National Library of Energy BETA

Sample records for nickel metal hydride

  1. Hydridable material for the negative electrode in a nickel-metal hydride storage battery

    DOE Patents [OSTI]

    Knosp, Bernard (Neuilly-sur-Seine, FR); Bouet, Jacques (Paris, FR); Jordy, Christian (Dourdan, FR); Mimoun, Michel (Neuilly-sur-Marne, FR); Gicquel, Daniel (Lanorville, FR)

    1997-01-01

    A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##

  2. Mathematical modeling of the nickel/metal hydride battery system

    SciTech Connect (OSTI)

    Paxton, B K [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  3. Feasibility study for the recycling of nickel metal hydride electric vehicle batteries. Final report

    SciTech Connect (OSTI)

    Sabatini, J.C.; Field, E.L.; Wu, I.C.; Cox, M.R.; Barnett, B.M.; Coleman, J.T. [Little (Arthur D.), Inc., Cambridge, MA (United States)

    1994-01-01

    This feasibility study examined three possible recycling processes for two compositions (AB{sub 2} and AB{sub 5}) of nickel metal hydride electric vehicle batteries to determine possible rotes for recovering battery materials. Analysts examined the processes, estimated the costs for capital equipment and operation, and estimated the value of the reclaimed material. They examined the following three processes: (1) a chemical process that leached battery powders using hydrochloric acid, (2) a pyrometallurical process, and (3) a physical separation/chemical process. The economic analysis revealed that the physical separation/chemical process generated the most revenue.

  4. Metal Hydride Hydrogen Storage Research and Development

    Broader source: Energy.gov [DOE]

    DOE's research on complex metal hydrides targets the development of advanced metal hydride materials including light-weight complex hydrides, destabilized binary hydrides, intermetallic hydrides,...

  5. Metal Hydrides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial ReportProposal to changeNovemberEnergyMessage fromMetal

  6. Method for preparing porous metal hydride compacts

    DOE Patents [OSTI]

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  7. Method for preparing porous metal hydride compacts

    DOE Patents [OSTI]

    Ron, Moshe (Haifa, IL); Gruen, Dieter M. (Downers Grove, IL); Mendelsohn, Marshall H. (Woodridge, IL); Sheft, Irving (Oak Park, IL)

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  8. Dimensionally stable metallic hydride composition

    DOE Patents [OSTI]

    Heung, Leung K. (Aiken, SC)

    1994-01-01

    A stable, metallic hydride composition and a process for making such a composition. The composition comprises a uniformly blended mixture of a metal hydride, kieselguhr, and a ballast metal, all in the form of particles. The composition is made by subjecting a metal hydride to one or more hydrogen absorption/desorption cycles to disintegrate the hydride particles to less than approximately 100 microns in size. The particles are partly oxidized, then blended with the ballast metal and the kieselguhr to form a uniform mixture. The mixture is compressed into pellets and calcined. Preferably, the mixture includes approximately 10 vol. % or more kieselguhr and approximately 50 vol. % or more ballast. Metal hydrides that can be used in the composition include Zr, Ti, V, Nb, Pd, as well as binary, tertiary, and more complex alloys of La, Al, Cu, Ti, Co, Ni, Fe, Zr, Mg, Ca, Mn, and mixtures and other combinations thereof. Ballast metals include Al, Cu and Ni.

  9. Ni/metal hydride secondary element

    DOE Patents [OSTI]

    Bauerlein, Peter

    2005-04-19

    A Ni/metal hydride secondary element having a positive nickel hydroxide electrode, a negative electrode having a hydrogen storage alloy, and an alkaline electrolyte, the positive electrode, provided with a three-dimensional metallic conductive structure, also contains an aluminum compound which is soluble in the electrolyte, in addition to nickel hydroxide and cobalt oxide. The aluminum compound is aluminum hydroxide and/or aluminum oxide, and the mass of the aluminum compound which is present in the positive bulk material mixture is 0.1 to 2% by weight relative to the mass of the nickel hydroxide which is present. In combination with aluminum hydroxide or aluminum oxide, the positive electrode further contains lanthanoid oxidic compounds Y.sub.2 O.sub.3, La.sub.2 O.sub.3 and Ca(OH).sub.2, as well as mixtures of these compounds.

  10. Liquid suspensions of reversible metal hydrides

    DOE Patents [OSTI]

    Reilly, J.J.; Grohse, E.W.; Winsche, W.E.

    1983-12-08

    The reversibility of the process M + x/2 H/sub 2/ ..-->.. MH/sub x/, where M is a metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under a liquid, thereby to reduce contamination, provide better temperature control and provide in situ mobility of the reactants. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen (at high pressures) and to release (at low pressures) previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the former is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the H/sub 2/ pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  11. Low density metal hydride foams

    DOE Patents [OSTI]

    Maienschein, Jon L. (Oakland, CA); Barry, Patrick E. (Pleasant Hill, CA)

    1991-01-01

    Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.

  12. Metastable Metal Hydrides for Hydrogen Storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Graetz, Jason

    2012-01-01

    The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However, a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides offer some hope of overcoming these challenges; however, many of the high capacity “reversible” hydrides exhibit a large endothermic decomposition enthalpy making it difficult to release the hydrogen at low temperatures. Onmore »the other hand, the metastable hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid, low temperature hydrogen evolution rates that can be achieved with these materials offer much promise for mobile PEM fuel cell applications. However, a critical challenge exists to develop new methods to regenerate these hydrides directly from the reactants and hydrogen gas. This spotlight paper presents an overview of some of the metastable metal hydrides for hydrogen storage and a few new approaches being investigated to address the key challenges associated with these materials.« less

  13. Metal Hydride Chemical Heat Pumps for Industrial Use 

    E-Print Network [OSTI]

    Ally, M. R.; Rebello, W. J.; Rosso, M. J., Jr.

    1984-01-01

    occasionally, the ideal behaviour shown in Figure 1 is observed, in practice there are usually slight deviations from this ideal. Fig ure 2 shows isotherms obtained for a gractical nickel-aluminium-mischmetal compound. t1) Note that the plateau is sloped.... The expansion is accomodated by the loosely packed individual capsules, preventing any stress on the main container walls. Each capsule is a thin-walled aluminium tube containing the hydride can, capped on one or both ends with a porous metal filter. Such a...

  14. Metal hydride fuel storage and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan F. (Livermore, CA); Yu, Conrad (Antioch, CA)

    2006-10-17

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  15. Metal hydride fuel storage and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan F [Livermore, CA; Yu, Conrad [Antioch, CA

    2009-05-05

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  16. A STUDY OF FUNDAMENTAL REACTION PATHWAYS FOR TRANSITION METAL ALKYL COMPLEXES. I. THE REACTION OF A NICKEL METHYL COMPLEX WITH ALKYNES. II. THE MECHANISM OF ALDEHYDE FORMATION IN THE REACTION OF A MOLYBDENUM HYDRIDE WITH MOLYBDENUM ALKYLS

    SciTech Connect (OSTI)

    Huggins, John Mitchell

    1980-06-01

    I. This study reports the rapid reaction under mild conditions of internal or terminal alkynes with methyl (acetyl~ acetonato) (triphenylphosphine) nickel (1) in either aromatic or ether solvents. In all cases vinylnickel products 2 are formed by insertion of the alkyne into the nickel=methyl bond. These complexes may be converted into a variety of organic products (e.g. alkenes, esters, vinyl halides) by treatment with appropriate reagents. Unsymmetrical alkynes give selectively the one regioisomer with the sterically largest substituent next to the nickel atom. In order to investigate the stereochemistry of the initial insertion, a x-ray diffraction study of the reaction of 1 with diphenylacetylene was carried out. This showed that the vinylnickel complex formed by overall trans insertion was the product of the reaction. Furthermore, subsequent slow isomerization of this complex, to a mixture of it and the corresponding cis isomer, demonstrated that this trans addition product is the kinetic product of the reaction. In studies with other alkynes, the product of trans addition was not always exclusively (or even predominantly) formed, but the ratio of the stereoisomers formed kinetically was substantially different from the thermodynamic ratio. Isotope labeling, added phosphine, and other experiments have allowed us to conclude that the mechanism of this reaction does involve initial cis addition. However, a coordinatively unsaturated vinylnickel complex is initially formed which can undergo rapid, phosphine-catalyzed cis-trans isomerization in competition with its conversion to the isolable phosphine-substituted kinetic reaction products. II. The reaction of CpMo(CO){sub 3}H (1a) with CpMo(CO){sub 3}R (2, R= CH{sub 3}, C{sub 2}H{sub 5}) at 50{degrees} C in THF gives the aldehyde RCHO and the dimers [CpMo(CO){sub 3}]{sub 2} (3a) and [CpMo(CO){sub 2}]{sub 2} (4a). Labeling one of the reactants with a methylcyclopentadienyl ligand it was possible to show that the mixed dimers MeCpMo(CO){sub 3}-(CO){sub 3}MoCp (3b) and MeCpMo(CO){sub 2}{triple_bond}(CO){sub 2}MoCp (4b) are the predominant kinetic products of the reaction. Additionally labeling the carbonyl ligands of 1a with {sup 13}CO led to the conclusion that all three of the carbonyl ligands in 1a end up in the tetracarbonyl dimers 4a if the reaction is carried out under a continuous purge of argon Trapping studies failed to find any evidence for the intermediacy of either [CpMo(CO){sub 3}]{sup -} or [CpMo(CO){sub 3}]{sup +} in this reaction. A mechanism is proposed that involves the initial migration of the alkyl ligand in 2 to CO forming an unsaturated acyl complex which reacts with 1a to give a binuclear complex containing a three center-two electron Mo-H-Mo bond. This complex then selectively looses a carbonyl from the acyl molybdenum, migrates the hydride to that same metal, and forms a metal-metal bond. This binuclear complex with the hydride and acyl ligands on one metal reductively eliminates aldehyde, and migrates a carbonyl ligand, to give 4a directly. The other product 3a is formed by addition of two molecules of free CO to 4a.

  17. METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW

    SciTech Connect (OSTI)

    Bowman Jr, Robert C; Yartys, Dr. Volodymyr A.; Lototskyy, Dr. Michael V; Pollet, Dr. B.G.

    2014-01-01

    Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

  18. Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems

    SciTech Connect (OSTI)

    2011-12-05

    HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

  19. METALLIC HYDRIDES. Magnetic properties of laves-phase rare earth hydrides

    E-Print Network [OSTI]

    Boyer, Edmond

    METALLIC HYDRIDES. Magnetic properties of laves-phase rare earth hydrides J. J. Rhyne and G. E on the rare earth site. The rare earth spins disorder at a temperature lower than the bulk Tc in ErFe2 H3 5 per formula unit assuming complete occupation of 3 tetrahedral sites. The heavy rare earth (RFe2

  20. Metal hydride fuel storage and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan F. (Livermore, CA); Yu, Conrad (Antioch, CA)

    2010-08-10

    An apparatus having a first substrate having (1) a cavity, (2) one or more resistive heaters, and (3) one or more coatings forming a diffusion barrier to hydrogen; a second substrate having (1) an outlet valve comprising a pressure relief structure and (2) one or more coatings forming a diffusion barrier to hydrogen, wherein said second substrate is coupled to said first substrate forming a sealed volume in said cavity; a metal hydride material contained within said cavity; and a gas distribution system formed by coupling a microfluidic interconnect to said pressure relief structure. Additional apparatuses and methods are also disclosed.

  1. Process for production of a metal hydride

    DOE Patents [OSTI]

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  2. Recent advances in metal hydrides for clean energy applications

    SciTech Connect (OSTI)

    Ronnebro, Ewa; Majzoub, Eric H.

    2013-06-01

    Metal hydrides are a fascinating class of materials that can be utilized for a surprising variety of clean energy applications, including smart solar collectors, smart windows, sensors, thermal energy storage, and batteries, in addition to their traditional application for hydrogen storage. Over the past decade, research on metal hydrides for hydrogen storage increased due to global governmental incentives and an increased focus on hydrogen storage research for polymer electrolyte membrane fuel cell operation. Tremendous progress has been made in so-called complex metal hydrides for hydrogen storage applications with the discovery of many new hydrides containing covalently bound complex anions. Many of these materials have applications beyond hydrogen storage and are being investigated for lithium-ion battery separator and anode materials. In this issue of MRS Bulletin , we present the state of the art of key evolving metal-hydride-based clean energy technologies with an outlook toward future needs.

  3. Porous metal hydride composite and preparation and uses thereof

    DOE Patents [OSTI]

    Steyert, William A. (Los Alamos, NM); Olsen, Clayton E. (Los Alamos, NM)

    1982-01-01

    A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

  4. Porous metal hydride composite and preparation and uses thereof

    DOE Patents [OSTI]

    Steyert, W.A.; Olsen, C.E.

    1980-03-12

    A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

  5. Metal Hydrides for High-Temperature Power Generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, ormore »during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.« less

  6. Carbon-Fluorine Bond Cleavage by Zirconium Metal Hydride Complexes

    E-Print Network [OSTI]

    Jones, William D.

    Carbon-Fluorine Bond Cleavage by Zirconium Metal Hydride Complexes Brian L. Edelbach, A. K. Fazlur, Rochester, New York 14627 Received April 8, 1999 The zirconium hydride dimer [Cp2ZrH2]2 reacts with C6F6. [Cp2ZrH2]2 reacts with C6F5H to give Cp2Zr(p-C6F4H)F, Cp2ZrF2, C6F4H2, and H2. The zirconium hydride

  7. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect (OSTI)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

  8. Models for Metal Hydride Particle Shape, Packing, and Heat Transfer

    E-Print Network [OSTI]

    Kyle C. Smith; Timothy S. Fisher

    2012-05-04

    A multiphysics modeling approach for heat conduction in metal hydride powders is presented, including particle shape distribution, size distribution, granular packing structure, and effective thermal conductivity. A statistical geometric model is presented that replicates features of particle size and shape distributions observed experimentally that result from cyclic hydride decreptitation. The quasi-static dense packing of a sample set of these particles is simulated via energy-based structural optimization methods. These particles jam (i.e., solidify) at a density (solid volume fraction) of 0.665+/-0.015 - higher than prior experimental estimates. Effective thermal conductivity of the jammed system is simulated and found to follow the behavior predicted by granular effective medium theory. Finally, a theory is presented that links the properties of bi-porous cohesive powders to the present systems based on recent experimental observations of jammed packings of fine powder. This theory produces quantitative experimental agreement with metal hydride powders of various compositions.

  9. Enhancement of heat and mass transfer in metal hydride beds with the addition of Al plates

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    in the hydriding process with the addition of internal aluminum plates. The two-dimensional equations governing during the absorption/desorption process in the metal hydride beds. The main factors governing the metal hydride matrix and kinetics of the hydrogen sorption processes, etc. By ne- glecting the hydrogen

  10. Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis

    E-Print Network [OSTI]

    Tomas Roubicek; Giuseppe Tomassetti

    2013-09-12

    A thermodynamically consistent mathematical model for hydrogen adsorption in metal hydrides is proposed. Beside hydrogen diffusion, the model accounts for phase transformation accompanied by hysteresis, swelling, temperature and heat transfer, strain, and stress. We prove existence of solutions of the ensuing system of partial differential equations by a carefully-designed, semi-implicit approximation scheme. A generalization for a drift-diffusion of multi-component ionized "gas" is outlined, too.

  11. Venkat Srinivasan John W. Weidner Ralph E. White Mathematical models of the nickel hydroxide active material

    E-Print Network [OSTI]

    -cadmium, nickel-metal hydride, nickel-zinc, and nickel-hydrogen batteries [1]. However, even after a century. The negative electrode used in the cell could be a porous cadmium, metal hydride, zinc, or gas-fed hydrogen Á R.E. White (&) Department of Chemical Engineering, Swearingen Engineering Building, University

  12. A non-isothermal model of a nickelmetal hydride cell , M. Mohammedb

    E-Print Network [OSTI]

    A non-isothermal model of a nickel±metal hydride cell B. Wua , M. Mohammedb , D. Brighamb , R. Elderb , R.E. Whitea,* a Department of Chemical Engineering, University of South Carolina, Columbia, SC Abstract A model for a nickel±metal hydride cell was constructed based on the planar electrode

  13. Diffusional exchange of isotopes in a metal hydride sphere.

    SciTech Connect (OSTI)

    Wolfer, Wilhelm G.; Hamilton, John C.; James, Scott Carlton

    2011-04-01

    This report describes the Spherical Particle Exchange Model (SPEM), which simulates exchange of one hydrogen isotope by another hydrogen isotope in a spherical metal hydride particle. This is one of the fundamental physical processes during isotope exchange in a bed of spherical metal particles and is thus one of the key components in any comprehensive physics-based model of exchange. There are two important physical processes in the model. One is the entropy of mixing between the two isotopes; the entropy of mixing is increased by having both isotopes randomly placed at interstitial sites on the lattice and thus impedes the exchange process. The other physical process is the elastic interaction between isotope atoms on the lattice. The elastic interaction is the cause for {beta}-phase formation and is independent of the isotope species. In this report the coupled diffusion equations for two isotopes in the {beta}-phase hydride are solved. A key concept is that the diffusion of one isotope depends not only on its concentration gradient, but also on the concentration gradient of the other isotope. Diffusion rate constants and the chemical potentials for deuterium and hydrogen in the {beta}-phase hydride are reviewed because these quantities are essential for an accurate model of the diffusion process. Finally, a summary of some of the predictions from the SPEM model are provided.

  14. Modeling of a Nickel-Hydrogen Cell Phase Reactions in the Nickel Active Material

    E-Print Network [OSTI]

    developed high-energy-density batteries, e.g., the nickel-metal hydride battery and the lithium-ion batteryModeling of a Nickel-Hydrogen Cell Phase Reactions in the Nickel Active Material B. Wu and R. E of South Carolina, Columbia, South Carolina 29208, USA A nonisothermal model of a nickel-hydrogen cell has

  15. Working with SRNL - Our Facilities - Metal Hydride Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in1: ModelGloveboxMetal Hydride

  16. Thermal Design of a Metal Hydride Storage Bed, Permitting Tritium Accountancy to 0.1% Resolution and Repeatability

    E-Print Network [OSTI]

    Thermal Design of a Metal Hydride Storage Bed, Permitting Tritium Accountancy to 0.1% Resolution and Repeatability

  17. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    SciTech Connect (OSTI)

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  18. 1,2-Aryl and 1,2-Hydride Migration in Transition Metal Complex Catalyzed

    E-Print Network [OSTI]

    Wang, Jianbo

    1,2-Aryl and 1,2-Hydride Migration in Transition Metal Complex Catalyzed Diazo Decomposition of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemistry, Peking Uni,2-hydride migration was studied. A reaction mechanism involving a "bridged" phenonium ion is proposed

  19. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    DOE Patents [OSTI]

    Zidan, Ragaiy (Aiken, SC); Ritter, James A. (Lexington, SC); Ebner, Armin D. (Lexington, SC); Wang, Jun (Columbia, SC); Holland, Charles E. (Cayce, SC)

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  20. Non-stoichiometric AB5 alloys for metal hydride electrodes

    DOE Patents [OSTI]

    Reilly, James J. (Bellport, NY); Adzic, Gordana D. (Setauket, NY); Johnson, John R. (Calverton, NY); Vogt, Thomas (Cold Spring Harbor, NY); McBreen, James (Bellport, NY)

    2001-01-01

    The present invention provides a non-stoichiometric alloy comprising a composition having the formula AB.sub.5+X an atomic ratio wherein A is selected from the group consisting of the rare earth metals, yttrium, mischmetal, or a combination thereof; B is nickel and tin, or nickel and tin and at least a third element selected from the group consisting of the elements in group IVA of the periodic table, aluminum, manganese, iron, cobalt, copper, antimony or a combination thereof; X is greater than 0 and less than or equal to about 2.0; and wherein at least one substituted A site is occupied by at least one of the B elements. An electrode incorporating said alloy and an electrochemical cell incorporating said electrode are also described.

  1. Final report for the DOE Metal Hydride Center of Excellence.

    SciTech Connect (OSTI)

    Keller, Jay O.; Klebanoff, Leonard E.

    2012-01-01

    This report summarizes the R&D activities within the U.S. Department of Energy Metal Hydride Center of Excellence (MHCoE) from March 2005 to June 2010. The purpose of the MHCoE has been to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE 2010 and 2015 system goals for hydrogen storage materials. The MHCoE combines three broad areas: mechanisms and modeling (which provide a theoretically driven basis for pursuing new materials), materials development (in which new materials are synthesized and characterized) and system design and engineering (which allow these new materials to be realized as practical automotive hydrogen storage systems). This Final Report summarizes the organization and execution of the 5-year research program to develop practical hydrogen storage materials for light duty vehicles. Major results from the MHCoE are summarized, along with suggestions for future research areas.

  2. Gas Diffusion in Metals: Fundamental Study of Helium-Point Defect Interactions in Iron and Kinetics of Hydrogen Desorption from Zirconium Hydride

    E-Print Network [OSTI]

    Hu, Xunxiang

    2013-01-01

    steel, nickel, iron and zirconium. Nucl. Instrum. MethodsSteinbruck. Hydrogen absorption by zirconium alloys at highHydride formation in zirconium alloys. JOM. 64 R. Yang, O.

  3. Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides

    SciTech Connect (OSTI)

    2011-12-01

    HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

  4. Steps to Commercialization: Nickel Metal Hydride Batteries | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers at the Energyonecelebrates specialwarmEnergy

  5. Steps to Commercialization: Nickel Metal Hydride Batteries | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting State Energy Advisory BoardStateFailures

  6. Materials Down-selection Decisions Made within the DOE Metal Hydride Center of Excellence (MHCoE) - September-October 2007

    Fuel Cell Technologies Publication and Product Library (EERE)

    Reports on which hydrogen storage materials offer potential for further research as decided by DOE's Metal Hydride Center of Excellence.

  7. Materials Down-selection Decisions Made within the DOE Metal Hydride Center of Excellence (MHCoE) - September-October 2007

    SciTech Connect (OSTI)

    Klebanoff, Lennie [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2007-09-01

    Reports on which hydrogen storage materials offer potential for further research as decided by DOE's Metal Hydride Center of Excellence.

  8. Method and composition in which metal hydride particles are embedded in a silica network

    DOE Patents [OSTI]

    Heung, Leung K. (Aiken, SC)

    1999-01-01

    A silica embedded metal hydride composition and a method for making such a composition. The composition is made via the following process: A quantity of fumed silica is blended with water to make a paste. After adding metal hydride particles, the paste is dried to form a solid. According to one embodiment of the invention, the solid is ground into granules for use of the product in hydrogen storage. Alternatively, the paste can be molded into plates or cylinders and then dried for use of the product as a hydrogen filter. Where mechanical strength is required, the paste can be impregnated in a porous substrate or wire network.

