National Library of Energy BETA

Sample records for nickel metal hydride

  1. Steps to Commercialization: Nickel Metal Hydride Batteries |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis Steps to Commercialization: Nickel Metal Hydride ... Through licensing and collaborative work, Energy ... Related Articles With help from the Clean Cities National ...

  2. Hydridable material for the negative electrode in a nickel-metal hydride storage battery

    DOE Patents [OSTI]

    Knosp, Bernard; Bouet, Jacques; Jordy, Christian; Mimoun, Michel; Gicquel, Daniel

    1997-01-01

    A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##

  3. Mathematical modeling of the nickel/metal hydride battery system

    SciTech Connect (OSTI)

    Paxton, B K

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  4. Metal Hydrides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Hydrides Theodore Motyka Savannah River National Laboratory Metal Hydride System Architect Jose-Miguel Pasini, & Bart van Hassel UTRC Claudio Corgnale & Bruce Hardy SRNL ...

  5. Metal hydrides

    SciTech Connect (OSTI)

    Carnes, J.R.; Kherani, N.P.

    1987-11-01

    Metal hydride information is not available for most hydrides in a consolidated quick-reference source. This report's objective is to fill the need for such a document providing basic thermodynamic data for as many metal hydrides as possible. We conduced a computerized library search to access as many sources as possible and screened each source for such thermodynamic data as pressure-temperature graphs, van't Hoff curves, and impurity effects. We included any other relevant information and commented on it. A primary concern to be investigated in the future is the behavior of metal tritides. This would be important in the area of emergency tritium cleanup systems. The hydride graphs are useful, however, as tritides may be expected in most cases to behave similarly and at least follow trends of their respective hydrides. 42 refs., 40 figs., 5 tabs.

  6. Current status of environmental, health, and safety issues of nickel metal-hydride batteries for electric vehicles

    SciTech Connect (OSTI)

    Corbus, D.; Hammel, C.J.; Mark, J.

    1993-08-01

    This report identifies important environment, health, and safety issues associated with nickel metal-hydride (Ni-MH) batteries and assesses the need for further testing and analysis. Among the issues discussed are cell and battery safety, workplace health and safety, shipping requirements, and in-vehicle safety. The manufacture and recycling of Ni-MH batteries are also examined. This report also overviews the ``FH&S`` issues associated with other nickel-based electric vehicle batteries; it examines venting characteristics, toxicity of battery materials, and the status of spent batteries as a hazardous waste.

  7. Metal Hydride Hydrogen Storage Research and Development

    Broader source: Energy.gov [DOE]

    DOE's research on complex metal hydrides targets the development of advanced metal hydride materials including light-weight complex hydrides, destabilized binary hydrides, intermetallic hydrides,...

  8. Gas atomization processing of tin and silicon modified LaNi{sub 5} for nickel-metal hydride battery applications

    SciTech Connect (OSTI)

    Ting, J.

    1999-02-12

    Numerous researchers have studied the relevant material properties of so-called AB{sub 5} alloys for battery applications. These studies involved LaNi{sub 5} substituted alloys which were prepared using conventional cast and crush alloying techniques. While valuable to the understanding of metal hydride effects, the previous work nearly ignored the potential for alternative direct powder production methods, like high pressure gas atomization (HPGA). Thus, there is a need to understand the relationship between gas atomization processes, powder particle solidification phases, and hydrogen absorption properties of ultra fine (< 25 {micro}m) atomized powders with high surface area for enhanced battery performance. Concurrently, development of a gas atomization nozzle that is more efficient than all current designs is needed to increase the yield of ultrafine AB{sub 5} alloy powder for further processing advantage. Gas atomization processing of the AB{sub 5} alloys was demonstrated to be effective in producing ultrafine spherical powders that were resilient to hydrogen cycling for the benefit of improving corrosion resistance in battery application. These ultrafine powders benefited from the rapid solidification process by having refined solute segregation in the microstructure of the gas atomized powders which enabled a rapid anneal treatment of the powders. The author has demonstrated the ability to produce high yields of ultrafine powder efficiently and cost effectively, using the new HPGA-III technology. Thus, the potential benefits of processing AB{sub 5} alloys using the new HPGA technology could reduce manufacturing cost of nickel-metal hydride powder. In the near future, the manufacture of AB{sub 5} alloy powders could become a continuous and rapid production process. The economic benefit of an improved AB{sub 5} production process may thereby encourage the use of nickel-metal hydride rechargeable batteries in electrical vehicle applications in the foreseeable future.

  9. Metal Hydride Storage Materials

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office's (FCTO's) metal hydride storage materials research focuses on improving the volumetric and gravimetric capacities, hydrogen adsorption/desorption kinetics, cycle life, and reaction thermodynamics of potential material candidates.

  10. Working with SRNL - Our Facilities - Metal Hydride Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Hydride Laboratories Working with SRNL Our Facilities - Metal Hydride Laboratories The Metal Hydride Laboratories are used for research and development on metal hydride absorption and desorption performance

  11. Dimensionally stable metallic hydride composition

    DOE Patents [OSTI]

    Heung, Leung K.

    1994-01-01

    A stable, metallic hydride composition and a process for making such a composition. The composition comprises a uniformly blended mixture of a metal hydride, kieselguhr, and a ballast metal, all in the form of particles. The composition is made by subjecting a metal hydride to one or more hydrogen absorption/desorption cycles to disintegrate the hydride particles to less than approximately 100 microns in size. The particles are partly oxidized, then blended with the ballast metal and the kieselguhr to form a uniform mixture. The mixture is compressed into pellets and calcined. Preferably, the mixture includes approximately 10 vol. % or more kieselguhr and approximately 50 vol. % or more ballast. Metal hydrides that can be used in the composition include Zr, Ti, V, Nb, Pd, as well as binary, tertiary, and more complex alloys of La, Al, Cu, Ti, Co, Ni, Fe, Zr, Mg, Ca, Mn, and mixtures and other combinations thereof. Ballast metals include Al, Cu and Ni.

  12. Ni/metal hydride secondary element

    DOE Patents [OSTI]

    Bauerlein, Peter

    2005-04-19

    A Ni/metal hydride secondary element having a positive nickel hydroxide electrode, a negative electrode having a hydrogen storage alloy, and an alkaline electrolyte, the positive electrode, provided with a three-dimensional metallic conductive structure, also contains an aluminum compound which is soluble in the electrolyte, in addition to nickel hydroxide and cobalt oxide. The aluminum compound is aluminum hydroxide and/or aluminum oxide, and the mass of the aluminum compound which is present in the positive bulk material mixture is 0.1 to 2% by weight relative to the mass of the nickel hydroxide which is present. In combination with aluminum hydroxide or aluminum oxide, the positive electrode further contains lanthanoid oxidic compounds Y.sub.2 O.sub.3, La.sub.2 O.sub.3 and Ca(OH).sub.2, as well as mixtures of these compounds.

  13. Reversible Metal Hydride Thermal Energy Storage for High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation Systems Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation ...

  14. Project Profile: Engineering a Novel High Temperature Metal Hydride...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: Engineering a Novel High Temperature Metal Hydride Thermochemical Storage Project Profile: Engineering a Novel High Temperature Metal Hydride Thermochemical ...

  15. Metal hydride composition and method of making

    DOE Patents [OSTI]

    Congdon, James W.

    1995-01-01

    A dimensionally stable hydride composition and a method for making such a composition. The composition is made by forming particles of a metal hydride into porous granules, mixing the granules with a matrix material, forming the mixture into pellets, and sintering the pellets in the absence of oxygen. The ratio of matrix material to hydride is preferably between approximately 2:1 and 4:1 by volume. The porous structure of the granules accommodates the expansion that occurs when the metal hydride particles absorb hydrogen. The porous matrix allows the flow of hydrogen therethrough to contact the hydride particles, yet supports the granules and contains the hydride fines that result from repeated absorption/desorption cycles.

  16. Disposal of tritium-exposed metal hydrides

    SciTech Connect (OSTI)

    Nobile, A.; Motyka, T.

    1991-01-01

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed.

  17. Disposal of tritium-exposed metal hydrides

    SciTech Connect (OSTI)

    Nobile, A.; Motyka, T.

    1991-12-31

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R&D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed.

  18. Liquid suspensions of reversible metal hydrides

    DOE Patents [OSTI]

    Reilly, J.J.; Grohse, E.W.; Winsche, W.E.

    1983-12-08

    The reversibility of the process M + x/2 H/sub 2/ ..-->.. MH/sub x/, where M is a metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under a liquid, thereby to reduce contamination, provide better temperature control and provide in situ mobility of the reactants. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen (at high pressures) and to release (at low pressures) previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the former is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the H/sub 2/ pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  19. Low density metal hydride foams

    DOE Patents [OSTI]

    Maienschein, Jon L.; Barry, Patrick E.

    1991-01-01

    Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.

  20. Metastable Metal Hydrides for Hydrogen Storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Graetz, Jason

    2012-01-01

    The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However, a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides offer some hope of overcoming these challenges; however, many of the high capacity “reversible” hydrides exhibit a large endothermic decomposition enthalpy making it difficult to release the hydrogen at low temperatures. Onmore » the other hand, the metastable hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid, low temperature hydrogen evolution rates that can be achieved with these materials offer much promise for mobile PEM fuel cell applications. However, a critical challenge exists to develop new methods to regenerate these hydrides directly from the reactants and hydrogen gas. This spotlight paper presents an overview of some of the metastable metal hydrides for hydrogen storage and a few new approaches being investigated to address the key challenges associated with these materials.« less

  1. Metal hydride fuel storage and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan F [Livermore, CA; Yu, Conrad [Antioch, CA

    2009-05-05

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  2. Metal hydride fuel storage and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan F.; Yu, Conrad

    2006-10-17

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  3. METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW

    SciTech Connect (OSTI)

    Bowman Jr, Robert C; Yartys, Dr. Volodymyr A.; Lototskyy, Dr. Michael V; Pollet, Dr. B.G.

    2014-01-01

    Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

  4. Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems

    SciTech Connect (OSTI)

    2011-12-05

    HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the sun is not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNLs metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800C). A high-temperature tank in PNNLs storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNLs thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

  5. Metal hydride fuel storage and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan F.; Yu, Conrad

    2010-08-10

    An apparatus having a first substrate having (1) a cavity, (2) one or more resistive heaters, and (3) one or more coatings forming a diffusion barrier to hydrogen; a second substrate having (1) an outlet valve comprising a pressure relief structure and (2) one or more coatings forming a diffusion barrier to hydrogen, wherein said second substrate is coupled to said first substrate forming a sealed volume in said cavity; a metal hydride material contained within said cavity; and a gas distribution system formed by coupling a microfluidic interconnect to said pressure relief structure. Additional apparatuses and methods are also disclosed.

  6. Process for production of a metal hydride

    DOE Patents [OSTI]

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  7. Recent advances in metal hydrides for clean energy applications

    SciTech Connect (OSTI)

    Ronnebro, Ewa; Majzoub, Eric H.

    2013-06-01

    Metal hydrides are a fascinating class of materials that can be utilized for a surprising variety of clean energy applications, including smart solar collectors, smart windows, sensors, thermal energy storage, and batteries, in addition to their traditional application for hydrogen storage. Over the past decade, research on metal hydrides for hydrogen storage increased due to global governmental incentives and an increased focus on hydrogen storage research for polymer electrolyte membrane fuel cell operation. Tremendous progress has been made in so-called complex metal hydrides for hydrogen storage applications with the discovery of many new hydrides containing covalently bound complex anions. Many of these materials have applications beyond hydrogen storage and are being investigated for lithium-ion battery separator and anode materials. In this issue of MRS Bulletin , we present the state of the art of key evolving metal-hydride-based clean energy technologies with an outlook toward future needs.

  8. Porous metal hydride composite and preparation and uses thereof

    DOE Patents [OSTI]

    Steyert, William A. (Los Alamos, NM); Olsen, Clayton E. (Los Alamos, NM)

    1982-01-01

    A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

  9. Porous metal hydride composite and preparation and uses thereof

    DOE Patents [OSTI]

    Steyert, W.A.; Olsen, C.E.

    1980-03-12

    A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

  10. Metal Hydrides for High-Temperature Power Generation

    SciTech Connect (OSTI)

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, or during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.

  11. Metal Hydrides for High-Temperature Power Generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, ormore » during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.« less

  12. Steps to Commercialization: Nickel Metal Hydride Batteries |...

    Broader source: Energy.gov (indexed) [DOE]

    funds cutting-edge research on a broad range of topics ranging from advanced battery construction to the modeling of industrial processes and supercomputer simulation of...

  13. Method for preparing hydride configurations and reactive metal surfaces

    DOE Patents [OSTI]

    Silver, G.L.

    1984-05-18

    A method for preparing reactive metal surfaces, particularly uranium surfaces is disclosed, whereby the metal is immediately reactive to hydrogen gas at room temperature and low pressure. The metal surfaces are first pretreated by exposure to an acid which forms an adherent hydride-bearing composition on the metal surface. Subsequent heating of the pretreated metal at a temperature sufficient to decompose the hydride coating in vacuum or inert gas renders the metal surface instantaneously reactive to hydrogen gas at room temperature and low pressure.

  14. AIR PASSIVATION OF METAL HYDRIDE BEDS FOR WASTE DISPOSAL

    SciTech Connect (OSTI)

    Klein, J; R. H. Hsu, R

    2007-07-02

    Metal hydride beds offer compact, safe storage of tritium. After metal hydride beds have reached the end of their useful life, the beds will replaced with new beds and the old beds prepared for disposal. One acceptance criteria for hydride bed waste disposal is that the material inside the bed not be pyrophoric. To determine the pyrophoric nature of spent metal hydride beds, controlled air ingress tests were performed. A simple gas handling manifold fitted with pressure transducers and a calibrated volume were used to introduce controlled quantities of air into a metal hydride bed and the bed temperature rise monitored for reactivity with the air. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 C internal temperature rise upon the first air exposure cycle and a 0.1 C temperature rise upon a second air exposure. A total of 346 scc air was consumed by the bed (0.08 scc per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12th cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water.

  15. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect (OSTI)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  16. Metal hydride hydrogen compression: Recent advances and future prospects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bowman, Jr., Robert C.; Yartys, Volodymyr A.; Lototskyy, Mykhaylo V.; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman

    2016-03-17

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the metal hydrides. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units are analyzed. The paper includes also a theoretical modeling of a two-stage compressor aimed at both describing the performance of the experimentally studied systems, but, also, on their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS andmore » the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the metal hydride compression in the overall development of the hydrogen driven energy systems. Lastly, the work is based on the analysis of the development of the technology in Europe, USA and South Africa.« less

  17. Ab-initio study of transition metal hydrides

    SciTech Connect (OSTI)

    Sharma, Ramesh; Shukla, Seema Dwivedi, Shalini Sharma, Yamini

    2014-04-24

    We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.

  18. Process of forming a sol-gel/metal hydride composite

    DOE Patents [OSTI]

    Congdon, James W.

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  19. Cascades for hydrogen isotope separation using metal hydrides

    SciTech Connect (OSTI)

    Hill, F.B.; Grzetic, V.

    1982-01-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.

  20. METHOD OF PREPARING SINTERED ZIRCONIUM METAL FROM ITS HYDRIDES

    DOE Patents [OSTI]

    Angier, R.P.

    1958-02-11

    The invention relates to the preparation of metal shapes from zirconium hydride by powder metallurgical techniques. The zirconium hydride powder which is to be used for this purpose can be prepared by rendering massive pieces of crystal bar zirconium friable by heat treatment in purified hydrogen. This any then be ground into powder and powder can be handled in the air without danger of it igniting. It may then be compacted in the normal manner by being piaced in a die. The compact is sintered under vacuum conditions preferably at a temperature ranging from 1200 to 1300 deg C and for periods of one to three hours.

  1. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect (OSTI)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This reduction in capacity was observed to be independent of the amount of charge/discharge cycles except for the composites containing siloxane, which showed less of an impact on hydrogen storage capacity as it was cycled further. While the reason for this is not clear, it may be due to a chemically stabilizing effect of the siloxane on the metal hydride. Flow-through calorimetry was used to characterize the mitigating effectiveness of the different composites relative to the neat (no polymer) material. The composites were found to be initially effective at reducing the amount of heat released during oxidation, and the best performing material was the siloxane-containing composite which reduced the heat release to less than 50% of the value of the neat material. However, upon cycling the composites, all mitigating behavior was lost. The combined results of the flow-through calorimetry, hydrogen capacity, and thermogravimetric analysis tests lead to the proposed conclusion that while the polymer composites have mitigating potential and are physically robust under cycling, they undergo a chemical change upon cycling that makes them ineffective at mitigating heat release upon oxidation of the metal hydride.

  2. Diffusional exchange of isotopes in a metal hydride sphere.

    SciTech Connect (OSTI)

    Wolfer, Wilhelm G.; Hamilton, John C.; James, Scott Carlton

    2011-04-01

    This report describes the Spherical Particle Exchange Model (SPEM), which simulates exchange of one hydrogen isotope by another hydrogen isotope in a spherical metal hydride particle. This is one of the fundamental physical processes during isotope exchange in a bed of spherical metal particles and is thus one of the key components in any comprehensive physics-based model of exchange. There are two important physical processes in the model. One is the entropy of mixing between the two isotopes; the entropy of mixing is increased by having both isotopes randomly placed at interstitial sites on the lattice and thus impedes the exchange process. The other physical process is the elastic interaction between isotope atoms on the lattice. The elastic interaction is the cause for {beta}-phase formation and is independent of the isotope species. In this report the coupled diffusion equations for two isotopes in the {beta}-phase hydride are solved. A key concept is that the diffusion of one isotope depends not only on its concentration gradient, but also on the concentration gradient of the other isotope. Diffusion rate constants and the chemical potentials for deuterium and hydrogen in the {beta}-phase hydride are reviewed because these quantities are essential for an accurate model of the diffusion process. Finally, a summary of some of the predictions from the SPEM model are provided.

  3. Method for decontamination of nickel-fluoride-coated nickel containing actinide-metal fluorides

    DOE Patents [OSTI]

    Windt, Norman F.; Williams, Joe L.

    1983-01-01

    The invention is a process for decontaminating particulate nickel contaminated with actinide-metal fluorides. In one aspect, the invention comprises contacting nickel-fluoride-coated nickel with gaseous ammonia at a temperature effecting nickel-catalyzed dissociation thereof and effecting hydrogen-reduction of the nickel fluoride. The resulting nickel is heated to form a melt and a slag and to effect transfer of actinide metals from the melt into the slag. The melt and slag are then separated. In another aspect, nickel containing nickel oxide and actinide metals is contacted with ammonia at a temperature effecting nickel-catalyzed dissociation to effect conversion of the nickel oxide to the metal. The resulting nickel is then melted and separated as described. In another aspect nickel-fluoride-coated nickel containing actinide-metal fluorides is contacted with both steam and ammonia. The resulting nickel then is melted and separated as described. The invention is characterized by higher nickel recovery, efficient use of ammonia, a substantial decrease in slag formation and fuming, and a valuable increase in the service life of the furnace liners used for melting.

  4. Hydriding process

    DOE Patents [OSTI]

    Raymond, J.W.; Taketani, H.

    1973-12-01

    BS>A method is described for hydriding a body of a Group IV-B metal, preferably zirconium, to produce a crack-free metal-hydride bedy of high hydrogen content by cooling the body at the beta to beta + delta boundary, without further addition of hydrogen, to precipitate a fine-grained delta-phase metal hydride in the beta + delta phase region and then resuming the hydriding, preferably preceded by a reheating step. (Official Gazette)

  5. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    SciTech Connect (OSTI)

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  6. Nickel-chromium-silicon brazing filler metal

    DOE Patents [OSTI]

    Martini, Angelo J.; Gourley, Bruce R.

    1976-01-01

    A brazing filler metal containing, by weight percent, 23-35% chromium, 9-12% silicon, a maximum of 0.15% carbon, and the remainder nickel. The maximum amount of elements other than those noted above is 1.00%.

  7. Uranium metal reactions with hydrogen and water vapour and the reactivity of the uranium hydride produced

    SciTech Connect (OSTI)

    Godfrey, H.; Broan, C.; Goddard, D.; Hodge, N.; Woodhouse, G.; Diggle, A.; Orr, R.

    2013-07-01

    Within the nuclear industry, metallic uranium has been used as a fuel. If this metal is stored in a hydrogen rich environment then the uranium metal can react with the hydrogen to form uranium hydride which can be pyrophoric when exposed to air. The UK National Nuclear Laboratory has been carrying out a programme of research for Sellafield Limited to investigate the conditions required for the formation and persistence of uranium hydride and the reactivity of the material formed. The experimental results presented here have described new results characterising uranium hydride formed from bulk uranium at 50 and 160 C. degrees and measurements of the hydrolysis kinetics of these materials in liquid water. It has been shown that there is an increase in the proportion of alpha-uranium hydride in material formed at lower temperatures and that there is an increase in the rate of reaction with water of uranium hydride formed at lower temperatures. This may at least in part be attributable to a difference in the reaction rate between alpha and beta-uranium hydride. A striking observation is the strong dependence of the hydrolysis reaction rate on the temperature of preparation of the uranium hydride. For example, the reaction rate of uranium hydride prepared at 50 C. degrees was over ten times higher than that prepared at 160 C. degrees at 20% extent of reaction. The decrease in reaction rate with the extent of reaction also depended on the temperature of uranium hydride preparation.

  8. Method for decontamination of nickel-fluoride-coated nickel containing actinide-metal fluorides

    DOE Patents [OSTI]

    Windt, N.F.; Williams, J.L.

    In one aspect, the invention comprises contacting nickel-fluoride-coated nickel with gaseous ammonia at a temperature effecting nickel-catalyzed dissociation thereof and effecting hydrogen-reduction of the nickel fluoride. The resulting nickel is heated to form a melt and a slag and to effect transfer of actinide metals from the melt into the slag. The melt and slag are then separated. In another aspect, nickel contianing nickel oxide and actinide metals is contacted with ammonia at a temperature effecting nickel-catalyzed dissociation to effect conversion of the nickel oxide to the metal. The resulting nickel is then melted and separated as described. In another aspect nickel-fluoride-coated nickel containing actinide-metal fluorides is contacted with both steam and ammonia. The resulting nickel then is melted and separated as described. The invention is characterized by higher nickel recovery, efficient use of ammonia, a substantial decrease in slag formation and fuming, and a valuable increase in the service life of the furnace liners used for melting.

  9. Non-stoichiometric AB5 alloys for metal hydride electrodes

    DOE Patents [OSTI]

    Reilly, James J.; Adzic, Gordana D.; Johnson, John R.; Vogt, Thomas; McBreen, James

    2001-01-01

    The present invention provides a non-stoichiometric alloy comprising a composition having the formula AB.sub.5+X an atomic ratio wherein A is selected from the group consisting of the rare earth metals, yttrium, mischmetal, or a combination thereof; B is nickel and tin, or nickel and tin and at least a third element selected from the group consisting of the elements in group IVA of the periodic table, aluminum, manganese, iron, cobalt, copper, antimony or a combination thereof; X is greater than 0 and less than or equal to about 2.0; and wherein at least one substituted A site is occupied by at least one of the B elements. An electrode incorporating said alloy and an electrochemical cell incorporating said electrode are also described.

  10. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    DOE Patents [OSTI]

    Zidan, Ragaiy; Ritter, James A.; Ebner, Armin D.; Wang, Jun; Holland, Charles E.

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  11. Final report for the DOE Metal Hydride Center of Excellence.

    SciTech Connect (OSTI)

    Keller, Jay O.; Klebanoff, Leonard E.

    2012-01-01

    This report summarizes the R&D activities within the U.S. Department of Energy Metal Hydride Center of Excellence (MHCoE) from March 2005 to June 2010. The purpose of the MHCoE has been to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE 2010 and 2015 system goals for hydrogen storage materials. The MHCoE combines three broad areas: mechanisms and modeling (which provide a theoretically driven basis for pursuing new materials), materials development (in which new materials are synthesized and characterized) and system design and engineering (which allow these new materials to be realized as practical automotive hydrogen storage systems). This Final Report summarizes the organization and execution of the 5-year research program to develop practical hydrogen storage materials for light duty vehicles. Major results from the MHCoE are summarized, along with suggestions for future research areas.

  12. Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides

    SciTech Connect (OSTI)

    2011-12-01

    HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The teams innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

  13. Final Report for the DOE Metal Hydride Center of Excellence | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Metal Hydride Center of Excellence Final Report for the DOE Metal Hydride Center of Excellence This technical report describes the activities carried out, key accomplishments, and recommendations from the DOE's Chemical Hydrogen Storage Center of Excellence, led by Los Alamos National Laboratory with Pacific Northwest National Laboratory from 2005 through 2010. The center's focus was the development of advanced chemical hydrogen storage materials that had the potential to meet the

  14. Synthesis and characterization of metal hydride electrodes. Interim report

    SciTech Connect (OSTI)

    McBreen, J.; Reilly, J.J.

    1995-10-01

    The objective of this project is to elucidate the compositional and structural parameters that affect the thermodynamics, kinetics and stability of alloy hydride electrodes and to use this information in the development of new high capacity long life hydride electrodes for rechargeable batteries. The work focuses on the development of AB{sub 5} alloys and the application of in situ methods, at NSLS, such as x-ray absorption (XAS), to elucidate the role of the alloying elements in hydrogen storage and corrosion inhibition. The most significant results to date are: The decay of electrode capacity on cycling was directly related to alloy corrosion. The rate of corrosion depended in part on both the alloy composition and the partial molar volume of hydrogen, V{sub H}. The corrosion rate depended on the composition of the A component in AB{sub 5} (LaNi{sub 5} type) alloys. Partial substitution of La with Ce in AB{sub 5} alloys substantially inhibits electrode corrosion on cycling. Recent results indicate that Co also greatly inhibits electrode corrosion, possibly by minimizing V{sub H}. The AB{sub 5} alloys investigated included LaNi{sub 5}, ternary alloys (e.g. LaN{sub 4.8}Sn{sub 0.2} and La{sub 0.8}Ce{sub 0.2}Ni{sub 5}), alloys with various substitutions for both La and Ni (e.g. La{sub 0.8}Ce{sub 0.2}Ni{sub 4.8}Sn{sub 0.2}) and mischmetal (Mm) alloys of the type normally used in batteries, such as MmB{sub 5} (B = Ni{sub 3.55}Mn{sub 0.4}A1{sub 0.3}Co{sub 0.75}). A major effort was devoted to the effects of La substitution in the A component. Both in situ and ex situ XAS measurements are used to study the electronic effects that occur on the addition of various metal substitutions and on the ingress of hydrogen.

  15. Phase I. Lanthanum-based Start Materials for Hydride Batteries

    SciTech Connect (OSTI)

    Gschneidner, K. A.; Schmidt, F. A.; Frerichs, A. E.; Ament, K. A.

    2013-08-20

    The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La1-xRx)(Ni1-yMy)(Siz), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

  16. Materials Down-selection Decisions Made within the DOE Metal Hydride Center of Excellence (MHCoE) - September-October 2007

    Fuel Cell Technologies Publication and Product Library (EERE)

    Reports on which hydrogen storage materials offer potential for further research as decided by DOE's Metal Hydride Center of Excellence.

  17. Materials Down-selection Decisions Made within the DOE Metal Hydride Center of Excellence (MHCoE) - September-October 2007

    SciTech Connect (OSTI)

    Klebanoff, Lennie

    2007-09-01

    Reports on which hydrogen storage materials offer potential for further research as decided by DOE's Metal Hydride Center of Excellence.

  18. Method and composition in which metal hydride particles are embedded in a silica network

    DOE Patents [OSTI]

    Heung, Leung K.

    1999-01-01

    A silica embedded metal hydride composition and a method for making such a composition. The composition is made via the following process: A quantity of fumed silica is blended with water to make a paste. After adding metal hydride particles, the paste is dried to form a solid. According to one embodiment of the invention, the solid is ground into granules for use of the product in hydrogen storage. Alternatively, the paste can be molded into plates or cylinders and then dried for use of the product as a hydrogen filter. Where mechanical strength is required, the paste can be impregnated in a porous substrate or wire network.

  19. First Principles Studies of Phase Stability and Reaction Dynamics in Complex Metal Hydrides

    SciTech Connect (OSTI)

    Chou, Mei-Yin

    2014-09-29

    Complex metal hydrides are believed to be one of the most promising materials for developing hydrogen storage systems that can operate under desirable conditions. At the same time, these are also a class of materials that exhibit intriguing properties. We have used state-of-the-art computational techniques to study the fundamental properties of these materials.

  20. Project Profile: Low-Cost Metal Hydride Thermal Energy Storage System

    Broader source: Energy.gov [DOE]

    -- This project is inactive -- The Savannah River National Laboratory (SRNL), under the National Laboratory R&D competitive funding opportunity, is collaborating with Curtin University (CU) to evaluate new metal hydride materials for thermal energy storage (TES) that meet the SunShot cost and performance targets for TES systems.

  1. Metal dusting and carburization resistance of nickel-base alloys

    SciTech Connect (OSTI)

    Kloewer, J.; Grabke, H.J.; Mueller-Lorenz, E.M.; Agarwal, D.C.

    1997-08-01

    Severe material failures caused by so-called metal dusting have been reported during recent years. The reason for these failures were strongly carburizing CO-H{sub 2} gas mixtures such as encountered in chemical plants for the synthesis of hydrocarbons, methanol, ammonia etc. as well as in plants for the reduction of iron ores. The carburization behavior of nine commercial nickel-base alloys and four iron-nickel-chromium alloys was investigated at 650 C in a carburizing H{sub 2}-CO-H{sub 2}O-gas with a carbon activity of a{sub c} {much_gt} 1. The iron-nickel-chromium alloys suffered severe metal dusting after a very short test period. Nickel base alloys were generally less susceptible to metal dusting than iron-base alloys. However, their corrosion behavior was found to depend sensitively on the chromium concentration of the respective alloys. Alloys like alloy 600H, with a chromium concentration of only 16%, suffered wastage rates which were similar to those of the more resistant iron-base alloys. Nickel-base alloys with chromium concentrations of 25% and above, on the other hand, showed no significant evidence of metal dusting even after 10,000 hours of exposure. It was found that these alloys are protected against metal dusting by the formation of a dense, self-healing chromia scale, which prevents the penetration of carbon into the base metal.

  2. Metal hydrides as electrode/catalyst materials for oxygen evolution/reduction in electrochemical devices

    DOE Patents [OSTI]

    Bugga, Ratnakumar V.; Halpert, Gerald; Fultz, Brent; Witham, Charles K.; Bowman, Robert C.; Hightower, Adrian

    1997-01-01

    An at least ternary metal alloy of the formula, AB.sub.(5-Y)X(.sub.y), is claimed. In this formula, A is selected from the rare earth elements, B is selected from the elements of groups 8, 9, and 10 of the periodic table of the elements, and X includes at least one of the following: antimony, arsenic, and bismuth. Ternary or higher-order substitutions, to the base AB.sub.5 alloys, that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

  3. Filler metal alloy for welding cast nickel aluminide alloys

    DOE Patents [OSTI]

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  4. Filler metal alloy for welding cast nickel aluminide alloys

    DOE Patents [OSTI]

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  5. Effect of delivery condition on desorption rate of ZrCo metal hydride bed for fusion fuel cycle

    SciTech Connect (OSTI)

    Kang, H.G.; Yun, S.H.; Chung, D.; Oh, Y.H.; Chang, M.H.; Cho, S.; Chung, H.; Song, K.M.

    2015-03-15

    For the safety of fusion fuel cycle, hydrogen isotope gases including tritium are stored as metal hydride form. To satisfy fueling requirement of fusion machine, rapid delivery from metal hydride bed is one of major factors for the development of tritium storage and delivery system. Desorption from metal hydride depends on the operation scenario by pressure and temperature control of the bed. The effect of operation scenario and pump performance on desorption rate of metal hydride bed was experimentally investigated using ZrCo bed. The results showed that the condition of pre-heating scenario before actual delivery of gas affected the delivery performance. Different pumps were connected to desorption line from bed and the effect of pump capacity on desorption rate were also found to be significant. (authors)

  6. In-bed measurement of tritium loading in process metal hydride beds

    SciTech Connect (OSTI)

    Nobile, A.

    1988-01-01

    The Replacement Tritium Facility at Savannah River Plant will make extensive use of metal hydride technology for the storage, pumping, isotopic separation, and compression of hydrogen isotopes. Two options were considered for routine accountability of tritium stored in metal hydride beds. One option was to use standard P-V-T-mass spectrometry techniques after desorption of storage beds to tanks of known volume. The second option was to develop a technique for direct measurement of bed loading. It was thought that such a technique would be more rapid and would account for heel, although some accuracy would be lost.The static nitrogen and flowing nitrogen methods were considered for this option. The flowing nitrogen method was eventually selected because it was insensitive to bed physical properties and isotopic gas composition, as well as being more accurate and easier to automate.

  7. In-bed accountability of tritium in production scale metal hydride storage beds

    SciTech Connect (OSTI)

    Klein, J.E.

    1995-10-01

    An `in-bed accountability` (IBA) flowing gas calorimetric measurement method has been developed and implemented to eliminate the need to remove tritium from production scale metal hydride storage beds for inventory measurement purposes. Six-point tritium IBA calibration curves have been completed for two, 390 gram tritium metal hydride storage beds. The calibration curves for the two tritium beds are similar to those obtained from the `cold` test program. Tritium inventory errors at the 95 percent confidence level ranged from {+-} 7.3 to 8.6 grams for the cold test results compared to {+-} 4.2 to 7.5 grams obtained for the two tritium calibrated beds. 5 refs., 4 figs., 1 tab.

  8. Method for preparing hydride configurations and reactive metal surfaces

    DOE Patents [OSTI]

    Silver, Gary L. (Centerville, OH)

    1988-08-16

    A method for preparing highly hydrogen-reactive surfaces on metals which normally require substantial heating, high pressures, or an extended induction period, which involves pretreatment of said surfaces with either a non-oxidizing acid or hydrogen gas to form a hydrogen-bearing coating on said surfaces, and subsequently heating said coated metal in the absence of moisture and oxygen for a period sufficient to decompose said coating and cooling said metal to room temperature. Surfaces so treated will react almost instantaneously with hydrogen gas at room temperature and low pressure. The method is particularly applicable to uranium, thorium, and lanthanide metals.

  9. OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES

    SciTech Connect (OSTI)

    Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

    2011-07-14

    Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

  10. LaNi{sub 5}-based metal hydride electrode in Ni-MH rechargeable cells

    DOE Patents [OSTI]

    Bugga, R.V.; Fultz, B.; Bowman, R.; Surampudi, S.R.; Witham, C.K.; Hightower, A.

    1999-03-30

    An at least ternary metal alloy of the formula AB{sub (Z-Y)}X{sub (Y)} is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB{sub 5} alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption. 16 figs.

  11. CRADA (AL-C-2009-02) Final Report: Phase I. Lanthanum-based Start Materials for Hydride Batteries

    SciTech Connect (OSTI)

    Gschneidner, Jr., Karl; Schmidt, Frederick; Frerichs, A.E.; Ament, Katherine A.

    2013-05-01

    The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La{sub 1-x}R{sub x})(Ni{sub 1-y}M{sub y})(Si{sub z}), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

  12. Metal hydride/chemical heat-pump development project. Phase I. Final report

    SciTech Connect (OSTI)

    Argabright, T.A.

    1982-02-01

    The metal hydride/chemical heat pump (MHHP) is a chemical heat pump containing two hydrides for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and/or cooling or temperature upgrading over a wide range of input and ambient temperatures. The system can thus be used with a variety of heat sources including waste heat, solar energy or a fossil fuel. The conceptual design of the MHHP was developed. A national market survey including a study of applications and market sectors was conducted. The technical tasks including conceptual development, thermal and mechanical design, laboratory verification of design and material performance, cost analysis and the detailed design of the Engineering Development Test Unit (EDTU) were performed. As a result of the market study, the temperature upgrade cycle of the MHHP was chosen for development. Operating temperature ranges for the upgrader were selected to be from 70 to 110/sup 0/C (160 to 230/sup 0/F) for the source heat and 140 to 190/sup 0/C (280 to 375/sup 0/F) for the product heat. These ranges are applicable to many processes in industries such as food, textile, paper and pulp, and chemical. The hydride pair well suited for these temperatures is LaNi/sub 5//LaNi/sub 4/ /sub 5/Al/sub 0/ /sub 5/. The EDTU was designed for the upgrade cycle. It is a compact finned tube arrangement enclosed in a pressure vessel. This design incorporates high heat transfer and low thermal mass in a system which maximizes the coefficient of performance (COP). It will be constructed in Phase II. Continuation of this effort is recommended.

  13. First-Principles Modeling of Hydrogen Storage in Metal Hydride Systems

    SciTech Connect (OSTI)

    J. Karl Johnson

    2011-05-20

    The objective of this project is to complement experimental efforts of MHoCE partners by using state-of-the-art theory and modeling to study the structure, thermodynamics, and kinetics of hydrogen storage materials. Specific goals include prediction of the heats of formation and other thermodynamic properties of alloys from first principles methods, identification of new alloys that can be tested experimentally, calculation of surface and energetic properties of nanoparticles, and calculation of kinetics involved with hydrogenation and dehydrogenation processes. Discovery of new metal hydrides with enhanced properties compared with existing materials is a critical need for the Metal Hydride Center of Excellence. New materials discovery can be aided by the use of first principles (ab initio) computational modeling in two ways: (1) The properties, including mechanisms, of existing materials can be better elucidated through a combined modeling/experimental approach. (2) The thermodynamic properties of novel materials that have not been made can, in many cases, be quickly screened with ab initio methods. We have used state-of-the-art computational techniques to explore millions of possible reaction conditions consisting of different element spaces, compositions, and temperatures. We have identified potentially promising single- and multi-step reactions that can be explored experimentally.

  14. Heat exchanger selection and design analyses for metal hydride heat pump systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mazzucco, Andrea; Voskuilen, Tyler G.; Waters, Essene L.; Pourpoint, Timothee L.; Rokni, Masoud

    2016-01-01

    This paper presents a design analysis for the development of highly efficient heat exchangers within stationary metal hydride heat pumps. The design constraints and selected performance criteria are applied to three representative heat exchangers. The proposed thermal model can be applied to select the most efficient heat exchanger design and provides outcomes generally valid in a pre-design stage. Heat transfer effectiveness is the principal performance parameter guiding the selection analysis, the results of which appear to be mildly (up to 13%) affected by the specific Nusselt correlation used. The thermo-physical properties of the heat transfer medium and geometrical parameters aremore » varied in the sensitivity analysis, suggesting that the length of independent tubes is the physical parameter that influences the performance of the heat exchangers the most. The practical operative regions for each heat exchanger are identified by finding the conditions over which the heat removal from the solid bed enables a complete and continuous hydriding reaction. The most efficient solution is a design example that achieves the target effectiveness of 95%.« less

  15. Heat exchanger selection and design analyses for metal hydride heat pump systems

    SciTech Connect (OSTI)

    Mazzucco, Andrea; Voskuilen, Tyler G.; Waters, Essene L.; Pourpoint, Timothee L.; Rokni, Masoud

    2016-01-01

    This paper presents a design analysis for the development of highly efficient heat exchangers within stationary metal hydride heat pumps. The design constraints and selected performance criteria are applied to three representative heat exchangers. The proposed thermal model can be applied to select the most efficient heat exchanger design and provides outcomes generally valid in a pre-design stage. Heat transfer effectiveness is the principal performance parameter guiding the selection analysis, the results of which appear to be mildly (up to 13%) affected by the specific Nusselt correlation used. The thermo-physical properties of the heat transfer medium and geometrical parameters are varied in the sensitivity analysis, suggesting that the length of independent tubes is the physical parameter that influences the performance of the heat exchangers the most. The practical operative regions for each heat exchanger are identified by finding the conditions over which the heat removal from the solid bed enables a complete and continuous hydriding reaction. The most efficient solution is a design example that achieves the target effectiveness of 95%.

  16. Method of making crack-free zirconium hydride

    DOE Patents [OSTI]

    Sullivan, Richard W.

    1980-01-01

    Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

  17. Ductile filler metal alloys for welding nickel aluminide alloys

    DOE Patents [OSTI]

    Santella, Michael L.; McNabb, Jeffrey D.; Sikka, Vinod K.

    2003-04-08

    Nickel aluminum alloys are welded utilizing a nickel based alloy containing zirconium but substantially free of titanium and niobium which reduces the tendency to crack.

