Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Steps to Commercialization: Nickel Metal Hydride Batteries | Department of  

Broader source: Energy.gov (indexed) [DOE]

Steps to Commercialization: Nickel Metal Hydride Batteries Steps to Commercialization: Nickel Metal Hydride Batteries Steps to Commercialization: Nickel Metal Hydride Batteries October 17, 2011 - 10:42am Addthis Steps to Commercialization: Nickel Metal Hydride Batteries Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs How does it work? Through licensing and collaborative work, Energy Department-sponsored research can yield great economic benefits and help bring important new products to market. The Energy Department funds cutting-edge research on a broad range of topics ranging from advanced battery construction to the modeling of industrial processes and supercomputer simulation of supernovae. But this research is not only about furthering our understanding of the world around

2

Hydridable material for the negative electrode in a nickel-metal hydride storage battery  

SciTech Connect (OSTI)

A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##

Knosp, Bernard (Neuilly-sur-Seine, FR); Bouet, Jacques (Paris, FR); Jordy, Christian (Dourdan, FR); Mimoun, Michel (Neuilly-sur-Marne, FR); Gicquel, Daniel (Lanorville, FR)

1997-01-01T23:59:59.000Z

3

Analytical assessment of the thermal behavior of nickel-metal hydride batteries  

E-Print Network [OSTI]

Analytical assessment of the thermal behavior of nickel-metal hydride batteries Peyman Taheri in batteries with orthotropic thermal conductivities, where the heat generation is due to irreversible of the battery thermal behavior with modest numerical effort. The accuracy of the proposed model is tested

Bahrami, Majid

4

Nickel-Metal-Hydride Batterie--High Energy Storage for Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Freedomcar & Vehicle Technologies Program Freedomcar & Vehicle Technologies Program Nickel-Metal-Hydride Batteries - High Energy Storage for Electric Vehicles Background The key to making electric vehicles (EVs) practical is the development of batteries that can provide performance comparable with that of con ventional vehicles at a similar cost. Most EV batteries have limited energy storage capabili ties, permitting only relatively short driving distances before the batteries must be recharged. In 1991, under a coopera tive agreement with The U.S. Department of Energy (DOE), the United States Advanced Battery Consortium (USABC) initiated development of nickel- metal-hydride (NiMH) battery technology and established it as a prime mid-term candidate for use in EVs. DOE funding has been instru

5

Effects on the positive electrode of the corrosion of AB{sub 5} alloys in nickel-metal-hydride batteries  

SciTech Connect (OSTI)

Effects of corrosion of MmNi{sub 4.3{minus}x}Mn{sub 0.3}Al{sub 0.4}Co{sub x} alloys (where Mm = Ce 50%, La 30%, Nd 15%, Pr 5%) are evaluated in nickel-metal-hydride (Ni-MH) cells. Particularly, it is shown how Al released by the corroded alloys pollutes the positive electrode, which endures a loss of charging efficiency, due to the formation of a hydrotalcite-like phase stabilized with Al. Furthermore, since Al is eluted from the hydride electrode and is completely trapped in the positive active material, the titration of this element in the positive electrode is a powerful technique for quantification of the corrosion of AB{sub 5} alloys in Ni-MH cells.

Bernard, P. [SAFT, Marcoussis (France). Research Dept.

1998-02-01T23:59:59.000Z

6

Identification of a new pseudo-binary hydroxide during calendar corrosion of (La, Mg)2Ni7-type hydrogen storage alloys for Nickel-Metal Hydride batteries  

E-Print Network [OSTI]

hydrogen storage alloys for Nickel-Metal Hydride batteries J. Monnier 1 , H. Chen 1 , S. Joiret2,3 , J present higher hydrogen storage capacity and higher discharge capacity, eg. 356mAh/g for LaCaMgNi9 [4 in the huge market of hybrid electric vehicles (HEV) and Emergency Light Units (ELU). Hydrogen

Boyer, Edmond

7

Influence of additives on the thermal behavior of nickel/metal hydride battery  

Science Journals Connector (OSTI)

This study discusses the thermal behavior of the 6.5 Ah cylinder Ni/MH hydride battery with 0.5 wt% ytterbium oxide (...2O3...) in nickel electrode and 1.0 wt% super absorbent polymer (SAP) in hydrogen-storage al...

Kai Yang; Jin Jing An; Shi Chen

2010-12-01T23:59:59.000Z

8

Development of a metal hydride electrode waste treatment process  

SciTech Connect (OSTI)

Manufacturing residues of metal hydride electrodes for nickel - metal hydride batteries were chemically processed to recover the metal part and heat treated for the organic part. Chemical recovery yielded Ni-Co alloy after electrolysis of the solution and hydroxides of other metal, mainly rare earths. The organic part, pyrolyzed at 700 C, led to separation between carbon and fluorinated matter. Infrared coupling at the output of the pyrolysis furnace was used to identify the pyrolysis gases.

Bianco, J.C.; Martin, D.; Ansart, F.; Castillo, S.

1999-12-01T23:59:59.000Z

9

Improving nickel metal hydride batteries through research in negative electrode corrosion control and novel electrode materials  

E-Print Network [OSTI]

electrode materials. In order to fully understand the processes involved in the corrosion study, tests were carried at Brookhaven National Laboratory using X-ray Absorption Near Edge Spectroscopy. These tests showed that Zn prevented the corrosion of Ni-a...

Alexander, Michael Scott

1997-01-01T23:59:59.000Z

10

Thermal analysis of nickel/metal (Ni/MH) hydride battery during charge cycle  

Science Journals Connector (OSTI)

A three-dimensional mathematical model containing temporal and spatial coordinates is presented for analyzing the thermal behavior and obtaining the internal temperature profile of cylindrical Ni/MH battery. This model is performed to investigate the ... Keywords: Ni/MH battery, charge, heat transfer coefficient, thermal analysis

Nabi Jahantigh; Ebrahim Afsharia

2008-02-01T23:59:59.000Z

11

Thermal behavior of nickel/metal hydride battery during charging and discharging  

Science Journals Connector (OSTI)

This work discusses thermal behavior of Ni/MH battery with experimental methods. The present work not ... new way to get more exactly parameters and thermal model, but also concentrates on thermal behavior in dis...

K. Yang; D. H. Li; S. Chen; F. Wu

2009-02-01T23:59:59.000Z

12

Thermal behavior analysis of nickel/metal hydride battery during overcharging  

Science Journals Connector (OSTI)

To analyze the thermal behavior of the cylinder Ni/MH battery during overcharging, a two-dimensional thermal model is provided in this work. More ... reliable data is provided to create the precise thermal model....

Kai Yang; JinJing An; Shi Chen

2010-05-01T23:59:59.000Z

13

Fracture Initiation Due to Hydrides in Zircaloy-2  

Science Journals Connector (OSTI)

In hydride-forming metals, the presence of hydrides can sometimes lead to brittle fracture. Zirconium is a hydride-forming metal that forms the basis of a number of alloys used in CANDUTM nuclear reactors. Under ...

M. P. Puls; B. W. Leitch; W. R. Wallace

1987-01-01T23:59:59.000Z

14

Hydride compositions  

DOE Patents [OSTI]

Disclosed are a composition for use in storing hydrogen and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the H equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to H, and then heating below the softening temperature of any of the constituents. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P{sub H}{sub 2} and determining H/M from the isothermic function of the composition.

Lee, Myung, W.

1994-01-01T23:59:59.000Z

15

Hydride compositions  

DOE Patents [OSTI]

A composition for use in storing hydrogen, and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the hydrogen equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to hydrogen and then heating at a temperature below the softening temperature of any of the. constituents so that their chemical and structural integrity is preserved. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P.sub.H.sbsb.2 and determining H/M from the isothermic function of the composition.

Lee, Myung W. (North Augusta, SC)

1995-01-01T23:59:59.000Z

16

Thermal behavior of nickel–metal hydride battery during charging at a wide range of ambient temperatures  

Science Journals Connector (OSTI)

The thermal behavior of D-type Ni–MH battery during charging was investigated at a wide ... this work. The temperature measurement of the battery was conducted by using a thermal infrared imager put in a high–low...

Kai Zheng Fang; Dao Bin Mu; Shi Chen…

2011-07-01T23:59:59.000Z

17

Metal Hydrides - Science Needs  

Broader source: Energy.gov (indexed) [DOE]

Storage Grand Challenge Pre-Solicitation Meeting, June 19, 2003 1 Metal Hydrides - Science Needs TRADITIONAL METALLIC HYDRIDES: 1.5 to 2 wt.% H. Well studied. COMPLEX...

18

Metal Hydride Hydrogen Storage R and D  

Broader source: Energy.gov [DOE]

DOE's research on complex metal hydrides targets the development of advanced metal hydride materials including light-weight complex hydrides, destabilized binary hydrides, intermetallic hydrides,...

19

Metal Hydride Hydrogen Storage Research and Development  

Broader source: Energy.gov [DOE]

DOE's research on complex metal hydrides targets the development of advanced metal hydride materials including light-weight complex hydrides, destabilized binary hydrides, intermetallic hydrides,...

20

Transition-Metal Hydrides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transition-Metal Hydride Electrochromics Transition-Metal Hydride Electrochromics A new type of electrochromic hydride material has interesting and unusual properties. Thin Ni-Mg films, for example, are mirror-like in appearance and have very low visible transmittance. On exposure to hydrogen gas or on reduction in alkaline electrolyte, the films become transparent. The transition is believed to result from formation of nickel magnesium hydride, Mg2NiH4. Switchable mirrors based on rare earth hydrides were discovered in 1996 at Vrije University in the Netherlands, Rare earth-magnesium alloy films were subsequently found to be superior to the pure lanthanides in maximum transparency and mirror-state reflectivity by Philips Laboratories. The newer transition-metal types which use less expensive and less reactive materials were discovered at LBNL. This has now become a very active area of study with a network of researchers.

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electron Density Distributions Calculated for the Nickel Sulfides Millerite, Vaesite, and Heazlewoodite and Nickel Metal: A Case for the Importance of Ni-Ni Bond Paths for  

E-Print Network [OSTI]

Electron Density Distributions Calculated for the Nickel Sulfides Millerite, Vaesite, and Heazlewoodite and Nickel Metal: A Case for the Importance of Ni-Ni Bond Paths for Electron Transport G. V. Gibbs point properties (the electron density (F) and the Hessian of F at the bond critical points (bcp

Downs, Robert T.

22

Life Cycle Environmental Assessment of Lithium-Ion and Nickel Metal Hydride Batteries for Plug-In Hybrid and Battery Electric Vehicles  

Science Journals Connector (OSTI)

Infrastructure and transport requirements, though often generic, were always included. ... vehicles (PHEV), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector; however, meaningful GHG emissions redns. ... storage systems in renewable energy plants, as well as power systems for sustainable vehicles, such as hybrid and elec. ...

Guillaume Majeau-Bettez; Troy R. Hawkins; Anders Hammer Strűmman

2011-04-20T23:59:59.000Z

23

Method for preparing porous metal hydride compacts  

DOE Patents [OSTI]

A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

1980-01-21T23:59:59.000Z

24

PNNL Chemical Hydride Capabilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Chemical Hydride Capabilities PNNL Chemical Hydride Capabilities Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC....

25

Microstructural study by XRD profile analysis and TEM observations on hydrided recrystallized Zircaloy-4  

SciTech Connect (OSTI)

Zircaloy-4, used as cladding tube material in the nuclear reactors, may become brittle due to the precipitation of hydrides. During hydride formation, the anisotropic misfit strains between hydrides and the hexagonal-close-packed zirconium matrix results in a preferred orientation of the hydride platelets in the anisotropic stress field caused by non-relieved fabrication residual stresses and misfit stresses. To understand the mechanism of rupture and to predict the threshold stresses for hydride stress orientation, it is necessary to study the residual stresses, especially the microstrain caused by crystalline lattice misfit, in a hydrided specimen. The X-ray diffraction profile analysis is very sensitive to all the microstructure evolution in metallic materials. It is a non-destructive and voluminal technique compared with transmission electron microscope observation. The XRD peak broadening can be related closely with the microstrain in case of hydrided Zircaloy-4, because the hydride formation creates in general a great number of dislocations which contributes especially to the diminution of coherent domain size and to the increase of microstrain. To calibrate the internal microstrain due to precipitation effect of hydrided specimens, XRD profile analysis has also been realized on the non-hydrided specimens deformed by uniaxial tension. In this paper the authors restrict to analyzing the results about the recrystallized state, because more informations about the anisotropic elasticity, plasticity, thermal expansion, neutron diffraction measurement and the crystallographic texture results are available.

Bai, J.B. (Lab. MSS/MAT, CNRS URA 850, Ecole Centrale Paris, 92295 Chatenay Malabry Cedex (FR)); Gilbon, D. (LM3, CNRS URA 1219, ENSAM, 151 Bd. de l'Hopital, 75013 Paris (FR)); Lebrun, J.L. (CEA/DTA/CEREM/DTM/SRMA, C.E. Saclay, 91191 Gif-sur-Yvette Cedex (FR))

1992-02-01T23:59:59.000Z

26

Hydride Rim Formation in Unirradiated Zircaloy  

Broader source: Energy.gov [DOE]

The purpose of this work is to develop the means of pre-hydriding unirradiated Zircaloy cladding such that a high concentration, or rim, of hydrides is formed at the cladding outside diameter.

27

Crack propagation in hydrided zircaloy-2  

Science Journals Connector (OSTI)

Transmission electron microscope observations of cracks in thin foils of Zircaloy—2 which contains hydride particles have shown that the fracture process is one of linking up satellite cracks in the hydride ph...

G. Östberg

1968-06-01T23:59:59.000Z

28

Hydrogen, lithium, and lithium hydride production  

DOE Patents [OSTI]

A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

2014-03-25T23:59:59.000Z

29

E-Print Network 3.0 - alkali metal hydrides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hf for selected alkali metal hydrides, alkaline earth metal hydrides, transition metal hydrides... of binary hydrides based on alkali metals, alkaline earth ... Source:...

30

Complex Hydrides for Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrides for Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories G. J. Thomas Efficient onboard hydrogen storage is a critical enabling technology for the use of hydrogen in vehicles * The low volumetric density of gaseous fuels requires a storage method which densifies the fuel. - This is particularly true for hydrogen because of its lower energy density relative to hydrocarbon fuels. * Storage methods result in additional weight and volume above that of the fuel. How do we achieve adequate stored energy in an efficient, safe and cost-effective system? G. J. Thomas However, the storage media must meet certain requirements: - reversible hydrogen uptake/release - lightweight - low cost - cyclic stability - rapid kinetic properties - equilibrium properties (P,T) consistent

31

Activated Aluminum Hydride Hydrogen Storage Compositions - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen and Fuel Cell Find More Like This Return to Search Activated Aluminum Hydride Hydrogen Storage Compositions Brookhaven National Laboratory Contact BNL About This...

32

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary...  

Broader source: Energy.gov (indexed) [DOE]

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities...

33

Recent developments in hydrogen storage applications based on metal hydrides  

Science Journals Connector (OSTI)

Metal hydrides have been commercialized for battery applications for more than 8 years. In case of storage applications, metal hydrides were extensively evaluated in combination with combustion engines. The relatively low gravimetric energy density of hydride tanks based on low temperature metal hydrides prevented the commercial use of that technology. Recently, lasting progress in the PEM fuel cell technology offers chances for metal hydride storage systems mainly for low power applications, but also for niche markets. The paper describes promising projects on metal hydride storage technology and gives an outlook about improvements of both the metal hydride alloy performance and the performance of metal hydride storage tanks.

V. Güther; A. Otto

1999-01-01T23:59:59.000Z

34

Comprehensive Thermodynamics of Nickel Hydride Bis(Diphosphine...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermodynamics of Nickel Hydride Bis(Diphosphine) Complexes: A Predictive Model through Computations. Comprehensive Thermodynamics of Nickel Hydride Bis(Diphosphine) Complexes: A...

35

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network [OSTI]

of hydride fueled BWRs. Nuclear Engineering and Design, 239:Fueled PWR Cores. Nuclear Engineering and Design, 239:1489–Hydride Fueled LWRs. Nuclear Engineering and Design, 239:

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

36

Kinetics of hydride front in Zircaloy-2 and H release from a fractional hydrided surface  

Science Journals Connector (OSTI)

The authors study the hydriding process on commercial nuclear fuelcladdings from their inner surface using an ultrahigh vacuum method. The method allows determining the incubation and failure times of the fuel claddings as well as the dissipated energy and the partial pressure of the desorbed H 2 from the outer surface of fuel claddings during the hydriding process. The correlation between the hydriding dissipated energy and the amount of zirconium hydride (formed at different stages of the hydriding process) leads to a near t 1 ? 2 potential law corresponding to the time scaling of the reaction for the majority of the tested samples. The calibrated relation between energy and hydride thickness allows one to calculate the enthalpy of the ? - Zr H 1.5 phase. The measured H 2 desorption from the external surface is in agreement with a proposed kinetic desorption model from the hydrides precipitated at the surface.

M. Díaz; A. González-González; J. S. Moya; B. Remartínez; S. Pérez; J. L. Sacedón

2009-01-01T23:59:59.000Z

37

Zirconium hydride containing explosive composition  

DOE Patents [OSTI]

An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.

Walker, Franklin E. (18 Shadow Oak Rd., Danville, CA 94526); Wasley, Richard J. (4290 Colgate Way, Livermore, CA 94550)

1981-01-01T23:59:59.000Z

38

Electrochromically switched, gas-reservoir metal hydride devices with  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochromically switched, gas-reservoir metal hydride devices with Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows Title Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows Publication Type Journal Article LBNL Report Number LBNL-1089E Year of Publication 2008 Authors Anders, André, Jonathan L. Slack, and Thomas J. Richardson Journal Thin Solid Films Volume 1 Date Published 08/2003 Call Number LBNL-1089E Abstract Proof-of-principle gas-reservoir MnNiMg electrochromic mirror devices have been investigated. In contrast to conventional electrochromic approaches, hydrogen is stored (at low concentration) in the gas volume between glass panes of the insulated glass units (IGUs). The elimination of a solid state ion storage layer simplifies the layer stack, enhances overall transmission, and reduces cost. The cyclic switching properties were demonstrated and system durability improved with the incorporation a thin Zr barrier layer between the MnNiMg layer and the Pd catalyst. Addition of 9% silver to the palladium catalyst further improved system durability. About 100 full cycles have been demonstrated before devices slow considerably. Degradation of device performance appears to be related to Pd catalyst mobility, rather than delamination or metal layer oxidation issues originally presumed likely to present significant challenges.

39

Wire Wrapped Hexagonal Pin Arrays for Hydride Fueled PWRs  

E-Print Network [OSTI]

This work contributes to the Hydride Fuels Project, a collaborative effort between UC Berkeley and MIT

Diller, Peter

40

Activated aluminum hydride hydrogen storage compositions and uses thereof  

SciTech Connect (OSTI)

In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

Sandrock, Gary (Ringwood, NJ); Reilly, James (Bellport, NY); Graetz, Jason (Mastic, NY); Wegrzyn, James E. (Brookhaven, NY)

2010-11-23T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hydrogen-storing hydride complexes  

DOE Patents [OSTI]

A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

Srinivasan, Sesha S. (Tampa, FL); Niemann, Michael U. (Venice, FL); Goswami, D. Yogi (Tampa, FL); Stefanakos, Elias K. (Tampa, FL)

2012-04-10T23:59:59.000Z

42

E-Print Network 3.0 - automated hydride generation-cryotrapping...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beds... Laboratories Hydride DevelopmentHydride Development for Hydrogen Storagefor Hydrogen Storage Karl Gross Sandia... using light-weight reversible hydrides The lack of a...

43

Liquid suspensions of reversible metal hydrides  

DOE Patents [OSTI]

The reversibility of the process M + x/2 H/sub 2/ ..-->.. MH/sub x/, where M is a metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under a liquid, thereby to reduce contamination, provide better temperature control and provide in situ mobility of the reactants. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen (at high pressures) and to release (at low pressures) previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the former is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the H/sub 2/ pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

Reilly, J.J.; Grohse, E.W.; Winsche, W.E.

1983-12-08T23:59:59.000Z

44

Number  

Office of Legacy Management (LM)

' ' , /v-i 2 -i 3 -A, This dow'at consists ~f--~-_,_~~~p.~,::, Number -------of.-&--copies, 1 Series.,-a-,-. ! 1 THE UNIVERSITY OF ROCHESTER 1; r-.' L INTRAMURALCORRESPONDENCE i"ks' 3 2.. September 25, 1947 Memo.tor Dr. A. H, Dovdy . From: Dr. H. E, Stokinger Be: Trip Report - Mayvood Chemical Works A trip vas made Nednesday, August 24th vith Messrs. Robert W ilson and George Sprague to the Mayvood Chemical F!orks, Mayvood, New Jersey one of 2 plants in the U.S.A. engaged in the production of thorium compounds. The purpose of the trip vas to: l 1. Learn the type of chemical processes employed in the thorium industry (thorium nitrate). 2. Survey conditions of eeosure of personnel associated vith these chemical processes. 3. Obtain samples of atmospheric contaminants in the plant, as

45

X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films Title X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films Publication Type Journal Article LBNL Report Number LBNL-50574 Year of Publication 2002 Authors Richardson, Thomas J., Baker Farangis, Jonathan L. Slack, Ponnusamy Nachimuthu, Rupert C. C. Perera, Nobumichi Tamura, and Michael D. Rubin Journal Journal of Alloys and Compounds Volume 356-357 Start Page 204 Pagination 204-207 Date Published 08/2003 Keywords A. hydrogen storage materials, NEXAFS, thin film s; C. EXAFS, x-ray diffraction Abstract Mixed metal thin films containing magnesium and a first-row transition element exhibit very large changes in both reflectance and transmittance on exposure to hydrogen gas. Changes in electronic structure and coordination of the magnesium and transition metal atoms during hydrogen absorption were studied using dynamic in situ transmission mode X-ray absorption spectroscopy. Mg K-edge and Ni, Co, and Ti L-edge spectra reflect both reversible and irreversible changes in the metal environments. A significant shift in the nickel L absorption edge shows it to be an active participant in hydride formation. The effect on cobalt and titanium is much less dramatic, suggesting that these metals act primarily as catalysts for formation of magnesium hydride.

46

Complex Hydrides for Hydrogen Storage Darlene K. Slattery and Michael D. Hampton  

E-Print Network [OSTI]

at a temperature of less than 100 o C in order to be compatible with fuel cells and must have an installed hydrogen have reported the discovery of a number of catalysts that improve the reversing of the hydrogen release the hydrogenation/dehydrogenation of sodium aluminum hydride. Mechanical incorporation of the catalyst

47

Encapsulated Metal Hydride for Hydrogen Separation  

E-Print Network [OSTI]

concentration feed stock, not for low concentration ïżœ Hydrogen economy will need hydrogen recovery from lowEncapsulated Metal Hydride for Hydrogen Separation (Formerly Separation Membrane Development) DOE Hydrogen Program 2003 Merit Review and Peer Evaluation L. Kit Heung, Jim Congdon Savannah River Technology

48

Ductility Evaluation of As-Hydrided and Hydride Reoriented Zircaloy-4 Cladding under Simulated Dry-Storage Condition  

SciTech Connect (OSTI)

Pre-storage drying-transfer operations and early stage storage expose cladding to higher temperatures and much higher pressure-induced tensile hoop stresses relative to normal operation in-reactor and pool storage under these conditions. Radial hydrides could precipitate during slow cooling and provide an additional embrittlement mechanism as the cladding temperature decreases below the ductile-to-brittle transition temperature. As a means of simulating this behavior, unirradiated hydrided Zircaloy-4 samples were fabricated by a gas charging method to levels that encompass the range of hydrogen concentrations observed in current used fuel. Mechanical testing was carried out by the ring compression test (RCT) method at various temperatures to evaluate the sample s ductility for both as-hydrided and post-hydride reorientation treated specimens. As-hydrided samples with higher hydrogen concentration (>800 ppm) resulted in lower strain before fracture and reduced maximum load. Increasing RCT temperatures resulted in increased ductility of the as-hydrided cladding. A systematic radial hydride treatment was conducted at various pressures and temperatures for the hydrided samples with H content around 200 ppm. Following the radial hydride treatment, RCTs on the hydride reoriented samples were conducted and exhibited lower ductility compared to as-hydrided samples.

Yan, Yong [ORNL] [ORNL; Plummer, Lee K [ORNL] [ORNL; Ray, Holly B [ORNL] [ORNL; Cook, Tyler S [ORNL] [ORNL; Bilheux, Hassina Z [ORNL] [ORNL

2014-01-01T23:59:59.000Z

49

Hydride embrittlement in ZIRCALOY-4 plate; Part 2: Interaction between the tensile stress and the hydride morphology  

SciTech Connect (OSTI)

The effect of an applied tensile stress on the hydrides morphology in ZIRCALOY-4 was studied. To this end, the residual stresses around the hydride caused by the hydride precipitation was first evaluated. Considering the disability to predict hydride transformation stresses by ordinary macroscopical mechanical calculation in previous studies, X-ray diffraction (XRD) profile analysis and transmission electron microscopy (TEM) observations were carried out to quantify the microstructural evolution in hydrided ZIRCALOY-4. The residual microstrains and microstresses in the matrix and around the hydride were thus estimated. The big discrepancy between the results and the existing studies were explained by the major self-accommodation of phase transformation deformation remaining inside the hydrides and the local plastic accommodation of ZIRCALOY-4. In order to study the stress effect on hydride orientation and to estimate the hydride orientation threshold stresses, hydrogen was introduced into the specimens under tensile stress. A quantitative technique was used to evaluate the susceptibility to perpendicular hydride formation under the influence of texture, residual stresses, and externally applied tensile stresses, following an improved approach that had been first developed by Sauthoff and then applied to Zr-H system by Puls. Both analytical and experimental results indicate that the threshold stress for producing perpendicular hydrides varies with the microstructural features, the yield strength, and the residual stresses.

Bai, J.B.; Prioul, C.; Francois, D. (Ecole Centrale Paris, Chatenay-Malabry (France)); Ji, N. (ENSAM, Paris (France)); Gilbon, D. (C.E.N. Saclay, Gif-sur-Yvette (France))

1994-06-01T23:59:59.000Z

50

Gas phase contributions to topochemical hydride reduction reactions  

SciTech Connect (OSTI)

Alkali and alkali earth hydrides have been used as solid state reductants recently to yield many interesting new oxygen-deficient transition metal oxides. These reactions have tacitly been assumed to be a solid phase reaction between the reductant and parent oxide. We have conducted a number of experiments with physical separation between the reductant and oxides, and find that in some cases reduction proceeds even when the reagents are physically separated, implying reactions with in-situ generated H{sub 2} and, to a lesser extent, getter mechanisms. Our findings change our understanding of these topochemical reactions, and should enhance the synthesis of additional new oxides and nanostructures. - Graphical abstract: Topochemical reductions with hydrides: Solid state or gas phase reaction? Display Omitted - Highlights: • SrFeO{sub 2} and LaNiO{sub 2} were prepared by topochemical reduction of oxides. • Separating the reducing agent (CaH{sub 2}, Mg metal) from the oxide still results in reduction. • Such topochemical reactions can occur in the gas phase.

Kobayashi, Yoji [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 (Japan); Li, Zhaofei [Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Hirai, Kei [Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Tassel, Cédric [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8302 (Japan); Loyer, François [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Institut des Sciences Chimiques de Rennes, UMR 6226 Université de Rennes 1-CNRS, équipe CSM, Bât. 10B, Campus de Beaulieu, 263, Avenue du Général Leclerc, 35042 Rennes Cedex (France); Ichikawa, Noriya [CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 (Japan); Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Abe, Naoyuki [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Yamamoto, Takafumi [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Shimakawa, Yuichi [CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 (Japan); Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); and others

2013-11-15T23:59:59.000Z

51

HYDRIDE-RELATED DEGRADATION OF SNF CLADDING UNDER REPOSITORY CONDITIONS  

SciTech Connect (OSTI)

The purpose and scope of this analysis/model report is to analyze the degradation of commercial spent nuclear fuel (CSNF) cladding under repository conditions by the hydride-related metallurgical processes, such as delayed hydride cracking (DHC), hydride reorientation and hydrogen embrittlement, thereby providing a better understanding of the degradation process and clarifying which aspects of the process are known and which need further evaluation and investigation. The intended use is as an input to a more general analysis of cladding degradation.

K. McCoy

2000-12-12T23:59:59.000Z

52

Dissipative hydride precipitates in superconducting niobium cavities  

SciTech Connect (OSTI)

We report the first direct observation of the microstructural features exhibiting RF losses at high surface magnetic fields of above 100 mT in field emission free superconducting niobium cavities. The lossy areas were identified by advanced thermometry. Surface investigations using different techniques were carried out on cutout samples from lossy areas and showed the presence of dendritic niobium hydrides. This finding has possible implications to the mechanisms of RF losses in superconducting niobium at all field levels.

Romanenko, A.; Cooley, L.D.; /Fermilab; Ciovati, G.; / /Jefferson Lab; Wu, G.; /Argonne

2011-10-01T23:59:59.000Z

53

METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW  

SciTech Connect (OSTI)

Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

Bowman Jr, Robert C [ORNL] [ORNL; Yartys, Dr. Volodymyr A. [Institute for Energy Technology (IFE)] [Institute for Energy Technology (IFE); Lototskyy, Dr. Michael V [University of the Western Cape, South Africa] [University of the Western Cape, South Africa; Pollet, Dr. B.G. [University of the Western Cape, South Africa

2014-01-01T23:59:59.000Z

54

Proposed Virtual Center for Excellence for Metal Hydride Development...  

Broader source: Energy.gov (indexed) [DOE]

Virtual Center for Excellence for Metal Hydride Development Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC....

55

Mathematical modelling of a metal hydride hydrogen storage system.  

E-Print Network [OSTI]

??In order for metal hydride hydrogen storage systems to compete with existing energy storage technology, such as gasoline tanks and batteries, it is important to… (more)

MacDonald, Brendan David

2009-01-01T23:59:59.000Z

56

E-Print Network 3.0 - antimony hydrides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Sb(V) were the only hydride-forming species found... WATERS BY HYDRIDE GENERATION ATOMIC ABSORPTION SPECTROMETRY Water-Resources Investigations Report 03... Prior to the...

57

E-Print Network 3.0 - americium hydrides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and complete processing... facility for hydride research 12;BNL Current Research in Hydrogen Storage Complex metal hydride ... Source: DOE Office of Energy Efficiency and...

58

LANL/PNNL Virtual Center for Chemical Hydrides and New Concepts...  

Broader source: Energy.gov (indexed) [DOE]

LANLPNNL Virtual Center for Chemical Hydrides and New Concepts for Hydrogen Storage LANLPNNL Virtual Center for Chemical Hydrides and New Concepts for Hydrogen Storage...

59

E-Print Network 3.0 - argon hydrides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Polytechnique, Centre de mathmatiques Collection: Mathematics 4 Complex Hydrides for Hydrogen Storage Darlene K. Slattery and Michael D. Hampton Summary: Complex Hydrides for...

60

Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems  

SciTech Connect (OSTI)

HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

None

2011-12-05T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nano-engineering of magnesium hydride for hydrogen storage  

Science Journals Connector (OSTI)

The destabilization of magnesium hydride (MgH"2) by solid-state reaction with Si in a nanoscale under vacuum was studied. The nanostructured Si films were deposited on the nanocrystalline MgH"2/Mg composite substrate by the pulsed laser deposition (PLD). ... Keywords: Destabilization, Magnesium hydride, Microstructure, Nano-engineering, Silicon

J. Bystrzycki; T. P?oci?ski; W. Zieli?ski; Z. Winiewski; M. Polanski; W. Mróz; Z. Bojar; K. J. Kurzd?owski

2009-04-01T23:59:59.000Z

62

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of  

Broader source: Energy.gov (indexed) [DOE]

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Irradiation is known to have a significant impact on the properties and performance of Zircaloy cladding and structural materials (material degradation processes, e.g., effects of hydriding). This UFD study examines the behavior and performance of unirradiated cladding and actual irradiated cladding through testing and simulation. Three capsules containing hydrogen-charged Zircaloy-4 cladding material have been placed in the High Flux Isotope Reactor (HFIR). Irradiation of the capsules was conducted for post-irradiation examination (PIE) metallography. Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of

63

Recent advances in metal hydrides for clean energy applications  

SciTech Connect (OSTI)

Metal hydrides are a fascinating class of materials that can be utilized for a surprising variety of clean energy applications, including smart solar collectors, smart windows, sensors, thermal energy storage, and batteries, in addition to their traditional application for hydrogen storage. Over the past decade, research on metal hydrides for hydrogen storage increased due to global governmental incentives and an increased focus on hydrogen storage research for polymer electrolyte membrane fuel cell operation. Tremendous progress has been made in so-called complex metal hydrides for hydrogen storage applications with the discovery of many new hydrides containing covalently bound complex anions. Many of these materials have applications beyond hydrogen storage and are being investigated for lithium-ion battery separator and anode materials. In this issue of MRS Bulletin , we present the state of the art of key evolving metal-hydride-based clean energy technologies with an outlook toward future needs.

Ronnebro, Ewa; Majzoub, Eric H.

2013-06-01T23:59:59.000Z

64

Porous metal hydride composite and preparation and uses thereof  

DOE Patents [OSTI]

A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

Steyert, W.A.; Olsen, C.E.

1980-03-12T23:59:59.000Z

65

Porous metal hydride composite and preparation and uses thereof  

DOE Patents [OSTI]

A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

Steyert, William A. (Los Alamos, NM); Olsen, Clayton E. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

66

Metal hydride fuel storage and method thereof  

DOE Patents [OSTI]

An apparatus having a first substrate having (1) a cavity, (2) one or more resistive heaters, and (3) one or more coatings forming a diffusion barrier to hydrogen; a second substrate having (1) an outlet valve comprising a pressure relief structure and (2) one or more coatings forming a diffusion barrier to hydrogen, wherein said second substrate is coupled to said first substrate forming a sealed volume in said cavity; a metal hydride material contained within said cavity; and a gas distribution system formed by coupling a microfluidic interconnect to said pressure relief structure. Additional apparatuses and methods are also disclosed.

Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan F. (Livermore, CA); Yu, Conrad (Antioch, CA)

2010-08-10T23:59:59.000Z

67

Cobasys and Panasonic EV Energy cooperation agreement | Open...  

Open Energy Info (EERE)

and Panasonic EV Energy to share patents and expertise about nickel-metal hydride batteries for hybrid electric vehicles. References: Cobasys and Panasonic EV Energy...