  9. First Principles Studies of Phase Stability and Reaction Dynamics in Complex Metal Hydrides

    SciTech Connect (OSTI)

    Chou, Mei-Yin

    2014-09-29

    Complex metal hydrides are believed to be one of the most promising materials for developing hydrogen storage systems that can operate under desirable conditions. At the same time, these are also a class of materials that exhibit intriguing properties. We have used state-of-the-art computational techniques to study the fundamental properties of these materials.

  10. ANALYSIS OF THE ELECTRON EXCITATION SPECTRA IN HEAVY RARE EARTH METALS, HYDRIDES AND OXIDES

    E-Print Network [OSTI]

    Boyer, Edmond

    397 ANALYSIS OF THE ELECTRON EXCITATION SPECTRA IN HEAVY RARE EARTH METALS, HYDRIDES AND OXIDES C thin evaporated foils of heavy rare earths (Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in three different chemical of high energy incident electrons (75 keV) transmitted through thin foils of yttric rare earth elements

  11. Filler metal alloy for welding cast nickel aluminide alloys

    DOE Patents [OSTI]

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  12. Filler metal alloy for welding cast nickel aluminide alloys

    DOE Patents [OSTI]

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  13. Metal hydrides as electrode/catalyst materials for oxygen evolution/reduction in electrochemical devices

    DOE Patents [OSTI]

    Bugga, Ratnakumar V. (Arcadia, CA); Halpert, Gerald (Pasadena, CA); Fultz, Brent (Pasadena, CA); Witham, Charles K. (Pasadena, CA); Bowman, Robert C. (La Mesa, CA); Hightower, Adrian (Whittier, CA)

    1997-01-01

    An at least ternary metal alloy of the formula, AB.sub.(5-Y)X(.sub.y), is claimed. In this formula, A is selected from the rare earth elements, B is selected from the elements of groups 8, 9, and 10 of the periodic table of the elements, and X includes at least one of the following: antimony, arsenic, and bismuth. Ternary or higher-order substitutions, to the base AB.sub.5 alloys, that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

  14. URANIUM METAL POWDER PRODUCTION, PARTICLE DISTRIBUTION ANALYSIS, AND REACTION RATE STUDIES OF A HYDRIDE-DEHYDRIDE PROCESS 

    E-Print Network [OSTI]

    Sames, William

    2011-08-08

    Work was done to study a hydride-dehydride method for producing uranium metal powder. Particle distribution analysis was conducted using digital microscopy and grayscale image analysis software. The particle size was found ...

  15. Analysis of Heat Transfer in Metal Hydride Based Hydrogen Separation

    SciTech Connect (OSTI)

    Fleming, W.H. Jr.

    1999-10-20

    This thesis presents a transient heat transfer analysis to model the heat transfer in the Pd/k packed column, and the impact of adding metallic foam.

  16. Method for preparing hydride configurations and reactive metal surfaces

    DOE Patents [OSTI]

    Silver, Gary L. (Centerville, OH)

    1988-08-16

    A method for preparing highly hydrogen-reactive surfaces on metals which normally require substantial heating, high pressures, or an extended induction period, which involves pretreatment of said surfaces with either a non-oxidizing acid or hydrogen gas to form a hydrogen-bearing coating on said surfaces, and subsequently heating said coated metal in the absence of moisture and oxygen for a period sufficient to decompose said coating and cooling said metal to room temperature. Surfaces so treated will react almost instantaneously with hydrogen gas at room temperature and low pressure. The method is particularly applicable to uranium, thorium, and lanthanide metals.

  17. LaNi{sub 5}-based metal hydride electrode in Ni-MH rechargeable cells

    DOE Patents [OSTI]

    Bugga, R.V.; Fultz, B.; Bowman, R.; Surampudi, S.R.; Witham, C.K.; Hightower, A.

    1999-03-30

    An at least ternary metal alloy of the formula AB{sub (Z-Y)}X{sub (Y)} is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB{sub 5} alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption. 16 figs.

  18. OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES

    SciTech Connect (OSTI)

    Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

    2011-07-14

    Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

  19. CRADA (AL-C-2009-02) Final Report: Phase I. Lanthanum-based Start Materials for Hydride Batteries

    SciTech Connect (OSTI)

    Gschneidner, Jr., Karl; Schmidt, Frederick; Frerichs, A.E.; Ament, Katherine A.

    2013-05-01

    The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La{sub 1-x}R{sub x})(Ni{sub 1-y}M{sub y})(Si{sub z}), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

  20. Nickel(II) and Copper(I,II)-based Metal-Organic Frameworks Incorporati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nickel(II) and Copper(I,II)-based Metal-Organic Frameworks Incorporating an Extended Trispyrazolate Linker Previous Next List Tabacaru, Aurel; Galli, Simona; Pettinari, Claudio;...

  1. Method of making crack-free zirconium hydride

    DOE Patents [OSTI]

    Sullivan, Richard W. (Denver, CO)

    1980-01-01

    Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

  2. Ductile filler metal alloys for welding nickel aluminide alloys

    DOE Patents [OSTI]

    Santella, Michael L. (Knoxville, TN); McNabb, Jeffrey D. (Lenoir City, TN); Sikka, Vinod K. (Oak Ridge, TN)

    2003-04-08

    Nickel aluminum alloys are welded utilizing a nickel based alloy containing zirconium but substantially free of titanium and niobium which reduces the tendency to crack.

  3. Erroneous Wave Functions of Ciuchi et al for Collective Modes in Neutron Production on Metallic Hydride Cathodes

    E-Print Network [OSTI]

    A. Widom; Y. N. Srivastava; L. Larsen

    2012-10-17

    There is a recent comment (Ciuchi et al., 2012) concerning the theory of collective many body effects on the neutron production rates in a chemical battery cathode. Ciuchi et al employ an inverse beta decay expression that contains a two body amplitude. Only one electron and one proton may exist in the Ciuchi et al model initial state wave function. A flaw in their reasoning is that one cannot in reality describe collective many body correlations with only a two particle wave function. One needs very many particles to describe collective effects. In the model wave functions of Ciuchi et al there are no metallic hydrides, there are no cathodes and there are no chemical batteries. Employing a wave function with only one electron and one proton is inadequate for describing collective metallic hydride surface quantum plasma physics in cathodes accurately.

  4. Hydrogen, lithium, and lithium hydride production

    DOE Patents [OSTI]

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  5. Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods

    SciTech Connect (OSTI)

    Lesch, David A; Adriaan Sachtler, J.W. J.; Low, John J; Jensen, Craig M; Ozolins, Vidvuds; Siegel, Don

    2011-02-14

    UOP LLC, a Honeywell Company, Ford Motor Company, and Striatus, Inc., collaborated with Professor Craig Jensen of the University of Hawaii and Professor Vidvuds Ozolins of University of California, Los Angeles on a multi-year cost-shared program to discover novel complex metal hydrides for hydrogen storage. This innovative program combined sophisticated molecular modeling with high throughput combinatorial experiments to maximize the probability of identifying commercially relevant, economical hydrogen storage materials with broad application. A set of tools was developed to pursue the medium throughput (MT) and high throughput (HT) combinatorial exploratory investigation of novel complex metal hydrides for hydrogen storage. The assay programs consisted of monitoring hydrogen evolution as a function of temperature. This project also incorporated theoretical methods to help select candidate materials families for testing. The Virtual High Throughput Screening served as a virtual laboratory, calculating structures and their properties. First Principles calculations were applied to various systems to examine hydrogen storage reaction pathways and the associated thermodynamics. The experimental program began with the validation of the MT assay tool with NaAlH4/0.02 mole Ti, the state of the art hydrogen storage system given by decomposition of sodium alanate to sodium hydride, aluminum metal, and hydrogen. Once certified, a combinatorial 21-point study of the NaAlH4 â?? LiAlH4 â??Mg(AlH4)2 phase diagram was investigated with the MT assay. Stability proved to be a problem as many of the materials decomposed during synthesis, altering the expected assay results. This resulted in repeating the entire experiment with a mild milling approach, which only temporarily increased capacity. NaAlH4 was the best performer in both studies and no new mixed alanates were observed, a result consistent with the VHTS. Powder XRD suggested that the reverse reaction, the regeneration of the alanate from alkali hydride, Al and hydrogen, was hampering reversibility. The reverse reaction was then studied for the same phase diagram, starting with LiH, NaH, and MgH2, and Al. The study was extended to phase diagrams including KH and CaH2 as well. The observed hydrogen storage capacity in the Al hexahydrides was less than 4 wt. %, well short of DOE targets. The HT assay came on line and after certification with studies on NaAlH4, was first applied to the LiNH2 - LiBH4 - MgH2 phase diagram. The 60-point study elucidated trends within the system locating an optimum material of 0.6 LiNH2 â?? 0.3 MgH2 â?? 0.1 LiBH4 that stored about 4 wt. % H2 reversibly and operated below 220 °C. Also present was the phase Li4(NH2)3BH4, which had been discovered in the LiNH2 -LiBH4 system. This new ternary formulation performed much better than the well-known 2 LiNH2 â?? MgH2 system by 50 °C in the HT assay. The Li4(NH2)3BH4 is a low melting ionic liquid under our test conditions and facilitates the phase transformations required in the hydrogen storage reaction, which no longer relies on a higher energy solid state reaction pathway. Further study showed that the 0.6 LiNH2 â?? 0.3 MgH2 â?? 0.1 LiBH4 formulation was very stable with respect to ammonia and diborane desorption, the observed desorption was from hydrogen. This result could not have been anticipated and was made possible by the efficiency of HT combinatorial methods. Investigation of the analogous LiNH2 â?? LiBH4 â?? CaH2 phase diagram revealed new reversible hydrogen storage materials 0.625 LiBH4 + 0.375 CaH2 and 0.375 LiNH2 + 0.25 LiBH4 + 0.375 CaH2 operating at 1 wt. % reversible hydrogen below 175 °C. Powder x-ray diffraction revealed a new structure for the spent materials which had not been previously observed. While the storage capacity was not impressive, an important aspect is that it boron appears to participate in a low temperature reversible reaction. The last major area of study also focused

  6. The Use of Metal Hydrides for Hydrogen Recovery from Industrial Off-Gas Streams 

    E-Print Network [OSTI]

    Rebello, W. J.; Guerrero, P. S.; Goodell, P. D.

    1987-01-01

    technical factors may make it economically attractive for them to consider the hydride separation technology. Table 1 SECONDARY HYDROGEN CAPACITY IN 15 INDUSTRIES elements including palladium, vana dium, and magnesium. and with allo s based...

  7. Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows

    E-Print Network [OSTI]

    Anders, Andre

    2008-01-01

    allow molecular hydrogen to reach the palladium-capped metalhydrogen is converted to protons, which are transported through the ZrO 2 electrolyte to the palladiumhydrogen and transforms into a transparent hydride. A catalytic capping layer of palladium

  8. LaNi.sub.5 is-based metal hydride electrode in Ni-MH rechargeable cells

    DOE Patents [OSTI]

    Bugga, Ratnakumar V. (Arcadia, CA); Fultz, Brent (Pasadena, CA); Bowman, Robert (La Mesa, CA); Surampudi, Subra Rao (Glendora, CA); Witham, Charles K. (Pasadena, CA); Hightower, Adrian (Pasadena, CA)

    1999-01-01

    An at least ternary metal alloy of the formula AB.sub.(Z-Y) X.sub.(Y) is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB.sub.5 alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

  9. Characterization and High Throughput Analysis of Metal Hydrides for Hydrogen Storage

    E-Print Network [OSTI]

    Barcelo, Steven James

    2009-01-01

    palladium (Pd) to protect them from oxidation as well as to enhance hydrogenpalladium or nickel. These materials also offer an aid studies by catalyzing hydrogen

  10. Analytical assessment of the thermal behavior of nickel-metal hydride batteries

    E-Print Network [OSTI]

    Bahrami, Majid

    * , Maryam Yazdanpour, Majid Bahrami Laboratory for Alternative Energy Conversion (LAEC), Mechatronic Systems value problems of heat conduction, Dover Publications, New York, 1989 [3] M.S. Wu et al., J. Power Sour inside the battery can be approximated from the well-known energy balance analysis proposed by Bernardi

  11. Method Of Charging Maintenance-Free Nickel Metal Hydride Storage Cells

    DOE Patents [OSTI]

    Berlureau, Thierry (Bordeaux, FR); Liska, Jean-Louis (Bordeaux, FR)

    1999-11-16

    A method of charging an industrial maintenance-free Ni-MH storage cell, the method comprising in combination a first stage at a constant current I.sub.1 lying in the range I.sub.c /10 to I.sub.c /2, and a second stage at a constant current I.sub.2 lying in the range I.sub.c /50 to I.sub.c /10, the changeover from the first stage to the second stage taking place when the time derivative of the temperature reaches a threshold value which varies as a function of the temperature at the time of the changeover.

  12. Improving nickel metal hydride batteries through research in negative electrode corrosion control and novel electrode materials 

    E-Print Network [OSTI]

    Alexander, Michael Scott

    1997-01-01

    electrode materials. In order to fully understand the processes involved in the corrosion study, tests were carried at Brookhaven National Laboratory using X-ray Absorption Near Edge Spectroscopy. These tests showed that Zn prevented the corrosion of Ni...

  13. Activated aluminum hydride hydrogen storage compositions and uses thereof

    DOE Patents [OSTI]

    Sandrock, Gary (Ringwood, NJ); Reilly, James (Bellport, NY); Graetz, Jason (Mastic, NY); Wegrzyn, James E. (Brookhaven, NY)

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  14. Using magnetization measurements to detect small amounts of plutonium hydride formation in plutonium metal

    SciTech Connect (OSTI)

    Kim, Jae Wook [Rutgers Univ., New Brunswick, NJ (United States); Mielke, Charles H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zapf, Vivien [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baiardo, Joseph P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mitchell, Jeremy N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Richmond, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schwartz, Daniel S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mun, Eun D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Alice Iulia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-20

    We report the formation of plutonium hydride in 2 at % Ga-stabilized ?-Pu, with 1 atomic % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here we use magnetization, X-ray and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuHx, largely on the surface of the sample with x ~ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with precipitates of ferromagnetic PuH1.9.

  15. Hydride compressor

    DOE Patents [OSTI]

    Powell, James R. (Wading River, NY); Salzano, Francis J. (Patchogue, NY)

    1978-01-01

    Method of producing high energy pressurized gas working fluid power from a low energy, low temperature heat source, wherein the compression energy is gained by using the low energy heat source to desorb hydrogen gas from a metal hydride bed and the desorbed hydrogen for producing power is recycled to the bed, where it is re-adsorbed, with the recycling being powered by the low energy heat source. In one embodiment, the adsorption-desorption cycle provides a chemical compressor that is powered by the low energy heat source, and the compressor is connected to a regenerative gas turbine having a high energy, high temperature heat source with the recycling being powered by the low energy heat source.

  16. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01

    Uranium in the fuel remains metallic since the equilibriumtype of hydride fuel consists of metallic uranium particlesalloying the metallic components of the fuel followed by a

  17. Nickel anode electrode

    DOE Patents [OSTI]

    Singh, Prabhakar (Bethel, CT); Benedict, Mark (Monroe, CT)

    1987-01-01

    A nickel anode electrode fabricated by oxidizing a nickel alloying material to produce a material whose exterior contains nickel oxide and whose interior contains nickel metal throughout which is dispersed the oxide of the alloying material and by reducing and sintering the oxidized material to form a product having a nickel metal exterior and an interior containing nickel metal throughout which is dispersed the oxide of the alloying material.

  18. Hydride compositions

    DOE Patents [OSTI]

    Lee, Myung, W.

    1994-01-01

    Disclosed are a composition for use in storing hydrogen and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the H equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to H, and then heating below the softening temperature of any of the constituents. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P{sub H}{sub 2} and determining H/M from the isothermic function of the composition.

  19. High capacity nickel battery material doped with alkali metal cations

    DOE Patents [OSTI]

    Jackovitz, John F. (Monroeville, PA); Pantier, Earl A. (Penn Hills, PA)

    1982-05-18

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  20. Amorphorized tantalum-nickel binary films for metal gate applications

    SciTech Connect (OSTI)

    Ouyang, Jiaomin; Wongpiya, Ranida; Clemens, Bruce M.; Deal, Michael D.; Nishi, Yoshio

    2015-04-13

    Amorphous metal gates have the potential to eliminate the work function variation due to grain orientation for poly-crystalline metal gate materials, which is a leading contributor to threshold voltage variation for small transistors. Structural and electrical properties of TaNi alloys using co-sputtering with different compositions and multilayer structures with different thicknesses are investigated in this work. It is found that TaNi films are amorphous for a wide range of compositions as deposited, and the films stay amorphous after annealing at 400?°C in RTA for 1?min and up to at least 700?°C depending on the composition. The amorphous films eventually crystallize into Ni, Ta, and TaNi{sub 3} phases at high enough temperature. For multilayer Ta/Ni structures, samples with individual layer thickness of 0.12?nm and 1.2?nm are amorphous as deposited due to intermixing during deposition, and stay amorphous until annealed at 500?°C. The resistivity of the films as-deposited are around 200 ??·cm. The work function of the alloy is fixed at close to the Ta work function of 4.6?eV for a wide range of compositions. This is attributed to the segregation of Ta at the metal-oxide interface, which is confirmed by XPS depth profile. Overall, the excellent thermal stability and low resistivity makes this alloy system a promising candidate for eliminating work function variation for gate last applications, as compared to crystalline Ta or TiN gates.

  1. Sulfur resistance of Group VIII transition metal promoted nickel catalysts for synthesis gas methanation 

    E-Print Network [OSTI]

    Hamlin, Kellee Hall

    1986-01-01

    area. The NAA results for the catalysts indicated a nickel content in the range of 6. 05 ? 7. 81 wt% and Group VIII metal contents which ranged from 1. 81-2. 33 wt%, The activity of all the fresh catalysts, except Ni/Rh/7-AltOs, reached approximate... deactivation due to sintering; an increase indicates disintegration or powdering of the support, The NAA wss performed on the Texas AgrM University campus at the Nuclear Sci- ence Center experimental research reactor, by the Center for Chemical...

  2. Insertion of Elemental Sulfur and SO2 into the Metal-Hydride and Metal-Carbon Bonds of Platinum

    E-Print Network [OSTI]

    Jones, William D.

    and other alkyl and aryl compounds, followed by insertion of sulfur-bearing species to syn- thesize sulfur-bearing or main- group metals.2,3 A second resonance is seen in the 31P NMR spectrum at 67.02 (JPtP ) 1811 Hz

  3. Direct synthesis of catalyzed hydride compounds

    DOE Patents [OSTI]

    Gross, Karl J.; Majzoub, Eric

    2004-09-21

    A method is disclosed for directly preparing alkali metal aluminum hydrides such as NaAlH.sub.4 and Na.sub.3 AlH.sub.6 from either the alkali metal or its hydride, and aluminum. The hydride thus prepared is doped with a small portion of a transition metal catalyst compound, such as TiCl.sub.3, TiF.sub.3, or a mixture of these materials, in order to render them reversibly hydridable. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen while heating the mixture to about 125.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

  4. The effects of phosphorous donor ligand substitution on the reactivity of anionic group 6 transition metal carbonyl hydrides 

    E-Print Network [OSTI]

    Lusk, Richard Jay

    1986-01-01

    in THP, followed by protonation with methanol, gave rise to a new group of chromium and tungsten hydrides, 7 HM(CO) P . The importance of the P-substituted hydr ides is enhanced 4 reactivity as well as the possibility of selective hydride transfer... reduction products were thus benzyl alcohol and octane. Initial GC runs were undertaken using THF solutions of benzyl alcohol of three different concentrations, corresponding to yields of 25, 100, and 150$. Each of the three also contained an equivalent...

  5. Metal Hydrides- Science Needs

    Broader source: Energy.gov [DOE]

    Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

  6. Vibration-rotation emission spectra and combined isotopomer analyses for the coinage metal hydrides: CuH & CuD, AgH & AgD, and AuH

    E-Print Network [OSTI]

    Le Roy, Robert J.

    Vibration-rotation emission spectra and combined isotopomer analyses for the coinage metal hydrides 1999 High resolution infrared emission spectra have been measured for AuH and AuD and for two , and in spite of intense background thermal emission from the furnace at 2000 °C , vibration­rotation emission

  7. Complex hydrides for hydrogen storage

    DOE Patents [OSTI]

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  8. Short-range order of low-coverage Ti/Al,,111...: Implications for hydrogen storage in complex metal hydrides

    E-Print Network [OSTI]

    Ciobanu, Cristian

    Short-range order of low-coverage Ti/Al,,111...: Implications for hydrogen storage in complex metal-coverage Ti atoms on Al 111 as a model surface system for transition metal doped alanate hydrogen storage the dissociative chemisorption of hydrogen in Ti-doped alanate storage materials. © 2007 American Institute

  9. Material and Energy Flows Associated with Select Metals in GREET 2. Molybdenum, Platinum, Zinc, Nickel, Silicon

    SciTech Connect (OSTI)

    Benavides, Pahola T.; Dai, Qiang; Sullivan, John L.; Kelly, Jarod C.; Dunn, Jennifer B.

    2015-09-01

    In this work, we analyzed the material and energy consumption from mining to production of molybdenum, platinum, zinc, and nickel. We also analyzed the production of solar- and semiconductor-grade silicon. We described new additions to and expansions of the data in GREET 2. In some cases, we used operating permits and sustainability reports to estimate the material and energy flows for molybdenum, platinum, and nickel, while for zinc and silicon we relied on information provided in the literature.

  10. Schottky barrier height reduction for holes by Fermi level depinning using metal/nickel oxide/silicon contacts

    SciTech Connect (OSTI)

    Islam, Raisul, E-mail: raisul@stanford.edu; Shine, Gautam; Saraswat, Krishna C. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-11-03

    We report the experimental demonstration of Fermi level depinning using nickel oxide (NiO) as the insulator material in metal-insulator-semiconductor (M-I-S) contacts. Using this contact, we show less than 0.1?eV barrier height for holes in platinum/NiO/silicon (Pt/NiO/p-Si) contact. Overall, the pinning factor was improved from 0.08 (metal/Si) to 0.26 (metal/NiO/Si). The experimental results show good agreement with that obtained from theoretical calculation. NiO offers high conduction band offset and low valence band offset with Si. By reducing Schottky barrier height, this contact can be used as a carrier selective contact allowing hole transport but blocking electron transport, which is important for high efficiency in photonic applications such as photovoltaics and optical detectors.