  18. Hydrogen, lithium, and lithium hydride production

    DOE Patents [OSTI]

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  19. Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods

    SciTech Connect (OSTI)

    Lesch, David A; Adriaan Sachtler, J.W. J.; Low, John J; Jensen, Craig M; Ozolins, Vidvuds; Siegel, Don

    2011-02-14

    UOP LLC, a Honeywell Company, Ford Motor Company, and Striatus, Inc., collaborated with Professor Craig Jensen of the University of Hawaii and Professor Vidvuds Ozolins of University of California, Los Angeles on a multi-year cost-shared program to discover novel complex metal hydrides for hydrogen storage. This innovative program combined sophisticated molecular modeling with high throughput combinatorial experiments to maximize the probability of identifying commercially relevant, economical hydrogen storage materials with broad application. A set of tools was developed to pursue the medium throughput (MT) and high throughput (HT) combinatorial exploratory investigation of novel complex metal hydrides for hydrogen storage. The assay programs consisted of monitoring hydrogen evolution as a function of temperature. This project also incorporated theoretical methods to help select candidate materials families for testing. The Virtual High Throughput Screening served as a virtual laboratory, calculating structures and their properties. First Principles calculations were applied to various systems to examine hydrogen storage reaction pathways and the associated thermodynamics. The experimental program began with the validation of the MT assay tool with NaAlH4/0.02 mole Ti, the state of the art hydrogen storage system given by decomposition of sodium alanate to sodium hydride, aluminum metal, and hydrogen. Once certified, a combinatorial 21-point study of the NaAlH4 ?? LiAlH4 ??Mg(AlH4)2 phase diagram was investigated with the MT assay. Stability proved to be a problem as many of the materials decomposed during synthesis, altering the expected assay results. This resulted in repeating the entire experiment with a mild milling approach, which only temporarily increased capacity. NaAlH4 was the best performer in both studies and no new mixed alanates were observed, a result consistent with the VHTS. Powder XRD suggested that the reverse reaction, the regeneration of the alanate from alkali hydride, Al and hydrogen, was hampering reversibility. The reverse reaction was then studied for the same phase diagram, starting with LiH, NaH, and MgH2, and Al. The study was extended to phase diagrams including KH and CaH2 as well. The observed hydrogen storage capacity in the Al hexahydrides was less than 4 wt. %, well short of DOE targets. The HT assay came on line and after certification with studies on NaAlH4, was first applied to the LiNH2 - LiBH4 - MgH2 phase diagram. The 60-point study elucidated trends within the system locating an optimum material of 0.6 LiNH2 ?? 0.3 MgH2 ?? 0.1 LiBH4 that stored about 4 wt. % H2 reversibly and operated below 220 °C. Also present was the phase Li4(NH2)3BH4, which had been discovered in the LiNH2 -LiBH4 system. This new ternary formulation performed much better than the well-known 2 LiNH2 ?? MgH2 system by 50 °C in the HT assay. The Li4(NH2)3BH4 is a low melting ionic liquid under our test conditions and facilitates the phase transformations required in the hydrogen storage reaction, which no longer relies on a higher energy solid state reaction pathway. Further study showed that the 0.6 LiNH2 ?? 0.3 MgH2 ?? 0.1 LiBH4 formulation was very stable with respect to ammonia and diborane desorption, the observed desorption was from hydrogen. This result could not have been anticipated and was made possible by the efficiency of HT combinatorial methods. Investigation of the analogous LiNH2 ?? LiBH4 ?? CaH2 phase diagram revealed new reversible hydrogen storage materials 0.625 LiBH4 + 0.375 CaH2 and 0.375 LiNH2 + 0.25 LiBH4 + 0.375 CaH2 operating at 1 wt. % reversible hydrogen below 175 °C. Powder x-ray diffraction revealed a new structure for the spent materials which had not been previously observed. While the storage capacity was not impressive, an important aspect is that it boron appears to participate in a low temperature reversible reaction. The last major area of study also focused

  20. Nickel(II) and Copper(I,II)-based Metal-Organic Frameworks Incorporating an

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended Trispyrazolate Linker | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Nickel(II) and Copper(I,II)-based Metal-Organic Frameworks Incorporating an Extended Trispyrazolate Linker Previous Next List Tabacaru, Aurel; Galli, Simona; Pettinari, Claudio; Masciocchi, Norberto; McDonald, Thomas M.; and Long, Jeffrey R. Nickel(II) and Copper(I,II)-based Metal-organic Frameworks Incorporating an Extended Trispyrazolate Linker. Cryst. Eng. Comm., 17,

  1. Method for inhibiting alkali metal corrosion of nickel-containing alloys

    DOE Patents [OSTI]

    DeVan, Jackson H.; Selle, James E.

    1983-01-01

    Structural components of nickel-containing alloys within molten alkali metal systems are protected against corrosion during the course of service by dissolving therein sufficient aluminum, silicon, or manganese to cause the formation and maintenance of a corrosion-resistant intermetallic reaction layer created by the interaction of the molten metal, selected metal, and alloy.

  2. LaNi.sub.5 is-based metal hydride electrode in Ni-MH rechargeable cells

    DOE Patents [OSTI]

    Bugga, Ratnakumar V.; Fultz, Brent; Bowman, Robert; Surampudi, Subra Rao; Witham, Charles K.; Hightower, Adrian

    1999-01-01

    An at least ternary metal alloy of the formula AB.sub.(Z-Y) X.sub.(Y) is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB.sub.5 alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

  3. Method Of Charging Maintenance-Free Nickel Metal Hydride Storage Cells

    DOE Patents [OSTI]

    Berlureau, Thierry; Liska, Jean-Louis

    1999-11-16

    A method of charging an industrial maintenance-free Ni-MH storage cell, the method comprising in combination a first stage at a constant current I.sub.1 lying in the range I.sub.c /10 to I.sub.c /2, and a second stage at a constant current I.sub.2 lying in the range I.sub.c /50 to I.sub.c /10, the changeover from the first stage to the second stage taking place when the time derivative of the temperature reaches a threshold value which varies as a function of the temperature at the time of the changeover.

  4. Hydride heat pump

    DOE Patents [OSTI]

    Cottingham, James G.

    1977-01-01

    Method and apparatus for the use of hydrides to exhaust heat from one temperature source and deliver the thermal energy extracted for use at a higher temperature, thereby acting as a heat pump. For this purpose there are employed a pair of hydridable metal compounds having different characteristics working together in a closed pressure system employing a high temperature source to upgrade the heat supplied from a low temperature source.

  5. Applications of nuclear reaction analysis to metal hydride film characterization at the GEND 200 KeV accelerator facility

    SciTech Connect (OSTI)

    Malbrough, D.J.; Becker, R.H.

    1985-01-01

    Nuclear reaction analysis (NRA) is a quantitative analytical technique that usually involves the use of MeV ion beams and resonant nuclear reactions to non-destructively probe materials for elemental content and depth profiles. Low energy, non-resonant nuclear reactions can also be exploited for NRA and procedures have been developed for using the GEND 200-KeV accelerator to characterize neutron generator components by that technique. The procedures involve the detection and analysis of fusion reaction products generated by the interactions of deuteron beams with light elements in metal hydride films. A description of the accelerator system is presented along with some of the unique NRA procedures that have recently been developed for its use. The system is used to measure neutron output efficiencies of metal deuterides and tritides by the associated particle technique (APT) and accurate neutron yield measurements have been made for a number of materials for which data was formerly not available.

  6. Activated aluminum hydride hydrogen storage compositions and uses thereof

    DOE Patents [OSTI]

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  7. Hydride compressor

    DOE Patents [OSTI]

    Powell, James R.; Salzano, Francis J.

    1978-01-01

    Method of producing high energy pressurized gas working fluid power from a low energy, low temperature heat source, wherein the compression energy is gained by using the low energy heat source to desorb hydrogen gas from a metal hydride bed and the desorbed hydrogen for producing power is recycled to the bed, where it is re-adsorbed, with the recycling being powered by the low energy heat source. In one embodiment, the adsorption-desorption cycle provides a chemical compressor that is powered by the low energy heat source, and the compressor is connected to a regenerative gas turbine having a high energy, high temperature heat source with the recycling being powered by the low energy heat source.

  8. Nickel anode electrode

    DOE Patents [OSTI]

    Singh, Prabhakar (Bethel, CT); Benedict, Mark (Monroe, CT)

    1987-01-01

    A nickel anode electrode fabricated by oxidizing a nickel alloying material to produce a material whose exterior contains nickel oxide and whose interior contains nickel metal throughout which is dispersed the oxide of the alloying material and by reducing and sintering the oxidized material to form a product having a nickel metal exterior and an interior containing nickel metal throughout which is dispersed the oxide of the alloying material.

  9. Final Report: DE- FC36-05GO15063, Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides

    SciTech Connect (OSTI)

    Jensen, Craig; McGrady, Sean; Severa, Godwin; Eliseo, Jennifer; Chong, Marina

    2015-02-08

    The project was component of the US DOE, Metal Hydride Center of Excellence (MHCoE). The Sandia National Laboratory led center was established to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE/FreedomCAR 2010 and 2015 system targets for hydrogen storage materials. Our approach entailed a wide variety of activities ranging from synthesis, characterization, and evaluation of new candidate hydrogen storage materials; screening of catalysts for high capacity materials requiring kinetics enhancement; development of low temperature methods for nano-confinement of hydrides and determining its effects on the kinetics and thermodynamics of hydrides; and development of novel processes for the direct re-hydrogenation of materials. These efforts have resulted in several advancements the development of hydrogen storage materials. We have greatly extended the fundamental knowledge about the highly promising hydrogen storage carrier, alane (AlH?), by carrying out the first crystal structure determinations and the first determination of the heats of dehydrogenation of ?AlH? and ?-AlD?. A low-temperature homogenous organometallic approach to incorporation of Al and Mg based hydrides into carbon aerogels has been developed that that allows high loadings without degradation of the nano-porous scaffold. Nano-confinement was found to significantly improve the dehydrogenation kinetics but not effect the enthalpy of dehydrogenation. We conceived, characterized, and synthesized a novel class of potential hydrogen storage materials, bimetallic borohydrides. These novel compounds were found to have many favorable properties including release of significant amounts of hydrogen at moderate temperatures (75-190C). However, in situ IR studies in tandem with thermal gravimetric analysis have shown that about 0.5 equivalents of diborane are released during the dehydrogenation making re-hydrogenation effectively impossible and precluding these compounds from further consideration as hydrogen storage materials. The hydrogen cycling of >11 wt % between MgB? to Mg(BH?)? was achieved but required very forcing conditions. Under moderate conditions (dehydrogenation 200C; re-hydrogenation 250C, 120 atm H2), Mg(BH?)? undergoes reversible dehydrogenation to Mg(B3H8)2. Although the 2.5 wt% cycling capacity does not meet current on-board storage targets, this result provides first example of direct hydrogen cycling of a borohydride under moderate conditions and demonstrates the plausibility of finding mild, PEM fuel cell relevant conditions for the high capacity, reversible dehydrogenation of borohydrides. A method was developed for the room temperature, direct hydrogenation of Ti-doped LiH/Al in liquefied dimethyl ether under 100 atm of H?. The process has been optimized such that Ti-doped LiAlH? is obtained in >95% yield. The WTT energy efficiency our direct synthesis process has been estimated to approach the 60% U.S. DOE target. Thus our simplification of the hydrogenation half-cycle may provide the key to harnessing the long-recognized potential of this lightweight, high capacity material as a practical hydrogen carrier. Finally, we have gained insight into the fundamental basis of the enhanced hydrogen cycling kinetics of Ti-doped NaAlH? through studies by solid state H NMR, anelastic spectroscopy; muon spin rotation; and positron annihilation.

  10. First principles screening of destabilized metal hydrides for high capacity H2 storage using scandium (presentation had varying title: Accelerating Development of Destabilized Metal Hydrides for Hydrogen Storage Using First Principles Calculations)

    SciTech Connect (OSTI)

    Alapati, S.; Johnson, J.K.; Sholl, D.S.; Dai, B. --last author not shown on publication, only presentation

    2007-10-31

    Favorable thermodynamics are a prerequisite for practical H2 storage materials for vehicular applications. Destabilization of metal hydrides is a versatile route to finding materials that reversibly store large quantities of H2. First principles calculations have proven to be a useful tool for screening large numbers of potential destabilization reactions when tabulated thermodynamic data are unavailable. We have used first principles calculations to screen potential destabilization schemes that involve Sc-containing compounds. Our calculations use a two-stage strategy in which reactions are initially assessed based on their reaction enthalpy alone, followed by more detailed free energy calculations for promising reactions. Our calculations indicate that mixtures of ScH2 + 2LiBH4, which will release 8.9 wt.% H2 at completion and will have an equilibrium pressure of 1 bar at around 330 K, making this compound a promising target for experimental study. Along with thermodynamics, favorable kinetics are also of enormous importance for practical usage of these materials. Experiments would help identify possible kinetic barriers and modify them by developing suitable catalysts.

  11. Hydride compositions

    DOE Patents [OSTI]

    Lee, Myung, W.

    1994-01-01

    Disclosed are a composition for use in storing hydrogen and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the H equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to H, and then heating below the softening temperature of any of the constituents. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P{sub H}{sub 2} and determining H/M from the isothermic function of the composition.

  12. Hydride compositions

    DOE Patents [OSTI]

    Lee, Myung W.

    1995-01-01

    A composition for use in storing hydrogen, and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the hydrogen equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to hydrogen and then heating at a temperature below the softening temperature of any of the. constituents so that their chemical and structural integrity is preserved. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P.sub.H.sbsb.2 and determining H/M from the isothermic function of the composition.

  13. High capacity nickel battery material doped with alkali metal cations

    DOE Patents [OSTI]

    Jackovitz, John F.; Pantier, Earl A.

    1982-05-18

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  14. Amorphorized tantalum-nickel binary films for metal gate applications

    SciTech Connect (OSTI)

    Ouyang, Jiaomin; Wongpiya, Ranida; Clemens, Bruce M.; Deal, Michael D.; Nishi, Yoshio

    2015-04-13

    Amorphous metal gates have the potential to eliminate the work function variation due to grain orientation for poly-crystalline metal gate materials, which is a leading contributor to threshold voltage variation for small transistors. Structural and electrical properties of TaNi alloys using co-sputtering with different compositions and multilayer structures with different thicknesses are investigated in this work. It is found that TaNi films are amorphous for a wide range of compositions as deposited, and the films stay amorphous after annealing at 400?C in RTA for 1?min and up to at least 700?C depending on the composition. The amorphous films eventually crystallize into Ni, Ta, and TaNi{sub 3} phases at high enough temperature. For multilayer Ta/Ni structures, samples with individual layer thickness of 0.12?nm and 1.2?nm are amorphous as deposited due to intermixing during deposition, and stay amorphous until annealed at 500?C. The resistivity of the films as-deposited are around 200 ??cm. The work function of the alloy is fixed at close to the Ta work function of 4.6?eV for a wide range of compositions. This is attributed to the segregation of Ta at the metal-oxide interface, which is confirmed by XPS depth profile. Overall, the excellent thermal stability and low resistivity makes this alloy system a promising candidate for eliminating work function variation for gate last applications, as compared to crystalline Ta or TiN gates.

  15. Metal hydride differential scanning calorimetry as an approach to compositional determination of mixtures of hydrogen isotopologues and helium

    SciTech Connect (OSTI)

    Robinson, David B.; Luo, Weifang; Cai, Trevor Y.; Stewart, Kenneth D.

    2015-09-26

    Gaseous mixtures of diatomic hydrogen isotopologues and helium are often encountered in the nuclear energy industry and in analytical chemistry. Compositions of stored mixtures can vary due to interactions with storage and handling materials. When tritium is present, it decays to form ions and helium-3, both of which can lead to further compositional variation. Monitoring of composition is typically achieved by mass spectrometry, a method that is bulky and energy-intensive. Mass spectrometers disperse sample material through vacuum pumps, which is especially troublesome if tritium is present. Moreover, our ultimate goal is to create a compact, fast, low-power sensor that can determine composition with minimal gas consumption and waste generation, as a complement to mass spectrometry that can be instantiated more widely. We propose calorimetry of metal hydrides as an approach to this, due to the strong isotope effect on gas absorption, and demonstrate the sensitivity of measured heat flow to atomic composition of the gas. Peak shifts are discernible when mole fractions change by at least 1%. A mass flow restriction results in a unique dependence of the measurement on helium concentration. We present a mathematical model as a first step toward prediction of the peak shapes and positions. The model includes a useful method to compute estimates of phase diagrams for palladium in the presence of arbitrary mixtures of hydrogen isotopologues. As a result, we expect that this approach can be used to deduce unknown atomic compositions from measured calorimetric data over a useful range of partial pressures of each component.

  16. Metal hydride differential scanning calorimetry as an approach to compositional determination of mixtures of hydrogen isotopologues and helium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Robinson, David B.; Luo, Weifang; Cai, Trevor Y.; Stewart, Kenneth D.

    2015-09-26

    Gaseous mixtures of diatomic hydrogen isotopologues and helium are often encountered in the nuclear energy industry and in analytical chemistry. Compositions of stored mixtures can vary due to interactions with storage and handling materials. When tritium is present, it decays to form ions and helium-3, both of which can lead to further compositional variation. Monitoring of composition is typically achieved by mass spectrometry, a method that is bulky and energy-intensive. Mass spectrometers disperse sample material through vacuum pumps, which is especially troublesome if tritium is present. Moreover, our ultimate goal is to create a compact, fast, low-power sensor that canmore » determine composition with minimal gas consumption and waste generation, as a complement to mass spectrometry that can be instantiated more widely. We propose calorimetry of metal hydrides as an approach to this, due to the strong isotope effect on gas absorption, and demonstrate the sensitivity of measured heat flow to atomic composition of the gas. Peak shifts are discernible when mole fractions change by at least 1%. A mass flow restriction results in a unique dependence of the measurement on helium concentration. We present a mathematical model as a first step toward prediction of the peak shapes and positions. The model includes a useful method to compute estimates of phase diagrams for palladium in the presence of arbitrary mixtures of hydrogen isotopologues. As a result, we expect that this approach can be used to deduce unknown atomic compositions from measured calorimetric data over a useful range of partial pressures of each component.« less

  17. Direct synthesis of catalyzed hydride compounds

    DOE Patents [OSTI]

    Gross, Karl J.; Majzoub, Eric

    2004-09-21

    A method is disclosed for directly preparing alkali metal aluminum hydrides such as NaAlH.sub.4 and Na.sub.3 AlH.sub.6 from either the alkali metal or its hydride, and aluminum. The hydride thus prepared is doped with a small portion of a transition metal catalyst compound, such as TiCl.sub.3, TiF.sub.3, or a mixture of these materials, in order to render them reversibly hydridable. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen while heating the mixture to about 125.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

  18. Experimental Design for Evaluation of Co-extruded Refractory Metal/Nickel Base Superalloy Joints

    SciTech Connect (OSTI)

    ME Petrichek

    2005-12-16

    Prior to the restructuring of the Prometheus Program, the NRPCT was tasked with delivering a nuclear space reactor. Potential NRPCT nuclear space reactor designs for the Prometheus Project required dissimilar materials to be in contact with each other while operating at extreme temperatures under irradiation. As a result of the high reactor core temperatures, refractory metals were the primary candidates for many of the reactor structural and cladding components. They included the tantalum-base alloys ASTAR-811C and Ta-10W, the niobium-base alloy FS-85, and the molybdenum base alloys Moly 41-47.5 Rhenium. The refractory metals were to be joined to candidate nickel base alloys such as Haynes 230, Alloy 617, or Nimonic PE 16 either within the core if the nickel-base alloys were ultimately selected to form the outer core barrel, or at a location exterior to the core if the nickel-base alloys were limited to components exterior to the core. To support the need for dissimilar metal joints in the Prometheus Project, a co-extrusion experiment was proposed. There are several potential methods for the formation of dissimilar metal joints, including explosive bonding, friction stir welding, plasma spray, inertia welding, HIP, and co-extrusion. Most of these joining methods are not viable options because they result in the immediate formation of brittle intermetallics. Upon cooling, intermetallics form in the weld fusion zone between the joined metals. Because brittle intermetallics do not form during the initial bonding process associated with HIP, co-extrusion, and explosive bonding, these three joining procedures are preferred for forming dissimilar metal joints. In reference to a Westinghouse Astronuclear Laboratory report done under a NASA sponsored program, joints that were fabricated between similar materials via explosive bonding had strengths that were directly affected by the width of the diffusion barrier. It was determined that the diffusion zone should not exceed a critical thickness (0.0005 in.). A diffusion barrier that exceeded this thickness would likely fail. The joint fabrication method must therefore mechanically bond the two materials causing little or no interdiffusion upon formation. Co-extrusion fits this description since it forms a mechanical joint between two materials by using heat and pressure. The two materials to be extruded are first assembled and sealed within a co-extrusion billet which is subsequently heated and then extruded through a die. For a production application, once the joint is formed, it is dejacketed to remove the outer canister. The remaining piece consists of two materials bonded together with a thin diffusion barrier. Therefore, the long-term stability of the joint is determined primarily by the kinetics of interdiffusion reaction between the two materials. An experimental design for co-extrusion of refractory metals and nickel-based superalloys was developed to evaluate this joining process and determine the long-term stability of the joints.

  19. Method for controlled hydrogen charging of metals

    DOE Patents [OSTI]

    Cheng, Bo-Ching (Fremont, CA); Adamson, Ronald B. (Fremont, CA)

    1984-05-29

    A method for controlling hydrogen charging of hydride forming metals through a window of a superimposed layer of a non-hydriding metal overlying the portion of the hydride forming metals to be charged.

  20. Metal Hydrides- Science Needs

    Broader source: Energy.gov [DOE]

    Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

  1. Complex hydrides for hydrogen storage

    DOE Patents [OSTI]

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  2. Material and Energy Flows Associated with Select Metals in GREET 2. Molybdenum, Platinum, Zinc, Nickel, Silicon

    SciTech Connect (OSTI)

    Benavides, Pahola T.; Dai, Qiang; Sullivan, John L.; Kelly, Jarod C.; Dunn, Jennifer B.

    2015-09-01

    In this work, we analyzed the material and energy consumption from mining to production of molybdenum, platinum, zinc, and nickel. We also analyzed the production of solar- and semiconductor-grade silicon. We described new additions to and expansions of the data in GREET 2. In some cases, we used operating permits and sustainability reports to estimate the material and energy flows for molybdenum, platinum, and nickel, while for zinc and silicon we relied on information provided in the literature.

  3. Schottky barrier height reduction for holes by Fermi level depinning using metal/nickel oxide/silicon contacts

    SciTech Connect (OSTI)

    Islam, Raisul, E-mail: raisul@stanford.edu; Shine, Gautam; Saraswat, Krishna C. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-11-03

    We report the experimental demonstration of Fermi level depinning using nickel oxide (NiO) as the insulator material in metal-insulator-semiconductor (M-I-S) contacts. Using this contact, we show less than 0.1?eV barrier height for holes in platinum/NiO/silicon (Pt/NiO/p-Si) contact. Overall, the pinning factor was improved from 0.08 (metal/Si) to 0.26 (metal/NiO/Si). The experimental results show good agreement with that obtained from theoretical calculation. NiO offers high conduction band offset and low valence band offset with Si. By reducing Schottky barrier height, this contact can be used as a carrier selective contact allowing hole transport but blocking electron transport, which is important for high efficiency in photonic applications such as photovoltaics and optical detectors.

  4. High energy density battery based on complex hydrides

    DOE Patents [OSTI]

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  5. Formation of amorphous metal alloys by chemical vapor deposition

    DOE Patents [OSTI]

    Mullendore, A.W.

    1988-03-18

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures of organometallic compounds and metalloid hydrides,e.g., transition metal carbonyl, such as nickel carbonyl and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit. 1 fig.

  6. Formation of amorphous metal alloys by chemical vapor deposition

    DOE Patents [OSTI]

    Mullendore, Arthur W.

    1990-01-01

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures or organometallic compounds and metalloid hydrides, e.g., transition metal carbonyl such as nickel carbonyl, and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit.

  7. High capacity stabilized complex hydrides for hydrogen storage

    DOE Patents [OSTI]

    Zidan, Ragaiy; Mohtadi, Rana F; Fewox, Christopher; Sivasubramanian, Premkumar

    2014-11-11

    Complex hydrides based on Al(BH.sub.4).sub.3 are stabilized by the presence of one or more additional metal elements or organic adducts to provide high capacity hydrogen storage material.

  8. Zirconium hydride containing explosive composition

    DOE Patents [OSTI]

    Walker, Franklin E.; Wasley, Richard J.

    1981-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.

  9. Hydrogen Storage Properties of New Hydrogen-Rich BH3NH3-Metal Hydride (TiH2, ZrH2, MgH2, and/or CaH2) Composite Systems

    SciTech Connect (OSTI)

    Choi, Young Joon; Xu, Yimin; Shaw, Wendy J.; Ronnebro, Ewa

    2012-04-19

    Ammonia borane (AB = NH3BH3) is one of the most attractive materials for chemical hydrogen storage due to its high hydrogen contents of 19.6 wt.%, however, impurity levels of borazine, ammonia and diborane in conjunction with foaming and exothermic hydrogen release calls for finding ways to mitigate the decomposition reactions. In this paper we present a solution by mixing AB with metal hydrides (TiH2, ZrH2, MgH2 and CaH2) which have endothermic hydrogen release in order to control the heat release and impurity levels from AB upon decomposition. The composite materials were prepared by mechanical ball milling, and their H2 release properties were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The formation of volatile products from decomposition side reactions, such as borazine (N3B3H6) was determined by mass spectrometry (MS). Sieverts type pressure-composition-temperature (PCT) gas-solid reaction instrument was adopted to observe the kinetics of the H2 release reactions of the combined systems and neat AB. In situ 11B MAS-NMR revealed a destabilized decomposition pathway. We found that by adding specific metal hydrides to AB we can eliminate the impurities and mitigate the heat release.

  10. Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia

    SciTech Connect (OSTI)

    Cloud, Andrew N.; Abelson, John R., E-mail: abelson@illinois.edu [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 201 Materials Science and Engineering Building, 1304 W. Green St., Urbana, Illinois 61801 (United States); Davis, Luke M.; Girolami, Gregory S., E-mail: girolami@scs.illinois.edu [School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801 (United States)

    2014-03-15

    Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300?C from three recently synthesized M[N(t-Bu){sub 2}]{sub 2} precursors, where M?=?Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200?C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18?nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities.

  11. Boron hydride polymer coated substrates

    DOE Patents [OSTI]

    Pearson, Richard K.; Bystroff, Roman I.; Miller, Dale E.

    1987-01-01

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  12. Boron hydride polymer coated substrates

    DOE Patents [OSTI]

    Pearson, R.K.; Bystroff, R.I.; Miller, D.E.

    1986-08-27

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  13. Electrochromic nickel oxide simultaneously doped with lithium and a metal dopant

    DOE Patents [OSTI]

    Gillaspie, Dane T; Weir, Douglas G

    2014-04-01

    An electrochromic device comprising a counter electrode layer comprised of lithium metal oxide which provides a high transmission in the fully intercalated state and which is capable of long-term stability, is disclosed. Methods of making an electrochromic device comprising such a counter electrode are also disclosed.

  14. Inert anode containing oxides of nickel, iron and zinc useful for the electrolytic production of metals

    DOE Patents [OSTI]

    Ray, Siba P.; Weirauch, Jr., Douglas A.; Liu, Xinghua

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  15. Inert anode containing oxides of nickel iron and cobalt useful for the electrolytic production of metals

    DOE Patents [OSTI]

    Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and CoO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and CoO: 0.15 to 0.99 NiO; 0.0001 to 0.85 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.45 CoO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  16. Electrochromic Nickel Oxide Simultaneously Doped with Lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrochromic Nickel Oxide Simultaneously Doped with Lithium and a Metal Dopant National ... quantity of charge balancing lithium ions per unit area, which may be ...

  17. ELECTROCHROMIC NICKEL OXIDE SIMULTANEOUSLY DOPED WITH LITHIUM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Events Return to Search ELECTROCHROMIC NICKEL OXIDE SIMULTANEOUSLY DOPED WITH LITHIUM AND A METAL DOPANT United States Patent Application *** PATENT GRANTED ***...

  18. Mechanochemical processing for metals and metal alloys

    DOE Patents [OSTI]

    Froes, Francis H.; Eranezhuth, Baburaj G.; Prisbrey, Keith

    2001-01-01

    A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

  19. Chemical Hydride Slurry for Hydrogen Production and Storage

    SciTech Connect (OSTI)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston University have demonstrated the technical viability of the process and have provided data for the cost analyses that have been performed. We also concluded that a carbothermic process could also produce magnesium at acceptable costs. The use of slurry as a medium to carry chemical hydrides has been shown during this project to offer significant advantages for storing, delivering, and distributing hydrogen: • Magnesium hydride slurry is stable for months and pumpable. • The oils of the slurry minimize the contact of oxygen and moisture in the air with the metal hydride in the slurry. Thus reactive chemicals, such as lithium hydride, can be handled safely in the air when encased in the oils of the slurry. • Though magnesium hydride offers an additional safety feature of not reacting readily with water at room temperatures, it does react readily with water at temperatures above the boiling point of water. Thus when hydrogen is needed, the slurry and water are heated until the reaction begins, then the reaction energy provides heat for more slurry and water to be heated. • The reaction system can be relatively small and light and the slurry can be stored in conventional liquid fuel tanks. When transported and stored, the conventional liquid fuel infrastructure can be used. • The particular metal hydride of interest in this project, magnesium hydride, forms benign byproducts, magnesium hydroxide (“Milk of Magnesia”) and magnesium oxide. • We have estimated that a magnesium hydride slurry system (including the mixer device and tanks) could meet the DOE 2010 energy density goals. During the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering hydrogen. Further evaluation and development of this concept will be performed as follow-on work under another project. However, since the cost of reducing magnesium from magnesium oxide makes up 85% of the cost of the slurry, if hydrogen can be stored many times in the slurry, then the cost of storing hydrogen can be spread over many units of hydrogen and can be significantly reduced from the costs of a chemical hydride system. This may be the most important finding of this project. If the slurry is used to carry a rechargeable hydride, the slurry can be stored in a conventional liquid fuel tank and delivered to a release system as hydrogen is needed. The release system will contain only the hydride needed to produce the hydrogen desired. This is in contrast to conventional designs proposed for other rechargeable hydride systems that store all the hydride in a large and heavy pressure and heat transfer vessel.

  20. Erbium hydride decomposition kinetics.

    SciTech Connect (OSTI)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  1. Microstructure, Phase Formation, and Stress of Reactively-Deposited Metal

    Office of Scientific and Technical Information (OSTI)

    Hydride Thin Films (Technical Report) | SciTech Connect Microstructure, Phase Formation, and Stress of Reactively-Deposited Metal Hydride Thin Films Citation Details In-Document Search Title: Microstructure, Phase Formation, and Stress of Reactively-Deposited Metal Hydride Thin Films This document summarizes research of reactively deposited metal hydride thin films and their properties. Reactive deposition processes are of interest, because desired stoichiometric phases are created in a

  2. Nickel/ruthenium catalyst and method for aqueous phase reactions

    DOE Patents [OSTI]

    Elliott, Douglas C.; Sealock, John L.

    1998-01-01

    A method of hydrogenation using a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional ruthenium metal deposited onto the support in a second dispersed phase. The additional ruthenium metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase thereby increasing the life time of the catalyst during hydrogenation reactions.

  3. Hydride Rim Formation in Unirradiated Zircaloy

    Broader source: Energy.gov [DOE]

    The purpose of this work is to develop the means of pre-hydriding unirradiated Zircaloy cladding such that a high concentration, or rim, of hydrides is formed at the cladding outside diameter.

  4. Photogeneration of Hydride Donors and Their Use Toward CO2 Reduction

    SciTech Connect (OSTI)

    Fujita,E.; Muckerman, J.T.; Polyansky, D.E.

    2009-06-07

    Despite substantial effort, no one has succeeded in efficiently producing methanol from CO2 using homogeneous photocatalytic systems. We are pursuing reaction schemes based on a sequence of hydride-ion transfers to carry out stepwise reduction of CO2 to methanol. We are using hydride-ion transfer from photoproduced C-H bonds in metal complexes with bio-inspired ligands (i.e., NADH-like ligands) that are known to store one proton and two electrons.

  5. Vanadium hydride deuterium-tritium generator

    DOE Patents [OSTI]

    Christensen, Leslie D.

    1982-01-01

    A pressure controlled vanadium hydride gas generator to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

  6. Method of producing a chemical hydride

    DOE Patents [OSTI]

    Klingler, Kerry M.; Zollinger, William T.; Wilding, Bruce M.; Bingham, Dennis N.; Wendt, Kraig M.

    2007-11-13

    A method of producing a chemical hydride is described and which includes selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of a hydrocarbon; and reacting the composition with the source of the hydrocarbon to generate a chemical hydride.

  7. Nickel aluminide alloys with improved weldability

    DOE Patents [OSTI]

    Santella, Michael L.; Goodwin, Gene M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys.

  8. Nickel aluminide alloys with improved weldability

    DOE Patents [OSTI]

    Santella, M.L.; Goodwin, G.M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys. 5 figs.

  9. A new phase in palladium hydride technology

    SciTech Connect (OSTI)

    Walters, R.T.

    1991-12-31

    Two plateaux are observed in both the absorption and desorption isotherms of palladium hydride. For the absorption isotherm, a change in plateau pressure is observed at a hydrogen-to-metal (H/M) ratio of about 0.35 for all temperatures studied. For the desorption isotherm, the change in plateau pressure appears to be a function of temperature, ranging from an H/M ratio of 0.18 at 80{degrees}C to 0.3 at 140{degrees}C. These data are interpreted as being experimentally observed boundaries to an equilibrium phase line located in the miscibility gap of the palladium/hydrogen phase diagram. This new phase does not appear to be a stoichiometric compounds, but rather its composition seems to vary with temperature. 6 refs., 4 figs.

  10. A new phase in palladium hydride technology

    SciTech Connect (OSTI)

    Walters, R.T.

    1991-01-01

    Two plateaux are observed in both the absorption and desorption isotherms of palladium hydride. For the absorption isotherm, a change in plateau pressure is observed at a hydrogen-to-metal (H/M) ratio of about 0.35 for all temperatures studied. For the desorption isotherm, the change in plateau pressure appears to be a function of temperature, ranging from an H/M ratio of 0.18 at 80{degrees}C to 0.3 at 140{degrees}C. These data are interpreted as being experimentally observed boundaries to an equilibrium phase line located in the miscibility gap of the palladium/hydrogen phase diagram. This new phase does not appear to be a stoichiometric compounds, but rather its composition seems to vary with temperature. 6 refs., 4 figs.

  11. The Hydriding Kinetics of Organic Hydrogen Getters

    SciTech Connect (OSTI)

    Powell, G. L.

    2002-02-11

    The aging of hermetically sealed systems is often accompanied by the gradual production of hydrogen gas that is a result of the decay of environmental gases and the degradation of organic materials. In particular, the oxygen, water, hydrogen ''equilibrium'' is affected by the removal of oxygen due the oxidation of metals and organic materials. This shift of the above ''equilibrium'' towards the formation of hydrogen gas, particularly in crevices, may eventually reach an explosive level of hydrogen gas or degrade metals by hydriding them. The latter process is generally delayed until the oxidizing species are significantly reduced. Organic hydrogen getters introduced by Allied Signal Aerospace Company, Kansas City Division have proven to be a very effective means of preventing hydrogen gas accumulation in sealed containers. These getters are relatively unaffected by air and environmental gases. They can be packaged in a variety of ways to fit particular needs such as porous pellets, fine or coarse [gravel] powder, or loaded into silicone rubber. The hydrogen gettering reactions are extremely irreversible since the hydrogen gas is converted into an organic hydrocarbon. These getters are based on the palladium-catalyzed hydrogenation of triple bonds to double and then single bonds in aromatic aryl compounds. DEB (1,4 bis (phenyl ethynyl) benzene) typically mixed with 25% by weight carbon with palladium (1% by weight of carbon) is one of the newest and best of these organic hydrogen getters. The reaction mechanisms are complex involving solid state reaction with a heterogeneous catalyst leading to the many intermediates, including mixed alkyl and aryl hydrocarbons with the possibilities of many isomers. The reaction kinetics mechanisms are also strongly influenced by the form in which they are packaged. For example, the hydriding rates for pellets and gravel have a strong dependence on reaction extent (i.e., DEB reduction) and a kinetic order in pressure of 0.76. Silicone rubber based DEB getters hydride at a much lower rate, have little dependence on reaction extent, have a higher kinetic order in pressure (0.87), and have a lower activation energy. The kinetics of the reaction as a function of hydrogen pressure, stoichiometry, and temperature for hydrogen and deuterium near ambient temperature (0 to 75 C) for pressures near or below 100 Pa over a wide range (in some cases, the complete) hydrogenation range are presented along with multi-dimensional rate models.

  12. DOE Metal Hydride Center of Excellence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  13. Electrochromic nickel oxide simultaneously doped with lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Like This Return to Search Electrochromic nickel oxide simultaneously doped with lithium and a metal dopant United States Patent Patent Number: 8,687,261 Issued: April 1,...

  14. Vanadium hydride deuterium-tritium generator

    DOE Patents [OSTI]

    Christensen, L.D.

    1980-03-13

    A pressure controlled vanadium hydride gas generator was designed to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

  15. ELECTRODEPOSITION OF NICKEL ON URANIUM

    DOE Patents [OSTI]

    Gray, A.G.

    1958-08-26

    A method is described for preparing uranium objects prior to nickel electroplating. The process consiats in treating the surface of the uranium with molten ferric chloride hexahydrate, at a slightiy elevated temperature. This treatment etches the metal surface providing a structure suitable for the application of adherent electrodeposits and at the same time plates the surface with a thin protective film of iron.

  16. Igniter containing titanium hydride and potassium perchlorate

    DOE Patents [OSTI]

    Dietzel, Russel W.; Leslie, William B.

    1976-01-01

    An explosive device is described which employs a particular titanium hydride-potassium perchlorate composition directly ignitible by an electrical bridgewire.

  17. Activated Aluminum Hydride Hydrogen Storage Compositions - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Startup America Startup America Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Activated Aluminum Hydride Hydrogen Storage Compositions...

  18. NICKEL COATED URANIUM ARTICLE

    DOE Patents [OSTI]

    Gray, A.G.

    1958-10-01

    Nickel coatings on uranium and various methods of obtaining such coatings are described. Specifically disclosed are such nickel or nickel alloy layers as barriers between uranium and aluminum- silicon, chromium, or copper coatings.

  19. Investigation of Cracked Lithium Hydride Reactor Vessels

    SciTech Connect (OSTI)

    bird, e.l.; mustaleski, t.m.

    1999-06-01

    Visual examination of lithium hydride reactor vessels revealed cracks that were adjacent to welds, most of which were circumferentially located in the bottom portion of the vessels. Sections were cut from the vessels containing these cracks and examined by use of the metallograph, scanning electron microscope, and microprobe to determine the cause of cracking. Most of the cracks originated on the outer surface just outside the weld fusion line in the base material and propagated along grain boundaries. Crack depths of those examined sections ranged from {approximately}300 to 500 {micro}m. Other cracks were reported to have reached a maximum depth of 1/8 in. The primary cause of cracking was the creation of high tensile stresses associated with the differences in the coefficients of thermal expansion between the filler metal and the base metal during operation of the vessel in a thermally cyclic environment. This failure mechanism could be described as creep-type fatigue, whereby crack propagation may have been aided by the presence of brittle chromium carbides along the grain boundaries, which indicates a slightly sensitized microstructure.

  20. Kinetics of hydride front in Zircaloy-2 and H release from a fractional hydrided surface

    SciTech Connect (OSTI)

    Diaz, M.; Gonzalez-Gonzalez, A.; Moya, J. S.; Remartinez, B.; Perez, S.; Sacedon, J. L.

    2009-07-15

    The authors study the hydriding process on commercial nuclear fuel claddings from their inner surface using an ultrahigh vacuum method. The method allows determining the incubation and failure times of the fuel claddings, as well as the dissipated energy and the partial pressure of the desorbed H{sub 2} from the outer surface of fuel claddings during the hydriding process. The correlation between the hydriding dissipated energy and the amount of zirconium hydride (formed at different stages of the hydriding process) leads to a near t{sup 1/2} potential law corresponding to the time scaling of the reaction for the majority of the tested samples. The calibrated relation between energy and hydride thickness allows one to calculate the enthalpy of the {delta}-ZrH{sub 1.5} phase. The measured H{sub 2} desorption from the external surface is in agreement with a proposed kinetic desorption model from the hydrides precipitated at the surface.

  1. Internal hydriding in irradiated defected Zircaloy fuel rods: A review (LWBR Development Program)

    SciTech Connect (OSTI)

    Clayton, J C

    1987-10-01

    Although not a problem in recent commercial power reactors, including the Shippingport Light Water Breeder Reactor, internal hydriding of Zircaloy cladding was a persistent cause of gross cladding failures during the 1960s. It occurred in the fuel rods of water-cooled nuclear power reactors that had a small cladding defect. This report summarizes the experimental findings, causes, mechanisms, and methods of minimizing internal hydriding in defected Zircaloy-clad fuel rods. Irradiation test data on the different types of defected fuel rods, intentionally fabricated defected and in-pile operationally defected rods, are compared. Significant factors affecting internal hydriding in defected Zircaloy-clad fuel rods (defect hole size, internal and external sources of hydrogen, Zircaloy cladding surface properties, nickel alloy contamination of Zircaloy, the effect of heat flux and fluence) are discussed. Pertinent in-pile and out-of-pile test results from Bettis and other laboratories are used as a data base in constructing a qualitative model which explains hydrogen generation and distribution in Zircaloy cladding of defected water-cooled reactor fuel rods. Techniques for minimizing internal hydride failures in Zircaloy-clad fuel rods are evaluated.

  2. Hydrogen-storing hydride complexes

    DOE Patents [OSTI]

    Srinivasan, Sesha S.; Niemann, Michael U.; Goswami, D. Yogi; Stefanakos, Elias K.

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  3. From carbon nanobells to nickel nanotubes

    SciTech Connect (OSTI)

    Ma, S.; Srikanth, V. V. S. S.; Maik, D.; Zhang, G. Y.; Staedler, T.; Jiang, X.