68

Anisotropic behavior and rupture of hydrided Zircaloy-4 sheets  

SciTech Connect (OSTI)

In a French pressurized water reactor (PWR), most of the structural parts of the fuel assembly consist of zirconium alloys (ZIRCALOY-2). The mechanical behavior of ZIRCALOY-4 sheets is investigated at room temperature. The effect of hydride precipitation on the mechanical behavior and on the rupture mechanism is also studied, in the range from 200 to 1,200 wt ppm hydrogen and for different stress triaxialities. It is shown that the material exhibits a strong anisotropy die to its pronounced texture, and that its mechanical properties depend on the strain rate. Hydride precipitation appears to have no effect on the anisotropy or on the strain-rate sensitivity, in the range from 10{sup {minus}4} to 10{sup {minus}2} s{sup {minus}1}. The main effect of hydrogen is the reduction of the ductility and of crack resistance. The ductile rupture mechanism is studied, focusing on the stage of damage nucleation by hydride fracture. Observations during scanning electron microscopy (SEM) in situ tests show that hydrides allow the transmission of slip, which occurs in ZIRCALOY-4 grains. Hydrides can also deform, together with surrounding zirconium matrix. Damage appears after a plastic-strain yield of about 14 to 25 pct. Fracture occurs first on intergranular hydrides. Fracture of transgranular hydrides is observed only prior to failure, for higher plastic strains.

Grange, M.; Besson, J.; Andrieu, E.

2000-03-01T23:59:59.000Z

69

Chemical Hydride Slurry for Hydrogen Production and Storage  

SciTech Connect (OSTI)

The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston University have demonstrated the technical viability of the process and have provided data for the cost analyses that have been performed. We also concluded that a carbothermic process could also produce magnesium at acceptable costs. The use of slurry as a medium to carry chemical hydrides has been shown during this project to offer significant advantages for storing, delivering, and distributing hydrogen: • Magnesium hydride slurry is stable for months and pumpable. • The oils of the slurry minimize the contact of oxygen and moisture in the air with the metal hydride in the slurry. Thus reactive chemicals, such as lithium hydride, can be handled safely in the air when encased in the oils of the slurry. • Though magnesium hydride offers an additional safety feature of not reacting readily with water at room temperatures, it does react readily with water at temperatures above the boiling point of water. Thus when hydrogen is needed, the slurry and water are heated until the reaction begins, then the reaction energy provides heat for more slurry and water to be heated. • The reaction system can be relatively small and light and the slurry can be stored in conventional liquid fuel tanks. When transported and stored, the conventional liquid fuel infrastructure can be used. • The particular metal hydride of interest in this project, magnesium hydride, forms benign byproducts, magnesium hydroxide (“Milk of Magnesia”) and magnesium oxide. • We have estimated that a magnesium hydride slurry system (including the mixer device and tanks) could meet the DOE 2010 energy density goals. ? During the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering hydrogen. Further evaluation and development of this concept will be performed as follow-on work under a

McClaine, Andrew W.

2008-09-30T23:59:59.000Z

70

Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity  

SciTech Connect (OSTI)

The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ? 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ? 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space between alkaline metal hydrides (AmH), Alkaline earth metal hydrides (AeH2), alane (AlH3), transition metal (Tm) hydrides (TmHz, where z=1-3) and molecular hydrogen (H2). The effort started first with variations of known alanates and subsequently extended the search to unknown compounds. In this stage, the FPM techniques were developed and validated on known alanate materials such as NaAlH4 and Na2LiAlH6. The coupled predictive methodologies were used to survey over 200 proposed phases in six quaternary spaces, formed from various combinations of Na, Li Mg and/or Ti with Al and H. A wide range of alanate compounds was examined using SSP having additions of Ti, Cr, Co, Ni and Fe. A number of compositions and reaction paths were identified having H weight fractions up to 5.6 wt %, but none meeting the 7.5 wt%H reversible goal. Similarly, MSP of alanates produced a number of interesting compounds and general conclusions regarding reaction behavior of mixtures during processing, but no alanate based candidates meeting the 7.5 wt% goal. A novel alanate, LiMg(AlH4)3, was synthesized using SBP that demonstrated a 7.0 wt% capacity with a desorption temperature of 150°C. The deuteride form was synthesized and characterized by the Institute for Energy (IFE) in Norway to determine its crystalline structure for related FPM studies. However, the reaction exhibited exothermicity and therefore was not reversible under acceptable hydrogen gas pressures for on-board recharging. After the extensive studies of alanates, the material class of emphasis was shifted to borohydrides. Through SBP, several ligand-stabilized Mg(BH4)2 complexes were synthesized. The Mg(BH4)2*2NH3 complex was found to change behavior with slightly different synthesis conditions and/or aging. One of the two mechanisms was an amine-borane (NH3BH3) like dissociation reaction which released up to 16 wt %H and more conservatively 9 wt%H when not including H2 released from the NH3. From FPM, the stability of the Mg(BH4)2*2NH3 compound was found to increase with the inclusion of NH3 groups in the inner-Mg coordination

Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

2008-02-18T23:59:59.000Z

71

Process for production of a metal hydride  

DOE Patents [OSTI]

A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

2014-08-12T23:59:59.000Z

72

Novel Hydride Transfer Catalysis for Carbohydrate Conversions  

SciTech Connect (OSTI)

5-Hydroxymethylfurfural (HMF), an important versatile sugar derivative has been synthesized from glucose using catalytic amounts of CrCl2 in 1-ethyl-3-methylimidizolium chloride. Glycerol and glyceraldehyde were tested as sugar model compounds. Glycerol is unreactive and does not interfere with glucose conversion. Glyceraldehyde is reactive and does interfere with glucose conversion in competitive experiments. MnCl2 or FeCl2 catalyze dehydration of glyceraldehyde dimer to form compound I, a cyclic hemiacetal with an exocyclic double bond. Upon aqueous work-up I forms pyruvaldehyde. CrCl2 or VCl3 further catalyze a hydride transfer of I to form lactide. Upon aqueous work-up lactide is converted to lactic acid.

Holladay, John E.; Brown, Heather M.; Appel, Aaron M.; Zhang, Z. Conrad

2008-04-03T23:59:59.000Z

73

Metal Hydride Chemical Heat Pumps for Industrial Use  

E-Print Network [OSTI]

Hydriding alloys are intermetallic absorbent compounds which have the remarkable quality of absorbing very large quantities of hydrogen gas per unit volume of metallic powder. The absorption and desorption of hydrogen are exothermic and endothermic...

Ally, M. R.; Rebello, W. J.; Rosso, M. J., Jr.

1984-01-01T23:59:59.000Z

74

High capacity stabilized complex hydrides for hydrogen storage  

DOE Patents [OSTI]

Complex hydrides based on Al(BH.sub.4).sub.3 are stabilized by the presence of one or more additional metal elements or organic adducts to provide high capacity hydrogen storage material.

Zidan, Ragaiy; Mohtadi, Rana F; Fewox, Christopher; Sivasubramanian, Premkumar

2014-11-11T23:59:59.000Z

75

Delayed hydride cracking behavior for ZIRCALOY-2 tubing  

Science Journals Connector (OSTI)

The delayed hydride cracking (DHC) behavior for ZIRCALOY-2 tubing was characterized at temperatures ranging from 93 °C to 288 °C. Testing was performed on the three types of pressure tubes that were used in th...

F. H. Huang; W. J. Mills

1991-09-01T23:59:59.000Z

76

Development of the Low-Pressure Hydride/Dehydride Process  

SciTech Connect (OSTI)

The low-pressure hydride/dehydride process was developed from the need to recover thin-film coatings of plutonium metal from the inner walls of an isotope separation chamber located at Los Alamos and to improve the safety operation of a hydride recovery process using hydrogen at a pressure of 0.7 atm at Rocky Flats. This process is now the heart of the Advanced Recovery and Integrated Extraction System (ARIES) project.

Rueben L. Gutierrez

2001-04-01T23:59:59.000Z

77

OBSERVATIONS IN REACTIVITY BETWEEN BH CONTAINING COMPOUNDS AND ORGANOMETALLIC REAGENTS: SYNTHESIS OF BORONIC ACIDS, BORONIC ESTERS, AND MAGNESIUM HYDRIDES  

E-Print Network [OSTI]

Reaction of BH 3 :THF with magnesium hydride byproduct. A.It was also observed that magnesium hydride can partiallyACIDS, BORONIC ESTERS, AND MAGNESIUM HYDRIDES A dissertation

Clary, Jacob William

2012-01-01T23:59:59.000Z

78

Influence of uranium hydride oxidation on uranium metal behaviour  

SciTech Connect (OSTI)

This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

2013-07-01T23:59:59.000Z

79

Synthesis and characterization of metal hydride/carbon aerogel composites for hydrogen storage  

Science Journals Connector (OSTI)

Two materials currently of interest for onboard lightweight hydrogen storage applications are sodium aluminum hydride (NaAlH4), a complex metal hydride, and carbon aerogels (CAs), a light porous material connected by several spherical nanoparticles. ...

Kuen-Song Lin; Yao-Jen Mai; Su-Wei Chiu; Jing-How Yang; Sammy L. I. Chan

2012-01-01T23:59:59.000Z

80

Characterization and High Throughput Analysis of Metal Hydrides for Hydrogen Storage  

E-Print Network [OSTI]

Metal Hydrides for Hydrogen Storage by Steven James BarceloMetal Hydrides for Hydrogen Storage by Steven James BarceloCo-chair Efficient hydrogen storage is required for fuel

Barcelo, Steven James

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Opening of a Post Doctoral Position Complex hydrides for hydrogen storage applications  

E-Print Network [OSTI]

Opening of a Post Doctoral Position Complex hydrides for hydrogen storage applications on complex hydrides for hydrogen storage applications in connection with the « Fast, reliable and cost effective boron hydride based high capacity solid state hydrogen storage materials» project co

82

Final Report for the DOE Metal Hydride Center of Excellence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SANDIA REPORT SANDIA REPORT SAND2012-0786 Unlimited Release Printed February 2012 Final Report for the DOE Metal Hydride Center of Excellence Lennie Klebanoff Director, Metal Hydride Center of Excellence Jay Keller Deputy Director, Metal Hydride Center of Excellence Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy

83

Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.  

SciTech Connect (OSTI)

In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

2012-02-01T23:59:59.000Z

84

14 - Hydrogen storage in hydride-forming materials  

Science Journals Connector (OSTI)

Abstract: Hydrogen storage technologies are playing a significant and critical role in the so-called ‘hydrogen economy’: they are used to buffer primary energy sources for time-delayed end-uses. The purpose of this chapter is to review the main hydrogen storage processes and materials, with a special emphasis on chemical storage (metal and chemical hydrides). First, the main hydrogen processes (physical, chemical, electrochemical, geological) are reviewed. Then, reversible hydrogen storage in hydride-forming metals and intermetallics is discussed. Basic principles (thermodynamic properties, sorption mechanisms, kinetics) are presented and the properties of the main materials are listed and compared. Irreversible hydrogen storage in the main classes of chemical hydrides is then described. In the last section, specifications for automotive and stationary applications are reviewed and discussed.

P. Millet

2014-01-01T23:59:59.000Z

85

Brittle fracture induced by hydrides in zircaloy-4  

SciTech Connect (OSTI)

Zircaloy-4 is used as a cladding material in the nuclear industry for fuel elements. Its mechanical properties can be drastically affected by the presence of hydrides, which form when hydrogen content exceeds the terminal solid solubility. This change often manifests itself as a reduction in ductility (elongation and reduction in area), coupled with the evolution of the fracture mode from ductile microvoid nucleation and coalescence to intergranular fracture. It has been found, at room temperature, that Zircaloy-4 undergoes a ductile to brittle transition when the hydrogen content (hydride volume fraction) in the specimen is higher than some critical value depending on the microstructure and the hydride morphology. Heat treatment of the material can shift the transition end point from 1050 ppm wt H for the stress-relieved state to 100-150 ppm wt H for the {beta} treated state, thus strongly suggesting that there may be some relationship between the microstructure (grain size and shape) and the ductile-brittle transition. It has also been reported that for the same hydriding condition, the hydrogen absorption rate is higher for the stress-relieved and recrystallized states and lower for the {beta} treated state. This phenomenon is very important for engineering applications because it is related to the determination of the safe life. Insufficient attention has been drawn to the quantitative evaluation and the modelization of the influence of the microstructure on the ductile-brittle transition in hydrided Zircaloy-4, though there has been some general research on the boundary structural effect on intergranular fracture. The present authors attempt to modelize this influence by an upper-limit model using the results of image analysis on the microstructures and tensile tests on hydrided sheet specimens.

Bai, J.B.; Francois, D.; Prioul, C. (Lab. MSS/MAT CNRS URA 850, Ecole Centrale Paris, 92295 Chatenay Malabry Cedex (FR)); Lansiart, S. (CEA/DTA/CEREM/DTM/SRMA, C.E. Saclay, 91191 Gif-sur-Yvette Cedex (FR))

1991-11-01T23:59:59.000Z

86

Photoelectron spectroscopy of boron aluminum hydride cluster anions  

SciTech Connect (OSTI)

Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, B{sub x}Al{sub y}H{sub z}{sup ?}, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H., E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Xiang [Center for Space Science and Technology, University of Maryland–Baltimore County, Baltimore, Maryland 21250 (United States)] [Center for Space Science and Technology, University of Maryland–Baltimore County, Baltimore, Maryland 21250 (United States); Kiran, Boggavarapu, E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry and Physics, McNeese State University, Lake Charles, Louisiana 70609 (United States)] [Department of Chemistry and Physics, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K. [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)] [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

2014-04-28T23:59:59.000Z

87

Effect of radial hydrides on the axial and hoop mechanical properties of Zircaloy-4 cladding  

Science Journals Connector (OSTI)

The effect of radial hydrides on the mechanical properties of stress-relief annealed Zircaloy-4 cladding was studied. Specimens were firstly hydrided to different target hydrogen levels between 100 and 600 wt ppm and then thermally cycled in an autoclave under a constant hoop stress to form radial hydrides by a hydride reorientation process. The effect of radial hydrides on the axial properties of the cladding was insignificant. On the other hand, the cladding ductility measurements decreased as its radial hydride content increased when the specimen was tested in plane strain tension. A reference hydrogen concentration for radial hydrides in the cladding was defined for assessing the fuel cladding integrity based on a criterion of the tensile strength 600 MPa. The reference hydrogen concentration increased with the specimen (bulk) hydrogen concentration to a maximum of ?90 wt ppm at the bulk concentration ?300 wt ppm H and then decreased towards higher concentrations.

H.C. Chu; S.K. Wu; K.F. Chien; R.C. Kuo

2007-01-01T23:59:59.000Z

88

Process of forming a sol-gel/metal hydride composite  

DOE Patents [OSTI]

An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

Congdon, James W. (Aiken, SC)

2009-03-17T23:59:59.000Z

89

HYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES  

E-Print Network [OSTI]

, Michael D. HamptonDarlene K. Slattery, Michael D. Hampton FL Solar Energy Center, U. of Central FLFL Solar Energy Center, U. of Central FL #12;Objective · Identify a hydrogen storage system that meets the DOEHYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES Darlene K. Slattery

90

FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL  

SciTech Connect (OSTI)

The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

2009-03-10T23:59:59.000Z

91

Hydriding and dehydriding characteristics of LiBH{sub 4} and transition metals-added magnesium hydride  

SciTech Connect (OSTI)

Graphical abstract: Hydriding reaction curves under 12 bar H{sub 2}, and dehydriding reaction curves under 1.0 bar H{sub 2}, at 593 K at the 1st cycle for MgH{sub 2}–10Ni–2LiBH{sub 4}–2Ti and MgH{sub 2}. Highlights: ? Addition of Ni, LiBH{sub 4}, and Ti to MgH{sub 2} to increase reaction rates. ? Sample preparation by reactive mechanical grinding. ? At n = 2, the sample absorbed 4.05 wt% H for 60 min at 593 K under 12 bar H{sub 2}. ? Analysis of rate-controlling step for dehydriding of the sample at n = 3. - Abstract: In this study, MgH{sub 2} was used as a starting material instead of Mg. Ni, Ti, and LiBH{sub 4} with a high hydrogen-storage capacity of 18.4 wt% were added. A sample with a composition of MgH{sub 2}–10Ni–2LiBH{sub 4}–2Ti was prepared by reactive mechanical grinding. The activation of MgH{sub 2}–10Ni–2LiBH{sub 4}–2Ti was completed after the first hydriding–dehydrding cycle. The hydriding rate decreases as the temperature increases due to the decrease in the driving force for the hydriding reaction. At the 1st cycle, the sample desorbs 1.45 wt% H for 10 min, 2.54 wt% H for 20 min, 3.13 wt% H for 30 min, and 3.40 wt% H for 60 min at 593 K under 1.0 bar H{sub 2}. At the 2nd cycle, the sample absorbs 3.84 wt% H for 5 min, 3.96 wt% H for 10 min, and 4.05 wt% H for 60 min at 593 K under 12 bar H{sub 2}. MgH{sub 2}–10Ni–2LiBH{sub 4}–2Ti after reactive mechanical grinding contained MgH{sub 2}, Mg, Ni, TiH{sub 1.924}, and MgO phases. The reactive mechanical grinding of Mg with Ni, LiBH{sub 4}, and Ti is considered to create defects on the surface and in the interior of Mg (to facilitate nucleation), and to reduce the particle size of Mg (to shorten diffusion distances of hydrogen atoms). The formation of Mg{sub 2}Ni during hydriding–dehydriding cycling increases the hydriding and dehydriding rates of the sample.

Song, Myoung Youp, E-mail: songmy@jbnu.ac.kr [Division of Advanced Materials Engineering, Hydrogen and Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 561-756 (Korea, Republic of); Kwak, Young Jun; Lee, Seong Ho [Department of Materials Engineering, Graduate School, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 561-756 (Korea, Republic of); Park, Hye Ryoung [Faculty of Applied Chemical Engineering, Chonnam National University, 300 Yongbongdong, Bukgu, Gwangju, 500-757 (Korea, Republic of)

2013-07-15T23:59:59.000Z

92

Preparation and X-Ray diffraction studies of curium hydrides  

SciTech Connect (OSTI)

Curium hydrides were prepared by reaction of curium-248 metal with hydrogen and characterized by X-ray powder diffraction. Several of the syntheses resulted in a hexagonal compound with average lattice parameters of a/sub 0/ = 0.3769(8) nm and c/sub 0/ = 0.6732(12) nm. These products are considere to be CmH/sub 3//sup -//sub 8/ by analogy with the behavior of lanthanide-hydrogen and lighter actinide-hydrogen systems. Face-centered cubic products with an average lattice parameter of a/sub 0/ = 0.5322(4) nm were obtained from other curium hydride preparations. This parameter is slightly smaller than that reported previously for cubic curium dihydride, CmH /SUB 2-x/ (B.M. Bansal and D. Damien. Inorg. Nucl. Chem. Lett. 6 603, 1970). The present results established a continuation of typical heavy trivalent lanthanidelike behavior of the transuranium actinide-hydrogen systems through curium.

Gibson, J.K.; Maire, R.G.

1985-10-01T23:59:59.000Z

93

Behavior and rupture of hydrided Zircaloy-4 tubes and sheets  

SciTech Connect (OSTI)

Zirconium alloys are used as structural parts in the nuclear fuel assembly. The mechanical behavior and rupture mechanisms of ZIRCALOY-4 guide tubes and sheet containing 150 to 1,200 wt ppm hydrogen have been investigated at room temperature. Sheets were notched to study the influence of geometrical defects on rupture. It is shown that hydrides strengthened the material, as maximum stresses sustained by the material are increased with increasing hydrogen contents. On the other hand, ductility is reduced. The material also exhibits a strong anisotropy due to its pronounced texture. Metallographic examinations have shown that damage by hydride cracking is a continuous process that starts after the onset of necking. Notches reduce ductility. A modified Gurson-Tvergaard model was used to represent the material behavior and rupture. Numerical simulation using the finite element method demonstrates the strong influence of plastic anisotropy on the behavior of structures and rupture modes.

Prat, F.; Besson, J. [Ecole des Mines de Paris, Evry (France); Grange, M. [Framatome Nuclear Fuel, Lyon (France); Andrieu, E. [ENSCT, Toulouse (France). Lab. Materiaux

1998-06-01T23:59:59.000Z

94

Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis  

E-Print Network [OSTI]

A thermodynamically consistent mathematical model for hydrogen adsorption in metal hydrides is proposed. Beside hydrogen diffusion, the model accounts for phase transformation accompanied by hysteresis, swelling, temperature and heat transfer, strain, and stress. We prove existence of solutions of the ensuing system of partial differential equations by a carefully-designed, semi-implicit approximation scheme. A generalization for a drift-diffusion of multi-component ionized "gas" is outlined, too.

Tomas Roubicek; Giuseppe Tomassetti

2013-09-12T23:59:59.000Z

95

Diffusional exchange of isotopes in a metal hydride sphere.  

SciTech Connect (OSTI)

This report describes the Spherical Particle Exchange Model (SPEM), which simulates exchange of one hydrogen isotope by another hydrogen isotope in a spherical metal hydride particle. This is one of the fundamental physical processes during isotope exchange in a bed of spherical metal particles and is thus one of the key components in any comprehensive physics-based model of exchange. There are two important physical processes in the model. One is the entropy of mixing between the two isotopes; the entropy of mixing is increased by having both isotopes randomly placed at interstitial sites on the lattice and thus impedes the exchange process. The other physical process is the elastic interaction between isotope atoms on the lattice. The elastic interaction is the cause for {beta}-phase formation and is independent of the isotope species. In this report the coupled diffusion equations for two isotopes in the {beta}-phase hydride are solved. A key concept is that the diffusion of one isotope depends not only on its concentration gradient, but also on the concentration gradient of the other isotope. Diffusion rate constants and the chemical potentials for deuterium and hydrogen in the {beta}-phase hydride are reviewed because these quantities are essential for an accurate model of the diffusion process. Finally, a summary of some of the predictions from the SPEM model are provided.

Wolfer, Wilhelm G.; Hamilton, John C.; James, Scott Carlton

2011-04-01T23:59:59.000Z

96

Electrical Properties of Hydrides and Deuterides of Zirconium  

Science Journals Connector (OSTI)

Electrical properties of hydrides and deuterides of zirconium have been investigated between 1.1 and 410°K. The metallic nature of these materials is evident in the fact that for compositions approaching ZrH2, the hydride is a better conductor than is high-purity zirconium. Above ?150°K the electrical resistivity exhibits an interesting upturn, which arises from scattering from the optical-model lattice vibrations. Excellent fits to the ideal-resistivity data are obtained with a simple additive combination of Grüneisen and Howarth-Sondheimer functions for the respective acoustical- and optical-mode scattering contributions. The corresponding acoustical- and optical-mode characteristic temperatures are in good accord with expectations based on earlier inelastic neutron scattering data. Moreover, the optical-mode characteristic temperature exhibits the expected hydride-deuteride isotope shift of 2. The observed Hall coefficients are large in magnitude (much greater than for pure Zr), and indicate majority hole conduction for the fcc ? phase and majority electron conduction for the face-centered tetragonal ? phase. The thermoelectric power also changes from positive to negative with increasing hydrogen concentration in the range ZrH1.5-ZrH2.

P. W. Bickel and T. G. Berlincourt

1970-12-15T23:59:59.000Z

97

E-Print Network 3.0 - arsenic hydrides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(2002) 1080-703902.50 Summary: for arsenic species using hydride generation and atomic absorption spectroscopy. The detec- tion limit for As... by ASP Estimation of...

98

LANL/PNNL Virtual Center for Chemical Hydrides and New Concepts...  

Broader source: Energy.gov (indexed) [DOE]

LANLPNNL Virtual Center for Chemical Hydrides and New Concepts for Hydrogen Storage * Thermodynamics * Kinetics * Recycle * WeightVolume Capacity * Durability Investigate...

99

E-Print Network 3.0 - annulus metal hydride Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introduction Metal hydride applications span a wide variety of tech nologies eg energy conversion... chemical compressors and hydrogen storage A knowledge of heat and...

100

Thermodynamics of metal hydrides for hydrogen storage applications using first principles calculations.  

E-Print Network [OSTI]

??Metal hydrides are promising candidates for H2 storage, but high stability and poor kinetics are the important challenges which have to be solved for vehicular… (more)

Kim, Ki Chul

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Influence of an oxide layer on the hydride embrittlement in Zircaloy-4  

SciTech Connect (OSTI)

Hydrid embrittlement of zirconium and its alloy has been studied extensively. The common techniques used to hydride the specimens are electro-chemical and gaseous ones. During this operation, especially for cases of long duration, an oxide layer would form on the surface of specimens. The present paper reports on some evidence for the influence of this layer on the hydride embrittlement in Zircaloy-4. Tensile tests with or without this layer were performed on hydrided specimens. Metallographic and fractographic analyses were carried out in order to examine the fracture nature of this layer. An analysis based on the fracture mechanics was also proposed.

Bai, J.B. (Ecole Centrale de Paris, Chatenay Malabry (France). Lab. MSS/MAT)

1993-09-01T23:59:59.000Z

102

Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices  

SciTech Connect (OSTI)

An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

2014-11-18T23:59:59.000Z

103

Hydride blisters Formation, Characterization and Effect on the Fracture of Zircaloy-4 Cladding Tubes Under Reactivity Initiated  

E-Print Network [OSTI]

failure in 1983[2], when an axial crack developed in a CANDU pressure tube following an array of hydride

104

Solid-State Gadolinium-Magnesium Hydride Optical Switch R. Armitage  

E-Print Network [OSTI]

-state electrochromic device. With positive polarization of the hydride electrode, the visible reflectance approaches 35 and reflecting states. Keywords: gadolinium-magnesium; electrochromic hydride; optical switching device. 2 #12;A conventional electrochromics5 . Optical switching has also been demonstrated by varying the H content

105

Hydrogen storage material and process using graphite additive with metal-doped complex hydrides  

DOE Patents [OSTI]

A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

Zidan, Ragaiy (Aiken, SC); Ritter, James A. (Lexington, SC); Ebner, Armin D. (Lexington, SC); Wang, Jun (Columbia, SC); Holland, Charles E. (Cayce, SC)

2008-06-10T23:59:59.000Z

106

Hydride precipitation and its influence on mechanical properties of notched and unnotched Zircaloy-4 plates  

Science Journals Connector (OSTI)

The hydride formation and its influence on the mechanical performance of hydrided Zircaloy-4 plates containing different hydrogen contents were studied at room temperature. For the unnotched plate samples with the hydrogen contents ranging from 25 to 850 wt. ppm, the hydrides exerted an insignificant effect on the tensile strength, while the ductility was severely degraded with increasing hydrogen content. The fracture mode and degree of embrittlement were strongly related to the hydrogen content. When the hydrogen content reached a level of 850 wt. ppm, the plate exhibited negligible ductility, resulting in almost completely brittle behavior. For the hydrided notched plate, the tensile stress concentration associated with the notch tip facilitated the hydride accumulation at the region near the notch tip and the premature crack propagation through the hydride fracture during hydriding. The final brittle through-thickness failure for this notched sample was mainly attributed to the formation of a continuous hydride network on the thickness section and the obtained very high hydrogen concentration (estimated to be 1965 wt. ppm).

Zhiyang Wang; Ulf Garbe; Huijun Li; Robert P. Harrison; Karl Toppler; Andrew J. Studer; Tim Palmer; Guillaume Planchenault

2013-01-01T23:59:59.000Z

107

Hydride-phase formation and its influence on fatigue crack propagationbehavior in a Zircaloy-4 alloy  

SciTech Connect (OSTI)

The hydride-phase formation and its influence on the fatigue behavior of a Zircaloy-4 alloy charged with hydrogen gas are investigated. First, the microstructure and fatigue crack propagation rate of the alloy in the as-received condition are studied. Second, the formation and homogeneous distribution of delta zirconium hydride ( -ZrH2) in the bulk, and its effect on the fatigue crack propagation rate are presented. The results show that in the presence of hydrides the zirconium alloy exhibits reduced toughness and enhanced crack growth rates. Finally, the influence of a pre-existing fatigue crack in the specimen and the subsequent hydride formation were investigated. The residual lattice strain profile around the fatigue crack tip was measured using neutron diffraction. The combined effects of residual strains and hydride precipitation on the fatigue behavior are discussed.

Garlea, Elena [University of Tennessee, Knoxville (UTK); Choo, H. [University of Tennessee, Knoxville (UTK); Wang, G Y [University of Tennessee, Knoxville (UTK); Liaw, Peter K [University of Tennessee, Knoxville (UTK); Clausen, B [Los Alamos National Laboratory (LANL); Brown, D. W. [Los Alamos National Laboratory (LANL); Park, Jae-Sung [University of Tennessee, Knoxville (UTK); Rack, P. D. [University of Tennessee, Knoxville (UTK); Kenik, Edward A [ORNL

2010-01-01T23:59:59.000Z

108

Getting metal-hydrides to do what you want them to  

SciTech Connect (OSTI)

With the discovery of AB/sub 5/ compounds, intermetallic hydrides with unusual properties began to be developed (H dissociation pressures of one to several atmospheres, extremely rapid and reversible adsorption/desorption very large amounts of H adsorbed). This paper reviews the factors that must be controlled in order to modify these hydrides to make them useful. The system LaNi/sub 5/ + H/sub 2/ is used as example. Use of AB/sub 5/ hydrides to construct a chemical heat pumps is discussed. Results of a systematic study substituting Al for Ni are reported; the HYCSOS pump is described briefly. Use of hydrides as hydrogen getters (substituted ZrV/sub 2/) is also discussed. Finally, possible developments in intermetallic hydride research in the 1980's and the hydrogen economy are discussed. 10 figures. (DLC)

Gruen, D.M.

1981-01-01T23:59:59.000Z

109

Stress-induced reorientation of hydrides and mechanical properties of Zircaloy-4 cladding tubes  

Science Journals Connector (OSTI)

Stress-induced reorientation of hydrides and its effect on the stress–strain response of Zircaloy-4 cladding tubes were investigated. The reorientation of hydrides along the radial direction was most pronounced if the tube was cooled from 300 to 200 °C under circumferential loading. Reorientation occurred much less frequently at either higher (cooled from 400 to 300 °C) or lower (cooled from 200 to 100 °C) temperature range. The population of radial hydrides in R43H7 (which was cooled from 400 to 300 °C and maintained at 300 °C for 7 h) increased drastically during annealing at 300 °C, suggesting time dependent stress-aided dissolution of circumferential hydrides and reprecipitation of radial hydrides. The drastic decrease of the strength and the complete loss of the ductility were observed in R32AC and R43H7.

S.I. Hong; K.W. Lee

2005-01-01T23:59:59.000Z

110

Designation of Sites for Remedial Action - Metal Hydrides, Beverly,  

Office of Legacy Management (LM)

T: T: Designation of Sites for Remedial Action - Metal Hydrides, Beverly, MA; Bridgeport Brass, Adrian, MI and Seymour, Chicago, IL CT; National Guard Armory, 0: Joe LaGrone, Manager Oak Ridge Operations Office Based on the attached radiological survey data (Attachments 1 through 3) and an appropriate authority review, the following properties are being authorized for remedial action. It should be noted that the attached survey data are for designation purposes only and that Bechtel National, Inc. (BNI) should conduct appropriate comprehensive characterization studies to determine the extent'and magnitude of contamination on properties. Site Location Priority Former Bridgeport Brass Co. (General Motors) Adrian, MI Low Former Bridgeport Brass Co.

111

Electrochemical process and production of novel complex hydrides  

DOE Patents [OSTI]

A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

Zidan, Ragaiy

2013-06-25T23:59:59.000Z

112

Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications  

SciTech Connect (OSTI)

Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

2012-04-16T23:59:59.000Z

113

Synthesis, characterization and reactivity of several rhenium hydride complexes. A study of the role of metal hydrides in organometallic reactions  

SciTech Connect (OSTI)

The mechanistic role of transition metal hydrides in organometallic reactions has been studied using several low valent, electron rich rhenium complexes. The reaction ReH[sub 7](PPh[sub 3])[sub 2] with indene has been found to yield products that are [eta][sup 5]-C[sub 9]H[sub 7]ReH[sub 2](PPh[sub 3])[sub 2] and ([eta][sup 5]-C[sub 9]H[sub 11])ReH[sub 2](PPh[sub 3])[sub 2], respectively. The mechanism proposed for the formation of these two products consists of several metal to ring hydride migrations, and the activation parameters for one of the migrations have been obtained. Hydride migrations are prevalent in the subsequent chemistry of ([eta][sup 5]-C[sub 9]H[sub 11])ReH[sub 2](PPh[sub 3])[sub 2], as well as in the similar complex ([eta][sup 4]-C[sub 9]H[sub 12])ReH[sub 3](PPh[sub 3])[sub 2]. The complex ([eta][sup 4]-C[sub 4]H[sub 5]S)ReH[sub 2](PPh[sub 3])[sub 2] has been synthesized and structurally characterized in an attempt to model the interaction of thiophene with a metal hydride surface which is presumably present during typical hydrodesulfurization conditions. The thermolysis of ([eta][sup 4]-C[sub 4]H[sub 5]S)ReH[sub 2](PPh[sub 3])[sub 2] in the presence of PMe[sub 3] has been found to yield free tetrahydrothiophene and the cyclometallated Re(PMe[sub 3])[sub 4](PPH[sub 2]C[sub 6]H[sub 4]), while photolysis with excess PMe[sub 3] yields a mixture of organometallic products in which the thiophene ligand has undergone C-S bond cleavage. Products have been identified that contain an S-bound 1-butene-1-thiolate ligand, an [eta][sup 3]-allyl bound 1-butene-1-thiolate ligand, an ethylthioketene ligand and an S-bound 1-butanethiolate ligand, all of which represent the first such homogeneous transformations of thiophene. The photochemical ligand exchange reactions and the observed H/D exchange catalysis (between a deuterated solvent and a protio substrate) of CpReH[sub 2](PPh[sub 3])[sub 2] have been studied in detail.

Rosini, G.P.

1992-01-01T23:59:59.000Z

114

Method of generating hydrogen-storing hydride complexes  

DOE Patents [OSTI]

A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

Srinivasan, Sesha S; Niemann, Michael U; Goswami, D. Yogi; Stefanakos, Elias K

2013-05-14T23:59:59.000Z

115

ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS  

SciTech Connect (OSTI)

The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

2011-07-18T23:59:59.000Z

116

Hydride embrittlement in ZIRCALOY-4 plate; Part 1: Influence of microstructure on the hydride embrittlement in ZIRCALOY-4 at 20[degree]C and 350[degree]C  

SciTech Connect (OSTI)

The hydride embrittlement in ZIRCALOY-4 was studied at room temperature and 350 C. Sheet tensile specimens of two fabrication routes in the stress-relieved, recrystallized, and [beta]-treated states were hydrided with or without tensile stress. It was found generally that the effect on strength of increasing hydrogen content was not important. However, for the tensile tests at room temperature, there is a ductile-brittle transition when the hydrogen content is higher than a certain threshold. The prior thermomechanical treatment shifts this transition considerably. In situ scanning electron microscopy (SEM) tests, fractography, and fracture profile observations were carried out to determine the fracture micromechanisms and the microscopic processes. At 20 C, the fracture surfaces are characterized by voids and secondary cracks for low and medium hydrogen contents and by intergranular cracks and decohesion through the continuous hydride network for high hydrogen contents. This phenomenon disappears at 350 C, and the hydrogen seems to exert no more influence on the fracture micromechanism even for very high hydrogen contents (up to 1,500 wt ppm). A full-coverage model is proposed to estimate the critical hydrogen content that makes ZIRCALOY-4 totally brittle. The effect of microstructure on hydride embrittlement in different metallurgical states is thus explained according to the modeling. Special attention is devoted to relating the micromechanisms and the modeling in order to propose the possible measures needed to limit the hydride embrittlement effect.