  11. Structural properties and enthalpy of formation of magnesium hydride from quantum Monte Carlo calculations

    E-Print Network [OSTI]

    Alfč, Dario

    Structural properties and enthalpy of formation of magnesium hydride from quantum Monte Carlo calculations to study the structural properties of magnesium hydride MgH2 , including the pressure. INTRODUCTION The energetics of metal hydrides has recently become an issue of large scientific

  12. Formation of amorphous metal alloys by chemical vapor deposition

    DOE Patents [OSTI]

    Mullendore, A.W.

    1988-03-18

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures of organometallic compounds and metalloid hydrides,e.g., transition metal carbonyl, such as nickel carbonyl and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit. 1 fig.

  13. Formation of amorphous metal alloys by chemical vapor deposition

    DOE Patents [OSTI]

    Mullendore, Arthur W. (Sandia Park, NM)

    1990-01-01

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures or organometallic compounds and metalloid hydrides, e.g., transition metal carbonyl such as nickel carbonyl, and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit.

  14. High capacity stabilized complex hydrides for hydrogen storage

    DOE Patents [OSTI]

    Zidan, Ragaiy; Mohtadi, Rana F; Fewox, Christopher; Sivasubramanian, Premkumar

    2014-11-11

    Complex hydrides based on Al(BH.sub.4).sub.3 are stabilized by the presence of one or more additional metal elements or organic adducts to provide high capacity hydrogen storage material.

  15. Bullock--Catalysis without Precious Metals CobaltandNickelCatalyzedReactionsInvolvingCHandCN

    E-Print Network [OSTI]

    Jones, William D.

    these reactions have typically included noble transition metals or first row metals. Due to the cost and pathogenicity of these noble metals, the development of new catalytic routes using non-precious metals for the conversion of diallylanilines to quinolines.a) Entry Diallylaniline Product Temp.(°C) Isolatedyield,(%) 1 N

  16. Relating metal binding to DNA binding in the nickel regulatory protein NikR

    E-Print Network [OSTI]

    Phillips, Christine M. (Christine Marie)

    2010-01-01

    The concentration of transition metals within the cell must be tightly regulated. If the concentration of a given transition metal is too low the cell may not be able to perform life-sustaining processes, while high levels ...

  17. Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia

    SciTech Connect (OSTI)

    Cloud, Andrew N.; Abelson, John R., E-mail: abelson@illinois.edu [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 201 Materials Science and Engineering Building, 1304 W. Green St., Urbana, Illinois 61801 (United States); Davis, Luke M.; Girolami, Gregory S., E-mail: girolami@scs.illinois.edu [School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801 (United States)

    2014-03-15

    Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300?°C from three recently synthesized M[N(t-Bu){sub 2}]{sub 2} precursors, where M?=?Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200?°C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18?nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities.

  18. Chemical Hydride Slurry for Hydrogen Production and Storage

    SciTech Connect (OSTI)

    McClaine, Andrew W.

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston University have demonstrated the technical viability of the process and have provided data for the cost analyses that have been performed. We also concluded that a carbothermic process could also produce magnesium at acceptable costs. The use of slurry as a medium to carry chemical hydrides has been shown during this project to offer significant advantages for storing, delivering, and distributing hydrogen: • Magnesium hydride slurry is stable for months and pumpable. • The oils of the slurry minimize the contact of oxygen and moisture in the air with the metal hydride in the slurry. Thus reactive chemicals, such as lithium hydride, can be handled safely in the air when encased in the oils of the slurry. • Though magnesium hydride offers an additional safety feature of not reacting readily with water at room temperatures, it does react readily with water at temperatures above the boiling point of water. Thus when hydrogen is needed, the slurry and water are heated until the reaction begins, then the reaction energy provides heat for more slurry and water to be heated. • The reaction system can be relatively small and light and the slurry can be stored in conventional liquid fuel tanks. When transported and stored, the conventional liquid fuel infrastructure can be used. • The particular metal hydride of interest in this project, magnesium hydride, forms benign byproducts, magnesium hydroxide (“Milk of Magnesia”) and magnesium oxide. • We have estimated that a magnesium hydride slurry system (including the mixer device and tanks) could meet the DOE 2010 energy density goals. ? During the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering hydrogen. Further evaluation and development of this concept will be performed as follow-on work under a

  19. Electrochromic nickel oxide simultaneously doped with lithium and a metal dopant

    DOE Patents [OSTI]

    Gillaspie, Dane T; Weir, Douglas G

    2014-04-01

    An electrochromic device comprising a counter electrode layer comprised of lithium metal oxide which provides a high transmission in the fully intercalated state and which is capable of long-term stability, is disclosed. Methods of making an electrochromic device comprising such a counter electrode are also disclosed.

  20. Inert anode containing oxides of nickel, iron and zinc useful for the electrolytic production of metals

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA); Liu, Xinghua (Monroeville, PA)

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  1. Inert anode containing oxides of nickel iron and cobalt useful for the electrolytic production of metals

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and CoO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and CoO: 0.15 to 0.99 NiO; 0.0001 to 0.85 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.45 CoO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  2. Destabilization of magnesium hydride through interface engineering

    E-Print Network [OSTI]

    Dam, Bernard

    Destabilization of magnesium hydride through interface engineering Lennard Mooij #12;Destabilization of magnesium hydride through interface engineering PROEFSCHRIFT ter verkrijging van de graad van . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Magnesium hydride . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1

  3. Research Update: A hafnium-based metal-organic framework as a catalyst for regioselective ring-opening of epoxides with a mild hydride source

    E-Print Network [OSTI]

    of hydrogen storage capacity of metal-organic and covalent-organic frameworks by spillover J. Chem. Phys. 131

  4. Nickel-containing hydrocracking catalyst

    SciTech Connect (OSTI)

    Abdo, S.F.

    1989-03-28

    A catalytic composition is described, comprising a cracking component and a hydrogenation metal component consisting essentially of greater than 13 weight percent of nickel components, calculated as NiO.

  5. Recycling Programs | Department of Energy

    Energy Savers [EERE]

    Germantown Paperclips Supply Stores. Batteries accepted for recycling are: Alkaline, Lithium Ion, Nickel Cadmium (Ni-Cd), Nickel-Iron, and Nickel Metal Hydride (NiMH). Toner...

  6. Nickel aluminide alloys with improved weldability

    DOE Patents [OSTI]

    Santella, M.L.; Goodwin, G.M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys. 5 figs.

  7. Nickel aluminide alloys with improved weldability

    DOE Patents [OSTI]

    Santella, Michael L. (Knoxville, TN); Goodwin, Gene M. (Lenior City, TN)

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys.

  8. A new phase in palladium hydride technology

    SciTech Connect (OSTI)

    Walters, R.T.

    1991-01-01

    Two plateaux are observed in both the absorption and desorption isotherms of palladium hydride. For the absorption isotherm, a change in plateau pressure is observed at a hydrogen-to-metal (H/M) ratio of about 0.35 for all temperatures studied. For the desorption isotherm, the change in plateau pressure appears to be a function of temperature, ranging from an H/M ratio of 0.18 at 80{degrees}C to 0.3 at 140{degrees}C. These data are interpreted as being experimentally observed boundaries to an equilibrium phase line located in the miscibility gap of the palladium/hydrogen phase diagram. This new phase does not appear to be a stoichiometric compounds, but rather its composition seems to vary with temperature. 6 refs., 4 figs.

  9. A new phase in palladium hydride technology

    SciTech Connect (OSTI)

    Walters, R.T.

    1991-12-31

    Two plateaux are observed in both the absorption and desorption isotherms of palladium hydride. For the absorption isotherm, a change in plateau pressure is observed at a hydrogen-to-metal (H/M) ratio of about 0.35 for all temperatures studied. For the desorption isotherm, the change in plateau pressure appears to be a function of temperature, ranging from an H/M ratio of 0.18 at 80{degrees}C to 0.3 at 140{degrees}C. These data are interpreted as being experimentally observed boundaries to an equilibrium phase line located in the miscibility gap of the palladium/hydrogen phase diagram. This new phase does not appear to be a stoichiometric compounds, but rather its composition seems to vary with temperature. 6 refs., 4 figs.

  10. The Hydriding Kinetics of Organic Hydrogen Getters

    SciTech Connect (OSTI)

    Powell, G. L.

    2002-02-11

    The aging of hermetically sealed systems is often accompanied by the gradual production of hydrogen gas that is a result of the decay of environmental gases and the degradation of organic materials. In particular, the oxygen, water, hydrogen ''equilibrium'' is affected by the removal of oxygen due the oxidation of metals and organic materials. This shift of the above ''equilibrium'' towards the formation of hydrogen gas, particularly in crevices, may eventually reach an explosive level of hydrogen gas or degrade metals by hydriding them. The latter process is generally delayed until the oxidizing species are significantly reduced. Organic hydrogen getters introduced by Allied Signal Aerospace Company, Kansas City Division have proven to be a very effective means of preventing hydrogen gas accumulation in sealed containers. These getters are relatively unaffected by air and environmental gases. They can be packaged in a variety of ways to fit particular needs such as porous pellets, fine or coarse [gravel] powder, or loaded into silicone rubber. The hydrogen gettering reactions are extremely irreversible since the hydrogen gas is converted into an organic hydrocarbon. These getters are based on the palladium-catalyzed hydrogenation of triple bonds to double and then single bonds in aromatic aryl compounds. DEB (1,4 bis (phenyl ethynyl) benzene) typically mixed with 25% by weight carbon with palladium (1% by weight of carbon) is one of the newest and best of these organic hydrogen getters. The reaction mechanisms are complex involving solid state reaction with a heterogeneous catalyst leading to the many intermediates, including mixed alkyl and aryl hydrocarbons with the possibilities of many isomers. The reaction kinetics mechanisms are also strongly influenced by the form in which they are packaged. For example, the hydriding rates for pellets and gravel have a strong dependence on reaction extent (i.e., DEB reduction) and a kinetic order in pressure of 0.76. Silicone rubber based DEB getters hydride at a much lower rate, have little dependence on reaction extent, have a higher kinetic order in pressure (0.87), and have a lower activation energy. The kinetics of the reaction as a function of hydrogen pressure, stoichiometry, and temperature for hydrogen and deuterium near ambient temperature (0 to 75 C) for pressures near or below 100 Pa over a wide range (in some cases, the complete) hydrogenation range are presented along with multi-dimensional rate models.

  11. Thermodynamic properties of metal hydride nanostructures

    E-Print Network [OSTI]

    Bérubé, Vincent, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    Hydrogen is considered a good energy carrier candidate for future automotive applications because of its high abundance and its potential role in a carbon-free cycle. The high gravimetric and volumetric storage capacities ...

  12. Metal Hydride Storage Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 |Department ofMay 2013 MonthlyMessage from New LPOStorage

  13. Ab initio treatment of electron correlations in polymers: Lithium hydride chain and beryllium hydride polymer

    E-Print Network [OSTI]

    Birkenheuer, Uwe

    Ab initio treatment of electron correlations in polymers: Lithium hydride chain and berylliumH and beryllium hydride Be2H4 . First, employing a Wannier-function-based approach, the systems are studiedH and the beryllium hydride polymer Be2H4 . As a simple, but due to its ionic character, non- trivial model polymer

  14. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01

    1.2.1 PWRs . . . . . . . . . . . . . . . . . . . . 1.2.2Actinides Multi-Recycling in PWR Using Hydride Fuels. InRecycling in Hydride Fueled PWR Cores. Nuclear Engineering

  15. Influence of carbon, manganese and nickel on microstructure and properties of strong steel

    E-Print Network [OSTI]

    Cambridge, University of

    Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld of increasing the nickel content from 3 to 7 or 9 wt-% were investigated in high strength steel weld metals nickel contents. In these weld metals a mainly martensitic microstructure developed at interdendritic

  16. Investigation of Cracked Lithium Hydride Reactor Vessels

    SciTech Connect (OSTI)

    bird, e.l.; mustaleski, t.m.

    1999-06-01

    Visual examination of lithium hydride reactor vessels revealed cracks that were adjacent to welds, most of which were circumferentially located in the bottom portion of the vessels. Sections were cut from the vessels containing these cracks and examined by use of the metallograph, scanning electron microscope, and microprobe to determine the cause of cracking. Most of the cracks originated on the outer surface just outside the weld fusion line in the base material and propagated along grain boundaries. Crack depths of those examined sections ranged from {approximately}300 to 500 {micro}m. Other cracks were reported to have reached a maximum depth of 1/8 in. The primary cause of cracking was the creation of high tensile stresses associated with the differences in the coefficients of thermal expansion between the filler metal and the base metal during operation of the vessel in a thermally cyclic environment. This failure mechanism could be described as creep-type fatigue, whereby crack propagation may have been aided by the presence of brittle chromium carbides along the grain boundaries, which indicates a slightly sensitized microstructure.

  17. Internal hydriding in irradiated defected Zircaloy fuel rods: A review (LWBR Development Program)

    SciTech Connect (OSTI)

    Clayton, J C

    1987-10-01

    Although not a problem in recent commercial power reactors, including the Shippingport Light Water Breeder Reactor, internal hydriding of Zircaloy cladding was a persistent cause of gross cladding failures during the 1960s. It occurred in the fuel rods of water-cooled nuclear power reactors that had a small cladding defect. This report summarizes the experimental findings, causes, mechanisms, and methods of minimizing internal hydriding in defected Zircaloy-clad fuel rods. Irradiation test data on the different types of defected fuel rods, intentionally fabricated defected and in-pile operationally defected rods, are compared. Significant factors affecting internal hydriding in defected Zircaloy-clad fuel rods (defect hole size, internal and external sources of hydrogen, Zircaloy cladding surface properties, nickel alloy contamination of Zircaloy, the effect of heat flux and fluence) are discussed. Pertinent in-pile and out-of-pile test results from Bettis and other laboratories are used as a data base in constructing a qualitative model which explains hydrogen generation and distribution in Zircaloy cladding of defected water-cooled reactor fuel rods. Techniques for minimizing internal hydride failures in Zircaloy-clad fuel rods are evaluated.

  18. Wire Wrapped Hexagonal Pin Arrays for Hydride Fueled PWRs

    E-Print Network [OSTI]

    Diller, Peter

    This work contributes to the Hydride Fuels Project, a collaborative effort between UC Berkeley and MIT

  19. From carbon nanobells to nickel nanotubes

    SciTech Connect (OSTI)

    Ma, S.; Srikanth, V. V. S. S.; Maik, D.; Zhang, G. Y.; Staedler, T.; Jiang, X.

    2009-01-05

    A generic strategy is proposed to prepare one dimensional (1D) metallic nanotubes by using 1D carbon nanostructures as the initial templates. Following the strategy, nickel (Ni) nanotubes are prepared by using carbon nanobells (CNBs) as the initial templates. CNBs are first prepared by microwave plasma enhanced chemical vapor deposition technique. Carbon/nickel core/shell structures are then prepared by electroplating the CNBs in a nickel-Watts electrolytic cell. In the final step, the carbon core is selectively removed by employing hydrogen plasma etching to obtain Ni nanotubes. The mechanism leading to Ni nanotubes is briefly discussed.

  20. Effects of outgassing of loader chamber walls on hydriding of thin films for commercial applications

    SciTech Connect (OSTI)

    Provo, James L., E-mail: jlprovo@verizon.net [Consultant, J.L. Provo Consulting, Trinity, Florida 34655-7179 (United States)

    2014-07-01

    An important aspect of understanding industrial processing is to know the characteristics of the materials used in such processes. A study was performed to determine the effects of hydriding chamber material on the degree of hydriding for the commercial production of thin film hydride targets for various research universities, commercial companies, and government national laboratories. The goal was to increase the degree of hydriding of various thin film hydrides and to study the vacuum environment during air-exposure hydriding. For this purpose, dynamic residual gas analysis during deuterium gas hydride processing was utilized with erbium thin films, employing a special set-up for direct dynamic hydride gas sampling during processing at elevated temperature and full loading gas pressure. Complete process data for (1) a copper–(1.83?wt.?%)beryllium wet hydrogen fired passivated (600?°C–1?h) externally heated pipe hydriding chamber are reported. Dynamic residual gas analysis comparisons during hydriding are presented for hydriding chambers made from (2) alumina (99.8 wt.?%), (3) copper (with an interior aluminum coating ?10 k Ĺ thick, and (4) for a stainless-steel air-fired passivated (900?°C–1?h) chamber. Dynamic data with deuterium gas in the chamber at the hydriding temperature (450?°C) showed the presence and growth of water vapor (D{sub 2}O) and related mixed ion species(H{sub 2}O{sup +}, HDO{sup +}, D{sub 2}O{sup +}, and OD{sup +}) from hydrogen isotope exchange reactions during the 1?h process time. Peaks at mass-to-charge ratios (i.e., m/e) of 12(C{sup +}), 16(CD{sub 2}{sup +}), 17(CHD{sub 2}{sup +}), and 18(CD{sub 3}{sup +}, OD{sup +}) increased for approximately the first half hour of a 1?h hydriding process and then approach steady state. Mass-to-charge peaks at 19(HDO{sup +}) and 20(D{sub 2}O{sup +}) continue to increase throughout the process cycle. Using the m/e?=?20 (D{sub 2}O{sup +}) peak intensity from chamber (1)–Cu(1.83 wt.?%)Be as a standard, the peak intensity from chamber (4)—stainless-steel (air-fired) was 7.1× higher, indicating that the surface of stainless-steel had a larger concentration of reactive oxygen and/or water than hydrogen. The (D{sub 2}O{sup +}) peak intensity from chamber (3)—Cu (interior Al coating) was 1.55× larger and chamber (2)—alumina(99.8%) was 1.33× higher than Cu(1.83 wt.?%)Be. Thus copper–(1.83 wt.?%)beryllium was the best hydriding chamber material studied followed closely by the alumina (99.8 wt.?%) chamber. Gas take-up by Er occluder targets processed in Cu(1.83?wt.?%)Be hydriding chambers (i.e., gas/metal atomic ratios) correlate with the dynamic RGA data.

  1. Hydrogen-storing hydride complexes

    DOE Patents [OSTI]

    Srinivasan, Sesha S. (Tampa, FL); Niemann, Michael U. (Venice, FL); Goswami, D. Yogi (Tampa, FL); Stefanakos, Elias K. (Tampa, FL)

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  2. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    SciTech Connect (OSTI)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  3. Titanium tritide radioisotope heat source development : palladium-coated titanium hydriding kinetics and tritium loading tests.

    SciTech Connect (OSTI)

    Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom

    2012-01-01

    We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

  4. A PROTOTYPE FOUR INCH SHORT HYDRIDE (FISH) BED AS A REPLACEMENT TRITIUM STORAGE BED

    SciTech Connect (OSTI)

    Klein, J.; Estochen, E.; Shanahan, K.; Heung, L.

    2011-02-23

    The Savannah River Site (SRS) tritium facilities have used 1st generation (Gen1) metal hydride storage bed assemblies with process vessels (PVs) fabricated from 3 inch nominal pipe size (NPS) pipe to hold up to 12.6 kg of LaNi{sub 4.25}Al{sub 0.75} metal hydride for tritium gas absorption, storage, and desorption for over 15 years. The 2nd generation (Gen2) of the bed design used the same NPS for the PV, but the added internal components produced a bed nominally 1.2 m long, and presented a significant challenge for heater cartridge replacement in a footprint limited glove-box. A prototype 3rd generation (Gen3) metal hydride storage bed has been designed and fabricated as a replacement candidate for the Gen2 storage bed. The prototype Gen3 bed uses a PV pipe diameter of 4 inch NPS so the bed length can be reduced below 0.7 m to facilitate heater cartridge replacement. For the Gen3 prototype bed, modeling results show increased absorption rates when using hydrides with lower absorption pressures. To improve absorption performance compared to the Gen2 beds, a LaNi{sub 4.15}Al{sub 0.85} material was procured and processed to obtain the desired pressure-composition-temperature (PCT) properties. Other bed design improvements are also presented.

  5. Platinum-ruthenium-nickel alloy for use as a fuel cell catalyst

    DOE Patents [OSTI]

    Gorer, Alexander (Sunnyvale, CA)

    2003-01-01

    An improved noble metal alloy composition for a fuel cell catalyst, the alloy containing platinum, ruthenium, and nickel. The alloy shows methanol oxidation activity.

  6. Platinum-ruthenium-nickel alloy for use as a fuel cell catalyst

    DOE Patents [OSTI]

    Gorer, Alexander

    2004-04-20

    An improved noble metal alloy composition for a fuel cell catalyst, the alloy containing platinum, ruthenium, and nickel. The alloy shows methanol oxidation activity.

  7. Nickel-catalyzed coupling reactions and synthetic studies toward ent-dioxepandehydrothyrsiferol via an epoxide-opening cascade

    E-Print Network [OSTI]

    Ng, Sze-Sze

    2008-01-01

    Nickel-Catalyzed Coupling Reactions. Nickel-catalyzed allene--aldehyde coupling and alkene--aldehyde coupling represent two methods of preparing allylic alcohols. Most asymmetric transition metal-catalyzed methods of ...

  8. Method for converting uranium oxides to uranium metal

    DOE Patents [OSTI]

    Duerksen, Walter K. (Norris, TN)

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  9. Porous metallic bodies

    DOE Patents [OSTI]

    Landingham, R.L.

    1984-03-13

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  10. Optimization of hydride fueled pressurized water reactor cores

    E-Print Network [OSTI]

    Shuffler, Carter Alexander

    2004-01-01

    This thesis contributes to the Hydride Fuels Project, a collaborative effort between UC Berkeley and MIT aimed at investigating the potential benefits of hydride fuel use in light water reactors (LWRs). This pursuit involves ...

  11. Advances in Design of the Next Generation Hydride Bed | Department...

    Office of Environmental Management (EM)

    Design of the Next Generation Hydride Bed Advances in Design of the Next Generation Hydride Bed Presentation from the 32nd Tritium Focus Group Meeting held in Germantown, Maryland...

  12. Thermal hydraulic analysis of hydride fuels in BWR's

    E-Print Network [OSTI]

    Creighton, John Everett

    2005-01-01

    This thesis contributes to the hydride nuclear fuel project being completed by UC Berkeley and MIT to assess the possible benefits of using hydride fuel in light water nuclear reactors (LWR's). More specifically, this ...