    2009-01-05

    A generic strategy is proposed to prepare one dimensional (1D) metallic nanotubes by using 1D carbon nanostructures as the initial templates. Following the strategy, nickel (Ni) nanotubes are prepared by using carbon nanobells (CNBs) as the initial templates. CNBs are first prepared by microwave plasma enhanced chemical vapor deposition technique. Carbon/nickel core/shell structures are then prepared by electroplating the CNBs in a nickel-Watts electrolytic cell. In the final step, the carbon core is selectively removed by employing hydrogen plasma etching to obtain Ni nanotubes. The mechanism leading to Ni nanotubes is briefly discussed.

  4. Titanium tritide radioisotope heat source development : palladium-coated titanium hydriding kinetics and tritium loading tests.

    SciTech Connect (OSTI)

    Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom

    2012-01-01

    We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

  5. Regeneration of Aluminum Hydride - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regeneration of Aluminum Hydride Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Regeneration of Lithium Aluminum Hydride (919 KB) Technology Marketing Summary Alane is one of the most promising solutions to storing hydrogen for use in hydrogen fuel cells. This technology provides exceptional improvement in solving the difficult problem of economically preparing the material. Description Describes methods and materials required for the

  6. Welding procedure specification. Supplement 1. Records of procedure qualification tests. Gas tungsten arc welding of nickel to nickel-copper

    SciTech Connect (OSTI)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1986-06-01

    Procedure WPS-2301-ASME-3 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of nickel, NO2200 or NO2201 (P-41) to nickel-copper NO4400 (P-42), in thickness range 0.035 to 0.432 inch; filler metal is ERNiCu-7 (F-42); shielding gas is argon.

  7. Platinum-ruthenium-nickel alloy for use as a fuel cell catalyst

    DOE Patents [OSTI]

    Gorer, Alexander

    2003-01-01

    An improved noble metal alloy composition for a fuel cell catalyst, the alloy containing platinum, ruthenium, and nickel. The alloy shows methanol oxidation activity.

  8. Platinum-ruthenium-nickel alloy for use as a fuel cell catalyst

    DOE Patents [OSTI]

    Gorer, Alexander

    2004-04-20

    An improved noble metal alloy composition for a fuel cell catalyst, the alloy containing platinum, ruthenium, and nickel. The alloy shows methanol oxidation activity.

  9. Method for converting uranium oxides to uranium metal

    DOE Patents [OSTI]

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  10. Porous metallic bodies

    DOE Patents [OSTI]

    Landingham, R.L.

    1984-03-13

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  11. Structural transformation of nickel hydroxide films during anodic oxidation

    SciTech Connect (OSTI)

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  12. Structural and electrochemical properties of nanostructured nickel silicides by reduction and silicification of high-surface-area nickel oxide

    SciTech Connect (OSTI)

    Chen, Xiao [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Zhang, Bingsen [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany)] [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany); Li, Chuang; Shao, Zhengfeng [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Su, Dangsheng [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany)] [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany); Williams, Christopher T. [Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina (United States)] [Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina (United States); Liang, Changhai, E-mail: changhai@dlut.edu.cn [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2012-03-15

    Graphical abstract: Nanostructured nickel silicides have been synthesized by reduction and silification of high-surface-area nickel oxide, and exhibited remarkably like-noble metal property, lower electric resistivity, and ferromagnetism at room temperature. Highlights: Black-Right-Pointing-Pointer NiSi{sub x} have been prepared by reduction and silification of high-surface-area NiO. Black-Right-Pointing-Pointer The structure of nickel silicides changed with increasing reaction temperature. Black-Right-Pointing-Pointer Si doping into nickel changed the magnetic properties of metallic nickel. Black-Right-Pointing-Pointer NiSi{sub x} have remarkably lower electric resistivity and like-noble metal property. -- Abstract: Nanostructured nickel silicides have been prepared by reduction and silicification of high-surface-area nickel oxide (145 m{sup 2} g{sup -1}) produced via precipitation. The prepared materials were characterized by nitrogen adsorption, X-ray diffraction, thermal analysis, FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, magnetic and electrochemical measurements. The nickel silicide formation involves the following sequence: NiO (cubic) {yields} Ni (cubic) {yields} Ni{sub 2}Si (orthorhombic) {yields} NiSi (orthorhombic) {yields} NiSi{sub 2} (cubic), with particles growing from 13.7 to 21.3 nm. The nickel silicides are ferromagnetic at room temperature, and their saturation magnetization values change drastically with the increase of Si content. Nickel silicides have remarkably low electrical resistivity and noble metal-like properties because of a constriction of the Ni d band and an increase of the electronic density of states. The results suggest that such silicides are promising candidates as inexpensive yet functional materials for applications in electrochemistry as well as catalysis.

  13. Welding studies of nickel aluminide and nickel-iron aluminides

    SciTech Connect (OSTI)

    Santella, M.L.; David, S.A.; Horton, J.A.; White, C.L.; Liu, C.T.

    1985-08-01

    Because welding is often used during the fabrication of structural components, one of the key issues in the development of nickel aluminides and nickel-iron aluminides for engineering applications is their weldability. The goals of this study were to characterize weldment microstructures and to identify some of the factors controlling weldability of ductile Ni/sub 3/Al alloys. The alloys used in this initial study were Ni/sub 3/Al containing 500 wppm boron and Ni/sub 3/Al containing 10 at. % iron and either 500 wppm or 20 wppm boron. Full-penetration autogenous welds were made in sheet shock by the electron beam (EB) and gas tungsten arc (GTA) processes. The main process variables were travel speed and preheat. The as-welded coupons were examined visually and in detail by the usual optical and electron metallographic methods. Weldments of boron-doped Ni/sub 3/Al were composed of nearly 100% ordered ..gamma..' phase. Weldments of the nickel-iron aluminides were ..gamma..' + ..beta..' phase mixtures, with martensitic ..beta..' distributed interdendritically in the fusion zone and decorating grain boundaries in the heat-affected zone. All welds made in this particular boron-doped Ni/sub 3/Al alloy contained cracks. Weldability improved with the addition of iron, and defect-free welds were made in the nickel-iron aluminides by both EB and GTA welding. Nevertheless, the iron-containing alloys were susceptible to cracking, and their weldability was affected by boron concentration, welding speed, and (for GTA) gas shielding. Defect-free welds were found to have good tensile properties relative to those of the base metal. 34 refs., 17 figs., 2 tabs.

  14. Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOE Patents [OSTI]

    Draper, Robert; Prevish, Thomas; Bronson, Angela; George, Raymond A.

    2007-01-02

    A solid oxide fuel assembly is made, wherein rows (14, 25) of fuel cells (17, 19, 21, 27, 29, 31), each having an outer interconnection (20) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh member (22) between each row of cells, the corrugated mesh (22) having top crown portions and bottom portions, where the top crown portion (40) have a top bonded open cell nickel foam (51) which contacts outer interconnections (20) of the fuel cells, said mesh and nickel foam electrically connecting each row of fuel cells, and where there are no more metal felt connections between any fuel cells.

  15. Ductility Evaluation of As-Hydrided and Hydride Reoriented Zircaloy-4 Cladding under Simulated Dry-Storage Condition

    SciTech Connect (OSTI)

    Yan, Yong; Plummer, Lee K; Ray, Holly B; Cook, Tyler S; Bilheux, Hassina Z

    2014-01-01

    Pre-storage drying-transfer operations and early stage storage expose cladding to higher temperatures and much higher pressure-induced tensile hoop stresses relative to normal operation in-reactor and pool storage under these conditions. Radial hydrides could precipitate during slow cooling and provide an additional embrittlement mechanism as the cladding temperature decreases below the ductile-to-brittle transition temperature. As a means of simulating this behavior, unirradiated hydrided Zircaloy-4 samples were fabricated by a gas charging method to levels that encompass the range of hydrogen concentrations observed in current used fuel. Mechanical testing was carried out by the ring compression test (RCT) method at various temperatures to evaluate the sample s ductility for both as-hydrided and post-hydride reorientation treated specimens. As-hydrided samples with higher hydrogen concentration (>800 ppm) resulted in lower strain before fracture and reduced maximum load. Increasing RCT temperatures resulted in increased ductility of the as-hydrided cladding. A systematic radial hydride treatment was conducted at various pressures and temperatures for the hydrided samples with H content around 200 ppm. Following the radial hydride treatment, RCTs on the hydride reoriented samples were conducted and exhibited lower ductility compared to as-hydrided samples.

  16. Empirical and physics based mathematical models of uranium hydride decomposition kinetics with quantified uncertainties.

    SciTech Connect (OSTI)

    Salloum, Maher N.; Gharagozloo, Patricia E.

    2013-10-01

    Metal particle beds have recently become a major technique for hydrogen storage. In order to extract hydrogen from such beds, it is crucial to understand the decomposition kinetics of the metal hydride. We are interested in obtaining a a better understanding of the uranium hydride (UH3) decomposition kinetics. We first developed an empirical model by fitting data compiled from different experimental studies in the literature and quantified the uncertainty resulting from the scattered data. We found that the decomposition time range predicted by the obtained kinetics was in a good agreement with published experimental results. Secondly, we developed a physics based mathematical model to simulate the rate of hydrogen diffusion in a hydride particle during the decomposition. We used this model to simulate the decomposition of the particles for temperatures ranging from 300K to 1000K while propagating parametric uncertainty and evaluated the kinetics from the results. We compared the kinetics parameters derived from the empirical and physics based models and found that the uncertainty in the kinetics predicted by the physics based model covers the scattered experimental data. Finally, we used the physics-based kinetics parameters to simulate the effects of boundary resistances and powder morphological changes during decomposition in a continuum level model. We found that the species change within the bed occurring during the decomposition accelerates the hydrogen flow by increasing the bed permeability, while the pressure buildup and the thermal barrier forming at the wall significantly impede the hydrogen extraction.

  17. High Resolution Neutron Radiography and Tomography of Hydrided Zircaloy-4 Cladding Materials

    SciTech Connect (OSTI)

    Smith, Tyler S; Bilheux, Hassina Z; Ray, Holly B; Bilheux, Jean-Christophe; Yan, Yong

    2015-01-01

    Neutron radiography for hydrogen analysis was performed with several Zircaloy-4 cladding samples with controlled hydrogen concentrations up to 1100 ppm. Hydrogen charging was performed in a process tube that was heated to facilitate hydrogen absorption by the metal. A correlation between the hydrogen concentration in the hydrided tubes and the neutron intensity was established, by which hydrogen content can be determined precisely in a small area (55 m x 55 m). Radiography analysis was also performed to evaluate the heating rate and its correlation with the hydrogen distribution through hydrided materials. In addition to radiography analysis, tomography experiments were performed on Zircaloy-4 tube samples to study the local hydrogen distribution. Through tomography analysis a 3D reconstruction of the tube was evaluated in which an uneven hydrogen distribution in the circumferential direction can be observed.

  18. Regeneration of aluminum hydride - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    268,288 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Regeneration of aluminum hydride United

  19. The Role of Impurities in the Complex Hydrides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Predicted hydride destablization as a function of particle size, using the Wulff construction Kim, et al., Nanotechnology, 20, 204001 (2009) Benefits of Nanoconfinement * Improves ...

  20. Documentation of Hybrid Hydride Model for Incorporation into...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    into Moose-Bison and Validation Strategy Documentation of Hybrid Hydride Model for Incorporation into Moose-Bison and Validation Strategy This report documents the ...

  1. Complex Hydrides-A New Frontier for Future Energy Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physics and chemistry of complex hydrides, X-ray diffraction (XRD), high-resolution solid-state nuclear magnetic resonance (NMR), electron microscopy, and first-principles...

  2. Neutron Irradiation of Hydrided Cladding Material in HFIR Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (HFIR). Irradiation of the capsules was conducted for post-irradiation examination (PIE) metallography. PDF icon Neutron Irradiation of Hydrided Cladding Material in HFIR...

  3. Ductile tungsten-nickel-alloy and method for manufacturing same

    DOE Patents [OSTI]

    Ludwig, Robert L.

    1978-01-01

    The tensile elongation of a tungsten-nickel-iron alloy containing essentially 95 weight percent reprocessed tungsten, 3.5 weight percent nickel, and 1.5 weight percent iron is increased from a value of less than about 1 percent up to about 23 percent by the addition of less than 0.5 weight percent of a reactive metal consisting of niobium and zirconium.

  4. Steve Kevan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Steps to Commercialization: Nickel Metal Hydride Batteries Steps to Commercialization: Nickel Metal Hydride Batteries October 17, 2011 - 10:42am Addthis Steps to Commercialization: Nickel Metal Hydride Batteries Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs How does it work? Through licensing and collaborative work, Energy Department-sponsored research can yield great economic benefits and help bring important new products to market. The

  5. Highly Concentrated Palladium Hydrides/Deuterides; Theory

    SciTech Connect (OSTI)

    Papaconstantopoulos, Dimitrios

    2013-11-26

    Accomplishments are reported in these areas: tight-binding molecular dynamics study of palladium; First-principles calculations and tight-binding molecular dynamics simulations of the palladium-hydrogen system; tight-binding studies of bulk properties and hydrogen vacancies in KBH{sub 4}; tight-binding study of boron structures; development of angular dependent potentials for Pd-H; and density functional and tight-binding calculations for the light-hydrides NaAlH4 and NaBH4

  6. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    SciTech Connect (OSTI)

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ≥ 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ≥ 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space between alkaline metal hydrides (AmH), Alkaline earth metal hydrides (AeH2), alane (AlH3), transition metal (Tm) hydrides (TmHz, where z=1-3) and molecular hydrogen (H2). The effort started first with variations of known alanates and subsequently extended the search to unknown compounds. In this stage, the FPM techniques were developed and validated on known alanate materials such as NaAlH4 and Na2LiAlH6. The coupled predictive methodologies were used to survey over 200 proposed phases in six quaternary spaces, formed from various combinations of Na, Li Mg and/or Ti with Al and H. A wide range of alanate compounds was examined using SSP having additions of Ti, Cr, Co, Ni and Fe. A number of compositions and reaction paths were identified having H weight fractions up to 5.6 wt %, but none meeting the 7.5 wt%H reversible goal. Similarly, MSP of alanates produced a number of interesting compounds and general conclusions regarding reaction behavior of mixtures during processing, but no alanate based candidates meeting the 7.5 wt% goal. A novel alanate, LiMg(AlH4)3, was synthesized using SBP that demonstrated a 7.0 wt% capacity with a desorption temperature of 150°C. The deuteride form was synthesized and characterized by the Institute for Energy (IFE) in Norway to determine its crystalline structure for related FPM studies. However, the reaction exhibited exothermicity and therefore was not reversible under acceptable hydrogen gas pressures for on-board recharging. After the extensive studies of alanates, the material class of emphasis was shifted to borohydrides. Through SBP, several ligand-stabilized Mg(BH4)2 complexes were synthesized. The Mg(BH4)2*2NH3 complex was found to change behavior with slightly different synthesis conditions and/or aging. One of the two mechanisms was an amine-borane (NH3BH3) like dissociation reaction which released up to 16 wt %H and more conservatively 9 wt%H when not including H2 released from the NH3. From FPM, the stability of the Mg(BH4)2*2NH3 compound was found to increase with the inclusion of NH3 groups in the inner-Mg coordination sphere, which in turn correlated with lowering the dimensionality of the Mg(BH4)2 network. Development of various Ak Tm-B-H compounds using SSP produced up to 12 wt% of H2 desorbed at temperatures of 400°C. However, the most active material can only be partially recharged to 2 wt% H2 at 220-300°C and 195 bar H2 pressure due to stable product formation. While gravimetric & volumetric targets are feasible, reversibility remains a persistent challenge.

  7. Results of NDE Technique Evaluation of Clad Hydrides

    SciTech Connect (OSTI)

    Dennis C. Kunerth

    2014-09-01

    This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used to detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of contributing parameters. These contributing factors need to be recognized and a means to control them or separate their contributions will be required to obtain the desired information.

  8. In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed

    SciTech Connect (OSTI)

    Klein, J.E.

    2005-07-15

    A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains on internal 'U-tube' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds.IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95% confidence level were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory.Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM.Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests.

  9. In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed

    SciTech Connect (OSTI)

    KLEIN, JAMES

    2004-10-12

    A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains an internal ''U-tube'' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds. IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95 percent confidence level were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory. Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM. Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests.

  10. Duracell | Open Energy Information

    Open Energy Info (EERE)

    search Name: Duracell Product: Alkaline batteries manufacturer. Also markets primary lithium and zinc air batteries as well as rechargeable nickel-metal hydride batteries....

  11. Electro Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    storage systems and solutions based on Bipolar Nickel Metal Hydride, Bipolar Lithium Ion and Super Ni-Cd Prismatic technologies. Coordinates: 46.00689, -92.373344...

  12. Study Finds DOE-Funded Research in Energy Storage Provides a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in nickel metal hydride and lithium-ion batteries are critical to these developments. ... establish successes with advanced batteries for hybrid and electric vehicle applications. ...

  13. NICKEL-BASE ALLOY

    DOE Patents [OSTI]

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  14. Electronic structure and crystal phase stability of palladium hydrides

    SciTech Connect (OSTI)

    Houari, Abdesalem; Matar, Samir F.; Eyert, Volker

    2014-11-07

    The results of electronic structure calculations for a variety of palladium hydrides are presented. The calculations are based on density functional theory and used different local and semilocal approximations. The thermodynamic stability of all structures as well as the electronic and chemical bonding properties are addressed. For the monohydride, taking into account the zero-point energy is important to identify the octahedral Pd-H arrangement with its larger voids and, hence, softer hydrogen vibrational modes as favorable over the tetrahedral arrangement as found in the zincblende and wurtzite structures. Stabilization of the rocksalt structure is due to strong bonding of the 4d and 1s orbitals, which form a characteristic split-off band separated from the main d-band group. Increased filling of the formerly pure d states of the metal causes strong reduction of the density of states at the Fermi energy, which undermines possible long-range ferromagnetic order otherwise favored by strong magnetovolume effects. For the dihydride, octahedral Pd-H arrangement as realized, e.g., in the pyrite structure turns out to be unstable against tetrahedral arrangement as found in the fluorite structure. Yet, from both heat of formation and chemical bonding considerations, the dihydride turns out to be less favorable than the monohydride. Finally, the vacancy ordered defect phase Pd{sub 3}H{sub 4} follows the general trend of favoring the octahedral arrangement of the rocksalt structure for Pd:H ratios less or equal to one.

  15. Electronic structure of metallic glasses

    SciTech Connect (OSTI)

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (..delta..H) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides.

  16. Designation of Sites for Remedial Action - Metal Hydrides, Beverly...

    Office of Legacy Management (LM)

    This approach was used for some of the contamination at Gilman Hall, Berkeley, California, and the University of Chicago, Chicago, Illinois. However, there may be other areas of ...

  17. Proposed Virtual Center for Excellence for Metal Hydride Development

    Broader source: Energy.gov [DOE]

    Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

  18. Final Report for the DOE Metal Hydride Center of Excellence

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Materials from Project A: Destabilized Materials ... Hoff average) and theory values (blue line). ......Advanced transmission electron microscopy ...

  19. Reversible Metal Hydride Thermal Energy Storage for High Temperature Power

    Broader source: Energy.gov (indexed) [DOE]

    R&D Program Investments | Department of Energy presents the findings from a retrospective economic analysis of technology development supported by the U.S. Department of Energy's (DOE) Geothermal Technologies Program (GTP) in DOE's Office of Energy Efficiency and Renewable Energy (EERE). The purpose of this study is to estimate the "public" return on investment (EERE GTP's return on investment to the nation) by comparing historical economic activity with GTP's investment to

  20. Isotope exchange kinetics in metal hydrides I : TPLUG model.

    SciTech Connect (OSTI)

    Larson, Rich; James, Scott Carlton; Nilson, Robert H.

    2011-05-01

    A one-dimensional isobaric reactor model is used to simulate hydrogen isotope exchange processes taking place during flow through a powdered palladium bed. This simple model is designed to serve primarily as a platform for the initial development of detailed chemical mechanisms that can then be refined with the aid of more complex reactor descriptions. The one-dimensional model is based on the Sandia in-house code TPLUG, which solves a transient set of governing equations including an overall mass balance for the gas phase, material balances for all of the gas-phase and surface species, and an ideal gas equation of state. An energy equation can also be solved if thermodynamic properties for all of the species involved are known. The code is coupled with the Chemkin package to facilitate the incorporation of arbitrary multistep reaction mechanisms into the simulations. This capability is used here to test and optimize a basic mechanism describing the surface chemistry at or near the interface between the gas phase and a palladium particle. The mechanism includes reversible dissociative adsorptions of the three gas-phase species on the particle surface as well as atomic migrations between the surface and the bulk. The migration steps are more general than those used previously in that they do not require simultaneous movement of two atoms in opposite directions; this makes possible the creation and destruction of bulk vacancies and thus allows the model to account for variations in the bulk stoichiometry with isotopic composition. The optimization code APPSPACK is used to adjust the mass-action rate constants so as to achieve the best possible fit to a given set of experimental data, subject to a set of rigorous thermodynamic constraints. When data for nearly isothermal and isobaric deuterium-to-hydrogen (D {yields} H) and hydrogen-to-deuterium (H {yields} D) exchanges are fitted simultaneously, results for the former are excellent, while those for the latter show pronounced deviations at long times. These discrepancies can be overcome by postulating the presence of a surface poison such as carbon monoxide, but this explanation is highly speculative. When the method is applied to D {yields} H exchanges intentionally poisoned by known amounts of CO, the fitting results are noticeably degraded from those for the nominally CO-free system but are still tolerable. When TPLUG is used to simulate a blowdown-type experiment, which is characterized by large and rapid changes in both pressure and temperature, discrepancies are even more apparent. Thus, it can be concluded that the best use of TPLUG is not in simulating realistic exchange scenarios, but in extracting preliminary estimates for the kinetic parameters from experiments in which variations in temperature and pressure are intentionally minimized.

  1. Two plateaux for palladium hydride and the effect of helium from tritium decay on the desorption plateau pressure for palladium tritide

    SciTech Connect (OSTI)

    Walters, R.T.; Lee, M.W. )

    1991-10-01

    Two plateaux are observed in the desorption isotherm for palladium hydride: a lower plateau pressure for a hydrogen/metal atom ratio (H/M) less than about 0.3 and a slightly higher plateau pressure for H/M greater than about 0.3. This higher pressure corresponds to the reported pressure for palladium hydride. These observations were made for a large surface area palladium powder exposed to both protium and tritium. Helium buildup form tritium decay decreases the lower plateau pressure but does not affect the observations for H/M greater than about 0.3. In this paper, a multiple-energy hydrogen site occupancy model is proposed to explain qualitatively both the dual plateau and the helium effect in palladium hydride.

  2. Production of Hydrogen by Electrocatalysis: Making the H-H Bond by Combining Protons and Hydrides

    SciTech Connect (OSTI)

    Bullock, R. Morris; Appel, Aaron M.; Helm, Monte L.

    2014-03-25

    Generation of hydrogen by reduction of two protons by two electrons can be catalysed by molecular electrocatalysts. Determination of the thermodynamic driving force for elimination of H2 from molecular complexes is important for the rational design of molecular electrocatalysts, and allows the design of metal complexes of abundant, inexpensive metals rather than precious metals (“Cheap Metals for Noble Tasks”). The rate of H2 evolution can be dramatically accelerated by incorporating pendant amines into diphosphine ligands. These pendant amines in the second coordination sphere function as protons relays, accelerating intramolecular and intermolecular proton transfer reactions. The thermodynamics of hydride transfer from metal hydrides and the acidity of protonated pendant amines (pKa of N-H) contribute to the thermodynamics of elimination of H2; both of the hydricity and acidity can be systematically varied by changing the substituents on the ligands. A series of Ni(II) electrocatalysts with pendant amines have been developed. In addition to the thermochemical considerations, the catalytic rate is strongly influenced by the ability to deliver protons to the correct location of the pendant amine. Protonation of the amine endo to the metal leads to the N-H being positioned appropriately to favor rapid heterocoupling with the M-H. Designing ligands that include proton relays that are properly positioned and thermodynamically tuned is a key principle for molecular electrocatalysts for H2 production as well as for other multi-proton, multi-electron reactions important for energy conversions. The research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for DOE.

  3. Hydrogen storage in sodium aluminum hydride.

    SciTech Connect (OSTI)

    Ozolins, Vidvuds; Herberg, J.L.; McCarty, Kevin F.; Maxwell, Robert S.; Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  4. Effects of outgassing of loader chamber walls on hydriding of...

    Office of Scientific and Technical Information (OSTI)

    gas pressure. Complete process data for (1) a copper-(1.83 wt. %)beryllium wet hydrogen fired passivated (600 C-1 h) externally heated pipe hydriding chamber are reported....

  5. Nonaqueous actinide hydride dissolution and production of actinide $beta$- diketonates

    DOE Patents [OSTI]

    Crisler, L.R.

    1975-11-11

    Actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a hydride of the actinide material in a mixture of carbon tetrachloride and methanol. (auth)

  6. Method and apparatus for regenerating cold traps within liquid-metal systems

    DOE Patents [OSTI]

    McKee, Jr., John M.

    1976-01-01

    Oxide and hydride impurities of a liquid metal such as sodium are removed from a cold trap by heating to a temperature at which the metal hydroxide is stable in a molten state. The partial pressure of hydrogen within the system is measured to determine if excess hydride or oxide is present. Excess hydride is removed by venting hydrogen gas while excess oxide can be converted to molten hydroxide through the addition of hydrogen. The resulting, molten hydroxide is drained from the trap which is then returned to service at cold trap temperatures within the liquid-metal system.

  7. Method of selective reduction of polyhalosilanes with alkyltin hydrides

    DOE Patents [OSTI]

    Sharp, Kenneth G.; D'Errico, John J.

    1989-01-01

    The invention relates to the selective and stepwise reduction of polyhalosilanes by reacting at room temperature or below with alkyltin hydrides without the use of free radical intermediates. Alkyltin hydrides selectively and stepwise reduce the Si--Br, Si--Cl, or Si--I bonds while leaving intact any Si--F bonds. When two or more different halogens are present on the polyhalosilane, the halogen with the highest atomic weight is preferentially reduced.

  8. Method of selective reduction of halodisilanes with alkyltin hydrides

    DOE Patents [OSTI]

    D'Errico, John J.; Sharp, Kenneth G.

    1989-01-01

    The invention relates to the selective and sequential reduction of halodisilanes by reacting these compounds at room temperature or below with trialkyltin hydrides or dialkyltin dihydrides without the use of free radical intermediates. The alkyltin hydrides selectively and sequentially reduce the Si-Cl, Si-Br or Si-I bonds while leaving intact the Si-Si and Si-F bonds present.

  9. Optimization of Hydride Rim Formation in Unirradiated Zr 4 Cladding

    SciTech Connect (OSTI)

    Shimskey, Rick W.; Hanson, Brady D.; MacFarlan, Paul J.

    2013-09-30

    The purpose of this work is to build on the results reported in the M2 milestone M2FT 13PN0805051, document number FCRD-USED-2013-000151 (Hanson, 2013). In that work, it was demonstrated that unirradiated samples of zircaloy-4 cladding could be pre-hydrided at temperatures below 400°C in pure hydrogen gas and that the growth of hydrides on the surface could be controlled by changing the surface condition of the samples and form a desired hydride rim on the outside diameter of the cladding. The work performed at Pacific Northwest National Laboratory since the issuing of the M2 milestone has focused its efforts to optimize the formation of a hydride rim on available zircaloy-4 cladding samples by controlling temperature variation and gas flow control during pre-hydriding treatments. Surface conditioning of the outside surface was also examined as a variable. The results of test indicate that much of the variability in the hydride thickness is due to temperature variation occurring in the furnaces as well as how hydrogen gas flows across the sample surface. Efforts to examine other alloys, gas concentrations, and different surface conditioning plan to be pursed in the next FY as more cladding samples become available

  10. Method for inhibiting corrosion of nickel-containing alloys

    DOE Patents [OSTI]

    DeVan, J.H.; Selle, J.E.

    Nickel-containing alloys are protected against corrosion by contacting the alloy with a molten alkali metal having dissolved therein aluminum, silicon or manganese to cause the formation of a corrosion-resistant intermetallic layer. Components can be protected by applying the coating after an apparatus is assembled.

  11. Raney nickel catalytic device

    DOE Patents [OSTI]

    O'Hare, Stephen A.

    1978-01-01

    A catalytic device for use in a conventional coal gasification process which includes a tubular substrate having secured to its inside surface by expansion a catalytic material. The catalytic device is made by inserting a tubular catalytic element, such as a tubular element of a nickel-aluminum alloy, into a tubular substrate and heat-treating the resulting composite to cause the tubular catalytic element to irreversibly expand against the inside surface of the substrate.

  12. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2010-01-08

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  13. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2013-05-29

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  14. Method of polishing nickel-base alloys and stainless steels

    DOE Patents [OSTI]

    Steeves, Arthur F.; Buono, Donald P.

    1981-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  15. Attack polish for nickel-base alloys and stainless steels

    DOE Patents [OSTI]

    Not Available

    1980-05-28

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels is described. The chemical attack polich comprises FeNO/sub 3/, concentrated CH/sub 3/COOH, concentrated H/sub 2/SO/sub 4/ and H/sub 2/O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  16. Attack polish for nickel-base alloys and stainless steels

    DOE Patents [OSTI]

    Steeves, Arthur F.; Buono, Donald P.

    1983-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  17. BYD Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    has two main divisions, IT Parts and Auto. In IT parts, their main products include lithium-ion, nickel-cadmium, and nickel-metal hydride rechargeable batteries. Their...

  18. Welding procedure specification: gas tungsten arc welding of nickel-copper to nickel-chromium-iron. Supplement 1. Records of procedure qualification tests

    SciTech Connect (OSTI)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1986-06-01

    Procedure WPS-2303-ASME-3 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of nickel-copper N04400 (P-42) to nickel-chromium-iron N06600 (P-43), in thickness range of 0.035 to 0.432 inch; filler metal is ERNiCu-7 (F-42); shielding gas is argon.

  19. THERMAL ENHANCEMENT CARTRIDGE HEATER MODIFIED TECH MOD TRITIUM HYDRIDE BED DEVELOPMENT PART I DESIGN AND FABRICATION

    SciTech Connect (OSTI)

    Klein, J.; Estochen, E.

    2014-03-06

    The Savannah River Site (SRS) tritium facilities have used 1{sup st} generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and 3{sup rd} generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen 3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due to tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed.

  20. THE EFFECT OF 3HE ON LOW PRESSURE HYDRIDE ABSORPTION MEASUREMENTS WITH TRITIUM

    SciTech Connect (OSTI)

    Staack, G.; Klein, J.

    2011-01-20

    Absorption isotherm data exists for a wide variety of hydrogen-metal systems. When working with high purity gases, appropriately sized equipment, and hydrides with equilibrium pressures above several hundred Pa, data collection is relatively straightforward. Special consideration must be given to experiments involving low equilibrium pressure hydrides, as even sub-ppm levels of gas impurities can generate partial pressures many times greater than the equilibrium pressures to be measured. Tritium absorption experiments are further complicated by the continuous generation of helium-3. The time required to transfer and absorb a known quantity of tritium onto a sample ultimately limits the minimum pressure range that can be studied using the standard technique. Equations are presented which show the pressure of helium-3 in a sample cell based on the amount of tritium to be absorbed, the sample cell volume and temperature, and the decay time of tritium. Sample calculations for zirconium show that at 300 C, the estimated helium-3 pressure in the cell will be equal to the hydrogen absorption pressure after only milliseconds of tritium decay. An alternate method is presented that permits the collection of equilibrium data at pressures orders of magnitude lower than possible using a direct approach.

  1. A Novel Zr-1Nb Alloy and a New Look at Hydriding

    SciTech Connect (OSTI)

    Robert D. Mariani; James I. Cole; Assel Aitkaliyeva

    2013-09-01

    A novel Zr-1Nb has begun development based on a working model that takes into account the hydrogen permeabilities for zirconium and niobium metals. The beta-Nb secondary phase particles (SPPs) in Zr-1Nb are believed to promote more rapid hydrogen dynamics in the alloy in comparison to other zirconium alloys. Furthermore, some hydrogen release is expected at the lower temperatures corresponding to outages when the partial pressure of H2 in the coolant is less. These characteristics lessen the negative synergism between corrosion and hydriding that is otherwise observed in cladding alloys without niobium. In accord with the working model, development of nanoscale precursors was initiated to enhance the performance of existing Zr-1Nb alloys. Their characteristics and properties can be compared to oxide-dispersion strengthened alloys, and material additions have been proposed to zirconium-based LWR cladding to guard further against hydriding and to fix the size of the SPPs for microstructure stability enhancements. A preparative route is being investigated that does not require mechanical alloying, and 10 nanometer molybdenum particles have been prepared which are part of the nanoscale precursors. If successful, the approach has implications for long term dry storage of used fuel and for new routes to nanoferritic and ODS alloys.

  2. Facile synthesis of Ba1-xKxFe?As? superconductors via hydride route

    SciTech Connect (OSTI)

    Zaikina, Julia V. [Univ. of California at Davis, Davis, CA (United States); Batuk, Maria [Univ. of Antwerp, Antwerp (Belgium); Abakumov, Artem M. [Univ. of Antwerp, Antwerp (Belgium); Navrotsky, Alexandra [Univ. of California at Davis, Davis, CA (United States); Kauzlarich, Susan M. [Univ. of California at Davis, Davis, CA (United States)

    2014-12-03

    We have developed a fast, easy, and scalable synthesis method for Ba1-xKxFe?As? (0 ? x ? 1) superconductors using hydrides BaH? and KH as a source of barium and potassium metals. Synthesis from hydrides provides better mixing and easier handling of the starting materials, consequently leading to faster reactions and/or lower synthesis temperatures. The reducing atmosphere provided by the evolved hydrogen facilitates preparation of oxygen-free powders. By a combination of methods we have shown that Ba1-xKxFe?As? obtained via hydride route has the same characteristics as when it is prepared by traditional solid-state synthesis. Refinement from synchrotron powder X-ray diffraction data confirms a linear dependence of unit cell parameters upon K content as well as the tetragonal to orthorhombic transition at low temperatures for compositions with x < 0.2. Magnetic measurements revealed dome-like dependence of superconducting transition temperature Tc upon K content with a maximum of 38 K for x close to 0.4. Electron diffraction and high-resolution high-angle annular dark-field scanning transmission electron microscopy indicates an absence of Ba/K ordering, while local inhomogeneity in the Ba/K distribution takes place at a scale of several angstroms along [110] crystallographic direction.

  3. Dispersion enhanced metal/zeolite catalysts

    DOE Patents [OSTI]

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  4. Dispersion enhanced metal/zeolite catalysts

    DOE Patents [OSTI]

    Sachtler, Wolfgang M. H.; Tzou, Ming-Shin; Jiang, Hui-Jong

    1987-01-01

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  5. Non-Sintered Nickel Electrode

    DOE Patents [OSTI]

    Bernard, Patrick; Dennig, Corinne; Cocciantelli, Jean-Michel; Alcorta, Jose; Coco, Isabelle

    2002-01-01

    A non-sintered nickel electrode contains a conductive support and a paste comprising an electrochemically active material containing nickel hydroxide and a binder which is a mixture of an elastomer and a crystalline polymer. The proportion of the elastomer is in the range 25% to 60% by weight of the binder and the proportion of the crystalline polymer is in the range 40% to 75% by weight of the binder.

  6. Plasma deposition of amorphous metal alloys

    DOE Patents [OSTI]

    Hays, Auda K. (Albuquerque, NM)

    1986-01-01

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  7. Plasma deposition of amorphous metal alloys

    DOE Patents [OSTI]

    Hays, A.K.

    1979-07-18

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  8. Control corrosion with new nickel-base alloys

    SciTech Connect (OSTI)

    Schade, J.P. ); Ross, R.W. Jr. )

    1994-07-01

    Nickel plays an important role in many of the alloys developed to withstand corrosive process environments such as those in chemical, petrochemical, power, marine, and pulp and paper industries. It imparts excellent corrosion resistance, toughness, metallurgical stability, and fabricability to alloys containing iron, chromium, tungsten, and other metals. These alloys are valuable in processes with high concentrations of corrosives and high operating temperatures. These alloys and their corrosive environments are discussed here.

  9. Thermally tolerant multilayer metal membrane

    DOE Patents [OSTI]

    Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM)

    2001-01-01

    A composite metal membrane including a first metal layer of a Group IVB or Group VB metal sandwiched between two layers of a Group VIIIB metal selected from the group consisting of palladium, platinum, nickel, rhodium, iridium, cobalt, and alloys thereof, and a non-continuous layer of a metal chalcogenide upon one layer of the Group VIIIB metal is disclosed together with a process for the recovery of hydrogen from a gaseous mixture using such a composite membrane and a process for forming such a composite metal membrane.

  10. Light metal explosives and propellants

    DOE Patents [OSTI]

    Wood, Lowell L.; Ishikawa, Muriel Y.; Nuckolls, John H.; Pagoria, Phillip F.; Viecelli, James A.

    2005-04-05

    Disclosed herein are light metal explosives, pyrotechnics and propellants (LME&Ps) comprising a light metal component such as Li, B, Be or their hydrides or intermetallic compounds and alloys containing them and an oxidizer component containing a classic explosive, such as CL-20, or a non-explosive oxidizer, such as lithium perchlorate, or combinations thereof. LME&P formulations may have light metal particles and oxidizer particles ranging in size from 0.01 .mu.m to 1000 .mu.m.

  11. Direct metal brazing to cermet feedthroughs

    DOE Patents [OSTI]

    Not Available

    1982-07-29

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces.

  12. Direct metal brazing to cermet feedthroughs

    DOE Patents [OSTI]

    Hopper, Jr., Albert C.

    1984-12-18

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces.

  13. Platinum Nickel Nanowires as Methanol Oxidation Electrocatalysts

    SciTech Connect (OSTI)

    Alia, Shaun M.; Pylypenko, Svitlana; Neyerlin, Kenneth C.; Kocha, Shyam S.; Pivovar, Bryan S.

    2015-08-27

    We investigated platinum(Pt) nickel (Ni) nanowires (PtNiNWs) as methanol oxidation reaction (MOR) catalysts in rotating disk electrode (RDE) half-cells under acidic conditions. Pt-ruthenium (Ru) nanoparticles have long been the state of the art MOR catalyst for direct methanol fuel cells (DMFCs) where Ru provides oxophilic sites, lowering the potential for carbon monoxide oxidation and the MOR onset. Ru, however, is a precious metal that has long term durability concerns. Ni/Ni oxide species offer a potential to replace Ru in MOR electrocatalysis. PtNiNWs were investigated for MOR and oxygen annealing was investigated as a route to improve catalyst performance (mass activity 65% greater) and stability to potential cycling. Our results presented show that PtNiNWs offer significant promise in the area, but also result in Ni ion leaching that is a concern requiring further evaluation in fuel cells.

  14. Platinum Nickel Nanowires as Methanol Oxidation Electrocatalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alia, Shaun M.; Pylypenko, Svitlana; Neyerlin, Kenneth C.; Kocha, Shyam S.; Pivovar, Bryan S.

    2015-08-27

    We investigated platinum(Pt) nickel (Ni) nanowires (PtNiNWs) as methanol oxidation reaction (MOR) catalysts in rotating disk electrode (RDE) half-cells under acidic conditions. Pt-ruthenium (Ru) nanoparticles have long been the state of the art MOR catalyst for direct methanol fuel cells (DMFCs) where Ru provides oxophilic sites, lowering the potential for carbon monoxide oxidation and the MOR onset. Ru, however, is a precious metal that has long term durability concerns. Ni/Ni oxide species offer a potential to replace Ru in MOR electrocatalysis. PtNiNWs were investigated for MOR and oxygen annealing was investigated as a route to improve catalyst performance (mass activitymore » 65% greater) and stability to potential cycling. Our results presented show that PtNiNWs offer significant promise in the area, but also result in Ni ion leaching that is a concern requiring further evaluation in fuel cells.« less

  15. Hydrogen isotopic exchange over palladium metal

    SciTech Connect (OSTI)

    Carstens, D.H.W.; Encinias, P.D.

    1990-01-01

    We have recently developed the laser-Raman technique as a means of unambiguously measuring the partial pressures of all possible hydrogen isotopes in the gas phase. Using this technique we have investigated the hydrogen-deuterium exchange in a number of metals. This report presents detailed data for isotopic exchange in the palladium hydride system over the temperature range 26{degree}C to -100{degree}C at a pressure of 7 atm. First order kinetic rate constants and activation energies are summarized for the forward (hydride to deuteride) and reverse (deuteride to hydride) exchange processes. In addition, we have found that small amounts (100 ppm) of impurities in the exchange gases considerably slow the exchange kinetics with the effect increasing down the series CH{sub 4}, CO{sub 2}, H{sub 2}O, and CO. 9 refs., 4 figs., 1 tab.

  16. Electron screening in nickel

    SciTech Connect (OSTI)

    Gajevic, Jelena; Lipoglavsek, Matej; Petrovic, Toni; Pelicon, Primoz

    2012-10-20

    In order to investigate the interplay between nuclei and their surroundings we studied proton induced nuclear reactions over an energy range from 1.35 to 3.08 MeV for different environments: Ni metal and NiO insulator. The measurements were based on observation of the {gamma}-ray yields of {sup 59,61,63,64,65}Cu and {sup 58,60,62}Ni. The presented results clearly show that the metallic environment affects the fusion reactions at low energies.