Bai, J.B.; Prioul, C.; Francois, D. (Ecole Centrale Paris, Chatenay-Malabry (France))

1994-06-01T23:59:59.000Z

117

Model for Simulation of Hydride Precipitation in Zr-Based Used Fuel  

Broader source: Energy.gov (indexed) [DOE]

for Simulation of Hydride Precipitation in Zr-Based Used Fuel for Simulation of Hydride Precipitation in Zr-Based Used Fuel Claddings: A Status Report on Current Model Capabilities Model for Simulation of Hydride Precipitation in Zr-Based Used Fuel Claddings: A Status Report on Current Model Capabilities The report demonstrates a meso-scale, microstructural evolution model for simulation of zirconium hydride precipitation in the cladding of used fuels during long-term dry-storage. While the Zr-based claddings (regarded as a barrier for containment of radioactive fission products and fuel) are manufactured free of any hydrogen, they absorb hydrogen during service in the reactor. The amount of hydrogen that the cladding picks up is primarily a function of the exact chemistry and microstructure of the claddings and reactor operating conditions, time-temperature history, and

118

E-Print Network 3.0 - aluminium hydrides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Medicine 26 KV-tOOJHfe Metallurgy Department Summary: .3. Developaent of a Hydride Based Fuel Cell 32 4.4. Materials Research for Fuel Cell Application .. 33 4.5. Thin... . The...

119

Laves phase hydrogen storage alloys for super-high-pressure metal hydride hydrogen compressors  

Science Journals Connector (OSTI)

Ti-Cr- and Ti-Mn-based alloys were prepared to be low- and high-pressure stage metals for a double-stage super-high-pressure metal hydride hydrogen compressor. Their crystallographic characteristics and hydrogen

Xiumei Guo; Shumao Wang; Xiaopeng Liu; Zhinian Li; Fang Lü; Jing Mi; Lei Hao…

2011-06-01T23:59:59.000Z

120

The Safe Use of Sodium Hydride on Scale: The Process Development of a Chloropyrimidine Displacement  

Science Journals Connector (OSTI)

The Safe Use of Sodium Hydride on Scale: The Process Development of a Chloropyrimidine Displacement ... Global Pharmaceutical Commercialization, Merck Manufacturing Division, Rahway, New Jersey, 07065 ... This article is part of the Safety of Chemical Processes 11 special issue. ...

Jamie M. McCabe Dunn; Alicia Duran-Capece; Brendan Meehan; James Ulis; Tetsuo Iwama; Guy Gloor; George Wong; Evan Bekos

2011-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Structure of the novel ternary hydrides Li4Tt2D (Tt = Si and Ge)  

Science Journals Connector (OSTI)

The crystal structures of novel Li4Tt2D (Tt = Si and Ge) ternary hydrides were solved using neutron powder diffraction data. All hydrogen atoms were found to occupy Li6-octahedral interstices.

Wu, H.

2007-01-15T23:59:59.000Z

122

Formation and Characterization of Hydride Blisters in Zircaloy-4 Cladding Tubes  

E-Print Network [OSTI]

in a CANDU Zircaloy-2 pressure tube along an array of hydride blisters on the external surface is the material that replaced Zircaloy-2 alloy for pressure tubes in the CANDU reactors. In all these studies

Paris-Sud XI, Université de

123

Photogeneration of Hydride Donors and Their Use Toward CO2 Reduction  

SciTech Connect (OSTI)

Despite substantial effort, no one has succeeded in efficiently producing methanol from CO2 using homogeneous photocatalytic systems. We are pursuing reaction schemes based on a sequence of hydride-ion transfers to carry out stepwise reduction of CO2 to methanol. We are using hydride-ion transfer from photoproduced C-H bonds in metal complexes with bio-inspired ligands (i.e., NADH-like ligands) that are known to store one proton and two electrons.

Fujita,E.; Muckerman, J.T.; Polyansky, D.E.

2009-06-07T23:59:59.000Z

124

Comparison of various battery technologies for electric vehicles  

E-Print Network [OSTI]

four technologies; Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual...

Dickinson, Blake Edward

1993-01-01T23:59:59.000Z

125

Abstract--This paper outlines the design of an autonomous flying vehicle (AFV) for use in researching formation  

E-Print Network [OSTI]

with a full suite of integrated peripherals. Today, Nickel- Metal Hydride (NiMH) batteries can source more predators and efficiently forage for food [6]. Both the Air Force and NASA have identified autonomous

Sukhatme, Gaurav S.

126

Are batteries ready for plug-in hybrid buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

127

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel- metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

128

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

129

Technological assessment and evaluation of high power batteries and their commercial values  

E-Print Network [OSTI]

Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

Teo, Seh Kiat

2006-01-01T23:59:59.000Z

130

First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities  

SciTech Connect (OSTI)

Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

2013-09-01T23:59:59.000Z

131

\\{WS8e4\\} - EFFECT OF HYDRIDES ON THE MECHANICAL PROPERTIES OF ZIRCALOY-4  

Science Journals Connector (OSTI)

ABSTRACT In order to better understand the embrittlement of Zircaloy-4 by hydrides and the ductile-brittle transition on this alloy, Zircaloy-4 sheet tensile specimens in the stress-relieved, recrystallized and ? treated states were hydrided (10 to 1500 ppm wt H) and then tested at two temperatures (20°C, 350°C). Metallographic and fractographic analyses were carried out to determine the fracture micro-mechanisms. The results showed that, at 20°C, Zircaloy-4 undergoes a significant ductile to brittle transition for high hydrogen contents. Heat treatment shifts this transition (to zero elongation) considerably, from 1050 ppm wt H for the stress-relieved state to less than 250 ppm wt H for the ? treated state. However, at 350°C, Zircaloy-4 remains ductile up to hydrogen content higher than 1100 ppm wt. At 20°C, the fracture surfaces are characterized by voids and secondary cracks for low and medium hydrogen contents, and by intergranular crack and decohesion through the continuous hydride network for high hydrogen content. A model based on image analysis and hydride embrittlement micro-mechanism observations is used to calculate the upper-limit hydrogen content which makes Zircaloy-4 totally brittle. The difference between the mechanical behaviors of stress-relieved and recrystallized states is also explained. KEYWORDS Zircaloy-4, hydride embrittlement, ductile-brittle transition, cracked-hydride voids.

J.B. BAI; C. PRIOUL; D. FRANÇOIS

1992-01-01T23:59:59.000Z

132

Fracture of Hydrided Zircaloy-4 Sheet under Through-Thickness Crack Growth Conditions  

SciTech Connect (OSTI)

The failure of thin-wall components such as fuel cladding may be caused by crack initiation on the component surface and subsequent crack growth through its thickness. This study has determined the fracture toughness of hydrided cold-worked stress relieved Zircaloy-4 sheet subject to through-thickness crack growth at 25 deg. C. The experimental approach utilizes a novel procedure in which a narrow linear strip of brittle hydride blister across the specimen width creates a well-defined pre-crack upon initial loading. The subsequent crack growth resistance is then characterized by four-point bending of the specimen and an elastic-plastic fracture mechanics analysis. At room temperature, the through-thickness fracture toughness (K{sub Q}) is sensitive to the orientation of the hydride platelets, and K{sub Q} {approx_equal} 25 MPavm for crack growth through a mixed in-plane/out-of-plane hydride field. In contrast, K{sub Q} is much higher ({approx_equal} 75 MPavm) when the hydride platelets are oriented predominantly in the plane of the sheet (and therefore normal to both the crack plane and the crack growth direction). The implication of these fracture toughness values to the fracture strain behavior of hydrided Zircaloy-4 under through-thickness crack growth conditions is illustrated. (authors)

Raynaud, P.A.; Koss, D.A. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Motta, A.T. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Chan, K.S. [Southwest Research Institute, San Antonio, TX 78238 (United States)

2007-07-01T23:59:59.000Z

133

Methodology of Materials Discovery in Complex Metal Hydrides Using Experimental and Computational Tools  

SciTech Connect (OSTI)

We present a review of the experimental and theoretical methods used in the discovery of new metal-hydrogen materials systems for hydrogen storage applications. Rather than a comprehensive review of all new materials and methods used in the metal hydride community, we focus on a specific subset of successful methods utilizing theoretical crystal structure prediction methods, computational approaches for screening large numbers of compound classes, and medium-throughput experimental methods for the preparation of such materials. Monte Carlo techniques paired with a simplified empirical Hamiltonian provide crystal structure candidates that are refined using Density Functional Theory. First-principle methods using high-quality structural candidates are further screened for an estimate of reaction energetics, decomposition enthalpies, and determination of reaction pathways. Experimental synthesis utilizes a compacted-pellet sintering technique under high-pressure hydrogen at elevated temperatures. Crystal structure determination follows from a combination of Rietveld refinements of diffraction patterns and first-principles computation of total energies and dynamical stability of competing structures. The methods presented within are general and applicable to a wide class of materials for energy storage.

Majzoub, Eric H.; Ronnebro, Ewa

2012-02-22T23:59:59.000Z

134

Lightweight Metal Hydrides for Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Ji-Cheng Zhao (Primary Contact), Xuenian Chen, Sheldon G. Shore The Ohio State University, Department of Materials Science and Engineering, 286 Watts Hall, 2041 College Road Columbus, OH 43210 Phone: (614) 292-9462 Email: zhao.199@osu.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FC3605GO15062 Project Start Date: January 1, 2005 Project End Date: August 31, 2011 (No-cost extension to December 31, 2012) Fiscal Year (FY) 2012 Objectives Develop a high-capacity lightweight hydride for * reversible vehicular hydrogen storage, capable of meeting or exceeding the 2010 DOE FreedomCAR

135

Documentation of Hybrid Hydride Model for Incorporation into Moose-Bison and Validation Strategy  

SciTech Connect (OSTI)

This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride ?-ZrH1.5 precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding (Hanson et al., 2011). While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (Birk et al., 2012 and NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. In this work, a model to numerically simulate hydride precipitation at the microstructural scale, in a wide variety of Zr-based claddings, under dry-storage conditions is being developed. It will be used to aid in the evaluation of the mechanical integrity of used fuel rods during dry storage and transportation by providing the structural conditions from the microstructural scale to the continuum scale to engineering component scale models to predict if the used fuel rods will perform without failure under normal and off-normal conditions. The microstructure, especially, the hydride structure is thought to be a primary determinant of cladding failure, thus this component of UFD’s storage and transportation analysis program is critical. The model development, application and validation of the model are documented and the limitations of the current model are discussed. The model has been shown to simulate hydride precipitation in Zircaloy-4 cladding with correct morphology, thermodynamics and kinetics. An unexpected insight obtained from simulations hydride formation in Zircaloy-4 is that small (sub-micron) precipitates need to order themselves to form the larger hydrides typically described as radially-reoriented precipitates. A limitation of this model is that it does not currently solve the stress state that forms dynamically in the precipitate or matrix surrounding the precipitate. A method to overcome the limitations is suggested and described in detail. The necessary experiments to provide key materials physics and to validate the model are also recommended.

Veena Tikare; Philippe Weck; Peter Schultz; Blythe Clark; John Mitchell; Michael Glazoff; Eric Homer

2014-10-01T23:59:59.000Z

136

Dynamic modeling and simulation of hydrogen supply capacity from a metal hydride tank  

Science Journals Connector (OSTI)

Abstract The current study presents a modeling of a LaNi5 metal hydride-based hydrogen storage tank to simulate and control the dynamic processes of hydrogen discharge from a metal hydride tank in various operating conditions. The metal hydride takes a partial volume in the tank and, therefore, hydrogen discharge through the exit of the tank was driven by two factors; one factor is compressibility of pressurized gaseous hydrogen in the tank, i.e. the pressure difference between the interior and the exit of the tank makes hydrogen released. The other factor is desorption of hydrogen from the metal hydride, which is subsequently released through the tank exit. The duration of a supposed full load supply is evaluated, which depends on the initial tank pressure, the circulation water temperature, and the metal hydride volume fraction in the tank. In the high pressure regime, the duration of full load supply is increased with increasing circulation water temperature while, in the low pressure regime where the initial amount of hydrogen absorbed in the metal hydride varies sensitively with the metal hydride temperature, the duration of full load supply is increased and then decreased with increasing circulation water temperature. PID control logic was implemented in the hydrogen supply system to simulate a representative scenario of hydrogen consumption demand for a fuel cell system. The demanded hydrogen consumption rate was controlled adequately by manipulating the discharge valve of the tank at a circulation water temperature not less than a certain limit, which is increased with an increase in the tank exit pressure.

Ju-Hyeong Cho; Sang-Seok Yu; Man-Young Kim; Sang-Gyu Kang; Young-Duk Lee; Kook-Young Ahn; Hyun-Jin Ji

2013-01-01T23:59:59.000Z

137

The affect of erbium hydride on the conversion efficience to accelerated protons from ultra-shsort pulse laser irradiated foils  

SciTech Connect (OSTI)

This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 10{sup 16} protons with an average energy of about 3MeV. This is far more than the 10{sup 12} protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH{sub 3} coatings on 5 {micro}m gold foils are compared with typical contaminants which are approximately equivalent to CH{sub 1.7}. It will be shown that there was a factor of 1.25 {+-} 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 10{sup 19}W/cm{sup 2}. The total number of protons from either target type was on the order of 10{sup 10}. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 10{sup 20} W/cm{sup 2}. In this experiment 10{sup 12} protons were seen from both erbium hydride and contaminants on 14 {micro} m gold foils. Significant improvements were also observed but possibly because of the depletion of hydrogen in the contaminant layer case.

Offermann, D

2008-09-04T23:59:59.000Z

138

URANIUM METAL POWDER PRODUCTION, PARTICLE DISTRIBUTION ANALYSIS, AND REACTION RATE STUDIES OF A HYDRIDE-DEHYDRIDE PROCESS  

E-Print Network [OSTI]

atmosphere to reduce sample oxidation .................................................................................................. 13 12 Aluminum oxide crucible located at the bottom of the hydride-dehydride rig. ... 14 13 Furnace and furnace... at 60 minutes, 5psig, 250?C hydride, 325?C dehydride ................................................................................................... 30 27 Rotary kiln designed at ORNL for use in voloxidation...

Sames, William

2011-08-08T23:59:59.000Z

139

Titanium tritide radioisotope heat source development : palladium-coated titanium hydriding kinetics and tritium loading tests.  

SciTech Connect (OSTI)

We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom (Savannah River National Labs, Aiken, SC)

2012-01-01T23:59:59.000Z

140

Method and composition in which metal hydride particles are embedded in a silica network  

DOE Patents [OSTI]

A silica embedded metal hydride composition and a method for making such a composition. The composition is made via the following process: A quantity of fumed silica is blended with water to make a paste. After adding metal hydride particles, the paste is dried to form a solid. According to one embodiment of the invention, the solid is ground into granules for use of the product in hydrogen storage. Alternatively, the paste can be molded into plates or cylinders and then dried for use of the product as a hydrogen filter. Where mechanical strength is required, the paste can be impregnated in a porous substrate or wire network.

Heung, Leung K. (Aiken, SC)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Oxidative Dissolution of Nickel Metal in Hydrogenated Hydrothermal Solutions  

SciTech Connect (OSTI)

A platinum-lined, flowing autoclave facility is used to investigate the solubility behavior of metallic nickel in hydrogenated ammonia and sodium hydroxide solutions between 175 and 315 C. The solubility measurements were interpreted by means of an oxidative dissolution reaction followed by a sequence of Ni(II) ion hydrolysis reactions: Ni(s) + 2H+(aq) = Ni2+(aq) + H2(g) and Ni{sup 2+}(aq) + nH{sub 2}O = Ni(OH){sub n}{sup 2-n}(aq) + nH{sup +}(aq) where n = 1 and 2. Gibbs energies associated with these reaction equilibria were determined from a least-squares analysis of the data. The extracted thermochemical properties ({Delta}fG{sup 0}, {Delta}fH{sup 0} and S{sup 0}) for Ni2{sup +}(aq), Ni(OH){sup +}(aq) and Ni(OH){sub 2}(aq) were found to be consistent with those determined in a previous solubility study of NiO/Ni(OH){sub 2} conducted in our laboratory. The thermodynamic basis of the Ni/NiO phase boundary in aqueous solutions is examined to show that Ni(s) is stable relative to NiO(s) in solutions saturated at 25 C with 1 atm H{sub 2} for temperatures below 309 C.

Ziemniak SE, Guilmette PA, Turcotte RA, Tunison HM

2007-03-27T23:59:59.000Z

142

The influence of hydride blisters on the fracture of Zircaloy-4 O.N. Pierron a  

E-Print Network [OSTI]

.elsevier.com/locate/jnucmat Journal of Nuclear Materials 322 (2003) 21­35 #12;hydrogen embrittlement [15]. Such an effect becomes, and radiation damage [1]. As the cladding undergoes oxidation with the associated hydrogen pickup, the total amount of hydrogen increases, and hydride precipitates form pref- erentially near the outer (cooler

Motta, Arthur T.

143

Development of encapsulated lithium hydride thermal energy storage for space power systems  

SciTech Connect (OSTI)

Inclusion of thermal energy storage in a pulsed space power supply will reduce the mass of the heat rejection system. In this mode, waste heat generated during the brief high-power burst operation is placed in the thermal store; later, the heat in the store is dissipated to space via the radiator over the much longer nonoperational period of the orbit. Thus, the radiator required is of significantly smaller capacity. Scoping analysis indicates that use of lithium hydride as the thermal storage medium results in system mass reduction benefits for burst periods as long as 800 s. A candidate design for the thermal energy storage component utilizes lithium hydride encapsulated in either 304L stainless steel or molybdenum in a packed-bed configuration with a lithium or sodium-potassium (NaK) heat transport fluid. Key issues associated with the system design include phase-change induced stresses in the shell, lithium hydride and shell compatibility, lithium hydride dissociation and hydrogen loss from the system, void presence and movement associated with the melt-freeze process, and heat transfer limitations on obtaining the desired energy storage density. 58 refs., 40 figs., 11 tabs.

Morris, D.G.; Foote, J.P.; Olszewski, M.

1987-12-01T23:59:59.000Z

144

Analytical assessment of the thermal behavior of nickelemetal hydride batteries during fast charging  

E-Print Network [OSTI]

Analytical assessment of the thermal behavior of nickelemetal hydride batteries during fast to investigate transient thermal behavior of NiMH batteries. The thermal model uses integral transformation 2013 Available online 25 June 2013 Keywords: Battery thermal management Battery thermal model Fast

Bahrami, Majid

145

X-ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films  

E-Print Network [OSTI]

X-ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films T. J. Richardsona@lbl.gov Abstract Mixed metal thin films containing magnesium and a first-row transition element exhibit very large and coordination of the magnesium and transition metal atoms during hydrogen absorption were studied using dynamic

146

Project Profile: Low-Cost Metal Hydride Thermal Energy Storage System  

Broader source: Energy.gov [DOE]

The Savannah River National Laboratory (SRNL), under the National Laboratory R&D competitive funding opportunity, is collaborating with Curtin University (CU) to evaluate new metal hydride materials for thermal energy storage (TES) that meet the SunShot cost and performance targets for TES systems.

147

Observations of proton beam enhancement due to erbium hydride on gold foil targets  

SciTech Connect (OSTI)

Recent theoretical work suggests that the conversion efficiency from laser to protons in laser irradiated thin foil experiments increases if the atomic mass of nonhydrogen atoms on the foil rear surface increases. Experiments were performed at the Lawrence Livermore National Laboratory Jupiter Laser Facility to observe the effect of thin foils coated with erbium hydride on the conversion efficiency from laser to protons. Gold foils with and without the rear surface coated with ErH{sub 3} were irradiated using the ultrashort pulse, 40 TW Callisto laser. An argon-ion etching system was used to remove naturally occurring nanometer thick surface layer contaminants from the hydride. With the etcher, gold with ErH{sub 3} showed a 25% increase in the conversion efficiency to protons above 3.4 MeV relative to contaminants, where C{sup +4} and H{sup +} were the dominant ion species. No difference in the ion signal was observed without first cleaning the hydrides. Simulations using the hybrid PIC code, LSP, revealed that the increase due to erbium hydride versus contaminants is 37% for protons above 3 MeV.

Offermann, D. T.; Van Woerkom, L. D. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Freeman, R. R. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States); Department of Applied Science, University of California Davis, Livermore, California 94550 (United States); Foord, M. E.; Hey, D.; Key, M. H.; Mackinnon, A. J.; MacPhee, A. G.; Patel, P. K.; Ping, Y.; Sanchez, J. J.; Shen, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bartal, T.; Beg, F. N. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States); Espada, L. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Chen, C. D. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2009-09-15T23:59:59.000Z

148

First Principles Studies of Phase Stability and Reaction Dynamics in Complex Metal Hydrides  

SciTech Connect (OSTI)

Complex metal hydrides are believed to be one of the most promising materials for developing hydrogen storage systems that can operate under desirable conditions. At the same time, these are also a class of materials that exhibit intriguing properties. We have used state-of-the-art computational techniques to study the fundamental properties of these materials.

Chou, Mei-Yin

2014-09-29T23:59:59.000Z

149

Evaluation of Protected Metal Hydride Slurries in a H2 Mini-  

E-Print Network [OSTI]

Evaluation of Protected Metal Hydride Slurries in a H2 Mini- Grid TIAX, LLC Acorn Park Cambridge_MERIT_REVIEW_MAY2003 2 Introduction Hydrogen Mini-Grid Concept Distributed FCPS utilizing a H2 Mini-Grid can provide waste heat can be used for hot water or space heating in buildings (i.e. "cogen") Distributed FCPS

150

Aluminum Hydride - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jason Graetz (Primary Contact), James Wegrzyn Brookhaven National Laboratory (BNL) Building 815 Upton, NY 11973 Phone: (631) 344-3242 Email: graetz@bnl.gov DOE Manager HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov Project Start Date: October 1, 2011 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Develop onboard vehicle storage systems using aluminum hydride that meets all of DOE's targets for proton exchange membrane fuel cell vehicles. Produce aluminum hydride material with a hydrogen * storage capacity greater than 9.7% gravimetric (kg-H 2 /kg) and 0.13 kg-H 2 /L volumetric. Develop practical and economical processes for *

151

Pressure Acceleration of Hydride Formation on a Cobalt(I) Macrocycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pressure Acceleration of Hydride Formation via Pressure Acceleration of Hydride Formation via Proton Binding to a Cobalt(I) Macrocycle Etsuko Fujita, James F. Wishart, and Rudi van Eldik Inorg. Chem. 41, 1579-1583 (2002) [Find paper at ACS Publications] Abstract: The effect of pressure on proton binding to the racemic isomer of the cobalt(I) macrocycle, CoL+ (L = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene), has been studied for a series of proton donors using pulse radiolysis techniques. The second-order rate constants for the reaction of CoL+ with proton donors decrease with increasing pKa of the donor acid, consistent with a reaction occurring via proton transfer. Whereas the corresponding volumes of activation (DVĂœ) are rather small and negative for all acids (proton donors) with pKa values below 8.5, significantly larger negative

152

Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation  

DOE Patents [OSTI]

An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-based materials is disclosed. Samples of zirconium-based materials having different compositions and/or fabrication methods are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280 to 316 C). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hydriding for the same materials when subject to in-reactor (irradiated) corrosion. 1 figure.

Johnson, A.B. Jr.; Levy, I.S.; Trimble, D.J.; Lanning, D.D.; Gerber, F.S.

1990-04-10T23:59:59.000Z

153

OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES  

SciTech Connect (OSTI)

Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

2011-07-14T23:59:59.000Z

154

Systems Modeling, Simulation and Material Operating Requirements for Chemical Hydride Based Hydrogen Storage  

SciTech Connect (OSTI)

Research on ammonia borane (AB, NH3BH3) has shown it to be a promising material for chemical hydride based hydrogen storage. AB was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to 19.6% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. A new systems concept based on augers, ballast tank, hydrogen heat exchanger and H2 burner was designed and implemented in simulation. In this design, the chemical hydride material was assumed to produce H2 on the augers itself, thus minimizing the size of ballast tank and reactor. One dimensional models based on conservation of mass, species and energy were used to predict important state variables such as reactant and product concentrations, temperatures of various components, flow rates, along with pressure, in various components of the storage system. Various subsystem components in the models were coded as C language S-functions and implemented in Matlab/Simulink environment. The control variable AB (or alane) flow rate was determined through a simple expression based on the ballast tank pressure, H2 demand from the fuel cell and hydrogen production from AB (or alane) in the reactor. System simulation results for solid AB, liquid AB and alane for both steady state and transient drive cycle cases indicate the usefulness of the model for further analysis and prototype development.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.

2012-02-01T23:59:59.000Z

155

Draft of M2 Report on Integration of the Hybrid Hydride Model into INL’s MBM Framework for Review  

SciTech Connect (OSTI)

This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride {delta}-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding (Hanson et al., 2011). While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (Birk et al., 2012 and NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. This document demonstrates a basic hydride precipitation model that is built on a recently developed hybrid Potts-phase field model that combines elements of Potts-Monte Carlo and the phase-field models (Homer et al., 2013; Tikare and Schultz, 2012). The model capabilities are demonstrated along with the incorporation of the starting microstructure, thermodynamics of the Zr-H system and the hydride formation mechanism.

Tikare, Veena; Weck, Philippe F.; Schultz, Peter A.; Clark, Blythe; Michael Glazoff; Eric Homer

2014-07-01T23:59:59.000Z

156

UNIT NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

193 UNIT NUMBER: 197 UNIT NAME: CONCRETE RUBBLE PILE (30) REGULATORY STATUS: AOC LOCATION: Outside plant security fence, north of the plant on Big Bayou Creek on private property....

157

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 UNIT NUMBER UNIT NAME Rubble oile 41 REGULATORY STATUS: AOC LOCATION: Butler Lake Dam, West end of Butler Lake top 20 ft wide, 10 ft APPROXIMATE DIMENSIONS: 200 ft long, base 30...

158

An automated hydride generation-cryogenic trapping-ICP-MS system for measuring inorganic and methylated Ge, Sb and As species  

E-Print Network [OSTI]

An automated hydride generation-cryogenic trapping-ICP-MS system for measuring inorganic of both flow injection and batch hydride generation and couples it to an automated cryogenic trapping unit with detection by ICP-MS. The Teflon cryogenic trap was packed with 10 cm of SE-30 5% Chromosorb W-HP 80­100 mesh

Canberra, University of

159

ReaxFFMgH Reactive Force Field for Magnesium Hydride Systems Sam Cheung, Wei-Qiao Deng, Adri C. T. van Duin, and William A. Goddard III*  

E-Print Network [OSTI]

ReaxFFMgH Reactive Force Field for Magnesium Hydride Systems Sam Cheung, Wei-Qiao Deng, Adri C. TFFMgH) for magnesium and magnesium hydride systems. The parameters for this force field were derived from fitting to quantum chemical (QM) data on magnesium clusters and on the equations of states for condensed phases

van Duin, Adri

160

Thermodynamic Guidelines for the Prediction of Hydrogen Storage Reactions and Their Application to Destabillzed Hydride Mixtures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermodynamic guidelines for the prediction of hydrogen Thermodynamic guidelines for the prediction of hydrogen storage reactions and their application to destabilized hydride mixtures Hydrogen Storage & Nanoscale Modeling Group Ford Motor Company Don Siegel dsiegel2@ford.com Phys. Rev. B 76, 134102 (2007) 1 Acknowledgements C. Wolverton V. Ozolins Computation Northwestern UCLA J. Yang A. Sudik Experiments Ford Ford 2 Computational Methodology * Atomistic computer simulations based on quantum mechanics (Density Functional Theory) * First-principles approach: - Only empirical input are crystal structure and fundamental physical constants - VASP code - PAW potentials - PW91 GGA - Temperature-dependent thermodynamic contributions evaluated within harmonic approximation * "Direct method" for construction of dynamical matrix

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Measurements of Ionic Structure in Shock Compressed Lithium Hydride from Ultrafast X-Ray Thomson Scattering  

SciTech Connect (OSTI)

We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.

Kritcher, A. L. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94709 (United States); Neumayer, P.; Doeppner, T.; Landen, O. L.; Glenzer, S. H. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Brown, C. R. D. [Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); AWE plc., Aldermaston, Reading, RG7 4PR (United Kingdom); Davis, P. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Department of Physics, University of California Berkeley, Berkeley, California 94709 (United States); Falcone, R. W.; Lee, H. J. [Department of Physics, University of California Berkeley, Berkeley, California 94709 (United States); Gericke, D. O.; Vorberger, J.; Wuensch, K. [CFSA, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Gregori, G. [Department of Physics, Oxford University, Oxford OX1 3PU (United Kingdom); Holst, B.; Redmer, R. [Universitaet Rostock, Institut fuer Physik, D-18051 Rostock (Germany); Morse, E. C. [Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94709 (United States); Pelka, A.; Roth, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Darmstadt (Germany)

2009-12-11T23:59:59.000Z

162

Method and apparatus for storing hydrogen isotopes. [stored as uranium hydride in a block of copper  

DOE Patents [OSTI]

An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas is stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forms at a significantly lower temperature).

McMullen, J.W.; Wheeler, M.G.; Cullingford, H.S.; Sherman, R.H.

1982-08-10T23:59:59.000Z

163

Positron binding to alkali-metal hydrides: The role of molecular vibrations  

SciTech Connect (OSTI)

The bound vibrational levels for J=0 have been computed for the series of alkali-metal hydride molecules from LiH to RbH, including NaH and KH. For all four molecules the corresponding potential-energy curves have been obtained for each isolated species and for its positron-bound complex (e{sup +}XH). It is found that the calculated positron affinity values strongly depend on the molecular vibrational state for which they are obtained and invariably increase as the molecular vibrational energy content increases. The consequences of our findings on the likelihood of possibly detecting such weakly bound species are briefly discussed.

Gianturco, Franco A.; Franz, Jan; Buenker, Robert J.; Liebermann, Heinz-Peter; Pichl, Lukas; Rost, Jan-Michael; Tachikawa, Masanori; Kimura, Mineo [Department of Chemistry and INFM, University of Rome La Sapienza, Piazzale A. Moro 5, 00185 Rome (Italy); Fachbereich C-Mathematik und Naturwissenschaften, Bergische Universitaet Wuppertal, Gaussstrasse 20, D-42119 Wuppertal (Germany); Max Planck Institute for the Physics of Complex Systems, Noethnitzer St. 38, D-01187 Dresden (Germany); Graduate School of Science, Yokohama-city University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027 (Japan); Graduate School of Sciences, Kyushu University, Fukuoka 812-8581 (Japan)

2006-02-15T23:59:59.000Z

164

Theory of Hydride-Proton Transfer (HPT) Carbonyl Reduction by [Os(III)(tpy)(Cl)(NH=CHCH3)(NSAr)  

SciTech Connect (OSTI)

Quantum mechanical analysis reveals that carbonyl reduction of aldehydes and ketones by the imine-based reductant cis-[Os{sup III}(tpy)(Cl)(NH?CHCH{sub 3})(NSAr)] (2), which is accessible by reduction of the analogous nitrile, occurs by hydride-proton transfer (HPT) involving both the imine and sulfilimido ligands. In carbonyl reduction, water or alcohol is necessary to significantly lower the barrier for proton shuttling between ligands. The ?N(H)SAr group activates the carbonyl group through hydrogen bonding while the ?NC(H)CH{sub 3} ligand delivers the hydride.

Ess, Daniel H.; Schauer, Cynthia; Meyer, Thomas J.

2010-01-01T23:59:59.000Z

165

TEAM HEV ARC HITECTURE ENGIN E FU EL TRANS MISSION EN ERGY STOR  

Broader source: Energy.gov (indexed) [DOE]

TEAM TEAM HEV ARC HITECTURE ENGIN E FU EL TRANS MISSION EN ERGY STOR AGE MO TOR Michigan Technological University Through-the-road Parallel 2.0-L 4 Cylinder Spark Ignition Reformulated Gasoline 4-speed Automatic COBASYS, Nickel Metal Hydride - 288V 50 kW Solectria AC Induction Transaxle Mississippi State University Through-the-road Parallel 1.9-L GM Direct Injection Turbo Diesel Bio Diesel (B20) GM F40 6-speed Manual Johnson Controls, Nickel Metal Hydride - 330V 45 kW Ballard Integrated Power Transaxle The Ohio State University Through-the-road Parallel 1.9-L GM Direct Injection Turbo Diesel Bio Diesel (B20) Aisin-Warner AF40 6-speed Automatic Transaxle Panasonic, Nickel Metal Hydride - 300V 67 kW Ballard AC Induction Transaxle /10.6 kW Kollmorgen Brushless DC Generator Pennsylvania State

166

Nondestructive Evaluation on Hydrided LWR Fuel Cladding by Small Angle Incoherent Neutron Scattering of Hydrogen  

SciTech Connect (OSTI)

A non-destructive neutron scattering method was developed to precisely measure the uptake of total hydrogen in nuclear grade Ziraloy-4 cladding. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and H gas. By controlling the initial H gas pressure in the vessel and the temperature profile, target H concentrations from tens of ppm to a few thousands of wppm have been successfully achieved. Following H charging, the H content of the hydrided specimens was measured using the vacuum hot extraction method (VHE), by which the samples with desired H concentration were selected for the neutron study. Small angle neutron incoherent scattering (SANIS) were performed in the High Flux Isotope Reactor at Oak Ridge national Laboratory (ORNL). Our study indicates that a very small amount ( 20 ppm) H in commercial Zr cladding can be measured very accurately in minutes for a wide range of H concentration by a nondestructive method. The H distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor, which is determined by calibration process with direct chemical analysis method on the specimen. This scale factor can be used for future test with unknown H concentration, thus provide a nondestructive method for absolute H concentration determination.

Yan, Yong [ORNL; Qian, Shuo [ORNL; Littrell, Ken [ORNL; Parish, Chad M [ORNL; Bell, Gary L [ORNL; Plummer, Lee K [ORNL

2013-01-01T23:59:59.000Z

167

Hydride-dehydride module within ARIES (Advanced Recovery and Integrated Extraction System)  

SciTech Connect (OSTI)

One of the many requirements placed on the DOE is the reduction of the nuclear stockpile through dismantlement programs. The DOE Office of Fissile Materials Disposition (OFMD) has been tasked with the disposition of excess plutonium and other fissile materials. On the list of items containing excess fissile materials are nuclear weapon cores, pits. The Advanced Recovery and integrated Extraction System (ARIES) at Los Alamos National Laboratory is the pit disassembly and conversion demonstration line that is being used to gather data to support the design of the full scale pit disassembly and conversion facility. The Hydride Dehydride recycle system is an important element to this program, because it provides these dismantlement programs with a technology for removing plutonium from nuclear weapons without producing large amounts of waste compared to historical processes used in the DOE complex. The Hydride Dehydride recycle process can separate plutonium from other weapons components resulting in an unclassified plutonium metal button. After separation, this button can be stored in long term storage containers or processed to produce plutonium oxide, which will be used by either of the plutonium disposition options, mixed oxide fuel burning in a nuclear reactor or immobilization. Once placed into long term storage containers, either the plutonium metal or plutonium oxide can be inspected by bilateral or international agencies to invoke transparency of the plutonium.

