. The Pd-5Rh-3Co (at. %) alloy was found to have similar plateau thermodynamics as a Pd-10Rh alloy, however, this ternary alloy had a diminished hydrogen storage capacity relative to Pd-10Rh.

Teter, D.F.; Thoma, D.J.

1999-03-01T23:59:59.000Z

253

Lithium hydride and lithium amide for hydrogen storage J. Engbk, G. Nielsen, I. Chorkendorff  

E-Print Network (OSTI)

Lithium hydride and lithium amide for hydrogen storage J. Engbæk, G. Nielsen, I. Chorkendorff 1 interest. Lithium amid has a high hydrogen storage capability; 10.4wt.% hydrogen. In this study surface reactions of thin films of lithium with hydrogen and ammonia is studied under well controlled conditions

Mosegaard, Klaus

254

STANDARDIZED TESTING PROGRAM FOR EMERGENT CHEMICAL HYDRIDE AND CARBON STORAGE TECHNOLOGIES  

E-Print Network (OSTI)

hydride/carbon hydrogen storage systems. The development of a standardized protocol and testing system to an urgent need for accelerated development of hydrogen storage systems. In vehicular applications, hydrogen storage and distribution presents the greatest challenge in creating the hydrogen fuel infrastructure

255

Preparation of Prototypic Irradiated Hydrided-Zircaloy Cladding for UFDC Programs  

SciTech Connect

The DOE Used Fuel Disposition Campaign (UFDC) has tasked ORNL to investigate the behavior of light-water-reactor fuel cladding material performance related to extended storage and transportation of used fuel. Fast neutron irradiation of pre-hydrided zirconium-alloy cladding in the High Flux Isotope Reactor (HFIR) at elevated temperatures has been used to simulate the effects of high burnup on used fuel cladding for use in understanding the materials properties relevant to very long-term storage (VLTS) and subsequent transportation. The irradiated pre-hydrided metallic materials will generate baseline data to benchmark hot-cell testing of high-burnup used fuel cladding; and, more importantly, samples free of alpha contamination can be provided to the researchers who do not have hot cell facilities to handle highly contaminated high-burnup used fuel cladding to support their research projects for the UFDC. In order to accomplish this research, ORNL has produced unirradiated zirconium-based cladding tubes with a certain hydrogen concentration. Two capsules (HYCD-1 and HYCD-2) containing hydrided zirconium-based samples, 9.50 mm (0.374 in) in diameter, were inserted in HFIR for neutron irradiation. HYCD-1 was removed after Cycle 440B and HYCD-2 after Cycle 442. This paper will describe the general HYCD experiment configuration, achieved temperatures, and temperature gradients within the cladding, and current results of the PIE of the irradiated hydrided cladding samples.

Ott, Larry J [ORNL] [ORNL; Howard, Richard H [ORNL] [ORNL; Howard, Rob L [ORNL] [ORNL; McDuffee, Joel Lee [ORNL] [ORNL; Yan, Yong [ORNL] [ORNL

2013-01-01T23:59:59.000Z

256

The effect of surface finish on piston ring-pack performance in advanced reciprocating engine systems  

E-Print Network (OSTI)

Frictional losses in the piston ring-pack of an engine account for approximately 20% of the total frictional losses within an engine. Methods of surface texture optimization were investigated to reduce piston ring-pack ...

Jocsak, Jeffrey (Jeffrey Alan)

2005-01-01T23:59:59.000Z

257

Modeling the lubrication of the piston ring pack in internal combustion engines using the deterministic method  

E-Print Network (OSTI)

Piston ring packs are used in internal combustion engines to seal both the high pressure gas in the combustion chamber and the lubricant oil in the crank case. The interaction between the piston ring pack and the cylinder ...

Chen, Haijie

2011-01-01T23:59:59.000Z

258

Effects of lubricant viscosity and surface texturing on ring-pack performance in internal combustion engines  

E-Print Network (OSTI)

The piston ring-pack contributes approximately 25% of the mechanical losses in an internal combustion engine. Both lubricant viscosity and surface texturing were investigated in an effort to reduce this ring-pack friction ...

Takata, Rosalind (Rosalind Kazuko), 1978-

2006-01-01T23:59:59.000Z

259

Piston ring pack design effects on production spark ignition engine oil consumption : a simulation analysis  

E-Print Network (OSTI)

One of the most significant contributors to an engine's total oil consumption is the piston ring-pack. As a result, optimization of the ring pack is becoming more important for engine manufacturers and lubricant suppliers. ...

Senzer, Eric B

2007-01-01T23:59:59.000Z

260

Homochiral 3D Metal-Organic Frameworks from Chiral 1D Rods: 6 Way Helical Packing  

Science Conference Proceedings (OSTI)

The chiral 3D MOFs resulted from the packing of chiral 1D SBBs were studied. It was demonstrated that the final packing pattern is dependent on the dimension of SBB's. In addition, we were able to identify a new plywood-like network from ligand 2H2 exhibiting an unprecedented six-way chiral helical packing motif, which can be added on the list of invariant rod packings.

Shin, Sung M.; Moon, Dohyun; Jeong, Kyung S.; Kim, Jaheon; Thallapally, Praveen K.; Jeong, Nakcheol

2011-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

New packing in absorption systems for trapping benzene from coke-oven gas  

SciTech Connect

The efficiency of benzene removal from coke-oven gas in absorption units OAO Alchevskkoks with new packing is assessed.

V.V. Grabko; V.M. Li; T.A. Shevchenko; M.A. Solov'ev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

262

Tritium storage development. Progress report No. 10, October--December 1976. [In metal hydride; polymer-impregnated tritiated concrete  

DOE Green Energy (OSTI)

Laboratory and engineering scale work has been initiated on the storage of tritium in a metal hydride. Laboratory hydriding apparatus has been assembled and a preliminary series of experiments was carried out on zirconium. Several engineering design concepts for the reaction and storage of tritium in a metal hydride are presented. The design of a three 3-in.-diam. bench scale reaction system is in progress. Developmental work is continuing on the injector technique for the fixation of tritium in polymer-impregnated concrete.

Colombo, P; Steinberg, M

1976-01-01T23:59:59.000Z

263

Close-packed array of light emitting devices  

SciTech Connect

A close-packed array of light emitting diodes includes a nonconductive substrate having a plurality of elongate channels extending therethrough from a first side to a second side, where each of the elongate channels in at least a portion of the substrate includes a conductive rod therein. The conductive rods have a density over the substrate of at least about 1,000 rods per square centimeter and include first conductive rods and second conductive rods. The close-packed array further includes a plurality of light emitting diodes on the first side of the substrate, where each light emitting diode is in physical contact with at least one first conductive rod and in electrical contact with at least one second conductive rod.

Ivanov, Ilia N.; Simpson, John T.

2013-04-09T23:59:59.000Z

264

Internal states of model isotropic granular packings. III. Elastic properties  

E-Print Network (OSTI)

In this third and final paper of a series, elastic properties of numerically simulated isotropic packings of spherical beads assembled by different procedures and subjected to a varying confining pressure P are investigated. In addition P, which determines the stiffness of contacts by Hertz's law, elastic moduli are chiefly sensitive to the coordination number, the possible values of which are not necessarily correlated with the density. Comparisons of numerical and experimental results for glass beads in the 10kPa-10MPa range reveal similar differences between dry samples compacted by vibrations and lubricated packings. The greater stiffness of the latter, in spite of their lower density, can hence be attributed to a larger coordination number. Voigt and Reuss bounds bracket bulk modulus B accurately, but simple estimation schemes fail for shear modulus G, especially in poorly coordinated configurations under low P. Tenuous, fragile networks respond differently to changes in load direction, as compared to lo...

Agnolin, Ivana

2007-01-01T23:59:59.000Z

265

Numerical analysis of the heat transfer for packing design of cryogenic gate valve  

Science Conference Proceedings (OSTI)

The packing, among the components comprising the gate valve, is used to sustain the airtightness and the study on change of shape or pattern has been carried out to maximize the functions, but the study on changing the location or the size of the packing ... Keywords: cryogenic, heat transfer, liquefied natural gas, numerical analysis, packing

Si Pom Kim; Rock Won Jeon; Il Ju Hwang; Jae Hoon Lee; Won Heaop Shin

2012-04-01T23:59:59.000Z

266

High density packings of equal circles in rectangles with variable aspect ratio  

Science Conference Proceedings (OSTI)

Arranging a fixed number n of equal non-overlapping circles in a rectangle with variable aspect ratio is a non-standard packing problem. It arises if one has to decide how a certain number of circular items should be packed into a rectangular box when ... Keywords: Circle packing, Container design, Hexagonal grid, Rectangular container, Variable aspect ratio

E. Specht

2013-01-01T23:59:59.000Z

267

Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method  

E-Print Network (OSTI)

Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method Nansi Xue1 Abstract This paper outlines a method for optimizing the design of a lithium-ion battery pack for hy- brid, volume or material cost. Keywords: Lithium-ion, Optimization, Hybrid vehicle, Battery pack design

Papalambros, Panos

268

Biomass growth restriction in a packed bed reactor  

DOE Patents (OSTI)

When carrying out continuous biologically catalyzed reactions with anaerobic microorganisms attached to a support in an upflow packed bed column, growth of the microorganisms is restricted to prevent the microorganisms from plugging the column by limiting the availability of an essential nutrient and/or by the presence of predatory protozoa which consume the anaerobic microorganisms. A membrane disruptive detergent may be provided in the column to lyse dead microorganisms to make them available as nutrients for live microorganisms.

Griffith, William L. (Oak Ridge, TN); Compere, Alicia L. (Knoxville, TN)

1978-01-01T23:59:59.000Z

269

Minimizing formation damage under adverse conditions during gravel pack operations  

Science Conference Proceedings (OSTI)

A method is described for minimizing formation damage caused by intrusive fluids prior to a gravel packing operation in loosely consolidated formations penetrated by at least one well comprising: (a) filling the casing of the well with an underbalanced completion fluid; (b) placing within the well a removable packer capable of isolating the space between the casing and the formation from the downhole well pressure; (c) setting through the packer a first tubing suitable for perforating and stabilizing the flow of fluids into the well; (d) perforating the casing; (e) introducing a blocking agent into the formation via the perforations which agent upon solidification is sufficient to minimize formation damage by avoiding the introduction of formation fluids where the agent is a gel; (f) causing the blocking agent to solidify while forming a solidified plug within the well and a solid mass within the adjacent washed out portion of the formation; (g) removing the first tubing from the well; (h) placing within the well a second tubing having a slotted portion therein sufficient to allow gravel packing of the well and the formation; (i) removing the solidified plug from the wellbore along with solidified gel from the washed-out portion of the formation; and (j) placing a gravel pack within the well and the washed-out portion of the formation via the second tubing which consolidates the formation.

Jennings, A.R. Jr.; Shu, P.

1989-03-14T23:59:59.000Z

270

Biofiltration of isopentane in peat and compost packed beds  

Science Conference Proceedings (OSTI)

Commercially available biofiltration systems have used natural bioactive materials in packed beds due to low media cost and easy availability. Detailed understanding and modeling of biofiltration systems are lacking in existing literature. Experimental studies on the isopentane treatment in air using peat- and compost-packed beds were conducted with inlet isopentane concentrations of 360 to 960 ppmv, and empty-bed gas-phase residence times of 2 to 10 min. High removal efficiencies (>90%) were achieved at low contaminant concentrations (8 min). For both peat and compost biofilters, there was an optimal water content that gave the highest removal efficiency. For higher water content, mass transfer of isopentane through the liquid phase controlled the biofiltration removal efficiency. At low water content, irreversible changes in the bioactivity of peat and compost occurred, resulting in an irrecoverable loss of removal efficiency. Increases in biofilter bed temperature from 25 to 40 C improved the removal efficiency. A mathematical model incorporating the effect of water content and temperature was developed to describe the packed-bed biofilter performance. Model predictions agreed closely with experimental data.

Wang, Z.; Govind, R. [Univ. of Cincinnati, OH (United States). Dept. of Chemical Engineering

1997-05-01T23:59:59.000Z

271

Argonne TTRDC - D3 (Downloadable Dynamometer Database) - 2010 Honda CR-Z  

NLE Websites -- All DOE Office Websites (Extended Search)

CR-Z Hybrid CR-Z Hybrid honda crz Front View - 2010 Honda CR-Z Hybrid The Honda CR-Z hybrid builds upon the Insight/Civic Honda hybrid systems with a sporty angle. The vehicle is marketed as a successor to the CRX 2-seat sport compact. It features a 1.5 L (83 kW) engine (larger than the 1.3 L used in the Insight and Civic HEVs) and is offered with both an automatic (push-belt CVT) and a manual transmission. The battery is similar to the Insight pack at 100.8 nominal voltage. The IMA motor is specified at 13 hp. Key Technology Mild hybrid "Honda IMA" hybrid system 1.5 L (83 kW) engine 100.8-Volt Nickel-Metal-Hydride (NiMH) Features 3 operational modes: "Econ," "Normal," and "Sport" Report Testing Summary (pdf) Data Download all data (zip)

272

Thermal analysis of uranium zirconium hydride fuel using a lead-bismuth gap at LWR operating temperatures  

E-Print Network (OSTI)

Next generation nuclear technology calls for more advanced fuels to maximize the effectiveness of new designs. A fuel currently being studied for use in advanced light water reactors (LWRs) is uranium zirconium hydride ...

Ensor, Brendan M. (Brendan Melvin)

2012-01-01T23:59:59.000Z

273

Role of electronic, geometric, and surface properties on the mechanism of the electrochemical hydriding/dehydriding reactions  

DOE Green Energy (OSTI)

Since 1990 there has been an ongoing collaboration among the authors to investigate the role of individual elements on the thermodynamics and kinetics of hydriding/dehydriding reactions. This review article presents the electrochemical and physicochemical characteristics of hydriding/dehydriding reactions from the point of view of their dependence on electronic, geometric and surface properties of the hydride materials. X-ray absorption spectroscopy (XAS), x-ray diffraction spectroscopy (XRD) and scanning vibrating electrode technique (SVET) studies were based on AB{sub 5} type alloys, partially substituted by other elements. Expansion of the unit cell volume and a larger Ni d band vacancy are beneficial for increasing the amount of the hydrogen storage. XAS and SVET showed that the Ce substitution for La in an AB{sub 5} alloy enhances the lifetime of hydride electrode.

Srinivasan, S.; Zhang, W.; Kumar, M.P.S. [Texas A and M Univ., College Station, TX (United States). Texas Engineering Experiment Station] [and others

1996-03-01T23:59:59.000Z

274

Aluminum Hydride - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jason Graetz (Primary Contact), James Wegrzyn Brookhaven National Laboratory (BNL) Building 815 Upton, NY 11973 Phone: (631) 344-3242 Email: graetz@bnl.gov DOE Manager HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov Project Start Date: October 1, 2011 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Develop onboard vehicle storage systems using aluminum hydride that meets all of DOE's targets for proton exchange membrane fuel cell vehicles. Produce aluminum hydride material with a hydrogen * storage capacity greater than 9.7% gravimetric (kg-H 2 /kg) and 0.13 kg-H 2 /L volumetric. Develop practical and economical processes for *

275

Pressure Acceleration of Hydride Formation on a Cobalt(I) Macrocycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Pressure Acceleration of Hydride Formation via Pressure Acceleration of Hydride Formation via Proton Binding to a Cobalt(I) Macrocycle Etsuko Fujita, James F. Wishart, and Rudi van Eldik Inorg. Chem. 41, 1579-1583 (2002) [Find paper at ACS Publications] Abstract: The effect of pressure on proton binding to the racemic isomer of the cobalt(I) macrocycle, CoL+ (L = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene), has been studied for a series of proton donors using pulse radiolysis techniques. The second-order rate constants for the reaction of CoL+ with proton donors decrease with increasing pKa of the donor acid, consistent with a reaction occurring via proton transfer. Whereas the corresponding volumes of activation (DVý) are rather small and negative for all acids (proton donors) with pKa values below 8.5, significantly larger negative

276

Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation  

DOE Patents (OSTI)

An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-based materials is disclosed. Samples of zirconium-based materials having different compositions and/or fabrication methods are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280 to 316 C). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hydriding for the same materials when subject to in-reactor (irradiated) corrosion. 1 figure.

Johnson, A.B. Jr.; Levy, I.S.; Trimble, D.J.; Lanning, D.D.; Gerber, F.S.

1990-04-10T23:59:59.000Z

277

Use of Solid Hydride Fuel for Improved long-Life LWR Core Designs  

Science Conference Proceedings (OSTI)

The primary objective of this project was to assess the feasibility of improving the performance of PWR and BWR cores by using solid hydride fuels instead of the commonly used oxide fuel. The primary measure of performance considered is the bus-bar cost of electricity (COE). Additional performance measures considered are safety, fuel bundle design simplicity in particular for BWRs, and plutonium incineration capability. It was found that hydride fuel can safely operate in PWRs and BWRs without restricting the linear heat generation rate of these reactors relative to that attainable with oxide fuel. A couple of promising applications of hydride fuel in PWRs and BWRs were identified: (1) Eliminating dedicated water moderator volumes in BWR cores thus enabling to significantly increase the cooled fuel rods surface area as well as the coolant flow cross section area in a given volume fuel bundle while significantly reducing the heterogeneity of BWR fuel bundles thus achieving flatter pin-by-pin power distribution. The net result is a possibility to significantly increase the core power density on the order of 30% and, possibly, more, while greatly simplifying the fuel bundle design. Implementation of the above modifications is, though, not straightforward; it requires a design of completely different control system that could probably be implemented only in newly designed plants. It also requires increasing the coolant pressure drop across the core. (2) Recycling plutonium in PWRs more effectively than is possible with oxide fuel by virtue of a couple of unique features of hydride fuel reduced inventory of U-238 and increased inventory of hydrogen. As a result, the hydride fuelled core achieves nearly double the average discharge burnup and the fraction of the loaded Pu it incinerates in one pass is double that of the MOX fuel. The fissile fraction of the Pu in the discharged hydride fuel is only ~2/3 that of the MOX fuel and the discharged hydride fuel is more proliferation resistant. Preliminary feasibility assessment indicates that by replacing some of the ZrH1.6 by ThH2 it will be possible to further improve the plutonium incineration capability of PWRs. Other possibly promising applications of hydride fuel were identified but not evaluated in this work. A number of promising oxide fueled PWR core designs were also found as spin-offs of this study: (1) The optimal oxide fueled PWR core design features smaller fuel rod diameter of D=6.5 mm and a larger pitch-to-diameter ratio of P/D=1.39 than presently practiced by industry 9.5mm and 1.326. This optimal design can provide a 30% increase in the power density and a 24% reduction in the cost of electricity (COE) provided the PWR could be designed to have the coolant pressure drop across the core increased from the reference 29 psia to 60 psia. (2) Using wire wrapped oxide fuel rods in hexagonal fuel assemblies it is possible to design PWR cores to operate at 54% higher power density than the reference PWR design that uses grid spacers and a square lattice, provided 60 psia coolant pressure drop across the core could be accommodated. Uprating existing PWRs to use such cores could result in 40% reduction in the COE. The optimal lattice geometry is D = 8.08 mm and P/D = 1.41. The most notable advantages of wire wraps over grid spacers are their significant lower pressure drop, higher critical heat flux and improved vibrations characteristics.

Greenspan, E

2006-04-30T23:59:59.000Z

278

Free volume distribution of nearly jammed hard sphere packings  

E-Print Network (OSTI)

We calculate the free volume distributions of nearly jammed packings of monodisperse and bidisperse hard sphere configurations. These distributions differ qualitatively from those of the fluid, displaying a power law tail at large free volumes, which constitutes a distinct signature of nearly jammed configurations, persisting for moderate degrees of decompression. We reproduce and explain the observed distribution by considering the pair correlation function within the first coordination shell for jammed hard sphere configurations. We analyze features of the equation of state near jamming, and discuss the significance of observed asphericities of the free volumes to the equation of state.

Moumita Maiti; Srikanth Sastry

2013-09-26T23:59:59.000Z

279

RESEARCH AND DEVELOPMENT OF METAL HYDRIDES. Summary Report for October 1, 1958-September 30, 1960  

DOE Green Energy (OSTI)

A detailed study of the fundamental relations in the zirconium -- hydrogen system was made in order to clarify the many points of dispute and to evolve a complete picture describing all phases of this system. An engineering evaluation was made of means for utillzing the various high cross-section metal hydrides in shielding or control applications. These materials would combine the processes of thermalization and absorption. Consequently, they are of considerable interest for use in shielding or controlling epithermal reactors. (auth)

Beck, R.L.

1960-11-01T23:59:59.000Z

280

Packing microstructure and local density variations of experimental and computational pebble beds  

Science Conference Proceedings (OSTI)

In pebble bed type nuclear reactors the fuel is contained in graphite pebbles, which form a randomly stacked bed with a non-uniform packing density. These variations can influence local coolant flow and power density and are a possible cause of hotspots. To analyse local density variations computational methods are needed that can generate randomly stacked pebble beds with a realistic packing structure on a pebble-to-pebble level. We first compare various properties of the local packing structure of a computed bed with those of an image made using computer aided X-ray tomography, looking at properties in the bulk of the bed and near the wall separately. Especially for the bulk of the bed, properties of the computed bed show good comparison with the scanned bed and with literature, giving confidence our method generates beds with realistic packing microstructure. Results also show the packing structure is different near the wall than in the bulk of the bed, with pebbles near the wall forming ordered layers similar to hexagonal close packing. Next, variations in the local packing density are investigated by comparing probability density functions of the packing fraction of small clusters of pebbles throughout the bed. Especially near the wall large variations in local packing fractions exists, with a higher probability for both clusters of pebbles with low (0.65) packing fraction, which could significantly affect flow rates and, together with higher power densities, could result in hotspots. (authors)

Auwerda, G. J.; Kloosterman, J. L.; Lathouwers, D.; Van Der Hagen, T. H. J. J. [Delft Univ. of Technology, Mekelweg 15, 2629 JB, Delft (Netherlands)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES  

DOE Green Energy (OSTI)

Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

2011-07-14T23:59:59.000Z

282

Systems Modeling, Simulation and Material Operating Requirements for Chemical Hydride Based Hydrogen Storage  

Science Conference Proceedings (OSTI)

Research on ammonia borane (AB, NH3BH3) has shown it to be a promising material for chemical hydride based hydrogen storage. AB was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to 19.6% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. A new systems concept based on augers, ballast tank, hydrogen heat exchanger and H2 burner was designed and implemented in simulation. In this design, the chemical hydride material was assumed to produce H2 on the augers itself, thus minimizing the size of ballast tank and reactor. One dimensional models based on conservation of mass, species and energy were used to predict important state variables such as reactant and product concentrations, temperatures of various components, flow rates, along with pressure, in various components of the storage system. Various subsystem components in the models were coded as C language S-functions and implemented in Matlab/Simulink environment. The control variable AB (or alane) flow rate was determined through a simple expression based on the ballast tank pressure, H2 demand from the fuel cell and hydrogen production from AB (or alane) in the reactor. System simulation results for solid AB, liquid AB and alane for both steady state and transient drive cycle cases indicate the usefulness of the model for further analysis and prototype development.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.