  17. Platinum-ruthenium-nickel fuel cell electrocatalyst

    DOE Patents [OSTI]

    Gorer, Alexander

    2005-07-26

    A catalyst suitable for use in a fuel cell, especially as an anode catalyst, that contains platinum, ruthenium, and nickel, wherein the nickel is at a concentration that is less than about 10 atomic percent.

  18. METHOD OF MAKING DELTA ZIRCONIUM HYDRIDE MONOLITHIC MODERATOR PIECES

    DOE Patents [OSTI]

    Vetrano, J.B.

    1962-01-23

    A method is given for preparing large, sound bodies of delta zirconium hydride. The method includes the steps of heating a zirconium body to a temperature of not less than l000 deg C, providing a hydrogen atmosphere for the zirconium body at a pressure not greater than one atmosphere, reducing the temperature slowly to 800 deg C at such a rate that cracks do not form while maintaining the hydrogen pressure substantially constant, and cooling in an atmosphere of hydrogen. (AEC)

  19. Documentation of Hybrid Hydride Model for Incorporation into Moose-Bison

    Energy Savers [EERE]

    and Validation Strategy | Department of Energy Documentation of Hybrid Hydride Model for Incorporation into Moose-Bison and Validation Strategy Documentation of Hybrid Hydride Model for Incorporation into Moose-Bison and Validation Strategy This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride d-ZrH1.5 precipitation in the cladding of used nuclear fuels that may occur during long-term dry

  20. Molecular dynamics simulation for arrangement of nickel atoms filled in carbon nanotubes

    SciTech Connect (OSTI)

    Bai, Liu Zhenyu, Zhao; Lirui, Liu

    2014-08-28

    Carbon Nanotubes (CNTs) filled with metals can be used in capacitors, sensors, rechargeable batteries, and so on. Atomic arrangement of the metals has an important role in the function of the composites. The tips of CNTs were opened, and then nickel was filled by means of hydrothermal oxidation/ultrasonic vibration method. The tests of TEM, HREM, and EDX (energy-dispersive X-ray spectroscopy) analysis showed that Ni was filled in CNTs successfully. The atomic arrangement of nickel filled into single wall carbon nanotubes was investigated by molecular dynamics simulation. The radial distribution function and bond orientation order were established to analyze the atomic arrangement of nickel filled in carbon nanotubes during the cooling process. The results show that nickel atoms became in order gradually and preferably crystallized on the inner wall of carbon nanotubes when the temperature decreased from 1600?K. After it cooled to 100?K, the arrangement of nickel atoms in outermost circle was regular and dense, but there were many defects far from the wall of CNTs. According to the calculation of bond orientation order parameters Q{sub 6} and its visualization, the structure of nickel is Face-centered cube (f.c.c). (1,1,1){sub Ni} was close on the inner surface of carbon nanotubes. Radial direction of CNTs was [1,1,1] crystal orientation. Axial direction of CNTs, namely, filling direction, was [1{sup }, 1{sup },2] crystal orientation.

  1. Method of manufacturing positive nickel hydroxide electrodes

    DOE Patents [OSTI]

    Gutjahr, M.A.; Schmid, R.; Beccu, K.D.

    1975-12-16

    A method of manufacturing a positive nickel hydroxide electrode is discussed. A highly porous core structure of organic material having a fibrous or reticular texture is uniformly coated with nickel powder and then subjected to a thermal treatment which provides sintering of the powder coating and removal of the organic core material. A consolidated, porous nickel support structure is thus produced which has substantially the same texture and porosity as the initial core structure. To provide the positive electrode including the active mass, nickel hydroxide is deposited in the pores of the nickel support structure.

  2. Metal-ceramic joint assembly

    DOE Patents [OSTI]

    Li, Jian (New Milford, CT)

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  3. Practical handbook of stainless steels and nickel alloys

    SciTech Connect (OSTI)

    Lamb, S.

    1999-07-01

    This new handbook is an up-to-date technical guide to the grades, properties, fabrication characteristics, and applications of stainless steels and nickel alloys. The individual chapters were written by industry experts and focus on the key properties and alloy characteristics important in material selection and specification as well as the practical factors that influence the development and application of these materials. The contents include: alloy grades and their welding and fabrication characteristics and their application; monel metal; iron-based and nickel-based alloys; ferritic, austenitic, superaustenitic, and martensitic stainless steels; hastelloys; alloys 20, G, and 825; AOD and new refining technology; duplex stainless steels; 6-Mo alloys; corrosion-resistant castings; specification cross-reference tables; trade names; hardness conversions; list of common abbreviations.

  4. Selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes

    SciTech Connect (OSTI)

    Martis, P.; Venugopal, B.R.; Delhalle, J.; Mekhalif, Z.

    2011-05-15

    A simple route to selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes (MWCNTs) using nickel acetylacetonate (NAA) was successfully achieved for the first time. The homogeneously decorated nanocrystals on MWCNTs were investigated for their structure and morphology by various techniques, such as powder X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, field emission scanning electron microscopy and thermogravimetric analysis. It was found that the size distributions of the nanocrystals on MWCNTs ranged from 8 to 15 nm and they were well resolved. The precursor, NAA, was effectively employed to impregnate the MWCNTs, which on calcination at suitable temperatures and in the presence of hydrogen and nitrogen atmosphere gave rise to nickel and nickel oxide nanocrystals, respectively. -- Graphical abstract: Nickel and nickel oxide nanocrystals were selectively and homogeneously decorated on multiwalled carbon nanotubes using nickel acetylacetonate, as a precursor in a simple and efficient route. Display Omitted Highlights: {yields} A simple route for decoration of nickel and nickel oxide nanocrystals on MWCNTs. {yields} Nickel acetylacetonate used as nickel source for the first time to impregnate on MWCNTs. {yields} Selective decoration was achieved by calcination in hydrogen and nitrogen atmospheres. {yields} The as-decorated nickel and nickel oxide nanocrystals are in the range of 8-15 nm.

  5. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    DOE Patents [OSTI]

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  6. Microstructure and hydriding studies of AB/sub 5/ hydrogen storage compounds. Final report

    SciTech Connect (OSTI)

    Goodell, P.D.; Sandrock, G.D.; Huston, E.L.

    1980-01-01

    New data on the microstructure, pressure-composition-temperature, and absorption/desorption kinetics of AB/sub 5/ metal hydrides are presented. The most significant result to emerge from the investigation is that many of the AB/sub 5/ metal hydrides, especially the LaNi/sub 5/ related materials, show instantaneous absorption and desorption response in proportion to the amount of cooling or heating which is provided. Eight categories of materials were studied: reference alloys (LaNi/sub 5/, LaNi/sub 4/ /sub 9/Al/sub 0/ /sub 1/, LaNi/sub 3/Co/sub 2/); Ni second phase particles (LaNi/sub 5/ /sub 67/, LaNi/sub 7/, LaNi/sub 11/ /sub 3/); eutectoid microstructure (SmCo/sub 5/); other second phases (LaNi/sub 3/ /sub 8/Fe/sub 1/ /sub 2/, LaNi/sub 3/ /sub 5/Cr/sub 1/ /sub 5/, LaNi/sub 4/Cr, LaNi/sub 4/Si; LaNi/sub 4/Sn, MNi/sub 4/Sn, MNi/sub 4/ /sub 3/Al/sub 0/ /sub 7/); substitutional elements (LaNi/sub 4/Cu, LaNi/sub 4/ /sub 5/Pd/sub 0/ /sub 5/, LaNi/sub 4/ /sub 7/Sn/sub 0/ /sub 3/, LaNi/sub 4/ /sub 8/C/sub 0/ /sub 2/, MNi/sub 4/ /sub 3/Mn/sub 0/ /sub 7/); surface active elements (LaNi/sub 4/ /sub 8/B/sub 0/ /sub 2/, LaNi/sub 4/ /sub 9/S/sub 0/ /sub 1/, LaNi/sub 4/ /sub 9/Se/sub 0/ /sub 1/); large diameter atom substitutions (Mg/sub 0/ /sub 1/La/sub 0/ /sub 9/Ni/sub 5/, Ca/sub 0/ /sub 2/La/sub 0/ /sub 8/Ni/sub 5/, Sr/sub 0/ /sub 2/La/sub 0/ /sub 8/Ni/sub 5/, Ba/sub 0/ /sub 2/La/sub 0/ /sub 8/Ni/sub 5/); other compositions (LaNi/sub 3/); and Pd plating (electroless plated samples and mechanically alloyed specimens).

  7. Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

    2012-04-16

    Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

  8. Electrochemical process and production of novel complex hydrides

    DOE Patents [OSTI]

    Zidan, Ragaiy

    2013-06-25

    A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

  9. Steric Effect for Proton, Hydrogen-Atom, andHydride Transfer Reactions with Geometric Isomers of NADH-Model Ruthenium Complexes

    SciTech Connect (OSTI)

    Fujita E.; Cohen, B.W.; Polyansky, D.E.; Achord, P.; Cabelli, D.; Muckerman, J.T.; Tanaka, K.; Thummel, R.P.; Zong, R.

    2012-01-01

    Two isomers, [Ru(1)]{sup 2+} (Ru = Ru(bpy){sub 2}, bpy = 2,2{prime}-bipyridine, 1 = 2-(pyrid-2{prime}-yl)-1-azaacridine) and [Ru(2)]{sup 2+} (2 = 3-(pyrid-2{prime}-yl)-4-azaacridine), are bio-inspired model compounds containing the nicotinamide functionality and can serve as precursors for the photogeneration of C-H hydrides for studying reactions pertinent to the photochemical reduction of metal-C{sub 1} complexes and/or carbon dioxide. While it has been shown that the structural differences between the azaacridine ligands of [Ru(1)]{sup 2+} and [Ru(2)]{sup 2+} have a significant effect on the mechanism of formation of the hydride donors, [Ru(1HH)]{sup 2+} and [Ru(2HH)]{sup 2+}, in aqueous solution, we describe the steric implications for proton, net-hydrogen-atom and net-hydride transfer reactions in this work. Protonation of [Ru(2{sup {sm_bullet}-})]{sup +} in aprotic and even protic media is slow compared to that of [Ru(1{sup {sm_bullet}-})]{sup +}. The net hydrogen-atom transfer between *[Ru(1)]{sup 2+} and hydroquinone (H{sub 2}Q) proceeds by one-step EPT, rather than stepwise electron-proton transfer. Such a reaction was not observed for *[Ru(2)]{sup 2+} because the non-coordinated N atom is not easily available for an interaction with H{sub 2}Q. Finally, the rate of the net hydride ion transfer from [Ru(1HH)]{sup 2+} to [Ph{sub 3}C]{sup +} is significantly slower than that of [Ru(2HH)]{sup 2+} owing to steric congestion at the donor site.

  10. Iron aluminides and nickel aluminides as materials for chemical air separation

    DOE Patents [OSTI]

    Kang, Doohee (Macungie, PA)

    1991-01-01

    The present invention is directed to a chemical air separation process using a molten salt solution of alkali metal nitrate and nitrite wherein the materials of construction of the containment for the process are chosen from intermetallic alloys of nickel and/or iron aluminide wherein the aluminum content is 28 atomic percent or greater to impart enhanced corrosion resistance.

  11. Electrochemical polishing of thread fastener test specimens of nickel-chromium iron alloys

    DOE Patents [OSTI]

    Kephart, Alan R.

    1991-01-01

    An electrochemical polishing device and method for selective anodic dissolution of the surface of test specimens comprised, for example, of nickel-chromium-iron alloys, which provides for uniform dissolution at the localized sites to remove metal through the use of a coiled wire electrode (cathode) placed in the immediate proximity of the working, surface resulting in a polished and uniform grain boundary.

  12. Iron aluminides and nickel aluminides as materials for chemical air separation

    DOE Patents [OSTI]

    Kang, D.

    1991-01-29

    The present invention is directed to a chemical air separation process using a molten salt solution of alkali metal nitrate and nitrite wherein the materials of construction of the containment for the process are chosen from intermetallic alloys of nickel and/or iron aluminide wherein the aluminum content is 28 atomic percent or greater to impart enhanced corrosion resistance.

  13. Gaps and pseudogaps in perovskite rare earth nickelates

    SciTech Connect (OSTI)

    Allen, S. James; Ouellette, Daniel G.; Kally, James; Kozhanov, Alex; Hauser, Adam J.; Mikheev, Evgeny; Zhang, Jack Y.; Moreno, Nelson E.; Son, Junwoo; Stemmer, Susanne; Balents, Leon

    2015-06-01

    We report on tunneling measurements that reveal the evolution of the quasiparticle state density in two rare earth perovskite nickelates, NdNiO{sub 3} and LaNiO{sub 3}, that are close to a bandwidth controlled metal to insulator transition. We measure the opening of a sharp gap of ∼30 meV in NdNiO{sub 3} in its insulating ground state. LaNiO{sub 3}, which remains a correlated metal at all practical temperatures, exhibits a pseudogap of the same order. The results point to both types of gaps arising from a common origin, namely, a quantum critical point associated with the T = 0 K metal-insulator transition. The results support theoretical models of the quantum phase transition in terms of spin and charge instabilities of an itinerant Fermi surface.

  14. High pressure effects on the iron iron oxide and nickel nickel oxide oxygen

    Office of Scientific and Technical Information (OSTI)

    fugacity buffers (Journal Article) | SciTech Connect High pressure effects on the iron iron oxide and nickel nickel oxide oxygen fugacity buffers Citation Details In-Document Search Title: High pressure effects on the iron iron oxide and nickel nickel oxide oxygen fugacity buffers The chemical potential of oxygen in natural and experimental samples is commonly reported relative to a specific oxygen fugacity (fO{sub 2}) buffer. These buffers are precisely known at 1 bar, but under high

  15. Method of generating hydrogen-storing hydride complexes

    DOE Patents [OSTI]

    Srinivasan, Sesha S; Niemann, Michael U; Goswami, D. Yogi; Stefanakos, Elias K

    2013-05-14

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  16. Chromium Vaporization Reduction by Nickel Coatings For SOEC Interconnect Materials

    SciTech Connect (OSTI)

    Michael V. Glazoff; Sergey N. Rashkeev; J. Stephen Herring

    2014-09-01

    The vaporization of Cr-rich volatile species from interconnect materials is a major source of degradation that limits the lifetime of planar solid oxide devices systems with metallic interconnects, including Solid Oxide Electrolysis Cells, or SOECs. Some metallic coatings (Ni, Co, and Cu) significantly reduce the Cr release from interconnects and slow down the oxide scale growth on the steel substrate. To shed additional light upon the mechanisms of such protection and find a suitable coating material for ferritic stainless steel materials, we used a combination of first-principles calculations, thermodynamics, and diffusion modeling to investigate which factors determine the quality of the Ni metallic coating at stainless steel interconnector. We found that the Cr migration in Ni coating is determined by a delicate combination of the nickel oxidation, Cr diffusion, and phase transformation processes. Although the formation of Cr2O3 oxide is more exothermic than that of NiO, the kinetic rate of the chromia formation in the coating layer and its surface is significantly reduced by the low mobility of Cr in nickel oxide and in NiCr2O4 spinel. These results are in a good agreement with diffusion modeling for Cr diffusion through Ni coating layer on the ferritic 441 steel substrate.

  17. METHOD OF APPLYING NICKEL COATINGS ON URANIUM

    DOE Patents [OSTI]

    Gray, A.G.

    1959-07-14

    A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.

  18. Templated synthesis of nickel nanoparticles: Toward heterostructured nanocomposites for efficient hydrogen storage

    SciTech Connect (OSTI)

    Nelson, Nicholas Cole

    2013-05-07

    The world is currently facing an energy and environmental crisis for which new technologies are needed. Development of cost-competitive materials for catalysis and hydrogen storage on-board motor vehicles is crucial to lead subsequent generations into a more sustainable and energy independent future. This thesis presents work toward the scalable synthesis of bimetallic heterostructures that can enable hydrogen to compete with carbonaceous fuels by meeting the necessary gravimetric and volumetric energy densities and by enhancing hydrogen sorption/desorption kinetics near ambient temperatures and pressures. Utilizing the well-known phenomenon of hydrogen spillover, these bimetallic heterostructures could work by lowering the activation energy for hydrogenation and dehydrogenation of metals. Herein, we report a novel method for the scalable synthesis of silica templated zero-valent nickel particles (Ni⊂SiO{sub 2}) that hold promise for the synthesis of nickel nanorods for use in bimetallic heterostructures for hydrogen storage. Our synthesis proceeds by chemical reduction of a nickel-hydrazine complex with sodium borohydride followed by calcination under hydrogen gas to yield silica encapsulated nickel particles. Transmission electron microscopy and powder X-ray diffraction were used to characterize the general morphology of the resultant nanocapsules as well as the crystalline phases of the incorporated Ni{sup 0} nanocrystals. The structures display strong magnetic behavior at room temperature and preliminary data suggests nickel particle size can be controlled by varying the amount of nickel precursor used in the synthesis. Calcination under different environments and TEM analysis provides evidence for an atomic migration mechanism of particle formation. Ni⊂SiO{sub 2} nanocapsules were used as seeds to induce heterogeneous nucleation and subsequent growth within the nanocapsule via electroless nickel plating. Nickel nanoparticle growth occurs under high temperature alkaline conditions, however silica nanocapsule integrity is not maintained due to the incompatibility of silica with the growth conditions. Silica nanocapsule integrity is maintained under low temperature neutral conditions, but nickel particle growth is not observed. Through FTIR and UV/Vis analysis, we show the degree of crosslinking and condensation increases in calcined silica compared to as-synthesized silica. We propose the increased density of the silica nanocapsule hinders mass transfer of the bulky nickel precursor complex from solution and onto the surface of the “catalytic” zero-valent nickel seed within the nanocapsule cavity. Decreasing the density of the silica nanocapsule can be achieved through co-condensation of tetraethylorthosilicate with an alkyl functionalized silane followed by calcination to remove the organic component or by chemical etching in alkaline solution, but will not be addressed in this thesis.

  19. Microstructural, mechanical and weldability assessments of the dissimilar welds between ??- and ??-strengthened nickel-base superalloys

    SciTech Connect (OSTI)

    Naffakh Moosavy, Homam, E-mail: homam_naffakh@iust.ac.ir [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Mapelli, Carlo [Dipartimento di Meccanica, Politecnico di Milano, Via La Massa 34, Milan 20156 (Italy)

    2013-08-15

    Dissimilar welding of ??- and ??-strengthened nickel-base superalloys has been investigated to identify the relationship between the microstructure of the welds and the resultant mechanical and weldability characteristics. ??-Strengthened nickel-base Alloy 500 and ??-strengthened nickel-base Alloy 718 were used for dissimilar welding. Gas tungsten arc welding operations were utilized for performing the autogenous dissimilar welding. Alloy 500 and Alloy 718 base metals showed various types of phases, carbides, intermetallics and eutectics in their microstructure. The results for Alloy 500 weld metal showed severe segregation of titanium to the interdendritic regions. The Alloy 718 weld metal compositional analysis confirmed the substantial role of Nb in the formation of low-melting eutectic-type morphologies which can reduce the weldability. The microstructure of dissimilar weld metal with dilution level of 65% wt.% displayed semi-developed dendritic structure. The less segregation and less formation of low-melting eutectic structures caused to less susceptibility of the dissimilar weld metal to the solidification cracking. This result was confirmed by analytic modeling achievements. Dissolution of ??-Ni{sub 3}Nb precipitations took place in the Alloy 718 heat-affected zone leading to sharp decline of the microhardness in this region. Remelted and resolidified regions were observed in the partially-melted zone of Alloy 500 and Alloy 718. Nevertheless, no solidification and liquation cracking happened in the dissimilar welds. Finally, this was concluded that dissimilar welding of ??- and ??-strengthened nickel-base superalloys can successfully be performed. - Highlights: Dissimilar welding of ??- and ??-strengthened nickel-base superalloys is studied. Microstructural, mechanical and weldability aspects of the welds are assessed. Microstructure of welds, bases and heat-affected zones is characterized in detail. The type, morphology and distribution of the phases are thoroughly investigated. Dissimilar welding is successfully performed without occurrence of any hot cracks.

  20. DOE - Office of Legacy Management -- International Nickel Co...

    Office of Legacy Management (LM)

    Nickel Co - Bayonne Laboratories - NJ 17 FUSRAP Considered Sites Site: International Nickel Co., Bayonne Laboratories (NJ.17 ) Eliminated from consideration under FUSRAP Designated...

  1. Amorphous metal alloy

    DOE Patents [OSTI]

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  2. Synthesis of nickel nanoparticles and carbon encapsulated nickel nanoparticles supported on carbon nanotubes

    SciTech Connect (OSTI)

    Cheng Jipeng . E-mail: mseem@zju.edu.cn; Zhang Xiaobin; Ye Ying

    2006-01-15

    Nickel nanoparticles were prepared and uniformly supported on multi-walled carbon nanotubes (MWCNTs) by reduction route with CNTs as a reducing agent at 600 deg. C. As-prepared nickel nanoparticles were single crystalline with a face-center-cubic phase and a size distribution ranging from 10 to 50 nm, and they were characterized by transmission electron microscopy (TEM), high-resolution TEM and X-ray diffraction (XRD). These nickel nanoparticles would be coated with graphene layers, when they were exposed to acetylene at 600 deg. C. The coercivity values of nickel nanoparticles were superior to that of bulk nickel at room temperature.

  3. Reduction of metal oxides through mechanochemical processing

    DOE Patents [OSTI]

    Froes, Francis H. (Moscow, ID); Eranezhuth, Baburaj G. (Moscow, ID); Senkov, Oleg N. (Moscow, ID)

    2000-01-01

    The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.

  4. Metallic glass composition. [That does not embrittle upon annealing

    DOE Patents [OSTI]

    Kroeger, D.M.; Koch, C.C.

    1984-09-14

    This patent pertains to a metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon, carbon and phosphorous to which is added an amount of a ductility-enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

  5. Gold-nickel-titanium brazing alloy

    DOE Patents [OSTI]

    Mizuhara, Howard

    1995-01-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99 gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  6. Gold-nickel-titanium brazing alloy

    DOE Patents [OSTI]

    Mizuhara, Howard

    1990-07-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99% gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  7. Crucial role of Toll-like receptors in the zinc/nickel-induced inflammatory response in vascular endothelial cells

    SciTech Connect (OSTI)

    Tsou, Tsui-Chun; Liou, Saou-Hsing; Yeh, Szu-Ching; Tsai, Feng-Yuan; Chao, How-Ran

    2013-12-15

    Our previous studies indicated that zinc induced inflammatory response in both vascular endothelial cells and promonocytes. Here, we asked if other metals could cause the similar effect on vascular endothelial cells and tried to determine its underlying mechanism. Following screening of fifteen metals, zinc and nickel were identified with a marked proinflammatory effect, as determined by ICAM-1 and IL-8 induction, on human umbilical vein endothelial cells (HUVECs). Inhibiting protein expression of myeloid differentiation primary response protein-88 (MyD88), a Toll-like receptor (TLR) adaptor acting as a TLR-signaling transducer, significantly attenuated the zinc/nickel-induced inflammatory response, suggesting the critical roles of TLRs in the inflammatory response. Blockage of TLR-4 signaling by CLI-095, a TLR-4 inhibitor, completely inhibited the nickel-induced ICAM-1 and IL-8 expression and NF?B activation. The same CLI-095 treatment significantly blocked the zinc-induced IL-8 expression, however with no significant effect on the ICAM-1 expression and a minor inhibitory effect on the NF?B activation. The finding demonstrated the differential role of TLR-4 in regulation of the zinc/nickel-induced inflammatory response, where TLR-4 played a dominant role in NF?B activation by nickel, but not by zinc. Moreover, inhibition of NF?B by adenovirus-mediated I?B? expression and Bay 11-7025, an inhibitor of cytokine-induced I?B-? phosphorylation, significantly attenuated the zinc/nickel-induced inflammatory responses, indicating the critical of NF?B in the process. The study demonstrates the crucial role of TLRs in the zinc/nickel-induced inflammatory response in vascular endothelial cells and herein deciphers a potential important difference in NF?B activation via TLRs. The study provides a molecular basis for linkage between zinc/nickel exposure and pathogenesis of the metal-related inflammatory vascular disease. - Highlights: Both zinc and nickel cause ICAM-1/IL?8 expression in endothelial cells via TLRs. Nickel induces the inflammatory responses via a TLR-4/NF-?B pathway. Zinc causes the inflammatory responses via a broader TLRs/NF-?B signaling. Nickel shows a significantly higher inflammatory effect than zinc. NF-?B activation is the primary mechanism involved in the inflammatory responses.

  8. Biodegradation of orthodontic appliances and their effects on the blood level of nickel and chromium. Master's thesis

    SciTech Connect (OSTI)

    Barrett, R.D.

    1990-05-01

    Austenitic stainless steels containing approximately 18 percent chromium and 8 percent nickel for orthodontic bands, brackets and wires is universally used in orthodontic practices. With the introduction of nickel-titanium alloys as orthodontic archwires in the 1970's an additional source of patient exposure to metal corrosion products has been introduced. Since the oral environment is particularly ideal for the biodegradation of metals due to its ionic, thermal, microbiologic and enzymatic properties some level of patient exposure to the corrosion products of these alloys is assured.

  9. Nickel nano-particle modified nitrogen-doped amorphous hydrogenated diamond-like carbon film for glucose sensing

    SciTech Connect (OSTI)

    Zeng, Aiping; Jin, Chunyan; Cho, Sang-Jin; Seo, Hyun Ook; Kim, Young Dok; Lim, Dong Chan; Kim, Doo Hwan; Hong, Byungyou; Boo, Jin-Hyo

    2012-10-15

    Electrochemical method has been employed in this work to modify nitrogen-doped hydrogen amorphous diamond-like carbon (N-DLC) film to fabricate nickel nano-particle-modified N-DLC electrodes. The electrochemical behavior of the nickel nano-particle-modified N-DLC electrodes has been characterized at the presence of glucose in electrolyte. Meanwhile, the N-DLC film structure and the morphology of metal nano-particles on the N-DLC surface have been investigated using micro-Raman spectroscopy and atomic force microscopy. The nickel nano-particle-modified N-DLC electrode exhibits a high catalytic activity and low background current. This result shows that the nickel nano-particle deposition on N-DLC surface could be a promising method to fabricate novel electrode materials for glucose sensing.

  10. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOE Patents [OSTI]

    Hunt, Thomas K.; Novak, Robert F.

    1991-01-01

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined.

  11. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOE Patents [OSTI]

    Hunt, T.K.; Novak, R.F.

    1991-05-07

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined. 3 figures.

  12. Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities

    Broader source: Energy.gov [DOE]

    Irradiation is known to have a significant impact on the properties and performance of Zircaloy cladding and structural materials (material degradation processes, e.g., effects of hydriding).  This...

  13. Nonwoven fabrics made from nickel and stainless steel fibers

    SciTech Connect (OSTI)

    Stepro, J.A.

    1996-11-01

    Nonwoven fabrics made from metal fiber have uses in a variety of applications due to their alloy composition, heat resistivity, conductivity and durability. Applications include: filtration media, battery current collectors, EMI/RFI shielding, insulation and conductive fillers. The ability to form metal fibers into fabrics of non-directionalized fiber webs has led to improved materials in a variety of applications. The non-orientation of the fibers provides a three dimensional structure that is filled with materials such as nickel hydroxide, cadmium oxide and MH alloy used for battery applications or to act as a contaminate trap for filtration. Fibers made from nickel, stainless steel, iron, cobalt, monel and copper are all possibilities for use in nonwoven fabrics. The density, porosity and thickness are all controllable during the web formation process. Fiber diameter is also a critical consideration when specific pore sizes are targeted. Fiber diameters are controlled during the fiber formation process. Diameters as low as 6 microns in stainless steel and 9 microns in other alloys are possible.

  14. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1986-01-01

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  15. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, H.

    1983-07-26

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  16. Johnson Controls Saft Advanced Power Solutions | Open Energy...

    Open Energy Info (EERE)

    venture between SAFT and Johnson Controls to produce and sell nickel-metal-hydride and lithium-ion batteries for HEVs and EVs. References: Johnson Controls-Saft Advanced Power...

  17. Project Results: Evaluating FedEx Express Hybrid-Electric Delivery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hybrid system manufactured by Azure Dynamics, including a 100-kW alternating current induction motor, regenerative braking, and a 2.45-kWh nickel-metal- hydride battery pack. This...

  18. New sealed rechargeable batteries and supercapacitors

    SciTech Connect (OSTI)

    Barnett, B.M. ); Dowgiallo, E. ); Halpert, G. ); Matsuda, Y. ); Takehara, Z.I. )

    1993-01-01

    This conference was divided into the following sections: supercapacitors; nickel-metal hydride batteries; lithium polymer batteries; lithium/carbon batteries; cathode materials; and lithium batteries. Separate abstracts were prepared for the 46 papers of this conference.

  19. Fact #603: December 28, 2009 Where Does Lithium Come From?

    Broader source: Energy.gov [DOE]

    Lithium ion batteries will be used in many of the upcoming plug-in hybrid vehicles and electric vehicles because they are lighter and more powerful than the nickel-metal hydride batteries used in...

  20. Welding procedure specification. Supplement 1. Records of procedure qualification tests. Gas tungsten arc welding of chromium-nickel steel to nickel-copper

    SciTech Connect (OSTI)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1986-06-01

    Procedure WPS-2602-ASME-3 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of 300 series Cr-Ni steels (P-8-1) to nickel-copper N04400 (P-42), in thickness range 0.035 to 0.432 inch; filler metal is ERNiCu-7 (F-42); shielding gas is argon.

  1. Parasitic corrosion-resistant anode for use in metal/air or metal/O/sub 2/ cells

    DOE Patents [OSTI]

    Joy, R.W.; Smith, D.F.

    1982-09-20

    A consumable metal anode is described which is used in refuelable electrochemical cells and wherein at least a peripheral edge portion of the anode is protected against a corrosive alkaline environment of the cell by the application of a thin metal coating, the coating being formed of metals such as nickel, silver, and gold.

  2. Parasitic corrosion resistant anode for use in metal/air or metal/O.sub.2 cells

    DOE Patents [OSTI]

    Joy, Richard W.; Smith, David F.

    1983-01-01

    A consumable metal anode which is used in refuelable electrochemical cells and wherein at least a peripheral edge portion of the anode is protected against a corrosive alkaline environment of the cell by the application of a thin metal coating, the coating being formed of metals such as nickel, silver, and gold.

  3. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    SciTech Connect (OSTI)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  4. Tax Credits, Rebates & Savings | Department of Energy

    Energy Savers [EERE]

    Step by Step Instruction - ICR - FINAL Step by Step Instruction - ICR - FINAL Microsoft Office document icon Step by Step Instructions-ICR-final.doc More Documents & Publications Information Collection Requests/Paper Reduction Act EIS-0505: EPA Notice of Availability of Supplemental Draft Environmental Impact Statement EIS-0487: Notice of EIS Adoption Energy

    Steps to Commercialization: Nickel Metal Hydride Batteries Steps to Commercialization: Nickel Metal Hydride Batteries October

  5. Commercialization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization Commercialization <a href="http://energy.gov/node/307033/">See an example of these steps in the commercialization process of Nickel Metal Hydride Batteries</a>. See an example of these steps in the commercialization process of Nickel Metal Hydride Batteries. Commercialization is the process by which technologies and innovations developed in the lab make their way to market. By licensing patents or using Energy Department facilities, researchers from the

  6. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizesmore » the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.« less

  7. The effect of iron dilution on strength of nickel/steel and Monel/steel welds

    SciTech Connect (OSTI)

    Fout, S.L.; Wamsley, S.D.

    1983-03-28

    The weld strength, as a function of iron content, for nickel/steel and Monel/steel welds was determined. Samples were prepared using a Gas Metal Arc (GMAW) automatic process to weld steel plate together with nickel or Monel to produce a range of iron contents typical of weld compositions. Tensile specimens of each iron content were tested to obtain strength and ductility measurements for that weld composition. Data indicate that at iron contents of less than 20% iron in a nickel/steel weld, the weld fails at the weld interface, due to a lack of fusion. Between 20% and 35% iron, the highest iron dilution that could be achieved in a nickel weld, the welds were stronger than the steel base metal. This indicates that a minimum amount of iron dilution (20%) is necessary for good fusion and optimum strength. On the other hand for Monel/steel welds, test results showed that the welds had good strength and integrity between 10% and 27% iron in the weld. Above 35% iron, the welds have less strength and are more brittle. The 35% iron content also corresponds to the iron dilution in Monel welds that has been shown to produce an increase in corrosion rate. This indicates that the iron dilution in Monel welds should be kept below 35% iron to maximize both the strength and corrosion resistance. 2 refs., 6 figs., 3 tabs.

  8. Nickel porphyrins for memory optical applications

    DOE Patents [OSTI]

    Shelnutt, John A.; Jia, Songling; Medforth, Craig; Holten, Dewey; Nelson, Nora Y.; Smith, Kevin M.

    2000-01-01

    The present invention relates to a nickel-porphyrin derivative in a matrix, the nickel-porphyrin derivative comprising at least two conformational isomers, a lower-energy-state conformer and a higher-energy-state conformer, such that when the higher-energy-state conformer is generated from the lower-energy-state conformer following absorption of a photon of suitable energy, the time to return to the lower-energy-state conformer is greater than 40 nanoseconds at approximately room temperature. The nickel-porphyrin derivative is useful in optical memory applications.

  9. Documentation of Hybrid Hydride Model for Incorporation into Moose-Bison and Validation Strategy.

    SciTech Connect (OSTI)

    Weck, Philippe F; Tikare, Veena; Schultz, Peter Andrew; Clark, B; Mitchell, J; Glazoff, Michael V.; Homer, Eric R.

    2014-10-01

    This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride δ-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding (Hanson et al., 2011). While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (Birk et al., 2012 and NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. In this work, a model to numerically simulate hydride precipitation at the microstructural scale, in a wide variety of Zr-based claddings, under dry-storage conditions is being developed. It will be used to aid in the evaluation of the mechanical integrity of used fuel rods during dry storage and transportation by providing the structural conditions from the microstructural scale to the continuum scale to engineering component scale models to predict if the used fuel rods will perform without failure under normal and off-normal conditions. The microstructure, especially, the hydride structure is thought to be a primary determinant of cladding failure, thus this component of UFD’s storage and transportation analysis program is critical. The model development, application and validation of the model are documented and the limitations of the current model are discussed. The model has been shown to simulate hydride precipitation in Zircaloy-4 cladding with correct morphology, thermodynamics and kinetics. An unexpected insight obtained from simulations hydride formation in Zircaloy-4 is that small (sub-micron) precipitates need to order themselves to form the larger hydrides typically described as radially-reoriented precipitates. A limitation of this model is that it does not currently solve the stress state that forms dynamically in the precipitate or matrix surrounding the precipitate. A method to overcome the limitations is suggested and described in detail. The necessary experiments to provide key materials physics and to validate the model are also recommended.

  10. Breakthrough Research on Platinum-Nickel Alloys

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The recent research on the use of platinum-nickel alloys as ... study ORR on Pt3Ni(hkl) single-crystal surfaces, identify which ... (LEIS), and synchrotron-based high-resolution ...

  11. Breakthrough Research on Platinum-Nickel Alloys

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breakthrough Research on Platinum-Nickel Alloys Breakthrough Research on Platinum-Nickel Alloys Print Wednesday, 28 February 2007 00:00 Two out of three of the kinetic barriers to the practical use of polymer electrolyte membrane (PEM) hydrogen fuel cells in automobiles have been breached: the impractically high amount of extra energy needed for the oxidation reduction reaction (ORR) on the catalyst and the loss of catalytic surface areas available for ORR. Using a combination of probes and

  12. Welding procedure specification. Supplement 1. Records of procedure qualification tests. Gas tungsten arc welding of nickel-copper

    SciTech Connect (OSTI)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1986-06-01

    Procedure WPS-1302-ASME-3 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of nickel-copper NO4400 (P-42), in thickness range 0.035 to 0.432 inch; filler metal is ERNiCu-7 (F-42); shielding gas is argon.

  13. Thermal Release of 3He from Tritium Aged LaNi4.25Al0.75 Hydride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Staack, Gregory C.; Crowder, Mark L.; Klein, James E.

    2015-02-01

    Recently, the demand for He-3 has increased dramatically due to widespread use in nuclear nonproliferation, cryogenic, and medical applications. Essentially all of the world’s supply of He-3 is created by the radiolytic decay of tritium. The Savannah River Site Tritium Facilities (SRS-TF) utilizes LANA.75 in the tritium process to store hydrogen isotopes. The vast majority of He-3 “born” from tritium stored in LANA.75 is trapped in the hydride metal matrix. The SRS-TF has multiple LANA.75 tritium storage beds that have been retired from service with significant quantities of He-3 trapped in the metal. To support He-3 recovery, the Savannah Rivermore » National Laboratory (SRNL) conducted thermogravimetric analysis coupled with mass spectrometry (TGA-MS) on a tritium aged LANA.75 sample. TGA-MS testing was performed in an argon environment. Prior to testing, the sample was isotopically exchanged with deuterium to reduce residual tritium and passivated with air to alleviate pyrophoric concerns associated with handling the material outside of an inert glovebox. Analyses indicated that gas release from this sample was bimodal, with peaks near 220 and 490°C. The first peak consisted of both He-3 and residual hydrogen isotopes, the second was primarily He-3. The bulk of the gas was released by 600 °C« less

  14. Nickel Complexes of a Binucleating Ligand Derived from an SCS Pincer

    SciTech Connect (OSTI)

    Peterson, Sonja M.; Helm, Monte L.; Appel, Aaron M.

    2015-01-01

    A binucleating ligand has been prepared that contains an SCS pincer and three oxygen donor ligands in a partial crown ether loop. To enable metalation with Ni0, a bromoarene precursor was used and resulted in the formation of a nickel-bromide complex in the SCS pincer. Reaction of the nickel complex with a lithium salt yielded a heterobimetallic complex with bromide bridging the two metal centers. The solid-state structures were determined for this heterobimetallic complex and the nickel-bromide precursor, and the two complexes were characterized electrochemically to determine the influence of coordinating the second metal. This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  15. Stabilization of Nickel Metal Catalysts for Aqueous Processing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    over a range of temperatures from 200C to 450C. However, these catalysts lose activity over time and must be replenished with new supports to continue facilitating the...

  16. Method of production of pure hydrogen near room temperature from aluminum-based hydride materials

    DOE Patents [OSTI]

    Pecharsky, Vitalij K.; Balema, Viktor P.

    2004-08-10

    The present invention provides a cost-effective method of producing pure hydrogen gas from hydride-based solid materials. The hydride-based solid material is mechanically processed in the presence of a catalyst to obtain pure gaseous hydrogen. Unlike previous methods, hydrogen may be obtained from the solid material without heating, and without the addition of a solvent during processing. The described method of hydrogen production is useful for energy conversion and production technologies that consume pure gaseous hydrogen as a fuel.

  17. Computational Fluid Dynamics-Aided Analysis of a Hydride Vapor Phase

    Office of Scientific and Technical Information (OSTI)

    Epitaxy Reactor (Journal Article) | SciTech Connect Computational Fluid Dynamics-Aided Analysis of a Hydride Vapor Phase Epitaxy Reactor Citation Details In-Document Search Title: Computational Fluid Dynamics-Aided Analysis of a Hydride Vapor Phase Epitaxy Reactor Authors: Schulte, Kevin L. ; Simon, John ; Roy, Abhra ; Reedy, Robert C. ; Young, David L. ; Kuech, Thomas F. ; Ptak, Aaron J. Publication Date: 2016-01-15 OSTI Identifier: 1233143 Report Number(s): NREL/JA-5J00-64594 Journal ID:

  18. White Paper Summary of 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding

    SciTech Connect (OSTI)

    Sindelar, R.; Louthan, M.; PNNL, B.

    2015-05-29

    This white paper recommends that ASTM International develop standards to address the potential impact of hydrides on the long term performance of irradiated zirconium alloys. The need for such standards was apparent during the 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding and Assembly Components, sponsored by ASTM International Committee C26.13 and held on June 10-12, 2014, in Jackson, Wyoming. The potentially adverse impacts of hydrogen and hydrides on the long term performance of irradiated zirconium-alloy cladding on used fuel were shown to depend on multiple factors such as alloy chemistry and processing, irradiation and post irradiation history, residual and applied stresses and stress states, and the service environment. These factors determine the hydrogen content and hydride morphology in the alloy, which, in turn, influence the response of the alloy to the thermo-mechanical conditions imposed (and anticipated) during storage, transport and disposal of used nuclear fuel. Workshop presentations and discussions showed that although hydrogen/hydride induced degradation of zirconium alloys may be of concern, the potential for occurrence and the extent of anticipated degradation vary throughout the nuclear industry because of the variations in hydrogen content, hydride morphology, alloy chemistry and irradiation conditions. The tools and techniques used to characterize hydrides and hydride morphologies and their impacts on material performance also vary. Such variations make site-to-site comparisons of test results and observations difficult. There is no consensus that a single material or system characteristic (e.g., reactor type, burnup, hydrogen content, end-of life stress, alloy type, drying temperature, etc.) is an effective predictor of material response during long term storage or of performance after long term storage. Multi-variable correlations made for one alloy may not represent the behavior of another alloy exposed to identical conditions and the material responses to thermo-mechanical exposures will be different depending on the materials and systems used. The discussions at the workshop showed several gaps in the standardization of processes and techniques necessary to assess the long term performance of irradiated zirconium alloy cladding during dry storage and transport. The development of, and adherence to, standards to help bridge these gaps will strengthen the technical basis for long term storage and post-storage operations, provide consistency across the nuclear industry, maximize the value of most observations, and enhance the understanding of behavioral differences among alloys. The need for, and potential benefits of, developing the recommended standards are illustrated in the various sections of this report.