Flamm, B.F.; Isom, G.M.; Nelson, T.O.

1998-12-31T23:59:59.000Z

168

Mechanical Behavior Studies of Depleted Uranium in the Presence of Hydrides  

SciTech Connect (OSTI)

This project addresses critical issues related to aging in the presence of hydrides (UH{sub 3}) in DU and the subsequent effect on mechanical behavior. Rolled DU specimens with three different hydrogen concentrations and the as-rolled condition were studied. The texture measurements indicate that the hydrogen charging is affecting the initial as-rolled DU microstructure/texture. The macroscopic mechanical behavior suggests the existence of a threshold between the 0 wpmm H and 0.3 wppm H conditions. A VPSC simulation of the macroscopic strain-stress behavior, when taking into account only a texture effect, shows no agreement with the experiment. This suggests that the macroscopic mechanical behavior observed is indeed due to the presence of hydrogen/hydrides in the DU bulk. From the lattice strain variation it can be concluded that the hydrogen is affecting the magnitude and/or the nature of CRSS. The metallography indicates the specimens that underwent the hydrogen charging process, developed large grains and twinning, which were enhanced by the presence of hydrogen. Further studies using electron microscopy and modeling will be conducted to learn about the deformation mechanisms responsible for the observed behavior.

Garlea, E.; Morrell, J. S.; Bridges, R. L.; Powell, G. L.; Brown, d. W.; Sisneros, T. A.; Tome, C. N.; Vogel, S. C.

2011-02-14T23:59:59.000Z

169

OBSERVATIONS IN REACTIVITY BETWEEN BH CONTAINING COMPOUNDS AND ORGANOMETALLIC REAGENTS: SYNTHESIS OF BORONIC ACIDS, BORONIC ESTERS, AND MAGNESIUM HYDRIDES  

E-Print Network [OSTI]

aryl bromides and H 2 BN(iPr) 2 Scheme 2.7. Hydroboration oftransfer hydride to BH 2 -N(iPr) 2 Scheme 2.10. Conversionchloride with BH 2 -N(iPr) 2 Scheme 3; Aqueous quench of p-

Clary, Jacob William

2012-01-01T23:59:59.000Z

170

Verification and Validation Strategy for Implementation of Hybrid Potts-Phase Field Hydride Modeling Capability in MBM  

SciTech Connect (OSTI)

The Used Fuel Disposition (UFD) program has initiated a project to develop a hydride formation modeling tool using a hybrid Potts­phase field approach. The Potts model is incorporated in the SPPARKS code from Sandia National Laboratories. The phase field model is provided through MARMOT from Idaho National Laboratory.

Jason D. Hales; Veena Tikare

2014-04-01T23:59:59.000Z

171

Combustion Processes in the Zr-Co-H2 System and Synthesis of Hydrides of Intermetallic Compounds  

Science Journals Connector (OSTI)

The researches on Zr2Co, ZrCo, ZrCo2 synthesis and hydriding in a self-propagating hightemperature synthesis — SHS mode are carried out. In IMC — hydrogen systems low temperature (350–500°C) and high temperature ...

H. G. Hakobyan; S. K. Dolukhanyan

2002-01-01T23:59:59.000Z

172

Case Number:  

Broader source: Energy.gov (indexed) [DOE]

Name of Petitioner: Name of Petitioner: Date of Filing: Case Number: Department of Energy Washington, DC 20585 JUL 2 2 2009 DEPARTMENT OF ENERGY OFFICE OF HEARINGS AND APPEALS Appeal Dean P. Dennis March 2, 2009 TBA-0072 Dean D. Dennis filed a complaint of retaliation under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. Mr. Dennis alleged that he engaged in protected activity and that his employer, National Security Technologies, LLC (NSTec ), subsequently terminated him. An Office of Hearings and Appeals (OHA) Hearing Officer denied relief in Dean P. Dennis, Case No. TBH-0072, 1 and Mr. Dennis filed the instant appeal. As discussed below, the appeal is denied. I. Background The DOE established its Contractor Employee Protection Program to "safeguard public

173

JOB NUMBER  

Broader source: Energy.gov (indexed) [DOE]

. . . . . . . . . .: LEAVE BLANK (NARA use only) JOB NUMBER N/-&*W- 9d - 3 DATE RECEIVED " -1s - 9 J - NOTIFICATION TOAGENCY , In accordance with the provisions of 44 U.S.C. 3303a the disposition request. including amendments, is ap roved except , . l for items that may be marke,, ,"dis osition not approved" or "withdrawn in c o i m n 10. 4. NAME OF PERSON WITH WHOM TO CONFER 5 TELEPHONE Jannie Kindred (202) 5&-333 5 - 2 -96 6 AGENCYCERTIFICATION -. ~ - I hereby certify that I am authorized to act for this agency in matters pertaining to the disposition of its records and that the records roposed for disposal are not now needed for the business of this agency or wiRnot be needed after t G t r & s s d ; and that written concurrence from

174

KPA Number  

Broader source: Energy.gov (indexed) [DOE]

Supports CMM-SW Level 3 Supports CMM-SW Level 3 Mapping of the DOE Information Systems Engineering Methodology to the Software Engineering Institute (SEI) Software Capability Maturity Model (CMM-SW) level 3. Date: September 2002 Page 1 KPA Number KPA Activity SEM Section SEM Work Product SQSE Web site http://cio.doe.gov/sqse ORGANIZATION PROCESS FOCUS OPF-1 The software process is assessed periodically, and action plans are developed to address the assessment findings. Chapter 1 * Organizational Process Management * Process Improvement Action Plan * Methodologies ! DOE Methodologies ! SEM OPF-2 The organization develops and maintains a plan for its software process development and improvement activities. Chapter 1 * Organizational Process Management * Process Improvement

175

Commercialization | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commercialization Commercialization Commercialization See an example of these steps in the commercialization process of Nickel Metal Hydride Batteries. See an example of these steps in the commercialization process of Nickel Metal Hydride Batteries. Commercialization is the process by which technologies and innovations developed in the lab make their way to market. By licensing patents or using Energy Department facilities, researchers from the private sector and academia are able to take advantage of federal investments into basic science research, while researchers are able to ensure that their discoveries have a life beyond the lab. The Energy Department also helps entrepreneurs, small business owners and

176

X-RAY ABSORPTION SPECTROSCOPY OF TRANSITION METAL-MAGNESIUM HYDRIDE FILMS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spectroscopy of Transition Metal-Magnesium Spectroscopy of Transition Metal-Magnesium Hydride Thin Films T. J. Richardson a, *, B. Farangis a , J. L. Slack a , P. Nachimuthu b , R. Pereira b , N. Tamura b , and M. Rubin a a Environmental Energy Technologies Division, b Advanced Light Source, Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, California 94720, USA *Corresponding author, E-mail address: tjrichardson@lbl.gov Abstract Mixed metal thin films containing magnesium and a first-row transition element exhibit very large changes in both reflectance and transmittance on exposure to hydrogen gas. Changes in electronic structure and coordination of the magnesium and transition metal atoms during hydrogen absorption were studied using dynamic in situ transmission mode X-ray absorption

177

Quantum Simulation of Helium Hydride in a Solid-State Spin Register  

E-Print Network [OSTI]

\\emph{Ab initio} computation of molecular properties is one of the most promising applications of quantum computing. While this problem is widely believed to be intractable for classical computers, efficient quantum algorithms exist which have the potential to vastly accelerate research throughput in fields ranging from material science to drug discovery. Using a solid-state quantum register realized in a nitrogen-vacancy (NV) defect in diamond, we compute the bond dissociation curve of the minimal basis helium hydride cation, HeH$^+$. Moreover, we report an energy uncertainty (given our model basis) of the order of $10^{-14}$ Hartree, which is ten orders of magnitude below desired chemical precision. As NV centers in diamond provide a robust and straightforward platform for quantum information processing, our work provides several important steps towards a fully scalable solid state implementation of a quantum chemistry simulator.

Ya Wang; Florian Dolde; Jacob Biamonte; Ryan Babbush; Ville Bergholm; Sen Yang; Ingmar Jakobi; Philipp Neumann; Alán Aspuru-Guzik; James D. Whitfield; Jörg Wrachtrup

2014-05-12T23:59:59.000Z

178

FeP precipitates in hydride?vapor phase epitaxially grown InP:Fe  

Science Journals Connector (OSTI)

Fe?doped InP was grown by hydride?vapor phase epitaxy.Doping levels up to 8Ś1018 cm?3 were determined by secondary ion mass spectrometry. Additionally performed photoluminescence measurements revealed a homogeneous distribution of electrically active Fe atoms. From microstructural investigations by analytical transmission electron microscopy spherical?shaped precipitates were detected in plan?view samples. These precipitates with diameters up to 13 nm are homogeneously arranged in the epilayer. For conglomerates of precipitates a distinct enrichment with Fe and P was measured by a comparative energy dispersive x?ray analysis. The lattice plane distances of the precipitates were deduced from the electron diffraction patterns and from high?resolution electron micrographs. A comparison with calculated values for different Fe–P alloys indicates that the precipitates consist mainly of orthorhombic FeP.

M. Luysberg; R. Göbel; H. Janning

1994-01-01T23:59:59.000Z

179

RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride  

DOE Patents [OSTI]

A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

Jeffery, F.R.; Shanks, H.R.

1980-08-26T23:59:59.000Z

180

Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation  

DOE Patents [OSTI]

An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-bsed materials is disclosed. Samples of zirconium-based materials having different composition and/or fabrication are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280.degree. to 316.degree. C.). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hyriding for the same materials when subject to in-reactor (irradiated) corrision.

Johnson, Jr., A. Burtron (Richland, WA); Levy, Ira S. (Kennewick, WA); Trimble, Dennis J. (Kennewick, WA); Lanning, Donald D. (Kennewick, WA); Gerber, Franna S. (Richland, WA)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Startup and Operation of a Metal Hydride Based Isotope Separation Process  

SciTech Connect (OSTI)

Production scale separation of tritium from other hydrogen isotopes at the Savannah River Site (SRS) in Aiken, SC, has been accomplished by several methods. These methods include thermal diffusion (1957--1986), fractional absorption (1964--1968), and cryogenic distillation (1967-present). Most recently, the Thermal Cycling Absorption Process (TCAP), a metal hydride based hydrogen isotope separation system, began production in the Replacement Tritium Facility (RTF) on April 9, 1994. TCAP has been in development at the Savannah River Technology Center since 1980. The production startup of this semi-continuous gas chromatographic separation process is a significant accomplishment for the Savannah River Site and was achieved after years of design, development, and testing.

Scogin, J.H.; Poore, A.S.

1995-02-27T23:59:59.000Z

182

Prediction of a multicenter-bonded solid boron hydride for hydrogen storage  

Science Journals Connector (OSTI)

A layered solid boron hydride structure (B2H2) consisting of a hexagonal boron network and bridge hydrogen which has a gravimetric capacity of 8wt% hydrogen is predicted. The structural, electronic, and dynamical properties of the proposed structure are investigated using first-principles electronic structure methods. The absence of soft phonon modes confirms the dynamical stability of the proposed structure. Charging the structure significantly softens hydrogen related phonon modes. Boron modes, in contrast, are either hardened or not significantly affected by electron doping. Furthermore, self-doping the structure considerably reduces the energy barrier against hydrogen release. These results suggest that electrochemical charging or self-doping mechanisms may facilitate hydrogen release while the underlying boron network remains intact for subsequent rehydrogenation.

Tesfaye A. Abtew; Bi-ching Shih; Pratibha Dev; Vincent H. Crespi; Peihong Zhang

2011-03-07T23:59:59.000Z

183

LaNi{sub 5}-based metal hydride electrode in Ni-MH rechargeable cells  

DOE Patents [OSTI]

An at least ternary metal alloy of the formula AB{sub (Z-Y)}X{sub (Y)} is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB{sub 5} alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption. 16 figs.

Bugga, R.V.; Fultz, B.; Bowman, R.; Surampudi, S.R.; Witham, C.K.; Hightower, A.

1999-03-30T23:59:59.000Z

184

Production of Hydrogen by Electrocatalysis: Making the H-H Bond by Combining Protons and Hydrides  

SciTech Connect (OSTI)

Generation of hydrogen by reduction of two protons by two electrons can be catalysed by molecular electrocatalysts. Determination of the thermodynamic driving force for elimination of H2 from molecular complexes is important for the rational design of molecular electrocatalysts, and allows the design of metal complexes of abundant, inexpensive metals rather than precious metals (“Cheap Metals for Noble Tasks”). The rate of H2 evolution can be dramatically accelerated by incorporating pendant amines into diphosphine ligands. These pendant amines in the second coordination sphere function as protons relays, accelerating intramolecular and intermolecular proton transfer reactions. The thermodynamics of hydride transfer from metal hydrides and the acidity of protonated pendant amines (pKa of N-H) contribute to the thermodynamics of elimination of H2; both of the hydricity and acidity can be systematically varied by changing the substituents on the ligands. A series of Ni(II) electrocatalysts with pendant amines have been developed. In addition to the thermochemical considerations, the catalytic rate is strongly influenced by the ability to deliver protons to the correct location of the pendant amine. Protonation of the amine endo to the metal leads to the N-H being positioned appropriately to favor rapid heterocoupling with the M-H. Designing ligands that include proton relays that are properly positioned and thermodynamically tuned is a key principle for molecular electrocatalysts for H2 production as well as for other multi-proton, multi-electron reactions important for energy conversions. The research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for DOE.

Bullock, R. Morris; Appel, Aaron M.; Helm, Monte L.

2014-03-25T23:59:59.000Z

185

Materials Go/No-Go Decisions Made Within the Department of Energy Metal Hydride Center of Excellence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Go/No-Go Decisions Made Within Materials Go/No-Go Decisions Made Within the Department of Energy Metal Hydride Center of Excellence (MHCoE) In fulfillment of the end of Fiscal Year 2007 Project Milestone on Materials Down-selection Lennie Klebanoff, Director Sandia National Laboratories Livermore, CA 94551 September/October 2007 1 Acknowledgements The author wishes to acknowledge the contributions of all Principal Investigators within the Metal Hydride Center of Excellence (MHCoE) to the work summarized herein. Their names and affiliations are listed below. Especially significant contributions to this document were made by Dr. Ewa Ronnebro (SNL), Dr. John Vajo (HRL), Prof. Zak Fang (U. Utah), Dr. Robert Bowman Jr. (JPL), Prof. David Sholl (CMU) and Prof. Craig Jensen (U. Hawaii). The author thanks Dr.

186

Erroneous Wave Functions of Ciuchi et al for Collective Modes in Neutron Production on Metallic Hydride Cathodes  

E-Print Network [OSTI]

There is a recent comment (Ciuchi et al., 2012) concerning the theory of collective many body effects on the neutron production rates in a chemical battery cathode. Ciuchi et al employ an inverse beta decay expression that contains a two body amplitude. Only one electron and one proton may exist in the Ciuchi et al model initial state wave function. A flaw in their reasoning is that one cannot in reality describe collective many body correlations with only a two particle wave function. One needs very many particles to describe collective effects. In the model wave functions of Ciuchi et al there are no metallic hydrides, there are no cathodes and there are no chemical batteries. Employing a wave function with only one electron and one proton is inadequate for describing collective metallic hydride surface quantum plasma physics in cathodes accurately.

Widom, A; Larsen, L

2012-01-01T23:59:59.000Z

187

Study of integrated metal hydrides heat pump and cascade utilization of liquefied natural gas cold energy recovery system  

Science Journals Connector (OSTI)

The traditional cold energy utilization of the liquefied natural gas system needs a higher temperature heat source to improve exergy efficiency, which barricades the application of the common low quality thermal energy. The adoption of a metal hydride heat pump system powered by low quality energy could provide the necessary high temperature heat and reduce the overall energy consumption. Thus, an LNG cold energy recovery system integrating metal hydride heat pump was proposed, and the exergy analysis method was applied to study the case. The performance of the proposed integration system was evaluated. Moreover, some key factors were also theoretically investigated about their influences on the system performance. According to the results of the analysis, some optimization directions of the integrated system were also pointed out.

Xiangyu Meng; Feifei Bai; Fusheng Yang; Zewei Bao; Zaoxiao Zhang

2010-01-01T23:59:59.000Z

188

Erroneous Wave Functions of Ciuchi et al for Collective Modes in Neutron Production on Metallic Hydride Cathodes  

E-Print Network [OSTI]

There is a recent comment (Ciuchi et al., 2012) concerning the theory of collective many body effects on the neutron production rates in a chemical battery cathode. Ciuchi et al employ an inverse beta decay expression that contains a two body amplitude. Only one electron and one proton may exist in the Ciuchi et al model initial state wave function. A flaw in their reasoning is that one cannot in reality describe collective many body correlations with only a two particle wave function. One needs very many particles to describe collective effects. In the model wave functions of Ciuchi et al there are no metallic hydrides, there are no cathodes and there are no chemical batteries. Employing a wave function with only one electron and one proton is inadequate for describing collective metallic hydride surface quantum plasma physics in cathodes accurately.

A. Widom; Y. N. Srivastava; L. Larsen

2012-10-17T23:59:59.000Z

189

Modeling of temporal behavior of isotopic exchange between gaseous hydrogen and palladium hydride power  

SciTech Connect (OSTI)

A parametric rate-equation model is described which depicts the time dependent behavior of the isotopic exchange process occurring between the solid and gas phases in gaseous hydrogen (deuterium) flows through packed-powder palladium deuteride (hydride) beds. The exchange mechanism is assumed to be rate-limited by processes taking place on the surface of the powder. The fundamental kinetic parameter of the model is the isotopic exchange probability, p, which is the probability that an isotopic exchange event occurs during a collision of a gas phase atom with the surface. Isotope effects between the gas and solid phases are explicitly included in terms of the isotope separation factor, ..cap alpha... Results of the model are compared with recent experimental measurements of isotope exchange in the ..beta..-phase hydrogen/palladium system and, using a literature value of ..cap alpha.. = 2.4, a good description of the experimental data is obtained for p approx. 10/sup -7/. In view of the importance of the isotope effects in the hydrogen/palladium system and the range of ..cap alpha.. values reported for the ..beta..-phase in the literature, the sensitivity of the model results to a variation in the value of ..cap alpha.. is examined.

Melius, C F; Foltz, G W

1987-01-01T23:59:59.000Z

190

Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications  

SciTech Connect (OSTI)

A fixed bed reactor was designed, modeled and simulated for hydrogen storage on-board the vehicle for PEM fuel cell applications. Ammonia Borane (AB) was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to {approx}16% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. The design evaluated consisted of a tank with 8 thermally isolated sections in which H2 flows freely between sections to provide ballast. Heating elements are used to initiate reactions in each section when pressure drops below a specified level in the tank. Reactor models in Excel and COMSOL were developed to demonstrate the proof-of-concept, which was then used to develop systems models in Matlab/Simulink. Experiments and drive cycle simulations showed that the storage system meets thirteen 2010 DOE targets in entirety and the remaining four at greater than 60% of the target.

Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; Holladay, Jamelyn D.

2011-10-05T23:59:59.000Z

191

Hydride vapor phase epitaxy and characterization of high-quality ScN epilayers  

SciTech Connect (OSTI)

The heteroepitaxial growth of ScN films was investigated on various substrates by hydride vapor phase epitaxy (HVPE). Single crystalline mirror-like ScN(100) and ScN(110) layers were successfully deposited on r- and m-plane sapphire substrates, respectively. Homogeneous stoichiometric films (N/Sc ratio 1.01?±?0.10) up to 40??m in thickness were deposited. Their mosaicity drastically improved with increasing the film thickness. The band gap was determined by optical methods to be 2.06?eV. Impurity concentrations including H, C, O, Si, and Cl were investigated through energy dispersive X-ray spectrometry and secondary ion mass spectrometry. As a result, it was found that the presence of impurities was efficiently suppressed in comparison with that of HVPE-grown ScN films reported in the past, which was possible thanks to the home-designed corrosion-free HVPE reactor. Room-temperature Hall measurements indicated that the residual free electron concentrations ranged between 10{sup 18}–10{sup 20}?cm{sup ?3}, which was markedly lower than the reported values. The carrier mobility increased monotonically with the decreasing in carrier concentration, achieving the largest value ever reported, 284?cm{sup 2}?V{sup ?1}?s{sup ?1} at n?=?3.7?Ś?10{sup 18}?cm{sup ?3}.

Oshima, Yuichi, E-mail: OSHIMA.Yuichi@nims.go.jp; Víllora, Encarnación G.; Shimamura, Kiyoshi [Environment and Energy Materials Research Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

2014-04-21T23:59:59.000Z

192

Mixing effect of metal oxides on negative electrode reactions in the nickel-hydride battery  

SciTech Connect (OSTI)

Negative electrodes for use in nickel-hydride batteries were prepared from MmNi[sub 3.6]Mn[sub 0.4]Al[sub 0.3]Co[sub 0.7] (Mm = misch metal with the composition of 24.87% La, 52.56% Ce, 5.57% Pr, 16.86% Nd, and 0.14% Sm) alloy being mixed with RuO[sub 2] or Co[sub 3]O[sub 4] powder. Then the hydrogen evolution reactions at the electrodes were investigated by measuring the potential decay immediately after the interruption of an applied cathodic current. The reactions were found to proceed by the Volmer-Tafel mechanism. The total overvoltage ([eta]) was divided into two components ([eta][sub 1] and [eta][sub 2]) corresponding to the Tafel and Volmer reactions. The exchange current densities of the elementary reactions, i[sub 0V] and i[sub 0T], were then evaluated by extrapolating the Tafel lines for [eta][sub 1] and [eta][sub 2]. The Volmer reaction is much more accelerated by surface modification with RuO[sub 2] or Co[sub 3]O[sub 4] powder than the Tafel reaction, which results in the enrichment of adsorbed hydrogen, leading to higher charging efficiency.

Iwakura, Chiaki; Matsuoka, Masao; Kohno, Tatsuoki (Univ. of Osaka Prefecture (Japan). Dept. of Applied Chemistry)

1994-09-01T23:59:59.000Z

193

Microsoft Word - s10.html  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chevrolet S-10 Electric Chevrolet S-10 Electric w/NiMH VEHICLE SPECIFICATIONS PURPOSE-BUILT VEHICLE Base Vehicle: 1998 S-10 VIN: 1GCDE14H1W8122580 Seatbelt Positions: Three Standard Features: Heat Pump Climate Control System Auxillary Diesel Fuel Fired Heater (Only operates Below 37°F) Cruise Control Power Steering Tilt Steering Wheel 4-wheel Anti-Lock Power Assisted Brakes Regenerative Braking Propulsion Battery Thermal Management System Driver and Passenger-Side Air Bags (w/Passenger-Side Deactivation Switch) AM/FM Stereo Radio Half-Bed Tonneau Cover BATTERY Manufacturer: Ovonic Energy Products Type: Nickel Metal Hydride Number of Modules: 26 Weight of Module: 18.3 kg Weight of Pack(s): 490.5 kg Pack Locations: Underbody Nominal Module Voltage: 13.2 V

194

Microsoft Word - solcar95.html  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FORCE FORCE VEHICLE SPECIFICATIONS CONVERTED VEHICLE Base Vehicle: 1995 Geo Metro VIN:2C1MR529XS6783464 Seatbelt Positions: Three Standard Features: Power Brakes Front Disk Brakes Front Wheel Drive Dual Air Bags AM/FM Stereo Radio w/Cassette Electric Heater Options as Tested: None BATTERY Manufacturer: GM Ovonic Type: 13.2EV85 Nickel Metal Hydride Number of Modules: 14 Weight of Module: 18 kg Weight of Pack(s): 254 kg Pack Locations: Undertrunk/Underhood Nominal Module Voltage: 13.2 V Nominal System Voltage: 185 V Nominal Capacity (1C): 85 Ah WEIGHTS Design Curb Weight: 2246 lbs Delivered Curb Weight: 2304 lbs Distribution F/R: 50/50 % GVWR: 2755 lbs GAWR F/R: 1432/1366 lbs Payload: 451 lbs Performance Goal: 664 lbs DIMENSIONS Wheelbase: 93.5 inches

195

Battery business boost  

Science Journals Connector (OSTI)

... year, A123 formed deals with the US car manufacturer Chrysler to make batteries for its electric cars. Other applications for A123 products include batteries for portable power tools and huge batteries ... batteries are not yet developed enough to be considered for use in its Prius hybrid electric car, preferring instead to keep using nickel metal hydride batteries. ...

Katharine Sanderson

2009-09-24T23:59:59.000Z

196

A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.  

SciTech Connect (OSTI)

Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

2013-03-01T23:59:59.000Z

197

Ultra compact direct hydrogen fuel cell prototype using a metal hydride hydrogen storage tank for a mobile phone  

Science Journals Connector (OSTI)

Abstract The small fuel cell is being researched as an alternative power source to the Li-ion battery in mobile phone. In this paper, a direct hydrogen fuel cell system which powers a mobile phone without a supplementary battery is compactly integrated below 25 ml volume at the backside of the phone. The system consists of a small (8 ml) metal hydride hydrogen storage tank with 4 L hydrogen storage or an energy density of ?640 W h/L, a thin air-breathing planar polymer electrolyte membrane fuel cell (PEMFC) stack (13.44 cm2 Ś 3 mm for a volumetric power density of 335 W/L), miniature pressure regulator, and a high efficiency DC–DC voltage converting circuitry. The hydrogen storage tank is packed with the AB5 type metal hydride alloy. The eight-cell air-breathing planar stack (8 ml) is very thin (3 mm) due to a thin flexible printed circuit board current collectors as well as a unique riveting assembly and is capable of a robust performance of 2.68 W (200 mW/cm2). A miniature pressure regulator is compact with fluidic and electrical connections within 4 ml. A miniature DC–DC voltage converter operates at an overall efficiency of 90%. Consequently, the estimated energy density of a fully integrated fuel cell system is 205 W h/L (70.5 W h/kg).

Sung Han Kim; Craig M. Miesse; Hee Bum Lee; Ik Whang Chang; Yong Sheen Hwang; Jae Hyuk Jang; Suk Won Cha

2014-01-01T23:59:59.000Z

198

Model based design of an automotive-scale, metal hydride hydrogen storage system.  

SciTech Connect (OSTI)

Sandia and General Motors have successfully designed, fabricated, and experimentally operated a vehicle-scale hydrogen storage system using the complex metal hydride sodium alanate. Over the 6 year project, the team tackled the primary barriers associated with storage and delivery of hydrogen including mass, volume, efficiency and cost. The result was the hydrogen storage demonstration system design. The key technologies developed for this hydrogen storage system include optimal heat exchange designs, thermal properties enhancement, a unique catalytic hydrogen burner and energy efficient control schemes. The prototype system designed, built, and operated to demonstrate these technologies consists of four identical hydrogen storage modules with a total hydrogen capacity of 3 kg. Each module consists of twelve stainless steel tubes that contain the enhanced sodium alanate. The tubes are arranged in a staggered, 4 x 3 array and enclosed by a steel shell to form a shell and tube heat exchanger. Temperature control during hydrogen absorption and desorption is accomplished by circulating a heat transfer fluid through each module shell. For desorption, heat is provided by the catalytic oxidation of hydrogen within a high efficiency, compact heat exchanger. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to the circulating heat transfer fluid. The demonstration system module design and the system control strategies were enabled by experiment-based, computational simulations that included heat and mass transfer coupled with chemical kinetics. Module heat exchange systems were optimized using multi-dimensional models of coupled fluid dynamics and heat transfer. Chemical kinetics models were coupled with both heat and mass transfer calculations to design the sodium alanate vessels. Fluid flow distribution was a key aspect of the design for the hydrogen storage modules and computational simulations were used to balance heat transfer with fluid pressure requirements. An overview of the hydrogen storage system will be given, and examples of these models and simulation results will be described and related to component design. In addition, comparisons of demonstration system experimental results to model predictions will be reported.

Johnson, Terry Alan; Kanouff, Michael P.; Jorgensen, Scott W. (General Motors R& D); Dedrick, Daniel E.; Evans, Gregory Herbert

2010-11-01T23:59:59.000Z

199

Polar intermetallic compounds of the silicon and arsenic family elements and their ternary hydrides and fluorides  

SciTech Connect (OSTI)

An investigation has been made on the effects of hydrogen and fluoride in the solid state chemistry of alkaline-earth and divalent rare-earth metal pnictide (Pn) and tetrelide (Tt) phases A{sub 5}(Pn,Tt,){sub 3}Z{sub x}, where A = Ca, Sr, Ba, Sm, Eu, Yb; Pn = As, Sb, Bi; Tt = Si, Ge, Sn, Pb and Z = H, F. Several trivalent rare-earth-metal pnictides, RE{sub 5}Pn{sub 3} (RE = Y, La, Gd, Tb, Dy, Ho, Er, Tm) and alkaline-earth-metal trielides, A{sub 5}Tr{sub 3}Z{sub x} (Tr = Ga, In, Tl) have been included in an effort to complete observed structural trends. Two main experimental techniques were followed throughout this work, (a) reactions in absence of hydrogen or under continuous high vacuum, and (b) reactions with binary metal hydrides, AH{sub x}, in closed containers. The results demonstrate that all the phases reported with the {beta}-Yb{sub 5}Sb{sub 3}-type structure in the A{sub 5}Pn{sub 3} systems are hydrogen-stabilized compounds. Reactions in absence of hydrogen lead to compounds with the Mn{sub 5}Si{sub 3}-type structure. The structure type {beta}-Yb{sub 5}Sb{sub 3} (= Ca{sub 5}SB{sub 3}F) was found to be characteristic of ternary systems and inaccurately associated with phases that form in the Y{sub 5}Bi{sub 3}-type. A new series of isomorphous Zintl compounds with the Ca{sub 16}Sb{sub 11}-type structure were prepared and studied as well. All the alkaline-earth-metal tetrelides, A{sub 5}Tt{sub 3}, that crystallize in the Cr{sub 5}B{sub 3}-type structure can be interstitially derivatized by hydrogen or fluoride. Binary and ternary compounds were characterized by Guinier powder patterns, single crystal X-ray and powder neutron diffraction techniques. In an effort to establish property-structure relationships, electrical resistivity and magnetic measurements were performed on selected systems, and the results were explained in terms of the Zintl concepts, aided by extended Hueckel band calculations.

Leon-Escamilla, E.A.

1996-10-17T23:59:59.000Z

200

The influence of prestrained metalorganic vapor phase epitaxial gallium-nitride templates on hydride vapor phase epitaxial growth  

Science Journals Connector (OSTI)

We have varied the strain situation in metalorganic vapor phase epitaxial (MOVPE) grown gallium-nitride (GaN) by exchanging the nucleation layer and by inserting a submono-Si x N y -interlayer in the first few hundred nanometers of growth on sapphire substrates. The influence on the MOVPE template and subsequent hydride vapor phase epitaxial (HVPE) growth could be shown by in-situ measurements of the sample curvature. Using the results of these investigations we have established a procedure to confine the curvature development in MOVPE and HVPE growth to a minimum. By increasing the layer thickness in HVPE we could create self-separated freestanding GaN layers with small remaining curvature.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A unified view of coherent and incoherent dihydrogen exchange in transition metal hydrides by nuclear resonance and inelastic neutron scattering  

SciTech Connect (OSTI)

In this paper a unified view of coherent and incoherent dihydrogen exchange in transition metal hydrides by nuclear magnetic resonance (NMR) and inelastic neutron scattering (INS) is presented. It is shown that both exchange processes coexist i.e. do not transform into each other although they may dominate the spectra in different temperature ranges. This superposition is the consequence of the incorporation of the tunnel frequency J of the coherent process into the nuclear two-spin hamiltonian of hydrogen pairs which allows to treat the problem using the well known density matrix theory of NMR line-shapes developed by Alexander and Binsch. It is shown that this theory can also be used to predict the line-shapes of the rotational tunneling transitions observed in the INS spectra of transition metal dihydrogen complexes and that both NMR and INS spectra depend on similar parameters.

Limbach, H.H.; Ulrich, S.; Buntkowsky, G. [Freie Univ. Berlin (Germany). Inst. fuer Organische Chemie; Sabo-Etienne, S.; Chaudret, B. [Toulouse-3 Univ., 31 (France). Lab. de Chimie de Coordination du C.N.R.S.; Kubas, G.J.; Eckert, J. [Los Alamos National Lab., NM (United States)

1995-08-12T23:59:59.000Z

202

Li{sub 4}FeH{sub 6}: Iron-containing complex hydride with high gravimetric hydrogen density  

SciTech Connect (OSTI)

Li{sub 4}FeH{sub 6}, which has the highest gravimetric hydrogen density of iron-containing complex hydrides reported so far, is synthesized by hydrogenation of a powder mixture of iron and LiH above 6.1 GPa at 900?°C. In situ synchrotron radiation X-ray diffraction measurements reveal that while kinetics require high temperature and thus high pressure for the synthesis, Li{sub 4}FeH{sub 6} is expected to be thermodynamically stable slightly below room temperature at ambient pressure; further synthetic studies to suppress the kinetic effects may enable us to synthesize Li{sub 4}FeH{sub 6} at moderate pressures. Li{sub 4}FeH{sub 6} can be recovered at ambient conditions where Li{sub 4}FeH{sub 6} is metastable.

Saitoh, Hiroyuki, E-mail: cyto@spring8.or.jp [Quantum Beam Science Center, Japan Atomic Energy Agency, Hyogo 679-5148 (Japan); Takagi, Shigeyuki; Matsuo, Motoaki; Aoki, Katsutoshi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Iijima, Yuki [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Endo, Naruki [Renewable Energy Research Center, National Institute of Advanced Industrial Science and Technology, Fukushima 963-0215 (Japan); Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

2014-07-01T23:59:59.000Z

203

Elements of number theory  

E-Print Network [OSTI]

The dissertation argues for the necessity of a morphosemantic theory of number, that is, a theory of number serviceable both to semantics and morphology. The basis for this position, and the empirical core of the dissertation, ...

Harbour, Daniel, 1975-

2003-01-01T23:59:59.000Z

204

Executive Summaries for the Hydrogen Storage Materials Center of Excellence - Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Executive Summaries Executive Summaries for the Hydrogen Storage Materials Centers of Excellence Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE Period of Performance: 2005-2010 Fuel Cell Technologies Program Office of Energy Efficiency and Renewable Energy U. S. Department of Energy April 2012 2 3 Primary Authors: Chemical Hydrogen Storage (CHSCoE): Kevin Ott, Los Alamos National Laboratory Hydrogen Sorption (HSCoE): Lin Simpson, National Renewable Energy Laboratory Metal Hydride (MHCoE): Lennie Klebanoff, Sandia National Laboratory Contributors include members of the three Materials Centers of Excellence and the Department of Energy Hydrogen Storage Team in the Office of Energy Efficiency and Renewable Energy's Fuel Cell Technologies Program.