2012-02-01T23:59:59.000Z

283

Method for the prediction of the hydriding thermodynamics of ternary PD-based alloys.  

DOE Green Energy (OSTI)

A method has been developed to calculate the hydriding thermodynamics of ternary Pd-X-Y systems, where X and Y are substitutional alloying elements, by using the properties of the binary Pd-X and Pd-Y systems. Experimental data was collected on the Pd-Rh-Co system to test the validity of this method. Hydrogen pressure-composition isotherms of several binary Pd-Rh and Pd-Co alloys and Pd-Rh-Co ternary alloys were measured to determine the thermodynamics of hydrogen absorption, hydride formation and decomposition, and hydrogen capacity. Good agreement between the calculated and measured values for the ternary Pd-Rh-Co system, in the dilute alloying regime (< 10 at.% total alloying additions), was obtained using our method. Examining literature results on other ternary Pd-X-Y systems checked the universality of this method. Again, the method succeeds in predicting the hydriding thermodynamics for both lattice contracted and lattice expanded alloy systems, Pd-Ni-Rh and Pd-Ag-Y respectively.

Teter, D. F. (David F.); Mauro, M. E. (Michael Ernest)

2001-01-01T23:59:59.000Z

284

Dismantling (H)EV Battery Packs, an Integral Part of Umicore's ...  

Science Conference Proceedings (OSTI)

June 2012, a battery pack dismantling facility was opened in Maxton, NC based on ... Cost, Energy, Emissions, and Resource Assessment of the Production of...

285

Potential use of battery packs from NCAP tested vehicles.  

Science Conference Proceedings (OSTI)

Several large electric vehicle batteries available to the National Highway Traffic Safety Administration are candidates for use in future safety testing programs. The batteries, from vehicles subjected to NCAP crashworthiness testing, are considered potentially damaged due to the nature of testing their associated vehicles have been subjected to. Criteria for safe shipping to Sandia is discussed, as well as condition the batteries must be in to perform testing work. Also discussed are potential tests that could be performed under a variety of conditions. The ultimate value of potential testing performed on these cells will rest on the level of access available to the battery pack, i.e. external access only, access to the on board monitoring system/CAN port or internal electrical access to the battery. Greater access to the battery than external visual and temperature monitoring would likely require input from the battery manufacturer.

Lamb, Joshua; Orendorff, Christopher J.

2013-10-01T23:59:59.000Z

286

Journal of Power Sources 138 (2004) 327339  

E-Print Network (OSTI)

A unique method has been developed to equalize nickel metal hydride (NiMH) battery packs using a new selective equalizer. This equalizer detects batteries either at a very low state of charge (SOC) or at an extremely high SOC. In this system a set of electromechanical relays is connected in a matrix to route boost current to the weaker batteries. The relay switching is controlled by a 32 bit microcontroller, and the boost current is supplied by a boost charger. Once a weak battery is detected, it is scheduled for a specific boost time by a special Round Robin (RR) algorithm. The equalizer was tested on a pack of 12 series connected 12 V 93 ampere hour (Ah) NiMH batteries. Test results show that the equalizer was able to re-balance an artificially unbalanced pack, and the capacity was increased by 27 % within six chargedischarge cycles. Results indicate the number of cycles required to re-balance the pack was significantly reduced by using this technique. 2004 Elsevier B.V. All rights reserved.

unknown authors

2004-01-01T23:59:59.000Z

287

Postirradiation examination of pressure tubes 2954 and 3053: Corrosion, hydriding and fluence measurements  

Science Conference Proceedings (OSTI)

Pressure Tubes 2954 and 3053 were removed from N Reactor in March 1987 for postirradiation examinations (PIE) including hydriding, corrosion, fluence and mechanical property measurements. The results of the corrosion, hydriding, and fluence measurements are the subject of this report. These data will be used to evaluate the trends in corrosion and hydriding behavior which are important to the structural integrity of these tubes. The trend evaluations as well as the mechanical property data are or will be reported elsewhere. Both tubes operated at high power accumulating 101,800 hours of service since reactor startup in 1964. Fabricated by the Harvey Aluminum Company, Tube 2954 was cold drawn to 30% reduction of area as were 86% of the reactor tubes. Tube 3053 was also a Harvey Tube but was cold worked 18% representing 2.5% of the reactor tubes. Corrosion measurements were made from metallographic sections. The inner surface oxide thickness peaks at 2 to 5 ft downstream of the center of the fueled zone. This profile is typical of previous examined N Reactor pressure tubes. The maximum measured oxide thickness on tube 2954 was 64 microns, 17% greater than for tubes removed in 1984. The corrosion product hydrogen that is absorbed by the tube has distribution gradients in the azimuthal, axial, and radial directions. Radical surveys confirmed previous observations that most of the hydrogen is concentrated near the tube ID surfaces. For Tubes 2954 and 3053, 50% to 80% of the hydrogen is found in 20% of the tube wall. The radial as well as the azimuthal gradients are caused by thermal gradients in the tubes, with the hydrogen redistributing to the cooler parts of the tube wall. 6 refs., 50 figs., 2 tabs.

Chastain, S.A.; Trimble, D.J.; Boyd, S.M.

1988-06-01T23:59:59.000Z

288

Metal hydride/chemical heat-pump development project. Phase I. Final report  

DOE Green Energy (OSTI)

The metal hydride/chemical heat pump (MHHP) is a chemical heat pump containing two hydrides for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and/or cooling or temperature upgrading over a wide range of input and ambient temperatures. The system can thus be used with a variety of heat sources including waste heat, solar energy or a fossil fuel. The conceptual design of the MHHP was developed. A national market survey including a study of applications and market sectors was conducted. The technical tasks including conceptual development, thermal and mechanical design, laboratory verification of design and material performance, cost analysis and the detailed design of the Engineering Development Test Unit (EDTU) were performed. As a result of the market study, the temperature upgrade cycle of the MHHP was chosen for development. Operating temperature ranges for the upgrader were selected to be from 70 to 110/sup 0/C (160 to 230/sup 0/F) for the source heat and 140 to 190/sup 0/C (280 to 375/sup 0/F) for the product heat. These ranges are applicable to many processes in industries such as food, textile, paper and pulp, and chemical. The hydride pair well suited for these temperatures is LaNi/sub 5//LaNi/sub 4/ /sub 5/Al/sub 0/ /sub 5/. The EDTU was designed for the upgrade cycle. It is a compact finned tube arrangement enclosed in a pressure vessel. This design incorporates high heat transfer and low thermal mass in a system which maximizes the coefficient of performance (COP). It will be constructed in Phase II. Continuation of this effort is recommended.

Argabright, T.A.

1982-02-01T23:59:59.000Z

289

A new exact method for the two-dimensional bin-packing problem with fixed orientation  

Science Conference Proceedings (OSTI)

We propose a new exact method for the well-known two-dimensional bin-packing problem. It is based on an iterative decomposition of the set of items into two disjoint subsets. We tested the efficiency of our method against benchmarks of the literature. ... Keywords: Branch-and-bound, Cutting and packing, Dual-feasible functions, Lower bounds

FranOis Clautiaux; Jacques Carlier; Aziz Moukrim

2007-05-01T23:59:59.000Z

290

Designing nanostructured heterogeneous catalysts to exploit pulsing in gas-liquid packed bed reactors  

E-Print Network (OSTI)

41 Designing nanostructured heterogeneous catalysts to exploit pulsing in gas-liquid packed bed nanostructured catalysts for gas-liquid reactions, which have a system of macro pores designed to take advantage in volume of gas-liquid packed bed reactors (a.k.a. "trickle" beds) by an order of magnitude or more because

McCready, Mark J.

291

A hybrid genetic algorithm for a variant of two-dimensional packing problem  

Science Conference Proceedings (OSTI)

A variant of two-dimensional packing problem was given in the GECCO'2008 competition. This paper describes the genetic algorithm that produced the best result and thus won the No. 1 prize. As the problem is naturally represented by a two-dimensional ... Keywords: breadth-first search, geographic crossover, hybrid genetic algorithm, local search, packing, two-dimensional

Jin Kim; Byung-Ro Moon

2009-07-01T23:59:59.000Z

292

Molecular Packing Parameter in Bolaamphiphile Solutions: Adjustment of Aggregate Morphology by Modifying the Solution Conditions  

E-Print Network (OSTI)

Molecular Packing Parameter in Bolaamphiphile Solutions: Adjustment of Aggregate Morphology of Chemistry and Molecular Engineering, and College of Life Science, Peking UniVersity, Beijing, 100871, People of molecular packing parameters in a bolaamphiphile solution was tested with experimental results. By modifying

Huang, Jianbin

293

TEAM HEV ARC HITECTURE ENGIN E FU EL TRANS MISSION EN ERGY STOR  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TEAM TEAM HEV ARC HITECTURE ENGIN E FU EL TRANS MISSION EN ERGY STOR AGE MO TOR Michigan Technological University Through-the-road Parallel 2.0-L 4 Cylinder Spark Ignition Reformulated Gasoline 4-speed Automatic COBASYS, Nickel Metal Hydride - 288V 50 kW Solectria AC Induction Transaxle Mississippi State University Through-the-road Parallel 1.9-L GM Direct Injection Turbo Diesel Bio Diesel (B20) GM F40 6-speed Manual Johnson Controls, Nickel Metal Hydride - 330V 45 kW Ballard Integrated Power Transaxle The Ohio State University Through-the-road Parallel 1.9-L GM Direct Injection Turbo Diesel Bio Diesel (B20) Aisin-Warner AF40 6-speed Automatic Transaxle Panasonic, Nickel Metal Hydride - 300V 67 kW Ballard AC Induction Transaxle /10.6 kW Kollmorgen Brushless DC Generator Pennsylvania State

294

Thermodynamic Guidelines for the Prediction of Hydrogen Storage Reactions and Their Application to Destabillzed Hydride Mixtures  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermodynamic guidelines for the prediction of hydrogen Thermodynamic guidelines for the prediction of hydrogen storage reactions and their application to destabilized hydride mixtures Hydrogen Storage & Nanoscale Modeling Group Ford Motor Company Don Siegel dsiegel2@ford.com Phys. Rev. B 76, 134102 (2007) 1 Acknowledgements C. Wolverton V. Ozolins Computation Northwestern UCLA J. Yang A. Sudik Experiments Ford Ford 2 Computational Methodology * Atomistic computer simulations based on quantum mechanics (Density Functional Theory) * First-principles approach: - Only empirical input are crystal structure and fundamental physical constants - VASP code - PAW potentials - PW91 GGA - Temperature-dependent thermodynamic contributions evaluated within harmonic approximation * "Direct method" for construction of dynamical matrix

295

Stability of Satellites in Closely Packed Planetary Systems  

E-Print Network (OSTI)

We perform numerical integrations of four-body (star, planet, planet, satellite) systems to investigate the stability of satellites in planetary Systems with Tightly-packed Inner Planets (STIPs). We find that the majority of closely-spaced stable two-planet systems can stably support satellites across a range of parameter-space which is only slightly decreased compared to that seen for the single-planet case. In particular, circular prograde satellites remain stable out to $\\sim 0.4 R_H$ (where $R_H$ is the Hill Radius) as opposed to $\\sim 0.5 R_H$ in the single-planet case. A similarly small restriction in the stable parameter-space for retrograde satellites is observed, where planetary close approaches in the range 2.5 to 4.5 mutual Hill radii destabilize most satellites orbits only if $a\\sim 0.65 R_H$. In very close planetary pairs (e.g. the 12:11 resonance) the addition of a satellite frequently destabilizes the entire system, causing extreme close-approaches and the loss of satellites over a range of cir...

Payne, Matthew J; Holman, Matthew J; Perets, Hagai B

2013-01-01T23:59:59.000Z

296

PLANET-PLANET SCATTERING LEADS TO TIGHTLY PACKED PLANETARY SYSTEMS  

SciTech Connect

The known extrasolar multiple-planet systems share a surprising dynamical attribute: they cluster just beyond the Hill stability boundary. Here we show that the planet-planet scattering model, which naturally explains the observed exoplanet eccentricity distribution, can reproduce the observed distribution of dynamical configurations. We calculated how each of our scattered systems would appear over an appropriate range of viewing geometries; as Hill stability is weakly dependent on the masses, the mass-inclination degeneracy does not significantly affect our results. We consider a wide range of initial planetary mass distributions and find that some are poor fits to the observed systems. In fact, many of our scattering experiments overproduce systems very close to the stability boundary. The distribution of dynamical configurations of two-planet systems may provide better discrimination between scattering models than the distribution of eccentricity. Our results imply that, at least in their inner regions which are weakly affected by gas or planetesimal disks, planetary systems should be 'packed', with no large gaps between planets.

Raymond, Sean N. [Center for Astrophysics and Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309 (United States); Barnes, Rory [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Veras, Dimitri [Astronomy Department, University of Florida, Gainesville, FL 32111 (United States); Armitage, Philip J. [JILA, University of Colorado, Boulder, CO 80309 (United States); Gorelick, Noel [Google, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043 (United States); Greenberg, Richard [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ (United States)], E-mail: sean.raymond@colorado.edu

2009-05-01T23:59:59.000Z

297

EXPERIMENTAL RESULTS FOR THE ISOTOPIC EXCHANGE OF A 1600 LITER TITANIUM HYDRIDE STORAGE VESSEL  

Science Conference Proceedings (OSTI)

Titanium is used as a low pressure tritium storage material. The absorption/desorption rates and temperature rise during air passivation have been reported previously for a 4400 gram prototype titanium hydride storage vessel (HSV). A desorption limit of roughly 0.25 Q/M was obtained when heating to 700 C which represents a significant residual tritium process vessel inventory. To prepare an HSV for disposal, batchwise isotopic exchange has been proposed to reduce the tritium content to acceptable levels. A prototype HSV was loaded with deuterium and exchanged with protium to determine the effectiveness of a batch-wise isotopic exchange process. A total of seven exchange cycles were performed. Gas samples were taken nominally at the beginning, middle, and end of each desorption cycle. Sample analyses showed the isotopic exchange process does not follow the standard dilution model commonly reported. Samples taken at the start of the desorption process were lower in deuterium (the gas to be removed) than those taken later in the desorption cycle. The results are explained in terms of incomplete mixing of the exchange gas in the low pressure hydride.

Klein, J.

2010-12-14T23:59:59.000Z

298

METHOD FOR PRODUCING ISOTOPIC METHANES FROM LITHIUM CARBONATE AND LITHIUM HYDRIDE  

DOE Patents (OSTI)

A process is descrlbed for the production of methane and for the production of methane containing isotopes of hydrogen and/or carbon. Finely divided lithium hydrlde and litldum carbonate reactants are mixed in intimate contact and subsequently compacted under pressures of from 5000 to 60,000 psl. The compacted lithium hydride and lithium carbenate reactunts are dispised in a gas collecting apparatus. Subsequently, the compact is heated to a temperature in the range 350 to 400 deg C whereupon a solid-solid reaction takes place and gaseous methane is evolved. The evolved methane is contaminated with gaseous hydrogen and a very small amount of CO/sub 2/; however, the desired methane product is separated from sald impurities by well known chemical processes, e.g., condensation in a cold trap. The product methane contalns isotopes of carbon and hydrogen, the Isotopic composition being determined by the carbon isotopes originally present In the lithium carbonate and the hydrogen isotopes originally present in the lithium hydride.

Frazer, J.W.

1959-10-27T23:59:59.000Z

299

REACTION KINETICS AND X-RAY ABSORPTION SPECTROSCOPY STUDIES OF YTTRIUM CONTAINING METAL HYDRIDE ELECTRODES  

DOE Green Energy (OSTI)

This was a study of electrode degradation mechanisms and the reaction kinetics of LaNi{sub 4.7}Sn{sub 0.3}, La{sub (1{minus}x)}, (x = 0.1, 0.2, and 0.3) and La{sub 0.7}Y{sub 0.3}Ni{sub 4.6}Sn{sub 0.3}Co{sub 0.1} metal hydride electrodes. Alloy characterization included x-ray diffraction (XRD), x-ray absorption (XAS), hydrogen absorption in a Sieverts apparatus, and electrochemical cycling of alloy electrodes. The atomic volume of H was determined for two of the alloys. Electrochemical kinetic measurements were made using steady state galvanostatic measurements, galvanodynamic sweep, and electrochemical impedance techniques. XAS was used to examine the degree of corrosion of the alloys with cycling. Alloying with Y decreased the corrosion rate. The results are consistent with corrosion inhibition by a Y containing passive film. The increase in the kinetics of the hydrogen oxidation reaction (HOR) with increasing depth of discharge was much greater on the Y containing alloys. This may be due to the dehydriding of the catalytic species on the surface of the metal hydride particles.

TICIANELLI,E.A.; MUKERJEE,S.; MCBREEN,J.; ADZIC,G.D.; JOHNSON,J.R.; REILLY,J.J.

1998-11-01T23:59:59.000Z

300

A Novel Zr-1Nb Alloy and a New Look at Hydriding  

Science Conference Proceedings (OSTI)

A novel Zr-1Nb has begun development based on a working model that takes into account the hydrogen permeabilities for zirconium and niobium metals. The beta-Nb secondary phase particles (SPPs) in Zr-1Nb are believed to promote more rapid hydrogen dynamics in the alloy in comparison to other zirconium alloys. Furthermore, some hydrogen release is expected at the lower temperatures corresponding to outages when the partial pressure of H2 in the coolant is less. These characteristics lessen the negative synergism between corrosion and hydriding that is otherwise observed in cladding alloys without niobium. In accord with the working model, development of nanoscale precursors was initiated to enhance the performance of existing Zr-1Nb alloys. Their characteristics and properties can be compared to oxide-dispersion strengthened alloys, and material additions have been proposed to zirconium-based LWR cladding to guard further against hydriding and to fix the size of the SPPs for microstructure stability enhancements. A preparative route is being investigated that does not require mechanical alloying, and 10 nanometer molybdenum particles have been prepared which are part of the nanoscale precursors. If successful, the approach has implications for long term dry storage of used fuel and for new routes to nanoferritic and ODS alloys.

Robert D. Mariani; James I. Cole; Assel Aitkaliyeva

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ALUMINUM HYDRIDE, A1H3, AS A HYDROGEN STORAGE COMPOUND.  

DOE Green Energy (OSTI)

Aluminum hydride is a covalent, binary hydride that has been known for more than 60 years and is an attractive medium for on-board automotive hydrogen storage, since it contains 10.1% by wt. hydrogen with a density of 1.48 g/ml. There are at least 7 non-solvated AlH{sub 3} phases, namely {alpha}, {alpha}{prime}, {beta}, {gamma}, {var_epsilon} and {zeta}. The properties of {alpha}-AlH{sub 3}, obtained from the Dow Chemical Co. in 1980, have been previously reported. Here we present a description of the thermodynamic and kinetic properties of freshly prepared {alpha}, {beta} and {gamma} phases of AlH{sub 3}. In all cases the decomposition kinetics are appreciable below 100 C and all will meet the DOE 2010 gravimetric and volumetric vehicular system targets (6 wt% H{sub 2} and 0.045 kg/L). However, further research will be required to develop an efficient and economical process to regenerate AlH{sub 3} from the spent Al powder.

GRAETZ, J.; REILLY, J.; SANDROCK, G.; JOHNSON, J.; ZHOU, W.M.; WEGRZYN, J.

2006-11-27T23:59:59.000Z

302

First-Principles Modeling of Hydrogen Storage in Metal Hydride Systems  

SciTech Connect

The objective of this project is to complement experimental efforts of MHoCE partners by using state-of-the-art theory and modeling to study the structure, thermodynamics, and kinetics of hydrogen storage materials. Specific goals include prediction of the heats of formation and other thermodynamic properties of alloys from first principles methods, identification of new alloys that can be tested experimentally, calculation of surface and energetic properties of nanoparticles, and calculation of kinetics involved with hydrogenation and dehydrogenation processes. Discovery of new metal hydrides with enhanced properties compared with existing materials is a critical need for the Metal Hydride Center of Excellence. New materials discovery can be aided by the use of first principles (ab initio) computational modeling in two ways: (1) The properties, including mechanisms, of existing materials can be better elucidated through a combined modeling/experimental approach. (2) The thermodynamic properties of novel materials that have not been made can, in many cases, be quickly screened with ab initio methods. We have used state-of-the-art computational techniques to explore millions of possible reaction conditions consisting of different element spaces, compositions, and temperatures. We have identified potentially promising single- and multi-step reactions that can be explored experimentally.

J. Karl Johnson

2011-05-20T23:59:59.000Z

303

Hydride transfer made easy in the oxidation of alcohols catalyzed by choline oxidase  

Science Conference Proceedings (OSTI)

Choline oxidase (E.C. 1.1.3.17) catalyzes the two-step, four-electron oxidation of choline to glycine betaine with betaine aldehyde as enzyme-associated intermediate and molecular oxygen as final electron acceptor (Scheme 1). The gem-diol, hydrated species of the aldehyde intermediate of the reaction acts as substrate for aldehyde oxidation, suggesting that the enzyme may use similar strategies for the oxidation of the alcohol substrate and aldehyde intermediate. The determination of the chemical mechanism for alcohol oxidation has emerged from biochemical, mechanistic, mutagenetic, and structural studies. As illustrated in the mechanism of Scheme 2, the alcohol substrate is initially activated in the active site of the enzyme by removal of the hydroxyl proton. The resulting alkoxide intermediate is then stabilized in the enzyme-substrate complex via electrostatic interactions with active site amino acid residues. Alcohol oxidation then occurs quantum mechanically via the transfer of the hydride ion from the activated substrate to the N(5) flavin locus. An essential requisite for this mechanism of alcohol oxidation is the high degree of preorganization of the activated enzyme-substrate complex, which is achieved through an internal equilibrium of the Michaelis complex occurring prior to, and independently from, the subsequent hydride transfer reaction. The experimental evidence that support the mechanism for alcohol oxidation shown in Scheme 2 is briefly summarized in the Results and Discussion section.

Gadda, G.; Orville, A.; Pennati, A.; Francis, K.; Quaye, O.; Yuan, H.; Rungsrisuriyachai, K.; Finnegan, S.; Mijatovic, S.; Nguyen, T.

2008-06-08T23:59:59.000Z

304

THE EFFECT OF 3HE ON LOW PRESSURE HYDRIDE ABSORPTION MEASUREMENTS WITH TRITIUM  

DOE Green Energy (OSTI)

Absorption isotherm data exists for a wide variety of hydrogen-metal systems. When working with high purity gases, appropriately sized equipment, and hydrides with equilibrium pressures above several hundred Pa, data collection is relatively straightforward. Special consideration must be given to experiments involving low equilibrium pressure hydrides, as even sub-ppm levels of gas impurities can generate partial pressures many times greater than the equilibrium pressures to be measured. Tritium absorption experiments are further complicated by the continuous generation of helium-3. The time required to transfer and absorb a known quantity of tritium onto a sample ultimately limits the minimum pressure range that can be studied using the standard technique. Equations are presented which show the pressure of helium-3 in a sample cell based on the amount of tritium to be absorbed, the sample cell volume and temperature, and the decay time of tritium. Sample calculations for zirconium show that at 300 C, the estimated helium-3 pressure in the cell will be equal to the hydrogen absorption pressure after only milliseconds of tritium decay. An alternate method is presented that permits the collection of equilibrium data at pressures orders of magnitude lower than possible using a direct approach.