  13. Structural transformation of nickel hydroxide films during anodic oxidation

    SciTech Connect (OSTI)

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  14. Atomistic Potentials for Palladium-Silver Hydrides

    E-Print Network [OSTI]

    Hale, L M; Zimmerman, J A; Zhou, X

    2013-01-01

    New EAM potentials for the ternary palladium-silver-hydrogen system are developed by extending a previously developed palladium-hydrogen potential. The ternary potentials accurately capture the heat of mixing and structural properties associated with solid solution alloys of palladium-silver. Stable hydrides are produced with properties that smoothly transition across the compositions. Additions of silver to palladium are predicted to alter the properties of the hydrides by decreasing the miscibility gap and increasing the likelihood of hydrogen atoms occupying tetrahedral interstitial sites over octahedral interstitial sites.

  15. Structural and electrochemical properties of nanostructured nickel silicides by reduction and silicification of high-surface-area nickel oxide

    SciTech Connect (OSTI)

    Chen, Xiao [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Zhang, Bingsen [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany)] [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany); Li, Chuang; Shao, Zhengfeng [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Su, Dangsheng [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany)] [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany); Williams, Christopher T. [Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina (United States)] [Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina (United States); Liang, Changhai, E-mail: changhai@dlut.edu.cn [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2012-03-15

    Graphical abstract: Nanostructured nickel silicides have been synthesized by reduction and silification of high-surface-area nickel oxide, and exhibited remarkably like-noble metal property, lower electric resistivity, and ferromagnetism at room temperature. Highlights: Black-Right-Pointing-Pointer NiSi{sub x} have been prepared by reduction and silification of high-surface-area NiO. Black-Right-Pointing-Pointer The structure of nickel silicides changed with increasing reaction temperature. Black-Right-Pointing-Pointer Si doping into nickel changed the magnetic properties of metallic nickel. Black-Right-Pointing-Pointer NiSi{sub x} have remarkably lower electric resistivity and like-noble metal property. -- Abstract: Nanostructured nickel silicides have been prepared by reduction and silicification of high-surface-area nickel oxide (145 m{sup 2} g{sup -1}) produced via precipitation. The prepared materials were characterized by nitrogen adsorption, X-ray diffraction, thermal analysis, FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, magnetic and electrochemical measurements. The nickel silicide formation involves the following sequence: NiO (cubic) {yields} Ni (cubic) {yields} Ni{sub 2}Si (orthorhombic) {yields} NiSi (orthorhombic) {yields} NiSi{sub 2} (cubic), with particles growing from 13.7 to 21.3 nm. The nickel silicides are ferromagnetic at room temperature, and their saturation magnetization values change drastically with the increase of Si content. Nickel silicides have remarkably low electrical resistivity and noble metal-like properties because of a constriction of the Ni d band and an increase of the electronic density of states. The results suggest that such silicides are promising candidates as inexpensive yet functional materials for applications in electrochemistry as well as catalysis.

  16. Preparation of Prototypic Irradiated Hydrided-Zircaloy Cladding for UFDC Programs

    SciTech Connect (OSTI)

    Ott, Larry J [ORNL] [ORNL; Howard, Richard H [ORNL] [ORNL; Howard, Rob L [ORNL] [ORNL; McDuffee, Joel Lee [ORNL] [ORNL; Yan, Yong [ORNL] [ORNL

    2013-01-01

    The DOE Used Fuel Disposition Campaign (UFDC) has tasked ORNL to investigate the behavior of light-water-reactor fuel cladding material performance related to extended storage and transportation of used fuel. Fast neutron irradiation of pre-hydrided zirconium-alloy cladding in the High Flux Isotope Reactor (HFIR) at elevated temperatures has been used to simulate the effects of high burnup on used fuel cladding for use in understanding the materials properties relevant to very long-term storage (VLTS) and subsequent transportation. The irradiated pre-hydrided metallic materials will generate baseline data to benchmark hot-cell testing of high-burnup used fuel cladding; and, more importantly, samples free of alpha contamination can be provided to the researchers who do not have hot cell facilities to handle highly contaminated high-burnup used fuel cladding to support their research projects for the UFDC. In order to accomplish this research, ORNL has produced unirradiated zirconium-based cladding tubes with a certain hydrogen concentration. Two capsules (HYCD-1 and HYCD-2) containing hydrided zirconium-based samples, 9.50 mm (0.374 in) in diameter, were inserted in HFIR for neutron irradiation. HYCD-1 was removed after Cycle 440B and HYCD-2 after Cycle 442. This paper will describe the general HYCD experiment configuration, achieved temperatures, and temperature gradients within the cladding, and current results of the PIE of the irradiated hydrided cladding samples.

  17. Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOE Patents [OSTI]

    Draper, Robert; Prevish, Thomas; Bronson, Angela; George, Raymond A.

    2007-01-02

    A solid oxide fuel assembly is made, wherein rows (14, 25) of fuel cells (17, 19, 21, 27, 29, 31), each having an outer interconnection (20) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh member (22) between each row of cells, the corrugated mesh (22) having top crown portions and bottom portions, where the top crown portion (40) have a top bonded open cell nickel foam (51) which contacts outer interconnections (20) of the fuel cells, said mesh and nickel foam electrically connecting each row of fuel cells, and where there are no more metal felt connections between any fuel cells.

  18. In situ spectroscopic detection of SMSI effect in a Ni/CeO2 system: hydrogen-induced burial and dig out of metallic nickel

    SciTech Connect (OSTI)

    Caballero, Alfonso; Holgado, Juan P.; Gonzalez-delaCruz, Victor M.; Habas, Susan e.; Herranz, Tirma; Salmeron, Miquel

    2010-06-29

    In situ APPES technique demonstrates that the strong metal support interaction effect (SMSI) in the Ni-ceria system is associated with the decoration and burial of metallic particles by the partially reduced support, a phenomenon reversible by evacuation at high temperature of the previously absorbed hydrogen.

  19. Nickel aluminides: Breaking into the marketplace

    SciTech Connect (OSTI)

    Krause, C.

    1995-12-31

    Nurtured by ORNL researchers for almost 15 years, nickel aluminides may have found their niche. ORNL`s modified nickel aluminides are receiving considerable attention by the heat-treating industry in the United States and may have arrived just in the nick of time to make some companies more competitive. Nickel aluminides are intermetallic materials that have long been considered potentially useful because, thanks to their ordered crystal structure, they are very strong and hard and melt only at very high temperatures. But they had a serious weakness: they were too brittle to be shaped into reliable components. Then, in 1982, ORNL researchers led by Chain T. Liu in the Metals and Ceramics Division found the secret recipe for producing a ductile nickel aluminide alloy: add trace amounts of a few alloying elements in the right proportion. It was like turning peanut brittle into taffy. Their most important discovery was that the addition of a small amount of boron (200 parts per million) to a nickel aluminide alloy (Ni{sub 3}Al) makes the alloy highly ductile at room temperature. To address the safety concerns of the alloy preparation industry, Vinod Sikka and Joseph Vought developed a new process in collaboration with Seetharama Deevi, who was on a 1-year sabbatical at ORNL from the Research Center at Philip Morris in Richmond, Virginia. The development is called the Exo-Melt process.

  20. High Resolution Neutron Radiography and Tomography of Hydrided Zircaloy-4 Cladding Materials

    SciTech Connect (OSTI)

    Smith, Tyler S; Bilheux, Hassina Z; Ray, Holly B; Bilheux, Jean-Christophe; Yan, Yong

    2015-01-01

    Neutron radiography for hydrogen analysis was performed with several Zircaloy-4 cladding samples with controlled hydrogen concentrations up to 1100 ppm. Hydrogen charging was performed in a process tube that was heated to facilitate hydrogen absorption by the metal. A correlation between the hydrogen concentration in the hydrided tubes and the neutron intensity was established, by which hydrogen content can be determined precisely in a small area (55 m x 55 m). Radiography analysis was also performed to evaluate the heating rate and its correlation with the hydrogen distribution through hydrided materials. In addition to radiography analysis, tomography experiments were performed on Zircaloy-4 tube samples to study the local hydrogen distribution. Through tomography analysis a 3D reconstruction of the tube was evaluated in which an uneven hydrogen distribution in the circumferential direction can be observed.

  1. SANS Measurement of Hydrides in Uranium

    SciTech Connect (OSTI)

    Spooner, S; Ludtka, G.M.; Bullock, J.S.; Bridges, R.L.; Powell, G.L.

    2001-09-04

    SANS scattering is shown to be an effective method for detecting the presence of hydrogen precipitates in uranium. High purity polycrystalline samples of depleted uranium were given several hydriding treatments which included extended exposures to hydrogen gas at two different pressures at 630 C as well as a furnace anneal at 850 C followed by slow cooling in the near absence hydrogen gas. All samples exhibited neutron scattering that was in proportion to the expected levels of hydrogen content. While the scattering signal was strong, the shape of the scattering curve indicated that the scattering objects were large sized objects. Only by use of a very high angular resolution SANS technique was it possible to make estimates of the major diameter of the scattering objects. This analysis permits an estimate of the volume fraction and means size of the hydride precipitates in uranium.

  2. Documentation of Hybrid Hydride Model for Incorporation into...

    Energy Savers [EERE]

    does not currently solve the stress state that forms dynamically in the precipitate or matrix surrounding the precipitate. A path forward is presented. DocHybridHydrid...

  3. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01

    filled gap between the zirconia layer and the hydride fuel (calculated peaks for zirconia is possibly due to preferredpossibly coupled with a thin zirconia layer, as a kinetic

  4. Neutron Irradiation of Hydrided Cladding Material in HFIR Summary...

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Fuel Vibration Integrity Investigations Model for Simulation of Hydride Precipitation in Zr-Based Used Fuel Claddings: A Status Report on Current Model Capabilities...

  5. LANL/PNNL Virtual Center for Chemical Hydrides and New Concepts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LANLPNNL Virtual Center for Chemical Hydrides and New Concepts for Hydrogen Storage LANLPNNL Virtual Center for Chemical Hydrides and New Concepts for Hydrogen Storage...

  6. Experimental Validation of Voltage-Based State-of-Charge Algorithm for Power Batteries

    E-Print Network [OSTI]

    Jia, Zhuo

    2013-01-01

    for nickel metal hydride batteries including hysteresis” ,Control of Lithium-Ion Batteries”, Control Systems, IEEE,modeling of lead acid batteries”, Applied Power Electronics

  7. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    SciTech Connect (OSTI)

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ? 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ? 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space between alkaline metal hydrides (AmH), Alkaline earth metal hydrides (AeH2), alane (AlH3), transition metal (Tm) hydrides (TmHz, where z=1-3) and molecular hydrogen (H2). The effort started first with variations of known alanates and subsequently extended the search to unknown compounds. In this stage, the FPM techniques were developed and validated on known alanate materials such as NaAlH4 and Na2LiAlH6. The coupled predictive methodologies were used to survey over 200 proposed phases in six quaternary spaces, formed from various combinations of Na, Li Mg and/or Ti with Al and H. A wide range of alanate compounds was examined using SSP having additions of Ti, Cr, Co, Ni and Fe. A number of compositions and reaction paths were identified having H weight fractions up to 5.6 wt %, but none meeting the 7.5 wt%H reversible goal. Similarly, MSP of alanates produced a number of interesting compounds and general conclusions regarding reaction behavior of mixtures during processing, but no alanate based candidates meeting the 7.5 wt% goal. A novel alanate, LiMg(AlH4)3, was synthesized using SBP that demonstrated a 7.0 wt% capacity with a desorption temperature of 150°C. The deuteride form was synthesized and characterized by the Institute for Energy (IFE) in Norway to determine its crystalline structure for related FPM studies. However, the reaction exhibited exothermicity and therefore was not reversible under acceptable hydrogen gas pressures for on-board recharging. After the extensive studies of alanates, the material class of emphasis was shifted to borohydrides. Through SBP, several ligand-stabilized Mg(BH4)2 complexes were synthesized. The Mg(BH4)2*2NH3 complex was found to change behavior with slightly different synthesis conditions and/or aging. One of the two mechanisms was an amine-borane (NH3BH3) like dissociation reaction which released up to 16 wt %H and more conservatively 9 wt%H when not including H2 released from the NH3. From FPM, the stability of the Mg(BH4)2*2NH3 compound was found to increase with the inclusion of NH3 groups in the inner-Mg coordination

  8. Highly Concentrated Palladium Hydrides/Deuterides; Theory

    SciTech Connect (OSTI)

    Papaconstantopoulos, Dimitrios

    2013-11-26

    Accomplishments are reported in these areas: tight-binding molecular dynamics study of palladium; First-principles calculations and tight-binding molecular dynamics simulations of the palladium-hydrogen system; tight-binding studies of bulk properties and hydrogen vacancies in KBH{sub 4}; tight-binding study of boron structures; development of angular dependent potentials for Pd-H; and density functional and tight-binding calculations for the light-hydrides NaAlH4 and NaBH4

  9. Results of NDE Technique Evaluation of Clad Hydrides

    SciTech Connect (OSTI)

    Dennis C. Kunerth

    2014-09-01

    This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used to detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of contributing parameters. These contributing factors need to be recognized and a means to control them or separate their contributions will be required to obtain the desired information.

  10. Influence of carbon, manganese and nickel on microstructure and properties of strong steel

    E-Print Network [OSTI]

    Cambridge, University of

    Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld strength steel weld metal with 7 wt-% nickel and 0.5 wt-% manganese could be increased significantly regions whereas martensite was found at interdendritic regions. From microstructural studies

  11. Electronic structure of metallic glasses

    SciTech Connect (OSTI)

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (..delta..H) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides.

  12. Electronic structure and crystal phase stability of palladium hydrides

    SciTech Connect (OSTI)

    Houari, Abdesalem; Matar, Samir F.; Eyert, Volker

    2014-11-07

    The results of electronic structure calculations for a variety of palladium hydrides are presented. The calculations are based on density functional theory and used different local and semilocal approximations. The thermodynamic stability of all structures as well as the electronic and chemical bonding properties are addressed. For the monohydride, taking into account the zero-point energy is important to identify the octahedral Pd-H arrangement with its larger voids and, hence, softer hydrogen vibrational modes as favorable over the tetrahedral arrangement as found in the zincblende and wurtzite structures. Stabilization of the rocksalt structure is due to strong bonding of the 4d and 1s orbitals, which form a characteristic split-off band separated from the main d-band group. Increased filling of the formerly pure d states of the metal causes strong reduction of the density of states at the Fermi energy, which undermines possible long-range ferromagnetic order otherwise favored by strong magnetovolume effects. For the dihydride, octahedral Pd-H arrangement as realized, e.g., in the pyrite structure turns out to be unstable against tetrahedral arrangement as found in the fluorite structure. Yet, from both heat of formation and chemical bonding considerations, the dihydride turns out to be less favorable than the monohydride. Finally, the vacancy ordered defect phase Pd{sub 3}H{sub 4} follows the general trend of favoring the octahedral arrangement of the rocksalt structure for Pd:H ratios less or equal to one.

  13. Two plateaux for palladium hydride and the effect of helium from tritium decay on the desorption plateau pressure for palladium tritide

    SciTech Connect (OSTI)

    Walters, R.T.; Lee, M.W. (Westinghouse Savannah River Co., Savannah River Lab., Aiken, SC (US))

    1991-10-01

    Two plateaux are observed in the desorption isotherm for palladium hydride: a lower plateau pressure for a hydrogen/metal atom ratio (H/M) less than about 0.3 and a slightly higher plateau pressure for H/M greater than about 0.3. This higher pressure corresponds to the reported pressure for palladium hydride. These observations were made for a large surface area palladium powder exposed to both protium and tritium. Helium buildup form tritium decay decreases the lower plateau pressure but does not affect the observations for H/M greater than about 0.3. In this paper, a multiple-energy hydrogen site occupancy model is proposed to explain qualitatively both the dual plateau and the helium effect in palladium hydride.

  14. Project Profile: Engineering a Novel High Temperature Metal Hydride...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Storage (CSP: ELEMENTS) funding program, is developing a concept for high energy density thermochemical energy storage for concentrating solar power (CSP) using...

  15. Proposed Virtual Center for Excellence for Metal Hydride Development

    Broader source: Energy.gov [DOE]

    Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

  16. Isotope exchange kinetics in metal hydrides I : TPLUG model.

    SciTech Connect (OSTI)

    Larson, Rich; James, Scott Carlton; Nilson, Robert H.

    2011-05-01

    A one-dimensional isobaric reactor model is used to simulate hydrogen isotope exchange processes taking place during flow through a powdered palladium bed. This simple model is designed to serve primarily as a platform for the initial development of detailed chemical mechanisms that can then be refined with the aid of more complex reactor descriptions. The one-dimensional model is based on the Sandia in-house code TPLUG, which solves a transient set of governing equations including an overall mass balance for the gas phase, material balances for all of the gas-phase and surface species, and an ideal gas equation of state. An energy equation can also be solved if thermodynamic properties for all of the species involved are known. The code is coupled with the Chemkin package to facilitate the incorporation of arbitrary multistep reaction mechanisms into the simulations. This capability is used here to test and optimize a basic mechanism describing the surface chemistry at or near the interface between the gas phase and a palladium particle. The mechanism includes reversible dissociative adsorptions of the three gas-phase species on the particle surface as well as atomic migrations between the surface and the bulk. The migration steps are more general than those used previously in that they do not require simultaneous movement of two atoms in opposite directions; this makes possible the creation and destruction of bulk vacancies and thus allows the model to account for variations in the bulk stoichiometry with isotopic composition. The optimization code APPSPACK is used to adjust the mass-action rate constants so as to achieve the best possible fit to a given set of experimental data, subject to a set of rigorous thermodynamic constraints. When data for nearly isothermal and isobaric deuterium-to-hydrogen (D {yields} H) and hydrogen-to-deuterium (H {yields} D) exchanges are fitted simultaneously, results for the former are excellent, while those for the latter show pronounced deviations at long times. These discrepancies can be overcome by postulating the presence of a surface poison such as carbon monoxide, but this explanation is highly speculative. When the method is applied to D {yields} H exchanges intentionally poisoned by known amounts of CO, the fitting results are noticeably degraded from those for the nominally CO-free system but are still tolerable. When TPLUG is used to simulate a blowdown-type experiment, which is characterized by large and rapid changes in both pressure and temperature, discrepancies are even more apparent. Thus, it can be concluded that the best use of TPLUG is not in simulating realistic exchange scenarios, but in extracting preliminary estimates for the kinetic parameters from experiments in which variations in temperature and pressure are intentionally minimized.

  17. Designation of Sites for Remedial Action - Metal Hydrides, Beverly,

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers CoMadison -T: Designation of Sites for

  18. Final Report for the DOE Metal Hydride Center of Excellence

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14,Energy 9,UNIVERSITY OF TEXAS AT AUSTINGrid12-0786

  19. Hydrogen storage in sodium aluminum hydride.

    SciTech Connect (OSTI)

    Ozolins, Vidvuds; Herberg, J.L.; McCarty, Kevin F.; Maxwell, Robert S.; Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  20. Effects of outgassing of loader chamber walls on hydriding of...

    Office of Scientific and Technical Information (OSTI)

    gas pressure. Complete process data for (1) a copper-(1.83 wt. %)beryllium wet hydrogen fired passivated (600 C-1 h) externally heated pipe hydriding chamber are reported....

  1. Mechanisms of Nickel Sorption on Pyrophyllite: Macroscopic and Microscopic Approaches

    E-Print Network [OSTI]

    Sparks, Donald L.

    Mechanisms of Nickel Sorption on Pyrophyllite: Macroscopic and Microscopic Approaches Andre M of the sorption mechanisms of heavy metals on soil mineral surfaces is therefore of fundamental importance. This study examined Ni(Il) sorption mechanisms on pyrophyllite. The removal of Ni from solution was studied

  2. Predicting Nickel Precipitate Formation in Contaminated Soils. (3717)

    E-Print Network [OSTI]

    Sparks, Donald L.

    Predicting Nickel Precipitate Formation in Contaminated Soils. (3717) Authors: E. Peltier* - Univ in contaminated soils plays a crucial role in determining the long term fate of toxic metal pollutants speciation in laboratory contaminated soils with thermodynamic and kinetic analyses of precipitate stability

  3. Optimization of Hydride Rim Formation in Unirradiated Zr 4 Cladding

    SciTech Connect (OSTI)

    Shimskey, Rick W.; Hanson, Brady D.; MacFarlan, Paul J.

    2013-09-30

    The purpose of this work is to build on the results reported in the M2 milestone M2FT 13PN0805051, document number FCRD-USED-2013-000151 (Hanson, 2013). In that work, it was demonstrated that unirradiated samples of zircaloy-4 cladding could be pre-hydrided at temperatures below 400°C in pure hydrogen gas and that the growth of hydrides on the surface could be controlled by changing the surface condition of the samples and form a desired hydride rim on the outside diameter of the cladding. The work performed at Pacific Northwest National Laboratory since the issuing of the M2 milestone has focused its efforts to optimize the formation of a hydride rim on available zircaloy-4 cladding samples by controlling temperature variation and gas flow control during pre-hydriding treatments. Surface conditioning of the outside surface was also examined as a variable. The results of test indicate that much of the variability in the hydride thickness is due to temperature variation occurring in the furnaces as well as how hydrogen gas flows across the sample surface. Efforts to examine other alloys, gas concentrations, and different surface conditioning plan to be pursed in the next FY as more cladding samples become available

  4. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2010-01-08

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  5. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2013-05-29

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  6. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  7. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    None

    2009-01-01

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  8. Synthesis and small molecule chemistry of the niobaziridine-hydride functional group

    E-Print Network [OSTI]

    Figueroa, Joshua S

    2005-01-01

    Chapter 1. Synthesis and Divergent Reactivity of the Niobaziridine-Hydride Functional Group The synthesis, characterization and reactivity of the niobaziridine-hydride complex Nb(H)([eta]˛-t- ]Bu(H)C=NAr)(N[Np]Ar)? (la-H; ...

  9. Analytical assessment of the thermal behavior of nickelemetal hydride batteries during fast charging

    E-Print Network [OSTI]

    Bahrami, Majid

    Analytical assessment of the thermal behavior of nickelemetal hydride batteries during fast (LAEC), Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey charging of batteries Charging efficiency Integral-transformation technique Nickelemetal hydride battery

  10. Thermochemistry and Kinetics of Silicon Hydride Cluster Formation during Thermal Decomposition of Silane

    E-Print Network [OSTI]

    Swihart, Mark T.

    Thermochemistry and Kinetics of Silicon Hydride Cluster Formation during Thermal Decomposition of Silane Mark T. Swihart*, and Steven L. Girshick Department of Mechanical Engineering, Uni an extensive chemical kinetic mechanism for silicon hydride cluster formation during silane pyrolysis

  11. THERMAL ENHANCEMENT CARTRIDGE HEATER MODIFIED TECH MOD TRITIUM HYDRIDE BED DEVELOPMENT PART I DESIGN AND FABRICATION

    SciTech Connect (OSTI)

    Klein, J.; Estochen, E.