  19. Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer

    DOE Patents [OSTI]

    Fish, Richard H.

    1987-01-01

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  20. Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer

    DOE Patents [OSTI]

    Fish, R.H.

    1987-04-21

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20 to 100 C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  1. Removal of arsenic, vanadium, and/or nickel compounds from petroliferous liquids

    DOE Patents [OSTI]

    Fish, R.H.

    1985-05-17

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids (shale oil, SRC, etc.) by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20/sup 0/ to 100/sup 0/C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  2. Removal of arsenic, vanadium, and/or nickel compounds from petroliferous liquids

    DOE Patents [OSTI]

    Fish, Richard H.

    1986-01-01

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  3. Non-pulsed electrochemical impregnation of flexible metallic battery plaques

    DOE Patents [OSTI]

    Maskalick, Nicholas J.

    1982-01-01

    A method of loading active battery material into porous, flexible, metallic battery plaques, comprises the following steps: precipitating nickel hydroxide active material within the plaque, by making the plaque cathodic, at a high current density, in an electro-precipitation cell also containing a consumable nickel anode and a solution comprising nickel nitrate, having a pH of between 2.0 and 2.8; electrochemically oxidizing the precipitate in caustic formation solution; and repeating the electro-precipitation step at a low current density.

  4. Metal dusting behavior of high-temperature alloys

    SciTech Connect (OSTI)

    Baker, B.A.; Smith, G.D.

    1999-11-01

    The corrosion behavior of ferritic, stainless steel, iron-nickel-chromium and nickel-base alloys was investigated in H{sub 2}-80 % CO at 621 C. Mass change and rate of mass loss, pit depth progression rate and pit distribution were monitored and recorded. It was found that wastage rates and pit depth progression rates were generally much lower for nickel-base alloys than iron-base alloys. Pit depth did not necessarily correlate with area averaged mass change rate, Chromium, silicon and aluminum additions were found to be beneficial in producing an oxide scale which reduced or prevented wastage due to metal dusting.

  5. Dietary chromium and nickel enhance UV-carcinogenesis in skin...

    Office of Scientific and Technical Information (OSTI)

    chromium and nickel enhance UV-carcinogenesis in skin of hairless mice The skin cancer enhancing effect of chromium (in male mice) and nickel in UVR-irradiated female Skh1...

  6. Amorphous metal alloy and composite

    DOE Patents [OSTI]

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  7. Project Profile: Engineering a Novel High Temperature Metal Hydride Thermochemical Storage

    Broader source: Energy.gov [DOE]

    The Department of Energy's SunShot Initiative awarded to Pacific Northwest National Lab (PNNL) through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program.

  8. Low-Cost Metal Hydride Thermal Energy Storage System- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this SRNL project, funded by SunShot, for the second quarter of fiscal year 2013.

  9. Lawrence Livermore National Laboratory Proposal to Participate in the Carbon and Metal Hydride Virtual Centers

    Broader source: Energy.gov [DOE]

    Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

  10. Low-Cost Metal Hydride TES Systems- FY13 Q1

    Broader source: Energy.gov [DOE]

    This document summarizes the progress for this Savannah Reiver National Laboratory project, funded by SunShot, for the first quarter of fiscal year 2013.

  11. Low-Cost Metal Hydride TES Systems- FY13 Q3

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this SRNL project, funded by SunShot, for the third quarter of fiscal year 2013.

  12. Formation of Carbon Nanostructures in Cobalt- and Nickel-Doped Carbon Aerogels

    SciTech Connect (OSTI)

    Fu, R; Baumann, T F; Cronin, S; Dresselhaus, G; Dresselhaus, M; Satcher, Jr., J H

    2004-11-09

    We have prepared carbon aerogels (CAs) doped with cobalt or nickel through sol-gel polymerization of formaldehyde with the potassium salt of 2,4-dihydroxybenzoic acid, followed by ion-exchange with M(NO{sub 3}){sub 2} (where M = Co{sup 2+} or Ni{sup 2+}), supercritical drying with liquid CO{sub 2} and carbonization at temperatures between 400 C and 1050 C under an N{sub 2} atmosphere. The nanostructures of these metal-doped carbon aerogels were characterized by elemental analysis, nitrogen adsorption, high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Metallic nickel and cobalt nanoparticles are generated during the carbonization process at about 400 C and 450 C, respectively, forming nanoparticles that are {approx}4 nm in diameter. The sizes and size dispersion of the metal particles increase with increasing carbonization temperatures for both materials. The carbon frameworks of the Ni- and Co-doped aerogels carbonized below 600 C mainly consist of interconnected carbon particles with a size of 15 to 30 nm. When the samples are pyrolyzed at 1050 C, the growth of graphitic nanoribbons with different curvatures is observed in the Ni and Co-doped carbon aerogel materials. The distance of graphite layers in the nanoribbons is about 0.38 nm. These metal-doped CAs retain the overall open cell structure of metal-free CAs, exhibiting high surface areas and pore diameters in the micro and mesoporic region.

  13. Advanced technologies for decontamination and conversion of scrap metal

    SciTech Connect (OSTI)

    MacNair, V.; Muth, T.; Shasteen, K.; Liby, A.; Hradil, G.; Mishra, B.

    1996-12-31

    In October 1993, Manufacturing Sciences Corporation was awarded DOE contract DE-AC21-93MC30170 to develop and test recycling of radioactive scrap metal (RSM) to high value and intermediate and final product forms. This work was conducted to help solve the problems associated with decontamination and reuse of the diffusion plant barrier nickel and other radioactively contaminated scrap metals present in the diffusion plants. Options available for disposition of the nickel include decontamination and subsequent release or recycled product manufacture for restricted end use. Both of these options are evaluated during the course of this research effort. work during phase I of this project successfully demonstrated the ability to make stainless steel from barrier nickel feed. This paved the way for restricted end use products made from stainless steel. Also, after repeated trials and studies, the inducto-slag nickel decontamination process was eliminated as a suitable alternative. Electro-refining appeared to be a promising technology for decontamination of the diffusion plant barrier material. Goals for phase II included conducting experiments to facilitate the development of an electro-refining process to separate technetium from nickel. In parallel with those activities, phase II efforts were to include the development of the necessary processes to make useful products from radioactive scrap metal. Nickel from the diffusion plants as well as stainless steel and carbon steel could be used as feed material for these products.

  14. Draft of M2 Report on Integration of the Hybrid Hydride Model into INL's MBM Framework for Review

    SciTech Connect (OSTI)

    Tikare, Veena; Weck, Philippe F.; Schultz, Peter A.; Clark, Blythe; Glazoff, Michael; Homer, Eric

    2014-07-01

    This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride {delta}-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding. While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. This document demonstrates a basic hydride precipitation model that is built on a recently developed hybrid Potts-phase field model that combines elements of Potts-Monte Carlo and the phase-field models. The model capabilities are demonstrated along with the incorporation of the starting microstructure, thermodynamics of the Zr-H system and the hydride formation mechanism.

  15. Model for the Prediction of the Hydriding Thermodynamics of Pd-Rh-Co Ternary Alloys

    SciTech Connect (OSTI)

    Teter, D.F.; Thoma, D.J.

    1999-03-01

    A dilute solution model (with respect to the substitutional alloying elements) has been developed, which accurately predicts the hydride formation and decomposition thermodynamics and the storage capacities of dilute ternary Pd-Rh-Co alloys. The effect of varying the rhodium and cobalt compositions on the thermodynamics of hydride formation and decomposition and hydrogen capacity of several palladium-rhodium-cobalt ternary alloys has been investigated using pressure-composition (PC) isotherms. Alloying in the dilute regime (<10 at.%) causes the enthalpy for hydride formation to linearly decrease with increasing alloying content. Cobalt has a stronger effect on the reduction in enthalpy than rhodium for equivalent alloying amounts. Also, cobalt reduces the hydrogen storage capacity with increasing alloying content. The plateau thermodynamics are strongly linked to the lattice parameters of the alloys. A near-linear dependence of the enthalpy of hydride formation on the lattice parameter was observed for both the binary Pd-Rh and Pd-Co alloys, as well as for the ternary Pd-Rh-Co alloys. The Pd-5Rh-3Co (at. %) alloy was found to have similar plateau thermodynamics as a Pd-10Rh alloy, however, this ternary alloy had a diminished hydrogen storage capacity relative to Pd-10Rh.

  16. Neutron diffraction studies of a four-coordinated hydride in near square-planar geometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liao, Jian -Hong; Dhayal, Rajendra Singh; Wang, Xiaoping; Kahlal, Samia; Saillard, Jean -Yves; Liu, C. W.

    2014-10-07

    The structure of a nanospheric polyhydrido copper cluster, [Cu20(H)11{S2P(OiPr)2}9], was determined by single-crystal neutron diffraction. Cu20 cluster consists of an elongated triangular orthobicupola constructed from 18 Cu atoms that encapsulate a [Cu2H5}3- ion in the center with an exceptionally short Cu-Cu distance. The eleven hydrides in the cluster display three different coordination modes to the Cu atoms: Six μ3-hydrides in pyramidal geometry, two μ4-hydrides in tetrahedral cavity, and three μ4-hydrides in an unprecedented near square-planar geometry. The neutron data set was collected on a small crystal of the size 0.20 mm x 0.50 mm x 0.65 mm for seven daysmore » using the Spallation Neutron Source TOPAZ single-crystal time-of-flight Laue diffractometer at the Oak Ridge National Laboratory. Furthermore, the final R-factor is 8.64% for 16014 reflections.« less

  17. Apparatus for the electrolytic production of metals

    DOE Patents [OSTI]

    Sadoway, Donald R. (Belmont, MA)

    1993-01-01

    Improved electrolytic cells for producing metals by the electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells, at least one electrode includes a protective layer comprising an oxide of the cell product metal formed upon an alloy of the cell product metal and a more noble metal. In the case of an aluminum reduction cell, the electrode can comprise an alloy of aluminum with copper, nickel, iron, or combinations thereof, upon which is formed an aluminum oxide protective layer.

  18. Process for recovering evolved hydrogen enriched with at least one heavy hydrogen isotope

    DOE Patents [OSTI]

    Tanaka, John; Reilly, Jr., James J.

    1978-01-01

    This invention relates to a separation means and method for enriching a hydrogen atmosphere with at least one heavy hydrogen isotope by using a solid titaniun alloy hydride. To this end, the titanium alloy hydride containing at least one metal selected from the group consisting of vanadium, chromium, manganese, molybdenum, iron, cobalt and nickel is contacted with a circulating gaseous flow of hydrogen containing at least one heavy hydrogen isotope at a temperature in the range of -20.degree. to +40.degree. C and at a pressure above the dissociation pressure of the hydrided alloy selectively to concentrate at least one of the isotopes of hydrogen in the hydrided metal alloy. The contacting is continued until equilibrium is reached, and then the gaseous flow is isolated while the temperature and pressure of the enriched hydride remain undisturbed selectively to isolate the hydride. Thereafter, the enriched hydrogen is selectively recovered in accordance with the separation factor (S.F.) of the alloy hydride employed.

  19. Ordered Mesoporous CMK-5 Carbon with Ultra-Thin Pore Walls and Highly Dispersed Nickel Nanoparticles

    SciTech Connect (OSTI)

    Fulvio, Pawquale F; Liang, Chengdu; Dai, Sheng; Jaroniec, Mietek

    2009-01-01

    Ordered mesoporous CMK-5 carbons with ultra-thin carbon pore walls and highly dispersed Ni nanoparticles have been successfully prepared by using two different SBA-15 silicas as hard templates and 2, 3-di-hydroxynaphtalene (DHN) as a carbon precursor. The nickel precursor was a concentrated nickel nitrate hexahydrate [Ni(NO3)2.6H2O] solution in isopropanol added to the carbon-silica nanocomposites prior to thermal treatments. The samples studied were analyzed by thermogravimetry (TG), nitrogen adsorption at -196 C, powder X-ray diffraction (XRD), Raman spectroscopy, scanning and transmission electron microscopy (STEM) and in situ electron diffraction X-ray spectroscopy (EDX). While TG revealed carbon contents lower than 30 wt%, nitrogen adsorption provided information about homogeneity of carbon thin film deposited onto mesopore walls of ordered silica templates, SBA-15. The templates, carbon-silica nanocomposites and carbon inverse replicas with nickel nanoparticles exhibited uniform pores, high surface areas and large pore volumes. Graphitic carbon was identified by the presence of a characteristic G band on Raman spectra, whereas the diffraction peak attributed to the stacking of graphene planes was not observed by powder XRD.The presence of ordered domains in the carbon materials studied was confirmed by small angle XRD and STEM imaging. In addition, the STEM images revealed that the nickel nanoparticles were uniform in size, ~3nm, and were homogeneously dispersed within ordered tubular carbon walls. A few larger clusters of nickel, ~60nm, present on the external surface, were identified by powder XRD as metallic Ni. The in situ EDX revealed that the small nanoparticles were largely composed of Ni with traces of NiO. Similar nanoparticles dispersions have been reported only for Ni-containing multi-walled carbon nanotubes (CNTs), whereas previously reported ordered mesoporous carbons possessed larger Ni/NiO nanoparticles within CMK-3 nanostructure.

  20. Solid-state graphene formation via a nickel carbide intermediate phase [Nickel carbide (Ni3C) as an intermediate phase for graphene formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiong, W; Zhou, Yunshen; Hou, Wenjia; Guillemet, Thomas; Silvain, Jean-François; Lahaye, Michel; Lebraud, Eric; Xu, Shen; Wang, Xinwei; Cullen, David A; et al

    2015-01-01

    Direct formation of graphene with controlled number of graphitic layers on dielectric surfaces is highly desired for practical applications. Despite significant progress achieved in understanding the formation of graphene on metallic surfaces through chemical vapor deposition (CVD) of hydrocarbons, very limited research is available elucidating the graphene formation process via rapid thermal processing (RTP) of solid-state amorphous carbon, through which graphene is formed directly on dielectric surfaces accompanied by autonomous nickel evaporation. It is suggested that a metastable hexagonal nickel carbide (Ni3C) intermediate phase plays a critical role in transforming amorphous carbon to 2D crystalline graphene and contributing to themore » autonomous Ni evaporation. Temperature resolved carbon and nickel evolution in the RTP process is investigated using Auger electron spectroscopic (AES) depth profiling and glancing-angle X-ray diffraction (GAXRD). Formation, migration and decomposition of the hexagonal Ni3C are confirmed to be responsible for the formation of graphene and the evaporation of Ni at 1100 °C. The Ni3C-assisted graphene formation mechanism expands the understanding of Ni-catalyzed graphene formation, and provides insightful guidance for controlled growth of graphene through the solid-state transformation process.« less

  1. Large Scale Evaluation fo Nickel Aluminide Rolls

    SciTech Connect (OSTI)

    2005-09-01

    This completed project was a joint effort between Oak Ridge National Laboratory and Bethlehem Steel (now Mittal Steel) to demonstrate the effectiveness of using nickel aluminide intermetallic alloy rolls as part of an updated, energy-efficient, commercial annealing furnace system.

  2. Castable nickel aluminide alloys for structural applications

    DOE Patents [OSTI]

    Liu, C.T.

    1992-04-28

    The specification discloses nickel aluminide alloys which include as a component from about 0.5 to about 4 at. % of one or more of the elements selected from the group consisting of molybdenum or niobium to substantially improve the mechanical properties of the alloys in the cast condition. 4 figs.

  3. Proposed sale of radioactively contaminated nickel ingots located at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1995-10-01

    The U.S. Department of Energy (DOE) proposes to sell 8,500 radioactively contaminated nickel ingots (9.350 short tons), currently in open storage at the Paducah Gaseous Diffusion Plant (PGDP), to Scientific Ecology Group, Inc. (SEG) for decontamination and resale on the international market. SEG would take ownership of the ingots when they are loaded for transport by truck to its facility in Oak Ridge, Tennessee. SEG would receive approximately 200 short tons per month over approximately 48 months (an average of 180 ingots per month). The nickel decontamination process specified in SEG`s technical proposal is considered the best available technology and has been demonstrated in prototype at SEG. The resultant metal for resale would have contamination levels between 0.3 and 20 becquerel per gram (Bq/g). The health hazards associated with release of the decontaminated nickel are minimal. The activity concentration of the end product would be further reduced when the nickel is combined with other metals to make stainless steel. Low-level radioactive waste from the SEG decontamination process, estimated to be approximately 382 m{sup 3} (12,730 ft), would be shipped to a licensed commercial or DOE disposal facility. If the waste were packaged in 0.23 m{sup 3}-(7.5 ft{sup 3}-) capacity drums, approximately 1,500 to 1,900 drums would be transported over the 48-month contract period. Impacts from the construction of decontamination facilities and the selected site are minimal.

  4. HIP clad nickel base Alloy 625 for deep sour wells

    SciTech Connect (OSTI)

    Uhl, W.K.; Pendley, M.R.

    1984-05-01

    The hot isostatic pressing (HIP) process was used to clad nickel base Alloy 625 to AISI 4130 low alloy steel. The performance of the HIP clad material in the corrosive environment characteristic of deep, sour oil and gas wells was evaluated in laboratory tests. Included in the test program were NACE TM-01-77 sulfide stress cracking tests, chloride stress corrosion cracking tests in boiling MgCl /SUB 2'/ , and pitting and crevice corrosion tests. The HIP clad 625 performed excellently, displaying essentially the same corrosion resistance as wrought 625. Specifically the HIP clad 625 resisted sulfide stress cracking at applied stresses as high as 120% of yield strength and resisted chloride stress corrosion cracking at stresses exceeding 100% of yield. The HIP clad 625 also displayed immunity to pitting and crevice corrosion, with corrosion rates of <0.025 mm/y (1 mil/y). The 4130 base metal, however, was attacked severly in all tests. SEM/EDX analysis of the 625/4130 interface demonstrated that dilution of the cladding by the base metal was essentially eliminated.

  5. Water treatment process and system for metals removal using Saccharomyces cerevisiae

    DOE Patents [OSTI]

    Krauter, Paula A. W.; Krauter, Gordon W.

    2002-01-01

    A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

  6. Model for Simulation of Hydride Precipitation in Zr-Based Used Fuel Claddings: A Status Report on Current Model Capabilities

    Broader source: Energy.gov [DOE]

    The report demonstrates a meso-scale, microstructural evolution model for simulation of zirconium hydride precipitation in the cladding of used fuels during long-term dry-storage.

  7. Process for production of an aluminum hydride compound

    DOE Patents [OSTI]

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Miller, Dean Michael; Molzahn, David Craig

    2013-08-06

    A compound of formula M(AlH.sub.3OR.sup.1).sub.y, wherein R.sup.1 is phenyl substituted by at least one of: (i) an alkoxy group having from one to six carbon atoms; and (ii) an alkyl group having from three to twelve carbon atoms; wherein M is an alkali metal, Be or Mg; and y is one or two.

  8. Energy and environmental impacts of electric vehicle battery production and recycling

    SciTech Connect (OSTI)

    Gaines, L.; Singh, M.

    1995-12-31

    Electric vehicle batteries use energy and generate environmental residuals when they are produced and recycled. This study estimates, for 4 selected battery types (advanced lead-acid, sodium-sulfur, nickel-cadmium, and nickel-metal hydride), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. For example, although the nickel-cadmium and nickel-metal hydride batteries are similar, energy requirements for production of the cadmium electrodes may be higher than those for the metal hydride electrodes, but the latter may be more difficult to recycle.

  9. Fast, Quantitative, and Nondestructive Evaluation on Hydrided LWR Fuel Cladding by Small Angle Incoherent Neutron Scattering of Hydrogen

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Littrell, Ken; Parish, Chad M

    2015-01-01

    A non-destructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentration were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distributionmore » of circumferential hydrides across the wall. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Our study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount ( 20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor can be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for absolute hydrogen concentration determination.« less

  10. The influence of surface morphology and oxide microstructure on the nucleation and growth of uranium hydride on alpha uranium

    SciTech Connect (OSTI)

    Hanrahan, R.J. Jr.; Hawley, M.E.; Brown, G.W.

    1998-12-31

    While the bulk kinetics of the uranium-hydrogen reaction are well understood, the mechanisms underlying the initial nucleation of uranium hydride on uranium remain controversial. In this study, the authors have employed environmental cell optical microscopy, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy, (AFM) in an attempt to relate the structure of the surface and the microstructure of the substrate with the susceptibility and site of hydride nucleation. Samples have been investigated with varying grain size, inclusion (carbide) concentration, and thermal history. There is a clear correlation to heat treatment immediately prior to hydrogen exposure. Susceptibility to hydride formation also appears to be related to impurities in the uranium. The oxidized surface is very complex, exhibiting wide variations in thickness and topography between samples, between grains in the same sample, and within individual grains. It is, however, very difficult to relate this fine scale variability to the relatively sparse hydride initiation sites. Therefore, the surface oxide layer itself does not appear to control the sites where hydride attack is initiated, although it must play a role in the induction period prior to hydride initiation.

  11. Fast, Quantitative, and Nondestructive Evaluation on Hydrided LWR Fuel Cladding by Small Angle Incoherent Neutron Scattering of Hydrogen

    SciTech Connect (OSTI)

    Yan, Yong; Qian, Shuo; Littrell, Ken; Parish, Chad M; Plummer, Lee K

    2015-01-01

    A non-destructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentration were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Our study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount ( 20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor can be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for absolute hydrogen concentration determination.

  12. Carbide Coatings for Nickel Alloys, Graphite and Carbon/Carbon Composites to be used in Fluoride Salt Valves

    SciTech Connect (OSTI)

    Nagle, Denis; Zhang, Dajie

    2015-10-22

    The focus of this research was concerned with developing materials technology that supports the evolution of Generation IV Advanced High Temperature Reactor (AHTR) concepts. Specifically, we investigate refractory carbide coatings for 1) nickel alloys, and 2) commercial carbon-carbon composites (CCCs). Numerous compelling reasons have driven us to focus on carbon and carbide materials. First, unlike metals, the strength and modulus of CCCs increase with rising temperature. Secondly, graphite and carbon composites have been proven effective for resisting highly corrosive fluoride melts such as molten cryolite [Na₃AlF₆] at ~1000°C in aluminum reduction cells. Thirdly, graphite and carbide materials exhibit extraordinary radiation damage tolerance and stability up to 2000°C. Finally, carbides are thermodynamically more stable in liquid fluoride salt than the corresponding metals (i.e. Cr and Zr) found in nickel based alloys.

  13. High weldability nickel-base superalloy

    DOE Patents [OSTI]

    Gibson, Robert C.; Korenko, Michael K.

    1980-01-01

    This is a nickel-base superalloy with excellent weldability and high strength. Its composition consists essentially of, by weight percent, 10-20 iron, 57-63 nickel, 7-18 chromium, 4-6 molybdenum, 1-2 niobium, 0.2-0.8 silicon, 0.01-0.05 zirconium, 1.0-2.5 titanium, 1.0-2.5 aluminum, 0.02-0.06 carbon, and 0.002-0.015 boron. The weldability and strength of this alloy give it a variety of applications. The long-time structural stability of this alloy together with its low swelling under nuclear radiation conditions, make it especially suitable for use as a duct material and controlling element cladding for sodium-cooled nuclear reactors.

  14. Breakthrough Research on Platinum-Nickel Alloys

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breakthrough Research on Platinum-Nickel Alloys Print Two out of three of the kinetic barriers to the practical use of polymer electrolyte membrane (PEM) hydrogen fuel cells in automobiles have been breached: the impractically high amount of extra energy needed for the oxidation reduction reaction (ORR) on the catalyst and the loss of catalytic surface areas available for ORR. Using a combination of probes and calculations, a group of scientists has demonstrated that the Pt3Ni(111) alloy is ten

  15. Breakthrough Research on Platinum-Nickel Alloys

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breakthrough Research on Platinum-Nickel Alloys Print Two out of three of the kinetic barriers to the practical use of polymer electrolyte membrane (PEM) hydrogen fuel cells in automobiles have been breached: the impractically high amount of extra energy needed for the oxidation reduction reaction (ORR) on the catalyst and the loss of catalytic surface areas available for ORR. Using a combination of probes and calculations, a group of scientists has demonstrated that the Pt3Ni(111) alloy is ten

  16. Breakthrough Research on Platinum-Nickel Alloys

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breakthrough Research on Platinum-Nickel Alloys Print Two out of three of the kinetic barriers to the practical use of polymer electrolyte membrane (PEM) hydrogen fuel cells in automobiles have been breached: the impractically high amount of extra energy needed for the oxidation reduction reaction (ORR) on the catalyst and the loss of catalytic surface areas available for ORR. Using a combination of probes and calculations, a group of scientists has demonstrated that the Pt3Ni(111) alloy is ten

  17. Breakthrough Research on Platinum-Nickel Alloys

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breakthrough Research on Platinum-Nickel Alloys Print Two out of three of the kinetic barriers to the practical use of polymer electrolyte membrane (PEM) hydrogen fuel cells in automobiles have been breached: the impractically high amount of extra energy needed for the oxidation reduction reaction (ORR) on the catalyst and the loss of catalytic surface areas available for ORR. Using a combination of probes and calculations, a group of scientists has demonstrated that the Pt3Ni(111) alloy is ten

  18. Breakthrough Research on Platinum-Nickel Alloys

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breakthrough Research on Platinum-Nickel Alloys Print Two out of three of the kinetic barriers to the practical use of polymer electrolyte membrane (PEM) hydrogen fuel cells in automobiles have been breached: the impractically high amount of extra energy needed for the oxidation reduction reaction (ORR) on the catalyst and the loss of catalytic surface areas available for ORR. Using a combination of probes and calculations, a group of scientists has demonstrated that the Pt3Ni(111) alloy is ten

  19. Synthesis, NMR spectra, and structure of rhodium hydride complexes with Rh-Sn bonds

    SciTech Connect (OSTI)

    Krut'ko, B.P.; Permin, A.B.; Petrosyan, V.S.; Reutov, O.A.

    1985-06-20

    The authors study the hydride complexes using Sn 119 and H 1 NMR spectroscopy. The spectra were taken in a pulse mode on a Varian FT-80A spectrometer equipped with a wideband system at 29.66 and 79.54 MHz. The Sn 119 and H 1 NMR spectral parameters for a solution of the complex (Bu/sub 4/N)/sub 3/ (HRh(SnCl/sub 3/)/sub 5/) in CD/sub 3/CN are shown, the spectra show that the (HRh(SnCl/sub 3/)/sub 5/)/sup 3 -/ anion has octahedral structure with four equatorial and one axial Rh-Sn bonds. New rhodium hydride complexes with general formula (R/sub 4/N)/sub 3/(HRh(SnCl/sub 3/)/sub 5/) were synthesized.

  20. Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation

    DOE Patents [OSTI]

    Johnson, A.B. Jr.; Levy, I.S.; Trimble, D.J.; Lanning, D.D.; Gerber, F.S.

    1990-04-10

    An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-based materials is disclosed. Samples of zirconium-based materials having different compositions and/or fabrication methods are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280 to 316 C). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hydriding for the same materials when subject to in-reactor (irradiated) corrosion. 1 figure.

  1. Electrohydrodynamic atomization (EHDA) assisted wet chemical synthesis of nickel nanoparticles

    SciTech Connect (OSTI)

    Barzegar Vishlaghi, M. [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)] [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Farzalipour Tabriz, M., E-mail: meisam.fa@gmail.com [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Mohammad Moradi, O. [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)] [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2012-07-15

    Highlights: ? Electrohydrodynamic atomization (EHDA) assisted chemical synthesis of nickel nanoparticles is reported. ? Substituting water with non-aqueous media prevents the formation of nickel hydroxide. ? Size of particles decreased from 10 to 20 nm down to 24 nm by using multi-jet mode. ? Synthesized nanoparticles have diffraction patterns similar to amorphous materials. -- Abstract: In this study nickel nanoparticles were prepared via chemical reduction of nickel acetate using sodium borohydride using electrohydrodynamic atomization (EHDA) technique. This technique was used to spray a finely dispersed aerosol of nickel precursor solution into the reductive bath. Obtained particles were characterized by means of X-ray diffraction (XRD), UVVisible spectroscopy, and transmission electron microscopy (TEM). Results confirmed the formation of nickel nanoparticles and showed that applying EHDA technique to chemical reduction method results in producing smaller particles with narrower size distribution in comparison with conventional reductive precipitation method.

  2. Positive Active Material For Alkaline Electrolyte Storage Battert Nickel Electrodes

    DOE Patents [OSTI]

    Bernard, Patrick; Baudry, Michelle

    2000-12-05

    A method of manufacturing a positive active material for nickel electrodes of alkaline storage batteries which consists of particles of hydroxide containing mainly nickel and covered with a layer of a hydroxide phase based on nickel and yttrium is disclosed. The proportion of the hydroxide phase is in the range 0.15% to 3% by weight of yttrium expressed as yttrium hydroxide relative to the total weight of particles.

  3. Electrodeposition of amorphous ternary nickel-chromium-phosphorus alloy

    DOE Patents [OSTI]

    Guilinger, Terry R.

    1990-01-01

    Amorphous ternary nickel-chromium-phosphorus alloys are electrodeposited from a bath comprising a nickel salt, a chromium salt, a phosphorus source such as sodium hypophosphite, a complexing agent for the nickel ions, supporting salts to increase conductivity, and a buffering agent. The process is carried out at about room temperature and requires a current density between about 20 to 40 A/dm.sup.2.

  4. Corrosion investigation of multilayered ceramics and experimental nickel alloys in SCWO process environments

    SciTech Connect (OSTI)

    Garcia, K.M.; Mizia, R.

    1995-02-01

    A corrosion investigation was done at MODAR, Inc., using a supercritical water oxidation (SCWO) vessel reactor. Several types of multilayered ceramic rings and experimental nickel alloy coupons were exposed to a chlorinated cutting oil TrimSol, in the SCWO process. A corrosion casing was designed and mounted in the vessel reactor with precautions to minimize chances of degrading the integrity of the pressure vessel. Fifteen of the ceramic coated rings were stacked vertically in the casing at one time for each test. There was a total of 36 rings. The rings were in groupings of three rings that formed five sections. Each section saw a different SCWO environment, ranging from 650 to 300{degrees}C. The metal coupons were mounted on horizontal threaded holders welded to a vertical rod attached to the casing cover in order to hang down the middle of the casing. The experimental nickel alloys performed better than the baseline nickel alloys. A titania multilayered ceramic system sprayed onto a titanium ring remained intact after 120-180 hours of exposure. This is the longest time any coating system has withstood such an environment without significant loss.

  5. Effects of nickel, chromate, and arsenite on histone 3 lysine...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 60 APPLIED LIFE SCIENCES; ARSENIC; CARCINOMAS; CELL DIVISION; CHROMATES; CHROMIUM; DNA; GENES; LUNGS; LYSINE; METHYLATION; MICROSCOPY; NICKEL; OCCUPATIONAL EXPOSURE Word ...

  6. Fluorescent tracking of nickel ions in human cultured cells ...

    Office of Scientific and Technical Information (OSTI)

    Fluorescent tracking of nickel ions in human cultured cells Citation Details In-Document ... B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International ...

  7. Response of nickel surface to pulsed fusion plasma radiations

    SciTech Connect (OSTI)

    Niranjan, Ram Rout, R. K. Srivastava, R. Gupta, Satish C.; Chakravarthy, Y.; Patel, N. N.; Alex, P.

    2014-04-24

    Nickel based alloys are being projected as suitable materials for some components of the next generation fusion reactor because of compatible thermal, electrical and mechanical properties. Pure nickel material is tested here for possibility of similar application purpose. Nickel samples (> 99.5 % purity) are exposed here to plasma radiations produced due to D-D fusion reaction inside an 11.5 kJ plasma focus device. The changes in the physical properties of the nickel surface at microscopic level which in turn change the mechanical properties are analyzed using scanning electron microscope, optical microscope, glancing incident X-ray diffractometer and Vicker's hardness gauge. The results are reported here.

  8. New route toward integrating large nickel nanocrystals onto mesoporous...

    Office of Scientific and Technical Information (OSTI)

    New route toward integrating large nickel nanocrystals onto mesoporous carbons This content will become publicly available on December 30, 2016 Title: New route toward integrating ...

  9. Nanostructured metal foams: synthesis and applications

    SciTech Connect (OSTI)

    Luther, Erik P; Tappan, Bryce; Mueller, Alex; Mihaila, Bogdan; Volz, Heather; Cardenas, Andreas; Papin, Pallas; Veauthier, Jackie; Stan, Marius

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  10. Direct Reduction of Waste through Refining of DOE Metal Assets - 13632

    SciTech Connect (OSTI)

    Hargett, Michael C.; Terekhov, Dimitri; Khozan, Kamran M.

    2013-07-01

    CVMR{sup R} presents a technology for refining nickel from the enrichment barrier materials of the DOE that is proven through 100 years of use by the metals industry. CVMR{sup R} applies modern controls, instrumentation for process and monitoring of the system, and innovative production methods to produce a wide spectrum of products that generate new technology applications and improvements to our society and economy. CVMR{sup R} will receive barrier materials as a secure operation and size reduce the metal to a shred that is fed to a carbonylation reactor where nickel is reacted with carbon monoxide and generate nickel carbonyl. The carbonyl will be filtered and decomposed with heat to form a variety of products that include high value nano powders, coated substrates, net shapes and pure nickel. The residue from the reactor will retain radionuclides from enrichment activities. The carbon monoxide will only react and extract nickel under the operating conditions to leave volumetric contamination in the unreacted residue. A demonstration plant was designed and built by CVMR{sup R} and operated by BWXT, to demonstrate the systems capabilities to DOE in 2006. A pilot plant operation precedes the detailed design of the nickel refinery and provides essential data for design, safe work practices, waste characterizations and system kinetics and confirms the project feasibility. CVMR{sup R} produces nickel products that are cleaner than the nickel in U.S. commerce and used by industry today. The CVMR{sup R} process and systems for nickel refining is well suited for DOE materials and will provide value through environmental stewardship, recovery of high value assets, and support of the DOE environmental remediation programs as the refined nickel generates additional long term benefits to local communities. (authors)

  11. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  12. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  13. Buffer layers on rolled nickel or copper as superconductor substrates

    DOE Patents [OSTI]

    Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /CeO.sub.2 /Ni, RE.sub.2 O.sub.3 /Ni (RE=Rare Earth), and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /CeO.sub.2 /Cu, RE.sub.2 O.sub.3 /Cu, and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approach, which includes chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.

  14. Adsorption of carbonyl sulfide on nickel and tungsten films

    SciTech Connect (OSTI)

    Saleh, J.M.; Nasser, F.A.K.

    1985-07-18

    The interaction of carbonyl sulfide with evaporated nickel and tungsten films has been investigated in the temperature range 195-450 K using gas pressures ranging from 1 to 13 N m/sup -2/. Rapid but mainly associative chemisorption of COS occurred on both metals at 195 K. Further adsorption of COS on W at temperatures 293-450 K was extremely slow and accompanied by more CO desorption than COS adsorbed. Sulfidation of Ni film by COS occurred at temperatures greater than or equal to 293 K with the liberation of carbon monoxide. The rate of adsorption increased with temperature but was independent of COS pressure. The activation energy (E/sub x/) increased with extent (X) of sulfidation to a limiting value of 97 kJ mol/sup -1/. A linear relationship was obtained from the plot of E/sub x/ against 1/X, suggesting the applicability of Cabrera-Mott theory to the sulfidation of Ni film by COS. 20 references, 2 figures, 1 table.

  15. Thermal Release of 3He from Tritium Aged LaNi4.25Al0.75 Hydride

    SciTech Connect (OSTI)

    Staack, Gregory C.; Crowder, Mark L.; Klein, James E.

    2015-02-01

    Recently, the demand for He-3 has increased dramatically due to widespread use in nuclear nonproliferation, cryogenic, and medical applications. Essentially all of the world’s supply of He-3 is created by the radiolytic decay of tritium. The Savannah River Site Tritium Facilities (SRS-TF) utilizes LANA.75 in the tritium process to store hydrogen isotopes. The vast majority of He-3 “born” from tritium stored in LANA.75 is trapped in the hydride metal matrix. The SRS-TF has multiple LANA.75 tritium storage beds that have been retired from service with significant quantities of He-3 trapped in the metal. To support He-3 recovery, the Savannah River National Laboratory (SRNL) conducted thermogravimetric analysis coupled with mass spectrometry (TGA-MS) on a tritium aged LANA.75 sample. TGA-MS testing was performed in an argon environment. Prior to testing, the sample was isotopically exchanged with deuterium to reduce residual tritium and passivated with air to alleviate pyrophoric concerns associated with handling the material outside of an inert glovebox. Analyses indicated that gas release from this sample was bimodal, with peaks near 220 and 490°C. The first peak consisted of both He-3 and residual hydrogen isotopes, the second was primarily He-3. The bulk of the gas was released by 600 °C

  16. PROCESS OF ELECTROPLATING METALS WITH ALUMINUM

    DOE Patents [OSTI]

    Schickner, W.C.

    1960-04-26

    A process of electroplating aluminum on metals from a nonaqueous bath and a novel method of pretreating or conditioning the metal prior to electrodeposition of the aluminum are given. The process of this invention, as applied by way of example to the plating of uranium, comprises the steps of plating the uranium with the barrier inetal, immersing the barrier-coated uranium in fatty acid, and electrolyzing a water-free diethyl ether solution of aluminum chloride and lithium hydride while making the uranium the cathode until an aluminum deposit of the desired thickness has been formed. According to another preferred embodiment the barrier-coated uranium is immersed in an isopropyl alcohol solution of sterato chromic chloride prior to the fatty acid treatment of this invention.

  17. Method for regeneration of electroless nickel plating solution

    DOE Patents [OSTI]

    Eisenmann, E.T.

    1997-03-11

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorus acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution. 1 fig.

  18. Method for regeneration of electroless nickel plating solution

    DOE Patents [OSTI]

    Eisenmann, Erhard T.

    1997-01-01

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorous acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution.

  19. Metallic sulfide additives for positive electrode material within a secondary electrochemical cell

    DOE Patents [OSTI]

    Walsh, William J.; McPheeters, Charles C.; Yao, Neng-ping; Koura, Kobuyuki

    1976-01-01

    An improved active material for use within the positive electrode of a secondary electrochemical cell includes a mixture of iron disulfide and a sulfide of a polyvalent metal. Various metal sulfides, particularly sulfides of cobalt, nickel, copper, cerium and manganese, are added in minor weight proportion in respect to iron disulfide for improving the electrode performance and reducing current collector requirements.

  20. Titanium Metal Powder Production by the Plasma Quench Process

    SciTech Connect (OSTI)

    R. A. Cordes; A. Donaldson

    2000-09-01

    The goals of this project included the scale-up of the titanium hydride production process to a production rate of 50 kg/hr at a purity level of 99+%. This goal was to be achieved by incrementally increasing the production capability of a series of reactor systems. This methodic approach was designed to allow Idaho Titanium Technologies to systematically address the engineering issues associated with plasma system performance, and powder collection system design and performance. With quality powder available, actual fabrication with the titanium hydride was to be pursued. Finally, with a successful titanium production system in place, the production of titanium aluminide was to be pursued by the simultaneously injection of titanium and aluminum precursors into the reactor system. Some significant accomplishments of the project are: A unique and revolutionary torch/reactor capable of withstanding temperatures up to 5000 C with high thermal efficiency has been operated. The dissociation of titanium tetrachloride into titanium powder and HC1 has been demonstrated, and a one-megawatt reactor potentially capable of producing 100 pounds per hour has been built, but not yet operated at the powder level. The removal of residual subchlorides and adsorbed HC1 and the sintering of powder to form solid bodies have been demonstrated. The production system has been operated at production rates up to 40 pounds per hour. Subsequent to the end of the project, Idaho Titanium Technologies demonstrated that titanium hydride powder can indeed be sintered into solid titanium metal at 1500 C without sintering aids.

  1. SEPARATION OF METAL SALTS BY ADSORPTION

    DOE Patents [OSTI]

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  2. Non-Noble Metal Water Electrolysis Catalysts - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Non-Noble Metal Water Electrolysis Catalysts Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel Molybdenum Nitride Nanosheets (1,161 KB) a) TEM image of the stacked MoN nanosheets on carbon supports. The read and white arrows mark the nanosheets that lay flat and stand vertically, respectively. b) A HRTEM image with the crystal structure overlaid looking down along the

  3. High Activity of Ce1-xNixO2-y for H2 Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions

    SciTech Connect (OSTI)

    G Zhou; L Barrio; S Agnoli; S Senanayake; J Evans; A Kubacka; M Estrella; J Hanson; A Martinez-Arias; et al.

    2011-12-31

    The importance of the oxide: Ce{sub 0.8}Ni{sub 0.2}O{sub 2-y} is an excellent catalyst for ethanol steam reforming. Metal-oxide interactions perturb the electronic properties of the small particles of metallic nickel present in the catalyst under the reaction conditions and thus suppress any methanation activity. The nickel embedded in ceria induces the formation of O vacancies, which facilitate cleavage of the OH bonds in ethanol and water.

  4. Method and apparatus for storing hydrogen isotopes. [stored as uranium hydride in a block of copper

    DOE Patents [OSTI]

    McMullen, J.W.; Wheeler, M.G.; Cullingford, H.S.; Sherman, R.H.

    1982-08-10

    An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas is stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forms at a significantly lower temperature).