Staack, G.; Klein, J.

2011-01-20T23:59:59.000Z

305

Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.  

DOE Green Energy (OSTI)

Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

2011-09-01T23:59:59.000Z

306

Mechanical Behavior Studies of Depleted Uranium in the Presence of Hydrides  

DOE Green Energy (OSTI)

This project addresses critical issues related to aging in the presence of hydrides (UH{sub 3}) in DU and the subsequent effect on mechanical behavior. Rolled DU specimens with three different hydrogen concentrations and the as-rolled condition were studied. The texture measurements indicate that the hydrogen charging is affecting the initial as-rolled DU microstructure/texture. The macroscopic mechanical behavior suggests the existence of a threshold between the 0 wpmm H and 0.3 wppm H conditions. A VPSC simulation of the macroscopic strain-stress behavior, when taking into account only a texture effect, shows no agreement with the experiment. This suggests that the macroscopic mechanical behavior observed is indeed due to the presence of hydrogen/hydrides in the DU bulk. From the lattice strain variation it can be concluded that the hydrogen is affecting the magnitude and/or the nature of CRSS. The metallography indicates the specimens that underwent the hydrogen charging process, developed large grains and twinning, which were enhanced by the presence of hydrogen. Further studies using electron microscopy and modeling will be conducted to learn about the deformation mechanisms responsible for the observed behavior.

Garlea, E.; Morrell, J. S.; Bridges, R. L.; Powell, G. L.; Brown, d. W.; Sisneros, T. A.; Tome, C. N.; Vogel, S. C.

2011-02-14T23:59:59.000Z

307

Commercialization | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercialization Commercialization Commercialization See an example of these steps in the commercialization process of Nickel Metal Hydride Batteries. See an example of these steps in the commercialization process of Nickel Metal Hydride Batteries. Commercialization is the process by which technologies and innovations developed in the lab make their way to market. By licensing patents or using Energy Department facilities, researchers from the private sector and academia are able to take advantage of federal investments into basic science research, while researchers are able to ensure that their discoveries have a life beyond the lab. The Energy Department also helps entrepreneurs, small business owners and

308

Breaker concentrations required to improve the permeability of proppant packs damaged by concentrated linear and borate-crosslinked fracturing fluids  

Science Conference Proceedings (OSTI)

This paper reports on the concentrations of an oxidative breaker required to reduce significantly the proppant-pack permeability damage caused by aqueous hydraulic fracturing fluids. Long-term, proppant-pack permeability testing was used to evaluate linear and borate-crosslinked gels. Results indicate that increasing the breaker concentration can reduce proppant-pack permeability damage very effectively.

Brannon, H. (BJ Services (United States)); Pulsinelli, R.J. (Dowell Schlumberger, Tulsa, OK (United States))

1992-11-01T23:59:59.000Z

309

Fast synchrotron X-ray tomography study of the rod packing structures  

SciTech Connect

We present a fast synchrotron X-ray tomography study of the packing structures of rods under tapping. Utilizing the high flux of the X-rays generated from the third-generation synchrotron source, we can complete a tomography scan within several seconds, after which the three-dimensional (3D) packing structure can be obtained for the subsequent structural analysis. Due to the high-energy nature of the X-ray beam, special image processing steps including image phase-retrieval has been implemented. Overall, this study suggests the possibility of acquiring statistically significant static packing structures within a reasonable time scale using high-intensity X-ray sources.

Zhang Xiaodan; Xia Chengjie; Sun Haohua; Wang Yujie [Department of Physics, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)

2013-06-18T23:59:59.000Z

310

Review of Uranium Hydriding and Dehydriding Rate Models in GOTH_SNF for Spent Fuel MCO Calculations  

DOE Green Energy (OSTI)

The present report is one of a series of three. The series provides an independent technical review of certain aspects of the GOTH_SNF code that is used for accident analysis of the multicanister overpack (MCO) that is proposed for permanent storage of spent nuclear fuel in the planned repository at Yucca Mountain, Nevada. The work documented in the present report and its two companions was done under the auspices of the National Spent Nuclear Fuel Program. The other reports in the series are DOE/SNF/REP-087 and DOE/SNF/REP-088. This report analyzes the model for uranium hydriding and dissociation of the hydride that was documented in the SNF report titled MCO Work Book GOTH_SNF Input Data.1 Reference 1 used a single expression from a model by Bloch and Mintz for both the uranium hydriding and dehydriding reactions. This report compares the results of the GOTH_SNF expression for both phenomena with those from the models proposed by J. B. Condon and further developed by Condon and J. R. Kirkpatrick. The expression for the uranium hydriding rate used in GOTH_SNF (from the model of Bloch and Mintz) gives consistently lower values than those from the models of Condon and Kirkpatrick. This is true for all hydrogen pressures and for all temperatures. For a hydrogen pressure of 1 atm, the hydriding rates given by the models of Condon and Kirkpatrick are zero by the time the temperature reaches 400C. That is, the term representing the dehydriding reaction has become large enough to overwhelm the term representing the hydriding reaction. The same is true for the expression used in GOTH_SNF. For lower hydrogen pressures, the hydriding rates reach zero at even lower temperatures for the Bloch and Mintz model and also for the Condon and Kirkpatrick models. Uranium dehydriding rates can be calculated for temperatures as high as 2,000C. The dehydriding rates from GOTH_SNF contain an assumption that there is a 0.22 psia hydrogen pressure in the atmosphere surrounding the hydride. For temperatures >~700C, the expression from GOTH_SNF (the model of Bloch and Mintz) gives higher dehydriding rates than that from Condon. However, in calculations of MCOs using GOTH_SNF, the dehydriding is complete by ~400C so that rates for temperatures higher than that are not relevant. In the temperature range 275400C, the dehydriding rate from the Condon model is much higher than that from GOTH_SNF. The practical consequences of the differences in hydriding and dehydriding rates are not obvious. A way to evaluate the consequences is to repeat an important MCO calculation on GOTH_SNF using hydriding and dehydriding rates that have been artificially modified to be closer to those given by the expressions of Condon and Kirkpatrick and see if the conclusions about the safety of the MCO are changed.

John R. Kirkpatrick; Chris A. Dahl

2003-09-01T23:59:59.000Z

311

Development of Regenerable High Capacity Boron Nitrogen Hydrides as Hydrogen Storage Materials  

DOE Green Energy (OSTI)

The objective of this three-phase project is to develop synthesis and hydrogen extraction processes for nitrogen/boron hydride compounds that will permit exploitation of the high hydrogen content of these materials. The primary compound of interest in this project is ammonia-borane (NH{sub 3}BH{sub 3}), a white solid, stable at ambient conditions, containing 19.6% of its weight as hydrogen. With a low-pressure on-board storage and an efficient heating system to release hydrogen, ammonia-borane has a potential to meet DOE's year 2015 specific energy and energy density targets. If the ammonia-borane synthesis process could use the ammonia-borane decomposition products as the starting raw material, an efficient recycle loop could be set up for converting the decomposition products back into the starting boron-nitrogen hydride. This project is addressing two key challenges facing the exploitation of the boron/nitrogen hydrides (ammonia-borane), as hydrogen storage material: (1) Development of a simple, efficient, and controllable system for extracting most of the available hydrogen, realizing the high hydrogen density on a system weight/volume basis, and (2) Development of a large-capacity, inexpensive, ammonia-borane regeneration process starting from its decomposition products (BNHx) for recycle. During Phase I of the program both catalytic and non-catalytic decomposition of ammonia borane are being investigated to determine optimum decomposition conditions in terms of temperature for decomposition, rate of hydrogen release, purity of hydrogen produced, thermal efficiency of decomposition, and regenerability of the decomposition products. The non-catalytic studies provide a base-line performance to evaluate catalytic decomposition. Utilization of solid phase catalysts mixed with ammonia-borane was explored for its potential to lower the decomposition temperature, to increase the rate of hydrogen release at a given temperature, to lead to decomposition products amenable for regeneration, and direct catalytic hydrogenation of the decomposition products. Two different approaches of heating ammonia-borane are being investigated: (a) 'heat to material approach' in which a fixed compartmentalized ammonia-borane is heated by a carefully controlled heating pattern, and (b) 'material to heat approach' in which a small amount of ammonia-borane is dispensed at a time in a fixed hot zone. All stages of AB decomposition are exothermic which should allow the small 'hot zone' used in the second approach for heating to be self-sustaining. During the past year hydrogen release efforts focused on the second approach determining the amount of hydrogen released, kinetics of hydrogen release, and the amounts of impurities released as a function of AB decomposition temperature in the 'hot zone.'

Damle, A.

2010-02-03T23:59:59.000Z

312

Designing Safe Lithium-Ion Battery Packs Using Thermal Abuse Models (Presentation)  

DOE Green Energy (OSTI)

NREL and NASA developed a thermal-electrical model that resolves PTC and cell behavior under external shorting, now being used to evaluate safety margins of battery packs for spacesuit applications.

Pesaran, A. A.; Kim, G. H.; Smith, K.; Darcy, E.

2008-12-01T23:59:59.000Z

313

Mesoscale Boundary Layer and Heat Flux Variations over Pack IceCovered Lake Erie  

Science Conference Proceedings (OSTI)

The development of extensive pack ice fields on the Great Lakes significantly influences lake-effect storms and local airmass modification, as well as the regional hydrologic cycle and lake water levels. The evolution of the ice fields and their ...

Mathieu R. Gerbush; David A. R. Kristovich; Neil F. Laird

2008-02-01T23:59:59.000Z

314

Electrically recharged battery employing a packed/spouted bed metal particle electrode  

SciTech Connect

A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged.

Siu, Stanley C. (Alameda, CA); Evans, James W. (Piedmont, CA); Salas-Morales, Juan (Berkeley, CA)

1995-01-01T23:59:59.000Z

315

Olive Oil: Chemistry and Technology, 2nd EditionChapter 11 Storage & Packing  

Science Conference Proceedings (OSTI)

Olive Oil: Chemistry and Technology, 2nd Edition Chapter 11 Storage & Packing Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press Downloadable pdf...

316

Distillation: Energy Savings and Other Benefits From the Use of High Efficiency Packings  

E-Print Network (OSTI)

A great deal of attention has been focused lately on the use of high-efficiency packings for distillation applications. This paper discusses benefits that can be derived from the use of these devices. In particular, the reduction in energy requirements for a given separation is addressed for both new and retrofit applications. Pressure loss and product decomposition are also considered, and the basis for an alternative analysis is established. An example is shown in which an existing distillation tray column is retrofitted with a high-efficiency packing. The process advantages achieved, including energy savings, are discussed, as well as the factors governing the selection of the packing. The current limitations on design models for high-efficiency packings with respect to mass transfer efficiency, pressure drop, and capacity in distillation are mentioned briefly. Finally, the applications of these devices to alternative technologies such as liquid-liquid extraction are discussed.

Bravo, J. L.; Fair, J. R.; Humphrey, J. L.

1985-05-01T23:59:59.000Z

317

X-RAY ABSORPTION SPECTROSCOPY OF TRANSITION METAL-MAGNESIUM HYDRIDE FILMS  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectroscopy of Transition Metal-Magnesium Spectroscopy of Transition Metal-Magnesium Hydride Thin Films T. J. Richardson a, *, B. Farangis a , J. L. Slack a , P. Nachimuthu b , R. Pereira b , N. Tamura b , and M. Rubin a a Environmental Energy Technologies Division, b Advanced Light Source, Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, California 94720, USA *Corresponding author, E-mail address: tjrichardson@lbl.gov Abstract Mixed metal thin films containing magnesium and a first-row transition element exhibit very large changes in both reflectance and transmittance on exposure to hydrogen gas. Changes in electronic structure and coordination of the magnesium and transition metal atoms during hydrogen absorption were studied using dynamic in situ transmission mode X-ray absorption

318

Raman Spectroscopy of Lithium Hydride Corrosion: Selection of an Appropriate Excitation Wavelength to Minimize Fluorescence  

DOE Green Energy (OSTI)

The recent interest in a hydrogen-based fuel economy has renewed research into metal hydride chemistry. Many of these compounds react readily with water to release hydrogen gas and form a caustic. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT) has been used to study the hydrolysis reaction. The LiOH stretch appears at 3670 cm{sup -1}. Raman spectroscopy is a complementary technique that employs monochromatic excitation (laser) allowing access to the low energy region of the vibrational spectrum (<600 cm{sup -1}). Weak scattering and fluorescence typically prevent Raman from being used for many compounds. The role of Li{sub 2}O in the moisture reaction has not been fully studied for LiH. Li{sub 2}O can be observed by Raman while being hidden in the Infrared spectrum.

Stowe, A. C.; Smyrl, N. R.

2011-05-26T23:59:59.000Z

319

LaNi{sub 5}-based metal hydride electrode in Ni-MH rechargeable cells  

DOE Patents (OSTI)

An at least ternary metal alloy of the formula AB{sub (Z-Y)}X{sub (Y)} is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB{sub 5} alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption. 16 figs.

Bugga, R.V.; Fultz, B.; Bowman, R.; Surampudi, S.R.; Witham, C.K.; Hightower, A.

1999-03-30T23:59:59.000Z

320

Magnetic properties and crystal structure of RENiA1 and UniA1 hydrides.  

DOE Green Energy (OSTI)

RENiAl (RE = rare-earth metal) and UNiAl compounds crystallizing in the hexagonal ZrNiAl-type structure (space group P{bar 6}2m) can absorb up to 2 and 3 hydrogen (deuterium) atoms per formula unit, respectively. Hydrogenation leads to a notable lattice expansion and modification of magnetic properties. However, the impact of hydrogenation on magnetism is the opposite for 4f- and 5f-materials: TN(T{sub c})is lowered in the case of rare-earth hydrides, while for UNiAlH(D){sub x} it increases by an order of magnitude. Here we present results of magnetic and structure studies performed of these compounds, focusing on the correlation between magnetic and structural variations and discussing possible reasons of the striking difference in effect of hydrogenation on rare-earth and actinide intermetallics.

Bordallo, H. N.; Drulis, H.; Havela, L.; Iwasieczko, W.; Kolomiets, A. V.; Nakotte, H.; Refaja, D.; Yartys, V. A.

1999-08-11T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hydrogen storage via metal hydrides for utility and automotive energy storage applications. [HCl electrolysis for H/sub 2/--Cl/sub 2/ fuel cells  

DOE Green Energy (OSTI)

Brookhaven National Laboratory is currently supported by ERDA to develop the technology and techniques for storing hydrogen via metal hydrides. Hydrogen is able to react with a wide variety of metal and metal alloy materials to form hydride compounds of hydrogen and metals. These compounds differ in stability--some are relatively unstable and can be readily formed and decomposed at low temperatures. The use of these systems for hydrogen storage involves the design of heat exchanger and mass transfer systems, i.e., removal of heat during the charging reaction and addition of heat during the discharge reaction. The most notable example of a metal hydride material is iron titanium which shows promise of being economical for a number of near term hydrogen storage applications. Recent work and progress on the development of metal hydrides for hydrogen storage connected with utility energy storage applications and natural gas supplementation are discussed and electric-to-electric storage system is described in some detail. A system of energy storage involving the electrolysis of hydrochloric acid is described which would utilize metal hydrides to store the hydrogen. In addition, the use of metal hydrides for hydrogen storage in automotive systems is described.

Salzano, F J; Braun, C; Beaufrere, A; Srinivasan, S; Strickland, G; Reilly, J J; Waide, C

1976-08-01T23:59:59.000Z

322

Materials Go/No-Go Decisions Made Within the Department of Energy Metal Hydride Center of Excellence  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Go/No-Go Decisions Made Within Materials Go/No-Go Decisions Made Within the Department of Energy Metal Hydride Center of Excellence (MHCoE) In fulfillment of the end of Fiscal Year 2007 Project Milestone on Materials Down-selection Lennie Klebanoff, Director Sandia National Laboratories Livermore, CA 94551 September/October 2007 1 Acknowledgements The author wishes to acknowledge the contributions of all Principal Investigators within the Metal Hydride Center of Excellence (MHCoE) to the work summarized herein. Their names and affiliations are listed below. Especially significant contributions to this document were made by Dr. Ewa Ronnebro (SNL), Dr. John Vajo (HRL), Prof. Zak Fang (U. Utah), Dr. Robert Bowman Jr. (JPL), Prof. David Sholl (CMU) and Prof. Craig Jensen (U. Hawaii). The author thanks Dr.

323

URANIUM METAL POWDER PRODUCTION, PARTICLE DISTRIBUTION ANALYSIS, AND REACTION RATE STUDIES OF A HYDRIDE-DEHYDRIDE PROCESS  

E-Print Network (OSTI)

Work was done to study a hydride-dehydride method for producing uranium metal powder. Particle distribution analysis was conducted using digital microscopy and grayscale image analysis software. The particle size was found to be predominantly in the 40 ?m range, which agreed with previous work. The effects of temperature, pressure, and time on the reaction fraction of powder were measured by taking experimental data. The optimum hydride temperature for the system was found to be 233.4C. Higher gas pressures resulted in higher reaction fractions, over the range studied. For the sample parameters studied, a time of 371 minutes was calculated to achieve complete powderization. System design parameters for commercialization are proposed.

Sames, William

2011-05-01T23:59:59.000Z

324

Erroneous Wave Functions of Ciuchi et al for Collective Modes in Neutron Production on Metallic Hydride Cathodes  

E-Print Network (OSTI)

There is a recent comment (Ciuchi et al., 2012) concerning the theory of collective many body effects on the neutron production rates in a chemical battery cathode. Ciuchi et al employ an inverse beta decay expression that contains a two body amplitude. Only one electron and one proton may exist in the Ciuchi et al model initial state wave function. A flaw in their reasoning is that one cannot in reality describe collective many body correlations with only a two particle wave function. One needs very many particles to describe collective effects. In the model wave functions of Ciuchi et al there are no metallic hydrides, there are no cathodes and there are no chemical batteries. Employing a wave function with only one electron and one proton is inadequate for describing collective metallic hydride surface quantum plasma physics in cathodes accurately.

A. Widom; Y. N. Srivastava; L. Larsen

2012-10-17T23:59:59.000Z

325

The Scaleup of Structured Packing from Distillation Pilot Plant Testing to Commercial Application  

E-Print Network (OSTI)

Structured packing is being utilized more and more in the process industry for increased efficiency, greater capacity, and energy savings in distillation columns. Pilot plant testing of the actual chemical system using commercially available structured packing is invaluable, but years of experience in pilot plant testing have shown that scaleup to successful commercial designs is a complicated process. In this paper an actual case history is cited as an example of the problems and benefits of conducting pilot plant tests which set the commercial design bases for a distillation train. The actual pilot plant testing involved a different structured packing type and blocked out operations to simulate a large number of theoretical stages. The pilot plant results verified the thermodynamic data to a high confidence level. As a result, the initial commercial installation of structured packing was started immediately. The actual installation and the startup are covered with a discussion of the energy savings and quality improvement which were obtained by replacing trays with the packing. Another case of retrofit testing in the new Koch Development Pilot Plant is discussed indicating other areas for attention to detail.

Berven, O. J.; Ulowetz, M. A.

1986-06-01T23:59:59.000Z

326

Design of a novel rotary compact power pack for the series hybrid electric vehicle. Design and simulation of a compact power pack consisting of a novel rotary engine and outer rotor induction machine for the series hybrid electric vehicle powertrain.  

E-Print Network (OSTI)

??Hybrid electric vehicles significantly reduce exhaust emissions and increase fuel economy. Power packs are the most fundamental components in a series powertrain configuration of a (more)

Amirian, Hossein

2010-01-01T23:59:59.000Z

327

Adapting compilation techniques to enhance the packing of instructions into registers  

E-Print Network (OSTI)

The architectural design of embedded systems is becoming increasingly idiosyncratic to meet varying constraints regarding energy consumption, code size, and execution time. Traditional compiler optimizations are often tuned for improving general architectural constraints, yet these heuristics may not be as beneficial to less conventional designs. Instruction packing is a recently developed compiler/architectural approach for reducing energy consumption, code size, and execution time by placing the frequently occurring instructions into an Instruction Register File (IRF). Multiple IRF instructions are made accessible via special packed instruction formats. This paper presents the design and analysis of a compilation framework and its associated optimizations for improving the efficiency of instruction packing. We show that several new heuristics can be developed for IRF promotion, instruction selection, register re-assignment and instruction scheduling, leading to significant reductions in energy consumption, code size, and/or execution time when compared to results using a standard optimizing compiler targeting the IRF.

Stephen Hines; David Whalley; Gary Tyson

2006-01-01T23:59:59.000Z

328

Small scale ethanol production demonstration: comparison of packed versus plate rectifying column  

DOE Green Energy (OSTI)

The Johnson Environmental and Energy Center with assistance from the Madison County Farm Bureau Association received a grant in 1980 from the US Department of Energy to design, fabricate, and evaluate a small scale continuous ethanol plant. In 1981, the Center received a second DOE grant to compare the economics of replacing the plate rectifying column in the initial unit with a packed rectifying column. The results of the study indicate that the distillation unit with the packed rectifying column is capable of producing 14 gallons per hour of 170 proof ethanol. The energy ratio for distillation was a positive 2:1. Cost of the packed column was considerably less than the plate column. 1 reference, 19 figures, 9 tables.

Adcock, II, L E; Eley, M H; Schroer, B J

1982-07-01T23:59:59.000Z

329

Pull-Chain "Polymer" Solves Puzzle of Complex Molecular Packing |  

NLE Websites -- All DOE Office Websites (Extended Search)

Discovering New Talents for Diamond Discovering New Talents for Diamond Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Pull-Chain "Polymer" Solves Puzzle of Complex Molecular Packing MARCH 4, 2010 Bookmark and Share Partial three-dimensional reconstruction, from x-ray tomographic data, of the packing of 2.1-mm ball chains, projected onto a plane. When tightly packed, the chains form nearly circular rigid loops, like the one in the lower right of the image. This behavior may form the basis of a model for better predictions of the rigidity of polymers. (Image courtesy of Ling-Nan Zou and Mark L. Rivers, The University of Chicago) Sometimes the simplest things hold the key to understanding complex

330

Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines.  