    2014-03-06

    The Savannah River Site (SRS) tritium facilities have used 1{sup st} generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and 3{sup rd} generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen 3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due to tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed.

  12. A Novel Zr-1Nb Alloy and a New Look at Hydriding

    SciTech Connect (OSTI)

    Robert D. Mariani; James I. Cole; Assel Aitkaliyeva

    2013-09-01

    A novel Zr-1Nb has begun development based on a working model that takes into account the hydrogen permeabilities for zirconium and niobium metals. The beta-Nb secondary phase particles (SPPs) in Zr-1Nb are believed to promote more rapid hydrogen dynamics in the alloy in comparison to other zirconium alloys. Furthermore, some hydrogen release is expected at the lower temperatures corresponding to outages when the partial pressure of H2 in the coolant is less. These characteristics lessen the negative synergism between corrosion and hydriding that is otherwise observed in cladding alloys without niobium. In accord with the working model, development of nanoscale precursors was initiated to enhance the performance of existing Zr-1Nb alloys. Their characteristics and properties can be compared to oxide-dispersion strengthened alloys, and material additions have been proposed to zirconium-based LWR cladding to guard further against hydriding and to fix the size of the SPPs for microstructure stability enhancements. A preparative route is being investigated that does not require mechanical alloying, and 10 nanometer molybdenum particles have been prepared which are part of the nanoscale precursors. If successful, the approach has implications for long term dry storage of used fuel and for new routes to nanoferritic and ODS alloys.

  13. Facile synthesis of Ba1-xKxFe?As? superconductors via hydride route

    SciTech Connect (OSTI)

    Zaikina, Julia V. [Univ. of California at Davis, Davis, CA (United States); Batuk, Maria [Univ. of Antwerp, Antwerp (Belgium); Abakumov, Artem M. [Univ. of Antwerp, Antwerp (Belgium); Navrotsky, Alexandra [Univ. of California at Davis, Davis, CA (United States); Kauzlarich, Susan M. [Univ. of California at Davis, Davis, CA (United States)

    2014-12-03

    We have developed a fast, easy, and scalable synthesis method for Ba1-xKxFe?As? (0 ? x ? 1) superconductors using hydrides BaH? and KH as a source of barium and potassium metals. Synthesis from hydrides provides better mixing and easier handling of the starting materials, consequently leading to faster reactions and/or lower synthesis temperatures. The reducing atmosphere provided by the evolved hydrogen facilitates preparation of oxygen-free powders. By a combination of methods we have shown that Ba1-xKxFe?As? obtained via hydride route has the same characteristics as when it is prepared by traditional solid-state synthesis. Refinement from synchrotron powder X-ray diffraction data confirms a linear dependence of unit cell parameters upon K content as well as the tetragonal to orthorhombic transition at low temperatures for compositions with x < 0.2. Magnetic measurements revealed dome-like dependence of superconducting transition temperature Tc upon K content with a maximum of 38 K for x close to 0.4. Electron diffraction and high-resolution high-angle annular dark-field scanning transmission electron microscopy indicates an absence of Ba/K ordering, while local inhomogeneity in the Ba/K distribution takes place at a scale of several angstroms along [110] crystallographic direction.

  14. Dispersion enhanced metal/zeolite catalysts

    DOE Patents [OSTI]

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  15. A Green Technology to Mine Valuable Metals Biomining Laboratory

    E-Print Network [OSTI]

    Appanna, Vasu

    . Low energy demand 5. Low operating cost compared to other mining technologies 6. Cleaner tailings 7 Electroplating Pure Metals for Commercialization Extracted Metals Nickel, Copper, Cobalt, Titanium, Molybdenum Miners Copper Miners Nickel Miners #12;7 Biominers: Fungi in the non-stirred reactor Biomining fungus

  16. CVD Growth of Carbon Nanotubes Directly on Nickel Substrate

    E-Print Network [OSTI]

    Du, Chunsheng; Pan, Ning

    2005-01-01

    growth, carbon nanotubes, nickel substrates 1. Introductionto directly grow carbon nanotubes on nickel substrate underof the carbon nanotubes The nickel substrates were directly

  17. Reaction kinetics relevant to the recycle hydride-dehydride process for plutonium recovery

    SciTech Connect (OSTI)

    Haschke, J.M.; Allen, T.H.

    1997-10-01

    Objectives of this one-year, Laboratory Directed Research and Development (LDRD) project were the expansion of fundamental knowledge of plutonium chemistry and the development of information for enhancing plutonium recovery methods and weapons safety. Results of kinetic studies demonstrate that the monoxide monohydride, PuO(H), formed during corrosion of plutonium by water in pyrophoric when dry and acts as an initiator for hydride-catalyzed reaction of the metal with air. The catalyzed corrosion rate of Pu is 10{sup 8} times faster than that in dry air and transforms plutonium into a readily aerosolized material. A potential application for the catalytic reaction is in the direct recovery of plutonium as oxide. Wet PuO(H) is non-pyrophoric and the safety hazard posed by its formation is reduced if the material is not allowed to dry.

  18. Dorothy Nickel Friesen Oral History

    E-Print Network [OSTI]

    Friesen, Dorothy Nickel; Hobson, Katie

    2015-01-01

    Oral history interview with Dorothy Nickel Friesen conducted by Katie Hobson on July 7, 2015. This interview features the interim pastor at Bethel College Mennonite Church in Newton, Kansas. Questions address Dorothy's experiences as an ordained...

  19. Non-Sintered Nickel Electrode

    DOE Patents [OSTI]

    Bernard, Patrick (Massy, FR); Dennig, Corinne (Asnieres sur Seine, FR); Cocciantelli, Jean-Michel (Bordeaux, FR); Alcorta, Jose (Bordeaux, FR); Coco, Isabelle (Dax, FR)

    2002-01-01

    A non-sintered nickel electrode contains a conductive support and a paste comprising an electrochemically active material containing nickel hydroxide and a binder which is a mixture of an elastomer and a crystalline polymer. The proportion of the elastomer is in the range 25% to 60% by weight of the binder and the proportion of the crystalline polymer is in the range 40% to 75% by weight of the binder.

  20. Thermally tolerant multilayer metal membrane

    DOE Patents [OSTI]

    Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM)

    2001-01-01

    A composite metal membrane including a first metal layer of a Group IVB or Group VB metal sandwiched between two layers of a Group VIIIB metal selected from the group consisting of palladium, platinum, nickel, rhodium, iridium, cobalt, and alloys thereof, and a non-continuous layer of a metal chalcogenide upon one layer of the Group VIIIB metal is disclosed together with a process for the recovery of hydrogen from a gaseous mixture using such a composite membrane and a process for forming such a composite metal membrane.

  1. Direct metal brazing to cermet feedthroughs

    DOE Patents [OSTI]

    Not Available

    1982-07-29

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces.

  2. Direct metal brazing to cermet feedthroughs

    DOE Patents [OSTI]

    Hopper, Jr., Albert C. (St. Petersburg, FL)

    1984-12-18

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces.

  3. Oxygen addition to sulfur of metal thiolates 

    E-Print Network [OSTI]

    Soma, Takako

    1996-01-01

    chemistry. The oxidation reactions of metal thiolates by hydrogen peroxide, molecular oxygen, dioxiranes, and peracids have been reviewed. The compounds resulting from oxidation and oxygenation of nickel thiolate complexes have been isolated, separated...

  4. Light metal explosives and propellants

    DOE Patents [OSTI]

    Wood, Lowell L.; Ishikawa, Muriel Y.; Nuckolls, John H.; Pagoria, Phillip F.; Viecelli, James A.

    2005-04-05

    Disclosed herein are light metal explosives, pyrotechnics and propellants (LME&Ps) comprising a light metal component such as Li, B, Be or their hydrides or intermetallic compounds and alloys containing them and an oxidizer component containing a classic explosive, such as CL-20, or a non-explosive oxidizer, such as lithium perchlorate, or combinations thereof. LME&P formulations may have light metal particles and oxidizer particles ranging in size from 0.01 .mu.m to 1000 .mu.m.

  5. Hydrogen isotopic exchange over palladium metal

    SciTech Connect (OSTI)

    Carstens, D.H.W.; Encinias, P.D.

    1990-01-01

    We have recently developed the laser-Raman technique as a means of unambiguously measuring the partial pressures of all possible hydrogen isotopes in the gas phase. Using this technique we have investigated the hydrogen-deuterium exchange in a number of metals. This report presents detailed data for isotopic exchange in the palladium hydride system over the temperature range 26{degree}C to -100{degree}C at a pressure of 7 atm. First order kinetic rate constants and activation energies are summarized for the forward (hydride to deuteride) and reverse (deuteride to hydride) exchange processes. In addition, we have found that small amounts (100 ppm) of impurities in the exchange gases considerably slow the exchange kinetics with the effect increasing down the series CH{sub 4}, CO{sub 2}, H{sub 2}O, and CO. 9 refs., 4 figs., 1 tab.

  6. Electron screening in nickel

    SciTech Connect (OSTI)

    Gajevic, Jelena; Lipoglavsek, Matej; Petrovic, Toni; Pelicon, Primoz

    2012-10-20

    In order to investigate the interplay between nuclei and their surroundings we studied proton induced nuclear reactions over an energy range from 1.35 to 3.08 MeV for different environments: Ni metal and NiO insulator. The measurements were based on observation of the {gamma}-ray yields of {sup 59,61,63,64,65}Cu and {sup 58,60,62}Ni. The presented results clearly show that the metallic environment affects the fusion reactions at low energies.

  7. Molecular dynamics simulation for arrangement of nickel atoms filled in carbon nanotubes

    SciTech Connect (OSTI)

    Bai, Liu Zhenyu, Zhao; Lirui, Liu

    2014-08-28

    Carbon Nanotubes (CNTs) filled with metals can be used in capacitors, sensors, rechargeable batteries, and so on. Atomic arrangement of the metals has an important role in the function of the composites. The tips of CNTs were opened, and then nickel was filled by means of hydrothermal oxidation/ultrasonic vibration method. The tests of TEM, HREM, and EDX (energy-dispersive X-ray spectroscopy) analysis showed that Ni was filled in CNTs successfully. The atomic arrangement of nickel filled into single wall carbon nanotubes was investigated by molecular dynamics simulation. The radial distribution function and bond orientation order were established to analyze the atomic arrangement of nickel filled in carbon nanotubes during the cooling process. The results show that nickel atoms became in order gradually and preferably crystallized on the inner wall of carbon nanotubes when the temperature decreased from 1600?K. After it cooled to 100?K, the arrangement of nickel atoms in outermost circle was regular and dense, but there were many defects far from the wall of CNTs. According to the calculation of bond orientation order parameters Q{sub 6} and its visualization, the structure of nickel is Face-centered cube (f.c.c). (1,1,1){sub Ni} was close on the inner surface of carbon nanotubes. Radial direction of CNTs was [1,1,1] crystal orientation. Axial direction of CNTs, namely, filling direction, was [1{sup Ż}, 1{sup Ż},2] crystal orientation.

  8. Adsorption of a carbon atom on the Ni38 magic cluster and three low-index nickel surfaces: A comparative first-principles study

    E-Print Network [OSTI]

    Gong, Xingao

    Adsorption of a carbon atom on the Ni38 magic cluster and three low-index nickel surfaces in the catalytic growth of carbon C nanotubes on clusters of transition metal catalysts. Here we focus by studying a C atom on a nickel Ni magic cluster (Ni38), which preserves fcc geometry, and three low

  9. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    SciTech Connect (OSTI)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  10. Characteristics of Interconnected Delta-Hydride Precipitates in Zr

    SciTech Connect (OSTI)

    L.J. Carroll; M.R. Tonks; T.M. Lillo; B.S. Fromm; DC Haggard; T.C. Morris; W.D. Swank; T.L. Trowbridge; M.C. Carroll

    2014-09-01

    Characterization of extended delta-ZrH1.66 structures in unalloyed zirconium by electron backscatter diffraction analysis confirms that they consist of many interconnected precipitates of multiple, but distinctly related, orientations. The expected orientation relationship of (0001)a-Zr//(111)delta-ZrH1.66 is confirmed between the hydride and one of the surrounding a-Zr matrix grains. The delta-ZrH1.66 precipitates do not extend in a discrete crystalline orientation, but are regularly divided by 60° type {111} twins in which adjacent delta-ZrH1.66 grains share a {111} plane. The observed matching of the close-packed FCC planes of impinging or twinned hydrides within an interconnected structure enables the minimization of the overall interfacial energy through successive nucleation and growth events and twinning.

  11. Nickel biosorption from aqueous systems: Studies on single and multimetal equilibria, kinetics, and recovery

    SciTech Connect (OSTI)

    Suhasini, I.P.; Sriram, G.; Asolekar, S.R.; Sureshkumar, G.K.

    1999-10-01

    This paper reports studies on the removal of toxic trace metals (nickel separately, and simultaneously with cobalt) from aqueous solutions by employing fungal biosorbents, PFB1 and PFB2, which were developed in the authors' laboratory. The observed maximum equilibrium uptake of nickel on the biosorbent was 214 mg/g (PFB1) and 110 mg/g (PFB2). The average efficiency for nickel removal was 84.5% (PFB1) and 60.8% (PFB2). The equilibrium uptake of nickel followed first-order Langmuir kinetics in the case of PFB1 and second-order Langmuir kinetics in the case of PFB2. Studies on simultaneous removal of cobalt and nickel indicated that the extent of secondary interactions between cobalt and nickel can be quantified by the change in Langmuir equilibrium constants for both metals. A mathematical model based on Fick's law of diffusion and Langmuir adsorption was developed to simulate the kinetics of nickel removal. The model was able to predict the experimentally observed kinetics well. From the simulations, the diffusivity of nickel in PFB1 was found to be 1.6 x 10{sup {minus}8} m{sup 2}/s. Desorption studies indicated that it was possible to reuse the biosorbent over three sorption-desorption cycles, and that acidic solutions desorbed better than basic or salt solutions. Among the desorbents studied, HCl and CaCl{sub 2}, with desorption efficiencies equal to 73.2 and 74.1%, respectively, for PFB1 and 70.0 and 63.1%, respectively, for PFB2 at the end of three cycles, were found to be the best desorbents.

  12. Measurement and modeling of strain fields in zirconium hydrides precipitated at a stress concentration

    SciTech Connect (OSTI)

    Allen, Gregory B.; Kerr, Matthew; Daymond, Mark R. (Queens)

    2012-10-23

    Hydrogen adsorption into zirconium, as a result of corrosion in aqueous environments, leads to the precipitation of a secondary brittle hydride phase. These hydrides tend to first form at stress concentrations such as fretting flaws or cracks in engineering components, potentially degrading the structural integrity of the component. One mechanism for component failure is a slow crack growth mechanism known as Delayed Hydride Cracking (DHC), where hydride fracture occurs followed by crack arrest in the ductile zirconium matrix. The current work employs both an experimental and a modeling approach to better characterize the effects and behavior of hydride precipitation at such stress concentrations. Strains around stress concentrations containing hydrides were mapped using High Energy X-ray Diffraction (HEXRD). These studies highlighted important differences in the behavior of the hydride phase and the surrounding zirconium matrix, as well as the strain associated with the precipitation of the hydride. A finite element model was also developed and compared to the X-ray strain mapping results. This model provided greater insight into details that could not be obtained directly from the experimental approaches, as well as providing a framework for future modeling to predict the effects of hydride precipitation under varied conditions.

  13. Metal-ceramic joint assembly

    DOE Patents [OSTI]

    Li, Jian (New Milford, CT)

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  14. Surface diffusion driven morphological instability in free-standing nickel nanorod arrays

    SciTech Connect (OSTI)

    Alrashid, Ebtihaj; Ye, Dexian [Department of Physics, Virginia Commonwealth University, PO Box 842000, Richmond, Virginia 23284-2000 (United States)

    2014-07-28

    Metallic nanostructures are thermodynamically unstable due to the excess of energy of large numbers of surface atoms. Morphological instability, such as Rayleigh breakup, sintering, and coalescence, can be observed at a temperature much lower than the bulk melting point of the metal. We study the morphological and crystalline evolution of well-aligned free-standing nickel nanorod arrays at elevated temperatures up to 600?°C. The as-deposited nickel nanorods are faceted with sharp nanotips, which are deformed at annealing temperatures higher than 400?°C due to strong surface diffusion. A mud-crack like pattern is formed in the samples annealed above 400?°C, leading to the generation of interconnected porous structure. Meanwhile, the X-ray diffraction reveals the recrystallization of nickel nanocrystals when annealed from 300 to 600?°C.

  15. Selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes

    SciTech Connect (OSTI)

    Martis, P.; Venugopal, B.R.; Delhalle, J.; Mekhalif, Z.

    2011-05-15

    A simple route to selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes (MWCNTs) using nickel acetylacetonate (NAA) was successfully achieved for the first time. The homogeneously decorated nanocrystals on MWCNTs were investigated for their structure and morphology by various techniques, such as powder X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, field emission scanning electron microscopy and thermogravimetric analysis. It was found that the size distributions of the nanocrystals on MWCNTs ranged from 8 to 15 nm and they were well resolved. The precursor, NAA, was effectively employed to impregnate the MWCNTs, which on calcination at suitable temperatures and in the presence of hydrogen and nitrogen atmosphere gave rise to nickel and nickel oxide nanocrystals, respectively. -- Graphical abstract: Nickel and nickel oxide nanocrystals were selectively and homogeneously decorated on multiwalled carbon nanotubes using nickel acetylacetonate, as a precursor in a simple and efficient route. Display Omitted Highlights: {yields} A simple route for decoration of nickel and nickel oxide nanocrystals on MWCNTs. {yields} Nickel acetylacetonate used as nickel source for the first time to impregnate on MWCNTs. {yields} Selective decoration was achieved by calcination in hydrogen and nitrogen atmospheres. {yields} The as-decorated nickel and nickel oxide nanocrystals are in the range of 8-15 nm.

  16. Mixed metal films with switchable optical properties

    SciTech Connect (OSTI)

    Richardson, Thomas J.; Slack, Jonathan L.; Farangis, Baker; Rubin, Michael D.

    2001-10-16

    Thin, Pd-capped metallic films containing magnesium and first row transition metals (Mn, Fe, Co) switch reversibly from their initial reflecting state to visually transparent states when exposed to gaseous hydrogen or following cathodic polarization in an alkaline electrolyte. Reversion to the reflecting state is achieved by exposure to air or by anodic polarization. The films were prepared by co-sputtering from one magnesium target and one manganese, iron, or cobalt target. Both the dynamic optical switching range and the speed of the transition depend on the magnesium-transition metal ratio. Infrared spectra of films in the transparent, hydrided (deuterided) states support the presence of the intermetallic hydride phases Mg3MnH7, Mg2FeH6, and Mg2CoH5.

  17. Systematic Approach to Compare the Inflammatory Response of Liver Cell Culture Systems Exposed to Silver, Copper, and Nickel Nanoparticles 

    E-Print Network [OSTI]

    Banerjee, Nivedita

    2011-10-21

    hepatotoxicity concerns, the inflammatory response of hepatocytes after exposure to metal colloids was assessed. Four ~30-nm-sized metal colloids, including silver (nano-Ag), copper (nano-Cu) and nickel (nano-Ni) were examined in an effort to understand...

  18. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    DOE Patents [OSTI]

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  19. Iron aluminides and nickel aluminides as materials for chemical air separation

    DOE Patents [OSTI]

    Kang, Doohee (Macungie, PA)

    1991-01-01

    The present invention is directed to a chemical air separation process using a molten salt solution of alkali metal nitrate and nitrite wherein the materials of construction of the containment for the process are chosen from intermetallic alloys of nickel and/or iron aluminide wherein the aluminum content is 28 atomic percent or greater to impart enhanced corrosion resistance.

  20. Time-Resolved AFM and XAFS Investigations of Nickel Surface Precipitate Dissolution Mechanisms

    E-Print Network [OSTI]

    Sparks, Donald L.

    Time-Resolved AFM and XAFS Investigations of Nickel Surface Precipitate Dissolution Mechanisms K. G that increase in stability with aging time. However, investigations into the stability of these surface, the relationship between aging time and stability is critical to predict potential mobility and fate of the metal

  1. Iron aluminides and nickel aluminides as materials for chemical air separation

    DOE Patents [OSTI]

    Kang, D.

    1991-01-29

    The present invention is directed to a chemical air separation process using a molten salt solution of alkali metal nitrate and nitrite wherein the materials of construction of the containment for the process are chosen from intermetallic alloys of nickel and/or iron aluminide wherein the aluminum content is 28 atomic percent or greater to impart enhanced corrosion resistance.

  2. Catalytically active nickel ^110 surfaces in growth of carbon tubular structures

    E-Print Network [OSTI]

    Wang, Zhong L.

    Catalytically active nickel ^110 surfaces in growth of carbon tubular structures M. H. Kuang and Z interest in the growth of aligned carbon nanotube films using transition metal catalysts has led in the nucleation and growth of carbon nanotubes. The size of the catalytic particles determines the size

  3. Interaction between graphene and nickel(111) surfaces with commensurate and incommensurate orientational relationships

    E-Print Network [OSTI]

    Elliott, James

    Interaction between graphene and nickel(111) surfaces with commensurate and incommensurate The role of the catalyst metal in the growth of carbon nanotubes [1] and graphene [2] has been widely wall carbon nanotubes (SWNTs) [4­6] and monolayer graphene [7­11] using a chemical vapour deposition

  4. Electrochemical polishing of thread fastener test specimens of nickel-chromium iron alloys

    DOE Patents [OSTI]

    Kephart, Alan R. (Scotia, NY)

    1991-01-01

    An electrochemical polishing device and method for selective anodic dissolution of the surface of test specimens comprised, for example, of nickel-chromium-iron alloys, which provides for uniform dissolution at the localized sites to remove metal through the use of a coiled wire electrode (cathode) placed in the immediate proximity of the working, surface resulting in a polished and uniform grain boundary.

  5. UNDERSTANDING OF HYDRIDING MECHANISMS OF ZIRCALOY-4 ALLOY DURING CORROSION IN PWR SIMULATED CONDITIONS

    E-Print Network [OSTI]

    Motta, Arthur T.

    1 UNDERSTANDING OF HYDRIDING MECHANISMS OF ZIRCALOY-4 ALLOY DURING CORROSION IN PWR SIMULATED CONDITIONS AND INFLUENCE OF ZIRCONIUM HYDRIDES ON ZIRCALOY-4 CORROSION C. BISOR-MELLOUL, M. TUPIN, P. BOSSIS-sur-Yvette ­ France A. MOTTA Mechanical and Nuclear Engineering Department, Penn State University 227 Reber Building

  6. Hydride transfer reaction dynamics of OD+ Li Liu, Elizabeth S. Richards, and James M. Farrara

    E-Print Network [OSTI]

    Farrar, James M.