  5. Mechanistic study of the isotopic-exchange reaction between gaseous hydrogen and palladium hydride powder

    SciTech Connect (OSTI)

    Outka, D.A.; Foltz, G.W. (Sandia National Labs., Livermore, CA (USA))

    1991-07-01

    A detailed mechanism for the isotopic-exchange reaction between gaseous hydrogen and solid palladium hydride is developed which extends previous model for this reaction by specifically including surface reactions. The modeling indicates that there are two surface-related processes that contribute to the overall rate of exchange: the desorption of hydrogen from the surface and the exchange between surface hydrogen and bulk hydrogen. This conclusion is based upon measurements examining the effect of small concentrations of carbon monoxide were helpful in elucidating the mechanism. Carbon monoxide reversibly inhibits certain steps in the exchange; this slows the overall rate of exchange and changes the distribution of products from the reactor.

  6. Modeling and Simulation of Used Nuclear Fuel During Transportation with Consideration of Hydride Effects and Cyclic Fatigue

    SciTech Connect (OSTI)

    Chakraborty, Pritam; Sabharwall, Piyush; Spears, Robert Edward; Coleman, Justin Leigh; Sener, Kadir; Varma, Amit H.

    2015-09-30

    The objective of this work is to understand the integrity of Used Nuclear Fuel (UNF) during transportation. Previous analysis work has been performed to look at the integrity of UNF during transportation but these analyses have neglected to analyze the effect of hydrides and flaws (fracture mechanics models to capture radial cracking in the cladding). In this study, the clad regions of interest are near the pellet-pellet interfaces. These regions can experience more complex stress-states than the rest of the clad during cooling and have a greater possibility to develop radially reoriented hydrides during vacuum drying.

  7. Ceramic-metal composite article and joining method

    DOE Patents [OSTI]

    Kang, Shinhoo; Selverian, John H.; Kim, Hans J.; Dunn, Edmund M.; Kim, Kyung S.

    1992-01-01

    A ceramic-metal article including a ceramic rod, a metal rod, and a braze joining the ceramic and metal rods at a braze area of a coaxial bore in the metal rod. The bore gradually decreases in diameter, having an inward seat area sized for close sliding fit about the ceramic, a larger brazing area near the joint end, and a void area intermediate the braze and seat areas. The ceramic is seated without brazing in the bore seat area. The side wall between the brazing area and the metal outer surface is about 0.030-0.080 inch. The braze includes an inner braze layer, an outer braze layer, and an interlayer about 0.030-0.090 inch thick. A shoulder between the brazing and void areas supports the interlayer during bonding while preventing bonding between the void area and the ceramic member, leaving a void space between the void area and the ceramic member. A venting orifice extends generally radially through the metal member from the outer surface to the void space. The braze layers are palladium, platinum, gold, silver, copper, nickel, indium, chromium, molybdenum, niobium, iron, aluminum, or alloys thereof. Preferred is a gold-palladium-nickel brazing alloy. The interlayer is nickel, molybdenum, copper, tantalum, tungsten, niobium, aluminum, cobalt, iron, or an alloy thereof.

  8. Ceramic-metal composite article and joining method

    DOE Patents [OSTI]

    Kang, S.; Selverian, J.H.; Kim, H.J.; Dunn, E.M.; Kim, K.S.

    1992-04-28

    A ceramic-metal article including a ceramic rod, a metal rod, and a braze joining the ceramic and metal rods at a braze area of a coaxial bore in the metal rod is described. The bore gradually decreases in diameter, having an inward seat area sized for close sliding fit about the ceramic, a larger brazing area near the joint end, and a void area intermediate the braze and seat areas. The ceramic is seated without brazing in the bore seat area. The side wall between the brazing area and the metal outer surface is about 0.030-0.080 inch. The braze includes an inner braze layer, an outer braze layer, and an interlayer about 0.030-0.090 inch thick. A shoulder between the brazing and void areas supports the interlayer during bonding while preventing bonding between the void area and the ceramic member, leaving a void space between the void area and the ceramic member. A venting orifice extends generally radially through the metal member from the outer surface to the void space. The braze layers are palladium, platinum, gold, silver, copper, nickel, indium, chromium, molybdenum, niobium, iron, aluminum, or alloys thereof. Preferred is a gold-palladium-nickel brazing alloy. The interlayer is nickel, molybdenum, copper, tantalum, tungsten, niobium, aluminum, cobalt, iron, or an alloy thereof. 4 figs.

  9. Process for forming a nickel foil with controlled and predetermined permeability to hydrogen

    DOE Patents [OSTI]

    Engelhaupt, Darell E.

    1981-09-22

    The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readily-corrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature.

  10. EXPERIMENTAL RESULTS FOR THE ISOTOPIC EXCHANGE OF A 1600 LITER TITANIUM HYDRIDE STORAGE VESSEL

    SciTech Connect (OSTI)

    Klein, J.

    2010-12-14

    Titanium is used as a low pressure tritium storage material. The absorption/desorption rates and temperature rise during air passivation have been reported previously for a 4400 gram prototype titanium hydride storage vessel (HSV). A desorption limit of roughly 0.25 Q/M was obtained when heating to 700 C which represents a significant residual tritium process vessel inventory. To prepare an HSV for disposal, batchwise isotopic exchange has been proposed to reduce the tritium content to acceptable levels. A prototype HSV was loaded with deuterium and exchanged with protium to determine the effectiveness of a batch-wise isotopic exchange process. A total of seven exchange cycles were performed. Gas samples were taken nominally at the beginning, middle, and end of each desorption cycle. Sample analyses showed the isotopic exchange process does not follow the standard dilution model commonly reported. Samples taken at the start of the desorption process were lower in deuterium (the gas to be removed) than those taken later in the desorption cycle. The results are explained in terms of incomplete mixing of the exchange gas in the low pressure hydride.

  11. METHOD FOR PRODUCING ISOTOPIC METHANES FROM LITHIUM CARBONATE AND LITHIUM HYDRIDE

    DOE Patents [OSTI]

    Frazer, J.W.

    1959-10-27

    A process is descrlbed for the production of methane and for the production of methane containing isotopes of hydrogen and/or carbon. Finely divided lithium hydrlde and litldum carbonate reactants are mixed in intimate contact and subsequently compacted under pressures of from 5000 to 60,000 psl. The compacted lithium hydride and lithium carbenate reactunts are dispised in a gas collecting apparatus. Subsequently, the compact is heated to a temperature in the range 350 to 400 deg C whereupon a solid-solid reaction takes place and gaseous methane is evolved. The evolved methane is contaminated with gaseous hydrogen and a very small amount of CO/sub 2/; however, the desired methane product is separated from sald impurities by well known chemical processes, e.g., condensation in a cold trap. The product methane contalns isotopes of carbon and hydrogen, the Isotopic composition being determined by the carbon isotopes originally present In the lithium carbonate and the hydrogen isotopes originally present in the lithium hydride.

  12. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    SciTech Connect (OSTI)

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  13. Metal aminoboranes

    DOE Patents [OSTI]

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya Kaviraj; Shrestha, Roshan P.

    2010-05-11

    Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  14. Microstructure of selective laser melted nickeltitanium

    SciTech Connect (OSTI)

    Bormann, Therese; Mller, Bert; Kessler, Anja; Thalmann, Peter

    2014-08-15

    In selective laser melting, the layer-wise local melting of metallic powder by means of a scanning focused laser beam leads to anisotropic microstructures, which reflect the pathway of the laser beam. We studied the impact of laser power, scanning speed, and laser path onto the microstructure of NiTi cylinders. Here, we varied the laser power from 56 to 100 W and the scanning speed from about 100 to 300 mm/s. In increasing the laser power, the grain width and length increased from (33 7) to (90 15) ?m and from (60 20) to (600 200) ?m, respectively. Also, the grain size distribution changed from uni- to bimodal. Ostwald-ripening of the crystallites explains the distinct bimodal size distributions. Decreasing the scanning speed did not alter the microstructure but led to increased phase transformation temperatures of up to 40 K. This was experimentally determined using differential scanning calorimetry and explained as a result of preferential nickel evaporation during the fabrication process. During selective laser melting of the NiTi shape memory alloy, the control of scanning speed allows restricted changes of the transformation temperatures, whereas controlling the laser power and scanning path enables us to tailor the microstructure, i.e. the crystallite shapes and arrangement, the extent of the preferred crystallographic orientation and the grain size distribution. - Highlights: Higher laser powers during selective laser melting of NiTi lead to larger grains. Selective laser melting of NiTi gives rise to preferred <111> orientation. The observed Ni/Ti ratio depends on the exposure time. Ostwald ripening explains the bimodal grain size distribution.

  15. A technique for synthesizing metal tritide standards

    SciTech Connect (OSTI)

    Bach, H. T.; Allen, T. H.; Hill, D. D.; Martinez, P. T.; Schwarz, R. B.; Paglieri, S. N.; Wermer, J. R.

    2008-07-15

    Before surplus plutonium pits can be decommissioned and converted into metal oxides to be used as reactor fuels, residual tritium must be reduced to an acceptable level. We have developed two analytical methods involving melting and acid dissolution, combined with liquid scintillation counting as a quantitative and sensitive technique for measuring residual tritium in Pu metal. The detection limit, linearity, and reproducibility of these analytical methods must be validated with a series of metal tritide standards. Since there are no commercially available metal tritide standards, we have developed a technique for their synthesis. The synthesis of these low-level metal tritide standards is accomplished by charging cerium powder with a known amount of tritium to form a master cerium tritide alloy and then by aliquoting from this master alloy and diluting with pure cerium powder to form a series of standards with different tritium concentrations. The major difficulty in synthesizing these standards is that the samples contain extremely low levels of tritium, which span over three decades of concentrations. The synthesis technique and initial data obtained for cerium hydride samples will be presented. (authors)

  16. NICKEL-CHROMIUM-GERMANIUM ALLOYS FOR STAINLESS STEEL BRAZING

    DOE Patents [OSTI]

    McGurty, J.A.; Funston, E.S.

    1959-08-25

    ABS>A new tennary brazing alloy consisting of from 37 to 65 wt.% nickel, from 5 to 40 wt.% chromium, and from 15 to 40 wt.% germanium ts described.

  17. Verification and Validation Strategy for Implementation of Hybrid Potts-Phase Field Hydride Modeling Capability in MBM

    SciTech Connect (OSTI)

    Jason D. Hales; Veena Tikare

    2014-04-01

    The Used Fuel Disposition (UFD) program has initiated a project to develop a hydride formation modeling tool using a hybrid Pottsphase field approach. The Potts model is incorporated in the SPPARKS code from Sandia National Laboratories. The phase field model is provided through MARMOT from Idaho National Laboratory.

  18. Choice of corrosion-resistant metal for fluotitanic acid

    SciTech Connect (OSTI)

    Reingeverts, M.D.; Lapchenko, E.P.; Semenyuk, E.Y.

    1986-05-01

    The authors investigate the corrosion and anodic behavior of steels 12Kh18N10T, 08Kh21N6M2T, and 06KhN28MDT, nickel, and molybdenum in 10-40% naturally aerated solutions of H/sub 2/TiF/sub 6/ at 20 and 50 degrees C. The authors found that in solutions of fluotitanic acid, as also in tetrafluoroboric and hydrofluoric acids, the most stable alloys are chromium-nickel-molybdenum alloy of type 06KhN28MDT and (for acid concentrations above 20%) copper-nickel-alloys of the monel metal type. Steels 12Kh18N10T and 08Kh21N6M2T can be used in acid concentrations of less than 10% and temperatures up to 20 degrees C with anodic protection.

  19. Effect of Metal-Support Interactions in Ni/Al2O3 Catalysts with Low Metal Loading for Methane Dry Reforming

    SciTech Connect (OSTI)

    Ewbank, Jessica L.; Kovarik, Libor; Diallo, Fatoumata Z.; Sievers, Carsten

    2015-03-01

    Types of nickel sites as a function of preparation method have received much attention in the literature. In this work, two preparation methods, controlled adsorption and dry impregnation, are implemented to explore the effect of preparation method on catalytic nickel centers. For controlled adsorption, optimal synthesis conditions are identified using point of zero charge measurements, pH-precipitation experiments, and adsorption isotherms to prepare a catalyst with a high dispersion and strong metal support interactions. Metal support interactions influence the types of nickel sites formed. Thus, comparison of catalysts that differ primarily in metal support interactions, strong metal support interaction (controlled adsorption) and weak metal support interactions (dry impregnation), is of great interest. It is confirmed through characterization techniques; N2 physisorption, H2 chemisorption, temperature programmed reduction (TPR), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS) that the types of nickel sites formed are indeed strongly dependent on preparation method. Methane dry reforming reactivity studies are used to demonstrate the successful application of these catalysts and further probe the types of active centers present. Combustion analysis and XPS of spent catalysts reveal different amounts and nature of carbonaceous deposits as a function of the synthesis method.

  20. Final Report: Metal Perhydrides for Hydrogen Storage

    SciTech Connect (OSTI)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One LiH molecule contains one hydrogen atom because the valence of a Li ion is +1. One MgH2 molecule contains two hydrogen atoms because the valence of a Mg ion is +2. In metal perhydrides, a molecule could contain more hydrogen atoms than expected based on the metal valance, i.e. LiH1+n and MgH2+n (n is equal to or greater than 1). When n is sufficiently high, there will be plenty of hydrogen storage capacity to meet future requirements. The existence of hydrogen clusters, Hn+ (n = 5, 7, 9, 11, 13, 15) and transition metal ion-hydrogen clusters, M+(H2)n (n = 1-6), such as Sc(H2)n+, Co(H2)n+, etc., have assisted the development of this concept. Clusters are not stable species. However, their existence stimulates our approach on using electric charges to enhance the hydrogen adsorption in a hydrogen storage system in this study. The experimental and modeling work to verify it are reported here. Experimental work included the generation of cold hydrogen plasma through a microwave approach, synthesis of sorbent materials, design and construction of lab devices, and the determination of hydrogen adsorption capacities on various sorbent materials under various electric field potentials and various temperatures. The results consistently show that electric potential enhances the adsorption of hydrogen on sorbents. NiO, MgO, activated carbon, MOF, and MOF and platinum coated activated carbon are some of the materials studied. Enhancements up to a few hundred percents have been found. In general, the enhancement increases with the electrical potential, the pressure applied, and the temperature lowered. Theoretical modeling of the hydrogen adsorption on the sorbents under the electric potential has been investigated with the density functional theory (DFT) approach. It was found that the interaction energy between hydrogen and sorbent is increased remarkably when an electric field is applied. This increase of binding energy offers a potential solution for DOE when looking for a compromise between chemisorption and physisorption for hydrogen storage. Bonding of chemisorption is too

  1. Nickel coated aluminum battery cell tabs

    DOE Patents [OSTI]

    Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

    2014-07-29

    A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

  2. PROCESS OF COATING METALS WITH BISMUTH OR BISMUTH-BASE ALLOYS

    DOE Patents [OSTI]

    Beach, J.G.

    1958-01-28

    A method is described for producing coatings of bismuth or bismuth alloys on a metal base. This is accomplished by electrodepositing the bismuth from an aqueous solution of BiCl/sub 3/, and by making the metal base alternately the cathode and the anode, the cathode periods being twice as long as the anode periods. In one embodiment a nickel coating is first electrodeposited in a known way, and this nickel plated piece is tae base upon which tae bismuth is deposited by the process of this patent. The coated piece is then heat treated to produce a homogeneous Ni--Bi alloy by diffusion.

  3. Composite Metal-hydrogen Electrodes for Metal-Hydrogen Batteries

    SciTech Connect (OSTI)

    Ruckman, M W; Wiesmann, H; Strongin, M; Young, K; Fetcenko, M

    1997-04-01

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries. The anodes could be incorporated in thin film solid state Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped metal-hydrogen ratios exceeding and fast hydrogen charging and Nb films, these studies suggested that materials with those of commercially available metal hydride materials discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films-and multiiayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 µm thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices.

  4. Revisiting Photoemission and Inverse Photoemission Spectra of Nickel Oxide from First Principles: Implications for Solar Energy Conversion

    SciTech Connect (OSTI)

    Alidoust, Nima; Toroker, Maytal; Carter, Emily A.

    2014-07-17

    We use two different ab initio quantum mechanics methods, complete active space self-consistent field theory applied to electrostatically embedded clusters and periodic many-body G?W? calculations, to reanalyze the states formed in nickel(II) oxide upon electron addition and ionization. In agreement with interpretations of earlier measurements, we find that the valence and conduction band edges consist of oxygen and nickel states, respectively. However, contrary to conventional wisdom, we find that the oxygen states of the valence band edge are localized whereas the nickel states at the conduction band edge are delocalized. We argue that these characteristics may lead to low electron-hole recombination and relatively efficient electron transport, which, coupled with band gap engineering, could produce higher solar energy conversion efficiency compared to that of other transition-metal oxides. Both methods find a photoemission/inverse-photoemission gap of 3.6-3.9 eV, in good agreement with the experimental range, lending credence to our analysis of the electronic structure of NiO.

  5. Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation

    DOE Patents [OSTI]

    Johnson, Jr., A. Burtron; Levy, Ira S.; Trimble, Dennis J.; Lanning, Donald D.; Gerber, Franna S.

    1990-01-01

    An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-bsed materials is disclosed. Samples of zirconium-based materials having different composition and/or fabrication are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280.degree. to 316.degree. C.). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hyriding for the same materials when subject to in-reactor (irradiated) corrision.

  6. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps

    SciTech Connect (OSTI)

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Yugova, T. G.; Cox, H.; Helava, H.; Makarov, Yu.; Usikov, A. S.

    2014-05-14

    Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ?10{sup 17}?cm{sup ?3} to (25)??10{sup 14}?cm{sup ?3}. The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ?5??10{sup 13}?cm{sup ?3} versus 2.9??10{sup 16}?cm{sup ?3} in the standard samples, with a similar decrease in the electron traps concentration.

  7. RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride

    DOE Patents [OSTI]

    Jeffery, F.R.; Shanks, H.R.

    1980-08-26

    A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  8. Anisotropic Azimuthal Power and Temperature distribution on FuelRod. Impact on Hydride Distribution

    SciTech Connect (OSTI)

    Motta, Arthur; Ivanov, Kostadin; Arramova, Maria; Hales, Jason

    2015-04-29

    The degradation of the zirconium cladding may limit nuclear fuel performance. In the high temperature environment of a reactor, the zirconium in the cladding corrodes, releasing hydrogen in the process. Some of this hydrogen is absorbed by the cladding in a highly inhomogeneous manner. The distribution of the absorbed hydrogen is extremely sensitive to temperature and stress concentration gradients. The absorbed hydrogen tends to concentrate near lower temperatures. This hydrogen absorption and hydride formation can cause cladding failure. This project set out to improve the hydrogen distribution prediction capabilities of the BISON fuel performance code. The project was split into two primary sections, first was the use of a high fidelity multi-physics coupling to accurately predict temperature gradients as a function of r, θ , and z, and the second was to use experimental data to create an analytical hydrogen precipitation model. The Penn State version of thermal hydraulics code COBRA-TF (CTF) was successfully coupled to the DeCART neutronics code. This coupled system was verified by testing and validated by comparison to FRAPCON data. The hydrogen diffusion and precipitation experiments successfully calculated the heat of transport and precipitation rate constant values to be used within the hydrogen model in BISON. These values can only be determined experimentally. These values were successfully implemented in precipitation, diffusion and dissolution kernels that were implemented in the BISON code. The coupled output was fed into BISON models and the hydrogen and hydride distributions behaved as expected. Simulations were conducted in the radial, axial and azimuthal directions to showcase the full capabilities of the hydrogen model.

  9. High Temperature Interactions of Antimony with Nickel

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.

    2012-07-01

    In this chapter, the surface and bulk interactions of antimony with the Ni-based anodes in solid oxide fuel cells (SOFC) will be discussed. High fuel flexibility is a significant advantage of SOFCs, allowing the direct use of fossil and bio fuels without a hydrogen separation unit. Synthesis gas derived from coal and biomass consists of a mixture of hydrogen, carbon monoxide, carbon dioxide, and steam, but finite amounts of tars and trace impurities such as S, Se, P, As, Sb, Cd, Pb, Cl, etc, are also always present. While synthesis gas is commonly treated with a series of chemical processes and scrubbers to remove the impurities, complete purification is not economical. Antimony is widely distributed in coals. During coal gasification antimony is volatilized, such that contact with the SOFC anodes and other SOFC parts, e.g., interconnect, current collecting wires, fuel gas supplying tubing, is most likely. This chapter addresses the following topics: high temperature Ni - Sb interactions; alteration phase, Ni3Sb, Ni5Sb2, NiSb, formation; thermochemical modeling; impact of Sb on the electrocatalytic activity of Ni toward the fuel oxidation and the presence of other impurities (sulfur, in particular); converted anode structural instability during long-term SOFC operation; comparison with nickel heterogeneous catalysts.

  10. Hydrogen ingress into copper-nickel alloys

    SciTech Connect (OSTI)

    Pound, B.G. . Materials Research Center)

    1994-04-01

    Hydrogen (H) ingress into two copper (Cu)-nickel (Ni) alloys -- a commercial 77% Cu-15% Ni alloy (aged) and alloy K-500 (UNS N05500, aged and unaged) --- was studied using a technique referred to as hydrogen ingress analysis by potentiostatic pulsing (HIAPP). Anodic current transients obtained for these alloys in an acetate buffer (1 mol/L acetic acid + 1 mol/L sodium acetate [NaAc]) were analyzed using a diffusion-trapping model to determine trapping constants and H entry fluxes. A small increase was observed in the irreversible trapping constant for alloy K-500 with aging. Trapping constants of the aged alloys were similar within the limits of uncertainty, but H entry flux for the 77% Cu alloy was lower than that for aged or unaged alloy K-500. The lower flux may have accounted at least partly, for the Cu alloy's higher resistance to H embrittlement. Trap densities were consistent qualitatively with levels of sulfur (S) and phosphorus (P) in the two alloys. This finding supported an assumption that S and P provided the primary irreversible traps.

  11. Influence of process parameters on rolling-contact-fatigue life of ion plated nickel-copper-silver lubrication

    SciTech Connect (OSTI)

    Danyluk, Mike; Dhingra, Anoop

    2012-05-15

    In this paper, we present a connection between argon ion flux, element-mixing, and rolling contact fatigue (RCF) life of a thin film nickel-copper-silver lubricant on ball bearings. The film is deposited on the balls using an ion plating process and tested for RCF in high vacuum. The ion flux is measured using a Langmuir probe and the plane stress within the film during deposition is calculated using a thin film model. Experiments reveal that there is an inverse relationship between ion flux and RCF life for most deposition voltage and pressure combinations tested, specifically, 15.5-18.5 mTorr and 1.5-3.5 kV. For voltages up to 2.5 kV, RCF life decreases as ion flux increases due to increased compressive stress within the film, reaching as high as 2.6 GPa. For voltages between 2.5 and 3.5 kV, interlayer mixing of nickel and copper with the silver layer reduces RCF life due to contamination, even as ion flux and corresponding film compressive stress are reduced. A Monte Carlo-based simulation tool, SRIM is used to track collision cascades of the argon ions and metal atoms within the coating layers. At process voltages above 2.5 kV we observe elemental mixing of copper and nickel with the silver layer using Auger electron spectroscopy of coated steel and Si{sub 3}N{sub 4} balls. The authors conclude that an ion flux greater than 5.0 x 10{sup 14} cm{sup -2} s{sup -1} leads to reduced RCF life due to high film stress. In addition, process voltages greater than 2.5 kV also reduce RCF life due to contamination and interlayer mixing of nickel and copper within the silver layer.

  12. Nickel Phosphine Catalysts with Pendant Amines for Electrocatalytic Oxidation of Alcohols

    SciTech Connect (OSTI)

    Weiss, Charles J.; Wiedner, Eric S.; Roberts, John A.; Appel, Aaron M.

    2015-01-01

    Nickel phosphine complexes with pendant amines have been found to be electrocatalysts for the oxidation of primary and secondary alcohols, with turnover frequencies as high as 3.3 s-1. These complexes are the first electrocatalysts for alcohol oxidation based on non-precious metals, which will be critical for use in fuel cells. The research by CJW, ESW, and AMA was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The research by JASR was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  13. Metal inks

    DOE Patents [OSTI]

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  14. The anti-perovskite type hydride InPd{sub 3}H{sub 0.89}

    SciTech Connect (OSTI)

    Kohlmann, H.; Skripov, A.V.; Soloninin, A.V.; Udovic, T.J.

    2010-10-15

    Hydrogenation of tetragonal InPd{sub 3} in the ZrAl{sub 3} type structure (four-fold ccp superstructure) yields a hydride with a cubic AuCu{sub 3} type structure (one-fold ccp superstructure). Deuterium can be located by neutron powder diffraction in octahedral voids surrounded exclusively by palladium, [Pd{sub 6}], which are 88.5(6)% occupied in a statistical manner. The resulting deuteride InPd{sub 3}D{sub 0.89} thus crystallizes in a cubic anti-perovskite type structure (space group Pm3-bar m (no. 221), a=402.25(1) pm at 299(2) K). The Pd-D distance of 201.13(1) pm is typical for interstitial hydrides with palladium. Inelastic neutron scattering on the hydride InPd{sub 3}H{sub 0.89}, which shows a spectrum similar to that of binary palladium hydride, confirms the cubic site symmetry of hydrogen in [Pd{sub 6}] interstices. This is also confirmed by the absence of any quadrupole splitting in the {sup 2}D-NMR signal of the deuteride. {sup 1}H NMR spectra of InPd{sub 3}H{sub 0.89} do not show any motional narrowing. Values found for the H jump rate {tau}{sup -1} in InPd{sub 3}H{sub 0.89} remain below 10{sup 6} s{sup -1} in the studied temperature range 28-360 K, indicating a small hydrogen mobility in InPd{sub 3}H{sub 0.8} as compared with binary palladium hydride, PdH{sub {<=}1}. This can be attributed to the large spatial separation of the [Pd{sub 6}] sites. - Graphical abstract: Hydrogen induces a rearrangement in InPd{sub 3} from a ZrAl{sub 3} type structure to a cubic AuCu{sub 3} type structure, thus forming an anti-perovskite type hydride InPd{sub 3}H{sub 0.89}.

  15. Toxicology and metabolism of nickel compounds: comprehensive report of overall activities during the three-year period from December 1, 1977 to November 30, 1980

    SciTech Connect (OSTI)

    Sunderman, Jr, F W

    1980-08-15

    The main research accomplishments during the past three years are summarized. The principle areas of investigation are: 1. embryotoxicity, teratogenicity, and mutagenicity of nickel carbonyl; 2. metabolism, detoxification, and excretion of nickel compounds; 3. studies of nickel carcinogenesis; 4. nickel analysis in body fluids and tissues to monitor occupational exposures; 5. nephrotoxicity of nickel compounds; and 6. hematological effects of nickel compounds. (ACR)

  16. Numerical comparison of hydrogen desorption behaviors of metal hydride beds based on uranium and on zirconium-cobalt

    SciTech Connect (OSTI)

    Kyoung, S.; Yoo, H.; Ju, H.

    2015-03-15

    In this paper, the hydrogen delivery capabilities of uranium (U) and zirconium-cobalt (ZrCo) are compared quantitatively in order to find the optimum getter materials for tritium storage. A three-dimensional hydrogen desorption model is applied to two identically designed cylindrical beds with the different materials, and hydrogen desorption simulations are then conducted. The simulation results show superior hydrogen delivery performance and easier thermal management capability for the U bed. This detailed analysis of the hydrogen desorption behaviors of beds with U and ZrCo will help to identify the optimal bed material, bed design, and operating conditions for the storage and delivery system in ITER. (authors)

  17. Sub-Nanostructured Non Transition Metal Complex Grids for Hydrogen Storage

    SciTech Connect (OSTI)

    Dr. Orhan Talu; Dr. Surendra N. Tewari

    2007-10-27

    This project involved growing sub-nanostructured metal grids to increase dynamic hydrogen storage capacity of metal hydride systems. The nano particles of any material have unique properties unlike its bulk form. Nano-structuring metal hydride materials can result in: {sm_bullet}Increased hydrogen molecule dissociation rate, {sm_bullet} Increased hydrogen atom transport rate, {sm_bullet} Decreased decrepitation caused by cycling, {sm_bullet} Increased energy transfer in the metal matrix, {sm_bullet} Possible additional contribution by physical adsorption, and {sm_bullet} Possible additional contribution by quantum effects The project succeeded in making nano-structured palladium using electrochemical growth in templates including zeolites, mesoporous silica, polycarbonate films and anodized alumina. Other metals were used to fine-tune the synthesis procedures. Palladium was chosen to demonstrate the effects of nano-structuring since its bulk hydrogen storage capacity and kinetics are well known. Reduced project funding was not sufficient for complete characterization of these materials for hydrogen storage application. The project team intends to seek further funding in the future to complete the characterization of these materials for hydrogen storage.

  18. Method of making metal matrix composites reinforced with ceramic particulates

    DOE Patents [OSTI]

    Cornie, J.A.; Kattamis, T.; Chambers, B.V.; Bond, B.E.; Varela, R.H.

    1989-08-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys. 2 figs.

  19. Method of making metal matrix composites reinforced with ceramic particulates

    DOE Patents [OSTI]

    Cornie, James A.; Kattamis, Theodoulos; Chambers, Brent V.; Bond, Bruce E.; Varela, Raul H.

    1989-01-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys.

  20. Polymer filtration: A new technology for selective metals recovery

    SciTech Connect (OSTI)

    Smith, B.F.; Robison, T.W.; Cournoyer, M.E.; Wilson, K.V.; Sauer, N.N.; Mullen, K.I.; Lu, M.T.; Jarvinen, J.J.

    1995-04-01

    Polymer Filtration (PF) was evaluated for the recovery of electroplating metal ions (zinc and nickel) from rinse waters. Polymer Filtration combines the use of water-soluble metal-binding polymers and ultrafiltration to concentrate metal ions from dilute rinse water solutions. The metal ions are retained by the polymers; the smaller, unbound species freely pass through the ultrafiltration membrane. By using this process the ultrafiltered permeate more than meets EPA discharge limits. The metal ions are recovered from the concentrated polymer solution by pH adjustment using diafiltration and can be recycled to the original electroplating baths with no deleterious effects on the test panels. Metal-ion recovery is accomplished without producing sludge.

  1. Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts

    SciTech Connect (OSTI)

    Cargnello, M; Doan-Nguyen, VVT; Gordon, TR; Diaz, RE; Stach, EA; Gorte, RJ; Fornasiero, P; Murray, CB

    2013-08-15

    Interactions between ceria (CeO2) and supported metals greatly enhance rates for a number of important reactions. However, direct relationships between structure and function in these catalysts have been difficult to extract because the samples studied either were heterogeneous or were model systems dissimilar to working catalysts. We report rate measurements on samples in which the length of the ceria-metal interface was tailored by the use of monodisperse nickel, palladium, and platinum nanocrystals. We found that carbon monoxide oxidation in ceria-based catalysts is greatly enhanced at the ceria-metal interface sites for a range of group VIII metal catalysts, clarifying the pivotal role played by the support.

  2. High pressure effects on the iron iron oxide and nickel nickel...

    Office of Scientific and Technical Information (OSTI)

    The results can be used to improve interpretation of high pressure experiments, specifically Fe-Ni exchange between metallic and oxide phases. Authors: Campbell, Andrew J ; ...

  3. Chromium modified nickel-iron aluminide useful in sulfur bearing environments

    DOE Patents [OSTI]

    Cathcart, John V.; Liu, Chain T.

    1989-06-13

    An improved nickel-iron aluminide containing chromium and molybdenum additions to improve resistance to sulfur attack.

  4. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  5. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  6. Ductile tungsten-nickel alloy and method for making same

    DOE Patents [OSTI]

    Snyder, Jr., William B.

    1976-01-01

    The present invention is directed to a ductile, high-density tungsten-nickel alloy which possesses a tensile strength in the range of 100,000 to 140,000 psi and a tensile elongation of 3.1 to 16.5 percent in 1 inch at 25.degree.C. This alloy is prepared by the steps of liquid phase sintering a mixture of tungsten-0.5 to 10.0 weight percent nickel, heat treating the alloy at a temperature above the ordering temperature of approximately 970.degree.C. to stabilize the matrix phase, and thereafter rapidly quenching the alloy in a suitable liquid to maintain the matrix phase in a metastable, face-centered cubic, solid- solution of tungsten in nickel.

  7. Nickel aluminide alloy for high temperature structural use

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN); Sikka, Vinod K. (Clinton, TN)

    1991-01-01

    The specification discloses nickel aluminide alloys including nickel, aluminum, chromium, zirconium and boron wherein the concentration of zirconium is maintained in the range of from about 0.05 to about 0.35 atomic percent to improve the ductility, strength and fabricability of the alloys at 1200.degree. C. Titanium may be added in an amount equal to about 0.2 to about 0.5 atomic percent to improve the mechanical properties of the alloys and the addition of a small amount of carbon further improves hot fabricability.

  8. Airbrushed Nickel Nanoparticles for Large-Area

    SciTech Connect (OSTI)

    Sarac, Mehmet; ANDERSON, BRYAN; Pearce, Ryan; Railsback, Justin; Oni, Adedapo; White, Ryan M.; Hensley, Dale K; Lebeau, James M; Melechko, Anatoli; Tracy, Joseph B

    2013-01-01

    Vertically aligned carbon nanofibers (VACNFs) were grown by plasma-enhanced chemical vapor deposition (PECVD) using Ni nanoparticle (NP) catalysts that were deposited by airbrushing onto Si, Al, Cu, and Ti substrates. Airbrushing is a simple method for depositing catalyst NPs over large areas that is compatible with roll-to-roll processing. The distribution and morphology of VACNFs are affected by the airbrushing parameters and the composition of the metal foil. Highly concentrated Ni NPs in heptane give more uniform distributions than pentane and hexanes, resulting in more uniform coverage of VACNFs. For VACNF growth on metal foils, Si micropowder was added as a precursor for Si-enriched coatings formed in situ on the VACNFs that impart mechanical rigidity. Interactions between the catalyst NPs and the metal substrates impart control over the VACNF morphology. Growth of carbon nanostructures on Cu is particularly noteworthy because the miscibility of Ni with Cu poses challenges for VACNF growth, and carbon nanostructures anchored to Cu substrates are desired as anode materials for Li-ion batteries and for thermal interface materials.

  9. DETERMINATION OF IN-VITRO LUNG SOLUBILITY AND INTAKE-TO-DOSE CONVERSION FACTOR FOR TRITIATED LANTHANUM NICKEL ALUMINUM ALLOY

    SciTech Connect (OSTI)

    Farfan, E.; Labone, T.; Staack, G.; Cheng, Y.; Zhou, Y.; Varallo, T.

    2011-11-11

    A sample of tritiated lanthanum nickel aluminum alloy (LaNi4.25Al0.75 or LANA.75) similar to that used at the Savannah River Site Tritium Facilities was analyzed to estimate the particle size distribution of this metal tritide powder and the rate, at which this material dissolves in the human respiratory tract after it is inhaled. This information is used to calculate the committed effective dose received by a worker after inhaling the material. These doses, which were calculated using the same methodology given in the DOE Tritium Handbook, are presented as inhalation intake-to-dose conversion factors (DCF). The DCF for this metal tritide is less than the DCF for tritiated water and radiation worker bioassay programs designed for tritiated water are adequate to monitor for intakes of this material.

  10. Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors

    DOE Patents [OSTI]

    Brehm, Jr., William F.; Colburn, Richard P.

    1982-01-01

    An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.

  11. Effects of nickel on biological methane generation from a laboratory poultry waste digester

    SciTech Connect (OSTI)

    Williams, C.M.; Shih, J.C.H.; Spears, J.W.

    1986-01-01

    Nickel added in concentrations as low as 10..mu..M significantly increased biogas production in a laboratory poultry waste digester utilizing excreta from laying hens as the organic energy source. It was shown that the initial rate of biogas production increased as early as 4 h after the addition of nickel to the laboratory cultures. Analysis of the excreta for nickel content prior to addition of exogenous NiCl/sub 2/ showed appreciable amounts of nickel present. The data indicate that nickel naturally present in layer excreta is suboptimal or unavailable to the bacteria for biogas production purposes.

  12. Nickel container of highly-enriched uranium bodies and sodium

    DOE Patents [OSTI]

    Zinn, Walter H.

    1976-01-01

    A fuel element comprises highly a enriched uranium bodies coated with a nonfissionable, corrosion resistant material. A plurality of these bodies are disposed in layers, with sodium filling the interstices therebetween. The entire assembly is enclosed in a fluid-tight container of nickel.

  13. DOE Seeks Industry Input on Nickel Disposition Strategy

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – The Energy Department’s prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel.

  14. Stress corrosion crack tip microstructure in nickel-based alloys

    SciTech Connect (OSTI)

    Shei, S.A.; Yang, W.J.

    1994-04-01

    Stress corrosion cracking behavior of several nickel-base alloys in high temperature caustic environments has been evaluated. The crack tip and fracture surfaces were examined using Auger/ESCA and Analytical Electron Microscopy (AEM) to determine the near crack tip microstructure and microchemistry. Results showed formation of chromium-rich oxides at or near the crack tip and nickel-rich de-alloying layers away from the crack tip. The stress corrosion resistance of different nickel-base alloys in caustic may be explained by the preferential oxidation and dissolution of different alloying elements at the crack tip. Alloy 600 (UNS N06600) shows good general corrosion and intergranular attack resistance in caustic because of its high nickel content. Thermally treated Alloy 690 (UNS N06690) and Alloy 600 provide good stress corrosion cracking resistance because of high chromium contents along grain boundaries. Alloy 625 (UNS N06625) does not show as good stress corrosion cracking resistance as Alloy 690 or Alloy 600 because of its high molybdenum content.

  15. Permeability of hydrogen isotopes through nickel-based alloys

    SciTech Connect (OSTI)

    Edge, E.M.; Mitchell, D.J.

    1983-04-01

    Permeabilities and diffusivities of deuterium in several nickel-based alloys were measured in this investigation. Measurements were made by the gas-phase breakthrough technique in the temperature range 200 to 450/sup 0/C with applied pressures ranging from 1 to 100 kPa. The results were extrapolated to predict the permeabilities (K) of the alloys at room temperature. The alloy with the smallest deuterium permeability is Carpenter 49, for which K = 4.3 x 10/sup -18/ mol s/sup -1/ m/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The permeability of deuterium in Kovar or Ceramvar is about 80% greater than that for Carpenter 49. Premeabilities of Inconel 625, Inconel 718, Inconel 750 and Monel K-500 are all equal to about 5 x 10/sup -17/ mol m/sup -1/ s/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The validity (from a statistical standpoint) of the extrapolation of the permeabilities to room temperature is considered in detail. Published permeabilities of stainless steels and nickel-iron alloys are also reviewed. The greatest differences in permeabilities among the nickel-based alloys appear to be associated with the tendency for some alloys to form protective oxide layers. Permeabilities of deuterium through laminates containing copper are smaller than for any of the iron-nickel alloys.

  16. Molybdenum Hydride and Dihydride Complexes Bearing Diphosphine Ligands with a Pendant Amine: Formation of Complexes With Bound Amines

    SciTech Connect (OSTI)

    Zhang, Shaoguang; Bullock, R. Morris

    2015-07-06

    CpMo(CO)(PNP)H complexes (PNP = (R2PCH2)2NMe, R = Et or Ph) were synthesized by displacement of two CO ligands of CpMo(CO)3H by the PNP ligand; these complexes were characterized by IR and variable temperature 1H and 31P NMR spectroscopy. CpMo(CO)(PNP)H complexes are formed as mixture of cis and trans-isomers. Both cis-CpMo(CO)(PEtNMePEt)H and trans-CpMo(CO)(PPhNMePPh)H were analyzed by single crystal X-ray diffraction. Electrochemical oxidation of CpMo(CO)(PEtNMePEt)H and CpMo(CO)(PPhNMePPh)H in CH3CN are both irreversible at slow scan rates and quasi-reversible at higher scan rates, with E1/2 = -0.36 V (vs. Cp2Fe+/0) for CpMo(CO)(PEtNMePEt)H and E1/2 = -0.18 V for CpMo(CO)(PPhNMePPh)H. Hydride abstraction from CpMo(CO)(PNP)H with [Ph3C]+[A]- (A = B(C6F5)4 or BArF4; [ArF = 3,5-bis(trifluoromethyl)phenyl]) afforded “tuck-in” [CpMo(CO)(κ3-PNP)]+ complexes that feature the amine bound to the metal. Displacement of the κ3 Mo-N bond by CD3CN gives [CpMo(CO)(PNP)(CD3CN)]+. The kinetics of this reaction were studied by NMR spectroscopy, providing the activation parameters ΔH‡ = 22.1 kcal/mol, ΔS‡ = 1.89 cal/(mol·K), Ea = 22.7 kcal/mol. Protonation of CpMo(CO)(PEtNMePEt)H affords [CpMo(CO)(κ2-PEtNMePEt)(H)2]+ as a Mo dihydride complex, which loses H2 to generate [CpMo(CO)(κ3-PEtNMePEt)]+ at room temperature. CpMo(CO)(dppp)H (dppp = 1,2-bis(diphenylphosphino)propane) was studied as a Mo diphosphine analogue without a pendant amine, and the product of protonation of this complex gives [CpMo(CO)(dppp)(H)2]+. Our results show that the pendant amine has a strong driving force to form stable “tuck-in” [CpMo(CO)(κ3-PNP)]+ complexes, and also promotes hydrogen elimination from [CpMo(CO)(PNP)(H)2]+ complexes by formation of Mo-N dative bond. We thank the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences for support. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. We thank Monte Helm, Elliott Hulley and Deanna Miller for help on the crystallography, and Ming Fang for assistance on the electrochemical experiments.