E-Print Network (OSTI)

??A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption (more)

Cho, Yeunwoo, 1973-

2004-01-01T23:59:59.000Z

331

Rechargeable Batteries: Basics, Pitfalls, and Safe Recharging Practices  

E-Print Network (OSTI)

Abstract: This overview of charging methods and current battery technologies gives you a better understanding of the batteries used in portable devices. Nickel-cadmium (NiCd), nickel-metal-hydride (NiMH), and lithium-ion (Li+) battery chemistries are discussed. The article also describes a product that protects single-cell lithium-ion and lithium-polymer batteries.

unknown authors

2005-01-01T23:59:59.000Z

332

ORNL/TM-2001-266 Environmental Evaluation of New  

E-Print Network (OSTI)

and the new batteries--the nickel metal hydride in the P2000 and Precept, and the lithium ion battery production for the lithium ion battery will generate releases of lithium, a release type that does not occur employs a lithium ion (LiIon) battery. The mass of the 3XVs' batteries has been subtracted from the "other

333

Electronic Materials Letters, Vol. 8, No. 2 (2012), pp. 91-105 DOI: 10.1007/s13391-012-2058-2  

E-Print Network (OSTI)

can be observed. New High-Capacity Lithium-ion Battery Material · Argonne has developed new cathode materials for lithium-ion batteries with an energy storage capacity of >250 mAh/g (compared with 150 m and evaluation capabilities include: · Evaluation of advanced lithium- polymer, lithium-ion, nickel-metal hydride

Park, Byungwoo

334

Self-Optimization Energy Management Considering Stochastic Influences for a Hybrid  

E-Print Network (OSTI)

electric cars typically use lithium-ion (Li-ion) or nickel-metal hydride (NiMH) bat- teries as sole energy. A further important field for electric vehicles are secondary cars used for commuting or short distance of an Electric Road Vehicle Christoph Romaus, Dominik Wimmelbücker, Karl Stephan Stille, Joachim Böcker Abstract--Electric

Noé, Reinhold

335

Optimal Energy Management for a Hybrid Energy Storage System for Electric Vehicles Based on  

E-Print Network (OSTI)

}@lea.uni-paderborn.de Abstract--For electric and hybrid electric cars, commonly nickel-metal hydride and lithium-ion batteries. The BMW Mini-E is an all electric powered car field-tested in the United States, United KingdomOptimal Energy Management for a Hybrid Energy Storage System for Electric Vehicles Based

Noé, Reinhold

336

Energizing the batteries for electric cars  

SciTech Connect

This article reports of the nickel-metal-hydride battery and its ability to compete with the lead-acid battery in electric-powered vehicles. The topics of the article include development of the battery, the impetus for development in California environmental law, battery performance, packaging for the battery's hazardous materials, and the solid electrolyte battery.

O' Connor, L.

1993-07-01T23:59:59.000Z

337

Mathematical Modeling of Current-Interrupt and Pulse Operation of Valve-Regulated Lead Acid Cells  

E-Print Network (OSTI)

are resolved. Of the two candidate battery systems, the low cost and ease of operation of the VRLA battery the last decade, advanced batteries have re- ceived much attention. At present, only the valve-regulated lead acid VRLA and the nickel-metal hydride Ni-MH battery are being actively considered

338

Catalysis Today 165 (2011) 29 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

for competitive (Hybrid) Electric Vehicles (H)EVs, where existing nickel metal hydride (used in the Toyota Prius n f o Article history: Received 30 September 2010 Received in revised form 3 December 2010 Accepted needed. The main challenges facing the Li­air battery is the limited electrical efficiency resulting from

Thygesen, Kristian

339

1999 Toyota RAV 4 EV Performance Characterization: Panasonic NiMH Battery -- Conductive Charging  

Science Conference Proceedings (OSTI)

This report characterizes the performance of the 1998 and 1999 Toyota RAV 4 conductively-charged electric vehicle models equipped with Panasonic Nickel Metal Hydride (NiMH) batteries. The tests performed were: weight certification, range, state of charge meter evaluation, sound level, acceleration, maximum speed, braking, power quality evaluation, and charger performance.

1999-12-16T23:59:59.000Z

340

1999 Toyota RAV 4 EV Performance Characterization: Panasonic NiMH Battery -- Inductive Charging  

Science Conference Proceedings (OSTI)

This report characterizes the performance of a 1999 Toyota RAV 4 inductively-charged electric vehicle equipped with Panasonic Nickel Metal Hydride (NiMH) batteries. The tests performed were weight certification, range, vehicle performance, sound level tests, power quality evaluation, state of charge meter evaluation, and charger performance.

1999-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electronic band structure and optical properties of the cubic, Sc, Y and La hydride systems  

DOE Green Energy (OSTI)

Electronic band structure calculations are used to interpret the optical spectra of the cubic Sc, Y and La hydride systems. Self-consistent band calculations of ScH/sub 2/ and YH/sub 2/ were carried out. The respective joint densities of states are computed and compared to the dielectric functions determined from the optical measurements. Additional calculations were performed in which the Fermi level or band gap energies are rigidly shifted by a small energy increment. These calculations are then used to simulate the derivative structure in thermomodulation spectra and relate the origin of experimental interband features to the calculated energy bands. While good systematic agreement is obtained for several spectral features, the origin of low-energy interband transitions in YH/sub 2/ cannot be explained by these calculated bands. A lattice-size-dependent premature occupation of octahedral sites by hydrogen atoms in the fcc metal lattice is suggested to account for this discrepancy. Various non-self-consistent calculations are used to examine the effect of such a premature occupation. Measurements of the optical absorptivity of LaH/sub x/ with 1.6 < x < 2.9 are presented which, as expected, indicate a more premature occupation of the octahedral sites in the larger LaH/sub 2/ lattice. These experimental results also suggest that, in contrast to recent calculations, LaH/sub 3/ is a small-band-gap semiconductor.

Peterman, D.J.

1980-01-01T23:59:59.000Z

342

OXIDATION, HYDRIDING, AND AQUEOUS CORROSION OF U$sub 3$Si ALLOYS.  

DOE Green Energy (OSTI)

Specimens of U{sub 3}Si were heated in air and in hydrogen at temperatures up to 550 degC and the products of reaction studied. The phases observed in these tests are compared with those which form in U{sub 3}Si samples corroded in high temperature water. The aqueous corrosion of U{sub 3}Si is mainly an oxidation reaction although limited hydriding may also occur as a secondary reaction. The oxidation of U{sub 3}Si either in air or water appears to be a multi-step process in which most of the phases of the uranium-silicon system form. Due to the kinetics of formation and stability of the phases at various temperatures all are not observed in an individual test. Although molecular hydrogen will not react with U{sub 3)Si directly, in some cases it will react with free uranium to form UH{sub 3}. If the UH{sub 3} is subsequently oxidized, nascent hydrogen will be released which will react with the U{sub 3}Si.

Feraday, M.A.

1971-11-15T23:59:59.000Z

343

Composition and cycle life of multicomponent AB{sub 5} hydride electrodes  

DOE Green Energy (OSTI)

Multicomponent AB{sub 5} hydrides are attractive replacements for the cadmium electrode in nickel -- cadmium batteries. The archetype compound of the AB{sub 5} alloy class is LaNi{sub 5}, but in a typical battery electrode mischmetal is substituted for La and Ni is substituted in part by variety of metals. While the effects of Ni substitution have been widely studied, relatively little effort has focused on the effect of La substitution. This paper deals with the effect on cycle life due to the increasing presence of Ce in the alloy series La{sub 1-x}Ce{sub x}Ni{sub 3.55}Co{sub .75}Mn{sub .4}Al{sub .3}. Alloys were characterized by the determination of pressure-composition relationships, molar volume of H and electrode cycle life. The effects due to lattice expansion are taken into account. It was concluded that the rate of loss of electrochemical capacity per charge/discharge cycle was significantly decreased due to the presence of Ce.

Adzic, G.D.; Johnson, J.R.; Reilly, J.J.; McBreen, J.; Mukerjee, S. [Brookhaven National Lab., Upton, NY (United States); Kumar, M.P.S.; Zhang, W.; Srinivasan, S. [Texas A and M Univ., College Station, TX (United States). Center for Electrochemical Systems and Hydrogen Research

1994-11-01T23:59:59.000Z

344

Methodology of Materials Discovery in Complex Metal Hydrides Using Experimental and Computational Tools  

Science Conference Proceedings (OSTI)

We present a review of the experimental and theoretical methods used in the discovery of new metal-hydrogen materials systems for hydrogen storage applications. Rather than a comprehensive review of all new materials and methods used in the metal hydride community, we focus on a specific subset of successful methods utilizing theoretical crystal structure prediction methods, computational approaches for screening large numbers of compound classes, and medium-throughput experimental methods for the preparation of such materials. Monte Carlo techniques paired with a simplified empirical Hamiltonian provide crystal structure candidates that are refined using Density Functional Theory. First-principle methods using high-quality structural candidates are further screened for an estimate of reaction energetics, decomposition enthalpies, and determination of reaction pathways. Experimental synthesis utilizes a compacted-pellet sintering technique under high-pressure hydrogen at elevated temperatures. Crystal structure determination follows from a combination of Rietveld refinements of diffraction patterns and first-principles computation of total energies and dynamical stability of competing structures. The methods presented within are general and applicable to a wide class of materials for energy storage.

Majzoub, Eric H.; Ronnebro, Ewa

2012-02-22T23:59:59.000Z

345

Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications  

Science Conference Proceedings (OSTI)

A fixed bed reactor was designed, modeled and simulated for hydrogen storage on-board the vehicle for PEM fuel cell applications. Ammonia Borane (AB) was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to {approx}16% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. The design evaluated consisted of a tank with 8 thermally isolated sections in which H2 flows freely between sections to provide ballast. Heating elements are used to initiate reactions in each section when pressure drops below a specified level in the tank. Reactor models in Excel and COMSOL were developed to demonstrate the proof-of-concept, which was then used to develop systems models in Matlab/Simulink. Experiments and drive cycle simulations showed that the storage system meets thirteen 2010 DOE targets in entirety and the remaining four at greater than 60% of the target.

Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; Holladay, Jamelyn D.

2011-10-05T23:59:59.000Z

346

Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods  

Science Conference Proceedings (OSTI)

UOP LLC, a Honeywell Company, Ford Motor Company, and Striatus, Inc., collaborated with Professor Craig Jensen of the University of Hawaii and Professor Vidvuds Ozolins of University of California, Los Angeles on a multi-year cost-shared program to discover novel complex metal hydrides for hydrogen storage. This innovative program combined sophisticated molecular modeling with high throughput combinatorial experiments to maximize the probability of identifying commercially relevant, economical hydrogen storage materials with broad application. A set of tools was developed to pursue the medium throughput (MT) and high throughput (HT) combinatorial exploratory investigation of novel complex metal hydrides for hydrogen storage. The assay programs consisted of monitoring hydrogen evolution as a function of temperature. This project also incorporated theoretical methods to help select candidate materials families for testing. The Virtual High Throughput Screening served as a virtual laboratory, calculating structures and their properties. First Principles calculations were applied to various systems to examine hydrogen storage reaction pathways and the associated thermodynamics. The experimental program began with the validation of the MT assay tool with NaAlH4/0.02 mole Ti, the state of the art hydrogen storage system given by decomposition of sodium alanate to sodium hydride, aluminum metal, and hydrogen. Once certified, a combinatorial 21-point study of the NaAlH4 ?? LiAlH4 ??Mg(AlH4)2 phase diagram was investigated with the MT assay. Stability proved to be a problem as many of the materials decomposed during synthesis, altering the expected assay results. This resulted in repeating the entire experiment with a mild milling approach, which only temporarily increased capacity. NaAlH4 was the best performer in both studies and no new mixed alanates were observed, a result consistent with the VHTS. Powder XRD suggested that the reverse reaction, the regeneration of the alanate from alkali hydride, Al and hydrogen, was hampering reversibility. The reverse reaction was then studied for the same phase diagram, starting with LiH, NaH, and MgH2, and Al. The study was extended to phase diagrams including KH and CaH2 as well. The observed hydrogen storage capacity in the Al hexahydrides was less than 4 wt. %, well short of DOE targets. The HT assay came on line and after certification with studies on NaAlH4, was first applied to the LiNH2 - LiBH4 - MgH2 phase diagram. The 60-point study elucidated trends within the system locating an optimum material of 0.6 LiNH2 ?? 0.3 MgH2 ?? 0.1 LiBH4 that stored about 4 wt. % H2 reversibly and operated below 220 °C. Also present was the phase Li4(NH2)3BH4, which had been discovered in the LiNH2 -LiBH4 system. This new ternary formulation performed much better than the well-known 2 LiNH2 ?? MgH2 system by 50 °C in the HT assay. The Li4(NH2)3BH4 is a low melting ionic liquid under our test conditions and facilitates the phase transformations required in the hydrogen storage reaction, which no longer relies on a higher energy solid state reaction pathway. Further study showed that the 0.6 LiNH2 ?? 0.3 MgH2 ?? 0.1 LiBH4 formulation was very stable with respect to ammonia and diborane desorption, the observed desorption was from hydrogen. This result could not have been anticipated and was made possible by the efficiency of HT combinatorial methods. Investigation of the analogous LiNH2 ?? LiBH4 ?? CaH2 phase diagram revealed new reversible hydrogen storage materials 0.625 LiBH4 + 0.375 CaH2 and 0.375 LiNH2 + 0.25 LiBH4 + 0.375 CaH2 operating at 1 wt. % reversible hydrogen below 175 °C. Powder x-ray diffraction revealed a new structure for the spent materials which had not been previously observed. While the storage capacity was not impressive, an important aspect is that it boron appears to participate in a low temperature reversible reaction. The last major area of study also focused

Lesch, David A; Adriaan Sachtler, J.W. J.; Low, John J; Jensen, Craig M; Ozolins, Vidvuds; Siegel, Don

2011-02-14T23:59:59.000Z

347

Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods  

SciTech Connect

UOP LLC, a Honeywell Company, Ford Motor Company, and Striatus, Inc., collaborated with Professor Craig Jensen of the University of Hawaii and Professor Vidvuds Ozolins of University of California, Los Angeles on a multi-year cost-shared program to discover novel complex metal hydrides for hydrogen storage. This innovative program combined sophisticated molecular modeling with high throughput combinatorial experiments to maximize the probability of identifying commercially relevant, economical hydrogen storage materials with broad application. A set of tools was developed to pursue the medium throughput (MT) and high throughput (HT) combinatorial exploratory investigation of novel complex metal hydrides for hydrogen storage. The assay programs consisted of monitoring hydrogen evolution as a function of temperature. This project also incorporated theoretical methods to help select candidate materials families for testing. The Virtual High Throughput Screening served as a virtual laboratory, calculating structures and their properties. First Principles calculations were applied to various systems to examine hydrogen storage reaction pathways and the associated thermodynamics. The experimental program began with the validation of the MT assay tool with NaAlH4/0.02 mole Ti, the state of the art hydrogen storage system given by decomposition of sodium alanate to sodium hydride, aluminum metal, and hydrogen. Once certified, a combinatorial 21-point study of the NaAlH4 ?? LiAlH4 ??Mg(AlH4)2 phase diagram was investigated with the MT assay. Stability proved to be a problem as many of the materials decomposed during synthesis, altering the expected assay results. This resulted in repeating the entire experiment with a mild milling approach, which only temporarily increased capacity. NaAlH4 was the best performer in both studies and no new mixed alanates were observed, a result consistent with the VHTS. Powder XRD suggested that the reverse reaction, the regeneration of the alanate from alkali hydride, Al and hydrogen, was hampering reversibility. The reverse reaction was then studied for the same phase diagram, starting with LiH, NaH, and MgH2, and Al. The study was extended to phase diagrams including KH and CaH2 as well. The observed hydrogen storage capacity in the Al hexahydrides was less than 4 wt. %, well short of DOE targets. The HT assay came on line and after certification with studies on NaAlH4, was first applied to the LiNH2 - LiBH4 - MgH2 phase diagram. The 60-point study elucidated trends within the system locating an optimum material of 0.6 LiNH2 ?? 0.3 MgH2 ?? 0.1 LiBH4 that stored about 4 wt. % H2 reversibly and operated below 220 °C. Also present was the phase Li4(NH2)3BH4, which had been discovered in the LiNH2 -LiBH4 system. This new ternary formulation performed much better than the well-known 2 LiNH2 ?? MgH2 system by 50 °C in the HT assay. The Li4(NH2)3BH4 is a low melting ionic liquid under our test conditions and facilitates the phase transformations required in the hydrogen storage reaction, which no longer relies on a higher energy solid state reaction pathway. Further study showed that the 0.6 LiNH2 ?? 0.3 MgH2 ?? 0.1 LiBH4 formulation was very stable with respect to ammonia and diborane desorption, the observed desorption was from hydrogen. This result could not have been anticipated and was made possible by the efficiency of HT combinatorial methods. Investigation of the analogous LiNH2 ?? LiBH4 ?? CaH2 phase diagram revealed new reversible hydrogen storage materials 0.625 LiBH4 + 0.375 CaH2 and 0.375 LiNH2 + 0.25 LiBH4 + 0.375 CaH2 operating at 1 wt. % reversible hydrogen below 175 °C. Powder x-ray diffraction revealed a new structure for the spent materials which had not been previously observed. While the storage capacity was not impressive, an important aspect is that it boron appears to participate in a low temperature reversible reaction. The last major area of study also focused

Lesch, David A; Adriaan Sachtler, J.W. J.; Low, John J; Jensen, Craig M; Ozolins, Vidvuds; Siegel, Don

2011-02-14T23:59:59.000Z

348

Open-cycle absorption cooling using packed-bed absorbent reconcentration  

DOE Green Energy (OSTI)

The technical feasibility of a lithium chloride open-cycle absorption air conditioner using solar-heated air for reconcentration of the absorbent solution is examined. In contrast to a successfully operating Soviet design (in which absorbent reconcentration is accomplished by trickling the solution across a sloping black roof exposed to the sun), this study involves a packed-bed concentrator. Solar-heated air reconcentrates the solution by vaporizing water (the refrigerant) from the solution in the packed bed, enabling the system to be incorporated into a conventional solar air heating system and avoiding numerous problems associated with the roof concentrator. A thermodynamic analysis provides the criteria for the design of the packed bed. Heat and mass transfer processes occurring simultaneously in the bed are modeled using an iterative technique with the aid of a digital computer. The size of the packed-bed required to reconcentrate the absorbent solution at a rate corresponding to 10,550 W of cooling is determined, using flow rates, temperatures, and humidities typical of residential solar air-heating systems. Based on these results, the system air conditioning capability with solar energy input is predicted over the course of a clear summer day for Fort Collins, Colorado, and St. Louis, Missouri. Sufficient cooling capacity to meet a 10,550 W peak load using a 70 m/sup 2/ flatplate collector array is predicted by the model for both locations.

Leboeuf, C. M.; Loef, G. O.G.

1980-05-01T23:59:59.000Z

349

Energy distributions and effective temperatures in the packing of elastic sheets  

E-Print Network (OSTI)

OFFPRINT Energy distributions and effective temperatures in the packing of elastic sheets S) 24002 www.epljournal.org doi: 10.1209/0295-5075/85/24002 Energy distributions and effective temperatures-section are broadly distributed. We find distributions of energy with exponential tails. This setup naturally divides

Boudaoud, Arezki

350

Energy distributions and effective temperatures in the packing of elastic sheets  

E-Print Network (OSTI)

Energy distributions and effective temperatures in the packing of elastic sheets S. Deboeuf, M of the branches forming the cross-section are broadly distributed. We find distributions of energy and within the bulk. While the geometrical properties of the sub-systems differ, their energy distributions

Paris-Sud XI, Université de

351

Electrically recharged battery employing a packed/spouted bed metal particle electrode  

DOE Patents (OSTI)

A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode, is described. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged. 5 figs.

Siu, S.C.; Evans, J.W.; Salas-Morales, J.

1995-08-15T23:59:59.000Z

352

Gas-Liquid Contact Area of Random and Structured Packing Ian David Wilson, B.S.  

E-Print Network (OSTI)

Gas-Liquid Contact Area of Random and Structured Packing By Ian David Wilson, B.S. Thesis Presented are preferred over spray and tray towers for gas/liquid contacting when minimizing pressure drop and maximizing the flue gas and the liquid solvent. The gas exits from the top with a low concentration of CO2 while

Rochelle, Gary T.

353

An observer looks at the cell temperature in automotive battery packs  

E-Print Network (OSTI)

An observer looks at the cell temperature in automotive battery packs Maxime Deberta , Guillaume.bloch@univ-lorraine.fr Abstract The internal temperature of Li-ion batteries for electric or hybrid vehicles is an important measurement and a model. This paper presents the simplified modelling of heat transfers in a battery module

Paris-Sud XI, Université de

354

Silicon Atom Substitution Enhances Interchain Packing in a Thiophene-Based Polymer System  

SciTech Connect

A new silole-containing low bandgap polymer is synthesized by replacing the 5-position carbon of PCPDTBT with a silicon atom (PSBTBT). Through experiments and computational calculations, we show that the material properties, particular the packing of polymer chains, can be altered significantly. As a result, the polymer changes from amorphous to highly crystalline with the replacement of the silicon atom.

H Chen; J Hou; A Hayden; H Yang; K Houk; Y Yang

2011-12-31T23:59:59.000Z

355

Questions & Answers Solicitation to Address High Purchase Costs and Disposal Impacts of PEV Battery Packs  

E-Print Network (OSTI)

Questions & Answers Solicitation to Address High Purchase Costs and Disposal Impacts of PEV Battery Packs PON12501 1. Relating to both Research Topic Areas, at what stage of the research does the Energ Commission envision a battery manufacturer needing to be involved? y The Energy

356

A Genetic Algorithm with Exon Shuffling Crossover for Hard Bin Packing Problems  

E-Print Network (OSTI)

to fail. GAs Permission to make digital or hard copies of all or part of this work for personalA Genetic Algorithm with Exon Shuffling Crossover for Hard Bin Packing Problems Philipp Rohlfshagen segments from its parents. The algo- rithm is tested on a set of hard benchmark problems and the results

Heinke, Dietmar

357

Study of the collision of one rapid sphere on 3D packings: Experimental and numerical results  

Science Conference Proceedings (OSTI)

We report on experimental studies of the collision process between an incident bead and a three-dimensional packing of mono-size beads. The understanding of such a process and the resulting ejection of grains is, in particular, crucial to describe aeolian ... Keywords: DEM modelisation, Granular transport, Saltation

L. Oger; M. Ammi; A. Valance; D. Beladjine

2008-01-01T23:59:59.000Z

358

Future perspectives of using hollow fibers as structured packings in light hydrocarbon distillation  

SciTech Connect

Olefin and paraffin are the largest chemical commodities. Furthermore, they are major building blocks for the petrochemical industry. Each year, petroleum refining, consumes 4,500 TBtu/yr in separation energy, making it one of the most energy-intensive industries in the United States). Just considering liquefied petroleum gas (ethane/propane/butane) and olefins (ethylene and propylene) alone, the distillation energy consumption is about 400 TBtu/yr in the US. Since petroleum distillation is a mature technology, incremental improvements in column/tray design will only provide a few percent improvements in the performance. However, each percent saving in net energy use amounts to savings of 10 TBtu/yr and reduces CO{sub 2} emissions by 0.2 MTon/yr. In practice, distillation columns require 100 to 200 trays to achieve the desired separation. The height of a transfer unit (HTU) of conventional packings is typical in the range of 36-60 inch. Since 2006, we had explored using several non-selective membranes as the structured packings to replace the conventional packing materials used in propane and propylene distillation. We obtained the lowest HTU of < 8 inch for the hollow fiber column, which was >5 times shorter than that of the conventional packing materials. In 2008, we also investigated this type of packing materials in iso-/n-butane distillation. Because of a slightly larger relative volatility of iso-/n-butane than that of propane/propylene, a wider and a more stable operational range was obtained for the iso-/n-butane pair. However, all of the experiments were conducted on a small scale with flowrate of < 25 gram/min. Recently, we demonstrated this technology on a larger scale (<250 gram/min). Within the loading range of F-factor < 2.2 Pa{sup 0.5}, a pressure drop on the vapor side is below 50 mbar/m, which suggests that the pressure drop of hollow fibers packings is not an engineering barrier for the applications in distillations. The thermal stability study suggests that polypropylene hollow fibers are stable after a long time exposure to C{sub 2} - C{sub 4} mixtures. The effects of packing density on the separation efficiency will be discussed.