205

Synthesis of poly(vinyl alcohol)-graft-poly(-caprolactone) and poly(vinyl alcohol)-graft-poly(lactide) in melt with magnesium hydride as catalyst  

E-Print Network [OSTI]

)-graft-poly(lactide) in melt with magnesium hydride as catalyst Nadia Guerrouani, André Mas* , François Schué UMR 5253 CNRS-UM2%) was investigated using MgH2 environmental catalyst and melt-grown ring opening polymerization (ROP) of -caprolactone (CL) and L- lactide (LA), that avoiding undesirable toxic catalyst and solvent. The ability of Mg

Paris-Sud XI, Université de

206

Role of Pyridine as a Biomimetic Organo-Hydride for Homogeneous Reduction of CO2 to Methanol  

E-Print Network [OSTI]

We use quantum chemical calculations to elucidate a viable homogeneous mechanism for pyridine-catalyzed reduction of CO2 to methanol. In the first component of the catalytic cycle, pyridine (Py) undergoes a H+ transfer (PT) to form pyridinium (PyH+) followed by an e- transfer (ET) to produce pyridinium radical (PyH0). Examples of systems to effect this ET to populate the LUMO of PyH+(E0calc ~ -1.3V vs. SCE) to form the solution phase PyH0 via highly reducing electrons include the photo-electrochemical p-GaP system (ECBM ~ -1.5V vs. SCE at pH= 5) and the photochemical [Ru(phen)3]2+/ascorbate system. We predict that PyH0 undergoes further PT-ET steps to form the key closed-shell, dearomatized 1,2-dihydropyridine (PyH2) species. Our proposed sequential PT-ET-PT-ET mechanism transforming Py into PyH2 is consistent with the mechanism described in the formation of related dihydropyridines. Because it is driven by its proclivity to regain aromaticity, PyH2 is a potent recyclable organo-hydride donor that mimics the ...

Lim, Chern-Hooi; Hynes, James T; Musgrave, Charles B

2014-01-01T23:59:59.000Z

207

CHARACTERIZATION OF THE LOCAL TITANIUM ENVIRONMENT IN DOPED SODIUM ALUMINUM HYDRIDE USING X-RAY ADSORPTION SPECTROSCOPY.  

SciTech Connect (OSTI)

Ti K-edge x-ray absorption spectroscopy was used to explore the local titanium environment and valence in 2-4 mol% Ti-doped sodium alanate. An estimate of the oxidation state of the dopant, based upon known standards, revealed a zero-valent titanium atom. An analysis of the near-edge and extended fine structures indicates that the Ti does not enter substitutional or interstitial sites in the NaAlH{sub 4} lattice. Rather, the Ti is located on/near the surface and is coordinated by 10.2 {+-} 1 aluminum atoms with an interatomic distance of 2.82 {+-} 0.01 {angstrom}, similar to that of TiAl{sub 3}. The Fourier transformed EXAFS spectra reveals a lack of long-range order around the Ti dopant indicating that the Ti forms nano-clusters of TiAl{sub 3}. The similarity of the spectra in the hydrided and dehydrided samples suggests that the local Ti environment is nearly invariant during hydrogen cycling.

GRAETZ, J.; IGNATOV, A. YU; TYSON, T.A.; REILLY, J.J.; JOHNSON, J.

2004-11-30T23:59:59.000Z

208

New plasma source of hydrides for epitaxial growth. Final subcontract report, 15 April 1991--3 September 1993  

SciTech Connect (OSTI)

This report describes a novel plasma-activated selenium source that was developed during the course of this subcontract and which is significantly different than any other heretofore reported in the scientific literature. It involves microwave excited, magnetically confined plasma sources that are intended to operate under electron cyclotron resonance (ECR) conditions at 2.455 GHz. This source is designed to excite and dissociate the molecular vapor evaporating or subliming from a heated solid or liquid reservoir. It can combine an effusion cell vapor flux with a stream of hydrogen or helium gas, enabling the in-situ generation of hydrides for use in low-pressure growth techniques where long mean free paths are desirable. Experiments were conducted to demonstrate a stable discharge within the source, and measures were identified to improve its operational characteristics. Application of this novel source is anticipated to enable a low-temperature, safe process for the growth of high-quality epitaxial compound semiconductor films. This reduction of epitaxial growth temperatures may enable the fabrication of novel photovoltaic devices that have heretofore been impossible due to the deleterious effects of interdiffusion at heterointerfaces resulting from the high temperatures required to grow adequate quality material using conventional processes.

Stanbery, B.J. [Boeing Defense & Space Group, Seattle, WA (United States)

1994-05-01T23:59:59.000Z

209

Number | Open Energy Information  

Open Energy Info (EERE)

Number Number Jump to: navigation, search Properties of type "Number" Showing 200 properties using this type. (previous 200) (next 200) A Property:AvgAnnlGrossOpCpcty Property:AvgTempGeoFluidIntoPlant Property:AvgWellDepth B Property:Building/FloorAreaChurchesChapels Property:Building/FloorAreaGroceryShops Property:Building/FloorAreaHealthServices24hr Property:Building/FloorAreaHealthServicesDaytime Property:Building/FloorAreaHeatedGarages Property:Building/FloorAreaHotels Property:Building/FloorAreaMiscellaneous Property:Building/FloorAreaOffices Property:Building/FloorAreaOtherRetail Property:Building/FloorAreaResidential Property:Building/FloorAreaRestaurants Property:Building/FloorAreaSchoolsChildDayCare Property:Building/FloorAreaShops Property:Building/FloorAreaSportCenters

210

ALARA notes, Number 8  

SciTech Connect (OSTI)

This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

Khan, T.A.; Baum, J.W.; Beckman, M.C. [eds.] [eds.

1993-10-01T23:59:59.000Z

211

CHROMOSOME NUMBERS IN MAMMALS  

Science Journals Connector (OSTI)

...variables for which the double inte-gral does not exist: R. L. JEFFERY. On the number of elements in a group which have a power in...society will meet at Columbia University, MA ay 2, 1925. W. BENJAMIN FITE Acting Secretary 424 SCIENCE

Theophilus S. Painter

1925-04-17T23:59:59.000Z

212

Baryon Number Violation  

E-Print Network [OSTI]

This report, prepared for the Community Planning Study - Snowmass 2013 - summarizes the theoretical motivations and the experimental efforts to search for baryon number violation, focussing on nucleon decay and neutron-antineutron oscillations. Present and future nucleon decay search experiments using large underground detectors, as well as planned neutron-antineutron oscillation search experiments with free neutron beams are highlighted.

K. S. Babu; E. Kearns; U. Al-Binni; S. Banerjee; D. V. Baxter; Z. Berezhiani; M. Bergevin; S. Bhattacharya; S. Brice; R. Brock; T. W. Burgess; L. Castellanos; S. Chattopadhyay; M-C. Chen; E. Church; C. E. Coppola; D. F. Cowen; R. Cowsik; J. A. Crabtree; H. Davoudiasl; R. Dermisek; A. Dolgov; B. Dutta; G. Dvali; P. Ferguson; P. Fileviez Perez; T. Gabriel; A. Gal; F. Gallmeier; K. S. Ganezer; I. Gogoladze; E. S. Golubeva; V. B. Graves; G. Greene; T. Handler; B. Hartfiel; A. Hawari; L. Heilbronn; J. Hill; D. Jaffe; C. Johnson; C. K. Jung; Y. Kamyshkov; B. Kerbikov; B. Z. Kopeliovich; V. B. Kopeliovich; W. Korsch; T. Lachenmaier; P. Langacker; C-Y. Liu; W. J. Marciano; M. Mocko; R. N. Mohapatra; N. Mokhov; G. Muhrer; P. Mumm; P. Nath; Y. Obayashi; L. Okun; J. C. Pati; R. W. Pattie Jr.; D. G. Phillips II; C. Quigg; J. L. Raaf; S. Raby; E. Ramberg; A. Ray; A. Roy; A. Ruggles; U. Sarkar; A. Saunders; A. Serebrov; Q. Shafi; H. Shimizu; M. Shiozawa; R. Shrock; A. K. Sikdar; W. M. Snow; A. Soha; S. Spanier; G. C. Stavenga; S. Striganov; R. Svoboda; Z. Tang; Z. Tavartkiladze; L. Townsend; S. Tulin; A. Vainshtein; R. Van Kooten; C. E. M. Wagner; Z. Wang; B. Wehring; R. J. Wilson; M. Wise; M. Yokoyama; A. R. Young

2013-11-21T23:59:59.000Z

213

CHEMICAL SAFETY Emergency Numbers  

E-Print Network [OSTI]

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 Risk and Safety Manager 5535 Security 7058 #12;- 3 - FOREWORD This reference manual outlines the safe

Bolch, Tobias

214

PowerPoint Presentation  

Broader source: Energy.gov (indexed) [DOE]

Bipolar Nickel Metal Hydride Battery Bipolar Nickel Metal Hydride Battery Development and Testing DOE ENERGY STORAGE SYSTEMS RESEARCH PROGRAM ANNUAL PEER REVIEW November 2 - 3, 2006, Washington, D.C. James Landi jlandi@electroenergyinc.com 203-797-2699 Program Objectives and Benefits ïź The objective of this program is to further develop the bipolar NiMH battery design to be used in high-energy and high-power energy storage applications. - Build and demonstrate large-format batteries - Demonstrate these batteries in present and future applications ïź The bipolar NiMH battery could provide the following benefits: - Improve efficiencies by reducing transmission peaking losses and shifting peak demands. - Reduce power and voltage sag to users. - Provide an efficient method to distribute backup energy/power

215

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

91 - 7700 of 31,917 results. 91 - 7700 of 31,917 results. Article Steps to Commercialization: Nickel Metal Hydride Batteries The Energy Department funds cutting-edge research on a broad range of topics ranging from advanced battery construction to the modeling of industrial processes and supercomputer simulation of... http://energy.gov/articles/steps-commercialization-nickel-metal-hydride-batteries-0 Download Design, Performance, and Sustainability of Engineered Covers for Uranium Mill Tailings Proceedings of the Workshop on Long-Term Performance Monitoring of Metals and Radionuclides in the Subsurface: Strategies, Tools, and Case Studies. U.S. Geological Survey.April 21 and 22, 2004,... http://energy.gov/lm/downloads/design-performance-and-sustainability-engineered-covers-uranium-mill

216

ELECTRICAL DISTRICT NUMBER EIGHT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ELECTRICAL DISTRICT NUMBER EIGHT ELECTRICAL DISTRICT NUMBER EIGHT Board of Directors Reply to: Ronald Rayner C. W. Adams James D. Downing, P.E. Chairman Billy Hickman 66768 Hwy 60 Brian Turner Marvin John P.O. Box 99 Vice-Chairman Jason Pierce Salome, AZ 85348 Denton Ross Jerry Rovey Secretary James N. Warkomski ED8@HARCUVARCO.COM John Utz Gary Wood PHONE:(928) 859-3647 Treasurer FAX: (928) 859-3145 Sent via e-mail Mr. Darrick Moe, Regional Manager Western Area Power Administration Desert Southwest Region P. O. Box 6457 Phoenix, AZ 85005-6457 moe@wapa.gov; dswpwrmrk@wapa.gov Re: ED5-Palo Verde Hub Project Dear Mr. Moe, In response to the request for comments issued at the October 6 Parker-Davis Project customer th meeting, and in conjunction with comments previously submitted by the Southwest Public Power

217

Preventive Action Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Preventive Action Report Planning Worksheet 11_0414 1 of 3 8 Preventive Action Report Planning Worksheet 11_0414 1 of 3 EOTA - Business Form Document Title: Preventive Action Report Planning Worksheet Document Number: F-018 Rev 11_0414 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: P-008, Corrective/Preventive Action Notify of Changes: EOTA Employees Referenced Document(s): N/A F-018 Preventive Action Report Planning Worksheet 11_0414 2 of 3 Revision History: Rev. Description of Change 08_0613 Initial Release 09_0924 Worksheet modified to reflect External Audit recommendation for identification of "Cause for Potential Nonconformance". Minor editing changes. 11_0414 Added Preventive Action Number block to match Q-Pulse

218

Preventive Action Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Corrective Action Report Planning Worksheet 11_0414 1 of 3 7 Corrective Action Report Planning Worksheet 11_0414 1 of 3 EOTA - Business Form Document Title: Corrective Action Report Planning Worksheet Document Number: F-017 Rev 11_0414 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: P-008, Corrective/Preventive Action Notify of Changes: EOTA Employees Referenced Document(s): N/A F-017 Corrective Action Report Planning Worksheet 11_0414 2 of 3 Revision History: Rev. Description of Change 08_0613 Initial Release 11_0414 Added problem statement to first block. F-017 Corrective Action Report Planning Worksheet 11_0414 3 of 3 Corrective Action Report Planning Worksheet Corrective Action Number: Source: Details/Problem Statement: Raised By: Raised Date: Target Date:

219

Colorado Natural Gas Number of Residential Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

220

Colorado Natural Gas Number of Industrial Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Colorado Natural Gas Number of Commercial Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

222

NAME: STUDENT NUMBER (PID): CITY, STATE ZIP: DAYTIME PHONE NUMBER  

E-Print Network [OSTI]

NAME: STUDENT NUMBER (PID): ADDRESS: CITY, STATE ZIP: DAYTIME PHONE NUMBER: CELL PHONE NUMBER of financial institution. 14 Cell Phone Expenses 15 Other ordinary and necessary living expenses. 16 TOTAL (add

223

Connecticut Natural Gas Number of Residential Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

224

Connecticut Natural Gas Number of Commercial Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

225

Connecticut Natural Gas Number of Industrial Consumers (Number...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

226

Determination of extractable arsenic in soils using slurry sampling-on-line microwave extraction-hydride generation-atomic absorption spectrometry  

Science Journals Connector (OSTI)

A flow injection procedure has been developed for the determination of acid-extractable arsenic in soils by hydride generation atomic absorption spectrometry. Several parameters, including acid and borohydride concentrations, exposure time to microwave energy, and the microwave power applied, were optimized. The on-line microwave extraction increased the recovery of the adsorbed arsenic significantly; whereas, preparation of the slurry in 10% hydrochloric acid instead of water increased the recovery only when the microwave oven was off. Low recoveries, which were investigated by removing the hydride generation manifold and connecting the system via an on-line filter to an inductively coupled plasma mass spectrometer, were due to the irreversible adsorption of arsenic on the soil. This irreversible adsorption does not allow standard additions calibration. The solution detection limit was 0.2 ?g l?1 for a 212-?l injection loop, corresponding to 7 ng g?1 in solid for a 2.5% m/v slurry prepared in 25 ml.

Hakan Gürleyük; Julian F. Tyson; Peter C Uden

2000-01-01T23:59:59.000Z

227

Construction Project Number  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

North Execution - (2009 - 2011) North Execution - (2009 - 2011) Construction Project Number 2009 2010 2011 Project Description ANMLPL 0001C 76,675.32 - - Animas-Laplata circuit breaker and power rights CRGRFL 0001C - - 7,177.09 Craig Rifle Bay and transfer bay upgrade to 2000 amps; / Convert CRG RFL to 345 kV out of Bears Ear Sub FGE 0019C - - 39,207.86 Replace 69/25kV transformer KX2A at Flaming Gorge FGE 0020C - - 52,097.12 Flaming Gorge: Replace failed KW2A transformer HDN 0069C 16,638.52 208,893.46 3,704,578.33 Replace failed transformer with KZ1A 250 MVA 230/138kv

228

KPA Activity Number  

Broader source: Energy.gov (indexed) [DOE]

supports CMM-SW Level 2 supports CMM-SW Level 2 Mapping of the DOE Systems Engineering Methodology to the Software Engineering Institute (SEI) Software Capability Maturity Model (CMM- SW) level 2. Date: September 2002 Page 1 KPA Activity Number KPA Activity SEM Section SME Work Product SQSE Web Site http://cio.doe.gov/sqse REQUIREMENTS MANAGEMENT RM-1 The software engineering group reviews the allocated requirements before they are incorporated in the software project. Chapter 3.0 * Develop High-Level Project Requirements Chapter 4.0 * Establish Functional Baseline * Project Plan * Requirements Specification Document * Requirements Management awareness * Defining Project Requirements RM-2 The software engineering group uses the allocated requirements as the basis for

229

On neutron numbers and atomic masses  

Science Journals Connector (OSTI)

On neutron numbers and atomic masses ... Assigning neutron numbers, correct neutron numbers, and atomic masses and nucleon numbers. ...

R. Heyrovská

1992-01-01T23:59:59.000Z

230

Metal Hydrides- Science Needs  

Broader source: Energy.gov [DOE]

Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

231

Regeneration of aluminum hydride  

DOE Patents [OSTI]

The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

Graetz, Jason Allan (Mastic, NY); Reilly, James J. (Bellport, NY)

2009-04-21T23:59:59.000Z

232

PNNL Chemical Hydride Capabilities  

Broader source: Energy.gov (indexed) [DOE]

and surface reactions * High resolution transmission and analytical electron microscopy * Hydrogen charging system - Microchannel reformer technology for enhancing reaction...

233

In situ x-ray absorption study of Zr(V0.29Ni0.71)3 hydride electrodes  

Science Journals Connector (OSTI)

We present an in situ x-ray absorption study of hydrogen absorption into the bulk of an electrode material while it is operating in an electrochemical cell. The active material is an overstoichiometric AB2-type alloy, namely, Zr(V0.29Ni0.71)3, with a cubic C15 Laves phase structure. Hydrogen absorption induces both structural and electronic changes due to the bonding between interstitial H atoms and each alloy element. The role of each element is revealed, allowing us to determine the inert role of Ni atoms and the dominant effect of the H-V interaction on the hydride formation process. Comparison between the alloyed element behavior and the H affinity of each pure element allows us to determine the influence of structural and alloying effects on bonding formation.

R. G. Agostino; G. Liberti; V. Formoso; E. Colavita; A. Züttel; C. Nützenadel; L. Schlapbach; A. Santaniello; C. Gauthier

2000-05-15T23:59:59.000Z

234

Transcendental L2 -Betti numbers  

E-Print Network [OSTI]

Transcendental L2 -Betti numbers Atiyah's question Thomas Schick Gšottingen OA Chennai 2010 Thomas Schick (Gšottingen) Transcendental L2 -Betti numbers Atiyah's question OA Chennai 2010 1 / 24 #12 = ~M/) with fundamental domain F. L2-Betti numbers:= normalized dimension( space of L2-harmonic forms

Sunder, V S

235

Data Compression with Prime Numbers  

E-Print Network [OSTI]

A compression algorithm is presented that uses the set of prime numbers. Sequences of numbers are correlated with the prime numbers, and labeled with the integers. The algorithm can be iterated on data sets, generating factors of doubles on the compression.

Gordon Chalmers

2005-11-16T23:59:59.000Z

236

Number  

Broader source: Energy.gov (indexed) [DOE]

NATIONAL ENERGY POLICY NATIONAL ENERGY POLICY STATUS REPORT on Implementation of NEP Recommendations January, 2005 1 NEP RECOMMENDATIONS: STATUS OF IMPLEMENTATION Chapter 1 1. That the President issue an Executive Order to direct all federal agencies to include in any regulatory action that could significantly and adversely affect energy supplies, distribution, or use, a detailed statement of energy effects and alternatives in submissions to the Office of Management and Budget of proposed regulations covered and all notices of proposed regulations published in the Federal Register. STATUS: IMPLEMENTED. In May 2001, President Bush issued Executive Order 13211 requiring federal agencies to include, in any regulatory action that could significantly and

237

NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SWMU 161 C-743 Trainina Trailer Comolex- Soil Backfill UNIT NAME: . REGULATORY STATUS: AOC LOCATION: Southwest of C-743 building APPROXIMATE DIMENSIONS: 200 feet wide by 200 feet...

238

Compendium of Experimental Cetane Numbers  

SciTech Connect (OSTI)

This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

2014-08-01T23:59:59.000Z

239

First-principles study of the stability and electronic structure of metal hydrides H. Smithson,1,2  

E-Print Network [OSTI]

energy is the chemical bonding between the hydrogen and metal in which it is inserted. This is the only number s : 61.50.Ah, 61.66.Dk I. INTRODUCTION The absorption of hydrogen in materials is of wide to as hydro- gen embrittlement. The mechanism of such embrittlement is believed to be different depending

Ceder, Gerbrand

240

RNG: A Practitioner's Overview Random Number Generation  

E-Print Network [OSTI]

RNG: A Practitioner's Overview Random Number Generation A Practitioner's Overview Prof. Michael and Monte Carlo Methods Pseudorandom number generation Types of pseudorandom numbers Properties of these pseudorandom numbers Parallelization of pseudorandom number generators New directions for SPRNG Quasirandom

Mascagni, Michael

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Motion at low Reynolds number  

E-Print Network [OSTI]

The work described in this thesis centers on inertialess motion at low Reynolds numbers at the crossroad between biofluids and microfluids. Here we address questions regarding locomotion of micro-swimmers, transport of ...

Tam, Daniel See Wai, 1980-

2008-01-01T23:59:59.000Z

242

Departmental Business Instrument Numbering System  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

2000-12-05T23:59:59.000Z

243

Departmental Business Instrument Numbering System  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

2005-01-27T23:59:59.000Z

244

California Natural Gas Number of Residential Consumers (Number of Elements)  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,626 7,904,858 8,113,034 8,313,776 1990's 8,497,848 8,634,774 8,680,613 8,726,187 8,790,733 8,865,541 8,969,308 9,060,473 9,181,928 9,331,206 2000's 9,370,797 9,603,122 9,726,642 9,803,311 9,957,412 10,124,433 10,329,224 10,439,220 10,515,162 10,510,950 2010's 10,542,584 10,625,190 10,681,916 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Number of Natural Gas Residential

245

Pressure-induced phase transformations in alkali-metal hydrides calculated using an improved linear-muffin-tin-orbital–atomic-sphere-approximation energy scheme  

Science Journals Connector (OSTI)

A scheme for the calculation of total energies from first principles is described which is intermediate between the popular linear muffin-tin-orbital method in the atomic-sphere approximation (LMTO-ASA) and an exact full-potential treatment. The local-density total energy is evaluated accurately for the output charge density from the ASA potential. This method is applied to the study of static structural properties and the pressure-induced phase transformation from B1 (NaCl-structure) to B2 (CsCl-structure) phases for the partially ionic alkaki-metal hydrides NaH and KH and the alkali halide NaCl. Good agreement with experimental transition pressures and volumes is obtained. The series NaH, KH, and NaCl shows the observed strong cation and weak anion dependence. Charge densities and band structures are given at zero and high pressure. Calculated energy-volume curves for LiH show no transition up to 1 Mbar, in agreement with experimental data.

C. O. Rodriguez and M. Methfessel

1992-01-01T23:59:59.000Z

246

Document ID Number: RL-721  

Broader source: Energy.gov (indexed) [DOE]

Document ID Number: Document ID Number: RL-721 REV 4 NEPA REVIEW SCREENING FORM DOE/CX-00066 I. Project Title: Nesting Bird Deterrent Study at the 241-C Tank Farm CX B3.8, "Outdoor Terrestrial Ecological and Environmental Research" II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Washington River Protection Solutions LLC (WRPS) will perform an outdoor, terrestrial ecological research study to attempt to control and deter nesting birds at the 241-C Tank Farm. This will be a preventative study to test possible methods for controlling &/or minimizing the presence and impacts of nesting birds inside the tank farm. A nesting bird

247

On rings of structural numbers  

E-Print Network [OSTI]

structural numbers over the set X, and let B(X) have the operations defined above with equality also as before. Theorem I. l. If X is any set, then B(X) is a commutative ring with identity. Proof. The structural number 0 is the additive identity element... with identity g. Definition I. 7. If A, B e S(X) then A'B = (P U q ( p e A, q e B, p Il q = &f and p U q can be formed in an odd number of ways). ~E1 t. 4. L t A = (( . b), (bj. 7 )) 4 B = ((b, c), (b), (a)) be in S(X) for some X. Then AD B = {{b, a), {a...

Powell, Wayne Bruce

2012-06-07T23:59:59.000Z

248

Response: Issue Numbers and Librarianship  

Science Journals Connector (OSTI)

...some time. Put back the issue number. ALISON BAKER Librawy Jackson Laboratot), Bar...passage in which he supposes some unusually wise ape-like animal to have first thought...the approving nods and kindly grunts ofmy wise and most respected chief. And now I feel...

DANIEL E. KOSHLAND; JR.

1986-05-23T23:59:59.000Z

249

Computing Betti Numbers via Combinatorial Laplacians  

E-Print Network [OSTI]

Computing Betti Numbers via Combinatorial Laplacians method to compute Betti numbers of sim- plicial complexes. This has a number of advantages over are the Betti numbers, the i-th Betti number, bi= bi(X), being the rank of Hi(X). The Betti numbers often have

Friedman, Joel

250

RIN Number 1904-AB68  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Procurement of Energy Efficient Products Federal Procurement of Energy Efficient Products RIN NUMBER: 1904-AB68 CLOSING DATE: August 20, 2007 COMMENT NUMBER DATE RECEIVED/ DATE OF LETTER NAME & TITLE OF COMMENTATOR AFFILIATION & ADDRESS OF COMMENTATOR 1 ? 7/31/07 Edwin Pinero Federal Environmental Executive Office of the Federal Environmental Executive 1200 Pennsylvania Avenue, NW Mail Code 1600J Washington, DC 20460 2 8/8/07 (e-mail) Bob Null President Arkansas Lamp Manufacturing bnull@arkansaslamp.com 3 8/10/07 (e-mail) Dawn Gunning Environmental Program Manager Department of Justice Dawn.M.Gunning@usdoj.gov 4 8/14/07 8/14/07 Kyle Pitsor Vice President, Government Relations National Electrical Manufacturers Association 1300 North 17th Street, Suite 1752 Rosslyn, VA 22209

251

RIN Number 1904-AB68  

Broader source: Energy.gov (indexed) [DOE]

RULEMAKING TITLE: Federal Procurement of Energy Efficient Products RULEMAKING TITLE: Federal Procurement of Energy Efficient Products RIN NUMBER: 1904-AB68 CLOSING DATE: August 20, 2007 COMMENT NUMBER DATE RECEIVED/ DATE OF LETTER NAME & TITLE OF COMMENTATOR AFFILIATION & ADDRESS OF COMMENTATOR 1 ? 7/31/07 Edwin Pinero Federal Environmental Executive Office of the Federal Environmental Executive 1200 Pennsylvania Avenue, NW Mail Code 1600J Washington, DC 20460 2 8/8/07 (e-mail) Bob Null President Arkansas Lamp Manufacturing bnull@arkansaslamp.com 3 8/10/07 (e-mail) Dawn Gunning Environmental Program Manager Department of Justice Dawn.M.Gunning@usdoj.gov 4 8/14/07 8/14/07 Kyle Pitsor Vice President, Government Relations National Electrical Manufacturers Association 1300 North 17th Street, Suite 1752

252

RL·721 Document ID Number:  

Broader source: Energy.gov (indexed) [DOE]

Document ID Number: Document ID Number: REV 3 NEPA REVIEW SCREENING FORM DOE/CX-00045 . J.proj(;l~t Titl~: - - - -- - - - - - - - - - - - - - - - - - -- --------- ------_. . _ - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - LIMITED FIREBREAK MAINTENANCE ON THE HANFORD SITE DURING CALENDAR YEAR 2012 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions· e.g., acres displaced/disturbed, excavation length/depth, etc.): The Department of Energy (DOE) proposes to perform firebreak maintenance in selected areas of the Hanford Site during calendar year 2012 with limited use of physical, chemical, and prescribed burning methods. Prescribed burning will be performed by the Hanford Fire Department under approved burn plans and permits; and only in previously disturbed

253

Computing Betti Numbers via Combinatorial Joel Friedman  

E-Print Network [OSTI]

Computing Betti Numbers via Combinatorial Laplacians Joel Friedman Department of Mathematics 1984 Abstract We use the Laplacian and power method to compute Betti numbers of sim­ plicial complexes. This has are the Betti numbers, the i­th Betti number, b i = b i (X), being the rank of H i (X). The Betti numbers often

Friedman, Joel

254

Grantee Total Number of Homes  

Broader source: Energy.gov (indexed) [DOE]

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

255

Hydrogen Storage Properties of New Hydrogen-Rich BH3NH3-Metal Hydride (TiH2, ZrH2, MgH2, and/or CaH2) Composite Systems  

SciTech Connect (OSTI)

Ammonia borane (AB = NH3BH3) is one of the most attractive materials for chemical hydrogen storage due to its high hydrogen contents of 19.6 wt.%, however, impurity levels of borazine, ammonia and diborane in conjunction with foaming and exothermic hydrogen release calls for finding ways to mitigate the decomposition reactions. In this paper we present a solution by mixing AB with metal hydrides (TiH2, ZrH2, MgH2 and CaH2) which have endothermic hydrogen release in order to control the heat release and impurity levels from AB upon decomposition. The composite materials were prepared by mechanical ball milling, and their H2 release properties were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The formation of volatile products from decomposition side reactions, such as borazine (N3B3H6) was determined by mass spectrometry (MS). Sieverts type pressure-composition-temperature (PCT) gas-solid reaction instrument was adopted to observe the kinetics of the H2 release reactions of the combined systems and neat AB. In situ 11B MAS-NMR revealed a destabilized decomposition pathway. We found that by adding specific metal hydrides to AB we can eliminate the impurities and mitigate the heat release.

Choi, Young Joon; Xu, Yimin; Shaw, Wendy J.; Ronnebro, Ewa

2012-04-19T23:59:59.000Z

256

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

257

RL-721 Document ID Number:  

Broader source: Energy.gov (indexed) [DOE]

4 4 NEPA REVIEW SCREENING FORM DOE/CX-00075 I. Project Title: Project 1-718, Electrical Utili ties Transformer Management Support Facility II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): The proposed action includes design, procurement, and construction of a pre-engineered metal building for transformer management; including inspections, routine maintenance, testing, refurbishing, and disposition of excess transformers. The building will be constructed in the previously disturbed, gravel-covered electrical utilities lay-down yard west of the 2101-M Building in 200 East Area of the Hanford Site. The building footprint

258

Particle Number & Particulate Mass Emissions Measurements on...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro...

259

Alternative Fuels Data Center: Renewable Identification Numbers  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Renewable Identification Numbers to someone by E-mail Share Alternative Fuels Data Center: Renewable Identification Numbers on Facebook Tweet about Alternative Fuels Data Center: Renewable Identification Numbers on Twitter Bookmark Alternative Fuels Data Center: Renewable Identification Numbers on Google Bookmark Alternative Fuels Data Center: Renewable Identification Numbers on Delicious Rank Alternative Fuels Data Center: Renewable Identification Numbers on Digg Find More places to share Alternative Fuels Data Center: Renewable Identification Numbers on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Identification Numbers RIN Format EPA uses the following format to determine RINs for each physical gallon of

260

Advanced batteries for electric vehicle applications  

SciTech Connect (OSTI)

A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

Henriksen, G.L.

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Verification Challenges at Low Numbers  

SciTech Connect (OSTI)

Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of “Going to Zero”. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100’s of warheads, and then 10’s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

2013-06-01T23:59:59.000Z

262

Betti numbers, Morse theory, and homology Perturbations  

E-Print Network [OSTI]

Betti numbers, Morse theory, and homology Perturbations Cascades Multicomplexes Morse and Morse Hurtubise Morse and Morse-Bott Homology #12;Betti numbers, Morse theory, and homology Perturbations Cascades Multicomplexes Betti numbers, Morse theory, and homology Betti numbers Morse inequalities Transversality Morse

Hurtubise, David E.

263

h-analogue of Fibonacci Numbers  

E-Print Network [OSTI]

In this paper, we introduce the h-analogue of Fibonacci numbers for non-commutative h-plane. For h h'= 1 and h = 0, these are just the usual Fibonacci numbers as it should be. We also derive a collection of identities for these numbers. Furthermore, h-Binet's formula for the h-Fibonacci numbers is found and the generating function that generates these numbers is obtained.

H. B. Benaoum

2009-09-30T23:59:59.000Z

264

Department for Analysis and Computational Number Theory Additive functions and number systems  

E-Print Network [OSTI]

Department for Analysis and Computational Number Theory Additive functions and number systems systems April 7, 2010 1 / 35 #12;Department for Analysis and Computational Number Theory Outline Number #12;Department for Analysis and Computational Number Theory Examples for number systems b Z, b -2

265

Prime number generation and factor elimination  

E-Print Network [OSTI]

We have presented a multivariate polynomial function termed as factor elimination function,by which, we can generate prime numbers. This function's mapping behavior can explain the irregularities in the occurrence of prime numbers on the number line. Generally the different categories of prime numbers found till date, satisfy the form of this function. We present some absolute and probabilistic conditions for the primality of the number generated by this method. This function is capable of leading to highly efficient algorithms for generating prime numbers.

Vineet Kumar

2014-10-06T23:59:59.000Z

266

SOLID STATE HYDRIDE SYSTEM ENGINEERING  

SciTech Connect (OSTI)

A typical hydrogen refueling station was designed based on DOE targets and existing gasoline filling station operations. The purpose of this design was to determine typical heat loads, how these heat loads will be handled, and approximate equipment sizes. For the station model, two DOE targets that had the most impact on the design were vehicle driving range and refueling time. The target that hydrogen fueled vehicles should have the equivalent driving range as present automobiles, requires 5 kg hydrogen storage. Assuming refueling occurs when the tank is 80% empty yields a refueling quantity of 4 kg. The DOE target for 2010 of a refueling time of 3 minutes was used in this design. There is additional time needed for payment of the fuel, and connecting and disconnecting hoses and grounds. It was assumed that this could be accomplished in 5 minutes. Using 8 minutes for each vehicle refueling gives a maximum hourly refueling rate of 7.5 cars per hour per fueling point.

Anton, D; Mark Jones, M; Bruce Hardy, B

2007-10-31T23:59:59.000Z

267

Chemical Hydrides Ken Stroh, facilitator  

E-Print Network [OSTI]

Development Approach To Deliver Economic H2 via NaBH4 NaBH4 Natural Gas Solar Energy Hydro Power H2 Catalyst the life cycle aspects of these systems to re-fillable systems? · Current energy efficiency definition may validation and demonstration #12;Advantages · Refueling with a liquid (used to this) · Portable

268

Muon motion in titanium hydride  

Science Journals Connector (OSTI)

Motional narrowing of the transverse-field muon-spin rotation signal has been reported previously for ?-TiHx with x=1.83, 1.97, and 1.99. An analysis of the results for TiH1.99 near room temperature indicates that the mechanism responsible for the motion of the muon out of the octahedral site is thermally activated diffusion with an attempt frequency comparable to the optical vibrations of the lattice. The motional narrowing in TiH1.97 near 500 K is interpreted with the aid of Monte Carlo calculations which simulated the effect of muon and proton motion upon the field-correlation time for the muon. The results of these simulations coupled with published proton nuclear-magnetic-resonance T1 measurements indicate that the field-correlation time for the muon can be explained if the rate of motion for the nearest-neighbor protons is decreased relative to the hopping rate for the unperturbed lattice.

J. R. Kempton; K. G. Petzinger; W. J. Kossler; H. E. Schone; C. E. Stronach

1989-07-01T23:59:59.000Z

269

,"New York Number of Natural Gas Consumers"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Residential" "Sourcekey","NA1501SNY8","NA1508SNY8","NA1509SNY8" "Date","New York Natural Gas Number of Residential Consumers (Count)","New York Natural Gas Number...