    Hydride transfer reaction dynamics of OD+ +C3H6 Li Liu, Elizabeth S. Richards, and James M. Farrara 30 April 2007; published online 29 June 2007 The hydride transfer reaction between OD+ and C3H6 has, with maxima close to the velocity and direction of the precursor propylene beam, characteristic of direct

  7. Hydride precipitation kinetics in Zircaloy-4 studied using synchrotron X-ray diffraction

    E-Print Network [OSTI]

    Motta, Arthur T.

    Hydride precipitation kinetics in Zircaloy-4 studied using synchrotron X-ray diffraction Olivier F fuel cladding and precipitate as brittle hydride particles, which may reduce cladding ductility. Dissolved hydrogen responds to temperature gradients, resulting in transport and precipitation into cold

  8. Synthesis of Thermal Interface Materials Made of Metal Decorated Carbon Nanotubes and Polymers 

    E-Print Network [OSTI]

    Okoth, Marion Odul

    2011-10-21

    -Methly-2-Pyrrolidone (NMP). The metals used for this experiment were copper (Cu), tin (Sn), and nickel (Ni). The metal nanoparticles were seeded using functionalized MWCNTs as templates. Once seeded, the nanotubes and polymer composites were made...

  9. Characterization of Nanoporous Metal-Carbon Nanotube Composite Arrays

    E-Print Network [OSTI]

    Collins, Gary S.

    Characterization of Nanoporous Metal-Carbon Nanotube Composite Arrays Chloe Heinen, Dr. David Bahr plating CNTs were researched to determine a proper method. It was found that electroless nickel plating of an important six step pretreatment followed by the plating solution. The plating solution consisted of: ·Nickel

  10. Microstructure and hydriding studies of AB/sub 5/ hydrogen storage compounds. Final report

    SciTech Connect (OSTI)

    Goodell, P.D.; Sandrock, G.D.; Huston, E.L.

    1980-01-01

    New data on the microstructure, pressure-composition-temperature, and absorption/desorption kinetics of AB/sub 5/ metal hydrides are presented. The most significant result to emerge from the investigation is that many of the AB/sub 5/ metal hydrides, especially the LaNi/sub 5/ related materials, show instantaneous absorption and desorption response in proportion to the amount of cooling or heating which is provided. Eight categories of materials were studied: reference alloys (LaNi/sub 5/, LaNi/sub 4/ /sub 9/Al/sub 0/ /sub 1/, LaNi/sub 3/Co/sub 2/); Ni second phase particles (LaNi/sub 5/ /sub 67/, LaNi/sub 7/, LaNi/sub 11/ /sub 3/); eutectoid microstructure (SmCo/sub 5/); other second phases (LaNi/sub 3/ /sub 8/Fe/sub 1/ /sub 2/, LaNi/sub 3/ /sub 5/Cr/sub 1/ /sub 5/, LaNi/sub 4/Cr, LaNi/sub 4/Si; LaNi/sub 4/Sn, MNi/sub 4/Sn, MNi/sub 4/ /sub 3/Al/sub 0/ /sub 7/); substitutional elements (LaNi/sub 4/Cu, LaNi/sub 4/ /sub 5/Pd/sub 0/ /sub 5/, LaNi/sub 4/ /sub 7/Sn/sub 0/ /sub 3/, LaNi/sub 4/ /sub 8/C/sub 0/ /sub 2/, MNi/sub 4/ /sub 3/Mn/sub 0/ /sub 7/); surface active elements (LaNi/sub 4/ /sub 8/B/sub 0/ /sub 2/, LaNi/sub 4/ /sub 9/S/sub 0/ /sub 1/, LaNi/sub 4/ /sub 9/Se/sub 0/ /sub 1/); large diameter atom substitutions (Mg/sub 0/ /sub 1/La/sub 0/ /sub 9/Ni/sub 5/, Ca/sub 0/ /sub 2/La/sub 0/ /sub 8/Ni/sub 5/, Sr/sub 0/ /sub 2/La/sub 0/ /sub 8/Ni/sub 5/, Ba/sub 0/ /sub 2/La/sub 0/ /sub 8/Ni/sub 5/); other compositions (LaNi/sub 3/); and Pd plating (electroless plated samples and mechanically alloyed specimens).

  11. Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

    2012-04-16

    Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

  12. The calculated rovibronic spectrum of scandium hydride, ScH

    E-Print Network [OSTI]

    Lodi, Lorenzo; Tennyson\\, Jonathan

    2015-01-01

    The electronic structure of six low-lying electronic states of scandium hydride, $X\\,{}^{1}\\Sigma^+$, $a\\,{}^{3}\\Delta$, $b\\,{}^{3}\\Pi$, $A\\,{}^{1}\\Delta$ $c\\,{}^{3}\\Sigma^+$, and $B\\,{}^{1}\\Pi$, is studied using multi-reference configuration interaction as a function of bond length. Diagonal and off-diagonal dipole moment, spin-orbit coupling and electronic angular momentum curves are also computed. The results are benchmarked against experimental measurements and calculations on atomic scandium. The resulting curves are used to compute a line list of molecular ro-vibronic transitions for $^{45}$ScH.

  13. Electrochemical process and production of novel complex hydrides

    DOE Patents [OSTI]

    Zidan, Ragaiy

    2013-06-25

    A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

  14. Chromium Vaporization Reduction by Nickel Coatings For SOEC Interconnect Materials

    SciTech Connect (OSTI)

    Michael V. Glazoff; Sergey N. Rashkeev; J. Stephen Herring

    2014-09-01

    The vaporization of Cr-rich volatile species from interconnect materials is a major source of degradation that limits the lifetime of planar solid oxide devices systems with metallic interconnects, including Solid Oxide Electrolysis Cells, or SOECs. Some metallic coatings (Ni, Co, and Cu) significantly reduce the Cr release from interconnects and slow down the oxide scale growth on the steel substrate. To shed additional light upon the mechanisms of such protection and find a suitable coating material for ferritic stainless steel materials, we used a combination of first-principles calculations, thermodynamics, and diffusion modeling to investigate which factors determine the quality of the Ni metallic coating at stainless steel interconnector. We found that the Cr migration in Ni coating is determined by a delicate combination of the nickel oxidation, Cr diffusion, and phase transformation processes. Although the formation of Cr2O3 oxide is more exothermic than that of NiO, the kinetic rate of the chromia formation in the coating layer and its surface is significantly reduced by the low mobility of Cr in nickel oxide and in NiCr2O4 spinel. These results are in a good agreement with diffusion modeling for Cr diffusion through Ni coating layer on the ferritic 441 steel substrate.

  15. Microstructural, mechanical and weldability assessments of the dissimilar welds between ??- and ??-strengthened nickel-base superalloys

    SciTech Connect (OSTI)

    Naffakh Moosavy, Homam, E-mail: homam_naffakh@iust.ac.ir [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Mapelli, Carlo [Dipartimento di Meccanica, Politecnico di Milano, Via La Massa 34, Milan 20156 (Italy)

    2013-08-15

    Dissimilar welding of ??- and ??-strengthened nickel-base superalloys has been investigated to identify the relationship between the microstructure of the welds and the resultant mechanical and weldability characteristics. ??-Strengthened nickel-base Alloy 500 and ??-strengthened nickel-base Alloy 718 were used for dissimilar welding. Gas tungsten arc welding operations were utilized for performing the autogenous dissimilar welding. Alloy 500 and Alloy 718 base metals showed various types of phases, carbides, intermetallics and eutectics in their microstructure. The results for Alloy 500 weld metal showed severe segregation of titanium to the interdendritic regions. The Alloy 718 weld metal compositional analysis confirmed the substantial role of Nb in the formation of low-melting eutectic-type morphologies which can reduce the weldability. The microstructure of dissimilar weld metal with dilution level of 65% wt.% displayed semi-developed dendritic structure. The less segregation and less formation of low-melting eutectic structures caused to less susceptibility of the dissimilar weld metal to the solidification cracking. This result was confirmed by analytic modeling achievements. Dissolution of ??-Ni{sub 3}Nb precipitations took place in the Alloy 718 heat-affected zone leading to sharp decline of the microhardness in this region. Remelted and resolidified regions were observed in the partially-melted zone of Alloy 500 and Alloy 718. Nevertheless, no solidification and liquation cracking happened in the dissimilar welds. Finally, this was concluded that dissimilar welding of ??- and ??-strengthened nickel-base superalloys can successfully be performed. - Highlights: • Dissimilar welding of ??- and ??-strengthened nickel-base superalloys is studied. • Microstructural, mechanical and weldability aspects of the welds are assessed. • Microstructure of welds, bases and heat-affected zones is characterized in detail. • The type, morphology and distribution of the phases are thoroughly investigated. • Dissimilar welding is successfully performed without occurrence of any hot cracks.

  16. Templated synthesis of nickel nanoparticles: Toward heterostructured nanocomposites for efficient hydrogen storage

    SciTech Connect (OSTI)

    Nelson, Nicholas Cole

    2013-05-07

    The world is currently facing an energy and environmental crisis for which new technologies are needed. Development of cost-competitive materials for catalysis and hydrogen storage on-board motor vehicles is crucial to lead subsequent generations into a more sustainable and energy independent future. This thesis presents work toward the scalable synthesis of bimetallic heterostructures that can enable hydrogen to compete with carbonaceous fuels by meeting the necessary gravimetric and volumetric energy densities and by enhancing hydrogen sorption/desorption kinetics near ambient temperatures and pressures. Utilizing the well-known phenomenon of hydrogen spillover, these bimetallic heterostructures could work by lowering the activation energy for hydrogenation and dehydrogenation of metals. Herein, we report a novel method for the scalable synthesis of silica templated zero-valent nickel particles (Ni?SiO{sub 2}) that hold promise for the synthesis of nickel nanorods for use in bimetallic heterostructures for hydrogen storage. Our synthesis proceeds by chemical reduction of a nickel-hydrazine complex with sodium borohydride followed by calcination under hydrogen gas to yield silica encapsulated nickel particles. Transmission electron microscopy and powder X-ray diffraction were used to characterize the general morphology of the resultant nanocapsules as well as the crystalline phases of the incorporated Ni{sup 0} nanocrystals. The structures display strong magnetic behavior at room temperature and preliminary data suggests nickel particle size can be controlled by varying the amount of nickel precursor used in the synthesis. Calcination under different environments and TEM analysis provides evidence for an atomic migration mechanism of particle formation. Ni?SiO{sub 2} nanocapsules were used as seeds to induce heterogeneous nucleation and subsequent growth within the nanocapsule via electroless nickel plating. Nickel nanoparticle growth occurs under high temperature alkaline conditions, however silica nanocapsule integrity is not maintained due to the incompatibility of silica with the growth conditions. Silica nanocapsule integrity is maintained under low temperature neutral conditions, but nickel particle growth is not observed. Through FTIR and UV/Vis analysis, we show the degree of crosslinking and condensation increases in calcined silica compared to as-synthesized silica. We propose the increased density of the silica nanocapsule hinders mass transfer of the bulky nickel precursor complex from solution and onto the surface of the “catalytic” zero-valent nickel seed within the nanocapsule cavity. Decreasing the density of the silica nanocapsule can be achieved through co-condensation of tetraethylorthosilicate with an alkyl functionalized silane followed by calcination to remove the organic component or by chemical etching in alkaline solution, but will not be addressed in this thesis.

  17. Method of generating hydrogen-storing hydride complexes

    DOE Patents [OSTI]

    Srinivasan, Sesha S; Niemann, Michael U; Goswami, D. Yogi; Stefanakos, Elias K

    2013-05-14

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  18. GAS-PHASE REACTIONS OF HYDRIDE ANION, H{sup -}

    SciTech Connect (OSTI)

    Martinez, Oscar; Yang Zhibo; Demarais, Nicholas J.; Bierbaum, Veronica M. [Department of Chemistry and Biochemistry, 215 UCB, University of Colorado, Boulder, CO 80309-0215 (United States); Snow, Theodore P., E-mail: Oscar.Martinez@colorado.ed, E-mail: Zhibo.Yang@colorado.ed, E-mail: Nicholas.Demarais@colorado.ed, E-mail: Veronica.Bierbaum@colorado.ed, E-mail: Theodore.Snow@colorado.ed [Department of Astrophysical and Planetary Sciences, 391 UCB, University of Colorado, Boulder, CO 80309-0391 (United States)

    2010-09-01

    Rate constants were measured at 300 K for the reactions of the hydride anion, H{sup -}, with neutral molecules C{sub 2}H{sub 2}, H{sub 2}O, CH{sub 3}CN, CH{sub 3}OH, (CH{sub 3}){sub 2}CO, CH{sub 3}CHO, N{sub 2}O, CO{sub 2}, O{sub 2}, CO, CH{sub 3}Cl, (CH{sub 3}){sub 3}CCl, (CH{sub 3}CH{sub 2}){sub 2}O, C{sub 6}H{sub 6}, and D{sub 2} using a flowing-afterglow instrument. Experimental work was supplemented by ab initio calculations to provide insight into the viability of reaction pathways. Our reported rate constants should prove useful to models of astrophysical environments where conditions prevail for the existence of both H{sup -} and neutral species. The variety of neutral reactants studied includes representative species from prototypical chemical groups, effectively mapping reactivity trends for the hydride anion.

  19. TRANSITION METAL ACTIVATION AND FUNCTIONALIZATION OF CARBON-HYDROGEN BONDS

    E-Print Network [OSTI]

    Jones, William D.

    . The success includes not only several new nickel, palladium, and platinum based metal systems of the type [M vs. dissociation vs. migration down the alkyl chain. By using deuterium labeling, we have been able

  20. Synthesis of nickel nanoparticles and carbon encapsulated nickel nanoparticles supported on carbon nanotubes

    SciTech Connect (OSTI)

    Cheng Jipeng . E-mail: mseem@zju.edu.cn; Zhang Xiaobin; Ye Ying

    2006-01-15

    Nickel nanoparticles were prepared and uniformly supported on multi-walled carbon nanotubes (MWCNTs) by reduction route with CNTs as a reducing agent at 600 deg. C. As-prepared nickel nanoparticles were single crystalline with a face-center-cubic phase and a size distribution ranging from 10 to 50 nm, and they were characterized by transmission electron microscopy (TEM), high-resolution TEM and X-ray diffraction (XRD). These nickel nanoparticles would be coated with graphene layers, when they were exposed to acetylene at 600 deg. C. The coercivity values of nickel nanoparticles were superior to that of bulk nickel at room temperature.

  1. Metallic glass composition. [That does not embrittle upon annealing

    DOE Patents [OSTI]

    Kroeger, D.M.; Koch, C.C.

    1984-09-14

    This patent pertains to a metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon, carbon and phosphorous to which is added an amount of a ductility-enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

  2. Biodegradation of orthodontic appliances and their effects on the blood level of nickel and chromium. Master's thesis

    SciTech Connect (OSTI)

    Barrett, R.D.

    1990-05-01

    Austenitic stainless steels containing approximately 18 percent chromium and 8 percent nickel for orthodontic bands, brackets and wires is universally used in orthodontic practices. With the introduction of nickel-titanium alloys as orthodontic archwires in the 1970's an additional source of patient exposure to metal corrosion products has been introduced. Since the oral environment is particularly ideal for the biodegradation of metals due to its ionic, thermal, microbiologic and enzymatic properties some level of patient exposure to the corrosion products of these alloys is assured.

  3. 34 J. Electrochem. Soc., Vol. 145, No. 1, January 1998 The Electrochemical Society, Inc. 7 dimensionless time, (t I il/nFcNIl)

    E-Print Network [OSTI]

    Weidner, John W.

    ,* Mukul Jain,* Venkat Srinivasan,* and John W. Weidner** Center for Electro chemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA rechargeable battery systems (e.g., nick- el/cadmium, nickel/zinc, nickel/hydmgen, and nickel/metal hydride

  4. Reduction of metal oxides through mechanochemical processing

    DOE Patents [OSTI]

    Froes, Francis H. (Moscow, ID); Eranezhuth, Baburaj G. (Moscow, ID); Senkov, Oleg N. (Moscow, ID)

    2000-01-01

    The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.

  5. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOE Patents [OSTI]

    Hunt, T.K.; Novak, R.F.

    1991-05-07

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined. 3 figures.

  6. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOE Patents [OSTI]

    Hunt, Thomas K. (Ann Arbor, MI); Novak, Robert F. (Farmington Hills, MI)

    1991-01-01

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined.

  7. Gold-nickel-titanium brazing alloy

    DOE Patents [OSTI]

    Mizuhara, Howard

    1995-01-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99 gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  8. Gold-nickel-titanium brazing alloy

    DOE Patents [OSTI]

    Mizuhara, Howard (Hillsborough, CA)

    1990-07-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99% gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  9. Fact #603: December 28, 2009 Where Does Lithium Come From?

    Broader source: Energy.gov [DOE]

    Lithium ion batteries will be used in many of the upcoming plug-in hybrid vehicles and electric vehicles because they are lighter and more powerful than the nickel-metal hydride batteries used in...

  10. Multifunctional microtruss laminates: Textile synthesis and properties

    E-Print Network [OSTI]

    Wadley, Haydn

    .N.G. Wadley Department of Materials Science and Engineering, 116 Engineer's Way, School of Engineering heat exchangers and as the electrodes in nickel metal hydride batteries.4 Their Young's moduli

  11. A. M. Sastry B. E. Layton

    E-Print Network [OSTI]

    Sastry, Ann Marie

    X. Cheng A. M. Sastry B. E. Layton Department of Mechanical Engineering and Applied Mechanics for production of posi- tive electrodes for NiMH nickel-metal hydride batteries are comprised of two or more

  12. Technological assessment and evaluation of high power batteries and their commercial values

    E-Print Network [OSTI]

    Teo, Seh Kiat

    2006-01-01

    Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

  13. New sealed rechargeable batteries and supercapacitors

    SciTech Connect (OSTI)

    Barnett, B.M. ); Dowgiallo, E. ); Halpert, G. ); Matsuda, Y. ); Takehara, Z.I. )

    1993-01-01

    This conference was divided into the following sections: supercapacitors; nickel-metal hydride batteries; lithium polymer batteries; lithium/carbon batteries; cathode materials; and lithium batteries. Separate abstracts were prepared for the 46 papers of this conference.

  14. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1986-01-01

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  15. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, H.

    1983-07-26

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  16. The Development of a Cathodic Charging System to Form Hydrides in Zircaloy-4 

    E-Print Network [OSTI]

    Brito, Ryan

    2013-02-01

    This project investigates several methods of electrochemical insertion of hydrogen into Zircaloy nuclear fuel cladding. These systems are being assembled at Texas A & M to form zirconium hydride in cladding to model crack propagation during storage...

  17. Model for Simulation of Hydride Precipitation in Zr-Based Used...

    Broader source: Energy.gov (indexed) [DOE]

    a meso-scale, microstructural evolution model for simulation of zirconium hydride precipitation in the cladding of used fuels during long-term dry-storage. While the Zr-based...

  18. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    SciTech Connect (OSTI)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  19. Nickel vacancy behavior in the electrical conductance of nonstoichiometric nickel oxide film

    SciTech Connect (OSTI)

    Kim, Dong Soo; Lee, Hee Chul [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2012-08-01

    Nickel vacancy behavior in electrical conductance is systematically investigated using various analysis methods on nickel oxide films deposited at different oxygen partial pressures. The results of Rutherford backscattering, x-ray diffraction, and Auger electron spectroscopy analyses demonstrate that the sputtered nickel oxide films are nickel-deficient. Through the deconvolution of Ni2p and O1s spectra in the x-ray photoelectron spectroscopy data, the number of Ni{sup 3+} ions is found to increase with the O{sub 2} ratio during the deposition. According to the vacancy model, nickel vacancies created from the non-stoichiometry are concluded to produce Ni{sup 3+} ions which lead to an increment of the conductivity of the nickel oxide films due to the increase of the hole concentration.

  20. THE DEVELOPMENT OF NICKEL-FREE AUSTENITIC STAINLESS STEELS FOR AMBIENT AND CRYOGENIC APPLICATIONS

    E-Print Network [OSTI]

    Haddick, Glen T.

    2011-01-01

    OF NICKEL-FREE AUSTENITIC STAINLESS STEELS FOR AMBIENT ANDOF NICKEL-FREE AUSTENITIC STAINLESS STEELS FOR AMBIENT ANDOF NICKEL-FREE AUSTENITIC STAINLESS STEELS FOR AMBIENT AND

  1. Documentation of Hybrid Hydride Model for Incorporation into Moose-Bison and Validation Strategy.

    SciTech Connect (OSTI)

    Weck, Philippe F; Tikare, Veena; Schultz, Peter Andrew; Clark, B; Mitchell, J; Glazoff, Michael V.; Homer, Eric R.

    2014-10-01

    This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride ?-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding (Hanson et al., 2011). While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (Birk et al., 2012 and NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. In this work, a model to numerically simulate hydride precipitation at the microstructural scale, in a wide variety of Zr-based claddings, under dry-storage conditions is being developed. It will be used to aid in the evaluation of the mechanical integrity of used fuel rods during dry storage and transportation by providing the structural conditions from the microstructural scale to the continuum scale to engineering component scale models to predict if the used fuel rods will perform without failure under normal and off-normal conditions. The microstructure, especially, the hydride structure is thought to be a primary determinant of cladding failure, thus this component of UFD’s storage and transportation analysis program is critical. The model development, application and validation of the model are documented and the limitations of the current model are discussed. The model has been shown to simulate hydride precipitation in Zircaloy-4 cladding with correct morphology, thermodynamics and kinetics. An unexpected insight obtained from simulations hydride formation in Zircaloy-4 is that small (sub-micron) precipitates need to order themselves to form the larger hydrides typically described as radially-reoriented precipitates. A limitation of this model is that it does not currently solve the stress state that forms dynamically in the precipitate or matrix surrounding the precipitate. A method to overcome the limitations is suggested and described in detail. The necessary experiments to provide key materials physics and to validate the model are also recommended.

  2. Mechanisms of Slow Lead and Nickel Sorption Kinetics on Y-AI2O3 and Pyrophyllite

    E-Print Network [OSTI]

    Sparks, Donald L.