Yang, Dali [Los Alamos National Laboratory; Orler, Bruce [Los Alamos National Laboratory; Tornga, Stephanie [Los Alamos National Laboratory; Welch, Cindy [Los Alamos National Laboratory

2011-01-26T23:59:59.000Z

359

Future perspectives of using hollow fibers as structured packings in light hydrocarbon distillation  

Science Conference Proceedings (OSTI)

Olefin and paraffin are the largest chemical commodities. Furthermore, they are major building blocks for the petrochemical industry. Each year, petroleum refining, consumes 4,500 TBtu/yr in separation energy, making it one of the most energy-intensive industries in the United States). Just considering liquefied petroleum gas (ethane/propane/butane) and olefins (ethylene and propylene) alone, the distillation energy consumption is about 400 TBtu/yr in the US. Since petroleum distillation is a mature technology, incremental improvements in column/tray design will only provide a few percent improvements in the performance. However, each percent saving in net energy use amounts to savings of 10 TBtu/yr and reduces CO{sub 2} emissions by 0.2 MTon/yr. In practice, distillation columns require 100 to 200 trays to achieve the desired separation. The height of a transfer unit (HTU) of conventional packings is typical in the range of 36-60 inch. Since 2006, we had explored using several non-selective membranes as the structured packings to replace the conventional packing materials used in propane and propylene distillation. We obtained the lowest HTU of 5 times shorter than that of the conventional packing materials. In 2008, we also investigated this type of packing materials in iso-/n-butane distillation. Because of a slightly larger relative volatility of iso-/n-butane than that of propane/propylene, a wider and a more stable operational range was obtained for the iso-/n-butane pair. However, all of the experiments were conducted on a small scale with flowrate of < 25 gram/min. Recently, we demonstrated this technology on a larger scale (<250 gram/min). Within the loading range of F-factor < 2.2 Pa{sup 0.5}, a pressure drop on the vapor side is below 50 mbar/m, which suggests that the pressure drop of hollow fibers packings is not an engineering barrier for the applications in distillations. The thermal stability study suggests that polypropylene hollow fibers are stable after a long time exposure to C{sub 2} - C{sub 4} mixtures. The effects of packing density on the separation efficiency will be discussed.

Yang, Dali [Los Alamos National Laboratory; Orler, Bruce [Los Alamos National Laboratory; Tornga, Stephanie [Los Alamos National Laboratory; Welch, Cindy [Los Alamos National Laboratory

2011-01-26T23:59:59.000Z

360

Measuring Frac-pack Conductivity at Reservoir Temperature and High Closure Stress  

E-Print Network (OSTI)

Ultra-deepwater reservoirs are important non-conventional reservoirs that hold the potential to produce billions of barrels of hydrocarbons but present major challenges. Hydraulic fracturing or frac-packing high permeability reservoirs is different from the conventional hydraulic fracturing technology used in low permeability formations. While the main purpose of the conventional technique is to create a long, highly conductive path, frac-packing on the other hand is used predominantly to get past near wellbore formation damage, control sand production and reduce near wellbore pressure drop. Ultra-deepwater reservoirs are usually high temperature and high pressure with high permeabilities. Frac-packing these types of wells requires short fractures packed with high proppant concentrations. Understanding the behavior of the fracture fluid and proppant is critical to pump such a job successfully and to ensure long term productivity from the fracture. A series of laboratory experiments have been conducted to research the different problems resulting from high temperature and pressure which negatively affect conductivity. Unlike conventional long-term conductivity measurements, we placed the proppant into the fracture and pumped fracture fluid through it and then measured conductivity by pumping oil to represent true reservoir conditions. Proppant performance and fracture fluids clean-up during production were examined. High strength proppant is ideal for deep fracture stimulations and in this study different proppant loadings at different stresses were tested to measure the impact of crushing and embedment on conductivity. The preliminary test results indicated that oil at reservoir conditions does improve clean-up of fracture fluid left back in the proppant pack. Increasing the proppant concentration in the fracture showed higher conductivity values even at high closure stress. The increase in effective closure stress with high temperature yielded significant loss in conductivity values as compared to those obtained from industry tests.

Fernandes, Preston X.

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Particle size effect of hydride formation and surface hydrogen absorption of nanosized palladium catalysts : L{sub 3} edge vs K edge x-ray absorption spectroscopy.  

Science Conference Proceedings (OSTI)

The particle size effect on the formation of palladium hydride and on surface hydrogen adsorption was studied at room temperature using in situ X-ray absorption spectroscopy at the Pd K and L{sub 3} edges. Hydride formation was indirectly observed by lattice expansion in Pd K edge XANES spectra and by EXAFS analysis. Hydride formation was directly detected in the L{sub 3} edge spectra. A characteristic spectral feature caused by the formation of a Pd-H antibonding state showed strong particle size dependence. The L{sub 3} edge spectra were reproduced using full multiple scattering analysis and density of state calculations, and the contributions of bulk absorbed and surface hydrogen to the XANES spectra could be distinguished. The ratio of hydrogen on the surface versus that in the bulk increased with decreasing particle size, and smaller particles dissolved less hydrogen.

Tew, M. W.; Miller, J. T.; van Bokhoven, J. A. (Chemical Sciences and Engineering Division); ( SUF-USR); (ETH Zurich)

2009-08-01T23:59:59.000Z

362

Engineering analysis of low enriched uranium fuel using improved zirconium hydride cross sections  

E-Print Network (OSTI)

A neutronic and thermal hydraulic analysis of the 1-MW TRIGA research reactor at the Texas A&M University Nuclear Science Center using a new low enriched uranium fuel (named 30/20 fuel) was completed. This analysis provides safety assessment for the change out of the existing high enriched uranium fuel to this high-burnup, low enriched uranium fuel design. The codes MCNP and Monteburns were utilized for the neutronic analysis while the code PARET was used to determine fuel and cladding temperatures. All of these simulations used improved zirconium hydride cross sections that were provided by Dr. Ayman Hawari at North Carolina State University. The neutronic and thermal analysis showed that the reactor will operate with approximately the same fuel lifetime as the current high enriched uranium fuel and stay within the thermal and safety limits for the facility. It was also determined that the control rod worths and the temperature coefficient of reactivity would provide sufficient negative reactivity to control the reactor during the fuelâ??s complete lifetime. An assessment of the fuelâ??s viability for use with the Advanced Fuel Cycle Initiativeâ??s Reactor Accelerator Coupling Experiments program was also performed. The objective of this study was to confirm the continued viability of these experiments with the reactor operating using this new fuel. For these experiments, the accelerator driven system must produce fission heating in excess of 1 kW when driven by a 20 kW accelerator system. This criterion was met using the new fuel. Therefore the change out of the fuel will not affect the viability of these experiments.

Candalino, Robert Wilcox

2006-08-01T23:59:59.000Z

363

Computation of Dancoff Factors for Fuel Elements Incorporating Randomly Packed TRISO Particles  

SciTech Connect

A new method for estimating the Dancoff factors in pebble beds has been developed and implemented within two computer codes. The first of these codes, INTRAPEB, is used to compute Dancoff factors for individual pebbles taking into account the random packing of TRISO particles within the fuel zone of the pebble and explicitly accounting for the finite geometry of the fuel kernels. The second code, PEBDAN, is used to compute the pebble-to-pebble contribution to the overall Dancoff factor. The latter code also accounts for the finite size of the reactor vessel and for the proximity of reflectors, as well as for fluctuations in the pebble packing density that naturally arises in pebble beds.

J. L. Kloosterman; Abderrafi M. Ougouag

2005-01-01T23:59:59.000Z

364

Removal of polychlorinated phenols in sequential anaerobic-aerobic biofilm reactors packed with tire chips  

Science Conference Proceedings (OSTI)

Scrap vehicle tire chips were used as packing material for sequential anaerobic-aerobic biofilm reactors to remove persistent chlorinated hydrocarbons. Adsorption capacity of scrap tires was greater under acidic conditions than under basic conditions. However, it was only approximately 0.04 to 0.3% of that of activated carbon. The amount of biomass that attached to the surface of scrap tires was 3.16 and 3.72 mg volatile suspended solids/cm{sup 2} after 14 and 37 days, respectively. Two laboratory-scale, down-flow anaerobic-aerobic biofilm reactors packed with tire chips were operated to remove 2,4-dichlorophenol (DCP) and 4-chlorophenol (CP). More than 98% of DCP was dehalogenated to CP in the anaerobic reactor, 70 to 98% of which was subsequently degraded in the aerobic reactor. Scrap tires did not cause any operational problems when used as biofilter media.

Shin, H.S.; Yoo, K.S.; Park, J.K.

1999-05-01T23:59:59.000Z

365

Fully relativistic calculation of nuclear magnetic shieldings and indirect nuclear spin-spin couplings in group-15 and -16 hydrides  

Science Conference Proceedings (OSTI)

Fully relativistic calculations of the isotropic and anisotropic parts of both indirect nuclear spinspin couplings 1 J(X- H ) and 2 J( H-H ) and nuclear magnetic shieldings ?(X) and ?(H) for the group-15 and -16 hydrides are presented. Relativistic calculations were performed with DiracFock wave functions and the random phase approximation method. Results are compared to its nonrelativistic counterpart. Paramagnetic and diamagnetic contributions to the nuclear magnetic shielding constants are also reported. We found very large relativistic corrections to both properties in the sixth-row hydrides ( BiH 3 and PoH 2 ). Our calculations of the relativistic corrections to the isotropic part of ? at the heavy nucleus X show that it is roughly proportional to Z 3.2 in both series of molecules. Paramagnetic term ? p is more sensitive to the effects of relativity than the diamagnetic one ? d even though both have a behavior proportional to third power of the nuclear charge Z.

Sergio S. Gomez; Rodolfo H. Romero; Gustavo A. Aucar

2002-01-01T23:59:59.000Z

366

Effect of Ce composition on the structural and electronic characteristics of some metal hydride electrodes: A XANES and EXAFS investigation  

DOE Green Energy (OSTI)

Substitution of the B component in the prototype AB{sub 5} type (LaNi{sub 5}) metal hydride alloys have resulted in their increased acceptance as anodes for rechargeable alkaline batteries. Recently substitution of the A component (La) for imparting properties such as increased corrosion resistance has received attention. This investigation deals with the role of Ce as a substituent for the La and its effect in terms of corrosion resistance. The alloys chosen have the general composition of La{sub x}Ce{sub 1-x}B{sub 5} (x = 1, 0.8, 0.5 and 0.25) where B is Ni{sub 3.55}CO{sub 0.75}Mn{sub 0.4}Al{sub 0.3} together with alloys containing the mischmetal (Mm) as the A component (both synthetic and commercial). Electrochemical cycling results show that Ce lowers the capacity loss in the alloys and that this effect is not a simple function of the extent of lattice expansion during hydriding as was previously suggested. Correlation of the electrochemical and XAS results show that capacity loss is directly related to the extent of Ni corrosion. Effect of Ce substitution seems to result in a stable Ce oxide hydroxide coating which imparts the corrosion resistance.

Mukerjee, S.; McBreen, J.; Reilly, J.J.; Johnson, J.R.; Adzic, G. [Brookhaven National Lab., Upton, NY (United States); Kumar, M.P.S.; Zhang, W.; Srinivasan, S. [Texas A and M Univ., College Station, TX (United States). Center for Electrochemical Systems and Hydrogen Research

1994-12-31T23:59:59.000Z

367

Valve Packing Performance Improvement: Sealing Technology and Plant Leakage Reduction Series  

Science Conference Proceedings (OSTI)

"Valve Packing Performance Improvement" is the seventh in a series of training modules addressing leakage at nuclear power plants. The first six modules in this series address: o Leakage management programs o Assembling bolted joints with spiral-wound gaskets o Preload requirements for bolted joints with spiral-wound gaskets o Lube oil system leakage mitigation o Leakage reduction from threaded joints o Leakage reduction from bolted joints with sheet gaskets

2002-03-28T23:59:59.000Z

368

Cavity method for force transmission in jammed disordered packings of hard particles  

E-Print Network (OSTI)

The force distribution of jammed disordered packings has always been considered a central object in the physics of granular materials. However, many of its features are poorly understood. In particular, analytic relations to other key macroscopic properties of jammed matter, such as the contact network and its coordination number, are still lacking. Here we develop a mean-field approach to this problem, based on the consideration of the contact network as a random graph where the force transmission becomes a constraint optimization problem. We can thus use the cavity method developed in the last decades within the statistical physics of spin glasses and hard computer science problems. This method allows us to compute the force distribution $\\text P(f)$ for random packings of hard particles of any shape, with or without friction. We find a new signature of jamming in the small force behavior $\\text P(f) \\sim f^{\\theta}$, whose exponent has attracted recent active interest. We find a finite value for $\\text P(f=0)$, along with $\\theta=0$ over an unprecedented six decades of force data, which agrees with experimental measurements on emulsion droplets. Furthermore, we relate the force distribution to a lower bound of the average coordination number ${\\bar z}_{\\rm c}^{\\rm min}(\\mu)$ of jammed packings of frictional spheres with coefficient $\\mu$. This bridges the gap between the two known isostatic limits ${\\bar z}_c(\\mu=0)=2D$ (in dimension $D$) and ${\\bar z}_c(\\mu \\to \\infty)=D+1$ by extending the naive Maxwell's counting argument to frictional spheres. The framework describes different types of systems, such as non-spherical objects and dimensions, providing a common mean-field scenario to investigate force transmission, contact networks and coordination numbers of jammed disordered packings.

Lin Bo; Romain Mari; Chaoming Song; Hernan A. Makse

2013-10-29T23:59:59.000Z

369

Redesign of the SNS Modulator H-Bridge for Utilization of Press-Pack IGBTs  

SciTech Connect

The power conversion group at SLAC is currently redesigning the H-bridge switch plates of the High Voltage Converter Modulators at the Spallation Neutron Source. This integral part to the modulator operation has been indentified as a source of several modulator faults and potentially limits reliability with pulse width modulation operation. This paper is a presentation of the design and implementation of a redesigned switch plate based upon press-pack IGBTs.

Kemp, Mark A.; Burkhart, Craig; /SLAC; Anderson, David E.; /Oak Ridge

2008-09-25T23:59:59.000Z

370

Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System  

DOE Green Energy (OSTI)

Plans were immediately set in motion to begin the conversion from mechanical seals to a packing box at the facility. Contractors arrived on October 1st, 2012 and the project team began unwatering the unit for disassembly. The seal conversion was completed on February 29th, 2013 with start-up of the unit. Further testing and adjusting was done throughout the first two weeks of March.

Stephens, Jessica D.

2013-05-29T23:59:59.000Z

371

Market Feasibility for Nickel Metal Hyride and Other Advanced Electric Vehicle Batteries in Selected Stationary Applications  

Science Conference Proceedings (OSTI)

Governments in the United States and other countries, as well as the automotive, battery, and utility industries, have spent millions to demonstrate the viability of next generation of batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). An important question remains unanswered: "What value might these EV and HEV batteries add when employed in stationary and secondary use applications?"

2000-12-12T23:59:59.000Z

372

Distributed measurements of tracer response on packed bed flows using a fiberoptic probe array. Final report  

Science Conference Proceedings (OSTI)

Scale-up of packed bed processes, particularly those involving chromatographic separations, is made difficult by a seemingly inevitable increase in dispersion due to packing nonuniformity. To provide a suitable characterization, the authors measured the spatial distribution of dispersion and mixing in packed beds of uniform impervious spherical glass particles by a tracer impulse technique. The key feature in this work is the use of a fiberoptic array at the exit plane to obtain a time-resolved spatially distributed response. All experiments were in the creeping flow regime. The authors used a fluorescent dye with laser excitation through the fiber terminations in the bed. The fluoresced radiation was collected through the same fibers. They analyzed the data by the use of indices of the extent of micromixing based on Danckwerts`s original degree of segregation and an additional index of structural uniformity. The computations involve a moment analysis of the individual and average probe responses. A simple model gives expressions for the indices in terms of the Peclet number and is shown to provide a useful limiting case. The computed indices are also shown to be very sensitive to adsorption of dye on the surface of the glass. However, for some of the experiments with the largest spheres using Pyrex glass, the effects of adsorption are indiscernible. This technique successfully separates the contribution of micromixed fluid to overall bed dispersion from the contribution due to the transverse variation of the flow residence time.

Jones, M.C.; Nassimbene, R.; Wolfe, J. [National Inst. of Standards and Technology, Boulder, CO (United States). Chemical Science and Technology Lab.; Frederick, N. [Rocky Mountain Electron Video, Boulder, CO (United States)

1994-10-28T23:59:59.000Z

373

Model based design of an automotive-scale, metal hydride hydrogen storage system.  

SciTech Connect

Sandia and General Motors have successfully designed, fabricated, and experimentally operated a vehicle-scale hydrogen storage system using the complex metal hydride sodium alanate. Over the 6 year project, the team tackled the primary barriers associated with storage and delivery of hydrogen including mass, volume, efficiency and cost. The result was the hydrogen storage demonstration system design. The key technologies developed for this hydrogen storage system include optimal heat exchange designs, thermal properties enhancement, a unique catalytic hydrogen burner and energy efficient control schemes. The prototype system designed, built, and operated to demonstrate these technologies consists of four identical hydrogen storage modules with a total hydrogen capacity of 3 kg. Each module consists of twelve stainless steel tubes that contain the enhanced sodium alanate. The tubes are arranged in a staggered, 4 x 3 array and enclosed by a steel shell to form a shell and tube heat exchanger. Temperature control during hydrogen absorption and desorption is accomplished by circulating a heat transfer fluid through each module shell. For desorption, heat is provided by the catalytic oxidation of hydrogen within a high efficiency, compact heat exchanger. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to the circulating heat transfer fluid. The demonstration system module design and the system control strategies were enabled by experiment-based, computational simulations that included heat and mass transfer coupled with chemical kinetics. Module heat exchange systems were optimized using multi-dimensional models of coupled fluid dynamics and heat transfer. Chemical kinetics models were coupled with both heat and mass transfer calculations to design the sodium alanate vessels. Fluid flow distribution was a key aspect of the design for the hydrogen storage modules and computational simulations were used to balance heat transfer with fluid pressure requirements. An overview of the hydrogen storage system will be given, and examples of these models and simulation results will be described and related to component design. In addition, comparisons of demonstration system experimental results to model predictions will be reported.

Johnson, Terry Alan; Kanouff, Michael P.; Jorgensen, Scott W. (General Motors R& D); Dedrick, Daniel E.; Evans, Gregory Herbert

2010-11-01T23:59:59.000Z

374

Effect of amorphous Mg{sub 50}Ni{sub 50} on hydriding and dehydriding behavior of Mg{sub 2}Ni alloy  

SciTech Connect

Composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50} was prepared by mechanical milling starting with nanocrystalline Mg{sub 2}Ni and amorphous Mg{sub 50}Ni{sub 50} powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg{sub 50}Ni{sub 50} improved the hydriding and dehydriding kinetics of Mg{sub 2}Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: {yields} First study of the hydriding behavior of composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50}. {yields} Microstructural characterization of composite material using XRD and SEM was obtained. {yields} An improved effect of Mg{sub 50}Ni{sub 50} on the Mg{sub 2}Ni hydriding behavior was verified. {yields} The apparent activation energy for the hydrogen desorption of composite was obtained.

Guzman, D., E-mail: danny.guzman@uda.cl [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama y Centro Regional de Investigacion y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapo (Chile); Ordonez, S. [Departamento de Ingenieria Metalurgica, Facultad de Ingenieria, Universidad de Santiago de Chile, Av. Lib. Bernardo O'Higgins 3363, Santiago (Chile); Fernandez, J.F.; Sanchez, C. [Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco 28049, Madrid (Spain); Serafini, D. [Departamento de Fisica, Facultad de Ciencias, Universidad de Santiago de Chile and Center for Interdisciplinary Research in Materials, CIMAT, Av. Lib. Bernardo O'Higgins 3363, Santiago (Chile); Rojas, P.A. [Escuela de Ingenieria Mecanica, Facultad de Ingenieria, Av. Los Carrera 01567, Quilpue, Pontificia Universidad Catolica de Valparaiso, PUCV (Chile); Aguilar, C. [Departamento de Ingenieria Metalurgica y Materiales, Universidad Tecnica Federico Santa Maria, Av. Espana 1680, Valparaiso (Chile); Tapia, P. [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama, Av. Copayapu 485, Copiapo (Chile)

2011-04-15T23:59:59.000Z

375

Phonon Dispersion and Elastic Moduli of Two-Dimensional Disordered Colloidal Packings of Soft-Particles with Frictional Interactions  

E-Print Network (OSTI)

Particle tracking and displacement covariance matrix techniques are employed to investigate the phonon dispersion relations of two-dimensional colloidal glasses composed of soft, thermoresponsive microgel particles whose temperature-sensitive size permits in situ variation of particle packing fraction. Bulk modulus, B, and shear modulus, G, of the colloidal glasses are extracted from the dispersion relations as a function of packing fraction. The ratio G/B is found to agree quantitatively with predictions for jammed packings of frictional soft particles with only one parameter required for the fit - the packing fraction for the onset of jamming in the limit of infinite friction. In addition, G and B individually agree with numerical predictions for frictional particles. This remarkable level of agreement enabled us to extract the inter-particle friction coefficient and an energy scale for the inter-particle interaction from the individual elastic constants.

Tim Still; Carl P. Goodrich; Ke Chen; Peter J. Yunker; Samuel Schoenholz; Andrea J. Liu; A. G. Yodh

2013-06-13T23:59:59.000Z

376

Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines  

E-Print Network (OSTI)

A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption that the multi-grade oil can be modeled as a compound of several ...

Cho, Yeunwoo, 1973-

2004-01-01T23:59:59.000Z

377

Lipid Analysis and Lipidomics: New Techniques & ApplicationChapter 10 Lipid Separations Using Packed-Column Supercritical Fluid Chromatography  

Science Conference Proceedings (OSTI)

Lipid Analysis and Lipidomics: New Techniques & Application Chapter 10 Lipid Separations Using Packed-Column Supercritical Fluid Chromatography Methods and Analyses eChapters Methods - Analyses Books AOCS Press Downloadabl

378

Phonon Dispersion and Elastic Moduli of Two-Dimensional Disordered Colloidal Packings of Soft Particles with Frictional Interactions  

E-Print Network (OSTI)

Particle tracking and displacement covariance matrix techniques are employed to investigate the phonon dispersion relations of two-dimensional colloidal glasses composed of soft, thermoresponsive microgel particles whose temperature-sensitive size permits \\textit{in situ} variation of particle packing fraction. Bulk, $B$, and shear, $G$, moduli of the colloidal glasses are extracted from the dispersion relations as a function of packing fraction, and variation of the ratio $G/B$ with packing fraction is found to agree quantitatively with predictions for jammed packings of frictional soft particles. In addition, $G$ and $B$ individually agree with numerical predictions for frictional particles. This remarkable level of agreement enabled us to extract an energy scale for the inter-particle interaction from the individual elastic constants and to derive an approximate estimate for the inter-particle friction coefficient.