270

Analysis of Random Number Generators Parijat Naik  

E-Print Network [OSTI]

1 Analysis of Random Number Generators Parijat Naik Department of Computer Science Oregon State generation used in practice and a comparison of their efficiency. The paper focuses on the techniques used Random number generators are used for generating an array of numbers that have a random distribution

271

Growth of Betti Numbers Bryan Clair  

E-Print Network [OSTI]

Growth of Betti Numbers Bryan Clair _____________________________________________________________________________ Introduction Let X = fX= be a finite simplicial complex. We study the growth rate of the Betti numbers of X. It is easy to see that the sequence of Betti numbers {bq(Xi)} can grow at most linearly

Clair, Bryan

272

Computing Betti Numbers via Combinatorial Joel Friedman  

E-Print Network [OSTI]

Computing Betti Numbers via Combinatorial Laplacians Joel Friedman Department of Mathematics 1984 Abstract We use the Laplacian and power method to compute Betti numbers of sim- plicial complexes. This has, involving higher dimensional spaces (see [Cha95]). 1 #12;A part of the homology groups are the Betti numbers

Friedman, Joel

273

Betti Numbers of Graph Sean Jacques  

E-Print Network [OSTI]

ii Betti Numbers of Graph Ideals Sean Jacques Thesis submitted to the University of She but there are formulae for finding the Betti numbers (part of the information which comprises a minimal free resolution especially explicit or useful descriptions of the Betti numbers. However we restrict our attention to those

Katzman, Moty

274

Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

275

Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

276

Montana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

277

Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

278

Texas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

279

Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

280

U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

282

Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

283

Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

284

Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

285

Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

286

Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

287

Computing the Betti Numbers of Arrangements  

E-Print Network [OSTI]

1 Computing the Betti Numbers of Arrangements Saugata Basu School of Mathematics & College complexity of a set S are the Betti numbers. i(S). · i(S) is the rank of the Hi (S) (the i-th co. · An important measure of the topological complexity of a set S are the Betti numbers. i(S). · i(S) is the rank

Basu, Saugata

288

BETTI NUMBERS OF HYPERSURFACE COMPLEMENTS LAURENTIU MAXIM  

E-Print Network [OSTI]

L2 ­BETTI NUMBERS OF HYPERSURFACE COMPLEMENTS LAURENTIU MAXIM Abstract. In [DJL07] it was shown that if A is an affine hyperplane arrange- ment in Cn, then at most one of the L2­Betti numbers b (2) i (Cn \\ A, id of [FLM09, LM06] about L2­Betti numbers of plane curve complements. 1. Introduction Let M be any

Maxim, Laurentiu-George

289

REFINED BOUNDS ON THE NUMBER OF CONNECTED ...  

E-Print Network [OSTI]

Apr 6, 2011 ... Smith inequality (see Theorem 2.5) a bound on the number of semi- ... then using Smith inequality, have been used before in several different ...

2011-04-06T23:59:59.000Z

290

Battling bird flu by the numbers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

bird flu by the numbers Lab theorists have developed a mathematical tool that could help health experts and crisis managers determine in real time whether an emerging...

291

Company number 5857955 Wellcome Trust Finance plc  

E-Print Network [OSTI]

Company number 5857955 Wellcome Trust Finance plc Annual Report and Financial Statements Year ended 30 September 2013 #12;Company number 5857955 Wellcome Trust Finance plc Contents Page Directors Trust Finance plc Directors' Report For the year ended 30 September 2013 Report of the Directors

Rambaut, Andrew

292

Company number 5857955 Wellcome Trust Finance plc  

E-Print Network [OSTI]

Company number 5857955 Wellcome Trust Finance plc Annual Report and Financial Statements Year ended 30 September 2012 #12;Company number 5857955 Wellcome Trust Finance plc Contents Page Directors Trust Finance plc Directors' Report for the year ended 30 September 2012 Report of the Directors

Rambaut, Andrew

293

GENERAL CHEMISTRY TEXTBOOK LIST ISBN Number  

E-Print Network [OSTI]

FALL 2013 GENERAL CHEMISTRY TEXTBOOK LIST Course Number ISBN Number Title of Text and/or Material Edition Author Publishers 11100 978-1-2591-9687-4 Introduction to Chemistry, 3rd ed. (packaged w 978-1-2591-6192-6 Chemistry, The Molecular Nature of Matter and Change, 6e (packaged w

Jiang, Wen

294

High speed optical quantum random number generation  

E-Print Network [OSTI]

High speed optical quantum random number generation Martin Fšurst1,2,, Henning Weier1,2, Sebastian, ready-for-use quantum random number generator (QRNG) whose stochastic model is based on the ran- domness directly delivered to a PC, generated at a rate of up to 50 Mbit/s, clearly pass all tests relevant

Weinfurter, Harald

295

Compare Activities by Number of Computers  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Computers Number of Computers Compare Activities by ... Number of Computers Office buildings contained the most computers per square foot, followed by education and outpatient health care buildings. Education buildings were the only type with more than one computer per employee. Religious worship and food sales buildings had the fewest computers per square foot. Percent of All Computers by Building Type Figure showing percent of all computers by building type. If you need assistance viewing this page, please call 202-586-8800. Computer Data by Building Type Number of Buildings (thousand) Total Floorspace (million square feet) Number of Employees (thousand) Total Computers (thousand) Computers per Million Square Feet Computers per Thousand Employees All Buildings 4,657

296

Stockpile Stewardship Quarterly Volume 1, Number 4  

National Nuclear Security Administration (NNSA)

1, Number 4 * February 2012 1, Number 4 * February 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 1, Number 4 Inside this Issue 2 Applying Advanced Simulation Models to Neutron Tube Ion Extraction 3 Advanced Optical Cavities for Subcritical and Hydrodynamic Experiments 5 Progress Toward Ignition on the National Ignition Facility 7 Commissioning URSA Minor: The First LTD-Based Accelerator for Radiography 8 Publication Highlights 9 2011 NNSA Stewardship Science Graduate Fellowship Class S tockpile Stewardship Science is not for wimps, and

297

Climate Zone Number 1 | Open Energy Information  

Open Energy Info (EERE)

Climate Zone Number 1 Climate Zone Number 1 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 1 is defined as Very Hot - Humid(1A) with IP Units 9000 < CDD50ÂșF and SI Units 5000 < CDD10ÂșC Dry(1B) with IP Units 9000 < CDD50ÂșF and SI Units 5000 < CDD10ÂșC . The following places are categorized as class 1 climate zones: Broward County, Florida Hawaii County, Hawaii Honolulu County, Hawaii Kalawao County, Hawaii Kauai County, Hawaii Maui County, Hawaii Miami-Dade County, Florida Monroe County, Florida Retrieved from "http://en.openei.org/w/index.php?title=Climate_Zone_Number_1&oldid=21604" Category: ASHRAE Climate Zones What links here Related changes Special pages Printable version Permanent link Browse properties

298

What's Behind the Numbers? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

What's Behind the Numbers? What's Behind the Numbers? What's Behind the Numbers? June 24, 2011 - 3:39pm Addthis What's Behind the Numbers? Dr. Richard Newell Dr. Richard Newell What does this mean for me? New website shows data on the why's, when's and how's of crude oil prices. Among the most visible prices that consumers may see on a daily basis are the ones found on the large signs at the gasoline stations alongside our streets and highways. The biggest single factor affecting gasoline prices is the cost of crude oil, the main raw material for gasoline production, which accounts for well over half the price of gasoline at the pump. But what is behind the price of crude oil? This week the U.S. Energy Information Administration (EIA) launched a new web-based assessment highlighting key factors that can affect crude oil

299

REFINED BOUNDS ON THE NUMBER OF CONNECTED ...  

E-Print Network [OSTI]

Nov 6, 2011 ... closure imply using the well-known Smith inequality (see Theorem 2.4) a bound on the number of semi-algebraically connected components of ...

2011-11-06T23:59:59.000Z

300

Analytical number-projected BCS nuclear model  

Science Journals Connector (OSTI)

Transforming both the overlap energy kernel and overlap functionals into polynomial forms, the well-known integral of the number-projected BCS theory is performed analytically. We then obtain the projected ground state BCS energy in the closed form.

Mauro Kyotoku

1988-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Regulation of Numbers of Intracellular Algae  

Science Journals Connector (OSTI)

...Regulation of Numbers of Intracellular Algae L. Muscatine R. R. Pool Members of three classes of unicellular algae have exploited an intracellular habitat...is poorly understood. Steady-state algae:host cell ratios might be achieved by...

1979-01-01T23:59:59.000Z

302

Elastic tail propulsion at low Reynolds number  

E-Print Network [OSTI]

A simple way to generate propulsion at low Reynolds number is to periodically oscillate a passive flexible filament. Here we present a macroscopic experimental investigation of such a propulsive mechanism. A robotic swimmer ...

Yu, Tony S. (Tony Sheung)

2007-01-01T23:59:59.000Z

303

Utility Priority Number Evaluation for FMEA  

Science Journals Connector (OSTI)

Traditionally, decisions on how to improve an operation are based on risk priority number (RPN) in the failure mode and effects analysis (FMEA). Many scholars questioned the RPN method ... make a decision on impr...

Jih Kuang Chen

2007-10-01T23:59:59.000Z

304

Baryon number violation in particle decays  

Science Journals Connector (OSTI)

It has been argued in the past that in baryogenesis via out-of-equilibrium decays one must consider loop diagrams that contain more than one baryon number violating coupling. In this paper we argue that the requirement with regard to baryon number violating couplings in loop diagrams is that the interaction between the intermediate on-shell particles and the final particles should correspond to a net change in baryon number and that this can be satisfied even if the loop diagram contains only one baryon number violating coupling. Put simply, we show that to create a baryon asymmetry there should be net B violation to the right of the “cut” in the loop diagram. This is of relevance to some works involving the out-of-equilibrium decay scenario.

Rathin Adhikari and Raghavan Rangarajan

2002-03-25T23:59:59.000Z

305

Implementation of a Distributed Pseudorandom Number Generator  

Science Journals Connector (OSTI)

In parallel Monte Carlo simulations, it is highly desirable to have a system of pseudo-random number generators that has good statistical properties and allows ... processes. In this work, we discuss a distributed

Jian Chen; Paula Whitlock

1995-01-01T23:59:59.000Z

306

Entropy of pseudo-random-number generators  

Science Journals Connector (OSTI)

Since the work of Ferrenberg et al. [Phys. Rev. Lett. 69, 3382 (1992)] some pseudo-random-number generators are known to yield wrong results in cluster Monte Carlo simulations. In this contribution the fundamental mechanism behind this failure is discussed. Almost all random-number generators calculate a new pseudo-random-number xi from preceding values, xi=f(xi?1,xi?2,…,xi?q). Failure of these generators in cluster Monte Carlo simulations and related experiments can be attributed to the low entropy of the production rule f() conditioned on the statistics of the input values xi?1,…,xi?q. Being a measure only of the arithmetic operations in the generator rule, the conditional entropy is independent of the lag in the recurrence or the period of the sequence. In that sense it measures a more profound quality of a random-number generator than empirical tests with their limited horizon.

Stephan Mertens and Heiko Bauke

2004-05-21T23:59:59.000Z

307

Algorithms for Algebraic Number Theory II  

Science Journals Connector (OSTI)

We now leave the realm of quadratic fields where the main computational tasks of algebraic number theory mentioned at the end of Chapter 4 were relatively simple (although as we have seen many conjectures rema...

Henri Cohen

1993-01-01T23:59:59.000Z

308

Bridge Numbers of Torus Knots Jennifer Schultens  

E-Print Network [OSTI]

contained proof of the following result of H. Schubert: If K is a (p, q)-torus knot, then the bridge number below all maxima of h|K, then we say that K is in bridge position with respect to h. The bridge number of whether or not we require K to be in bridge position. Indeed, if h|K has n maxima, then the maxima of h

Schultens, Jennifer

309

Chemical kinetics of cetane number improving agents  

SciTech Connect (OSTI)

The increasing demand for diesel fuels has resulted in the use of greater percentage of cracked distillates having poor ignition properties. The ignition properties of diesel fuels can be rated in terms of their cetane number and diesel fuels having low cetane number may have poor ignition properties such as diesel knock, difficulties to start engines in the cold weather and so on. Such diesel fuels need cetane number improving agents. In the 1940s and 1950s alkyl nitrates, alkyl nitrites and organic peroxides were found to be effective cetane number improving additives. Our recent study suggests that free radicals produced from thermal decomposition just before ignition should have an important role to improve their ignition properties. However no studies on the reaction mechanism for improving effect of these additives have been attempted because of complex nature of spontaneous ignition reaction of hydrocarbons. In order to clarify the reaction mechanism for improving effects of cetane number improving agents. We here have attempted to simulate the spontaneous ignition of n-butane as a model compound in the presence of alkyl nitrites as cetane number improving agents.

Hashimoto, K.; Akutsu, Y.; Arai, M.; Tamura, M. [Univ. of Tokyo (Japan)

1996-12-31T23:59:59.000Z

310

Climate Zone Number 7 | Open Energy Information  

Open Energy Info (EERE)

Climate Zone Number 7 Climate Zone Number 7 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 7 is defined as Very Cold with IP Units 9000 < HDD65ÂșF ≀ 12600 and SI Units 5000 < HDD18ÂșC ≀ 7000 . The following places are categorized as class 7 climate zones: Aitkin County, Minnesota Aleutians East Borough, Alaska Aleutians West Census Area, Alaska Anchorage Borough, Alaska Aroostook County, Maine Ashland County, Wisconsin Baraga County, Michigan Barnes County, North Dakota Bayfield County, Wisconsin Becker County, Minnesota Beltrami County, Minnesota Benson County, North Dakota Bottineau County, North Dakota Bristol Bay Borough, Alaska Burke County, North Dakota Burnett County, Wisconsin Carlton County, Minnesota Cass County, Minnesota

311

SPRNG Parallel Random Number Generators at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SPRNG SPRNG SPRNG Description The SPRNG libraries of generators produce good quality random numbers, and are also fast. They have been subjected to some of the largest random number tests, with around 10^13 RNs per test. SPRNG provides both FORTRAN and C (also C++) interfaces for the use of the parallel random number generators. Access SPRNG v2.0 is available on Carver (gcc, intel and pgi) and Cray systems (pgi and cce). Use the module utility to load the software. module load sprng Using SPRNG On Cray systems: ftn sprng_test.F $SPRNG -lsprng On Carver: mpif90 sprng_test.F $SPRNG -lsprng Documentation On Carver there are various documents in $SPRNG/DOCS and various examples in $SPRNG/EXAMPLES. See the SPRNG web site at Florida State University for complete details. For help using SPRNG at NERSC contact the

312

Microsoft Word - Document Numbering Plan.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

document Number Plan 11/3/2005 document Number Plan 11/3/2005 All documents numbers start with a 9 9 _ _ ___ | | | | | Document per chart | Generation (i.e. PSS has 1,2&3, FEEPS has 1&2) Use 0 when the document doesn't apply to any of these System 0- Non system Specific (group wide) 1- PSS 2- Reserved for PSS expansion 3- FEEPS 4- Reserved for FEEPS expansion 5- BLEPS 6- Reserved for BLEPS expansion 7- DIW 8- Reserved for future use 9- Reserved for future use 000-099 Requirements 000 - Statement of work For x.1.4.1.4 - Design Statement of Work For Beamlines - Installation Statement of Work 001-009 Reserved for Statement of Works for upgrade, revisions, add-ons, etc. 010 - Cost Estimate 011-019 Additional Cost Estimates

313

Notices OMB Control Number: 1850-0803.  

Broader source: Energy.gov (indexed) [DOE]

870 Federal Register 870 Federal Register / Vol. 78, No. 140 / Monday, July 22, 2013 / Notices OMB Control Number: 1850-0803. Type of Review: Extension without change of an existing collection of information. Respondents/Affected Public: Individuals or households. Total Estimated Number of Annual Responses: 135,000. Total Estimated Number of Annual Burden Hours: 27,000. Abstract: This is a request for a 3-year renewal of the generic clearance to allow the National Center for Education Statistics (NCES) to continue to develop, test, and improve its survey and assessment instruments and methodologies. The procedures utilized to this effect include but are not limited to experiments with levels of incentives for various types of survey operations, focus groups, cognitive laboratory

314

Number Counts and Dynamical Vacuum Cosmologies  

E-Print Network [OSTI]

We study non-linear structure formation in an interacting model of the dark sector of the Universe in which the dark energy density decays linearly with the Hubble parameter, $\\rho_{\\Lambda} \\propto H$, leading to a constant-rate creation of cold dark matter. We derive all relevant expressions to calculate the mass function and the cluster number density using the Sheth-Torman formalism and show that the effect of the interaction process is to increase the number of bound structures of large masses ($M \\gtrsim 10^{14} M_{\\odot}h^{-1}$) when compared to the standard $\\Lambda$CDM model. Since these models are not reducible to each other, this number counts signature can in principle be tested in future surveys.

N. Chandrachani Devi; H. A. Borges; S. Carneiro; J. S. Alcaniz

2014-07-07T23:59:59.000Z

315

Number Counts and Dynamical Vacuum Cosmologies  

E-Print Network [OSTI]

We study non-linear structure formation in an interacting model of the dark sector of the Universe in which the dark energy density decays linearly with the Hubble parameter, $\\rho_{\\Lambda} \\propto H$, leading to a constant-rate creation of cold dark matter. We derive all relevant expressions to calculate the mass function and the cluster number density using the Sheth-Torman formalism and show that the effect of the interaction process is to increase the number of bound structures of large masses ($M \\gtrsim 10^{14} M_{\\odot}h^{-1}$) when compared to the standard $\\Lambda$CDM model. Since these models are not reducible to each other, this number counts signature can in principle be tested in future surveys.

Devi, N Chandrachani; Carneiro, S; Alcaniz, J S

2014-01-01T23:59:59.000Z

316

Climate Zone Number 3 | Open Energy Information  

Open Energy Info (EERE)

Number 3 Number 3 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 3 is defined as Warm - Humid(3A) with IP Units 4500 < CDD50ÂșF ≀ 6300 and SI Units 2500 < CDD10ÂșC < 3500 Dry(3B) with IP Units 4500 < CDD50ÂșF ≀ 6300 and SI Units 2500 < CDD10ÂșC < 3500 Warm - Marine(3C) with IP Units CDD50ÂșF ≀ 4500 AND HDD65ÂșF ≀ 3600 and SI Units CDD10ÂșC ≀ 2500 AND HDD18ÂșC ≀ 2000 . The following places are categorized as class 3 climate zones: Abbeville County, South Carolina Adair County, Oklahoma Adams County, Mississippi Aiken County, South Carolina Alameda County, California Alcorn County, Mississippi Alfalfa County, Oklahoma Allendale County, South Carolina Amite County, Mississippi Anderson County, South Carolina

317

Probing lepton number violation on three frontiers  

SciTech Connect (OSTI)

Neutrinoless double beta decay constitutes the main probe for lepton number violation at low energies, motivated by the expected Majorana nature of the light but massive neutrinos. On the other hand, the theoretical interpretation of the (non-)observation of this process is not straightforward as the Majorana neutrinos can destructively interfere in their contribution and many other New Physics mechanisms can additionally mediate the process. We here highlight the potential of combining neutrinoless double beta decay with searches for Tritium decay, cosmological observations and LHC physics to improve the quantitative insight into the neutrino properties and to unravel potential sources of lepton number violation.

Deppisch, Frank F. [Department of Physics and Astronomy, University College London (United Kingdom)

2013-12-30T23:59:59.000Z

318

Systems Engineering of Chemical Hydride, Pressure Vessel, and Balance of Plant for Onboard Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

34 34 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Jamie D. Holladay (Primary Contact), Kriston P. Brooks, Ewa C.E. Rönnebro, Kevin L. Simmons and Mark R. Weimar. Pacific Northwest National Laboratory (PNNL) 902 Battelle Blvd Richland, WA 99352 Phone: (509) 371-6692 Email: Jamie.Holladay@pnnl.gov DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-AC05-76RL01830

319

Table B14. Number of Establishments in Building, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

4. Number of Establishments in Building, Number of Buildings, 1999" 4. Number of Establishments in Building, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Number of Establishments in Building" ,,"One","Two to Five","Six to Ten","Eleven to Twenty","More than Twenty","Currently Unoccupied" "All Buildings ................",4657,3528,688,114,48,27,251 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1897,272,"Q","Q","Q",164 "5,001 to 10,000 ..............",1110,802,222,17,"Q","Q","Q" "10,001 to 25,000 .............",708,506,121,51,12,"Q",17 "25,001 to 50,000 .............",257,184,33,15,15,"Q","Q"

320

Beamline Phone Numbers| Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Map Interactive Map Beamlines Map Beamlines Directory Techniques Directory Sectors Directory Beamline Phone Numbers Status and Schedule Beamline Phone Numbers From on-site, dial 2, then a number listed below. From off-site, dial 630-252 and a number listed below. Sector 1 1-BM-A: 1701 1-BM-C: 5468 1-ID: 1801 Sector 2 2-BM: 1702 2-ID-B: 1628 2-ID-D: 1802 2-ID-E: 3711 Sector 3 3-ID: 1803 Sector 4 4-ID-C: 1704 4-ID-D: 1804 Sector 5 5-BM: 1705 5-ID: 1805 Sector 6 6-ID-B: 1806 6-ID-C: 1406 6-ID-D: 1606 Sector 7 7-ID-B: 1607 7-ID-C: 1707 7-ID-D: 1807 7-ID-E: 1207 Sector 8 8-ID-E: 1908 8-ID-I: 1808 Sector 9 9-BM-B: 1709 9-ID-B: 0349 9-ID-C: 1809 Column 95: 4705 Sector 10 10-BM-B: 6792 10-ID-B: 1710 Sector 11 11-BM-B: 5877 11-ID-B: 1711 11-ID-C: 1711 11-ID-D: 2162 Laser lab: 0379 Sector 12 12-BM-B: 0378 12-ID-B,C: 1712

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

March 2005 Number 238 CARBON CAPTURE AND  

E-Print Network [OSTI]

March 2005 Number 238 CARBON CAPTURE AND STORAGE (CCS) As part of the government's global strategy. This POSTnote discusses the potential of carbon capture and storage (CCS), a method of carbon sequestration2 stages: CO2 capture, transport and storage. CO2 capture Carbon capture is best applied to large

Mather, Tamsin A.

322

Colorado Number of Natural Gas Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

,606,602 1,622,434 1,634,587 1,645,716 1,659,808 1,672,312 1986-2013 Sales 1,634,582 1,645,711 1,659,803 1,672,307 1997-2013 Transported 5 5 5 5 1997-2013 Commercial Number of...

323

Report Number: _____________ UNIVERSITY OF CONNECTICUT HEALTH CENTER  

E-Print Network [OSTI]

Report Number: _____________ UNIVERSITY OF CONNECTICUT HEALTH CENTER EMPLOYEE SAFETY HAZARD REPORT health, life or property are to be reported by phone to "7777" on campus and "911" off campus. Employees are to use this form to report other hazards. The employee is then to distribute copies of this completed

Kim, Duck O.

324

Heat Transfer at Small Grashof Numbers  

Science Journals Connector (OSTI)

...January 1957 research-article Heat Transfer at Small Grashof Numbers J. J...physical arguments suggest that the heat transfer from a body, immersed in a fluid...the problem is small. However, heat-transfer rates predicted in this fashion...

1957-01-01T23:59:59.000Z

325

Estimate octane numbers using an enhanced method  

SciTech Connect (OSTI)

An improved model, based on the Twu-Coon method, is not only internally consistent, but also retains the same level of accuracy as the previous model in predicting octanes of gasoline blends. The enhanced model applies the same binary interaction parameters to components in each gasoline cut and their blends. Thus, the enhanced model can blend gasoline cuts in any order, in any combination or from any splitting of gasoline cuts and still yield the identical value of octane number for blending the same number of gasoline cuts. Setting binary interaction parameters to zero for identical gasoline cuts during the blending process is not required. The new model changes the old model`s methodology so that the same binary interaction parameters can be applied between components inside a gasoline cut as are applied to the same components between gasoline cuts. The enhanced model is more consistent in methodology than the original model, but it has equal accuracy for predicting octane numbers of gasoline blends, and it has the same number of binary interaction parameters. The paper discusses background, enhancement of the Twu-Coon interaction model, and three examples: blend of 2 identical gasoline cuts, blend of 3 gasoline cuts, and blend of the same 3 gasoline cuts in a different order.

Twu, C.H.; Coon, J.E. [Simulation Sciences Inc., Brea, CA (United States)

1997-03-01T23:59:59.000Z

326

Student's Department: Course/Section Number  

E-Print Network [OSTI]

Student's Department: Course/Section Number: Course Title: Instructor: Explanation of why coursework has not yet been completed: Description of coursework remaining to be completed: Graduate Student is Requested: Arts & Sciences Students: Shriver Hall 28 (Graduate Affairs and Admissions Office) Engineering

Weaver, Harold A. "Hal"

327

STUDENT HANDBOOK Table of Contents Page Number  

E-Print Network [OSTI]

STUDENT HANDBOOK Campus #12;Table of Contents Page Number Welcome 1 The School 1 Mission Statement Student Resources 8 Financial Aid and Funding Sources Writing Supports 9 Special Needs Computers Libraries RefWorks 10 Student Services 11 Administrative Information 14 Student ID, and Email Accounts U of R

Saskatchewan, University of

328

Connecticut Number of Natural Gas Consumers  

U.S. Energy Information Administration (EIA) Indexed Site

487,320 489,349 490,185 494,970 504,138 513,492 1986-2013 Sales 489,380 494,065 503,241 512,110 1997-2013 Transported 805 905 897 1,382 1997-2013 Commercial Number of Consumers...

329

Volume 22, Number 2, 2014 ENGINEERING  

E-Print Network [OSTI]

-users [2,3,4,5] reduce health risks [6,7,8], and mitigate the greenhouse gas impact of lighting techVolume 22, Number 2, 2014 LIGHT & ENGINEERING Znack Publishing House, Moscow ISSN 0236-2945 #12 Advisory Board: Lou Bedocs, Thorn Lighting Limited, United Kingdom Wout van Bommel, Philips Lighting

Jacobson, Arne

330

Idaho Number of Natural Gas Consumers  

Gasoline and Diesel Fuel Update (EIA)

36,191 342,277 346,602 350,871 353,963 359,889 1987-2013 Sales 346,602 350,871 353,963 359,889 1997-2013 Commercial Number of Consumers 37,320 38,245 38,506 38,912 39,202 39,722...

331

Gorilla numbers doubled in the Congo  

Science Journals Connector (OSTI)

... previously thought, according to a census of the northern regions of the Republic of the Congo. Led by the New-York-based Wildlife Conservation Society (WCS), the count found ... attributes the high numbers to successful management of protected areas in the Republic of the Congo, a food-rich habitat and the “remoteness and inaccessibility” of the region. The ...

2008-08-13T23:59:59.000Z

332

Paper Number (Assigned by IFPE Staff)  

E-Print Network [OSTI]

Paper Number (Assigned by IFPE Staff) Compressed Air Energy Storage for Offshore Wind Turbines pumped hydro, compressed air energy storage, a variety of battery chemistries, capacitors, flywheels of this paper, compressed air energy storage, is highly scalable, reasonably inexpensive, provides moderate ramp

Li, Perry Y.

333

The New Element Curium (Atomic Number 96)  

DOE R&D Accomplishments [OSTI]

Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

Seaborg, G. T.; James, R. A.; Ghiorso, A.

1948-00-00T23:59:59.000Z

334

Quantum random-number generator based on a photon-number-resolving detector  

Science Journals Connector (OSTI)

We demonstrated a high-efficiency quantum random number generator which takes inherent advantage of the photon number distribution randomness of a coherent light source. This scheme was realized by comparing the photon flux of consecutive pulses with a photon number resolving detector. The random bit generation rate could reach 2.4 MHz with a system clock of 6.0 MHz, corresponding to a random bit generation efficiency as high as 40%. The random number files passed all the stringent statistical tests.

Min Ren; E Wu; Yan Liang; Yi Jian; Guang Wu; Heping Zeng

2011-02-23T23:59:59.000Z

335

Betti Numbers, Spectral Sequences and Algorithms for computing them  

E-Print Network [OSTI]

1 Betti Numbers, Spectral Sequences and Algorithms for computing them Saugata Basu School on the number of connected components, Betti numbers etc. In terms of: #12;4 Complexity of Semi-algebraic Sets Uniform bounds on the number of connected components, Betti numbers etc. In terms of: The number

Basu, Saugata

336

Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Craig M. Jensen (Primary Contact) and Marina Chong University of Hawaii Department of Chemistry Honolulu, HI 96822 Phone: (808) 956-2769 Email: jensen@hawaii.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FC36-05GO15063 Project Start Date: April 1, 2005 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives The objective of this project is to develop a new class of reversible materials that have the potential to meet the DOE kinetic and system gravimetric storage capacity targets. During the past year, our investigations have focused on the study of novel, high hydrogen capacity, borohydrides that can

337

Number Plastic Type Common Items Number of Items (tally) 1 polyethylene terephthalate  

E-Print Network [OSTI]

End Time: Number Plastic Type Common Items Number of Items (tally) 1 polyethylene terephthalate and vegetable oil containers; ovenable food trays. 2 high density polyethylene Milk jugs, juice bottles; bleach, piping, candy wrappers 4 low density polyethylene Squeezable bottles; bread, frozen food, dry cleaning

Schladow, S. Geoffrey

338

A STUDY OF FUNDAMENTAL REACTION PATHWAYS FOR TRANSITION METAL ALKYL COMPLEXES. I. THE REACTION OF A NICKEL METHYL COMPLEX WITH ALKYNES. II. THE MECHANISM OF ALDEHYDE FORMATION IN THE REACTION OF A MOLYBDENUM HYDRIDE WITH MOLYBDENUM ALKYLS  

SciTech Connect (OSTI)

I. This study reports the rapid reaction under mild conditions of internal or terminal alkynes with methyl (acetyl~ acetonato) (triphenylphosphine) nickel (1) in either aromatic or ether solvents. In all cases vinylnickel products 2 are formed by insertion of the alkyne into the nickel=methyl bond. These complexes may be converted into a variety of organic products (e.g. alkenes, esters, vinyl halides) by treatment with appropriate reagents. Unsymmetrical alkynes give selectively the one regioisomer with the sterically largest substituent next to the nickel atom. In order to investigate the stereochemistry of the initial insertion, a x-ray diffraction study of the reaction of 1 with diphenylacetylene was carried out. This showed that the vinylnickel complex formed by overall trans insertion was the product of the reaction. Furthermore, subsequent slow isomerization of this complex, to a mixture of it and the corresponding cis isomer, demonstrated that this trans addition product is the kinetic product of the reaction. In studies with other alkynes, the product of trans addition was not always exclusively (or even predominantly) formed, but the ratio of the stereoisomers formed kinetically was substantially different from the thermodynamic ratio. Isotope labeling, added phosphine, and other experiments have allowed us to conclude that the mechanism of this reaction does involve initial cis addition. However, a coordinatively unsaturated vinylnickel complex is initially formed which can undergo rapid, phosphine-catalyzed cis-trans isomerization in competition with its conversion to the isolable phosphine-substituted kinetic reaction products. II. The reaction of CpMo(CO){sub 3}H (1a) with CpMo(CO){sub 3}R (2, R= CH{sub 3}, C{sub 2}H{sub 5}) at 50{degrees} C in THF gives the aldehyde RCHO and the dimers [CpMo(CO){sub 3}]{sub 2} (3a) and [CpMo(CO){sub 2}]{sub 2} (4a). Labeling one of the reactants with a methylcyclopentadienyl ligand it was possible to show that the mixed dimers MeCpMo(CO){sub 3}-(CO){sub 3}MoCp (3b) and MeCpMo(CO){sub 2}{triple_bond}(CO){sub 2}MoCp (4b) are the predominant kinetic products of the reaction. Additionally labeling the carbonyl ligands of 1a with {sup 13}CO led to the conclusion that all three of the carbonyl ligands in 1a end up in the tetracarbonyl dimers 4a if the reaction is carried out under a continuous purge of argon Trapping studies failed to find any evidence for the intermediacy of either [CpMo(CO){sub 3}]{sup -} or [CpMo(CO){sub 3}]{sup +} in this reaction. A mechanism is proposed that involves the initial migration of the alkyl ligand in 2 to CO forming an unsaturated acyl complex which reacts with 1a to give a binuclear complex containing a three center-two electron Mo-H-Mo bond. This complex then selectively looses a carbonyl from the acyl molybdenum, migrates the hydride to that same metal, and forms a metal-metal bond. This binuclear complex with the hydride and acyl ligands on one metal reductively eliminates aldehyde, and migrates a carbonyl ligand, to give 4a directly. The other product 3a is formed by addition of two molecules of free CO to 4a.

Huggins, John Mitchell

1980-06-01T23:59:59.000Z

339

Battling bird flu by the numbers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May » May » Battling bird flu by the numbers Battling bird flu by the numbers Lab theorists have developed a mathematical tool that could help health experts and crisis managers determine in real time whether an emerging infectious disease such as avian influenza H5N1 is poised to spread globally. May 27, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

340

Contractor: Contract Number: Contract Type: Total Estimated  

Broader source: Energy.gov (indexed) [DOE]

Number: Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 $2,550,203 FY2009 $39,646,446 FY2010 $64,874,187 FY2011 $66,253,207 FY2012 $41,492,503 FY2013 $0 FY2014 FY2015 FY2016 FY2017 FY2018 Cumulative Fee Earned $214,816,546 Fee Available $2,550,203 Minimum Fee $77,931,569 $69,660,249 Savannah River Nuclear Solutions LLC $458,687,779 $0 Maximum Fee Fee Information $88,851,963 EM Contractor Fee Site: Savannah River Site Office, Aiken, SC Contract Name: Management & Operating Contract September 2013 DE-AC09-08SR22470

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Entanglement Distillation Protocols and Number Theory  

E-Print Network [OSTI]

We show that the analysis of entanglement distillation protocols for qudits of arbitrary dimension $D$ benefits from applying basic concepts from number theory, since the set $\\zdn$ associated to Bell diagonal states is a module rather than a vector space. We find that a partition of $\\zdn$ into divisor classes characterizes the invariant properties of mixed Bell diagonal states under local permutations. We construct a very general class of recursion protocols by means of unitary operations implementing these local permutations. We study these distillation protocols depending on whether we use twirling operations in the intermediate steps or not, and we study them both analitically and numerically with Monte Carlo methods. In the absence of twirling operations, we construct extensions of the quantum privacy algorithms valid for secure communications with qudits of any dimension $D$. When $D$ is a prime number, we show that distillation protocols are optimal both qualitatively and quantitatively.