    Mechanisms of Slow Lead and Nickel Sorption Kinetics on Y-AI2O3 and Pyrophyllite D. G. Strawn, A. M is commonly associated with adsorption. For the slow sorption reaction of heavy metals three mechanisms have three of these reaction mechanisms occur simultaneously. Such slow reactions are often neglected

  3. Elastic moduli of nickel and iron aluminides 

    E-Print Network [OSTI]

    Manjigani, Sreedhar

    1993-01-01

    A research program has been completed on the dynamic elastic modulus measurements for several nickel and iron aluminide based intermetallics. The PUCOT (piezoelectric ultrasonic composite oscillator technique) was used for this purpose. Stress...

  4. Thermal Release of 3He from Tritium Aged LaNi4.25Al0.75 Hydride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Staack, Gregory C.; Crowder, Mark L.; Klein, James E.

    2015-02-01

    Recently, the demand for He-3 has increased dramatically due to widespread use in nuclear nonproliferation, cryogenic, and medical applications. Essentially all of the world’s supply of He-3 is created by the radiolytic decay of tritium. The Savannah River Site Tritium Facilities (SRS-TF) utilizes LANA.75 in the tritium process to store hydrogen isotopes. The vast majority of He-3 “born” from tritium stored in LANA.75 is trapped in the hydride metal matrix. The SRS-TF has multiple LANA.75 tritium storage beds that have been retired from service with significant quantities of He-3 trapped in the metal. To support He-3 recovery, the Savannah Rivermore »National Laboratory (SRNL) conducted thermogravimetric analysis coupled with mass spectrometry (TGA-MS) on a tritium aged LANA.75 sample. TGA-MS testing was performed in an argon environment. Prior to testing, the sample was isotopically exchanged with deuterium to reduce residual tritium and passivated with air to alleviate pyrophoric concerns associated with handling the material outside of an inert glovebox. Analyses indicated that gas release from this sample was bimodal, with peaks near 220 and 490°C. The first peak consisted of both He-3 and residual hydrogen isotopes, the second was primarily He-3. The bulk of the gas was released by 600 °C« less

  5. Nickel Complexes of a Binucleating Ligand Derived from an SCS Pincer

    SciTech Connect (OSTI)

    Peterson, Sonja M.; Helm, Monte L.; Appel, Aaron M.

    2015-01-01

    A binucleating ligand has been prepared that contains an SCS pincer and three oxygen donor ligands in a partial crown ether loop. To enable metalation with Ni0, a bromoarene precursor was used and resulted in the formation of a nickel-bromide complex in the SCS pincer. Reaction of the nickel complex with a lithium salt yielded a heterobimetallic complex with bromide bridging the two metal centers. The solid-state structures were determined for this heterobimetallic complex and the nickel-bromide precursor, and the two complexes were characterized electrochemically to determine the influence of coordinating the second metal. This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  6. Hydride transfer reaction dynamics of OD{sup +}+C{sub 3}H{sub 6}

    SciTech Connect (OSTI)

    Liu, Li; Richards, Elizabeth S.; Farrar, James M. [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States)

    2007-06-28

    The hydride transfer reaction between OD{sup +} and C{sub 3}H{sub 6} has been studied experimentally and theoretically over the center of mass collision energy range from 0.21 to 0.92 eV using the crossed beam technique and density functional theory calculations. The center of mass flux distributions of the product ions at three different energies are highly asymmetric, with maxima close to the velocity and direction of the precursor propylene beam, characteristic of direct reactions. In the hydride transfer process, the entire reaction exothermicity is transformed into product internal excitation, consistent with mixed energy release in which the hydride ion is transferred with both the breaking and forming bonds extended. At higher collision energies, at least 85% of the incremental translational energy appears in product translation, providing a clear example of induced repulsive energy release. Compared to the related reaction of OD{sup +} with C{sub 2}H{sub 4}, reaction along the pathway initiated by addition of OD{sup +} to the C=C bond in propylene has a critical bottleneck caused by the torsional motion of the methyl substituent on the double bond. This bottleneck suppresses reaction through an intermediate complex in favor of direct hydride abstraction. Hydride abstraction appears to be a sequential process initiated by electron transfer in the triplet manifold, followed by rapid intersystem crossing and subsequent hydrogen atom transfer to form ground state allyl cation and HOD.

  7. Synthesis of open-cell metal foams by templated directed vapor deposition

    E-Print Network [OSTI]

    Wadley, Haydn

    , Derek D. Hass, David J. Sypeck, and Haydn N.G. Wadley Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia 22904) and Metapore (Soci- e`te` Sorapec, Fontenay Sous Bois, France) for use in Ni­ Cd and Ni­metal hydride batteries

  8. Switchable mirrors based on nickel-magnesium films

    SciTech Connect (OSTI)

    Richardson,Thomas J.; Slack, Jonathan L.; Armitage, Robert D.; Kostecki, Robert; Farangis, Baker; Rubin, Michael D.

    2001-01-16

    A new type of electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin,magnesium-rich Ni-Mg films prepared on glass substrates by cosputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on reduction in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction,and to protect the metal surface against oxidation.

  9. Deadtime Correction and Hydride Evaluation for Atom-Probe Data, with Applications for Studies of Nanoscale Grains and Carbon

    E-Print Network [OSTI]

    Deadtime Correction and Hydride Evaluation for Atom-Probe Data, with Applications for Studies for Atom-Probe Tomography, Dept. of Materials Science and Engineering, Northwestern University, Evanston hydride formation [3]. Measurements for this study are made with a Cameca LEAP 4000X Si atom

  10. Stimulated Emission from As-grown GaN Hexagons by Selective Area Growth Hydride Vapor Phase Epitaxy

    E-Print Network [OSTI]

    Stimulated Emission from As-grown GaN Hexagons by Selective Area Growth Hydride Vapor Phase Epitaxy Engineering and the Photonics Center, Boston University, 8 Saint Mary's St., Boston, MA 02215-2421, USA R hydride vapor phase epitaxy. We found the threshold for bulk stimulated emission to be 3.4 MW cm2

  11. Enantioselective Organocatalytic Hydride Reduction Stephane G. Ouellet, Jamison B. Tuttle, and David W. C. MacMillan*

    E-Print Network [OSTI]

    MacMillan, David W. C.

    Enantioselective Organocatalytic Hydride Reduction Ste´phane G. Ouellet, Jamison B. Tuttle, and David W. C. MacMillan* DiVision of Chemistry and Chemical Engineering, California Institute enzymes and hydride-reduction cofactors such as NADH or FADH2.2 On this basis, we recently questioned

  12. Scanning Kelvin probe microscopy of surface electronic structure in GaN grown by hydride vapor phase epitaxy

    E-Print Network [OSTI]

    Yu, Edward T.

    Scanning Kelvin probe microscopy of surface electronic structure in GaN grown by hydride vapor Engineering and Program in Materials Science and Engineering, University of California at San Diego, La Jolla microscopy is used to image surface potential variations in GaN 0001 grown by hydride vapor phase epitaxy

  13. Acid strength and solvation effects on methylation, hydride transfer, and isomerization rates during catalytic homologation of C1 species

    E-Print Network [OSTI]

    Iglesia, Enrique

    Acid strength and solvation effects on methylation, hydride transfer, and isomerization rates,b, a Department of Chemical and Biomolecular Engineering, University of California at Berkeley, USA b Division, FAU, MFI) via methylation and hydride transfer steps that favor isobutane and triptane formation

  14. Inspection of Nickel Alloy Welds: Results from Five Year International Program

    SciTech Connect (OSTI)

    Prokofiev, Iouri; Cumblidge, Stephen E.; Doctor, Steven R.

    2011-06-23

    The U.S. Nuclear Regulatory Commission established and coordinated the international Program for the Inspection of Nickel alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive examination (NDE) techniques to detect and characterize primary water stress corrosion cracking (PWSCC) in dissimilar metal welds. Round-robin results showed that a combination of conventional and phased-array ultrasound provide the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in bottom-mounted instrumentation penetrations by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field.

  15. Removal of arsenic, vanadium, and/or nickel compounds from petroliferous liquids

    DOE Patents [OSTI]

    Fish, R.H.

    1985-05-17

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids (shale oil, SRC, etc.) by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20/sup 0/ to 100/sup 0/C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  16. Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer

    DOE Patents [OSTI]

    Fish, Richard H. (Berkeley, CA)

    1987-01-01

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  17. Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer

    DOE Patents [OSTI]

    Fish, R.H.

    1987-04-21

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20 to 100 C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  18. Removal of arsenic, vanadium, and/or nickel compounds from petroliferous liquids

    DOE Patents [OSTI]

    Fish, Richard H. (Berkeley, CA)

    1986-01-01

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  19. Metal-ion recycle technology for metal electroplating waste waters

    SciTech Connect (OSTI)

    Sauer, N.N.; Smith, B.F.

    1993-06-01

    As a result of a collaboration with Boeing Aerospace, the authors have begun a program to identify suitable treatments or to develop new treatments for electroplating baths. The target baths are mixed-metal or alloy baths that are being integrated into the Boeing electroplating complex. These baths, which are designed to replace highly toxic chromium and cadmium baths, contain mixtures of two metals, either nickel-tungsten, nickel-zinc, or zinc-tin. This report reviews the literature and details currently available on emerging technologies that could affect recovery of metals from electroplating baths under development by Boeing Aerospace. This literature survey summarizes technologies relevant to the recovery of metals from electroplating processes. The authors expanded the scope to investigate single metal ion recovery technologies that could be applied to metal ion recovery from alloy baths. This review clearly showed that the electroplating industry has traditionally relied on precipitation and more recently on electrowinning as its waste treatment methods. Despite the almost ubiquitous use of precipitation to remove contaminant metal ions from waste electroplating baths and rinse waters, this technology is clearly no longer feasible for the electroplating industry for several reasons. First, disposal of unstabilized sludge is no longer allowed by law. Second, these methods are no longer adequate as metal-removal techniques because they cannot meet stringent new metal discharge limits. Third, precious resources are being wasted or discarded because these methods do not readily permit recovery of the target metal ions. As a result, emerging technologies for metal recovery are beginning to see application to electroplating waste recycle. This report summarizes current research in these areas. Included are descriptions of various membrane technologies, such as reverse osmosis and ultrafiltration, ion exchange and chelating polymer technology, and electrodialysis.

  20. Non-pulsed electrochemical impregnation of flexible metallic battery plaques

    DOE Patents [OSTI]

    Maskalick, Nicholas J. (Pittsburgh, PA)

    1982-01-01

    A method of loading active battery material into porous, flexible, metallic battery plaques, comprises the following steps: precipitating nickel hydroxide active material within the plaque, by making the plaque cathodic, at a high current density, in an electro-precipitation cell also containing a consumable nickel anode and a solution comprising nickel nitrate, having a pH of between 2.0 and 2.8; electrochemically oxidizing the precipitate in caustic formation solution; and repeating the electro-precipitation step at a low current density.

  1. Electrochromic nickel oxide simultaneously doped with lithium and a metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES Science NetworkMediatorElectrocatalysts for Fuel Cells

  2. Stabilization of Nickel Metal Catalysts for Aqueous Processing Systems -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3 SpecialSponsor GuidelinesPlasma Physics and

  3. Electrochromic Nickel Oxide Simultaneously Doped with Lithium and a Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find what youSummer InternshipPower ElectricLicensing -

  4. ELECTROCHROMIC NICKEL OXIDE SIMULTANEOUSLY DOPED WITH LITHIUM AND A METAL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 KansasMarkets 1,Gases?l ~J~· ,· ,.,. .*

  5. Dietary chromium and nickel enhance UV-carcinogenesis in skin...

    Office of Scientific and Technical Information (OSTI)

    chromium and nickel enhance UV-carcinogenesis in skin of hairless mice The skin cancer enhancing effect of chromium (in male mice) and nickel in UVR-irradiated female Skh1...

  6. Caustic stress corrosion cracking of E-Brite and Carpenter 7-MO stainless steels welded to Nickel 200 and Inconel 600 

    E-Print Network [OSTI]

    Stockman, Steven Miles

    1982-01-01

    ' The oh/ective of the test was to determine whether either of the stainless steels could be used in re- pairing nickel and nickel alloy equipment at the Dow Chemical caustic plant. Both stainless steels passed the initial test- ing and are recommended... The film-rupture theory also cannot account for the specificity of the environments for which SCC occurs in the various metals, The mechanical-fracture models are based on the environ- ment merely affecting the properties of the metal and the frac- ture...

  7. Formation of Carbon Nanostructures in Cobalt- and Nickel-Doped Carbon Aerogels

    SciTech Connect (OSTI)

    Fu, R; Baumann, T F; Cronin, S; Dresselhaus, G; Dresselhaus, M; Satcher, Jr., J H

    2004-11-09

    We have prepared carbon aerogels (CAs) doped with cobalt or nickel through sol-gel polymerization of formaldehyde with the potassium salt of 2,4-dihydroxybenzoic acid, followed by ion-exchange with M(NO{sub 3}){sub 2} (where M = Co{sup 2+} or Ni{sup 2+}), supercritical drying with liquid CO{sub 2} and carbonization at temperatures between 400 C and 1050 C under an N{sub 2} atmosphere. The nanostructures of these metal-doped carbon aerogels were characterized by elemental analysis, nitrogen adsorption, high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Metallic nickel and cobalt nanoparticles are generated during the carbonization process at about 400 C and 450 C, respectively, forming nanoparticles that are {approx}4 nm in diameter. The sizes and size dispersion of the metal particles increase with increasing carbonization temperatures for both materials. The carbon frameworks of the Ni- and Co-doped aerogels carbonized below 600 C mainly consist of interconnected carbon particles with a size of 15 to 30 nm. When the samples are pyrolyzed at 1050 C, the growth of graphitic nanoribbons with different curvatures is observed in the Ni and Co-doped carbon aerogel materials. The distance of graphite layers in the nanoribbons is about 0.38 nm. These metal-doped CAs retain the overall open cell structure of metal-free CAs, exhibiting high surface areas and pore diameters in the micro and mesoporic region.

  8. A mechanistic study of aryl halide reactions with lithium aluminum hydride 

    E-Print Network [OSTI]

    Chung, Fu-Fan

    1980-01-01

    A M:"CHA~JISTIC STUDv OF ARYL HALID RHAC IC~JS ' ITH LITHIUM ALUM 'J"M HYDRIDE A Thesis FU-FAJJ CHUI'JG Submitted to the Graduate College of Texas ARM University in nartial fulfillment of the reauirement for the degree of MASTER OF SCI- JC... August Jo80 Major Subject: Chemistry A MECHANISTIC STUDY OF ARYL HALIDE REACTIONS 1'IITH LITHIUM ALUMINUM HYDRIDE A Thesis by FU-FAN CHUNG Approved as to style and content by; (Chairman of Co ittee) (Member) , . 7 1 (Member) (Member) i (Head...

  9. Method of production of pure hydrogen near room temperature from aluminum-based hydride materials

    DOE Patents [OSTI]

    Pecharsky, Vitalij K.; Balema, Viktor P.

    2004-08-10

    The present invention provides a cost-effective method of producing pure hydrogen gas from hydride-based solid materials. The hydride-based solid material is mechanically processed in the presence of a catalyst to obtain pure gaseous hydrogen. Unlike previous methods, hydrogen may be obtained from the solid material without heating, and without the addition of a solvent during processing. The described method of hydrogen production is useful for energy conversion and production technologies that consume pure gaseous hydrogen as a fuel.

  10. Process for recovering evolved hydrogen enriched with at least one heavy hydrogen isotope

    DOE Patents [OSTI]

    Tanaka, John (Storrs, CT); Reilly, Jr., James J. (Bellport, NY)

    1978-01-01

    This invention relates to a separation means and method for enriching a hydrogen atmosphere with at least one heavy hydrogen isotope by using a solid titaniun alloy hydride. To this end, the titanium alloy hydride containing at least one metal selected from the group consisting of vanadium, chromium, manganese, molybdenum, iron, cobalt and nickel is contacted with a circulating gaseous flow of hydrogen containing at least one heavy hydrogen isotope at a temperature in the range of -20.degree. to +40.degree. C and at a pressure above the dissociation pressure of the hydrided alloy selectively to concentrate at least one of the isotopes of hydrogen in the hydrided metal alloy. The contacting is continued until equilibrium is reached, and then the gaseous flow is isolated while the temperature and pressure of the enriched hydride remain undisturbed selectively to isolate the hydride. Thereafter, the enriched hydrogen is selectively recovered in accordance with the separation factor (S.F.) of the alloy hydride employed.

  11. An Electrolytic Method to Form Zirconium Hydride Phases in Zirconium Alloys with Morphologies Similar to Hydrides Formed in Used Nuclear Fuel 

    E-Print Network [OSTI]

    Kuhr, Samuel Houston

    2012-10-19

    )........................................................................................................... 56 Figure 23 Copper from the bronze electrode dissolved into solution and electroplated on top of graphite anode. ............................................... 60 Figure 24 Method 2 sample holder configuration... morphologies, densities, and geometries of hydrides which mimic those found in the real world application. 2.3.1 Electrolytic Method Electrolytic methods involving sulfuric acid baths or molten salt baths are used to coat the outside of the sample...

  12. Advanced technologies for decomtamination and conversion of scrap metal

    SciTech Connect (OSTI)

    Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

    1999-05-27

    The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ``Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a laser cutting demonstration, an investigation of commercial markets for RSM, and refinement of methods to quantify isotopic elements.

  13. Characterization and High Throughput Analysis of Metal Hydrides for Hydrogen Storage

    E-Print Network [OSTI]

    Barcelo, Steven James

    2009-01-01

    walls, a small leak, or outgassing from the sample. Theyou have found the leak. Outgassing samples are the mostheld for 24 hrs or until outgassing was determined complete

  14. Low-Cost Metal Hydride TES Systems- FY13 Q3

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this SRNL project, funded by SunShot, for the third quarter of fiscal year 2013.

  15. Low-Cost Metal Hydride TES Systems- FY13 Q1

    Broader source: Energy.gov [DOE]

    This document summarizes the progress for this Savannah Reiver National Laboratory project, funded by SunShot, for the first quarter of fiscal year 2013.

  16. Project Profile: Engineering a Novel High Temperature Metal Hydride Thermochemical Storage

    Broader source: Energy.gov [DOE]

    The Department of Energy's SunShot Initiative awarded to Pacific Northwest National Lab (PNNL) through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program.

  17. Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows

    E-Print Network [OSTI]

    Anders, Andre

    2008-01-01

    Richardson, Solar Energy Materials and Solar Cells 90 (2006)V. Wittwer, Solar Energy Materials and Solar Cells 91 (2007)Richardson, Solar Energy Materials and Solar Cells 86 (2005)

  18. Low-Cost Metal Hydride Thermal Energy Storage System- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this SRNL project, funded by SunShot, for the second quarter of fiscal year 2013.

  19. Lawrence Livermore National Laboratory Proposal to Participate in the Carbon and Metal Hydride Virtual Centers

    Broader source: Energy.gov [DOE]

    Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

  20. Characterization and High Throughput Analysis of Metal Hydrides for Hydrogen Storage

    E-Print Network [OSTI]

    Barcelo, Steven James

    2009-01-01

    gas storage1.2 Compressed gas storage Technology is already well-of the compressed gas storage method is that it has been

  1. Characterization and High Throughput Analysis of Metal Hydrides for Hydrogen Storage

    E-Print Network [OSTI]

    Barcelo, Steven James

    2009-01-01

    have great promise as hydrogen storage materials due tofor regenerative hydrogen storage applications. Addition ofrequired of a viable hydrogen storage system, but further

  2. A continuous hydrogen desorption model from zirconium hydride and subsequent metal in Vacuum

    SciTech Connect (OSTI)

    Hu, X. [Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA 94720 (United States); Terrani, K. A. [Fuel Cycle and Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wirth, B. D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, Knoxville, TN 37996 (United States)

    2013-07-01

    Predictions of a one-dimensional, moving boundary model coupled with a kinetic description of hydrogen desorption from a two-phase region of {delta}-ZrH{sub 1.6{+-}}n and {alpha}-Zr have been compared with the hydrogen flux obtained in a thermal desorption spectroscopy experiment. The model accurately reproduces the major features of the hydrogen desorption flux on the sample surface after executing a parameter optimization. (authors)

  3. Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation Systems

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  4. Evaluation of Protected Metal Hydride Slurries in a H2 Mini-

    E-Print Network [OSTI]

    risk and cost compared to distributed reformate-FCPS (see Energy Station Concept discussion) Fuel cell,600 psi) PSA w/ cH2 (100 psi) Fl MH (dry) Fl MH (slurry) Volume,m3 Storage Purification 760 Primary Energy_PT_DOE_D0021_H2&FC_MERIT_REVIEW_MAY2003 1 Introduction Energy Station Concept The hydrogen "Energy Station

  5. Final Report for the DOE Metal Hydride Center of Excellence | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartmentExerciseCarbon4Department ofFermiSurface,

  6. Project Profile: Low-Cost Metal Hydride Thermal Energy Storage System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrderNATIONALofDefine ReviewImpactDepartmentGeneration

  7. Ordered Mesoporous CMK-5 Carbon with Ultra-Thin Pore Walls and Highly Dispersed Nickel Nanoparticles

    SciTech Connect (OSTI)

    Fulvio, Pawquale F; Liang, Chengdu; Dai, Sheng; Jaroniec, Mietek

    2009-01-01

    Ordered mesoporous CMK-5 carbons with ultra-thin carbon pore walls and highly dispersed Ni nanoparticles have been successfully prepared by using two different SBA-15 silicas as hard templates and 2, 3-di-hydroxynaphtalene (DHN) as a carbon precursor. The nickel precursor was a concentrated nickel nitrate hexahydrate [Ni(NO3)2.6H2O] solution in isopropanol added to the carbon-silica nanocomposites prior to thermal treatments. The samples studied were analyzed by thermogravimetry (TG), nitrogen adsorption at -196 C, powder X-ray diffraction (XRD), Raman spectroscopy, scanning and transmission electron microscopy (STEM) and in situ electron diffraction X-ray spectroscopy (EDX). While TG revealed carbon contents lower than 30 wt%, nitrogen adsorption provided information about homogeneity of carbon thin film deposited onto mesopore walls of ordered silica templates, SBA-15. The templates, carbon-silica nanocomposites and carbon inverse replicas with nickel nanoparticles exhibited uniform pores, high surface areas and large pore volumes. Graphitic carbon was identified by the presence of a characteristic G band on Raman spectra, whereas the diffraction peak attributed to the stacking of graphene planes was not observed by powder XRD.The presence of ordered domains in the carbon materials studied was confirmed by small angle XRD and STEM imaging. In addition, the STEM images revealed that the nickel nanoparticles were uniform in size, ~3nm, and were homogeneously dispersed within ordered tubular carbon walls. A few larger clusters of nickel, ~60nm, present on the external surface, were identified by powder XRD as metallic Ni. The in situ EDX revealed that the small nanoparticles were largely composed of Ni with traces of NiO. Similar nanoparticles dispersions have been reported only for Ni-containing multi-walled carbon nanotubes (CNTs), whereas previously reported ordered mesoporous carbons possessed larger Ni/NiO nanoparticles within CMK-3 nanostructure.