Tim Still; Carl P. Goodrich; Ke Chen; Peter J. Yunker; Samuel Schoenholz; Andrea J. Liu; A. G. Yodh

2013-06-13T23:59:59.000Z

379

Impacts of EV battery production and recycling  

DOE Green Energy (OSTI)

Electric vehicles batteries use energy and produce environmental residuals when they are produced and recycled. This study estimates, for four selected battery types (sodium-sulfur, nickel-metal hydride, nickel-cadmium, and advanced lead-acid), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. Nickel-cadmium and nickel-metal hydride batteries are similar, for example, but energy requirements for the production of cadmium electrodes may be higher than those for metal hydride electrodes, while the latter may be more difficult to recycle.

Gaines, L.; Singh, M. [Argonne National Lab., IL (United States). Energy Systems Div.

1996-06-01T23:59:59.000Z

380

Energy and environmental impacts of electric vehicle battery production and recycling  

DOE Green Energy (OSTI)

Electric vehicle batteries use energy and generate environmental residuals when they are produced and recycled. This study estimates, for 4 selected battery types (advanced lead-acid, sodium-sulfur, nickel-cadmium, and nickel-metal hydride), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. For example, although the nickel-cadmium and nickel-metal hydride batteries are similar, energy requirements for production of the cadmium electrodes may be higher than those for the metal hydride electrodes, but the latter may be more difficult to recycle.

Gaines, L.; Singh, M.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Reduction of iron ore fines by coal fines in a packed bed and fluidized bed apparatus: A comparative study  

SciTech Connect

Reduction of iron ore fines by coal fines in packed and fluidized beds has been studied. The investigation includes study of the kinetic aspects of reduction, carbon and sulfur content of the direct reduced iron (DRI) produced, and metallography of the products. For both processes, the kinetic data fit the first-order reaction model. Reduction in a fluidized bed is much faster than in a packed bed system. In both cases, DRI contains a substantial amount of free carbon at the kinetic data fit the first-order reaction model. Reduction in a fluidized bed is much faster than in a packed bed system. In both cases, DRI contains a substantial amount of free carbon at the initial stages of reduction. At the later stages of reduction, the carbon present in the DRI is mainly in the combined state. For identical temperatures and particle sizes, reaction in fluidized bed is much faster compared to that in a packed bed. At any particular degree of reduction, sulfur content in DRI samples produced by fluidized bed reduction is always more than that of DRI samples produced by packed bed reduction. Scanning electron microscopy (SEM) micrographs reveal that metallic whiskers formed during reduction in packed beds only. These whiskers become more prominent at higher temperatures and longer times.

Haque, R. (Bangladesh Univ. of Engineering and Technology, Dhaka (Bangladesh). Metallurgical Engineering Department); Ray, H.S. (Regional Research Lab., Orissa (India)); Mukherjee, A. (Indian Inst. of Tech., (India).Metallurgical Engineering Department)

1993-06-01T23:59:59.000Z

382

The affect of erbium hydride on the conversion efficience to accelerated protons from ultra-shsort pulse laser irradiated foils  

DOE Green Energy (OSTI)

This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 10{sup 16} protons with an average energy of about 3MeV. This is far more than the 10{sup 12} protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH{sub 3} coatings on 5 {micro}m gold foils are compared with typical contaminants which are approximately equivalent to CH{sub 1.7}. It will be shown that there was a factor of 1.25 {+-} 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 10{sup 19}W/cm{sup 2}. The total number of protons from either target type was on the order of 10{sup 10}. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 10{sup 20} W/cm{sup 2}. In this experiment 10{sup 12} protons were seen from both erbium hydride and contaminants on 14 {micro} m gold foils. Significant improvements were also observed but possibly because of the depletion of hydrogen in the contaminant layer case.

Offermann, D

2008-09-04T23:59:59.000Z

383

SYNTHESIS OF METAL HYDRIDES BY MECHANICAL ALLOYING IN AN ATTRITOR MILL: FY07 STATUS REPORT  

DOE Green Energy (OSTI)

The objective of this task was to demonstrate that metal hydrides could be produced by mechanical alloying in the quantities needed to support the tritium production facilities at the Savannah River Site. The objective for the FY07 portion of this task was to demonstrate the production of Zr-Fe getter materials by mechanical alloying and begin to optimize the milling parameters. Three starting compositions (ratios of elemental Zr and Fe powders) were selected and attritor milled under argon for times of 8 to 60 hours. Hexane and liquid nitrogen were used as process control agents. In general, milling times of at least 24 hours were required to form the desired Zr{sub 2}Fe and Zr{sub 3}Fe phases, although a considerable amount of unalloyed Zr and Fe remained. Milling in liquid nitrogen does not appear to provide any advantages over milling in hexane, particularly due to the formation of ZrN after longer milling times. Carbides of Zr formed during some of the milling experiments in hexane. Formation of carbides during milling appears to be much less of an issue than formation of nitrides, although some of the phases that were not able to be identified in the XRD results may also be carbides. Additional XRD experiments should be designed to improve signal to noise ratio (i.e., longer count times) and use a wider scan range to better identify phases that were not clear in the original data. Elemental Zr was present in the as-milled material but not detected after annealing for milling times of 48 and 60 hours. It may be that after intimate mixing of the powders in the attritor mill the annealing temperature was sufficient to allow for the formation of a Zr-Fe alloy. The phase diagram for the binary Zr-Fe system agrees with this proposition. If this is the case, then the annealing conditions should also be investigated and optimized to form as much of the Zr-Fe alloy as possible in the milled powder. Also, this finding would mean that milling times of more than 48 hours are not necessary. Further investigation of this conversion is necessary, and could provide an opportunity for reducing the amount of unreacted metal powder after milling. Elemental Fe remained in all of the powders after annealing for all of the milling times tested. This may indicate that the ratio of Zr to Fe needs to be increased in order to improve the yield of the desired Zr-Fe alloys. Particle size analysis data are presented to aid in the selection of filters for future hydrogen sorption testing. Based on the XRD results, four samples were suggested for further XRD analysis and hydrogen sorption testing: (1) Zr{sub 2}Fe, 24 hr milling, annealed; (2) Zr{sub 2}Fe, 24 hr milling in LN{sub 2}, annealed; (3) Zr{sub 3}Fe, 24 hr milling, annealed; and (4) Zr{sub 3}Fe, 48 hr milling, annealed. These four samples showed the largest volume (based on relative peak intensities) of the desired Zr{sub 2}Fe and Zr{sub 3}Fe alloys.

Fox, K

2007-11-08T23:59:59.000Z

384

Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods  

DOE Green Energy (OSTI)

Once certified, a combinatorial 21-point study of the NaAlH4 ?? LiAlH4 ??Mg(AlH4)2 phase diagram was investigated with the MT assay. Stability proved to be a problem as many of the materials decomposed during synthesis, altering the expected assay results. This resulted in repeating the entire experiment with a mild milling approach, which only temporarily increased capacity. NaAlH4 was the best performer in both studies and no new mixed alanates were observed, a result consistent with the VHTS. Powder XRD suggested that the reverse reaction, the regeneration of the alanate from alkali hydride, Al and hydrogen, was hampering reversibility. The reverse reaction was then studied for the same phase diagram, starting with LiH, NaH, and MgH2, and Al. The study was extended to phase diagrams including KH and CaH2 as well. The observed hydrogen storage capacity in the Al hexahydrides was less than 4 wt. %, well short of DOE targets. The HT assay came on line and after certification with studies on NaAlH4, was first applied to the LiNH2 - LiBH4 - MgH2 phase diagram. The 60-point study elucidated trends within the system locating an optimum material of 0.6 LiNH2 ?? 0.3 MgH2 ?? 0.1 LiBH4 that stored about 4 wt. % H2 reversibly and operated below 220 °C. Also present was the phase Li4(NH2)3BH4, which had been discovered in the LiNH2 -LiBH4 system. This new ternary formulation performed much better than the well-known 2 LiNH2 ?? MgH2 system by 50 °C in the HT assay. The Li4(NH2)3BH4 is a low melting ionic liquid under our test conditions and facilitates the phase transformations required in the hydrogen storage reaction, which no longer relies on a higher energy solid state reaction pathway. Further study showed that the 0.6 LiNH2 ?? 0.3 MgH2 ?? 0.1 LiBH4 formulation was very stable with respect to ammonia and diborane desorption, the observed desorption was from hydrogen. This result could not have been anticipated and was made possible by the efficiency of HT combinatorial methods. Investigation of the analogous LiNH2 ?? LiBH4 ?? CaH2 phase diagram revealed new reversible hydrogen storage materials 0.625 LiBH4 + 0.375 CaH2 and 0.375 LiNH2 + 0.25 LiBH4 + 0.375 CaH2 operating at 1 wt. % reversible hydrogen below 175 °C. Powder x-ray diffraction revealed a new structure for the spent materials which had not been previously observed. While the storage capacity was not impressive, an important aspect is that it boron appears to participate in a low temperature reversible reaction. The last major area of study also focused

Lesch, David A; Adriaan Sachtler, J.W. J.; Low, John J; Jensen, Craig M; Ozolins, Vidvuds; Siegel, Don

2011-02-14T23:59:59.000Z

385

Lightweight Metal Hydrides for Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Ji-Cheng Zhao (Primary Contact), Xuenian Chen, Sheldon G. Shore The Ohio State University, Department of Materials Science and Engineering, 286 Watts Hall, 2041 College Road Columbus, OH 43210 Phone: (614) 292-9462 Email: zhao.199@osu.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FC3605GO15062 Project Start Date: January 1, 2005 Project End Date: August 31, 2011 (No-cost extension to December 31, 2012) Fiscal Year (FY) 2012 Objectives Develop a high-capacity lightweight hydride for * reversible vehicular hydrogen storage, capable of meeting or exceeding the 2010 DOE FreedomCAR

386

A unified view of coherent and incoherent dihydrogen exchange in transition metal hydrides by nuclear resonance and inelastic neutron scattering  

SciTech Connect

In this paper a unified view of coherent and incoherent dihydrogen exchange in transition metal hydrides by nuclear magnetic resonance (NMR) and inelastic neutron scattering (INS) is presented. It is shown that both exchange processes coexist i.e. do not transform into each other although they may dominate the spectra in different temperature ranges. This superposition is the consequence of the incorporation of the tunnel frequency J of the coherent process into the nuclear two-spin hamiltonian of hydrogen pairs which allows to treat the problem using the well known density matrix theory of NMR line-shapes developed by Alexander and Binsch. It is shown that this theory can also be used to predict the line-shapes of the rotational tunneling transitions observed in the INS spectra of transition metal dihydrogen complexes and that both NMR and INS spectra depend on similar parameters.

Limbach, H.H.; Ulrich, S.; Buntkowsky, G. [Freie Univ. Berlin (Germany). Inst. fuer Organische Chemie; Sabo-Etienne, S.; Chaudret, B. [Toulouse-3 Univ., 31 (France). Lab. de Chimie de Coordination du C.N.R.S.; Kubas, G.J.; Eckert, J. [Los Alamos National Lab., NM (United States)

1995-08-12T23:59:59.000Z

387

Report on Qiagen Columns with Precipitation versus Packed Bed Technology for Trace Amounts of DNA  

SciTech Connect

The assured limit of detection (LOD), where 100% of the PCR assays are successful, for the Qiagen spin column is dramatically improved when combined with an ethanol precipitation step of the eluted sample. A detailed SOP for the ethanol precipitation was delivered as a separate report. A key finding in the precipitation work was to incubate the ethanol precipitation at -20{sup o}C overnight when concentrating low copy number samples. Combining this modified ethanol precipitation with the Qiagen spin columns, the limit of assured detection was improved by 1-2 orders of magnitude, for the aliquot and assay variables used. The lower limit of detection (defined as when at least 1 assay of 1 aliquot was positive) was only improved by approximately 1 order of magnitude. The packed bed process has the potential of a 20-fold improvement in the limit of detection compared to Qiagen plus precipitation, based on a mass balance analysis for the entire DNA concentration and purification processes. Figure ES1 shows a mass balance for all the DNA processing steps. The packed bed process minimizes losses from elution, precipitation, and pipetting (aliquoting and transferring). Figure ES1 assumes that 100 copies of DNA serve as the input sample. Efficiencies for each step have been estimated based on our experiences or a worst case scenario (for example, a 50% loss was assumed for pipetting). Table ES1 summarizes the number of copies that are the input template for PCR assuming 100 copies of DNA are processed through the three options detailed in Figure ES1.Theoretically a 20-fold increase in the number of starting copies in the PCR reaction is gained when the DNA is concentrated, purified and then amplified directly on the surface of the beads in the packed bed.

Wheeler, E K; Erler, A M; Seiler, A

2008-02-05T23:59:59.000Z

388

Kinetics and Mechanism of Hydrogen-Atom Abstraction from Rhodium Hydrides by Alkyl Radicals in Aqueous Solutions  

DOE Green Energy (OSTI)

The kinetics of the reaction of benzyl radicals with [L{sup 1}(H{sub 2}O)RhH{l_brace}D{r_brace}]{sup 2+} (L{sup 1}=1,4,8,11-tetraazacyclotetradecane) were studied directly by laser-flash photolysis. The rate constants for the two isotopologues, k=(9.3 {+-} 0.6) x 10{sup 7} M{sup -1} s{sup -1} (H) and (6.2 {+-} 0.3) x 10{sup 7} M{sup -1} s{sup -1} (D), lead to a kinetic isotope effect k{sub H}/k{sub D}=1.5 {+-} 0.1. The same value was obtained from the relative yields of PhCH{sub 3} and PhCH{sub 2}D in a reaction of benzyl radicals with a mixture of rhodium hydride and deuteride. Similarly, the reaction of methyl radicals with {l_brace}[L{sup 1}(H{sub 2}O)RhH]{sup 2+} + [L{sup 1}(H{sub 2}O)RhD]{sup 2+}{r_brace} produced a mixture of CH{sub 4} and CH{sub 3}D that yielded k{sub H}/k{sub D}=1.42 {+-} 0.07. The observed small normal isotope effects in both reactions are consistent with reduced sensitivity to isotopic substitution in very fast hydrogen-atom abstraction reactions. These data disprove a literature report claiming much slower kinetics and an inverse kinetic isotope effect for the reaction of methyl radicals with hydrides of L{sup 1}Rh.

Pestovsky, Oleg; Veysey, Stephen W.; Bakac, Andrej

2011-03-22T23:59:59.000Z

389

The Brookhaven National Laboratory filter pack system for collection and determination of air pollutants  

Science Conference Proceedings (OSTI)

A filter pack system for sampling trace constituents in the atmosphere from aircraft and ground-based measurement platforms has been developed. The system simultaneously and quantitatively collects atmospheric aerosol, nitric acid, and sulfur dioxide using three sequential filter stages. The quartz aerosol filter is routinely analyzed for sulfate, nitrate, ammonium, and hydrogen ions, and specifically for sulfuric acid. The sodium chloride filter is analyzed for nitrate ion (from collected nitric acid), and the carbonate-glycerine filter for sulfate ion (from collected sulfur dioxide). Details of the procedures used for filter preparation, sampling, extraction and analysis are given.

Leahy, D.F.; Klotz, P.J.; Springston, S.R.; Daum, P.H.

1995-04-01T23:59:59.000Z

390

Experimental study of the heat and mass transfer in a packed bed liquid desiccant air dehumidifier  

Science Conference Proceedings (OSTI)

Desiccant cooling systems have the ability to provide efficient humidity and temperature control while reducing the electrical energy requirement for air conditioning as compared to a conventional system. Naturally, the desiccant air dehumidification process greatly influences the overall performance of the desiccant system. Therefore, the effects of variables such as air and desiccant flow rates, air temperature and humidity, desiccant temperature and concentration, and the area available for heat and mass transfer are of great interest. Due to the complexity of the dehumidification process, theoretical modeling relies heavily upon experimental studies. However, a limited number of experimental studies are reported in the literature. This paper presents results from a detailed experimental investigation of the heat and mass transfer between a liquid desiccant (triethylene glycol) and air in a packed bed absorption tower using high liquid flow rates. A high performance packing that combines good heat and mass transfer characteristics with low pressure drop is used. The rate of dehumidification, as well as the effectiveness of the dehumidification process are assessed based on the variables listed above. Good agreement is shown to exist between the experimental findings and predictions from finite difference modeling. In addition, a comparison between the findings in the present study and findings previously reported in the literature is made. The results obtained from this study make it possible to characterize the important variables which impact the system design.

Oeberg, V.; Goswami, D.Y. [Univ. of Florida, Gainesville, FL (United States)

1998-11-01T23:59:59.000Z

391

Co-combustion of textile residues with cardboard and waste wood in a packed bed  

SciTech Connect

The combustible fraction of the municipal waste is mostly bio-derived. Energy recovery of the wastes that cannot be economically recycled is a key part of sustainable energy policy and waste management. Textile residues have high energy content. When burned alone in a packed bed system, however, their combustion efficiency is low due to the irregular propagation of the ignition front and the low burning rates. In order to achieve more efficient combustion of textile residues, a series of co-combustion tests were carried out for various mixture compositions and air flow rates in a packed bed combustor. The combustion performance of these materials was evaluated by using quantitative measures such as ignition rate, burning rate and equivalence ratio. Co-combustion of textile residues with cardboard for a textile fraction of up to 30% achieved satisfactorily high burning rate and low unburned carbon content in the bottom ash. The mixture was more resistant to convective cooling by air, which significantly expanded the range of air flow rate for combustion at high burning rates. In co-combustion with a material that has a very low ignition front speed such as waste wood, the propagation of the ignition front was governed by textile residues. Therefore, the co-combustion of textile residues can be better performed with a material having similar ignition front speeds, in which the two materials simultaneously burn at the ignition front. (author)

Ryu, Changkook; Phan, Anh N; Sharifi, Vida N; Swithenbank, Jim [Sheffield University Waste Incineration Centre (SUWIC), Department of Chemical and Process Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

2007-11-15T23:59:59.000Z

392

Modeling of an adiabatic packed bed brine-air contactor for use in a solar energy driven food processing system  

Science Conference Proceedings (OSTI)

A mathematical model was developed for a packed bed brine-air contacting system which has applications in a solar energy driven food processing system. The model considers mass transfer resistances of both phases, but neglects the heat transfer resistance of the liquid phase. It takes into account the large heat effects associated with water absorption into and desorption from the brine. A computational method was also developed to calculate the minimum air flow rate which would prevent a pinch. A packed bed brine-air contactor was built, and experiments were conducted for a range of brine and air conditions. Good agreement between the computed and experimental results warrants use of the model to design and optimize the packed bed water stripping process. A periodic-flow packed bed heat regenerator was built to recover heat from the exit air of the contactor so as to improve the energy efficiency of the system. It was possible to preheat the inlet air to a temperature close to that of the exit air. The inlet air, however, during its passage through the regenerator picked up the condensate deposited from the exit air. This led to a decrease in the driving potential to mass transfer in the contactor. Optimization studies show that using a combined solar driven boiler and air assisted packed bed water stripper would be more economical than using a solar driven boiler alone or using flat plate solar collectors to drive the water stripper.

Biswal, R.N.

1983-01-01T23:59:59.000Z

393

New Developments in Battery Chargers  

E-Print Network (OSTI)

Abstract: Electronic equipment is increasingly becoming smaller, lighter, and more functional, thanks to the push of technological advancements and the pull from customer demand. The result of these demands has been rapid advances in battery technology and in the associated circuitry for battery charging and protection. For many years, nickel-cadmium (NiCd) batteries have been the standard for small electronic systems. A few larger systems, such as laptop computers and high-power radios, operated on "gel-cell " lead-acid batteries. Eventually, the combined effects of environmental problems and increased demand on the batteries led to the development of new battery technologies: nickel-metal hydride (NiMH), rechargeable alkaline, lithium ion (Li+), and lithium polymer. These new battery technologies require more sophisticated charging and protection circuitry to maximize performance and ensure safety. NiCd and NiMH Batteries NiCd has long been the preferred technology for rechargeable batteries in portable electronic equipment, and in some ways, NiCd batteries still outperform the newer technologies. NiCd batteries have less capacity than Li+ or NiMH types, but their low impedance is attractive in applications that require high current for short periods. Power tools, for example, will continue to use NiCd battery packs indefinitely.

unknown authors

2011-01-01T23:59:59.000Z

394

Executive Summaries for the Hydrogen Storage Materials Center of Excellence - Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE  

NLE Websites -- All DOE Office Websites (Extended Search)

Executive Summaries Executive Summaries for the Hydrogen Storage Materials Centers of Excellence Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE Period of Performance: 2005-2010 Fuel Cell Technologies Program Office of Energy Efficiency and Renewable Energy U. S. Department of Energy April 2012 2 3 Primary Authors: Chemical Hydrogen Storage (CHSCoE): Kevin Ott, Los Alamos National Laboratory Hydrogen Sorption (HSCoE): Lin Simpson, National Renewable Energy Laboratory Metal Hydride (MHCoE): Lennie Klebanoff, Sandia National Laboratory Contributors include members of the three Materials Centers of Excellence and the Department of Energy Hydrogen Storage Team in the Office of Energy Efficiency and Renewable Energy's Fuel Cell Technologies Program.

395

Effect of Gaseous Impurities on Long-Term Thermal Cycling and Aging Properties of Complex Hydrides for Hydrogen Storage  

DOE Green Energy (OSTI)

This program was dedicated to understanding the effect of impurities on Long-Term Thermal Cycling and aging properties of Complex Hydrides for Hydrogen Storage. At the start of the program we found reversibility between Li2NH+LiH ? LiH+LiNH2 (yielding ~5.8 wt.%H capacity). Then we tested the effect of impurity in H2 gas by pressure cycling at 255oC; first with industrial gas containing ppm levels of O2 and H2O as major impurities. Both these impurities had a significant impact on the reversibility and decreased the capacity by 2.65 wt.%H. Further increase in number of cycles from 500 to 1100 showed only a 0.2 wt%H more weight loss, showing some capacity is still maintained after a significant number of cycles. The loss of capacity is attributed to the formation of ~55 wt% LiH and ~30% Li2O, as major contaminant phases, along with the hydride Li2NH phase; suggesting loss of nitrogen during cycling. The effect of 100 ppm H2O in H2 also showed a decrease of ~2.5 wt.%H (after 560 cycles), and 100ppm O2 in H2; a loss of ~4.1 wt.%. Methane impurity (100 ppm, 100cycles), showed a very small capacity loss of 0.9 wt.%H under similar conditions. However, when Li3N was pressure cycled with 100ppmN2-H2 there were beneficial effects were observed (255oC); the reversible capacity increased to 8.4wt.%H after 853 cycles. Furthermore, with 20 mol.%N2-H2 capacity increased to ~10 wt.%H after 516 cycles. We attribute this enhancement to the reaction of nitrogen with liquid lithium during cycling as the Gibbs free energy of formation of Li3N (?Go = -98.7 kJ/mol) is more negative than that of LiH (?Go = -50.3 kJ/mol). We propose that the mitigation of hydrogen capacity losses is due to the destabilization of the LiH phase that tends to accumulate during cycling. Also more Li2NH phase was found in the cycled product. Mixed Alanates (3LiNH2:Li3AlH6) showed that 7 wt% hydrogen desorbed under dynamic vacuum. Equilibrium experiments (maximum 12 bar H2) showed up to 4wt% hydrogen reversibly stored in the material after the first desorption. The activation energy was found to be 51 kJ/mol, as compared to 81 kJ/mol for pure lithium alanate. It is proposed that based on the data obtained and CALPHAD modeling that the improvement in cycling is due to the formation of pure lithium (liquid at 255oC), which is able to react with nitrogen specifically forming Li3N. The presence of nitrogen in the 80/20 molar mixtures in a hydride bed along with hydrogen causes Li to form Li3N rather than LiH, and subsequently regenerates the Li2NH phase and yields a ~10 wt.%H reversibly.