H. Bombin; M. A. Martin-Delgado

2005-03-01T23:59:59.000Z

342

Entanglement distillation protocols and number theory  

SciTech Connect (OSTI)

We show that the analysis of entanglement distillation protocols for qudits of arbitrary dimension D benefits from applying basic concepts from number theory, since the set Z{sub D}{sup n} associated with Bell diagonal states is a module rather than a vector space. We find that a partition of Z{sub D}{sup n} into divisor classes characterizes the invariant properties of mixed Bell diagonal states under local permutations. We construct a very general class of recursion protocols by means of unitary operations implementing these local permutations. We study these distillation protocols depending on whether we use twirling operations in the intermediate steps or not, and we study them both analytically and numerically with Monte Carlo methods. In the absence of twirling operations, we construct extensions of the quantum privacy algorithms valid for secure communications with qudits of any dimension D. When D is a prime number, we show that distillation protocols are optimal both qualitatively and quantitatively.

Bombin, H.; Martin-Delgado, M.A. [Departamento de Fisica Teorica I, Universidad Complutense, 28040 Madrid (Spain)

2005-09-15T23:59:59.000Z

343

Case Numbers: TBH-0063, TBZ-0063  

Broader source: Energy.gov (indexed) [DOE]

May 21, 2008 May 21, 2008 DEPARTMENT OF ENERGY OFFICE OF HEARINGS AND APPEALS Initial Agency Decision Motion To Dismiss Name of Case: Richard L. Urie Dates of Filing: May 15, 2007 July 19, 2007 Case Numbers: TBH-0063 TBZ-0063 This Decision concerns a Complaint filed by Richard L. Urie (hereinafter referred to as "Mr. Urie" or "the Complainant") against Los Alamos National Laboratory (hereinafter referred to as "LANL" or "the Respondent"), his former employer, under the Department of Energy's (DOE) Contractor

344

On real number labelings and graph invertibility  

Science Journals Connector (OSTI)

For non-negative real x"0 and simple graph G, @l"x"""0","1(G) is the minimum span over all labelings that assign real numbers to the vertices of G such that adjacent vertices receive labels that differ by at least x"0 and vertices at distance two receive ... Keywords: ?-invertible, ?j,k-labeling, ?x,1-labeling, Distance-constrained labeling, Kneser graphs, Self-complementary graphs

Jeong-Ok Choi; John Georges; David Mauro; Yan Wang

2012-10-01T23:59:59.000Z

345

Laser interrogation of latent vehicle registration number  

SciTech Connect (OSTI)

A recent investigation involved automobile registration numbers as important evidentiary specimens. In California, as in most states, small, thin metallic decals are issued to owners of vehicles each year as the registration is renewed. The decals are applied directly to the license plate of the vehicle and typically on top of the previous year`s expired decal. To afford some degree of security, the individual registration decals have been designed to tear easily; they cannot be separated from each other, but can be carefully removed intact from the metal license plate by using a razor blade. In September 1993, the City of Livermore Police Department obtained a blue 1993 California decal that had been placed over an orange 1992 decal. The two decals were being investigated as possible evidence in a case involving vehicle registration fraud. To confirm the suspicion and implicate a suspect, the department needed to known the registration number on the bottom (completely covered) 1992 decal. The authors attempted to use intense and directed light to interrogate the colored stickers. Optical illumination using a filtered white-light source partially identified the latent number. However, the most successful technique used a tunable dye laser pumped by a pulsed Nd:YAG laser. By selectively tuning the wavelength and intensity of the dye laser, backlit illumination of the decals permitted visualization of the underlying registration number through the surface of the top sticker. With optimally-tuned wavelength and intensity, 100% accuracy was obtained in identifying the sequence of latent characters. The advantage of optical techniques is their completely nondestructive nature, thus preserving the evidence for further interrogation or courtroom presentation.

Russo, R.E. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.]|[Lawrence Livermore National Lab., CA (United States). Forensic Science Center; Pelkey, G.E. [City of Livermore Police Dept., CA (United States); Grant, P.; Whipple, R.E.; Andresen, B.D. [Lawrence Livermore National Lab., CA (United States). Forensic Science Center

1994-09-01T23:59:59.000Z

346

Texas Rice, Volume VII, Number 2  

E-Print Network [OSTI]

Texas A&M University System Agricultural Research and Extension Center Beaumont, Texas April 2007 Volume VII Number 2 Texas Rice Latest News on the Farm Bill continued on page 6 Agriculture Secretary, Mike Johanns, appears... News on the Farm Bill Welcome to the latest edition of Texas Rice. The 2007 crop season is starting off very slow. Unseasonably cool weather, combined with continuing damp conditions, has greatly delayed plantings. Many of the fields that were...

347

Winding number versus Chern--Pontryagin charge  

E-Print Network [OSTI]

In the usual d dimensional SO(d) gauged Higgs models with $d$-component Higgs fields, the 'energies' of the topologically stable solitons are bounded from below by the Chern-Pontryagin charges. A new class of Higgs models is proposed here, whose 'energies' are stabilised instead by the winding number of the Higgs field itself, with no reference to the gauge group. Consequently, such Higgs models can be gauged by SO(N), with 2 \\le N \\le d.

Tigran Tchrakian

2002-04-04T23:59:59.000Z

348

Electroweak strings, zero modes and baryon number  

Science Journals Connector (OSTI)

The Dirac equations for leptons and quarks in the background of an electroweak Z—string have zero mode solutions. If two loops of electroweak string are linked, the zero modes on one of the loops interacts with the other loop via an Aharanov-Bohm interaction. The effects of this interaction are briefly discussed and it is shown that the fermions induce a baryon number on linked loops of Z—string.

Tanmay Vachaspati

1995-01-01T23:59:59.000Z

349

Property:PhoneNumber | Open Energy Information  

Open Energy Info (EERE)

PhoneNumber PhoneNumber Jump to: navigation, search This is a property of type String. Pages using the property "PhoneNumber" Showing 25 pages using this property. (previous 25) (next 25) 1 1st Light Energy, Inc. + 209-824-5500 + 2 21-Century Silicon, Inc. + 972-591-0713 + 3 3Degrees + 415.449.0500 + 3M + 1-888-364-3577 + 4 4C Offshore Limited + +44 (0)1502 509260 + 4th Day Energy + 877-484-3291 + @ @Ventures (California) + (650) 322-3246 + @Ventures (Massachusetts) + (978) 658-8980 + A A.J. Rose Manufacturing Company + 440-934-2859 + A.O. Smith + 414-359-4000 + A1 Sun, Inc. + (510) 526-5715 + A10 Power + 415-729-4A10 or 415-729-4210 + ABC Solar, Inc. + 1-866-40-SOLAR + ABS Alaskan Inc + (800) 235-0689 + ACME solar works + 877-226-3004 + ACORE + 202-393-0001 +

350

Tidal Love Numbers of Neutron Stars  

SciTech Connect (OSTI)

For a variety of fully relativistic polytropic neutron star models we calculate the star's tidal Love number k{sub 2}. Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n {approx} 0.5-1.0. The equilibrium stellar model is obtained by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the linear l = 2 static perturbations to the Schwarzschild spacetime following the method of Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second-order differential equation for the perturbation to the metric coefficient g{sub tt} and matching the exterior solution to the asymptotic expansion of the metric in the star's local asymptotic rest frame gives the Love number. Our results agree well with the Newtonian results in the weak field limit. The fully relativistic values differ from the Newtonian values by up to {approx}24%. The Love number is potentially measurable in gravitational wave signals from inspiralling binary neutron stars.

Hinderer, Tanja [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States)], E-mail: tph25@cornell.edu

2008-04-20T23:59:59.000Z

351

Time-resolved photoluminescence, positron annihilation, and Al0.23Ga0.77N/GaN heterostructure growth studies on low defect density polar and nonpolar freestanding GaN substrates grown by hydride vapor phase epitaxy  

Science Journals Connector (OSTI)

Time-resolved photoluminescence(TRPL) and positron annihilation measurements as well as Al0.23Ga0.77N/GaN heterostructuregrowth by metalorganic vapor phase epitaxy were carried out on very low defect density polar c-plane and nonpolar m-plane freestanding GaN (FS-GaN) substrates grown by hydride vapor phase epitaxy. Room-temperature photoluminescence(PL) lifetime for the near-band-edge (NBE) excitonic emission of the FS-GaN substrates increases with increasing positron diffusion length (L +); i.e. decreasing gross concentration of charged and neutral point defects and complexes. The best undoped c-plane FS-GaN exhibits record-long L + being 116?nm. The fast component of the PL lifetime for its NBE emission increases with temperature rise up to 100?K and levels off at approximately 1.1?ns. The result implies a saturation in thermal activation of nonradiative recombination centers. The surface and interface roughnesses for a Si-doped Al0.23Ga0.77N/GaN/Al0.18Ga0.82N/GaN heterostructure are improved by the use of FS-GaN substrates in comparison with the structure fabricated on a standard GaN template. The emission signals related to the recombination of a two-dimensional electron gas and excited holes are recognized for an Al0.23Ga0.77N/GaN single heterostructuregrown on the c-plane FS-GaN substrate.

S. F. Chichibu; K. Hazu; Y. Ishikawa; M. Tashiro; H. Namita; S. Nagao; K. Fujito; A. Uedono

2012-01-01T23:59:59.000Z

352

CHAPTER XVIII - INDEX-NUMBERS OF PRICES PRICE INDEX-NUMBERS  

Science Journals Connector (OSTI)

Publisher Summary This chapter provides an overview of index numbers. If a term is expressed in a statistical series comparing similar events at different times or in different places as a relative number to another term, called the base, of the same series one obtains an index number of the simplest form. If the terms of a series of prices of a given commodity are expressed as ratio to a fixed base and a number of such series are combined into a group, a frequency distribution is obtained. The first purpose of constructing price index numbers was the measurement of changes in the purchasing power of money considered as a reciprocal of the general price level. Another purpose of constructing price index numbers is the splitting of changes in aggregate values into their price and quantity components. While it is easy to split changes in aggregate values into price changes and quantity changes in the case of a single commodity, it is extremely difficult to do so in the case of a group of commodities. Theoretically, six fundamental types of price index numbers may be distinguished.

ISAAC PAENSON

1970-01-01T23:59:59.000Z

353

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

354

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

355

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

356

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7,279 6,446 3,785 3,474 3,525 Total................................................................... 7,279 6,446 3,785 3,474 3,525 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7,279 6,446 3,785 3,474 3,525 Nonhydrocarbon Gases Removed ..................... 788 736 431

357

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,206 15,357 16,957 17,387 18,120 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 463,929 423,672 401,396 369,624 350,413 From Oil Wells.................................................. 63,222 57,773 54,736 50,403 47,784 Total................................................................... 527,151 481,445 456,132 420,027 398,197 Repressuring ...................................................... 896 818 775 714 677 Vented and Flared.............................................. 527 481 456 420 398 Wet After Lease Separation................................

358

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9 8 7 9 6 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 368 305 300 443 331 From Oil Wells.................................................. 1 1 0 0 0 Total................................................................... 368 307 301 443 331 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 368 307 301 443 331 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

359

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 98 96 106 109 111 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 869 886 904 1,187 1,229 From Oil Wells.................................................. 349 322 288 279 269 Total................................................................... 1,218 1,208 1,193 1,466 1,499 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 5 12 23 Wet After Lease Separation................................ 1,218 1,208 1,188 1,454 1,476 Nonhydrocarbon Gases Removed .....................

360

Notices Total Estimated Number of Annual  

Broader source: Energy.gov (indexed) [DOE]

72 Federal Register 72 Federal Register / Vol. 78, No. 181 / Wednesday, September 18, 2013 / Notices Total Estimated Number of Annual Burden Hours: 10,128. Abstract: Enrollment in the Federal Student Aid (FSA) Student Aid Internet Gateway (SAIG) allows eligible entities to securely exchange Title IV, Higher Education Act (HEA) assistance programs data electronically with the Department of Education processors. Organizations establish Destination Point Administrators (DPAs) to transmit, receive, view and update student financial aid records using telecommunication software. Eligible respondents include the following, but are not limited to, institutions of higher education that participate in Title IV, HEA assistance programs, third-party servicers of eligible institutions,

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 7 6 6 5 Total................................................................... 7 7 6 6 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 7 6 6 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

362

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

363

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

364

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

365

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

366

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

367

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

368

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 380 350 400 430 280 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,150 2,000 2,050 1,803 2,100 Total................................................................... 1,150 2,000 2,050 1,803 2,100 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 1,150 2,000 2,050 1,803 2,100 Nonhydrocarbon Gases Removed .....................

369

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

370

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,502 1,533 1,545 2,291 2,386 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 899 1,064 1,309 1,464 3,401 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 899 1,064 1,309 1,464 3,401 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 899 1,064 1,309 1,464 3,401 Nonhydrocarbon Gases Removed .....................

371

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

372

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

373

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

374

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 7 5 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 34 32 22 48 34 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 34 32 22 48 34 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 34 32 22 48 34 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

375

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

376

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................ 0 0 0 0 0 Marketed Production

377

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

378

Stockpile Stewardship Quarterly, Volume 2, Number 1  

National Nuclear Security Administration (NNSA)

1 * May 2012 1 * May 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 1 Inside this Issue 2 LANL and ANL Complete Groundbreaking Shock Experiments at the Advanced Photon Source 3 Characterization of Activity-Size-Distribution of Nuclear Fallout 5 Modeling Mix in High-Energy-Density Plasma 6 Quality Input for Microscopic Fission Theory 8 Fiber Reinforced Composites Under Pressure: A Case Study in Non-hydrostatic Behavior in the Diamond Anvil Cell 8 Emission of Shocked Inhomogeneous Materials 9 2012 NNSA Stewardship Science Academic

379

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

380

Number Suppletion in North American Indian Languages  

E-Print Network [OSTI]

been elimina ted from consideration. A total of 32 languages from 13 distinct genetic groupings were found to have suppletive verbs marking ergative plurality, i.e. the suppletive verb form cross-references the number of the subject of an intransitive... cry, die carry, put, stand throw sit go, run handle, put down lie, sit, fall, run stand lie, sit, float/glide carry, give, stand run/fly, put swim, turn, walk/go be locat- .arrive , be little die ed, lie, return sit,stand lie, sit falloff big, long...

Booker, Karen M.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Texas Rice, Volume VII, Number 7  

E-Print Network [OSTI]

Texas A&M University System Agricultural Research and Extension Center Beaumont, Texas September 2007 Volume VII Number 7 Texas Rice Nobel Peace Prize Recipient Dr. Norman Borlaug continued on page 4 September of 2003 was a time etched... Tabien, and Dr. Lee Tarpley. Four years ago this month, the Texas A&M Research and Exten- sion Center at Beaumont was hon- ored to welcome one of the most influential people in agriculture. Nobel Peace Prize recipient, Dr. Norman Borlaug, has a long...

382

The New Element Berkelium (Atomic Number 97)  

DOE R&D Accomplishments [OSTI]

An isotope of the element with atomic number 97 has been discovered as a product of the helium-ion bombardment of americium. The name berkelium, symbol Bk, is proposed for element 97. The chemical separation of element 97 from the target material and other reaction products was made by combinations of precipitation and ion exchange adsorption methods making use of its anticipated (III) and (IV) oxidation states and its position as a member of the actinide transition series. The distinctive chemical properties made use of in its separation and the equally distinctive decay properties of the particular isotope constitute the principal evidence for the new element.

Seaborg, G. T.; Thompson, S. G.; Ghiorso, A.

1950-04-26T23:59:59.000Z

383

Probing Dark Energy with Neutrino Number  

E-Print Network [OSTI]

From measurements of the cosmic microwave background (CMB), the effective number of neutrino is found to be close to the standard model value Neff = 3.046 for the \\LambdaCDM cosmology. One can obtain the same CMB angular power spectrum as that of \\LambdaCDM for the different value of Neff by using the different dark energy model (i.e. for the different value of w). This degeneracy between Neff and w in CMB can be broken from future galaxy survey using the matter power spectrum.

Seokcheon Lee

2014-10-06T23:59:59.000Z

384

Probing Dark Energy with Neutrino Number  

E-Print Network [OSTI]

From measurements of the cosmic microwave background (CMB), the effective number of neutrino is found to be close to the standard model value Neff = 3.046 for the \\LambdaCDM cosmology. One can obtain the same CMB angular power spectrum as that of \\LambdaCDM for the different value of Neff by using the different dark energy model (i.e. for the different value of w). This degeneracy between Neff and w in CMB can be broken from future galaxy survey using the matter power spectrum.

Lee, Seokcheon

2014-01-01T23:59:59.000Z

385

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 17 20 18 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,412 1,112 837 731 467 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,412 1,112 837 731 467 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,412 1,112 837 731 467 Nonhydrocarbon Gases Removed ..................... 198 3 0 0 0 Marketed Production

386

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

387

Comparison of Pseudorandom Numbers Generators and Chaotic Numbers Generators used in Differential Evolution  

Science Journals Connector (OSTI)

Differential evolution is one of the great family of evolutionary algorithms. As well as all evolutionary algorithms differential evolution uses pseudorandom numbers generators in many steps of algorithm. In this...

Lenka Skanderova; Adam ?eho?

2014-01-01T23:59:59.000Z

388

Integrality of L2-Betti numbers.  

E-Print Network [OSTI]

The Atiyah conjecture predicts that the L2-Betti numbers of a finite CW-complex with torsion-free fundamental group are integers. We show that the Atiyah conjecture holds (with an additional technical condition) for direct and inverse limits of directed systems of groups for which it is true. As a corollary it holds for residually torsion-free solvable groups, e.g. for pure braid groups or for positive 1-relator groups with torsion free abelianization. Putting everything together we establish a new class of groups for which the Atiyah conjecture holds, which contains all free groups and in particular is closed under taking subgroups, direct sums, free products, extensions with elementary amenable quotient, and under direct and inverse limits of directed systems. This is a corrected version of an older paper with the same title. The proof of Proposition 2.1 of the earlier version contains a gap, as was pointed out to me by Pere Ara. This gap could not be fixed. Consequently, in this new version everything based on this result had to be removed. Please take the errata to "L2-determinant class and approximation of L2-Betti numbers" into account, which are added, rectifying some unproved statements about "amenable extension". As a consequence, throughout, amenable extensions should be extensions with normal subgroups.

Thomas Schick (Georg-August-Universität Göttingen).; Muenster; Preprint No. 73.; no. 4; 727--750. and Math. Ann. 322 (2002); no. 2; 421--422

389

Matter Waves and Orbital Quantum Numbers  

E-Print Network [OSTI]

The atom's orbital electron structure in terms of quantum numbers (principal, azimuthal, magnetic and spin) results in space for a maximum of: 2 electrons in the n=1 orbit, 8 electrons in the n=2 orbit, 18 electrons in the n=3 orbit, and so on. Those dispositions are correct, but that is not because of quantum numbers nor angular momentum nor a "Pauli exclusion principle". Matter waves were discovered in the early 20th century from their wavelength, which was predicted by DeBroglie to be, Planck's constant divided by the particle's momentum. But, the failure to obtain a reasonable theory for the matter wave frequency resulted in loss of interest. That problem is resolved in "A Reconsideration of Matter Waves" in which a reinterpretation of Einstein's derivation of relativistic kinetic energy [which produced his famous E = mc^2] leads to a valid matter wave frequency and a new understanding of particle kinetics and the atom's stable orbits. It is analytically shown that the orbital electron arrangement is enforced by the necessity of accommodating the space that each orbiting electron's matter wave occupies.

Roger Ellman

2005-05-18T23:59:59.000Z

390

The New Element Californium (Atomic Number 98)  

DOE R&D Accomplishments [OSTI]

Definite identification has been made of an isotope of the element with atomic number 98 through the irradiation of Cm{sup 242} with about 35-Mev helium ions in the Berkeley Crocker Laboratory 60-inch cyclotron. The isotope which has been identified has an observed half-life of about 45 minutes and is thought to have the mass number 244. The observed mode of decay of 98{sup 244} is through the emission of alpha-particles, with energy of about 7.1 Mev, which agrees with predictions. Other considerations involving the systematics of radioactivity in this region indicate that it should also be unstable toward decay by electron capture. The chemical separation and identification of the new element was accomplished through the use of ion exchange adsorption methods employing the resin Dowex-50. The element 98 isotope appears in the eka-dysprosium position on elution curves containing berkelium and curium as reference points--that is, it precedes berkelium and curium off the column in like manner that dysprosium precedes terbium and gadolinium. The experiments so far have revealed only the tripositive oxidation state of eka-dysprosium character and suggest either that higher oxidation states are not stable in aqueous solutions or that the rates of oxidation are slow. The successful identification of so small an amount of an isotope of element 98 was possible only through having made accurate predictions of the chemical and radioactive properties.

Seaborg, G. T.; Thompson, S. G.; Street, K. Jr.; Ghiroso, A.

1950-06-19T23:59:59.000Z

391

U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of  

Gasoline and Diesel Fuel Update (EIA)

Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 62 63 59 63 58 61 59 63 62 65 2001 61 61 63 65 64 60 58 56 54 58 59 58 2002 54 57 54 50 51 50 52 50 56 57 50 43 2003 40 41 41 40 38 39 41 43 39 39 38 42 2004 43 45 45 45 44 49 48 49 48 48 49 50 2005 52 53 51 50 55 57 54 55 56 57 57 58 2006 55 57 59 58 58 57 66 62 63 64 65 64 2007 63 63 68 71 70 69 69 71 73 77 79 75 2008 76 77 75 72 73 73 72 72 NA 77 72 73 2009 75 76 72 70 65 60 61 60 60 63 62 63 2010 64 65 63 66 67 67 67 65 64 62 62 62

392

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

393

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

394

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

395

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

396

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

397

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

398

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

399

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

400

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

402

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

403

Missouri Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

404

Mississippi Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

405

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

406

Case Numbers: TBH-0098, TBZ-0098  

Broader source: Energy.gov (indexed) [DOE]

November 9, 2010 November 9, 2010 DEPARTMENT OF ENERGY OFFICE OF HEARINGS AND APPEALS Motion to Dismiss Initial Agency Decision Names of Petitioners: Mark D. Siciliano Battelle Energy Alliance LLC Dates of Filings: March 15, 2010 August 16, 2010 Case Numbers: TBH-0098 TBZ-0098 This Decision will consider a Motion to Dismiss filed by Battelle Energy Alliance LLC (Battelle), the Management and Operating Contractor for the Department of Energy's (DOE) Idaho National Laboratory (INL), in connection with the pending Complaint of Retaliation filed by Mark Siciliano against Battelle under the DOE's Contractor Employee Protection Program and its governing regulations set forth at 10 C.F.R. Part 708. The Office of Hearings and Appeals

407

Case Numbers: TBH-0073, TBH-0075  

Broader source: Energy.gov (indexed) [DOE]

9, 2008 9, 2008 DECISION AND ORDER OF THE DEPARMENT OF ENERGY Initial Agency Decision Names of Petitioners: Jonathan K. Strausbaugh Richard L. Rieckenberg Date of Filing: February 1, 2008 Case Numbers: TBH-0073 TBH-0075 This Initial Agency Decision involves two whistleblower complaints, one filed by Jonathan K. Strausbaugh (Case No. TBH-0073) and the other filed by Richard L. Rieckenberg (Case No. TBH-0075) under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. Both complainants were employees of KSL Services, Inc. ("KSL" or "the contractor"), a contractor providing technical services on the site of the DOE Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico, where they were employed until June 14, 2007. In their respective

408

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 21,507 32,672 33,279 34,334 35,612 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,473,792 1,466,833 1,476,204 1,487,451 1,604,709 From Oil Wells.................................................. 139,097 148,551 105,402 70,704 58,439 Total................................................................... 1,612,890 1,615,384 1,581,606 1,558,155 1,663,148 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................

409

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 94 95 100 117 117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 13,527 13,846 15,130 14,524 15,565 From Oil Wells.................................................. 42,262 44,141 44,848 43,362 43,274 Total................................................................... 55,789 57,987 59,978 57,886 58,839 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 3,290 3,166 2,791 2,070 3,704 Wet After Lease Separation................................ 52,499 54,821 57,187 55,816 55,135

410

Case Numbers: TBH-0080, TBZ-0080  

Broader source: Energy.gov (indexed) [DOE]

7, 2009 7, 2009 DECISION AND ORDER OF THE DEPARTMENT OF ENERGY Order to Show Cause Motion for Summary Judgment Initial Agency Decision Name of Cases: Billy Joe Baptist Dates of Filing: December 19, 2008 February 18, 2009 Case Numbers: TBH-0080 TBZ-0080 This decision will consider an Order to Show Cause that I issued on February 3, 2009, regarding a March 6, 2008, whistleblower complaint filed by Billy Joe Baptist (Baptist) under the Department of Energy's (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708, against his employer, CH2M-WG Idaho, LLC (CWI). I will also consider in this decision as a Motion for Summary Judgment that CWI filed on February 18, 2009 regarding this complaint. Pursuant to Part 708, an OHA attorney conducted an investigation of Baptist's whistleblower

411

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 997 1,143 979 427 437 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 109,041 131,608 142,070 156,727 171,915 From Oil Wells.................................................. 5,339 5,132 5,344 4,950 4,414 Total................................................................... 114,380 136,740 147,415 161,676 176,329 Repressuring ...................................................... 6,353 6,194 5,975 6,082 8,069 Vented and Flared.............................................. 2,477 2,961 3,267 3,501 3,493 Wet After Lease Separation................................

412

Climate Zone Number 5 | Open Energy Information  

Open Energy Info (EERE)

5 5 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 5 is defined as Cool- Humid(5A) with IP Units 5400 < HDD65ÂșF ≀ 7200 and SI Units 3000 < HDD18ÂșC ≀ 4000 Dry(5B) with IP Units 5400 < HDD65ÂșF ≀ 7200 and SI Units 3000 < HDD18ÂșC ≀ 4000 Marine(5C) with IP Units 5400 < HDD65ÂșF ≀ 7200 and SI Units 3000 < HDD18ÂșC ≀ 4000 . The following places are categorized as class 5 climate zones: Ada County, Idaho Adair County, Iowa Adair County, Missouri Adams County, Colorado Adams County, Illinois Adams County, Indiana Adams County, Iowa Adams County, Nebraska Adams County, Pennsylvania Adams County, Washington Albany County, New York Allegan County, Michigan Alleghany County, North Carolina

413

Case Numbers: TBD-0073, TBD-0075  

Broader source: Energy.gov (indexed) [DOE]

16, 2008 16, 2008 DECISION AND ORDER OFFICE OF HEARINGS AND APPEALS Motion to Compel Discovery Case Names: Jonathan K. Strausbaugh Richard L. Rieckenberg Date of Filing: April 2, 2008 Case Numbers: TBD-0073 TBD-0075 Pending before me is a consolidated Motion to Compel Discovery filed with the Office of Hearings and Appeals (OHA) on behalf of Jonathan K. Strausbaugh and Richard L. Rieckenberg (the complainants) by their attorney. This Motion relates to a hearing requested by the complainants under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708 (Part 708), in connection with the Part 708 complaints they filed against KSL Services, Inc. (KSL). The OHA has assigned Mr. Strausbaugh's and Mr. Rieckenberg's hearing

414

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 42,475 42,000 45,000 46,203 47,117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 264,139 191,889 190,249 187,723 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 264,139 191,889 190,249 187,723 197,217 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 264,139 191,889 190,249 187,723 197,217 Nonhydrocarbon Gases Removed

415

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9,907 13,978 15,608 18,154 20,244 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,188,657 1,467,331 1,572,728 1,652,504 1,736,136 From Oil Wells.................................................. 137,385 167,656 174,748 183,612 192,904 Total................................................................... 1,326,042 1,634,987 1,747,476 1,836,115 1,929,040 Repressuring ...................................................... 50,216 114,407 129,598 131,125 164,164 Vented and Flared.............................................. 9,945 7,462 12,356 16,685 16,848

416

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 71 68 69 61 61 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 648 563 531 550 531 From Oil Wells.................................................. 10,032 10,751 9,894 11,055 11,238 Total................................................................... 10,680 11,313 10,424 11,605 11,768 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 1,806 2,043 1,880 2,100 2,135 Wet After Lease Separation................................ 8,875 9,271 8,545 9,504 9,633 Nonhydrocarbon Gases Removed

417

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 60,577 63,704 65,779 68,572 72,237 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 5,859,358 4,897,366 4,828,188 4,947,589 5,074,067 From Oil Wells.................................................. 999,624 855,081 832,816 843,735 659,851 Total................................................................... 6,858,983 5,752,446 5,661,005 5,791,324 5,733,918 Repressuring ...................................................... 138,372 195,150 212,638 237,723 284,491 Vented and Flared.............................................. 32,010 26,823 27,379 23,781 26,947

418

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,700 16,350 17,100 16,939 20,734 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 4,260,529 1,398,981 1,282,137 1,283,513 1,293,204 From Oil Wells.................................................. 895,425 125,693 100,324 94,615 88,209 Total................................................................... 5,155,954 1,524,673 1,382,461 1,378,128 1,381,413 Repressuring ...................................................... 42,557 10,838 9,754 18,446 19,031 Vented and Flared.............................................. 20,266 11,750 10,957 9,283 5,015 Wet After Lease Separation................................

419

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 36,000 40,100 40,830 42,437 44,227 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 150,000 130,853 157,800 159,827 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 150,000 130,853 157,800 159,827 197,217 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 150,000 130,853 157,800 159,827 197,217

420

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year.................................... 4,359 4,597 4,803 5,157 5,526 Production (million cubic feet) Gross Withdrawals From Gas Wells ................................................ 555,043 385,915 380,700 365,330 333,583 From Oil Wells .................................................. 6,501 6,066 5,802 5,580 5,153 Total................................................................... 561,544 391,981 386,502 370,910 338,735 Repressuring ...................................................... 13,988 12,758 10,050 4,062 1,307 Vented and Flared .............................................. 1,262 1,039 1,331 1,611 2,316 Wet After Lease Separation................................

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,321 4,331 4,544 4,539 4,971 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 61,974 71,985 76,053 78,175 87,292 From Oil Wells.................................................. 8,451 9,816 10,371 8,256 10,546 Total................................................................... 70,424 81,802 86,424 86,431 97,838 Repressuring ...................................................... 1 0 0 2 5 Vented and Flared.............................................. 488 404 349 403 1,071 Wet After Lease Separation................................ 69,936 81,397 86,075 86,027 96,762

422

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,051 3,521 3,429 3,506 3,870 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 71,545 71,543 76,915 R 143,644 152,495 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 71,545 71,543 76,915 R 143,644 152,495 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 71,545 71,543 76,915 R 143,644 152,495 Nonhydrocarbon Gases Removed

423

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,948 35,217 35,873 37,100 38,574 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,484,269 1,484,856 1,432,966 1,391,916 1,397,934 From Oil Wells.................................................. 229,437 227,534 222,940 224,263 246,804 Total................................................................... 1,713,706 1,712,390 1,655,906 1,616,179 1,644,738 Repressuring ...................................................... 15,280 20,009 20,977 9,817 8,674 Vented and Flared.............................................. 3,130 3,256 2,849 2,347 3,525 Wet After Lease Separation................................

424

Title, Location, Document Number Estimated Cost Description  

Broader source: Energy.gov (indexed) [DOE]

Moody to Lev, SUBJECT: NEPA 2012 APS for DOE-SRS, Dated: JAN 25 2012 Moody to Lev, SUBJECT: NEPA 2012 APS for DOE-SRS, Dated: JAN 25 2012 Title, Location, Document Number Estimated Cost Description EA Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain FONSI: uncertain EA Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain FONSI: uncertain Total Estimated Cost $65,000 Annual NEPA Planning Summary NEPA Reviews of Proposals to Implement Enterprise SRS Initiatives unknown The Savannah River Site Strategic Plan for 2011 - 2015 describes 12 initiatives that Enterprise SRS will pursue by applying SRS's management core competencies in nuclear materials. Implementation of new missions resulting from this effort will likely require NEPA review. However, until firm proposals are developed

425

Case Numbers: TBH-0087, TBZ-0087  

Broader source: Energy.gov (indexed) [DOE]

January 22, 2010 January 22, 2010 DEPARTMENT OF ENERGY OFFICE OF HEARINGS AND APPEALS Initial Agency Decision Motion to Dismiss Name of Case: David P. Sanchez Dates of Filing: October 30, 2009 December 21, 2009 Case Numbers: TBH-0087 TBZ-0087 This Decision will consider a Motion to Dismiss filed by Los Alamos National Laboratory ("LANL" or "the Respondent"). LANL seeks dismissal of a pending complaint filed by David P. Sanchez ("Mr. Sanchez" or "the Complainant") against his employer, Los Alamos National Security, L. L. C. ("LANS"), 1 on October 30, 2009, under the Department of Energy's (DOE) Contractor Employee Protection Program, set for that 10 C.F.R. Part 708. OHA has assigned Mr. Sanchez' hearing request Case No. TBH-0087, and the present Motion to Dismiss Case No.

426

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 5,775 5,913 6,496 5,878 5,781 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 17,741 27,632 36,637 35,943 45,963 From Oil Wells.................................................. 16 155 179 194 87 Total................................................................... 17,757 27,787 36,816 36,137 46,050 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 17,757 27,787 36,816 36,137 46,050 Nonhydrocarbon Gases Removed

427

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,000 4,825 6,755 7,606 3,460 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 156,333 150,972 147,734 157,039 176,221 From Oil Wells.................................................. 15,524 16,263 14,388 12,915 11,088 Total................................................................... 171,857 167,235 162,122 169,953 187,310 Repressuring ...................................................... 8 0 0 0 0 Vented and Flared.............................................. 206 431 251 354 241 Wet After Lease Separation................................ 171,642 166,804

428

Mo Year Report Period: EIA ID NUMBER:  

U.S. Energy Information Administration (EIA) Indexed Site

Version No: 2013.01 Mo Year Report Period: EIA ID NUMBER: http://www.eia.gov/survey/form/eia_14/instructions.pdf Mailing Address: Secure File Transfer option available at: (e.g., PO Box, RR) https://signon.eia.doe.gov/upload/noticeoog.jsp Electronic Transmission: The PC Electronic Zip Code - Data Reporting Option (PEDRO) is available. If interested in software, call (202) 586-9659. Email form to: OOG.SURVEYS@eia.doe.gov - - - - Fax form to: (202) 586-9772 Mail form to: Oil & Gas Survey Email address: U.S. Department of Energy Ben Franklin Station PO Box 279 Washington, DC 20044-0279 Questions? Call toll free: 1-800-638-8812 PADD 4 Type of Report (Check One ): (Thousands of dollars) (Thousands of barrels) PADD 2 PADD 3 PAD DISTRICT (a) Revision to Report:

429

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,178 4,601 3,005 3,220 3,657 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 244,826 264,809 260,554 254,488 259,432 From Oil Wells.................................................. 36,290 36,612 32,509 29,871 31,153 Total................................................................... 281,117 301,422 293,063 284,359 290,586 Repressuring ...................................................... 563 575 2,150 1,785 1,337 Vented and Flared.............................................. 1,941 1,847 955 705 688 Wet After Lease Separation................................

430

Pseudo winding numbers and the spherical ansatz  

Science Journals Connector (OSTI)

The path-dependent surface/time integral contribution to the topological charge in an SO(3) Yang - Mills theory is studied for paths in field space that interpolate between a background gauge field in the remote past and a gauge transform of it in the remote future. The possibility of existence of such paths along which this integral vanishes for a given initial background gauge field is related to the action of the group of gauge transformations of real, pseudo winding numbers on the physical states of the theory in the background gauge field. The analysis takes a particularly transparent form for the spherically-symmetric fields of the spherical ansatz, leading to a simple interpretation of the results.