  17. Atomic-Scale Chemical, Physical and Electronic Properties of the Subsurface Hydride of Palladium

    SciTech Connect (OSTI)

    Weiss, Paul

    2014-01-20

    We employed low-temperature, extreme-high vacuum scanning tunneling microscopy (STM) to investigate the roles of subsurface hydride (H) and deuteride (D) in the surface reconstruction and surface reactivity of Pd{110}. Specifically, we gained the ability to tailor the surface structure of Pd{110} both by preparation method and by deposition of deuterium from the gas phase. We observed thiophene at low coverage on Pd{110} to determine its adsorption orientation and electronic structure through scanning tunneling spectroscopy (STS) namely, conductance spectroscopy and differential conductance imaging. We developed the methods necessary to coadsorb D adatoms with thiophene molecules, and to induce the reaction of individual molecules with predefined subsurface H or D features. In the case of Pd{110}, we found a much more pronounced effect from subsurface D, as it is influenced by the surface directionality. These experiments facilitate an understanding of the role of surface and subsurface H and D in heterogeneous catalytic processes, specifically in the hydrodesulfuization (HDS) of thiophene, an important and ubiquitous component found to be detrimental to petroleum refining.

  18. TRITIUM IN-BED ACCOUNTABILITY FOR A PASSIVELY COOLED, ELECTRICALLY HEATED HYDRIDE BED

    SciTech Connect (OSTI)

    Klein, J.; Foster, P.

    2011-01-21

    A PAssively Cooled, Electrically heated hydride (PACE) Bed has been deployed into tritium service in the Savannah River Site (SRS) Tritium Facilities. The bed design, absorption and desorption performance, and cold (non-radioactive) in-bed accountability (IBA) results have been reported previously. Six PACE Beds were fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory method. An IBA inventory calibration curve, flowing gas temperature rise ({Delta}T) versus simulated or actual tritium loading, was generated for each bed. Results for non-radioactive ('cold') tests using the internal electric heaters and tritium calibration results are presented. Changes in vacuum jacket pressure significantly impact measured IBA {Delta}T values. Higher jacket pressures produce lower IBA {Delta}T values which underestimate bed tritium inventories. The exhaust pressure of the IBA gas flow through the bed's U-tube has little influence on measured IBA {Delta}T values, but larger gas flows reduce the time to reach steady-state conditions and produce smaller tritium measurement uncertainties.

  19. Studies of isotopic exchange between gaseous hydrogen and palladium hydride powder

    SciTech Connect (OSTI)

    Foltz, G.W.; Melius, C.F.

    1987-12-01

    A gas flow apparatus has been constructed and used to study the isotopic exchange reaction occurring between the solid and gas phases in hydrogen (deuterium) gas flows directed through packed-powder beds of ..beta..-phase palladium deuteride (hydride). Spontaneous Raman light scattering is employed to obtain a real-time analysis of the isotopic composition of the gas (H/sub 2/, D/sub 2/, HD) exiting from the bed. A parametric rate-equation model is described which depicts the time-dependent behavior of the isotopic exchange process. The exchange mechanism is assumed to be rate-limited by processes occurring on the surface of the powder. The fundamental kinetic parameter of the model is the isotopic exchange probability, p, which is the probability that an isotopic exchange event occurs during a collision of a gas-phase atom with the surface. Isotope effects between the gas and solid phases are explicitly included in terms of the isotope separation factor, ..cap alpha... Results of the model are compared with the experimental measurements and, using a literature value of ..cap alpha.. = 2.4, good agreement is obtained for p approx. = 10/sup -7/. In view of the importance of the isotope effects in the hydrogen/palladium system and the range of a values reported for the ..beta..-phase in the literature, the sensitivity of the model results to a variation in the value of ..cap alpha.. is examined.

  20. Modeling of temporal behavior of isotopic exchange between gaseous hydrogen and palladium hydride power

    SciTech Connect (OSTI)

    Melius, C F; Foltz, G W

    1987-01-01

    A parametric rate-equation model is described which depicts the time dependent behavior of the isotopic exchange process occurring between the solid and gas phases in gaseous hydrogen (deuterium) flows through packed-powder palladium deuteride (hydride) beds. The exchange mechanism is assumed to be rate-limited by processes taking place on the surface of the powder. The fundamental kinetic parameter of the model is the isotopic exchange probability, p, which is the probability that an isotopic exchange event occurs during a collision of a gas phase atom with the surface. Isotope effects between the gas and solid phases are explicitly included in terms of the isotope separation factor, ..cap alpha... Results of the model are compared with recent experimental measurements of isotope exchange in the ..beta..-phase hydrogen/palladium system and, using a literature value of ..cap alpha.. = 2.4, a good description of the experimental data is obtained for p approx. 10/sup -7/. In view of the importance of the isotope effects in the hydrogen/palladium system and the range of ..cap alpha.. values reported for the ..beta..-phase in the literature, the sensitivity of the model results to a variation in the value of ..cap alpha.. is examined.

  1. Polymer filtration: An emerging technology for selective metals recovery

    SciTech Connect (OSTI)

    Smith, B.F.; Robison, T.W.; Cournoyer, M.E.

    1995-12-31

    A new technology is under development to selectively recover regulated metal ions from electroplating rinse waters. The electroplating metal ions are recovered in a concentrated form with the appropriate counter ions ready for return to the original electroplating bath. The technology is based on the use of specially designed water-soluble polymers that selectively bind with the metal ions in the rinse bath. The polymers have such a large molecular weight that they can be physically separated using available ultrafiltration technology. The advantages of this technology are high metal selectivity with no sludge formation, rapid processing, low energy, low capital costs, and small size. We have tested and demonstrated the recovery of zinc and nickel (a new alloy electroplating bath designed to replace cadmium) from rinse waters. The metal-ion concentrate was returned to the original electroplating bath. Applications of this technology include waste treatment for textile, paint and dye production, chemical manufacturing, and nuclear reactor and reprocessing operations.

  2. Production of reactive sintered nickel aluminide

    SciTech Connect (OSTI)

    Cooper, R.M.

    1993-01-01

    Effort over the past 3 months was directed at increasing manufacturing capacity (ball milling) and improving product quality. Orders for the powder have increased, mainly for plasma spray powders. NiAl is an excellent coat between a metal and a ceramic, and its use instead of cobalt should extending operating range for carbide tools. The feather phase in the sintered Ni[sub 3]Al was identified to be a Ni-rich phase nucleated on the grain boundaries with 10 wt % Al composition. The ductile to brittle temperature of powder extruded NiAl was found to be between 500 and 600 C, and shows a 50% elongation at 600 C.

  3. Effects of Additive Elements on the Phase Formation and Morphological Stability of Nickel Monosilicide Films

    SciTech Connect (OSTI)

    Lavoie,C.; Detavernier, C.; Cabral, Jr. , C.; d'Heurle, F.; Kellock, A.; Jordan-Sweet, J.; Harper, J.

    2006-01-01

    Alloying elements can substantially affect the formation and morphological stability of nickel monosilicide. A comprehensive study of phase formation was performed on 24 Ni alloys with varying concentrations of alloying elements. Silicide films have been used for more than 15 years to contact the source, drain and gate of state-of-the-art complementary-metal-oxide-semiconductor (CMOS) devices. In the past, the addition of alloying elements was shown to improve the transformation from the high resistivity C49 to the low resistivity C54-TiSi{sub 2} phase and to allow for the control of surface and interface roughness of CoSi{sub 2} films as well as produce significant improvements with respect to agglomeration of the films. Using simultaneous time-resolved X-ray diffraction (XRD), resistance and light scattering measurements, we follow the formation of the silicide phases in real time during rapid thermal annealing. Additions to the Ni-Si system lead to modifications in the phase formation sequence at low temperatures (metal-rich phases), to variations in the formation temperatures of NiSi and NiSi{sub 2}, and to changes in the agglomeration behavior of the films formed. Of the 24 elements studied, additions of Mo, Re, Ta and W are amongst the most efficient to retard agglomeration while elements such as Pd, Pt and Rh are most efficient to retard the formation of NiSi{sub 2}.

  4. Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals

    DOE Patents [OSTI]

    Maroni, Victor A.; von Winbush, Samuel

    1988-01-01

    A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500.degree. C., electrolysis at a voltage not more negative than about -1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

  5. Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals

    DOE Patents [OSTI]

    Maroni, V.A.; von Winbush, S.

    1987-05-01

    A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500/degree/C, electrolysis at a voltage not more negative that about /minus/1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

  6. First Principles Contributions to the Thermodynamic Assessment of Solid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Metal Hydride and Complex Hydride Phases | Department of Energy First Principles Contributions to the Thermodynamic Assessment of Solid State Metal Hydride and Complex Hydride Phases First Principles Contributions to the Thermodynamic Assessment of Solid State Metal Hydride and Complex Hydride Phases Presentation on the Thermodynamic Assessment of Solid State Metal Hydride and Complex Hydride Phases given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006.

  7. Metal oxide films on metal

    DOE Patents [OSTI]

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  8. Particle size effect of hydride formation and surface hydrogen absorption of nanosized palladium catalysts : L{sub 3} edge vs K edge x-ray absorption spectroscopy.

    SciTech Connect (OSTI)

    Tew, M. W.; Miller, J. T.; van Bokhoven, J. A.

    2009-08-01

    The particle size effect on the formation of palladium hydride and on surface hydrogen adsorption was studied at room temperature using in situ X-ray absorption spectroscopy at the Pd K and L{sub 3} edges. Hydride formation was indirectly observed by lattice expansion in Pd K edge XANES spectra and by EXAFS analysis. Hydride formation was directly detected in the L{sub 3} edge spectra. A characteristic spectral feature caused by the formation of a Pd-H antibonding state showed strong particle size dependence. The L{sub 3} edge spectra were reproduced using full multiple scattering analysis and density of state calculations, and the contributions of bulk absorbed and surface hydrogen to the XANES spectra could be distinguished. The ratio of hydrogen on the surface versus that in the bulk increased with decreasing particle size, and smaller particles dissolved less hydrogen.

  9. Environmentally induced fracture of nickel alloys: a comparison of hydrogen and mercury embrittlement with respect to temperature

    SciTech Connect (OSTI)

    King, R.K.

    1985-01-01

    Previous studies have compared electrolytic hydrogen embrittlement (HE) and liquid metal embrittlement (LME) by mercury for numerous nickel alloys. All alloys tested exhibited embrittlement to some degree with HE and LME having similar fractographies. This study examines the effect of temperature on He and LME of Monel 400 over the range -30 and 80/sup 0/C. Slow strain rate tensile tests were conducted at two strain rates, 1.6 x 10/sup -5/s/sup -1/ and 1.6 x 10/sup -3/s/sup -1/, and two grain sizes, 35 ..mu..m and 250 ..mu..m. Behavior of Monel 400 is compared with previously studied nickel alloys. Results showed that intergranular, tranogranular, and microvoid-coalescence fractures can be obtained in both hydrogen and mercury. Fracture mode is governed by strain at fracture. Embrittlement ceases below -20/sup 0/ in both environment, believed due to lack of mobility of adsorbed hydrogen and lack of wetting by mercury. LME is more severe than HE because hydrogen blunts cracks by promoting plasticity. HE ceases at about 80/sup 0/C because excess plasticity promotes crack blunting and inhibits initiation. LME fractures remain brittle to 80/sup 0/C. An incubation period is normally needed for adsorption of the embrittler or for penetration of the crack through the plane stress surface zone. Otherwise ductile failures in mercury often exhibit longitudinal splitting, believed to be due to the combination of high normal stress, low shear stress, and a clean surface. The existence of a temperature window for LME can be explained on the basis of strain activated localized wetting. Results of this study are consistent with a decohesion mechanism producing intergranular fracture; competing with an enhanced dislocation nucleation mechanism producing transgranular fracture. Monel 400 exhibited the range of features observed for other nickel base alloys at appropriate conditions of temperature, strain rate, and grain size.

  10. A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.

    SciTech Connect (OSTI)

    Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

    2013-03-01

    Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

  11. Self-lubricating carbon nanotube reinforced nickel matrix composites

    SciTech Connect (OSTI)

    Scharf, T. W.; Neira, A.; Hwang, J. Y.; Banerjee, R.; Tiley, J.

    2009-07-01

    Nickel (Ni)--multiwalled carbon nanotube (CNT) composites have been processed in a monolithic form using the laser-engineered net shape (LENS) processing technique. Auger electron spectroscopy maps determined that the nanotubes were well dispersed and bonded in the nickel matrix and no interfacial chemical reaction products were determined in the as-synthesized composites. Mechanisms of solid lubrication have been investigated by micro-Raman spectroscopy spatial mapping of the worn surfaces to determine the formation of tribochemical products. The Ni-CNT composites exhibit a self-lubricating behavior, forming an in situ, low interfacial shear strength graphitic film during sliding, resulting in a decrease in friction coefficient compared to pure Ni.

  12. Method for heat treating iron-nickel-chromium alloy

    DOE Patents [OSTI]

    Merrick, Howard F.; Korenko, Michael K.

    1982-01-01

    A method for heat treating an age-hardenable iron-nickel-chromium alloy to obtain a bimodal distribution of gamma prime phase within a network of dislocations, the alloy consisting essentially of about 25% to 45% nickel, 10% to 16% chromium, 1.5% to 3% of an element selected from the group consisting of molybdenum and niobium, about 2% titanium, about 3% aluminum, and the remainder substantially all iron. To obtain optimum results, the alloy is heated to a temperature of 1025.degree. C. to 1075.degree. C. for 2-5 minutes, cold-worked about 20% to 60%, aged at a temperature of about 775.degree. C. for 8 hours followed by an air-cool, and then heated to a temperature in the range of 650.degree. C. to 700.degree. C. for 2 hours followed by an air-cool.

  13. Method for heat treating iron-nickel-chromium alloy

    DOE Patents [OSTI]

    Not Available

    1980-04-03

    A method is described for heat treating an age-hardenable iron-nickel-chromium alloy to obtain a morphology of the gamma-double prime phase enveloping the gamma-prime, the alloy consisting essentially of about 25 to 45% nickel, 10 to 16% chromium, 1.5 to 3% of an element selected from the group consisting of molybdenum and niobium, about 2% titanium, about 3% aluminum, and the remainder substantially all iron. To obtain optimum results, the alloy is heated to a temperature of 1025 to 1075/sup 0/C for 2 to 5 minutes, cold-worked about 20 to 60%, aged at a temperature of about 775/sup 0/C for 8 hours followed by an air-cool, and then heated to a temperature in the range of 650 to 700/sup 0/C for 2 hours followed by an air-cool.

  14. Small nickel nanoparticle arrays from long chain imidazolium ionic liquids

    SciTech Connect (OSTI)

    Yang, Mei; Campbell, Paul S.; Santini, Catherine C.; Mudring, Anja -Verena

    2013-11-08

    A series of six long chain alkyl mono- and bi-cationic imidazolium based salts with bis(trifluoromethylsulfonyl)imide (NTf2–) as the anion were synthesized and characterized. Single crystal structure of 1-methyl-3-octadecylimidazolium bis(trifluoromethylsulfonyl)imide could be obtained by X-ray analysis. All these long chain alkyl imidazolium based ILs were applied in the synthesis of nickel nanoparticles via chemical decomposition of an organometallic precursor of nickel. In these media, spontaneous decomposition of Ni(COD)2 (COD = 1,5-cyclooctadiene) in the absence of H2 occurred giving small NPs (≤4 nm) with narrow size distributions. Interestingly, formation of regularly interspaced NP arrays was also observed in long chain ILs. Lastly, such array formation could be interesting for potential applications such as carbon nanotube growth.

  15. Small nickel nanoparticle arrays from long chain imidazolium ionic liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Mei; Campbell, Paul S.; Santini, Catherine C.; Mudring, Anja -Verena

    2013-11-08

    A series of six long chain alkyl mono- and bi-cationic imidazolium based salts with bis(trifluoromethylsulfonyl)imide (NTf2–) as the anion were synthesized and characterized. Single crystal structure of 1-methyl-3-octadecylimidazolium bis(trifluoromethylsulfonyl)imide could be obtained by X-ray analysis. All these long chain alkyl imidazolium based ILs were applied in the synthesis of nickel nanoparticles via chemical decomposition of an organometallic precursor of nickel. In these media, spontaneous decomposition of Ni(COD)2 (COD = 1,5-cyclooctadiene) in the absence of H2 occurred giving small NPs (≤4 nm) with narrow size distributions. Interestingly, formation of regularly interspaced NP arrays was also observed in long chain ILs. Lastly,more » such array formation could be interesting for potential applications such as carbon nanotube growth.« less

  16. Method for heat treating iron-nickel-chromium alloy

    DOE Patents [OSTI]

    Korenko, Michael K.

    1980-01-01

    A method for heat treating an age-hardenable iron-nickel-chromium alloy to obtain a morphology of the gamma-double prime phase enveloping the gamma-prime phase, the alloy consisting essentially of about 40 to 50% nickel, 7.5 to 14% chromium, 1.5 to 4% niobium, 0.3 to 0.75% silicon, 1 to 3% titanium, 0.1 to 0.5% aluminum, 0.02 to 1% carbon, 0.002 to 0.0015% boron and the remain substantially all iron. To obtain optimal results, the alloy is cold-worked 20 to 60% followed by heating at 1050.degree. C. for 1/2 hour with an air-cool plus heating at 800.degree. C. for 2 hours with a furnace cool to 625.degree. C. The alloy is then held at 625.degree. C. for 12 hours, followed by an air-cool.

  17. Deciphering the structure of nano-nickel composites

    SciTech Connect (OSTI)

    Johnson, Oliver K

    2009-01-01

    A model has been developed to predict piezoresistivity in Silicone/Nickel Nanostrand composites. This model combines the theory of quantum mechanical tunneling with percolation theory to obtain macroscopic composite resistivity as a function of strain from quantum mechanical principles and statistical characterization of constituent morphology. It has been shown that a model incorporating quantum mechanical tunneling and percolation theory can be used to predict piezoresistivity in Silicone/Nickel Nanostrand composites. The predictions of this model qualitatively demonstrate the large drop in resistivity with strain that these composites exhibit. The quantitative accuracy of the model was shown to be usually within one order of magnitude. Further work must be done to obtain an empirical distribution of inter-nanostrand gap distances, the tunneling barrier height ({lambda}), and the fraction of conductive junctions as a function of strain for these composites.

  18. 03.01.16 RH Nickel-Gallium - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database CO2 electrochemical reduction catalyzed by bimetallic materials at low overpotential Torelli, D. A., Francis, S.A. et al. Nickel-Gallium-Catalyzed Electrochemical Reduction of CO2 to Highly Reduced Products at Low Overpotentials. ACS

  19. High-temperature fabricable nickel-iron aluminides

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN)

    1988-02-02

    Nickel-iron aluminides are described that are based on Ni.sub.3 Al, and have significant iron content, to which additions of hafnium, boron, carbon and cerium are made resulting in Ni.sub.3 Al base alloys that can be fabricated at higher temperatures than similar alloys previously developed. Further addition of molybdenum improves oxidation and cracking resistance. These alloys possess the advantages of ductility, hot fabricability, strength, and oxidation resistance.

  20. Process for the electrodeposition of low stress nickel-manganese alloys

    DOE Patents [OSTI]

    Kelly, James John; Goods, Steven Howard; Yang, Nancy Yuan-Chi; Cadden, Charles Henry

    2005-06-07

    A process for electrodepositing a low stress nickel-manganese multilayer alloy on an electrically conductive substrate is provided. The process includes the steps of immersing the substrate in an electrodeposition solution containing a nickel salt and a manganese salt and repeatedly passing an electric current through an immersed surface of the substrate. The electric current is alternately pulsed for predetermined durations between a first electrical current that is effective to electrodeposit nickel and a second electrical current that is effective to electrodeposit nickel and manganese. A multilayered alloy having adjacent layers of nickel and a nickel-manganese alloy on the immersed surface of the substrate is thereby produced. The resulting multilayered alloy exhibits low internal stress, high strength and ductility, and high strength retention upon exposure to heat.

  1. A biotemplated nickel nanostructure: Synthesis, characterization and antibacterial activity

    SciTech Connect (OSTI)

    Ashtari, Khadijeh; Fasihi, Javad; Mollania, Nasrin; Khajeh, Khosro

    2014-02-01

    Highlights: Nickel nanostructure-encapsulated bacteria were prepared using electroless deposition. Bacterium surface was activated by red-ox reaction of its surface amino acids. Interfacial changes at cell surfaces were investigated using fluorescence spectroscopy. TEM and AFM depicted morphological changes. Antibacterial activity of nanostructure was examined against different bacteria strains. - Abstract: Nickel nanostructure-encapsulated bacteria were prepared using the electroless deposition procedure and activation of bacterium cell surface by red-ox reaction of surface amino acids. The electroless deposition step occurred in the presence of Ni(II) and dimethyl amine boran (DMAB). Interfacial changes at bacteria cell surfaces during the coating process were investigated using fluorescence spectroscopy. Fluorescence of tryptophan residues was completely quenched after the deposition of nickel onto bacteria surfaces. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) depicted morphological changes on the surface of the bacterium. It was found that the Ni coated nanostructure was mechanically stable after ultrasonication for 20 min. Significant increase in surface roughness of bacteria was also observed after deposition of Ni clusters. The amount of coated Ni on the bacteria surface was calculated as 36% w/w. The antibacterial activity of fabricated nanostructure in culture media was examined against three different bacteria strains; Escherichia coli, Bacillus subtilis and Xantomonas campestris. The minimum inhibitory concentrations (MIC) were determined as 500 mg/L, 350 mg/L and 200 mg/L against bacteria, respectively.

  2. Sulfide stress cracking resistance of low-alloy nickel steels

    SciTech Connect (OSTI)

    Yoshino, Y.; Minozaki, Y.

    1986-04-01

    The sulfide stress cracking (SSC) resistance of Ni-containing low-alloy steels was studied using laboratory and commercial heats over the range of 600 to 800 MPa yield strength (700 to 900 MPa tensile strength). The results were interpreted with regard to observations by metallurgical and electrochemical analyses. In steel containing 1% Cr and 0.5% Mo, the SSC resistance is not affected by up to 2% Ni. A commercial steel with 3.7% Ni-1.8% Cr-0.4% Mo exhibits the same K/sub ISSC/ and Ni-free steels. The cracking resistance begins to deteriorate when fresh martensite exceeds 5 vol%. The lattice diffusion of hydrogen is decreased by the additional Ni, whereas the subsurface hydrogen concentration remains constant in 5% NaCl solution and decreases in NACE TM-01-77 solution up to 5% Ni. Thus, nickel has no harmful effect in terms of hydrogen absorption and diffusion. However, nickel enhances the formation of surface trenches in acidified solutions. This is intensified in the anodically polarized slow extension rate test, which results in loss in elongation. Consequently, nickel per se has no effect on the propagation of SSC unless its addition results in the formation of fresh martensite. However, it may or may not enhance crack initiation, depending on a specific combination of solution and steel, by forming surface trenches that subsequently trigger hydrogen cracking from their bottom.

  3. Positive-electrode current collector for liquid-metal cells

    DOE Patents [OSTI]

    Shimotake, H.; Bartholme, L.G.

    1982-09-27

    A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.

  4. Positive electrode current collector for liquid metal cells

    DOE Patents [OSTI]

    Shimotake, Hiroshi; Bartholme, Louis G.

    1984-01-01

    A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.

  5. Effects of nickel, chromate, and arsenite on histone 3 lysine methylation

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Effects of nickel, chromate, and arsenite on histone 3 lysine methylation Citation Details In-Document Search Title: Effects of nickel, chromate, and arsenite on histone 3 lysine methylation Occupational exposure to nickel (Ni), chromium (Cr), and arsenic (As) containing compounds has been associated with lung cancer and other adverse health effects. Their carcinogenic properties may be attributable in part, to activation and/or repression of gene

  6. DOE Seeking Input on Alternative Uses of Nickel Inventory | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Seeking Input on Alternative Uses of Nickel Inventory DOE Seeking Input on Alternative Uses of Nickel Inventory March 9, 2007 - 10:28am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) is seeking input from industry representatives on the safe disposition of approximately 15,300 tons of nickel scrap recovered from uranium enrichment process equipment at the Department's Oak Ridge, TN, and Paducah, KY, facilities. The Expression of Interest (EOI), released today, will

  7. Draft Genome Sequence for Microbacterium laevaniformans Strain OR221, a Bacterium Tolerant to Metals, Nitrate, and Low pH

    SciTech Connect (OSTI)

    Brown, Steven D; Palumbo, Anthony Vito; Panikov, Nikolai; Ariyawansa, Thilini; Klingeman, Dawn Marie; Johnson, Courtney M; Land, Miriam L; Utturkar, Sagar M; Epstein, Slava

    2012-01-01

    Microbacterium laevaniformans strain OR221 was isolated from subsurface sediments obtained from the Field Research Center (FRC) in Oak Ridge, TN. It was characterized as a bacterium tolerant to heavy metals such as uranium, nickel, cobalt, cadmium, as well as nitrate and low pH. We present its draft genome sequence.

  8. Dendritic metal nanostructures

    DOE Patents [OSTI]

    Shelnutt, John A.; Song, Yujiang; Pereira, Eulalia F.; Medforth, Craig J.

    2010-08-31

    Dendritic metal nanostructures made using a surfactant structure template, a metal salt, and electron donor species.

  9. Erosion-Corrosion of Iron and Nickel Alloys at Elevated Temperature...

    Office of Scientific and Technical Information (OSTI)

    at Elevated Temperature in a Combustion Gas Environment Citation Details In-Document Search Title: Erosion-Corrosion of Iron and Nickel Alloys at Elevated Temperature in a ...

  10. Review of consequences of uranium hydride formation in N-Reactor fuel elements stored in the K-Basins

    SciTech Connect (OSTI)

    Weber, J.W.

    1994-09-28

    The 105-K Basins on the Hanford site are used to store uranium fuel elements and assemblies irradiated in and discharged from N Reactor. The storage cylinders in KW Basin are known to have some broken N reactor fuel elements in which the exposed uranium is slowly reacting chemically with water in the cylinder. The products of these reactions are uranium oxide, hydrogen, and potentially some uranium hydride. The purpose of this report is to document the results f the latest review of potential, but highly unlikely accidents postulated to occur as closed cylinders containing N reactor fuel assemblies are opened under water in the KW basin and as a fuel assembly is raised from the basin in a shipping cask for transportation to the 327 Building for examination as part of the SNF Characterization Program. The postulated accidents reviews in this report are considered to bound all potential releases of radioactivity and hydrogen. These postulated accidents are: (1) opening and refill of a cylinder containing significant amounts of hydrogen and uranium hydride; and (2) draining of the single element can be used to keep the fuel element submerged in water after the cask containing the can and element is lifted from the KW Basin. Analysis shows the release of radioactivity to the site boundary is significantly less than that allowed by the K Basin Safety Evaluation. Analysis further shows there would be no damage to the K Basin structure nor would there be injury to personnel for credible events.

  11. Metallic sheathing for protection of steel in seawater

    SciTech Connect (OSTI)

    Kirk, W.W.

    1987-09-01

    A review of 37 years of experience with metallic sheathing to protect the splash and tidal zones of structural steel in seawater is presented. Variations in the corrosivity of the environment from zone to zone on a vertical structure and the interdependence among them are discussed. Corrosion-resistant alloys for sheathing include Monel (NiCu) Alloy 400, copper-nickel alloys, and stainless steel. The advantages and disadvantages of these noble alloys are compared with those of other protective materials such as paint coatings, concrete, polymers, and steel itself. Adequate protection of hot risers is critical and quite easily provided through proper design and sheathing attachment. The use of 90:10 copper-nickel Alloy C70600 is gaining visibility with progressive technology to provide biofouling control as well as corrosion protection.

  12. Polymer quenched prealloyed metal powder

    DOE Patents [OSTI]

    Hajaligol, Mohammad R.; Fleischhauer, Grier; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  13. Electrochemical properties of monolithic nickel sulfide electrodes for use in sodium batteries

    SciTech Connect (OSTI)

    Go, Dae-Yeon; Park, Jinsoo; Noh, Pan-Jin; Cho, Gyu-Bong; Ryu, Ho-Suk; Nam, Tae-Hyeon; Ahn, Hyo-Jun; Kim, Ki-Won

    2014-10-15

    Highlights: We succeeded in preparing monolithic Ni{sub 3}S{sub 2} integrated electrode through the sulfuration. The sulfuration is a facile and useful method to synthesize metal sulfides with nanostructure. As-prepared monolithic Ni{sub 3}S{sub 2} electrodes showed very stable and cycle performance over charge/discharge cycling. - Abstract: Monolithic nickel sulfide electrodes were prepared using a facile synthesis method, sulfuration and annealing. As-prepared Ni{sub 3}S{sub 2} electrodes were characterized by X-ray diffractometry and field emission scanning electron microscopy. Thermal stability was determined by thermal gravimetric analysis and differential scanning calorimetry. Electrochemical properties were measured by galvanostatic charge and discharge cycling for Na-ion batteries. Three kinds of Ni{sub 3}S{sub 2} electrodes were prepared by varying the sulfuration time (5, 15 and 25 min). The electrochemical results indicated that the capacities increased with an increase in sulfuration time and the cycle performance was stable as a result of monolithic integration of nanostructured Ni{sub 3}S{sub 2} on Ni plates, leading to low interfacial resistance.

  14. X-ray absorption spectroscopic studies of the active sites of nickel- and copper-containing metalloproteins

    SciTech Connect (OSTI)

    Tan, G.O.

    1993-06-01

    X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it, from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here.

  15. Lead, Uranium, and Nickel Compound Data from the XAFS Library at the Stanford Synchrotron Radiation Laboratory (SSRL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The x-ray absorption fine structure spectroscopy (XAFS) library at the Stanford Synchrotron Radiation Laboratory is intended to be a reference library of XAFS spectra for various lead, uranium, and nickel compounds. Compounds are organized by central atom and all spectra are transmission data. Molecular Environmental Science (MES) research at SSRL focuses on the fundamental interfacial, molecular- and nano-scale processes that control contaminant and nutrient cycling in the biosphere with the goal of elucidating global elemental cycles and anthropogenic influences on the environment. Key areas of investigation include the: (a) Structural chemistry of water and dissolved solutes, (b) Structural chemistry and reactivity of complex natural environmental materials with respect to heavy metals and metalloids (biominerals, Fe- and Mn-oxides, biofilms, and organic materials), (c) Reactions at environmental interfaces, including sorption, precipitation and dissolution processes that affect the bioavailability of heavy metals and other contaminants, and (d) Microbial transformations of metals and anions. SSRL-based MES research utilizes synchrotron-based x-ray absorption spectroscopy (XAS), x-ray diffraction (XRD), small-angle x-ray scattering (SAXS), x-ray standing wave (XSW) spectroscopy, and photoemission spectroscopy (PES) because of their unique capabilities to probe structure/composition relationships in complex, non-crystalline, and dilute materials. [copied from http://www-ssrl.slac.stanford.edu/mes/index.html

  16. METAL COMPOSITIONS

    DOE Patents [OSTI]

    Seybolt, A.U.

    1959-02-01

    Alloys of uranium which are strong, hard, and machinable are presented, These alloys of uranium contain bctween 0.1 to 5.0% by weight of at least one noble metal such as rhodium, palladium, and gold. The alloys may be heat treated to obtain a product with iniproved tensile and compression strengths,

  17. Calorimetric study of the palladium hydride and deuteride systems. Preliminary report

    SciTech Connect (OSTI)

    Wagner, J.E.

    1985-08-12

    Pressure differential scanning calorimetry was applied to a study of the hydrogenation of palladium metal. The effects of hydrogen and deuterium absorption by palladium metal, the effects of isotope exchanges, and hydrogen and deuterium pressure changes which affect the stoichiometry of PdH/sub x/ and PdD/sub x/ are presented in some detail by this experimental technique. It is emphasized that a pressure differential scanning calorimeter is a quick and convenient experimental means for assessing hydrogen absorption properties of hydrogen storage materials. 13 refs., 4 figs., 1 tab.

  18. The affect of erbium hydride on the conversion efficience to accelerated protons from ultra-shsort pulse laser irradiated foils

    SciTech Connect (OSTI)

    Offermann, D

    2008-09-04

    This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 10{sup 16} protons with an average energy of about 3MeV. This is far more than the 10{sup 12} protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH{sub 3} coatings on 5 {micro}m gold foils are compared with typical contaminants which are approximately equivalent to CH{sub 1.7}. It will be shown that there was a factor of 1.25 {+-} 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 10{sup 19}W/cm{sup 2}. The total number of protons from either target type was on the order of 10{sup 10}. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 10{sup 20} W/cm{sup 2}. In this experiment 10{sup 12} protons were seen from both erbium hydride and contaminants on 14 {micro} m gold foils. Significant improvements were also observed but possibly because of the depletion of hydrogen in the contaminant layer case.

  19. MULTIDIMENSIONAL CHEMICAL MODELING OF YOUNG STELLAR OBJECTS. III. THE INFLUENCE OF GEOMETRY ON THE ABUNDANCE AND EXCITATION OF DIATOMIC HYDRIDES

    SciTech Connect (OSTI)

    Bruderer, S.; Benz, A. O.; Staeuber, P.; Doty, S. D.

    2010-09-10

    The Herschel Space Observatory enables observations in the far-infrared at high spectral and spatial resolution. A particular class of molecules will be directly observable: light diatomic hydrides and their ions (CH, OH, SH, NH, CH{sup +}, OH{sup +}, SH{sup +}, NH{sup +}). These simple constituents are important both for the chemical evolution of the region and as tracers of high-energy radiation. If outflows of a forming star erode cavities in the envelope, protostellar far-UV (FUV; 6 < E{sub {gamma}} < 13.6 eV) radiation may escape through such low-density regions. Depending on the shape of the cavity, the FUV radiation then irradiates the quiescent envelope in the walls along the outflow. The chemical composition in these outflow walls is altered by photoreactions and heating via FUV photons in a manner similar to photo-dominated regions. In this work, we study the effect of cavity shapes, outflow density, and of a disk with the two-dimensional chemical model of a high-mass young stellar object introduced in the second paper in this series. The model has been extended with a self-consistent calculation of the dust temperature and a multi-zone escape probability method for the calculation of the molecular excitation and the prediction of line fluxes. We find that the shape of the cavity is particularly important in the innermost part of the envelope, where the dust temperatures are high enough ({approx}>100 K) for water ice to evaporate. If the cavity shape allows FUV radiation to penetrate this hot-core region, the abundance of FUV-destroyed species (e.g., water) is decreased. On larger scales, the shape of the cavity is less important for the chemistry in the outflow wall. In particular, diatomic hydrides and their ions CH{sup +}, OH{sup +}, and NH{sup +} are enhanced by many orders of magnitude in the outflow walls due to the combination of high gas temperatures and rapid photodissociation of more saturated species. The enhancement of these diatomic hydrides is sufficient for a detection using the HIFI and PACS instruments on board Herschel. The effect of X-ray ionization on the chemistry is found to be small, due to the much larger luminosity in FUV bands compared to X-rays.

  20. Battery Electrode Materials with High Cycle Lifetimes

    SciTech Connect (OSTI)

    Prof. Brent Fultz

    2001-06-29

    In an effort to understand the capacity fade of nickel-metal hydride (Ni-MH) batteries, we performed a systematic study of the effects of solute additions on the cycle life of metal hydride electrodes. We also performed a series of measurements on hydrogen absorption capacities of novel carbon and graphite-based materials including graphite nanofibers and single-walled carbon nanotubes. Towards the end of this project we turned our attention to work on Li-ion cells with a focus on anode materials.

  1. Advanced nickel base alloys for high strength, corrosion applications

    DOE Patents [OSTI]

    Flinn, John E.

    1998-01-01

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0-20Fe, 10-30Cr, 2-12Mo, 6 max. Nb, 0.05-3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01-0.08C, less than 0.2N, 0.1 max. 0, bal. Ni.

  2. Advanced nickel base alloys for high strength, corrosion applications

    DOE Patents [OSTI]

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  3. Plasma-assisted catalytic ionization using porous nickel plate

    SciTech Connect (OSTI)

    Oohara, W.; Maeda, T.; Higuchi, T.

    2011-09-15

    Hydrogen atomic pair ions, i.e., H{sup +} and H{sup -} ions, are produced by plasma-assisted catalytic ionization using a porous nickel plate. Positive ions in a hydrogen plasma generated by dc arc discharge are irradiated to the porous plate, and pair ions are produced from the back of the irradiation plane. It becomes clear that the production quantity of pair ions mainly depends on the irradiation current of positive ions and the irradiation energy affects the production efficiency of H{sup -} ions.

  4. Cold fusion experiments with ordinary water and thin nickel foil

    SciTech Connect (OSTI)

    Matsumoto, Takaaki )

    1993-11-01

    Cold fusion experiments with ordinary water and thin nickel foils are described. The temperature variation and the surface condition of the foils are examined. It has been proven that ordinary water can produce excess heat. Furthermore, reaction products are recorded on nuclear emulsions. Charged particles, electrons, protons, and deuterons, are observed. Micro-explosions caused by gravity decay of neutron nuclei are also recorded. Many traces indicating tiny black holes and white holes are clearly observed. The mechanisms of cold fusion with ordinary water are discussed in terms of the Nattoh model. 17 refs., 9 figs.

  5. Hydrodynamic Focusing Micropump Module with PDMS/Nickel Particle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrodynamic Focusing Micropump Module with PDMS/Nickel Particle Composite Diaphragms for Microfluidic Systems J. Kim 1,2, * , P. Ajmera 1 , J. Goettert 2 , Y. Jin 2,3 and K.-N. Kang 1,2 1 LSU - Department of Electrical and Computer Engineering 2 LSU-Center for Advanced Microstructures and Devices 3 NextGenC3 Composites CREST Center, Southern University and A&M College, USA * Master Thesis J. Kim, LSU-ECE Department Summary As part of the Post-Katrina project, a multi-fluidic

  6. Attendee Introduction

    Office of Environmental Management (EM)

    ... U N C L A S S I F I E D RCRA Challenges: metal hydride Uranium hydride, or tritide, ... U-hydrides or tritides are LLW. Palladium hydride, or tritide, is not AEA exempt. ...

  7. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  8. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, Nathaniel M.; Dye, Robert C.; Snow, Ronny C.; Birdsell, Stephan A.

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  9. Preparation and electrochemical properties of multiwalled carbon nanotubes-nickel oxide porous composite for supercapacitors

    SciTech Connect (OSTI)

    Zheng Yanzhen; Zhang Milin . E-mail: dhyzyz@yahoo.com.cn; Gao Peng

    2007-09-04

    Porous nickel oxide/multiwalled carbon nanotubes (NiO/MWNTs) composite material was synthesized using sodium dodecyl phenyl sulfate as a soft template and urea as hydrolysis-controlling agent. Scanning electron microscopy (SEM) results show that the as-prepared nickel oxide nanoflakes aggregate to form a submicron ball shape with a porous structure, and the MWNTs with entangled and cross-linked morphology are well dispersed in the porous nickel oxide. The composite shows an excellent cycle performance at a high current of 2 A g{sup -1} and keeps a capacitance retention of about 89% over 200 charge/discharge cycles. A specific capacitance approximate to 206 F g{sup -1} has been achieved with NiO/MWNTs (10 wt.%) in 2 M KOH electrolyte. The electrical conductivity and the active sites for redox reaction of nickel oxide are significantly improved due to the connection of nickel nanoflakes by the long entangled MWNTs.

  10. The synthesis, characterization and reactivity of high oxidation state nickel fluorides

    SciTech Connect (OSTI)

    Chacon, L.C. |

    1997-12-01

    The research described in this thesis has mainly addressed the challenge of the synthesis of thermodynamically unstable nickel fluorides, which cannot be made by traditional thermal methods. A low-temperature approach towards the synthesis of such transition metal fluorides exploits the greater thermodynamic stability of high oxidation states in anions and involves the use of anhydrous hydrogen fluoride (aHF) as a solvent. The general method consists of combining an aHF soluble starting material (e.g., K{sub 2}NiF{sub 6}) with a Lewis fluoroacid (e.g., BF{sub 3}), which precipitates a neutral polymeric solid state fluoride: 2 K{sup +} + NiF{sub 6}{sup 2{minus}} + BF{sub 3} {r_arrow} NiF{sub 4} + 2 BF{sub 4}{sup {minus}} + 2 K{sup +}. At room temperature, this reaction yields a different structural phase, with composition K{sub x}NiF{sub 3} (x {approx} 0.18). This material has a pseudo-hexagonal tungsten bronze structure (H{sub 0}-K{sub x}NiF{sub 3}), and is an ionic conductor, probably due to K{sup +} ions hosted in the lattice channels. R-NiF{sub 3} is capable of fluorinating a wide range of inorganic and organic substrates. These reactions have probably shed light on the mechanism of the Simons Electrochemical Fluorination (ECF) Process, an important industrial method of fluorinating organic compounds. It has long been speculated that NiF{sub 3} plays a role in the ECF process, which uses nickel electrodes in aHF solvent. K{sub 2}NiF{sub 6} also fluorinates organic compounds in aHF, but interestingly, yields different fluorinated products. The reduction of R-NiF{sub 3} and K{sub 2}NiF{sub 6} during fluorination reactions yields NiF{sub 2}. A method has been developed to regenerate NiF{sub 6}{sup 2{minus}} from NiF{sub 2}.