Chandra, Dhanesh (Primary Contact); Lamb, Joshua; Chien, Wen-Ming; Talekar, Anjali; and Pal, Narendra.

2011-03-28T23:59:59.000Z

396

Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

Pesaran, A. A.; Kim, G. H.; Keyser, M.

2009-05-01T23:59:59.000Z

397

The Formation of Systems with Tightly-packed Inner Planets (STIPs) via Aerodynamic Drift  

E-Print Network (OSTI)

The NASA Kepler mission has revealed an abundant class of Systems with Tightly-packed Inner Planets (STIPs). The current paradigm for planet formation suggests that small planetesimals will quickly spiral into the host star due to aerodynamic drag, preventing rocky planet formation. In contrast, we find that aerodynamic drift, when acting on an ensemble of solids, can concentrate mass at short orbital periods in gaseous disks. Sublimation fronts may further aid this process. Kepler data suggest that the innermost known planets are found near the silicate sublimation zone. STIP planets should have a wide range of volatile fractions due to aerodynamic drift and H2 dissociation-driven gas accretion. We further propose that the low mass of Mars is evidence that the Solar System was once a proto-STIP.

Boley, Aaron C

2013-01-01T23:59:59.000Z

398

Dislocation Dynamics Simulations of Junctions in Hexagonal Close-Packed Crystals  

SciTech Connect

The formation and strength of dislocations in the hexagonal closed packed material beryllium are studied through dislocation junctions and the critical stress required to break them. Dislocation dynamics calculations (using the code ParaDiS) of junction maps are compared to an analytical line tension approximation in order to validate our model. Results show that the two models agree very well. Also the critical shear stress necessary to break 30{sup o} - 30{sup o} and 30{sup o} - 90{sup o} dislocation junctions is computed numerically. Yield surfaces are mapped out for these junctions to describe their stability regions as function of resolved shear stresses on the glide planes. The example of two non-coplanar binary dislocation junctions with slip planes [2-1-10] (01-10) and [-12-10] (0001) corresponding to a prismatic and basal slip respectively is chosen to verify and validate our implementation.

Wu, C; Aubry, S; Chung, P; Arsenlis, A

2011-12-05T23:59:59.000Z

399

Scaling relation for the bond length, mass density, and packing order of water ice  

E-Print Network (OSTI)

The packing order of molecules and the distance between adjacent oxygen atoms (dOO) in water and ice are most basic yet puzzling. Here we present a scaling solution for this purpose based only on the mass density (gcm-3), (Equation) where dL is the length ({\\AA}) of the O:H van der Waals bond and dH the H-O polar-covalent bond projecting on the O---O line. Validated by the measured proton symmetrization of compressed ice, dOO of water and ice, and dOO expansion at water surface, this solution confirms that the fluctuated, tetrahedrally-coordinated structure is unique for water ice.

Chang Q Sun

2013-05-18T23:59:59.000Z

400

Heat and mass transfer in packed bed liquid desiccant regenerators -- An experimental investigation  

Science Conference Proceedings (OSTI)

Liquid desiccant cooling can provide control of temperature and humidity, while at the same time lowering the electrical energy requirement for air conditioning. Since the largest energy requirement associated with desiccant cooling is low temperature heat for desiccant regeneration, the regeneration process greatly influences the overall system performance. Therefore, the effects of variables such as air and desiccant flow rates, air temperature and humidity, desiccant temperature and concentration, and the area available for heat and mass transfer on the regeneration process are of great interest. Due to the complexity of the regeneration process, which involves simultaneous heat and mass transfer, theoretical modeling must be verified by experimental studies. However, a limited number of experimental studies are reported in the literature. This paper presents results from a detailed experimental investigation of the heat and mass transfer between a liquid desiccant (triethylene glycol) and air in a packed bed regenerator using high liquid flow rates. To regenerate the desiccant, it is heated to temperatures readily obtainable from flat-plate solar collectors. A high performance packing that combines good heat and mass transfer characteristics with low pressure drop is used. The rate of water evaporation, as well as the effectiveness of the regeneration process is assessed based on the variables listed above. Good agreement is shown to exist between the experimental findings and predictions from finite difference modeling. In addition, the findings in the present study are compared to findings previously reported in the literature. Also, the results presented here characterize the important variables that impact the system design.

Martin, V.; Goswami, D.Y.

1999-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

First principles screening of destabilized metal hydrides for high capacity H2 storage using scandium (presentation had varying title: Accelerating Development of Destabilized Metal Hydrides for Hydrogen Storage Using First Principles Calculations)  

DOE Green Energy (OSTI)

Favorable thermodynamics are a prerequisite for practical H2 storage materials for vehicular applications. Destabilization of metal hydrides is a versatile route to finding materials that reversibly store large quantities of H2. First principles calculations have proven to be a useful tool for screening large numbers of potential destabilization reactions when tabulated thermodynamic data are unavailable. We have used first principles calculations to screen potential destabilization schemes that involve Sc-containing compounds. Our calculations use a two-stage strategy in which reactions are initially assessed based on their reaction enthalpy alone, followed by more detailed free energy calculations for promising reactions. Our calculations indicate that mixtures of ScH2 + 2LiBH4, which will release 8.9 wt.% H2 at completion and will have an equilibrium pressure of 1 bar at around 330 K, making this compound a promising target for experimental study. Along with thermodynamics, favorable kinetics are also of enormous importance for practical usage of these materials. Experiments would help identify possible kinetic barriers and modify them by developing suitable catalysts.

Alapati, S.; Johnson, J.K.; Sholl, D.S.; Dai, B. (Univ. of Pittsburgh, Pittsburgh, PA)--last author not shown on publication, only presentation

2007-10-31T23:59:59.000Z

402

CHARACTERIZATION OF THE LOCAL TITANIUM ENVIRONMENT IN DOPED SODIUM ALUMINUM HYDRIDE USING X-RAY ADSORPTION SPECTROSCOPY.  

DOE Green Energy (OSTI)

Ti K-edge x-ray absorption spectroscopy was used to explore the local titanium environment and valence in 2-4 mol% Ti-doped sodium alanate. An estimate of the oxidation state of the dopant, based upon known standards, revealed a zero-valent titanium atom. An analysis of the near-edge and extended fine structures indicates that the Ti does not enter substitutional or interstitial sites in the NaAlH{sub 4} lattice. Rather, the Ti is located on/near the surface and is coordinated by 10.2 {+-} 1 aluminum atoms with an interatomic distance of 2.82 {+-} 0.01 {angstrom}, similar to that of TiAl{sub 3}. The Fourier transformed EXAFS spectra reveals a lack of long-range order around the Ti dopant indicating that the Ti forms nano-clusters of TiAl{sub 3}. The similarity of the spectra in the hydrided and dehydrided samples suggests that the local Ti environment is nearly invariant during hydrogen cycling.

GRAETZ, J.; IGNATOV, A. YU; TYSON, T.A.; REILLY, J.J.; JOHNSON, J.

2004-11-30T23:59:59.000Z

403

New plasma source of hydrides for epitaxial growth. Final subcontract report, 15 April 1991--3 September 1993  

DOE Green Energy (OSTI)

This report describes a novel plasma-activated selenium source that was developed during the course of this subcontract and which is significantly different than any other heretofore reported in the scientific literature. It involves microwave excited, magnetically confined plasma sources that are intended to operate under electron cyclotron resonance (ECR) conditions at 2.455 GHz. This source is designed to excite and dissociate the molecular vapor evaporating or subliming from a heated solid or liquid reservoir. It can combine an effusion cell vapor flux with a stream of hydrogen or helium gas, enabling the in-situ generation of hydrides for use in low-pressure growth techniques where long mean free paths are desirable. Experiments were conducted to demonstrate a stable discharge within the source, and measures were identified to improve its operational characteristics. Application of this novel source is anticipated to enable a low-temperature, safe process for the growth of high-quality epitaxial compound semiconductor films. This reduction of epitaxial growth temperatures may enable the fabrication of novel photovoltaic devices that have heretofore been impossible due to the deleterious effects of interdiffusion at heterointerfaces resulting from the high temperatures required to grow adequate quality material using conventional processes.

Stanbery, B.J. [Boeing Defense & Space Group, Seattle, WA (United States)

1994-05-01T23:59:59.000Z

404

Ready to implement CIM Monolith Technology Order our CIM Disk Virus Purification Pack and identify the optimal chemistry  

E-Print Network (OSTI)

Ready to implement CIM® Monolith Technology Order our CIM® Disk Virus Purification Pack. Request a CIM® Technology Seminar? To educate your entire organization about CIM® Technology and its- on with the performance or use of CIM®. For more information on our products, visit our home page at: http

Lebendiker, Mario

405

Experimental study of the performance of a laminar flow silica gel desiccant packing suitable for solar air conditioning application  

DOE Green Energy (OSTI)

An experimental study of the performance of a low pressure drop silica gel desiccant packing has been carried out. The packing is in the form of narrow passages lined with a single layer of small silica gel particles. A near optimum particle size of 0.25 mm, and a range of passage widths of 1.46 to 3.75 mm were chosen based on the predictions of a computer simulation model. A test chamber was constructed with sufficient thermal insulation to allow close to adiabatic conditions for the 12 cm x 12 cm cross section of packing. Step change adsorption and desorption tests were performed for various plate spacings, air flow rates, air inlet conditions, and gel initial water contents. Air outlet moisture content and temperature, as well as pressure drop were measured. The experimental results were compared with predictions of the computer simulation model: This model is based on gas side controlled heat and mass transfer, with the small solid side mass transfer resistance incorporated in a crude manner, and heat transfer into the packing handled as a lumped thermal capacitance. Reasonable agreement was obtained between theoretical prediction and experiment. The match was found to improve with increased passage width. The discrepancies are chiefly attributed to an excessive air bypass, and to inaccurate accounting for heat transfer from the sides of the unit. Use of the computer code for prototype scale design purposes is recommended.

Biswas, P.

1983-02-01T23:59:59.000Z

406

A Preliminary Study of the Effect of Shifts in Packing Fraction on k-effective in Pebble-Bed Reactors  

Science Conference Proceedings (OSTI)

A preliminary examination of the effect of pebble packing changes on the reactivity of a pebble-bed reactor (PBR) is performed. As a first step, using the MCNP code, the modeling of a PBR core as a continuous and homogenous region is compared to the modeling as a collection of discrete pebbles of equal average fuel density. It is shown that the two modeling approaches give the same trends inasmuch as changes in keff are concerned. It is thus shown that for the purpose of identifying trends in keff changes, the use of a homogeneous model is sufficient. A homogenous model is then used to assess the effect of pebble packing arrangement changes on the reactivity of a PBR core. It is shown that the changes can be large enough to result in prompt criticality. It is shown that for uranium fueled PBRs, thermal feedback could have the potential to offset the increase in activity, whereas for plutonium fueled systems, thermal feedback may not be sufficient for totally offsetting the packing-increase reactivity insertion and could even exacerbate the initial response. It is thus shown that a full study, including reactor kinetics, thermal feedback, and the dynamics of energy deposition and removal is warranted to fully characterize the potential consequences of packing shifts.

Ougouag, Abderrafi Mohammed-El-Ami; Terry, William Knox

2001-09-01T23:59:59.000Z

407

FREE Name Tags for 1st year Students FREE Selected Course Packs for 2nd year Students  

E-Print Network (OSTI)

· FREE Name Tags for 1st year Students · FREE Selected Course Packs for 2nd year Students Process · Discounts & Free Registration to Events · Financial Support for Student Projects & Groups (up to $11,000 each year!) · Discounts on Insurance, Rental Cars, and more! · FREE Legal Advice · Expanded

Liu, Taosheng

408

Accelerating Palladium-Catalyzed C-F Bond Formation: Use of a Microflow Packed-Bed Reactor  

E-Print Network (OSTI)

A flow process for Pd-catalyzed C-F bond formation is described. A microreactor with a packed-bed design allows for easy handling of large quantities of insoluble CsF with precise control over reaction times, efficient ...

Maimone, Thomas J.

409

Design Of A Hybrid Jet Impingement / Microchannel Cooling Device For Densely Packed PV Cells Under High Concentration  

Science Conference Proceedings (OSTI)

A hybrid jet impingement / microchannel cooling scheme was designed and applied to densely packed PV cells under high concentration. An experimental study allows validating the principles of the design and confirming its applicability to the cited system. In order to study the characteristics of the device in a wide range of conditions

Jrme Barrau; Joan Rosell; Manel Ibaez

2010-01-01T23:59:59.000Z

410

An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 Nanotube Arrays  

E-Print Network (OSTI)

An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 harvest and storage processes. This power pack incorporates a series-wound dye- sensitized solar cell material.11,15 Compared with other integrated solar power supplies,16,17 double-sided TiO2 NTs with large

Wang, Zhong L.

411

Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499  

SciTech Connect

Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

Smith, K.

2013-10-01T23:59:59.000Z

412

Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System  

SciTech Connect

On January 27, 2010 the City of North Little Rock, Arkansas received notification of the awarding of a Department of Energy (DOE) grant totaling $450,000 in funding from the American Recovery and Reinvestment Act (ARRA) under the Project Title: Recovery Act: Hydroelectric Facility Improvement Project Automated Intake Clearing Equipment and Materials Management. The purpose of the grant was for improvements to be made at the Citys hydroelectric generating facility located on the Arkansas River. Improvements were to be made through the installation of an intake maintenance device (IMD) and the purchase of a large capacity wood grinder. The wood grinder was purchased in order to receive the tree limbs, tree trunks, and other organic debris that collects at the intake of the plant during high flow. The wood grinder eliminates the periodic burning of the waste material that is cleared from the intake and reduces any additional air pollution to the area. The resulting organic mulch has been made available to the public at no charge. Design discussion and planning began immediately and the wood grinder was purchased in July of 2010 and immediately put to work mulching debris that was gathered regularly from the intake of the facility. The mulch is currently available to the public for free. A large majority of the design process was spent in discussion with the Corps of Engineers to obtain approval for drawings, documents, and permits that were required in order to make changes to the structure of the powerhouse. In April of 2011, the Citys Project Engineer, who had overseen the application, resigned and left the Citys employ. A new Systems Mechanical Engineer was hired and tasked with overseeing the project. The transfer of responsibility led to a re-examination of the original assumptions and research upon which the grant proposal was based. At that point, the project went under review and a trip was booked for July 2011 to visit facilities that currently had an IMD installed. This further study of facilities revealed that the implementation of the project as originally described, while proving the benefits described in the original grant application, would likely intensify sand intake. Increased sand intake would lead to an increase in required shutdowns for maintenance and more rapid depreciation of key equipment which would result in a loss of generation capacity. A better solution to the problem, one that continued to meet the criteria for the original grant and ARRA standards, was developed. A supporting day trip was planned to visit other facilities located on the Arkansas River to determine how they were coping with the same strong amounts of sand, silt, and debris. Upon returning from the trip to other Arkansas River facilities it was extremely clear what direction to go in order to most efficiently address the issue of generator capacity and efficiency. Of the plants visited on the Arkansas River, every one of them was running what is called a rope packing shaft sealing system as opposed to mechanical shaft seals, which the facility was running. Rope packing is a time proven sealing method that has been around for centuries. It has proved to perform very well in dirty water situations just like that of the Arkansas River. In April of 2012 a scope change proposal was submitted to the DOE for approval. In August of 2012 the City received word that the change of scope had been approved. Plans were immediately set in motion to begin the conversion from mechanical seals to a packing box at the facility. Contractors arrived on October 1st, 2012 and the project team began unwatering the unit for disassembly. The seal conversion was completed on February 29th, 2013 with start-up of the unit. Further testing and adjusting was done throughout the first two weeks of March.

Stephens, Jessica D.

2013-05-29T23:59:59.000Z

413

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bipolar Nickel Metal Hydride Battery Bipolar Nickel Metal Hydride Battery Development and Testing DOE ENERGY STORAGE SYSTEMS RESEARCH PROGRAM ANNUAL PEER REVIEW November 2 - 3, 2006, Washington, D.C. James Landi jlandi@electroenergyinc.com 203-797-2699 Program Objectives and Benefits  The objective of this program is to further develop the bipolar NiMH battery design to be used in high-energy and high-power energy storage applications. - Build and demonstrate large-format batteries - Demonstrate these batteries in present and future applications  The bipolar NiMH battery could provide the following benefits: - Improve efficiencies by reducing transmission peaking losses and shifting peak demands. - Reduce power and voltage sag to users. - Provide an efficient method to distribute backup energy/power

414

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

91 - 7700 of 31,917 results. 91 - 7700 of 31,917 results. Article Steps to Commercialization: Nickel Metal Hydride Batteries The Energy Department funds cutting-edge research on a broad range of topics ranging from advanced battery construction to the modeling of industrial processes and supercomputer simulation of... http://energy.gov/articles/steps-commercialization-nickel-metal-hydride-batteries-0 Download Design, Performance, and Sustainability of Engineered Covers for Uranium Mill Tailings Proceedings of the Workshop on Long-Term Performance Monitoring of Metals and Radionuclides in the Subsurface: Strategies, Tools, and Case Studies. U.S. Geological Survey.April 21 and 22, 2004,... http://energy.gov/lm/downloads/design-performance-and-sustainability-engineered-covers-uranium-mill

415

Dynamic performance of packed-bed dehumidifiers: experimental results from the SERI desiccant test loop  

DOE Green Energy (OSTI)

Discussed are the design and construction of a desiccant test loop and results of tests with a silica-gel-packed bed. The test loop consists of two centrifugal fans, two duct heaters, a steam humidifier, 24.4m (80 ft) of 30-cm (12-in.) circular duct, instrumentation, and a test section. The loop is capable of testing adsorption and desorption modes at flow rates up to 0.340 kg/s (600 scfm) and at regeneration temperatures up to 120/sup 0/C (248/sup 0/F). Tests of a 74-cm(29-in.)-diameter, 3.2-cm(1.25-in.)-thick silica gel bed indicated that mass transfer occurs more readily in the adsorption direction than in the desorption direction. Pressure drop data indicated that the resistance of each of the two screens that hold the silica gel in place was equivalent to 2.5-cm(1-in.) of silica gel due to plugging. Results of the tests were also used to validate a SERI desiccant computer model, DESSIM.

Kutscher, C F; Barlow, R S

1982-08-01T23:59:59.000Z

416

Resin Liner Recovery and Over-Packing at Ontario Power Generation's Western Waste Management Facility  

SciTech Connect

Spent resins generated from Ontario Power Generation (OPG)'s and Bruce Power's Candu reactor operations are stored at OPG's Western Waste Management Facility in Kincardine, Ontario, Canada. The older resins are contained in 3 m{sup 3} epoxy-coated cylindrical carbon steel containers known as resin liners. The liners are stored in a stacked configuration within cylindrical in-ground containers. Previous studies indicated evidence of unacceptable liner wall corrosion and the potential for eventual leakage of resin from the liners. Based on this, OPG elected to re-package the majority of the resin liners into stainless steel over-packs. A contract for this work was awarded to a project team consisting of Duratek of Canada, Kinectrics, Inc. and E.S. Fox. This paper provides an overall summary of project activities focusing on the effectiveness of the equipment utilized and the soundness of the developed programs, plans and procedures. Specific information is provided on key aspects of the project and the overall achievement of project goals. (authors)

Pearson, S.D. [EnergySolutions, Columbia, SC (Colombia); Husain, A. [Kinectrics, Toronto, Ontario (Canada)

2008-07-01T23:59:59.000Z

417

Comparison of Three Bed Packings for the Biological Removal of Nitric Oxide from Gas Streams  

Science Conference Proceedings (OSTI)

Environmental and health issues coupled with increasingly stringent nitrogen oxide (NOx) emission standards indicates a need for the development of alternative low-cost technologies for the removal of NOx from gas streams. Biological NOx conversion offers promise as a novel treatment method. Thermophilic denitrifying bacteria indigenous to composts and soils are capable of converting NOx to environmentally benign nitrogen via a dissimilatory reductive pathway. The present study compares the performance of three bioreactor packing materials (compost, perlite, and biofoam) for the removal of nitric oxide (NO) from a simulated wet-scrubbed combustion gas. Although all three materials performed well (>85% NO removal) at residence times of 70-80 seconds, the compost performed better than the other materials at shorter residence times (13-44 seconds). The perlite and biofoam materials, however, both offer long-term thermal stability and lower pressure drop compared with compost. The feasibility of biological NOx conversion processes will depend on the combined factors of NOx removal ability and pressure drop. The results presented here suggest that the compost, perlite and biofoam systems, subject to further optimization, offer potential for the biological removal of NOx from gas streams.

Lee, Brady Douglas; Flanagan, W. P.; Barnes, Charles Marshall; Barrett, Karen B.; Zaccardi, Larry Bryan; Apel, William Arnold

2000-10-01T23:59:59.000Z

418

Performance characteristics and modeling of carbon dioxide absorption by amines in a packed column  

Science Conference Proceedings (OSTI)

Carbon dioxide (CO[sub 2]) is widely recognized as a major greenhouse gas contributing to global warming. To mitigate the global warming problem, removal of CO[sub 2] from the industrial flue gases is necessary. Absorption of carbon dioxide by amines in a packed column was experimentally investigated. The amines employed in the present study were the primary mono-ethanolamine (MEA) and tertiary N-methyldiethanolamine (MDEA), two very popular amines widely used in the industries for gas purification. The CO[sub 2] absorption characteristics by these two amines were experimentally examined under various operating conditions. A theoretical model was developed for describing the CO[sub 2] absorption behavior. Test data have revealed that the model predictions and the observed CO[sub 2] absorption breakthrough curves agree very well, validating the proposed model. Preliminary regeneration tests of exhausted amine solution were also conducted. The results indicated that the tertiary amine is easier to regenerate with less loss of absorption capacity than the primary one.