Ahmed Abouelsaood

1997-01-01T23:59:59.000Z

431

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7,068 7,425 7,700 8,600 8,500 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 241,776 224,560 224,112 194,121 212,276 From Oil Wells.................................................. 60,444 56,140 56,028 48,530 53,069 Total................................................................... 302,220 280,700 280,140 242,651 265,345 Repressuring ...................................................... 2,340 2,340 2,340 2,340 2,340 Vented and Flared.............................................. 3,324 3,324 3,324 3,324 3,324 Wet After Lease Separation................................

432

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 13,487 14,370 14,367 12,900 13,920 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 81,545 81,723 88,259 87,608 94,259 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 81,545 81,723 88,259 87,608 94,259 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 81,545 81,723 88,259 87,608 94,259 Nonhydrocarbon Gases Removed

433

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,897 33,917 34,593 33,828 33,828 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 98,551 97,272 97,154 87,993 85,018 From Oil Wells.................................................. 6,574 2,835 6,004 5,647 5,458 Total................................................................... 105,125 100,107 103,158 93,641 90,476 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 105,125 100,107 103,158

434

Fact #857 January 26, 2015 Number of Partner Workplaces Offering...  

Energy Savers [EERE]

7 January 26, 2015 Number of Partner Workplaces Offering Electric Vehicle Charging More Than Tripled Since 2011 Fact 857 January 26, 2015 Number of Partner Workplaces Offering...

435

,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...  

U.S. Energy Information Administration (EIA) Indexed Site

Other",,,"All Technologies" ,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...

436

T-705: Linux Kernel Weakness in Sequence Number Generation Facilitates...  

Broader source: Energy.gov (indexed) [DOE]

5: Linux Kernel Weakness in Sequence Number Generation Facilitates Packet Injection Attacks T-705: Linux Kernel Weakness in Sequence Number Generation Facilitates Packet Injection...

437

Property:ASHRAE 169 Climate Zone Number | Open Energy Information  

Open Energy Info (EERE)

Number Number Jump to: navigation, search This is a property of type Page. Pages using the property "ASHRAE 169 Climate Zone Number" Showing 25 pages using this property. (previous 25) (next 25) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 + Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone + Climate Zone Number 2 + Accomack County, Virginia ASHRAE 169-2006 Climate Zone + Climate Zone Number 4 + Ada County, Idaho ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adair County, Iowa ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adair County, Kentucky ASHRAE 169-2006 Climate Zone + Climate Zone Number 4 + Adair County, Missouri ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 +

438

Number of Producing Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Count) Count) Data Series: Wellhead Price Imports Price Price of Imports by Pipeline Price of LNG Imports Exports Price Price of Exports by Pipeline Price of LNG Exports Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

439

Riverpoint Campus Security 358-7995 (24-hour number)  

E-Print Network [OSTI]

: Age: Number at which call received: Time: Date: CALLER'S VOICE: Calm Nasal Angry Stutter Slow Lisp

Collins, Gary S.

440

Quantifiers for randomness of chaotic pseudo-random number generators  

Science Journals Connector (OSTI)

...randomness of chaotic pseudo-random number generators L. De Micco 1 H. A. Larrondo 1...connection with pseudo-random number generators (PRNGs). Workers in the field are...notion to generate pseudo-random number generators (PRNGs) because random numbers are...

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

THE DERIVED SERIES AND VIRTUAL BETTI NUMBERS SIDDHARTHA GADGIL  

E-Print Network [OSTI]

THE DERIVED SERIES AND VIRTUAL BETTI NUMBERS SIDDHARTHA GADGIL Abstract. The virtual Betti number conjecture states that any hyperbolic three-manifold has a finite cover with positive first Betti number. We that the virtual Betti number conjecture would follow if it were known that the derived series of the fundamental

Gadgil, Siddhartha

442

Betti numbers in multidimensional persistent homology are stable functions  

E-Print Network [OSTI]

Betti numbers in multidimensional persistent homology are stable functions Andrea Cerri Barbara Di can be studied through their persistent Betti numbers, i.e. the dimensions of the images of persistent Betti numbers. Varying the lower level sets, we get that persistent Betti numbers can be seen

Frosini, Patrizio

443

Von Neumann Betti numbers and Novikov type inequalities  

E-Print Network [OSTI]

It is shown that the Novikov inequalities for critical points of closed 1-forms hold with the von Neumann Betti numbers replacing the Novikov numbers. As a corollary we obtain a vanishing theorem for $L^2$ cohomology, generalizing a theorem of W. Lueck. We also prove that von Neumann Betti numbers coincide with the Novikov numbers for free abelian coverings.

Michael Farber

1998-10-18T23:59:59.000Z

444

"L -Betti numbers of mapping tori and groups" by  

E-Print Network [OSTI]

2 "L -Betti numbers of mapping tori and groups-Betti numbers of a manifold fibered over S1 are trivial. Secondly, the first L2-Betti number * *of aspherical manifold M be fibered over the circle S1. Then all L2-* *Betti numbers bp(M) are trivial. Let

LĂŒck, Wolfgang

445

FAST METHODS FOR COMPUTING ISOSURFACE TOPOLOGY WITH BETTI NUMBERS  

E-Print Network [OSTI]

FAST METHODS FOR COMPUTING ISOSURFACE TOPOLOGY WITH BETTI NUMBERS Shirley F. Konkle University, Davis joy@cs.ucdavis.edu Keywords: Betti Numbers, Isosurface topology. Abstract Betti numbers can present a fast algorithm for the calculation of Betti numbers for triangulated isosurfaces, along

Hamann, Bernd

446

Property:NumberOfEZFeedDsirePolicies | Open Energy Information  

Open Energy Info (EERE)

NumberOfEZFeedDsirePolicies NumberOfEZFeedDsirePolicies Jump to: navigation, search Property Name NumberOfEZFeedDsirePolicies Property Type Number Description Number for query that includes EZ policies and DSIRE entries. Populated from Template:StatisticsForPlace Pages using the property "NumberOfEZFeedDsirePolicies" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 0 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 +

447

Use of Metal Hydrides for Handling Tritium  

Science Journals Connector (OSTI)

Material Interaction / Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985)

Mark S. Ortman; Thomas J. Warren; Daniel J. Smith

448

Regeneration of aluminum hydride - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

449

Activated aluminum hydride hydrogen storage compositions and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

450

Regeneration of Aluminum Hydride - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alane is one of the most promising solutions to storing hydrogen for use in hydrogen fuel cells. This technology provides exceptional improvement in solving the difficult...

451

Abstract 5089: Survivin safeguards chromosome numbers and protects from aneuploidy  

Science Journals Connector (OSTI)

...April 5-9, 2014; San Diego, CA Abstract 5089: Survivin safeguards chromosome numbers and protects from aneuploidy Ralf Wiedemuth...Evelin Schroeck, Gabriele Schackert, Achim Temme. Survivin safeguards chromosome numbers and protects from aneuploidy. [abstract...

Ralf Wiedemuth; Barbara Klink; Evelin Schroeck; Gabriele Schackert; Achim Temme

2014-10-01T23:59:59.000Z

452

Closed manifolds with transcendental L2-Betti numbers.  

E-Print Network [OSTI]

In this paper, we show how to construct examples of closed manifolds with explicitly computed irrational, even transcendental L2 Betti numbers, defined via the universal covering. We show that every non-negative real number shows up as an L2-Betti number of some covering of a compact manifold, and that many computable real numbers appear as an L2-Betti number of a universal covering of a compact manifold (with a precise meaning of computable given below). In algebraic terms, for many given computable real numbers (in particular for many transcendental numbers) we show how to construct a finitely presented group and an element in the integral group ring such that the L2-dimension of the kernel is the given number. We follow the method pioneered by Austin in "Rational group ring elements with kernels having irrational dimension" arXiv:0909.2360) but refine it to get very explicit calculations which make the above statements possible.

Mikaël Pichot (University of Tokyo (IPMU)); Thomas Schick (Georg-August-Universität Göttingen); Andrzej Zuk (Paris 7)

453

Families and clustering in a natural numbers network  

Science Journals Connector (OSTI)

We develop a network in which the natural numbers are the vertices. The decomposition of natural numbers by prime numbers is used to establish the connections. We perform data collapse and show that the degree distribution of these networks scales linearly with the number of vertices. We explore the families of vertices in connection with prime numbers decomposition. We compare the average distance of the network and the clustering coefficient with the distance and clustering coefficient of the corresponding random graph. In case we set connections among vertices each time the numbers share a common prime number the network has properties similar to a random graph. If the criterion for establishing links becomes more selective, only prime numbers greater than pl are used to establish links, where the network has high clustering coefficient.

Gilberto Corso

2004-03-18T23:59:59.000Z

454

A Closer Look at Security in Random Number Generators Design  

E-Print Network [OSTI]

A Closer Look at Security in Random Number Generators Design Viktor Fischer Laboratoire Hubert of random number generation is crucial for the im- plementation of cryptographic systems. Random numbers are often used in key generation processes, authentication protocols, zeroknowledge pro- tocols, padding

Paris-Sud XI, Université de

455

Parent--daughter system: D Number of daughter atoms, today  

E-Print Network [OSTI]

- t ) + # , - #12;) . Parent--daughter system: D = N0 ­N D ­ Number of daughter atoms, today N ­ Number of parent atoms, today N0 ­ Number of parent atoms, initially present N0 = D + N, hence: D + N = Net , or D = N et as atoms are transferred from the liquid melt to the solid crystal. Some of the elements incorporated

Siebel, Wolfgang

456

Reducing the Cost of Generating APH-distributed Random Numbers  

E-Print Network [OSTI]

Reducing the Cost of Generating APH-distributed Random Numbers Philipp Reinecke1 , MiklÂŽos Telek2 for generating PH-distributed random numbers. In this work, we discuss algorithms for generating random numbers from PH distributions and propose two algorithms for reducing the cost associated with generating

Telek, MiklĂłs

457

On the Betti Numbers of Chessboard Joel Friedman  

E-Print Network [OSTI]

On the Betti Numbers of Chessboard Complexes Joel Friedman Phil Hanlon May 14, 1997 Abstract In this paper we study the Betti numbers of a type of simpli- cial complex known as a chessboard complex. We obtain a formula for their Betti numbers as a sum of terms involving partitions. This formula allows us

Friedman, Joel

458

Some remarks on Betti numbers of random polygon Clment Dombry  

E-Print Network [OSTI]

Some remarks on Betti numbers of random polygon spaces Clment Dombry and Christian Mazza September be approached by computing Betti numbers, the Euler characteristics, or the related PoincarÂŽe poly- nomial. We study the average values of Betti numbers of dimension pn when pn as n . We also focus

Paris-Sud XI, Université de

459

GROWTH OF BETTI NUMBERS BRYAN CLAIR AND KEVIN WHYTE  

E-Print Network [OSTI]

GROWTH OF BETTI NUMBERS BRYAN CLAIR AND KEVIN WHYTE Introduction Let X = eX= be a finite simplicial complex. We study the growth rate of the Betti numbers coverings of X. It is easy to see that the sequence* * of Betti numbers {bq(Xi)} can grow at most

Whyte, Kevin

460

-Betti numbers of mapping tori and groups" Wolfgang Luck  

E-Print Network [OSTI]

"L2 -Betti numbers of mapping tori and groups" by Wolfgang Lšuck Abstract: We prove the following two conjectures of Gromov. Firstly, all L2-Betti numbers of a manifold fibered over S1 are trivial. Secondly, the first L2-Betti number of a finitely presented group vanishes provided that is an extension

LĂŒck, Wolfgang

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

On the Betti Numbers of Chessboard Joel Friedman # Phil Hanlon +  

E-Print Network [OSTI]

On the Betti Numbers of Chessboard Complexes Joel Friedman # Phil Hanlon + May 14, 1997 Abstract In this paper we study the Betti numbers of a type of simpli­ cial complex known as a chessboard complex. We obtain a formula for their Betti numbers as a sum of terms involving partitions. This formula allows us

Friedman, Joel

462

An Incremental Algorithm for Betti Numbers of Simplicial Complexes*  

E-Print Network [OSTI]

An Incremental Algorithm for Betti Numbers of Simplicial Complexes* Cecil Jose A. Delfinado. Abstract A general and direct method for computing the betti numbers of the homology groups of a finite!ied to the family of a-shapes of a finite point set in R3 ittakes time O(ncz(n)) to compute the betti numbers of all

Kazhdan, Michael

463

THE BETTI NUMBERS OF FORESTS SEAN JACQUES AND MORDECHAI KATZMAN  

E-Print Network [OSTI]

THE BETTI NUMBERS OF FORESTS SEAN JACQUES AND MORDECHAI KATZMAN Abstract. This paper produces a recursive formula of the Betti numbers of certain Stanley­ Reisner ideals (graph ideals associated refer to as the ith Betti numbers of degree d of R/I, are independent of the choice of graded minimal

Katzman, Moty

464

Lower Bounds for Betti Numbers of Special Extensions  

E-Print Network [OSTI]

Lower Bounds for Betti Numbers of Special Extensions Melvin Hochster Benjamin Richert University 0 !M ! 0; where f#11; M 0 ; : : : ; #11; M n g are the Betti numbers of M . Giving lower bounds for these Betti numbers has been a long standing problem in commutative algebra. In fact, in 1977, Buchsbaum

Hochster, Melvin

465

THE BETTI NUMBERS OF FORESTS SEAN JACQUES AND MORDECHAI KATZMAN  

E-Print Network [OSTI]

THE BETTI NUMBERS OF FORESTS SEAN JACQUES AND MORDECHAI KATZMAN Abstract. This paper produces a recursive formula of the Betti numbers of certain Stanley- Reisner ideals (graph ideals associated Betti numbers of degree d of R/I, are independent of the choice of graded minimal finite free resolution

Katzman, Moty

466

Different bounds on the different Betti numbers of semialgebraic sets #  

E-Print Network [OSTI]

Different bounds on the different Betti numbers of semi­algebraic sets # Saugata Basu School­ plexity (the sum of the Betti numbers) of basic semi­algebraic sets. This bound is tight as one can were known on the individual higher Betti numbers. In this paper we prove separate bounds on the di

Basu, Saugata

467

BETTI NUMBERS OF 3SASAKIAN QUOTIENTS OF SPHERES BY TORI  

E-Print Network [OSTI]

BETTI NUMBERS OF 3­SASAKIAN QUOTIENTS OF SPHERES BY TORI Roger Bielawski Abstract. We give a formula for the Betti numbers of 3­Sasakian manifolds or orbifolds which can be obtained as 3­Sasakian], Boyer, Galicki, Mann and Rees have calculated the second Betti number of a 7­dimensional 3­Sasakian

Bielawski, Roger

468

Grant Title: SBE DOCTORAL DISSERTATION RESEARCH IMPROVEMENT GRANTS Funding Opportunity Number: NSF 11-547. CFDA Number(s): 47.075.  

E-Print Network [OSTI]

11-547. CFDA Number(s): 47.075. Agency/Department: National Science Foundation; Directorate for Social, Behavioral & Economic Sciences; Division of Behavioral and Cognitive Sciences; Division of Social and Economic Sciences; Division of Science Resources Statistics; SBE Office of Multidisciplinary Activities

Farritor, Shane

469

P:\\Room Numbering Standard\\MSU Room Number Standard 2012.doc 3/12/2012 Page 1 MSU Room Numbering Standard  

E-Print Network [OSTI]

and other spaces in university facilities. Numbering standards ensure continuity within the buildings is a customized standard that: · Accommodates a logical flow and pedestrian movement through buildings Numbering Standard. Minor renovations or additions to an existing building may continue to use existing room

Maxwell, Bruce D.

470

Recent News from the National Labs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

17, 2011 17, 2011 An illustration of the 2011 Chevy Volt, whose lithium-ion battery is based on technology developed at Argonne National Laboratory. | Image courtesy of General Motors. From the Lab to the Showroom: How the Electric Car Came to Life In the U.S., businesses tend to invest in research that will pay off in the short term. National laboratories are filling a gap by conducting the essential research that will change the game 10 to 20 years down the road. Learn more about how years of conducting advanced research in both the private and public sectors led to battery technology that made electric cars possible. October 17, 2011 Steps to Commercialization: Nickel Metal Hydride Batteries The Energy Department funds cutting-edge research on a broad range of

471

NREL: Continuum Magazine - Fuel Cell Electric Vehicles: Paving the Way to  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Electric Vehicles: Paving the Way to Commercial Success Fuel Cell Electric Vehicles: Paving the Way to Commercial Success Issue 5 Print Version Share this resource Fuel Cell Electric Vehicles: Paving the Way to Commercial Success Research focuses on boosting reliability, reducing costs, and designing infrastructure of the future. A photo of a white Toyota fuel cell hybrid vehicle driving on a road. The side of the vehicle includes a blue NREL logo and a decal that reads, "Powered by 100% Renewable Sources". Enlarge image Powered by a fuel cell system with light-weight, high-pressure hydrogen tanks, an electric motor, a nickel-metal-hydride battery, and a power-control unit, the Toyota fuel cell electric vehicle has zero tailpipe emissions. Photo by Dennis Schroeder, NREL As nations around the world pursue sustainable transportation solutions,

472

Report.PDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 FORD RANGER ELECTRIC 8 FORD RANGER ELECTRIC WITH NICKEL/METAL-HYDRIDE BATTERY ELECTRIC TRANSPORTATION DIVISION Report prepared by: Ben Sanchez Juan C. Argueta Jordan W. Smith September 1999 DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS REPORT WAS PREPARED BY THE ELECTRIC TRANSPORTATION DIVISION OF SOUTHERN CALIFORNIA EDISON, A SUBSIDIARY OF EDISON INTERNATIONAL. NEITHER THE ELECTRIC TRANSPORTATION DIVISION OF SOUTHERN CALIFORNIA EDISON, SOUTHERN CALIFORNIA EDISON, EDISON INTERNATIONAL, NOR ANY PERSON WORKING FOR OR ON BEHALF OF ANY OF THEM MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, PRODUCT, PROCESS OR PROCEDURE DISCUSSED IN THIS REPORT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT

473

Argonne Transportation - 2008 Features Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Features Archive 8 Features Archive Battery Test Facility Since 1976, researchers have used Argonne's Electrochemical Analysis and Diagnostics Laboratory to study advanced battery systems for applications such as hybrid and plug-in hybrid electric vehicles and utility load-leveling during peak demand periods. The facility houses a computer-operated test laboratory, where individual cells and multicell modules of battery systems are subjected to performance and lifetime tests under simulated real-world conditions. (More...) EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). (More...)

474

Modeling & Simulation - Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

475

Report2.PDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CHRYSLER EPIC CHRYSLER EPIC WITH SAFT NICKEL/METAL-HYDRIDE BATTERY ELECTRIC TRANSPORTATION DIVISION Report prepared by: Ben Sanchez Juan Argueta November 1999 DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS REPORT WAS PREPARED BY THE ELECTRIC TRANSPORTATION DIVISION OF SOUTHERN CALIFORNIA EDISON, A SUBSIDIARY OF EDISON INTERNATIONAL. NEITHER THE ELECTRIC TRANSPORTATION DIVISION OF SOUTHERN CALIFORNIA EDISON, SOUTHERN CALIFORNIA EDISON, EDISON INTERNATIONAL, NOR ANY PERSON WORKING FOR OR ON BEHALF OF ANY OF THEM MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, PRODUCT, PROCESS OR PROCEDURE DISCUSSED IN THIS REPORT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT

476

Argonne TTRDC - D3 (Downloadable Dynamometer Database) - 2010 Honda CR-Z  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CR-Z Hybrid CR-Z Hybrid honda crz Front View - 2010 Honda CR-Z Hybrid The Honda CR-Z hybrid builds upon the Insight/Civic Honda hybrid systems with a sporty angle. The vehicle is marketed as a successor to the CRX 2-seat sport compact. It features a 1.5 L (83 kW) engine (larger than the 1.3 L used in the Insight and Civic HEVs) and is offered with both an automatic (push-belt CVT) and a manual transmission. The battery is similar to the Insight pack at 100.8 nominal voltage. The IMA motor is specified at 13 hp. Key Technology Mild hybrid "Honda IMA" hybrid system 1.5 L (83 kW) engine 100.8-Volt Nickel-Metal-Hydride (NiMH) Features 3 operational modes: "Econ," "Normal," and "Sport" Report Testing Summary (pdf) Data Download all data (zip)

477

Comparison of the environmental impact of five electric vehicle battery technologies using LCA  

Science Journals Connector (OSTI)

The environmental assessment of various electric vehicle battery technologies (lead-acid, nickel-cadmium, nickel-metal hydride, sodium nickel-chloride, and lithium-ion) was performed in the context of the European end-of-life vehicles directive (2000/53/EC). An environmental single-score based on a life-cycle approach, was allocated to each of the studied battery technologies through the combined use of the Simaproź software and of the life cycle impact assessment (LCIA) method Eco-indicator 99. The allocation of a single-score enables determining which battery technology is to be used preferably in electric vehicles and to indicate how to further improve the overall environmental friendliness of electric vehicles in the future.

Julien Matheys; Jean-Marc Timmermans; Joeri Van Mierlo; Sandrine Meyer; Peter Van den Bossche

2009-01-01T23:59:59.000Z

478

Nanostructured material for advanced energy storage : magnesium battery cathode development.  

SciTech Connect (OSTI)

Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

2010-11-01T23:59:59.000Z

479

Evaluation of Zr(Ni, Mn){sub 2} Laves phase alloys as negative active material for Ni-MH electric vehicle batteries  

SciTech Connect (OSTI)

Laves phase alloys of compositions (Zr, Ti)(Ni, Mn, M){sub x} where M = Cr, V, Co, Al, and 1.9 < x < 2.1 with hexagonal C14 or cubic C15 structure have been studied in order to select the most suitable AB{sub 2} alloys as an active material for nickel-metal hydride (Ni-MH) batteries. With the selected alloy, feasibility of MH negative electrodes using industrial technology and containing more than 97% of the alloy powder has been demonstrated. 22 Ah Ni-MH batteries for electric vehicle application have been assembled, and 600 cycles have been achieved at steady C/3 charge and discharge rates and 80% depth of discharge.

Knosp, B. [Alcatel Alsthom Recherche, Marcoussis (France); Jordy, C.; Blanchard, P. [SAFT Research Dept., Marcoussis (France); Berlureau, T. [SAFT Advanced and Industrial Battery Div., Bordeaux (France)

1998-05-01T23:59:59.000Z

480

Property:NumberOfUtilityCompanies | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:NumberOfUtilityCompanies Jump to: navigation, search Property Name NumberOfUtilityCompanies Property Type Number Description Number of Utility Companies. Pages using the property "NumberOfUtilityCompanies" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 0 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 + Aberdeen Gardens, Washington + 0 +

Note: This page contains sample records for the topic "nickel-metal hydride number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Property:NumberOfEZFeedPolicies | Open Energy Information  

Open Energy Info (EERE)

NumberOfEZFeedPolicies NumberOfEZFeedPolicies Jump to: navigation, search Property Name NumberOfEZFeedPolicies Property Type Number Pages using the property "NumberOfEZFeedPolicies" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 0 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 + Aberdeen Gardens, Washington + 0 + Aberdeen Proving Ground, Maryland + 0 + Aberdeen, Idaho + 0 + Aberdeen, Maryland + 0 + Aberdeen, Mississippi + 0 +

482

Property:NumberOfIncentives | Open Energy Information  

Open Energy Info (EERE)

NumberOfIncentives NumberOfIncentives Jump to: navigation, search Property Name NumberOfIncentives Property Type Number Pages using the property "NumberOfIncentives" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 0 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 + Aberdeen Gardens, Washington + 0 + Aberdeen Proving Ground, Maryland + 0 + Aberdeen, Idaho + 0 + Aberdeen, Maryland + 0 + Aberdeen, Mississippi + 0 +

483

Property:NumberOfEmployees | Open Energy Information  

Open Energy Info (EERE)

NumberOfEmployees NumberOfEmployees Jump to: navigation, search Property Name NumberOfEmployees Property Type Number Description The number of employees in a company or organization. This is a property of type Number. Subproperties This property has the following 10 subproperties: A American Electric Power Co., Inc. B BMW D Deutsche Gesellschaft fĂŒr Internationale Zusammenarbeit (GIZ) GmbH G General Electric S Saudi Aramco T Texas Department of Transportation The Hartford V Veolia Energy W World Bank X Xcel Energy Pages using the property "NumberOfEmployees" Showing 25 pages using this property. (previous 25) (next 25) 2 21-Century Silicon, Inc. + 11 + 3 3Degrees + 51 + 3TIER + 51 + 5 5 boro biofuel + 11 + A A.O. Smith + 10,000 + A1 Sun, Inc. + 1 + A10 Power + 1 + AAON + 1,001 +

484

Random Number Generation for Petascale Quantum Monte Carlo  

SciTech Connect (OSTI)

The quality of random number generators can affect the results of Monte Carlo computations, especially when a large number of random numbers are consumed. Furthermore, correlations present between different random number streams in a parallel computation can further affect the results. The SPRNG software, which the author had developed earlier, has pseudo-random number generators (PRNGs) capable of producing large numbers of streams with large periods. However, they had been empirically tested on only thousand streams earlier. In the work summarized here, we tested the SPRNG generators with over a hundred thousand streams, involving over 10^14 random numbers per test, on some tests. We also tested the popular Mersenne Twister. We believe that these are the largest tests of PRNGs, both in terms of the numbers of streams tested and the number of random numbers tested. We observed defects in some of these generators, including the Mersenne Twister, while a few generators appeared to perform well. We also corrected an error in the implementation of one of the SPRNG generators.

Ashok Srinivasan

2010-03-16T23:59:59.000Z

485

Property:GRR/SectionNumber | Open Energy Information  

Open Energy Info (EERE)

SectionNumber SectionNumber Jump to: navigation, search Property Name GRR/SectionNumber Property Type Number Description The section number of a section in the Geothermal Regulatory Roadmap. The value of this property is derived automatically by the section template and is used in sorting sections on the GRR Home page. Subproperties This property has the following 2 subproperties: G GRR/Section 6-HI-d - Oversize and/or Overweight Vehicles and Loads Permit GRR/Section 7 - Power Plant Siting/Construction Overview Pages using the property "GRR/SectionNumber" Showing 25 pages using this property. (previous 25) (next 25) G GRR/Section 1 - Land Use Overview + 1 + GRR/Section 1-AK-a - Land Use Considerations + 1 + GRR/Section 1-CA-a - State Land Use Planning + 1 +

486

T-705: Linux Kernel Weakness in Sequence Number Generation Facilitates  

Broader source: Energy.gov (indexed) [DOE]

05: Linux Kernel Weakness in Sequence Number Generation 05: Linux Kernel Weakness in Sequence Number Generation Facilitates Packet Injection Attacks T-705: Linux Kernel Weakness in Sequence Number Generation Facilitates Packet Injection Attacks August 30, 2011 - 3:46am Addthis PROBLEM: A remote user can conduct packet injection attacks. PLATFORM: Linux Kernel ABSTRACT: Linux Kernel Weakness in Sequence Number Generation Facilitates Packet Injection Attacks. reference LINKS: SecurityTracker Alert ID: 1025977 CVE-2011-3188 (under review) The Linux Kernel Archives IMPACT ASSESSMENT: Medium Discussion: A vulnerability was reported in the Linux Kernel. A remote user can conduct packet injection attacks. The kernel's sequence number generation function uses partial MD4 with 24-bits unguessable. A remote user may be able to brute-force guess a valid sequence number to inject a packet into a

487

Property:GRR/SubsectionElementNumber | Open Energy Information  

Open Energy Info (EERE)

SubsectionElementNumber SubsectionElementNumber Jump to: navigation, search Property Name GRR/SubsectionElementNumber Property Type Number Description The subsection element number of an element in the Geothermal Regulatory Roadmap. The value of this property is derived automatically by the element template and is used in sorting elements within a section. Pages using the property "GRR/SubsectionElementNumber" Showing 25 pages using this property. (previous 25) (next 25) G GRR/Elements/14-CA-b.1 - NPDES Permit Application + 1 + GRR/Elements/14-CA-b.10 - Did majority of RWQCB approve the permit + 10 + GRR/Elements/14-CA-b.11 - EPA Review of Adopted Permit + 11 + GRR/Elements/14-CA-b.12 - Were all EPA objections resolved + 12 + GRR/Elements/14-CA-b.13 - NPDES Permit issued + 13 +

488

Betti number signatures of homogeneous Poisson point processes  

E-Print Network [OSTI]

The Betti numbers are fundamental topological quantities that describe the k-dimensional connectivity of an object: B_0 is the number of connected components and B_k effectively counts the number of k-dimensional holes. Although they are appealing natural descriptors of shape, the higher-order Betti numbers are more difficult to compute than other measures and so have not previously been studied per se in the context of stochastic geometry or statistical physics. As a mathematically tractable model, we consider the expected Betti numbers per unit volume of Poisson-centred spheres with radius alpha. We present results from simulations and derive analytic expressions for the low intensity, small radius limits of Betti numbers in one, two, and three dimensions. The algorithms and analysis depend on alpha-shapes, a construction from computational geometry that deserves to be more widely known in the physics community.

Vanessa Robins

2006-09-22T23:59:59.000Z

489

Betti number signatures of homogeneous Poisson point processes  

Science Journals Connector (OSTI)

The Betti numbers are fundamental topological quantities that describe the k-dimensional connectivity of an object: ?0 is the number of connected components and ?k effectively counts the number of k-dimensional holes. Although they are appealing natural descriptors of shape, the higher-order Betti numbers are more difficult to compute than other measures and so have not previously been studied per se in the context of stochastic geometry or statistical physics. As a mathematically tractable model, we consider the expected Betti numbers per unit volume of Poisson-centered spheres with radius ?. We present results from simulations and derive analytic expressions for the low intensity, small radius limits of Betti numbers in one, two, and three dimensions. The algorithms and analysis depend on alpha shapes, a construction from computational geometry that deserves to be more widely known in the physics community.

Vanessa Robins

2006-12-11T23:59:59.000Z

490

Rack Number Assignments Location TFTR TFTR NSTX NSTX  

E-Print Network [OSTI]

Rack Number Assignments Location TFTR TFTR NSTX NSTX Prefix Number range Prefix Number range-853 C-Site RF Balcony CRFB 900,901 CRFB 900,901 Most Safety Racks CSS 949-973 CSS 949-973 Oddball Control Room CCR 999 Pump Room CCI-IR 1-3 CCI-IR 1-3 Pump House CPH 1 CPH 1 Bakeout Racks VVS-ETC- 001

Princeton Plasma Physics Laboratory

491

Logistic map: A possible random-number generator  

Science Journals Connector (OSTI)

The logistic map is one of the simple systems exhibiting order to chaos transition. In this work we have investigated the possibility of using the logistic map in the chaotic regime (logmap) for a pseudorandom-number generator. To this end we have performed certain statistical tests on the series of numbers obtained from the logmap. We find that the logmap passes these tests satisfactorily and therefore it possesses many properties required of a pseudorandom-number generator.

S. C. Phatak and S. Suresh Rao

1995-04-01T23:59:59.000Z

492

Extremal Graph Numbers of Graphs on Few May 4, 2012  

E-Print Network [OSTI]

Extremal Graph Numbers of Graphs on Few Vertices John Kim May 4, 2012 1 Introduction Let H this number to be the extremal graph number of H on n vertices, and we denote it by ex(n, H). When H(n, K3) n 2 2 . A precise formula for ex(n, K3) is given by: ex(n, K3) = n 2 n + 1 2 . The extremal

Zeilberger, Doron

493

Property:NumberOfNonCorporateOrganizations | Open Energy Information  

Open Energy Info (EERE)

NumberOfNonCorporateOrganizations NumberOfNonCorporateOrganizations Jump to: navigation, search This is a property of type Number. Pages using the property "NumberOfNonCorporateOrganizations" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 0 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 + Aberdeen Gardens, Washington + 0 + Aberdeen Proving Ground, Maryland + 0 + Aberdeen, Idaho + 0 + Aberdeen, Maryland + 0 + Aberdeen, Mississippi + 0 +

494

Property:NumberOfOrganizations | Open Energy Information  

Open Energy Info (EERE)

NumberOfOrganizations NumberOfOrganizations Jump to: navigation, search This is a property of type Number. Pages using the property "NumberOfOrganizations" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 1 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 + Aberdeen Gardens, Washington + 0 + Aberdeen Proving Ground, Maryland + 0 + Aberdeen, Idaho + 0 + Aberdeen, Maryland + 0 + Aberdeen, Mississippi + 0 + Aberdeen, North Carolina + 0 +

495

The Effect of Temperature, Cations, and Number of Acyl Chains...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(i.e., number of acyl chains), cation type, and temperature influence the phase transition, aggregate structure, and endotoxic activity of Lipid-A. We have applied an...

496

SWMU ASSESSMENT REPORT NUMBER: NAME: Northeast Groundwater Plume  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NUMBER: NAME: Northeast Groundwater Plume DATE: July 21 REGULATORY STATUS: AOC LOCATION: Inside and outside security fence east, northeast ofplant operations. See attached map for...

497

Modeling the Number of Ignitions Following an Earthquake: Developing...  

Office of Environmental Management (EM)

Developing Prediction Limits for Overdispersed Count Data Authors: Elizabeth J. Kelly and Raymond N. Tell Modeling the Number of Ignitions Following an Earthquake:...

498

On the Degeneration of Turbulence at High Reynolds Numbers  

E-Print Network [OSTI]

Turbulent fluctuations in a fluid wind down at a certain rate once stirring has stopped. The role of the most basic parameter in fluid mechanics, the Reynolds number, in setting this decay rate is not generally known. This paper concerns the high-Reynolds-number limit of the process. In a wind-tunnel experiment that reached higher Reynolds numbers than ever before and covered more than two decades in the Reynolds number ($10^4 speed of the flow, $M$ the forcing scale, and $\

Sinhuber, Michael; Bewley, Gregory P

2014-01-01T23:59:59.000Z

499

Property:NumberOfCompanies | Open Energy Information  

Open Energy Info (EERE)

NumberOfCompanies NumberOfCompanies Jump to: navigation, search This is a property of type Number. Pages using the property "NumberOfCompanies" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 1 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 + Aberdeen Gardens, Washington + 0 + Aberdeen Proving Ground, Maryland + 0 + Aberdeen, Idaho + 0 + Aberdeen, Maryland + 0 + Aberdeen, Mississippi + 0 + Aberdeen, North Carolina + 0 +

500

Active Automobile Engine Vibration Analysis Technical Report Number 1  

E-Print Network [OSTI]

Active Automobile Engine Vibration Analysis Technical Report Number 1 Page 1 of 26 DISTRIBUTION STATEMENT: Distribution authorized to all. Active Automobile Engine Vibration Analysis Technical Report at the University of Southern California #12;Active Automobile Engine Vibration Analysis Technical Report Number 1

Levi, Anthony F. J.