  11. Transition metal-free olefin polymerization catalyst

    DOE Patents [OSTI]

    Sen, Ayusman; Wojcinski, II, Louis M.; Liu, Shengsheng

    2001-01-01

    Ethylene and/or propylene are polymerized to form high molecular weight, linear polymers by contacting ethylene and/or propylene monomer, in the presence of an inert reaction medium, with a catalyst system which consists essentially of (1) an aluminum alkyl component, such as trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum and diethylaluminum hydride and (2) a Lewis acid or Lewis acid derivative component, such as B (C.sub.6 F.sub.5).sub.3, [(CH.sub.3).sub.2 N (H) (C.sub.6 H.sub.5)].sup.+ [B (C.sub.6 F.sub.5)4].sup.-, [(C.sub.2 H.sub.5).sub.3 NH].sup.+ [B C.sub.6 F.sub.5).sub.4 ],.sup.-, [C(C.sub.6 F.sub.5).sub.3 ].sup.+ [B(C.sub.6 F.sub.5).sub.4 ].sup.-, (C.sub.2 H.sub.5).sub.2 Al(OCH.sub.3), (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butyl-4-methylphenoxide), (C.sub.2 H.sub.5)Al(2,6 -di-t-butylphenoxide).sub.2, (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butylphonoxide) , 2,6 -di-t-butylphenol.multidot.methylaluminoxane or an alkylaluminoxane, and which may be completely free any transition metal component(s).

  12. Gas-Phase Reactions of Doubly Charged Lanthanide Cations with Alkanes and Alkenes. Trends in Metal(2+) Reactivity

    SciTech Connect (OSTI)

    Gibson, John K.; Marcalo, Joaquim; Santos, Marta; Pires de Matos, Antonio; Haire, Richard G.

    2008-12-08

    The gas-phase reactivity of doubly-charged lanthanide cations, Ln2+ (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), with alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) was studied by Fourier transform ion cyclotron resonance mass spectrometry. The reaction products consisted of different combinations of doubly-charged organometallic ions?adducts or species formed via metal-ion-induced hydrogen, dihydrogen, alkyl, or alkane eliminations from the hydrocarbons?and singly-charged ions that resulted from electron, hydride, or methide transfers from the hydrocarbons to the metal ions. The only lanthanide cations capable of activating the hydrocarbons to form doubly-charged organometallic ions were La2+, Ce2+, Gd2+, and Tb2+, which have ground-state or low-lying d1 electronic configurations. Lu2+, with an accessible d1 electronic configuration but a rather high electron affinity, reacted only through transfer channels. The remaining Ln2+ reacted via transfer channels or adduct formation. The different accessibilities of d1 electronic configurations and the range of electron affinities of the Ln2+ cations allowed for a detailed analysis of the trends for metal(2+) reactivity and the conditions for occurrence of bond activation, adduct formation, and electron, hydride, and methide transfers.

  13. Structure and electrochemical properties of nanometer Cu substituted ?-nickel hydroxide

    SciTech Connect (OSTI)

    Bao, Jie; Zhu, Yanjuan; Zhang, Zhongju; Xu, Qingsheng; Zhao, Weiren; Chen, Jian; Zhang, Wei; Han, Quanyong

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ? Cu substituted ?-nickel hydroxide was prepared by ultrasonic assisted precipitation. ? The XRD peaks are anisotropic broadening. ? The electrode for 0.9 wt.% Cu has the highest capacity of 310 mAh/g at 0.2 C. -- Abstract: Nanometer Cu-substituted ?-nickel hydroxide was synthesized by means of ultrasonic-assisted precipitation. Particle size distribution (PSD) measurement, X-ray diffraction (XRD), and high-resolution transmission electron microscope (HR-TEM) were used to characterize the physical properties of the synthesized samples. The results indicate that the average particle size of the samples is about 96110 nm and the XRD diffraction peaks are anisotropic broadening. The crystal grains are mainly polycrystal structure with columnar or needle-like morphology, containing many defects. With increase of Cu content, the shape of primary particles transform from columnar to needle-like. The influences of doping amounts of Cu on the electrochemical performance were investigated through constant current charge/discharge and cyclic voltammetric measurements. The specific capacity increases initially and then decreases with increasing Cu-doping ratio, the electrode C containing 0.9 wt.% Cu shows the maximum discharge capacity of 310 mAh/g at 0.2 C, and it has the lowest charging voltage, higher discharge voltage plateau, better cycle performance and larger proton diffusion coefficient than the other electrodes.

  14. Alloys for a liquid metal fast breeder reactor

    DOE Patents [OSTI]

    Rowcliffe, Arthur F.; Bleiberg, Melvin L.; Diamond, Sidney; Bajaj, Ram

    1979-01-01

    An essentially gamma-prime precipitation-hardened iron-chromium-nickel alloy has been designed with emphasis on minimum nickel and chromium contents to reduce the swelling tendencies of these alloys when used in liquid metal fast breeder reactors. The precipitation-hardening components have been designed for phase stability and such residual elements as silicon and boron, also have been selected to minimize swelling. Using the properties of these alloys in one design would result in an increased breeding ratio over 20% cold worked stainless steel, a reference material, of 1.239 to 1.310 and a reduced doubling time from 15.8 to 11.4 years. The gross stoichiometry of the alloying composition comprises from about 0.04% to about 0.06% carbon, from about 0.05% to about 1.0% silicon, up to about 0.1% zirconium, up to about 0.5% vanadium, from about 24% to about 31% nickel, from 8% to about 11% chromium, from about 1.7% to about 3.5% titanium, from about 1.0% to about 1.8% aluminum, from about 0.9% to about 3.7% molybdenum, from about 0.04% to about 0.8% boron, and the balance iron with incidental impurities.

  15. Processing capabilties for the elimination of contaminated metal scrapyards at DOE/ORO-managed sites. [Metal smelting facility

    SciTech Connect (OSTI)

    Mack, J.E.; Williams, L.C.

    1982-01-01

    Capabilities exist for reducing all the contaminated nickel, aluminum, and copper scrap to ingot form by smelting. Processing these metals at existing facilities could be completed in about 5 or 6 years. However, these metals represent only about 20% of the total metal inventories currently on hand at the DOE/ORO-managed sites. No provisions have been made for the ferrous scrap. Most of the ferrous scrap is unclassified and does not require secured storage. Also, the potential resale value of the ferrous scrap at about $100 per ton is very low in comparison. Consequently, this scrap has been allowed to accumulate. With several modifications and equipment additions, the induction melter at PGDP could begin processing ferrous scrap after its commitment to nickel and aluminum. The PGDP smelter is a retrofit installation, and annual throughput capabilities are limited. Processing of the existing ferrous scrap inventories would not be completed until the FY 1995-2000 time frame. An alternative proposal has been the installation of induction melters at the other two enrichment facilities. Conceptual design of a generic metal smelting facility is under way. The design study includes capital and operating costs for scrap preparation through ingot storage at an annual throughput of 10,000 tons per year. Facility design includes an induction melter with the capability of melting both ferrous and nonferrous metals. After three years of operation with scrapyard feed, the smelter would have excess capacity to support on-site decontamination and decomissioning projects or upgrading programs. The metal smelting facility has been proposed for FY 1984 line item funding with start-up operations in FY 1986.

  16. Production of negative hydrogen ions on metal grids

    SciTech Connect (OSTI)

    Oohara, W.; Maetani, Y.; Takeda, Takashi; Takeda, Toshiaki; Yokoyama, H.; Kawata, K.

    2015-03-15

    Negative hydrogen ions are produced on a nickel grid with positive-ion irradiation. In order to investigate the production mechanism, a copper grid without the chemisorption of hydrogen atoms and positive helium ions without negative ionization are used for comparison. Positive hydrogen ions reflected on the metal surface obtain two electrons from the surface and become negatively ionized. It is found that the production yield of negative ions by desorption ionization of chemisorbed hydrogen atoms seems to be small, and the production is a minor mechanism.

  17. Method of preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals

    DOE Patents [OSTI]

    Peng, Yu-Min; Wang, Jih-Wen; Liue, Chun-Ying; Yeh, Shinn-Horng

    1994-01-01

    A method for preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals includes the steps of washing the silicon carbide particles with an organic solvent; washing the silicon carbide particles with an inorganic acid; grinding the silicon carbide particles; and heating the silicon carbide particles in a nickel-containing solution at a boiling temperature for a predetermined period of time.

  18. Method of Determining the Extent to which a Nickel Structure has been Attached by a Fluorine-Containing Gas

    DOE Patents [OSTI]

    Brusie, James P.

    2004-07-13

    The method of determining the extent to which a nickel structure has been attacked by a halogen containing gas to which it has been exposed which comprises preparing a quantity of water substantially free from dissolved oxygen, passing ammonia gas through a cuprammonium solution to produce ammonia substantially free from oxygen, dissolving said oxygen-free ammonia in said water to produce a saturated aqueous ammonia solution free from uncombined oxygen, treating at least a portion of said nickel structure of predetermined weight with said solution to dissolve nickel compounds from the surface of said structure without dissolving an appreciable amount of said nickel and analyzing the resulting solution to determine the quantity of said nickel compounds that was associated with said said portion of said structure to determine the proportion of combined nickel in said nickel structure.

  19. Method of determining the extent to which a nickel structure has been attached by a fluorine-containing gas

    DOE Patents [OSTI]

    Brusie, James P.

    2004-07-13

    The method of determining the extent to which a nickel structure has been attacked by a halogen containing gas to which it has been exposed which comprises preparing a quantity of water substantially free from dissolved oxygen, passing ammonia gas through a cuprammonium solution to produce ammonia substantially free from oxygen, dissolving said oxygen-free ammonia in said water to produce a saturated aqueous ammonia solution free from uncombined oxygen, treating at least a portion of said nickel structure of predetermined weight with said solution to dissolve nickel compounds from the surface of said structure without dissolving an appreciable amount of said nickel and analyzing the resulting solution to determine the quantity of said nickel compounds that was associated with said said portion of said structure to determine the proportion of combined nickel in said nickel structure.

  20. Composite metal-hydrogen electrodes for metal-hydrogen batteries. Final report, October 1, 1993--April 15, 1997

    SciTech Connect (OSTI)

    Ruckman, M.W.; Strongin, M.; Weismann, H.

    1997-04-01

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped Nb films, these studies suggested that materials with metal-hydrogen ratios exceeding those of commercially available metal hydride materials and fast hydrogen charging and discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films and multilayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 {mu}m thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices.

  1. Metal dusting

    SciTech Connect (OSTI)

    Edited by K. Natesan

    2004-01-01

    This workshop was held soon after the September 11th incident under a climate of sorrow and uncertainty among the people of the world, in particular the Workshop participants and their host organizations. With considerable help from the partiicpants, the Workshop was conducted as planed and we had excellent participation in spite of the circumstances. A good fraction of the attendees in the Workshop were from abroad and from several industries, indicating the importance and relevance of the subject for the chemical process industry. Degradation of structural metallic alloys by metal dusting has been an issue for over 40 years in the chemical, petrochemical, syngas, and iron ore reduction plants. However, the fundamental scientific reasons for the degradation of complex alloys in high carbon activity environments are not clear. one of the major parameters of importance is the variation in gas chemistry in both the laboratory experiments and in the plant-service environments. the industry has questioned the applicability of the laboratory test data, obtained in low steam environments, in assessment and life prediction for the materials in plant service where the environments contain 25-35% steam. Several other variables such as system pressure, gas flow velocity, incubation time, alloy chemistry, surface finish, and weldments, were also identified in the literature as to having an effect on the initiatino and propagation of metal dusting attack. It is the purpose of this Workshop to establish a forum in which the researchers from scientific and industrial laboratories, alloy manufacturers, end users, and research and development sponsors can exchange information, discuss different points of view, prioritize the issues, and to elaborate on the trends in industry for the future. We believe that we accomplished these goals successfully and sincerely thank the participants for their contributions.

  2. Supercapacitor Materials and Devices: Nickel-Cobalt Supercapacitors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The common measures of performance are the energy density (energy per kg) and power density (power per kg). This technology is based on specific metal oxide compositions ...

  3. Low temperature formation of electrode having electrically conductive metal oxide surface

    DOE Patents [OSTI]

    Anders, Simone; Anders, Andre; Brown, Ian G.; McLarnon, Frank R.; Kong, Fanping

    1998-01-01

    A low temperature process is disclosed for forming metal suboxides on substrates by cathodic arc deposition by either controlling the pressure of the oxygen present in the deposition chamber, or by controlling the density of the metal flux, or by a combination of such adjustments, to thereby control the ratio of oxide to metal in the deposited metal suboxide coating. The density of the metal flux may, in turn, be adjusted by controlling the discharge current of the arc, by adjusting the pulse length (duration of on cycle) of the arc, and by adjusting the frequency of the arc, or any combination of these parameters. In a preferred embodiment, a low temperature process is disclosed for forming an electrically conductive metal suboxide, such as, for example, an electrically conductive suboxide of titanium, on an electrode surface, such as the surface of a nickel oxide electrode, by such cathodic arc deposition and control of the deposition parameters. In the preferred embodiment, the process results in a titanium suboxide-coated nickel oxide electrode exhibiting reduced parasitic evolution of oxygen during charging of a cell made using such an electrode as the positive electrode, as well as exhibiting high oxygen overpotential, resulting in suppression of oxygen evolution at the electrode at full charge of the cell.

  4. Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell

    DOE Patents [OSTI]

    Ruka, Roswell J.; Vora, Shailesh D.

    2001-01-01

    A fuel cell structure (2) is provided, having a pre-sintered nickel-zirconia fuel electrode (6) and an air electrode (4), with a ceramic electrolyte (5) disposed between the electrodes, where the pre-sintered fuel electrode (6) contains particles selected from the group consisting of nickel oxide, cobalt and cerium dioxide particles and mixtures thereof, and titanium dioxide particles, within a matrix of yttria-stabilized zirconia and spaced-apart filamentary nickel strings having a chain structure, and where the fuel electrode can be sintered to provide an active solid oxide fuel cell.

  5. Crystalline ropes of metallic carbon nanotubes

    SciTech Connect (OSTI)

    Thess, A.; Lee, R.; Nikolaev, P.

    1996-07-26

    Fullerene single-wall nanotubes (SWNTs) were produced in yields of more than 70 percent by condensation of a laser-vaporized carbon-nickel-cobalt mixture at 1200{degrees}C. X-ray diffraction and electron microscopy showed that these SWNTs are nearly uniform in diameter and that they self-organize into {open_quotes}ropes,{close_quotes} which consist of 100 to 500 SWNTs in a two-dimensional triangular lattice with a lattice constant of 17 angstroms. The x-ray form factor is consistent with that of uniformly charged cylinders 13.8 {plus_minus} 0.2 angstroms in diameter. The ropes were metallic, with a single-rope resistivity of <10{sup {minus}4} ohmcentimeters at 300 kelvin. The uniformity of SWNT diameter is attributed to the efficient annealing of an initial fullerene tubelet kept open by a few metal atoms; the optimum diameter is determined by competition between the strain energy of curvature of the graphene sheet and the dangling-bond energy of the open edge, where growth occurs. These factors strongly favor the metallic (10,10) tube with C{sub 5v} symmetry and an open edge stabilized by triple bonds. 33 refs., 5 tabs.

  6. High strength nickel-chromium-iron austenitic alloy

    DOE Patents [OSTI]

    Gibson, Robert C.; Korenko, Michael K.

    1980-01-01

    A solid solution strengthened Ni-Cr-Fe alloy capable of retaining its strength at high temperatures and consisting essentially of 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminum, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06 zirconium, and the balance iron. After solution annealing at 1038.degree. C. for one hour, the alloy, when heated to a temperature of 650.degree. C., has a 2% yield strength of 307 MPa, an ultimate tensile strength of 513 MPa and a rupture strength of as high as 400 MPa after 100 hours.

  7. Failures of nickel/copper bolts in subsea application

    SciTech Connect (OSTI)

    Wolfe, L.H.; Joosten, M.W.

    1988-08-01

    Slow-strain-rate tests in ASTM seawater using specimens prepared from a failed nickel/copper-alloy bolt have shown that precipitation-hardened UNS N05500 (Monel K-500) is embrittled by cathodic protection with sacrificial aluminum anodes. Some loss of ductility also occurred when annealed UNS N05500 was coupled to aluminum anodes and when the hardened alloy was coupled to steel. Brittle fractures produced by slow-strain-rate tests were intergranular and were very similar in appearance to the field fractures. While the slow-strain-rate tests were conducted on an alloy from only one source, there is no reason to assume that UNS N05500 alloy from other sources would resist hydrogen embrittlement from standard cathodic protection systems.

  8. Separation of Nickel from Technetium-Contaminated Scrap

    SciTech Connect (OSTI)

    El-Azzami, Louei; Zhai, Tony; Grulke, Eric W

    2004-10-01

    The recovery of nickel (Ni) from Department of Energy (DOE) gaseous diffusion plant barriers contaminated with radionuclides and specifically the separation of from Ni from technetium-99, has proven to be difficult. Manufacturing Science Corporation (MSC) could not remove Tc99 from volumetrically contaminated Ni utilizing electro-refining approaches to levels that would allow the free release of Ni for commercial and industrial uses. The various methods applied by Manufacturing Sciences Corporation (MSC) are reported in the attached appendices. The electro-refining methods employed by MSC resulted in Ni containing residual Tc99. Residual Tc99 in Ni purified by MSC's electro-refining methods resulted in a moratorium being issued by the Secretary of the DOE and congressional opposition to the release of Ni from the K-25 plant at Oak Ridge.

  9. Micrographic detection of plastic deformation in nickel base alloys

    DOE Patents [OSTI]

    Steeves, Arthur F. (Schenectady, NY); Bibb, Albert E. (Clifton Park, NY)

    1984-01-01

    A method for detecting low levels of plastic deformation in metal articles comprising electrolytically etching a flow free surface of the metal article with nital at a current density of less than about 0.1 amp/cm.sup.2 and microscopically examining the etched surface to determine the presence of alternating striations. The presence of striations indicates plastic deformation in the article.

  10. Micrographic detection of plastic deformation in nickel-base alloys

    DOE Patents [OSTI]

    Steeves, A.F.; Bibb, A.E.

    1980-09-20

    A method for detecting low levels of plastic deformation in metal articles comprising electrolytically etching a flow free surface of the metal article with nital at a current density of less than about 0.1 amp/cm/sup 2/ and microscopically examining the etched surface to determine the presence of alternating striations. The presence of striations indicates plastic deformation in the article.

  11. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Print Wednesday, 29 May 2013 00:00 Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides

  12. Metal filled porous carbon

    DOE Patents [OSTI]

    Gross, Adam F.; Vajo, John J.; Cumberland, Robert W.; Liu, Ping; Salguero, Tina T.

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  13. Method for the preparation of metal colloids in inverse micelles and product preferred by the method

    DOE Patents [OSTI]

    Wilcoxon, Jess P.

    1992-01-01

    A method is provided for preparing catalytic elemental metal colloidal particles (e.g. gold, palladium, silver, rhodium, iridium, nickel, iron, platinum, molybdenum) or colloidal alloy particles (silver/iridium or platinum/gold). A homogeneous inverse micelle solution of a metal salt is first formed in a metal-salt solvent comprised of a surfactant (e.g. a nonionic or cationic surfactant) and an organic solvent. The size and number of inverse micelles is controlled by the proportions of the surfactant and the solvent. Then, the metal salt is reduced (by chemical reduction or by a pulsed or continuous wave UV laser) to colloidal particles of elemental metal. After their formation, the colloidal metal particles can be stabilized by reaction with materials that permanently add surface stabilizing groups to the surface of the colloidal metal particles. The sizes of the colloidal elemental metal particles and their size distribution is determined by the size and number of the inverse micelles. A second salt can be added with further reduction to form the colloidal alloy particles. After the colloidal elemental metal particles are formed, the homogeneous solution distributes to two phases, one phase rich in colloidal elemental metal particles and the other phase rich in surfactant. The colloidal elemental metal particles from one phase can be dried to form a powder useful as a catalyst. Surfactant can be recovered and recycled from the phase rich in surfactant.

  14. Effect of Gaseous Impurities on Long-Term Thermal Cycling and Aging Properties of Complex Hydrides for Hydrogen Storage

    SciTech Connect (OSTI)

    Chandra, Dhanesh; Lamb, Joshua; Chien, Wen-Ming; Talekar, Anjali; and Pal, Narendra.

    2011-03-28

    This program was dedicated to understanding the effect of impurities on Long-Term Thermal Cycling and aging properties of Complex Hydrides for Hydrogen Storage. At the start of the program we found reversibility between Li2NH+LiH  LiH+LiNH2 (yielding ~5.8 wt.%H capacity). Then we tested the effect of impurity in H2 gas by pressure cycling at 255oC; first with industrial gas containing ppm levels of O2 and H2O as major impurities. Both these impurities had a significant impact on the reversibility and decreased the capacity by 2.65 wt.%H. Further increase in number of cycles from 500 to 1100 showed only a 0.2 wt%H more weight loss, showing some capacity is still maintained after a significant number of cycles. The loss of capacity is attributed to the formation of ~55 wt% LiH and ~30% Li2O, as major contaminant phases, along with the hydride Li2NH phase; suggesting loss of nitrogen during cycling. The effect of 100 ppm H2O in H2 also showed a decrease of ~2.5 wt.%H (after 560 cycles), and 100ppm O2 in H2; a loss of ~4.1 wt.%. Methane impurity (100 ppm, 100cycles), showed a very small capacity loss of 0.9 wt.%H under similar conditions. However, when Li3N was pressure cycled with 100ppmN2-H2 there were beneficial effects were observed (255oC); the reversible capacity increased to 8.4wt.%H after 853 cycles. Furthermore, with 20 mol.%N2-H2 capacity increased to ~10 wt.%H after 516 cycles. We attribute this enhancement to the reaction of nitrogen with liquid lithium during cycling as the Gibbs free energy of formation of Li3N (Go = -98.7 kJ/mol) is more negative than that of LiH (Go = -50.3 kJ/mol). We propose that the mitigation of hydrogen capacity losses is due to the destabilization of the LiH phase that tends to accumulate during cycling. Also more Li2NH phase was found in the cycled product. Mixed Alanates (3LiNH2:Li3AlH6) showed that 7 wt% hydrogen desorbed under dynamic vacuum. Equilibrium experiments (maximum 12 bar H2) showed up to 4wt% hydrogen reversibly stored in the material after the first desorption. The activation energy was found to be 51 kJ/mol, as compared to 81 kJ/mol for pure lithium alanate. It is proposed that based on the data obtained and CALPHAD modeling that the improvement in cycling is due to the formation of pure lithium (liquid at 255oC), which is able to react with nitrogen specifically forming Li3N. The presence of nitrogen in the 80/20 molar mixtures in a hydride bed along with hydrogen causes Li to form Li3N rather than LiH, and subsequently regenerates the Li2NH phase and yields a ~10 wt.%H reversibly.

  15. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  16. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  17. Working with SRNL - Our Facilities - HTRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    purification of hydrogen, stripping of hydrogen, storage of hydrogen in metal hydrides, characterization of metal hydrides, and analysis of gas samples using mass spectrometry. ...

  18. Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium-Nickel Nanoalloys

    SciTech Connect (OSTI)

    Shan, Shiyao; Petkov, Valeri; Yang, Lefu; Luo, Jin; Joseph, Pharrah; Mayzel, Dina; Prasai, Binay; Wang, Lingyan; Engelhard, Mark H.; Zhong, Chuan-Jian

    2014-05-05

    Alloying palladium (Pd) with other transition metals at the nanoscale has become an important pathway for preparation of low-cost, highly-active and stable catalysts. However the lack of understanding of how the alloying phase state, chemical composition and atomic-scale structure of the alloys at the nanoscale influence their catalytic activity impedes the rational design of Pd-nanoalloy catalysts. This work addresses this challenge by a novel approach to investigating the catalytic oxidation of carbon monoxide (CO) over palladium-nickel (PdNi) nanoalloys with well-defined bimetallic composition, which reveals a remarkable a maximal catalytic activity at Pd:Ni ratio of ~50:50. Key to understanding the structural-catalytic synergy is the use of high-energy synchrotron X-ray diffraction coupled to atomic pair distribution function (HE-XRD/PDF) analysis to probe the atomic structure of PdNi nanoalloys under controlled thermochemical treatments and CO reaction conditions. Three-dimensional (3D) models of the atomic structure of the nanoalloy particles were generated by reverse Monte Carlo simulations (RMC) guided by the experimental HE-XRD/PDF data. Structural details of the PdNi nanoalloys were extracted from the respective 3D models and compared with the measured catalytic properties. The comparison revealed a strong correlation between the phase state, chemical composition and atomic-scale structure of PdNi nanoalloys and their catalytic activity for CO oxidation. This correlation is further substantiated by analyzing the first atomic neighbor distances and coordination numbers inside the nanoalloy particles and at their surfaces. These findings have provided new insights into the structural synergy of nanoalloy catalysts by controlling the phase state, composition and atomic structure, complementing findings of traditional density functional theory studies.

  19. Toxicology and metabolism of nickel compounds. Progress report, December 1, 1979-November 30, 1980

    SciTech Connect (OSTI)

    Sunderman, Jr, F W

    1980-08-15

    The toxicology and metabolism of nickel compounds (e.g., NiCl/sub 2/, ..cap alpha..Ni/sub 3/S/sub 2/, and Ni(CO)/sub 4/) were investigated in rats and hamsters.

  20. Development of materials resistant to metal dusting degradation.

    SciTech Connect (OSTI)

    Natesan, K.; Zeng, Z.

    2006-04-24

    Metal dusting corrosion has been a serious problem in the petroleum and petrochemical industries, such as reforming and syngas production systems. This form of deterioration has led to worldwide material loss for 50 years. For the past three years, we have studied the mechanism of metal dusting for Fe- and Ni-base alloys. In this report, we present a correlation between the weight loss and depth of pits that form in Ni-base alloys. Nickel-base alloys were also tested at 1 and 14.8 atm (210 psi), in a high carbon activity environment. Higher system pressure was found to accelerate corrosion in most Ni-base alloys. To reduce testing time, a pre-pitting method was developed. Mechanical scratches on the alloy surface led to fast metal dusting corrosion. We have also developed preliminary data on the performance of weldments of several Ni-base alloys in a metal dusting environment. Finally, Alloy 800 tubes and plates used in a reformer plant were examined by scanning electron microscopy, energy dispersive X-ray, and Raman spectroscopy. The oxide scale on the surface of the Alloy 800 primarily consists of Fe{sub 1+x}Cr{sub 2-X}O{sub 4} spinel phase with high Fe content. Carbon can diffuse through this oxide scale. It was discovered that the growth of metal dusting pits could be stopped by means of a slightly oxidized alloy surface. This leads to a new way to solve metal dusting problem.

  1. Nickelcobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets with a 3D nanonetwork structure as supercapacitive materials

    SciTech Connect (OSTI)

    Yan, Tao; Li, Ruiyi; Li, Zaijun

    2014-03-01

    Graphical abstract: The microwave heating reflux approach was developed for the fabrication of nickelcobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets, in which ammonia and ethanol were used as the precipitator and medium for the synthesis. The obtained composite shows a 3D flowerclusters morphology with nanonetwork structure and largely enhanced supercapacitive performance. - Highlights: The paper reported the microwave synthesis of nickelcobalt layered double hydroxide/graphene composite. The novel synthesis method is rapid, green, efficient and can be well used to the mass production. The as-synthesized composite offers a 3D flowerclusters morphology with nanonetwork structure. The composite offers excellent supercapacitive performance. This study provides a promising route to design and synthesis of advanced graphene-based materials with the superiorities of time-saving and cost-effective characteristics. - Abstract: The study reported a novel microwave heating reflux method for the fabrication of nickelcobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets (GS/NiCo-LDH). Ammonia and ethanol were employed as precipitant and reaction medium for the synthesis, respectively. The resulting GS/NiCo-LDH offers a 3D flowerclusters morphology with nanonetwork structure. Due to the greatly enhanced rate of electron transfer and mass transport, the GS/NiCo-LDH electrode exhibits excellent supercapacitive performances. The maximum specific capacitance was found to be 1980.7 F g{sup ?1} at the current density of 1 A g{sup ?1}. The specific capacitance can remain 1274.7 F g{sup ?1} at the current density of 15 A g{sup ?1} and it has an increase of about 2.9% after 1500 cycles. Moreover, the study also provides a promising approach for the design and synthesis of metallic double hydroxides/graphene hybrid materials with time-saving and cost-effective characteristics, which can be potentially applied in the energy storage/conversion devices.

  2. Paste Type Nickel Electrode Containing Compound And At Least One Other Element

    DOE Patents [OSTI]

    Bernard, Patrick; Bertrand, Fran.cedilla.oise; Simonneau, Olivier

    1999-11-30

    The present invention provides a paste type nickel electrode for a storage cell having an alkaline electrolyte, the electrode comprising a current collector and a paste containing a nickel-based hydroxide and an oxidized compound of cobalt syncrystallized with at least one other element, wherein said hydroxide forms a first powder and wherein said compound forms a second powder distinct from said first powder, said powders being mixed mechanically within said paste.

  3. Nondestructive volumetric 3-D chemical mapping of nickel-sulfur compounds at the nanoscale

    SciTech Connect (OSTI)

    Harris W. M.; Chu Y.; Nelson, G.J.; Kiss, A.M.; Izzo Jr, J.R.; Liu, Y.; Liu, M.; Wang, S.; Chiu W.K.S.

    2012-04-04

    Nano-structures of nickel (Ni) and nickel subsulfide (Ni{sub 3}S{sub 2}) materials were studied and mapped in 3D with high-resolution x-ray nanotomography combined with full field XANES spectroscopy. This method for characterizing these phases in complex microstructures is an important new analytical imaging technique, applicable to a wide range of nanoscale and mesoscale electrochemical systems.

  4. OPERATION OF A TRITIUM GLOVEBOX CLEAN-UP SYSTEM USING ZIRCONIUM MANGANESE IRON AND ZIRCONIUM TWO IRON METAL GETTERS

    SciTech Connect (OSTI)

    E. LARSON; K. COOK

    2000-08-01

    A metal hydride-based tritium clean-up system has been successfully operated for more than four years on an 11 m{sup 3} helium/nitrogen glovebox which was used for handling metal tritide powders. The clean-up system consists of two beds: (1) a Zr-Mn-Fe (in a 10% by weight Al binder, SAES ST909) bed operating at 675 C followed by (2) a Zr{sub 2}Fe (SAES ST198) bed operating at 250 C. The Zr-Mn-Fe bed serves to condition the gas stream by cracking hydrogenous impurities (such as H{sub 2}O and hydrocarbons) and absorbing oxygen and carbon. The Zr{sub 2}Fe bed absorbs the hydrogen isotopes from the flowing stream by forming a solid hydride compound. These beds contain 3 kilograms of Zr{sub 2}Fe and have been loaded routinely with 230-250 STP liters of hydrogen isotopes in earlier trials. The Zr-Mn-Fe alloy exhibits an anomaly during activation, namely an exotherm upon initial exposure to nitrogen. The purpose of this work is to better understand this reaction. Nitrogen absorption studies were done in order to quantify the nitrogen taken up by the getter and to characterize the reaction kinetics. In addition, ST909 phases before and after the reaction were studied with x-ray diffraction.

  5. Influence of composition gradients on weld metal creep behavior: An analysis based on laminate composites

    SciTech Connect (OSTI)

    Choi, I.

    1989-01-01

    The effects of weld metal microsegregation, as altered by post-weld heat treatments, on both low and high temperatures tensile properties were investigated on Monel alloy 400. Flat, all weld metal, tensile specimens were machined from single pass GTA welds and were heat treated in vacuum in the range of 600 C to 1000 C to produce samples with different composition gradients. Short-time tensile tests were run at room temperature and elevated temperature. Long-time constant load creep tests were performed at 500 C. The room temperature mechanical properties of the as-welded specimen and heat treated specimens were similar and thus unaffected by variations in composition gradients. In contrast, at high temperatures the steady state creep rates decreased, rupture strains increased, and rupture lives decreases with increases in heat treatment temperature, that is, with decreases in the amplitudes of composition gradients. The deformation behavior of solidified dendritic structure was modeled based on results obtained on laminate composites of nickel and copper. The laminates, prepared by roll bonding, were annealed to produce controlled composition gradients with dimensions equivalent to those observed in the weld metal. The steady state creep rates of laminate composites decreased with increases in heat treatment time, that is, with decreases in the amplitudes of composition gradients. To rationalize the creep properties of each component in laminate composites, nickel-copper solid solutions having systematic compositional variations were prepared and tested under the same conditions as the laminate composites. The creep rates of nickel-copper solid solutions showed a minimum with nickel composition.

  6. Metal-phosphate binders

    DOE Patents [OSTI]

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  7. The role of destabilization of palladium hydride on the hydrogen uptake of Pd-containing activated carbons

    SciTech Connect (OSTI)

    Bhat, Vinay V; Contescu, Cristian I; Gallego, Nidia C

    2009-01-01

    This paper reports on differences in stability of Pd hydride phases in palladium particles with various degrees of contact with microporous carbon supports. A sample containing Pd embedded in activated carbon fiber (Pd-ACF; 2 wt% Pd) was compared with commercial Pd nanoparticles deposited on microporous activated carbon (Pd-catalyst, 3 wt% Pd) and with support-free nanocrystalline palladium (Pd-black). The morphology of materials was characterized by electron microscopy, and the phase transformations were analyzed over a large range of hydrogen partial pressures (0.003 - 10 bar) and at several temperatures using in-situ X-ray diffraction. The results were verified with volumetric hydrogen uptake measurements. Results indicate that higher degree of Pd-carbon contacts for Pd particles embedded in a microporous carbon matrix induce efficient pumping of hydrogen out of -PdHx. It was also found that thermal cleaning of carbon surface groups prior to exposure to hydrogen further enhances the hydrogen pumping power of the microporous carbon support. In brief, this study highlights that the stability of -PdHx phase supported on carbon depends on the degree of contact between Pd-carbon and the nature of the carbon surface.

  8. Molten carbonate fuel cell reduction of nickel deposits

    DOE Patents [OSTI]

    Smith, James L. (Lemont, IL); Zwick, Stanley A. (Darien, IL)

    1987-01-01

    A molten carbonate fuel cell with anode and cathode electrodes and an eleolyte formed with two tile sections, one of the tile sections being adjacent the anode and limiting leakage of fuel gas into the electrolyte with the second tile section being adjacent the cathode and having pores sized to permit the presence of oxygen gas in the electrolyte thereby limiting the formation of metal deposits caused by the reduction of metal compositions migrating into the electrolyte from the cathode.

  9. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide

  10. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide

  11. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide

  12. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide

  13. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide

  14. 3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography

    SciTech Connect (OSTI)

    Nelson, George; Harris, William; Izzo, John; Grew, Kyle N.

    2012-01-20

    Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

  15. Process for the displacement of cyanide ions from metal-cyanide complexes

    DOE Patents [OSTI]

    Smith, Barbara F.; Robinson, Thomas W.

    1997-01-01

    The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.

  16. REFRACTORY METAL TUBE DRAWING

    DOE Patents [OSTI]

    Bean, C.H.; Karasek, F.J.

    1963-01-29

    A lubricant for drawing Zr and other refractory metals is described. Metallic Cu powder is added to a solution of acrylic resin in chlorinated hydrocarbon solvent. (AEC)

  17. Method for producing highly reflective metal surfaces

    DOE Patents [OSTI]

    Arnold, J.B.; Steger, P.J.; Wright, R.R.

    1982-03-04

    The invention is a novel method for producing mirror surfaces which are extremely smooth and which have high optical reflectivity. The method includes depositing, by electrolysis, an amorphous layer of nickel on an article and then diamond-machining the resulting nickel surface to increase its smoothness and reflectivity. The machined nickel surface then is passivated with respect to the formation of bonds with electrodeposited nickel. Nickel then is electrodeposited on the passivated surface to form a layer of electroplated nickel whose inside surface is a replica of the passivated surface. The mandrel then may be-re-passivated and provided with a layer of electrodeposited nickel, which is then recovered from the mandrel providing a second replica. The mandrel can be so re-used to provide many such replicas. As compared with producing each mirror-finished article by plating and diamond-machining, the new method is faster and less expensive.

  18. Characterization and analysis of metal wastage in coal-fired fluidized-bed combustors

    SciTech Connect (OSTI)

    Nazemi, A.H.; Madsen, M.M.; Malone, G.A.

    1985-08-01

    As an integral part of its program in fluidized-bed combustion technology development, the US Department of Energy/Morgantown Energy Technology Center (DOE/METC) supports a number of projects directed toward providing both theoretical and experimental results which will guide solutions to the metal loss problem. As a part of this effort, METC and the MITRE Corporation have undertaken a project to compile and analyze metal loss data obtained from a variety of FBC systems ranging from small-scale experimental units to industrial-size facilities and to establish a functional relationship between metal loss for several alloy types and various FBC design and operating parameters. To date, metal loss and operating information have been categorized for forty-four alloys in twenty separate FBC systems worldwide. Review of the tabulated data indicate the following trends: metal temperatures above 1200/sup 0/F significantly increase rates of metal loss; system operation with high excess air reduces metal loss, but does not eliminate it; use of coals with high ash sintering temperatures does not significantly reduce metal loss; degree of metal loss is much lower for surfaces exposed in the freeboard than for in-bed surfaces; the rate of metal loss decreases with time of exposure; iron-based stainless steels are relatively resistant to conditions which cause metal loss; cobalt-based alloys and high-chromium steels show significant resistance to metal loss; nickel-based alloys are most susceptible to metal loss; sulfidation/oxidation attack on metals within fluidized beds are more likely to occur if sorbent is present; and metal attack will occur irrespective of coal and sorbent type. 25 refs., 14 figs., 12 tabs.

  19. Synthesis and peferentially loading of nickel nanoparticle on CdS surface and its photocatalytic performance for hydrogen evolution under visible light

    SciTech Connect (OSTI)

    Li, Xiying; Wang, Hui; Chu, Tingting; Li, Danzhen; Mao, Liqun

    2014-09-15

    Graphical abstract: Ni nanoparticles were prepared via chemical reduction of aqueous NiCl{sub 2} by borohydride reducing agent in the presence of polyvinlylpyrolidone as a modifier to prevent fast growth of Ni crystals and their aggregation, and then preferentially deposited on (1 0 0), (0 0 2), and (1 0 1) crystal planes of CdS by photo-induced electrons while water splitting reaction occurred simultaneously. Resultant nickel nanoparticles have a size of about 3 nm, and contributes to decreasing the photoluminescence peak intensity of CdS, which means that nickel functions as the trapper of photo-generated electrons thereby quenching the photoluminescence of CdS. Therefore, nano-Ni/CdS photocatalyst with a Ni loading of 2.5% possesses the best visible-light catalytic activity for water splitting-hydrogen evolution and provides a hydrogen production rate of up to 9050 ?mol h{sup ?1} g{sup ?1}, while it exhibits stabilized activity towards H{sub 2} evolution as well. - Highlights: Ni nanoparticles are prepared by chemical reduction and then loaded on CdS surface by photo-reduction. Non-noble metal Ni nanoparticles (size: about 3 nm) act as co-catalyst for photocatalytic H{sub 2} evolution. Nano-Ni/CdS exhibits high activity (9050 ?mol h{sup ?1} g{sup ?1}) and perfect stability. - Abstract: Ni nanoparticles were prepared via chemical reduction of NiCl{sub 2} by NaBH{sub 4} in the presence of polyvinlylpyrolidone (PVP), and loaded on the surface of CdS by photo-induced electrons while water splitting reaction occurred simultaneously. Resultant Ni/CdS was characterized by high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, ultravioletvisible light diffuse reflectance spectrometry, and photoluminescence spectrometry. It was found that as-prepared Ni nanoparticles are about 3 nm, and preferentially deposited on (1 0 0), (0 0 2), and (1 0 1) crystal planes of CdS. Meanwhile, loading nickel decreases the photoluminescence intensity of CdS, which means nickel functions as the trapper of photo-generated electrons. Therefore, nano-Ni/CdS photocatalyst with a Ni loading of 2.5% possesses the best visible-light catalytic activity for water splitting-hydrogen evolution and provides a hydrogen production rate of up to 9050 ?mol h{sup ?1} g{sup ?1}, while it exhibits stabilized activity towards H{sub 2} evolution as well.

  20. Welding metallurgy of nickel alloys in gas turbine components

    SciTech Connect (OSTI)

    Lingenfelter, A. C., LLNL

    1997-05-21

    Materials for gas turbine engines are required to meet a wide range of temperature and stress application requirements. These alloys exhibit a combination of creep resistance, creep rupture strength, yield and tensile strength over a wide temperature range, resistance to environmental attack (including oxidation, nitridation, sulphidation and carburization), fatigue and thermal fatigue resistance, metallurgical stability and useful thermal expansion characteristics. These properties are exhibited by a series of solid-solution-strengthened and precipitation-hardened nickel, iron and cobalt alloys. The properties needed to meet the turbine engine requirements have been achieved by specific alloy additions, by heat treatment and by thermal mechanical processing. A thorough understanding of the metallurgy and metallurgical processing of these materials is imperative in order to successfully fusion weld them. This same basic understanding is required for repair of a component with the added dimension of the potential effects of thermal cycling and environmental exposure the component will have endured in service. This article will explore the potential problems in joining and repair welding these materials.