Lin, S.H.; Shyu, C.T. (Yuan Ze Univ., Taoyuan (Taiwan, Province of China). Dept. of Chemical Engineering)

1999-01-01T23:59:59.000Z

419

Selenite Reduction by a Denitrifying Culture: Batch- and Packed-Bed- Reactor Studies  

SciTech Connect

Selenite reduction by a bacterial consortium enriched from an oil refinery waste sludge was studied under denitrifying conditions using acetate as the electron donor. Fed-batch studies with nitrate as the primary electron acceptor showed that accumulation of nitrite led to a decrease in the extent of selenite reduction. Also, when nitrite was added as the primary electron acceptor, rapid selenite reduction was observed only after nitrite was significantly depleted from the medium. These results indicate that selenite reduction was inhibited at high nitrite concentrations. In addition to batch experiments, continuous flow selenite reduction experiments were performed in packed-bed columns using immobilized enrichment cultures. These experiments were carried out in three phases: In phase-I, a continuous nitrate feed with different inlet selenite concentration was applied; in phase-II, nitrate was fed in a pulsed fashion; and in phase-III, nitrate was fed in a continuous mode but at much lower concentrations than the other two phases. During the phase-I experiments, little selenite was removed from the influent. However, when the column was operated in the pulse feed strategy (phase II), or in the continuous mode with low nitrate levels (phase-III), significant quantities of selenium was removed from solution and retained in the immobilization matrix in the column. Thus, immobilized denitrifying cultures can be effective in removing selenium from waste streams, but nitrate-limited operating conditions might be required.

William A. Apel; Sridhar Viamajala; Yared Bereded-Samuel; James N. Petersen

2006-08-01T23:59:59.000Z

420

Effects of residence time distribution and packing on methanol oxidation in biotrickling filter  

SciTech Connect

The effects of residence time distribution (RTD) on biotrickling filter systems and the comparison of the maximum elimination capacity (EC) and poisoning limits as functions of loadings of two packing media, Celite Biocatalyst Carrier R-635 and a subbituminous coal (Hat Creek coal from British Columbia), were studied. To alter the RTD patterns in the two reactor columns, two baffle designs were chosen. The RTD tests were done under dry conditions, over a range of airflow rates, with zero baffle, one baffle, and two baffles added into each column. Mixed culture from compost was used to acclimate the bed for the methanol removal efficiency study. No nutrients were added in the coal column. To study the poisoning limit, the inlet methanol concentration was randomly increased until a severe drop in removal efficiency occurred. From the RTD tests and the removal efficiency runs, which did not result in 100% conversion, number of tank-in-series (N) values, maximum EC values, and rate constants of each column with different baffle configurations could be obtained. Results from duplicate runs showed that addition of baffles decreased the N values of the columns and increased the back mixing in both systems. Maximum EC values, critical loadings, and poisoning limits also increased with increasing back mixing. Coal was superior to Celite Biocatalyst Carrier R-635 because it gave good conversions without additional nutrients. In all runs, the rate of methanol removal was controlled by a zero order process. 14 refs., 10 figs., 7 tabs.

Yuanita W. Hutomo; K.L. Pinder [University of British Columbia, Vancouver, BC (Canada). Chemical and Biological Engineering Department

2006-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NICKEL HYDROXIDES  

DOE Green Energy (OSTI)

Nickel hydroxides have been used as the active material in the positive electrodes of several alkaline batteries for over a century. These materials continue to attract a lot of attention because of the commercial importance of nickel-cadmium and nickel-metal hydride batteries. This review gives a brief overview of the structure of nickel hydroxide battery electrodes and a more detailed review of the solid state chemistry and electrochemistry of the electrode materials. Emphasis is on work done since 1989.

MCBREEN,J.

1997-11-01T23:59:59.000Z

422

Automotive batteries. (Bibliography from the Global Mobility database). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, manufacture, and marketing of automotive batteries. Included are nickel-cadmium, nickel metal hydride, sodium sulfur, zinc-air, lead-acid, and polymer batteries. Testing includes life-cycling, performance and peak-power characteristics, and vehicle testing of near-term batteries. Also mentioned are measurement equipment, European batteries, and electric vehicle battery development. (Contains a minimum of 76 citations and includes a subject term index and title list.)

NONE

1995-03-01T23:59:59.000Z

423

Automotive batteries. (Bibliography from the Global Mobility database). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, manufacture, and marketing of automotive batteries. Included are nickel-cadmium, nickel metal hydride, sodium sulfur, zinc-air, lead-acid, and polymer batteries. Testing includes life-cycling, performance and peak-power characteristics, and vehicle testing of near-term batteries. Also mentioned are measurement equipment, European batteries, and electric vehicle battery development.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-02-01T23:59:59.000Z

424

Automotive batteries. (Bibliography from the Global Mobility database). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, manufacture, and marketing of automotive batteries. Included are nickel-cadmium, nickel metal hydride, sodium sulfur, zinc-air, lead-acid, and polymer batteries. Testing includes life-cycling, performance and peak-power characteristics, and vehicle testing of near-term batteries. Also mentioned are measurement equipment, European batteries, and electric vehicle battery development. (Contains a minimum of 71 citations and includes a subject term index and title list.)

Not Available

1994-06-01T23:59:59.000Z

425

NREL's emulation tool helps manufacturers ensure the safety and reliability of electric vehicle batteries.  

E-Print Network (OSTI)

carbonate Separator Cathode:Anode: e-e- Li++e-+C6LiC6 Li+ Lithium-ion battery e- Binder Conductive additives to as lithium batteries and the various chemistries that are the most promising for these applications. While Li-ion. The figure shows that lithium-ion (Li-ion) batteries are superior to nickel metal hydride (Ni-MH) batteries

426

Advanced Battery Testing for Plug-in Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

The Sprinter van is a Plug-in Hybrid-Electric Vehicle (PHEV) developed by EPRI and Daimler for use in delivering cargo, carrying passengers, or fulfilling a variety of specialty applications. This report provides details of testing conducted on two different types of batteries used in these vehicles: VARTA nickel-metal hydride batteries and SAFT lithium ion batteries. Testing focused on long-term battery durability, using a test profile developed to simulate the battery duty cycle of a PHEV Sprinter

2008-12-18T23:59:59.000Z

427

Advanced Batteries for PHEVs  

Science Conference Proceedings (OSTI)

This report describes testing conducted on two different types of batteriesVARTA nickel-metal hydride and SAFT lithium ionused in the Plug-in Hybrid Electric Vehicle (PHEV) Sprinter program. EPRI and DaimlerChrysler developed a PHEV concept for the Sprinter Van to reduce the vehicle's emissions, fuel consumption, and operating costs while maintaining equivalent or superior functionality and performance. The PHEV Sprinter was designed to operate in both a pure electric mode and a charge-sustaining hybrid ...

2009-12-22T23:59:59.000Z

428

Hybrid Vehicle Comparison Testing Using Ultracapacitor vs. Battery Energy Storage (Presentation)  

SciTech Connect

With support from General Motors, NREL researchers converted and tested a hybrid electric vehicle (HEV) with three energy storage configurations: a nickel metal-hydride battery and two ultracapacitor (Ucap) modules. They found that the HEV equipped with one Ucap module performed as well as or better than the HEV with a stock NiMH battery configuration. Thus, Ucaps could increase the market penetration and fuel savings of HEVs.

Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

2010-02-01T23:59:59.000Z

429

Modeling the performance of the piston ring-pack with consideration of non-axisymmetric characteristics of the power cylinder system in internal combustion engines  

E-Print Network (OSTI)

The performance of the piston ring-pack is directly associated with the friction, oil consumption, wear, and blow-by in internal combustion engines. Because of non-axisymmetric characteristics of the power cylinder system, ...

Liu, Liang, 1971-

2005-01-01T23:59:59.000Z

430

XRD and NMR investigation of Ti-compound formation in solution-doping of sodium aluminum hydrides: Solubility of Ti in NaAlH4 crystals grown in THF  

DOE Green Energy (OSTI)

Sodium aluminum hydrides have gained attention due to their high hydrogen weight percent (5.5% ideal) compared to interstitial hydrides, and as a model for hydrides with even higher hydrogen weight fraction. The purpose of this paper is to investigate the Ti-compounds that are formed under solution-doping techniques, such as wet doping in solvents such as tetrahydrofuran (THF). Compound formation in Ti-doped sodium aluminum hydrides is investigated using x-ray diffraction (XRD) and magic angle spinning (MAS) nuclear magnetic resonance (NMR). We present lattice parameter measurements of crushed single crystals, which were exposed to Ti during growth. Rietveld refinements indicate no lattice parameter change and thus no solubility for Ti in NaAlH{sub 4} by this method of exposure. In addition, x-ray diffraction data indicate that no Ti substitutes in NaH, the final decomposition product for the alanate. Reaction products of completely reacted (33.3 at. %-doped) samples that were solvent-mixed or mechanically milled are investigated. Formation of TiAl{sub 3} is observed in mechanically milled materials, but not solution mixed samples, where bonding to THF likely stabilizes Ti-based nano-clusters. The Ti in these clusters is activated by mechanical milling.

Majzoub, E H; Herberg, J L; Stumpf, R; Spangler, S; Maxwell, R S

2004-08-26T23:59:59.000Z

431

Regeneration of Aluminum Hydride  

Alane is one of the most promising solutions to storing hydrogen for use in hydrogen fuel cells. This technology provides exceptional improvement in ...

432

Regeneration of aluminum hydride  

DOE Green Energy (OSTI)

The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

Graetz, Jason Allan (Mastic, NY); Reilly, James J. (Bellport, NY)

2009-04-21T23:59:59.000Z

433

Regeneration of aluminum hydride  

DOE Patents (OSTI)

The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

2012-09-18T23:59:59.000Z

434

Chemical Hydrides Breakout Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Process Development Approach To Deliver Economic H 2 via NaBH 4 NaBH 4 Natural Gas Solar Energy Hydro Power H 2 Catalyst + H 2 Borate Return Geo- thermal Energy Source Borates...

435

Research Article Continuous Production of Lipase-Catalyzed Biodiesel in a Packed-Bed Reactor: Optimization and Enzyme Reuse Study  

E-Print Network (OSTI)

Copyright 2011 Hsiao-Ching Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1 ? C, and substrate molar ratio 1: 4. The predicted and experimental values of molar conversion were 83.31 2.07 % and 82.81 .98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis. 1.

Hsiao-ching Chen; Hen-yi Ju; Tsung-ta Wu; Yung-chuan Liu; Chih-chen Lee; Cheng Chang; Yi-lin Chung; Chwen-jen Shieh

2010-01-01T23:59:59.000Z

436

Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid  

DOE Green Energy (OSTI)

The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the Simulated Honda Civic HEV Profile (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditionsit is recommended that life studies be conducted on these technologies under such conditions.

Sally (Xiaolei) Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

2012-08-01T23:59:59.000Z

437

Adsorption and desorption of noble gases on activated charcoal: II. sup 222 Rn studies in a monolayer and packed bed  

SciTech Connect

The adsorptive and desorptive characteristics of canisters containing a petroleum-based charcoal were investigated under controlled conditions of temperature, relative humidity, and Rn concentration. Charcoals exposed in a monolayer and packed bed during exposure intervals of 1-7 d demonstrate that Rn adsorption and desorption are dependent on bed depth and the amount of water adsorbed. Changes in the adsorptive and desorptive properties of the charcoal occurred near the break-point where the pores became occluded by water vapor that condenses in the entrance capillaries. Radon-222 adsorption is decreased by an order of magnitude as the amount of adsorbed water exceeds the break-point of the charcoal. The reduction in pore surface due to adsorbed water results in a marked increase in the rate of Rn loss from exposed canisters, accounting for reduced adsorption. The apparent desorption time-constant for a 2-cm bed of loose Witco 6 x 10 mesh charcoal containing 0.220-0.365 kg H{sub 2}O kg-1 is typically between 2-8 h. The apparent desorption time-constant for an equivalent packed bed containing a water vapor content of 0.026-0.060 kg H{sub 2}O kg-1, which is below the break-point of the charcoal, is about 15-30 h. Conventional charcoal canisters, if exposed in the fully-opened configuration, can achieve the break-point in less than 4 d at 70% humidity. The use of a diffusion barrier would allow for longer exposure times until the break-point of the charcoal is achieved.

Scarpitta, S.C.; Harley, N.H. (Department of Energy, New York, NY (USA))

1990-10-01T23:59:59.000Z

438

A two-stage tabu search algorithm with enhanced packing heuristics for the 3L-CVRP and M3L-CVRP  

Science Conference Proceedings (OSTI)

The Three-Dimensional Loading Capacitated Vehicle Routing Problem (3L-CVRP) addresses practical constraints frequently encountered in the freight transportation industry. In this problem, the task is to serve all customers using a homogeneous fleet of ... Keywords: 3D packing, Deepest-Bottom-Left-Fill, Maximum Touching Area, Tabu search, Vehicle routing problem

Wenbin Zhu; Hu Qin; Andrew Lim; Lei Wang

2012-09-01T23:59:59.000Z

439

Adsorption and desorption of noble gases on activated charcoal: I. sup 133 Xe studies in a monolayer and packed bed  

SciTech Connect

Detailed desorption studies using petroleum-based activated charcoals were conducted in monolayers and packed beds. Less extensive studies were conducted on several other types of charcoal. Kinetic studies, using {sup 133}Xe, demonstrated the existence of a micropore volume with entrance capillaries that together determined the response characteristics of charcoal to external concentration gradients of tracer gases. This new two-phase model, composed of micropores and entrance capillaries, describes the desorption dynamics of an adsorbed gas in the presence of water vapor. Condensed water vapor in the entrance capillaries of the charcoal reduced the effective pore radius and increased the diffusion half-time. Water could also adversely affect the integrating capability of the charcoal dramatically if the adsorbed water completely blocked the entrance capillaries. The amount of adsorbed water required to block the capillaries varied with the charcoal type and was termed here as the break-point. The desorption parameters measured in this work can be used to design an improved passive Rn monitor to effectively integrate during a 3-7 d exposure period by eliminating the adverse effects of water vapor. The improved canister design would provide more accurate and reproducible measurements of indoor Rn concentrations than are currently available.

Scarpitta, S.C.; Harley, N.H. (Department of Energy, New York, NY (USA))

1990-10-01T23:59:59.000Z

440

Thermal Characterization and Analysis of A123 Systems Battery Cells, Modules and Packs: Cooperative Research and Development Final Report, CRADA Number CRD-07-243  

DOE Green Energy (OSTI)

In support of the A123 Systems battery development program with USABC/DOE, NREL provided technical support in thermal characterization, analysis and management of batteries. NREL's effort was part of Energy Storage Project funded by DOE Vehicle Technologies Program. The purpose of this work was for NREL to perform thermal characterization and analysis of A123 Systems cells and modules with the aim for Al23 Systems to improve the thermal performance of their battery cells, modules and packs.

Pesaran, A.

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride packs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Pack.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

February 1999 February 1999 Revised: 05/05/99 CHEVROLET S-10 ELECTRIC (NIMH BATTERIES) PERFORMANCE CHARACTERIZATION SUMMARY ELECTRIC TRANSPORTATION DIVISION Urban Range (On Urban Pomona Loop - see other side for map) Test UR1 UR2 UR3 UR4 Payload (lb.) 180 180 920 920 AC kWh Recharge 54.93 57.09 54.98 51.34 AC kWh/mi. 0.78 0.91 0.87 0.85 Range (mi.) 70.4 63.0 63.0 60.4 Avg. Ambient Temp. 63°F 66°F 63°F 50°F UR1 Urban Range Test, Min Payload, No Auxiliary Loads UR2 Urban Range Test, Min Payload, A/C on High, Headlights on Low, Radio On UR3 Urban Range Test, Max Payload, No Auxiliary Loads UR4 Urban Range Test, Max Payload, A/C on High, Headlights on Low, Radio On State of Charge Meter (UR1) Freeway Range (On Freeway Pomona Loop - see other side for map) Test FW1 FW2 FW3 FW4 Payload (lb.) 180 180 920 920 AC kWh Recharge

442

Approximating semidefinite packing programs ?  

E-Print Network (OSTI)

Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Washington, DC,. USA, 1994, IEEE Computer Society, pp. 3639.

443

bin packing problem  

Science Conference Proceedings (OSTI)

... For instance, suppose we need a number of pipes of different, specific lengths to plumb a house and we can buy pipe stock in 5 meter lengths. ...

2013-08-23T23:59:59.000Z

444

DataPackInvrpt  

Office of Legacy Management (LM)

7. The samples were prepared and analyzed within the established hold times. All in house quality control procedures were followed, as described below. 8. General quality...

445

Implications of NiMH Hysteresis on HEV Battery Testing and Performance  

SciTech Connect

Nickel Metal-Hydride (NiMH) is an advanced high-power battery technology that is presently employed in Hybrid Electric Vehicles (HEVs) and is one of several technologies undergoing continuing research and development by FreedomCAR. Unlike some other HEV battery technologies, NiMH exhibits a strong hysteresis effect upon charge and discharge. This hysteresis has a profound impact on the ability to monitor state-of-charge and battery performance. Researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) have been investigating the implications of NiMH hysteresis on HEV battery testing and performance. Experimental results, insights, and recommendations are presented.

Motloch, Chester George; Belt, Jeffrey R; Hunt, Gary Lynn; Ashton, Clair Kirkendall; Murphy, Timothy Collins; Miller, Ted J.; Coates, Calvin; Tataria, H. S.; Lucas, Glenn E.; Duong, T.Q.; Barnes, J.A.; Sutula, Raymond

2002-08-01T23:59:59.000Z

446

Reclamation of automotive batteries: Assessment of health impacts and recycling technology. Task 2: Assessment of health impacts; Final report  

SciTech Connect

The task 2 report compares the relative health and hazard impacts of EV battery recycling technologies. Task 2 compared the relative impact of recycling EV batteries in terms of cancer, toxicity, and ecotoxicological potential, as well as leachability, flammability, and corrosivity/reactivity hazards. Impacts were evaluated for lead-acid, nickel-cadmium, nickel-metal hydride, sodium sulfur, sodium-nickel chloride, lithium-iron sulfide and disulfide, lithium-polymer, lithium-ion, and zinc-air batteries. Health/hazard impacts were evaluated for recycling methods including smelting, electrowinning, and other appropriate techniques that apply to different battery technologies.

Unnasch, S.

1999-04-01T23:59:59.000Z

447

U.S. battery industry: Not mature yet  

SciTech Connect

In the US, primary batteries are entering an era of slower growth and secondary non-automotive battery sales are predicted to rise. Applications once served by primary systems are now being served by secondary batteries. The decline in primary battery sales is also a consequence of enhanced unit efficiency: longer-lived batteries do not need to be replaced as often. No market growth is anticipated for zinc-carbon primary batteries in the next decade, while major market reductions are predicted for mercury-oxide primary batteries. Average annual 12% growth during 1994-99 is expected for nickel metal-hydride secondary batteries in US markets.

NONE

1994-06-01T23:59:59.000Z

448

Advanced batteries for electric vehicle applications  

SciTech Connect

A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

Henriksen, G.L.

1993-08-01T23:59:59.000Z

449

Commercial viability of hybrid vehicles : best household use and cross national considerations.  

DOE Green Energy (OSTI)

Japanese automakers have introduced hybrid passenger cars in Japan and will soon do so in the US. In this paper, we report how we used early computer simulation model results to compare the commercial viability of a hypothetical near-term (next decade) hybrid mid-size passenger car configuration under varying fuel price and driving patterns. The fuel prices and driving patterns evaluated are designed to span likely values for major OECD nations. Two types of models are used. One allows the ''design'' of a hybrid to a specified set of performance requirements and the prediction of fuel economy under a number of possible driving patterns (called driving cycles). Another provides an estimate of the incremental cost of the hybrid in comparison to a comparably performing conventional vehicle. In this paper, the models are applied to predict the NPV cost of conventional gasoline-fueled vehicles vs. parallel hybrid vehicles. The parallel hybrids are assumed to (1) be produced at high volume, (2) use nickel metal hydride battery packs, and (3) have high-strength steel bodies. The conventional vehicle also is assumed to have a high-strength steel body. The simulated vehicles are held constant in many respects, including 0-60 time, engine type, aerodynamic drag coefficient, tire rolling resistance, and frontal area. The hybrids analyzed use the minimum size battery pack and motor to meet specified 0-60 times. A key characteristic affecting commercial viability is noted and quantified: that hybrids achieve the most pronounced fuel economy increase (best use) in slow, average-speed, stop-and-go driving, but when households consistently drive these vehicles under these conditions, they tend to travel fewer miles than average vehicles. We find that hours driven is a more valuable measure than miles. Estimates are developed concerning hours of use of household vehicles versus driving cycle, and the pattern of minimum NPV incremental cost (or benefit) of selecting the hybrid over the conventional vehicle at various fuel prices is illustrated. These results are based on data from various OECD motions on fuel price, annual miles of travel per vehicle, and driving cycles assumed to be applicable in those nations. Scatter in results plotted as a function of average speed, related to details of driving cycles and the vehicles selected for analysis, is discussed.

Santini, D. J.; Vyas, A. D.

1999-07-16T23:59:59.000Z

450

SOLID STATE HYDRIDE SYSTEM ENGINEERING  

DOE Green Energy (OSTI)

A typical hydrogen refueling station was designed based on DOE targets and existing gasoline filling station operations. The purpose of this design was to determine typical heat loads, how these heat loads will be handled, and approximate equipment sizes. For the station model, two DOE targets that had the most impact on the design were vehicle driving range and refueling time. The target that hydrogen fueled vehicles should have the equivalent driving range as present automobiles, requires 5 kg hydrogen storage. Assuming refueling occurs when the tank is 80% empty yields a refueling quantity of 4 kg. The DOE target for 2010 of a refueling time of 3 minutes was used in this design. There is additional time needed for payment of the fuel, and connecting and disconnecting hoses and grounds. It was assumed that this could be accomplished in 5 minutes. Using 8 minutes for each vehicle refueling gives a maximum hourly refueling rate of 7.5 cars per hour per fueling point.

Anton, D; Mark Jones, M; Bruce Hardy, B

2007-10-31T23:59:59.000Z

451

HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORE 4: RANDOM PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO  

SciTech Connect

In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering effects during pebble loading. Core 4 was determined to be acceptable benchmark experiment.

John D. Bess; Leland M. Montierth

2013-03-01T23:59:59.000Z

452

Packed-Bed Reactor Study of NETL Sample 196c for the Removal of Carbon Dioxide from Simulated Flue Gas Mixture  

Science Conference Proceedings (OSTI)

An amine-based solid sorbent process to remove CO2 from flue gas has been investigated. The sorbent consists of polyethylenimine (PEI) immobilized onto silica (SiO2) support. Experiments were conducted in a packed-bed reactor and exit gas composition was monitored using mass spectrometry. The effects of feed gas composition (CO2 and H2O), temperature, and simulated steam regeneration were examined for both the silica support as well as the PEI-based sorbent. The artifact of the empty reactor was also quantified. Sorbent CO2 capacity loading was compared to thermogravimetric (TGA) results to further characterize adsorption isotherms and better define CO2 working capacity. Sorbent stability was monitored by periodically repeating baseline conditions throughout the parametric testing and replacing with fresh sorbent as needed. The concept of the Basic Immobilized Amine Sorbent (BIAS) Process using this sorbent within a system where sorbent continuously flows between the absorber and regenerator was introduced. The basic tenet is to manipulate or control the level of moisture on the sorbent as it travels around the sorbent circulation path between absorption and regeneration stages to minimize its effect on regeneration heat duty.

Hoffman, James S.; Hammache, Sonia; Gray, McMahan L.; Fauth Daniel J.; Pennline, Henry W.

2012-04-24T23:59:59.000Z