  8. Elucidating Reactivity Differences in Palladium-Catalyzed Coupling Processes: The Chemistry of Palladium Hydrides

    E-Print Network [OSTI]

    Fu, Gregory C.

    Elucidating Reactivity Differences in Palladium-Catalyzed Coupling Processes: The Chemistry of Palladium Hydrides Ivory D. Hills and Gregory C. Fu* Department of Chemistry, Massachusetts Institute recently been described in the develop- ment of highly active palladium-based catalysts for cross

  9. FAILURE OF ZIRCALOY-4 SHEET CONTAINING HYDRIDE BLISTERS O.N. Pierron1

    E-Print Network [OSTI]

    Motta, Arthur T.

    FAILURE OF ZIRCALOY-4 SHEET CONTAINING HYDRIDE BLISTERS O.N. Pierron1 , D.A. Koss1 , A.T. Motta2 , R.S. Daum3 , and K.S. Chan4 1 Dept. Materials Science and Engineering, Penn State Univ., University Park, PA 16802 2 Dept. Mechanical and Nuclear Engineering, Penn State University, University Park, PA

  10. INFLUENCE OF HYDRIDE MICROSTRUCTURE ON THROUGH-THICKNESS CRACK GROWTH IN ZIRCALOY-4 SHEET

    E-Print Network [OSTI]

    Motta, Arthur T.

    1 INFLUENCE OF HYDRIDE MICROSTRUCTURE ON THROUGH-THICKNESS CRACK GROWTH IN ZIRCALOY-4 SHEET P. A and Engineering, The Pennsylvania State University, University Park, PA 16802 2 Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 3 Southwest Research

  11. The influence of hydride blisters on the fracture of Zircaloy-4 O.N. Pierron a

    E-Print Network [OSTI]

    Motta, Arthur T.

    The influence of hydride blisters on the fracture of Zircaloy-4 O.N. Pierron a , D.A. Koss a,*, A.T. Motta b , K.S. Chan c a Department of Materials Science and Engineering, Pennsylvania State University Engineering, Pennsylvania State University, University Park, PA 16802, USA c Southwest Research Institute, San

  12. Friction Stir Welding of Hydrided Titanium Alloys Mark Taylor, D.P. Field

    E-Print Network [OSTI]

    Collins, Gary S.

    Friction Stir Welding of Hydrided Titanium Alloys Mark Taylor, D.P. Field Multi-Scale Engineering for Undergraduates program under grant number EEC-0754370 During Friction Stir Welding (FSW), a non-consumable tool-state welding process, much frictional heating and force is required of the tool. This steep demand on the tool

  13. Model for the Prediction of the Hydriding Thermodynamics of Pd-Rh-Co Ternary Alloys

    SciTech Connect (OSTI)

    Teter, D.F.; Thoma, D.J.

    1999-03-01

    A dilute solution model (with respect to the substitutional alloying elements) has been developed, which accurately predicts the hydride formation and decomposition thermodynamics and the storage capacities of dilute ternary Pd-Rh-Co alloys. The effect of varying the rhodium and cobalt compositions on the thermodynamics of hydride formation and decomposition and hydrogen capacity of several palladium-rhodium-cobalt ternary alloys has been investigated using pressure-composition (PC) isotherms. Alloying in the dilute regime (<10 at.%) causes the enthalpy for hydride formation to linearly decrease with increasing alloying content. Cobalt has a stronger effect on the reduction in enthalpy than rhodium for equivalent alloying amounts. Also, cobalt reduces the hydrogen storage capacity with increasing alloying content. The plateau thermodynamics are strongly linked to the lattice parameters of the alloys. A near-linear dependence of the enthalpy of hydride formation on the lattice parameter was observed for both the binary Pd-Rh and Pd-Co alloys, as well as for the ternary Pd-Rh-Co alloys. The Pd-5Rh-3Co (at. %) alloy was found to have similar plateau thermodynamics as a Pd-10Rh alloy, however, this ternary alloy had a diminished hydrogen storage capacity relative to Pd-10Rh.

  14. First-row hydrides: Dissociation and ground state energies using quantum Monte Carlo

    E-Print Network [OSTI]

    Anderson, James B.

    First-row hydrides: Dissociation and ground state energies using quantum Monte Carlo Arne Lu, Pennsylvania 16802 Received 20 May 1996; accepted 24 July 1996 Accurate ground state energies comparable FN-DQMC method. The residual energy, the nodal error due to the error in the nodal structure

  15. Water treatment process and system for metals removal using Saccharomyces cerevisiae

    DOE Patents [OSTI]

    Krauter, Paula A. W. (Livermore, CA); Krauter, Gordon W. (Livermore, CA)

    2002-01-01

    A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

  16. Delayed Nickel Decay in Gamma Ray Bursts

    E-Print Network [OSTI]

    G. C. McLaughlin; R. A. M. J. Wijers

    2002-05-19

    Recently observed emission lines in the X-ray afterglow of gamma ray bursts suggest that iron group elements are either produced in the gamma ray burst, or are present nearby. If this material is the product of a thermonuclear burn, then such material would be expected to be rich in Nickel-56. If the nickel remains partially ionized, this prevents the electron capture reaction normally associated with the decay of Nickel-56, dramatically increasing the decay timescale. Here we examine the consequences of rapid ejection of a fraction of a solar mass of iron group material from the center of a collapsar/hypernova. The exact rate of decay then depends on the details of the ionization and therefore the ejection process. Future observations of iron, nickel and cobalt lines can be used to diagnose the origin of these elements and to better understand the astrophysical site of gamma ray bursts. In this model, the X-ray lines of these iron-group elements could be detected in suspected hypernovae that did not produce an observable gamma ray burst due to beaming.

  17. Large Scale Evaluation fo Nickel Aluminide Rolls

    SciTech Connect (OSTI)

    2005-09-01

    This completed project was a joint effort between Oak Ridge National Laboratory and Bethlehem Steel (now Mittal Steel) to demonstrate the effectiveness of using nickel aluminide intermetallic alloy rolls as part of an updated, energy-efficient, commercial annealing furnace system.

  18. Proposed sale of radioactively contaminated nickel ingots located at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    NONE

    1995-10-01

    The U.S. Department of Energy (DOE) proposes to sell 8,500 radioactively contaminated nickel ingots (9.350 short tons), currently in open storage at the Paducah Gaseous Diffusion Plant (PGDP), to Scientific Ecology Group, Inc. (SEG) for decontamination and resale on the international market. SEG would take ownership of the ingots when they are loaded for transport by truck to its facility in Oak Ridge, Tennessee. SEG would receive approximately 200 short tons per month over approximately 48 months (an average of 180 ingots per month). The nickel decontamination process specified in SEG`s technical proposal is considered the best available technology and has been demonstrated in prototype at SEG. The resultant metal for resale would have contamination levels between 0.3 and 20 becquerel per gram (Bq/g). The health hazards associated with release of the decontaminated nickel are minimal. The activity concentration of the end product would be further reduced when the nickel is combined with other metals to make stainless steel. Low-level radioactive waste from the SEG decontamination process, estimated to be approximately 382 m{sup 3} (12,730 ft), would be shipped to a licensed commercial or DOE disposal facility. If the waste were packaged in 0.23 m{sup 3}-(7.5 ft{sup 3}-) capacity drums, approximately 1,500 to 1,900 drums would be transported over the 48-month contract period. Impacts from the construction of decontamination facilities and the selected site are minimal.

  19. Chemical nanofabrication: a general route to surface-patterned and free-standing transition metal chalcogenide nanostructures{

    E-Print Network [OSTI]

    Odom, Teri W.

    ; such properties are important for battery storage capacity.4 WS2 nanotubes exhibit a red shift in their band gap illustrated this general approach by focusing on a specific metal, nickel, patterned on a Si substrate. First

  20. Nickel based anodes for single chamber solid oxide fuel cells : a catalytic study Geoffroy Gadacz, Sorina Udroiu, Jean-Paul Viricelle, Christophe Pijolat, Michle Pijolat

    E-Print Network [OSTI]

    Boyer, Edmond

    Nickel based anodes for single chamber solid oxide fuel cells : a catalytic study Geoffroy Gadacz Single chamber solid oxide fuel cells (SCFC) are an alternative concept to traditional SOFC's. Conventional anodes, which consist of a cermet of metallic Ni and ionic conductor, have to work under a mixture

  1. Carbide Coatings for Nickel Alloys, Graphite and Carbon/Carbon Composites to be used in Fluoride Salt Valves

    SciTech Connect (OSTI)

    Nagle, Denis; Zhang, Dajie

    2015-10-22

    The focus of this research was concerned with developing materials technology that supports the evolution of Generation IV Advanced High Temperature Reactor (AHTR) concepts. Specifically, we investigate refractory carbide coatings for 1) nickel alloys, and 2) commercial carbon-carbon composites (CCCs). Numerous compelling reasons have driven us to focus on carbon and carbide materials. First, unlike metals, the strength and modulus of CCCs increase with rising temperature. Secondly, graphite and carbon composites have been proven effective for resisting highly corrosive fluoride melts such as molten cryolite [Na3AlF6] at ~1000oC in aluminum reduction cells. Thirdly, graphite and carbide materials exhibit extraordinary radiation damage tolerance and stability up to 2000°C. Finally, carbides are thermodynamically more stable in liquid fluoride salt than the corresponding metals (i.e. Cr and Zr) found in nickel based alloys.

  2. Thermal analysis of uranium zirconium hydride fuel using a lead-bismuth gap at LWR operating temperatures

    E-Print Network [OSTI]

    Ensor, Brendan M. (Brendan Melvin)

    2012-01-01

    Next generation nuclear technology calls for more advanced fuels to maximize the effectiveness of new designs. A fuel currently being studied for use in advanced light water reactors (LWRs) is uranium zirconium hydride ...

  3. Process for production of an aluminum hydride compound

    SciTech Connect (OSTI)

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Miller, Dean Michael; Molzahn, David Craig

    2013-08-06

    A compound of formula M(AlH.sub.3OR.sup.1).sub.y, wherein R.sup.1 is phenyl substituted by at least one of: (i) an alkoxy group having from one to six carbon atoms; and (ii) an alkyl group having from three to twelve carbon atoms; wherein M is an alkali metal, Be or Mg; and y is one or two.

  4. The influence of surface morphology and oxide microstructure on the nucleation and growth of uranium hydride on alpha uranium

    SciTech Connect (OSTI)

    Hanrahan, R.J. Jr.; Hawley, M.E.; Brown, G.W.

    1998-12-31

    While the bulk kinetics of the uranium-hydrogen reaction are well understood, the mechanisms underlying the initial nucleation of uranium hydride on uranium remain controversial. In this study, the authors have employed environmental cell optical microscopy, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy, (AFM) in an attempt to relate the structure of the surface and the microstructure of the substrate with the susceptibility and site of hydride nucleation. Samples have been investigated with varying grain size, inclusion (carbide) concentration, and thermal history. There is a clear correlation to heat treatment immediately prior to hydrogen exposure. Susceptibility to hydride formation also appears to be related to impurities in the uranium. The oxidized surface is very complex, exhibiting wide variations in thickness and topography between samples, between grains in the same sample, and within individual grains. It is, however, very difficult to relate this fine scale variability to the relatively sparse hydride initiation sites. Therefore, the surface oxide layer itself does not appear to control the sites where hydride attack is initiated, although it must play a role in the induction period prior to hydride initiation.

  5. Fast, Quantitative, and Nondestructive Evaluation on Hydrided LWR Fuel Cladding by Small Angle Incoherent Neutron Scattering of Hydrogen

    SciTech Connect (OSTI)

    Yan, Yong; Qian, Shuo; Littrell, Ken; Parish, Chad M; Plummer, Lee K

    2015-01-01

    A non-destructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentration were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Our study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount ( 20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor can be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for absolute hydrogen concentration determination.

  6. Electrohydrodynamic atomization (EHDA) assisted wet chemical synthesis of nickel nanoparticles

    SciTech Connect (OSTI)

    Barzegar Vishlaghi, M. [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)] [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Farzalipour Tabriz, M., E-mail: meisam.fa@gmail.com [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Mohammad Moradi, O. [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)] [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2012-07-15

    Highlights: ? Electrohydrodynamic atomization (EHDA) assisted chemical synthesis of nickel nanoparticles is reported. ? Substituting water with non-aqueous media prevents the formation of nickel hydroxide. ? Size of particles decreased from 10 to 20 nm down to 2–4 nm by using multi-jet mode. ? Synthesized nanoparticles have diffraction patterns similar to amorphous materials. -- Abstract: In this study nickel nanoparticles were prepared via chemical reduction of nickel acetate using sodium borohydride using electrohydrodynamic atomization (EHDA) technique. This technique was used to spray a finely dispersed aerosol of nickel precursor solution into the reductive bath. Obtained particles were characterized by means of X-ray diffraction (XRD), UV–Visible spectroscopy, and transmission electron microscopy (TEM). Results confirmed the formation of nickel nanoparticles and showed that applying EHDA technique to chemical reduction method results in producing smaller particles with narrower size distribution in comparison with conventional reductive precipitation method.

  7. Positive Active Material For Alkaline Electrolyte Storage Battert Nickel Electrodes

    DOE Patents [OSTI]

    Bernard, Patrick (Massy, FR); Baudry, Michelle (Le Pontaroux, FR)

    2000-12-05

    A method of manufacturing a positive active material for nickel electrodes of alkaline storage batteries which consists of particles of hydroxide containing mainly nickel and covered with a layer of a hydroxide phase based on nickel and yttrium is disclosed. The proportion of the hydroxide phase is in the range 0.15% to 3% by weight of yttrium expressed as yttrium hydroxide relative to the total weight of particles.

  8. Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation

    DOE Patents [OSTI]

    Johnson, A.B. Jr.; Levy, I.S.; Trimble, D.J.; Lanning, D.D.; Gerber, F.S.

    1990-04-10

    An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-based materials is disclosed. Samples of zirconium-based materials having different compositions and/or fabrication methods are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280 to 316 C). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hydriding for the same materials when subject to in-reactor (irradiated) corrosion. 1 figure.

  9. Use of Solid Hydride Fuel for Improved long-Life LWR Core Designs

    SciTech Connect (OSTI)

    Greenspan, E

    2006-04-30

    The primary objective of this project was to assess the feasibility of improving the performance of PWR and BWR cores by using solid hydride fuels instead of the commonly used oxide fuel. The primary measure of performance considered is the bus-bar cost of electricity (COE). Additional performance measures considered are safety, fuel bundle design simplicity – in particular for BWR’s, and plutonium incineration capability. It was found that hydride fuel can safely operate in PWR’s and BWR’s without restricting the linear heat generation rate of these reactors relative to that attainable with oxide fuel. A couple of promising applications of hydride fuel in PWR’s and BWR’s were identified: (1) Eliminating dedicated water moderator volumes in BWR cores thus enabling to significantly increase the cooled fuel rods surface area as well as the coolant flow cross section area in a given volume fuel bundle while significantly reducing the heterogeneity of BWR fuel bundles thus achieving flatter pin-by-pin power distribution. The net result is a possibility to significantly increase the core power density – on the order of 30% and, possibly, more, while greatly simplifying the fuel bundle design. Implementation of the above modifications is, though, not straightforward; it requires a design of completely different control system that could probably be implemented only in newly designed plants. It also requires increasing the coolant pressure drop across the core. (2) Recycling plutonium in PWR’s more effectively than is possible with oxide fuel by virtue of a couple of unique features of hydride fuel – reduced inventory of U-238 and increased inventory of hydrogen. As a result, the hydride fuelled core achieves nearly double the average discharge burnup and the fraction of the loaded Pu it incinerates in one pass is double that of the MOX fuel. The fissile fraction of the Pu in the discharged hydride fuel is only ~2/3 that of the MOX fuel and the discharged hydride fuel is more proliferation resistant. Preliminary feasibility assessment indicates that by replacing some of the ZrH1.6 by ThH2 it will be possible to further improve the plutonium incineration capability of PWR’s. Other possibly promising applications of hydride fuel were identified but not evaluated in this work. A number of promising oxide fueled PWR core designs were also found as spin-offs of this study: (1) The optimal oxide fueled PWR core design features smaller fuel rod diameter of D=6.5 mm and a larger pitch-to-diameter ratio of P/D=1.39 than presently practiced by industry – 9.5mm and 1.326. This optimal design can provide a 30% increase in the power density and a 24% reduction in the cost of electricity (COE) provided the PWR could be designed to have the coolant pressure drop across the core increased from the reference 29 psia to 60 psia. (2) Using wire wrapped oxide fuel rods in hexagonal fuel assemblies it is possible to design PWR cores to operate at 54% higher power density than the reference PWR design that uses grid spacers and a square lattice, provided 60 psia coolant pressure drop across the core could be accommodated. Uprating existing PWR’s to use such cores could result in 40% reduction in the COE. The optimal lattice geometry is D = 8.08 mm and P/D = 1.41. The most notable advantages of wire wraps over grid spacers are their significant lower pressure drop, higher critical heat flux and improved vibrations characteristics.

  10. Synthesis, NMR spectra, and structure of rhodium hydride complexes with Rh-Sn bonds

    SciTech Connect (OSTI)

    Krut'ko, B.P.; Permin, A.B.; Petrosyan, V.S.; Reutov, O.A.

    1985-06-20

    The authors study the hydride complexes using Sn 119 and H 1 NMR spectroscopy. The spectra were taken in a pulse mode on a Varian FT-80A spectrometer equipped with a wideband system at 29.66 and 79.54 MHz. The Sn 119 and H 1 NMR spectral parameters for a solution of the complex (Bu/sub 4/N)/sub 3/ (HRh(SnCl/sub 3/)/sub 5/) in CD/sub 3/CN are shown, the spectra show that the (HRh(SnCl/sub 3/)/sub 5/)/sup 3 -/ anion has octahedral structure with four equatorial and one axial Rh-Sn bonds. New rhodium hydride complexes with general formula (R/sub 4/N)/sub 3/(HRh(SnCl/sub 3/)/sub 5/) were synthesized.

  11. Response of nickel surface to pulsed fusion plasma radiations

    SciTech Connect (OSTI)

    Niranjan, Ram Rout, R. K. Srivastava, R. Gupta, Satish C.; Chakravarthy, Y.; Patel, N. N.; Alex, P.

    2014-04-24

    Nickel based alloys are being projected as suitable materials for some components of the next generation fusion reactor because of compatible thermal, electrical and mechanical properties. Pure nickel material is tested here for possibility of similar application purpose. Nickel samples (> 99.5 % purity) are exposed here to plasma radiations produced due to D-D fusion reaction inside an 11.5 kJ plasma focus device. The changes in the physical properties of the nickel surface at microscopic level which in turn change the mechanical properties are analyzed using scanning electron microscope, optical microscope, glancing incident X-ray diffractometer and Vicker's hardness gauge. The results are reported here.

  12. Effects of nickel, chromate, and arsenite on histone 3 lysine...

    Office of Scientific and Technical Information (OSTI)

    LIFE SCIENCES; ARSENIC; CARCINOMAS; CELL DIVISION; CHROMATES; CHROMIUM; DNA; GENES; LUNGS; LYSINE; METHYLATION; MICROSCOPY; NICKEL; OCCUPATIONAL EXPOSURE Word Cloud More Like...

  13. Engineering of the band gap and optical properties of thin films of yttrium hydride

    SciTech Connect (OSTI)

    You, Chang Chuan; Mongstad, Trygve; Maehlen, Jan Petter; Karazhanov, Smagul, E-mail: smagulk@ife.no [Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway)

    2014-07-21

    Thin films of oxygen-containing yttrium hydride show photochromic effect at room temperature. In this work, we have studied structural and optical properties of the films deposited at different deposition pressures, discovering the possibility of engineering the optical band gap by variation of the oxygen content. In sum, the transparency of the films and the wavelength range of photons triggering the photochromic effect can be controlled by variation of the deposition pressure.

  14. Nanostructured metal foams: synthesis and applications

    SciTech Connect (OSTI)

    Luther, Erik P; Tappan, Bryce; Mueller, Alex; Mihaila, Bogdan; Volz, Heather; Cardenas, Andreas; Papin, Pallas; Veauthier, Jackie; Stan, Marius

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  15. Adsorption of carbonyl sulfide on nickel and tungsten films

    SciTech Connect (OSTI)

    Saleh, J.M.; Nasser, F.A.K.

    1985-07-18

    The interaction of carbonyl sulfide with evaporated nickel and tungsten films has been investigated in the temperature range 195-450 K using gas pressures ranging from 1 to 13 N m/sup -2/. Rapid but mainly associative chemisorption of COS occurred on both metals at 195 K. Further adsorption of COS on W at temperatures 293-450 K was extremely slow and accompanied by more CO desorption than COS adsorbed. Sulfidation of Ni film by COS occurred at temperatures greater than or equal to 293 K with the liberation of carbon monoxide. The rate of adsorption increased with temperature but was independent of COS pressure. The activation energy (E/sub x/) increased with extent (X) of sulfidation to a limiting value of 97 kJ mol/sup -1/. A linear relationship was obtained from the plot of E/sub x/ against 1/X, suggesting the applicability of Cabrera-Mott theory to the sulfidation of Ni film by COS. 20 references, 2 figures, 1 table.

  16. Buffer layers on rolled nickel or copper as superconductor substrates

    DOE Patents [OSTI]

    Paranthaman, Mariappan (Knoxville, TN); Lee, Dominic F. (Knoxville, TN); Kroeger, Donald M. (Knoxville, TN); Goyal, Amit (Knoxville, TN)

    2000-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /CeO.sub.2 /Ni, RE.sub.2 O.sub.3 /Ni (RE=Rare Earth), and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /CeO.sub.2 /Cu, RE.sub.2 O.sub.3 /Cu, and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approach, which includes chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.

  17. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  18. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, Xianghong (Pasadena, CA); Johnson, William L. (Pasadena, CA)

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  19. Draft of M2 Report on Integration of the Hybrid Hydride Model into INL’s MBM Framework for Review

    SciTech Connect (OSTI)

    Tikare, Veena; Weck, Philippe F.; Schultz, Peter A.; Clark, Blythe; Glazoff, Michael; Homer, Eric

    2014-07-01

    This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride {delta}-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding (Hanson et al., 2011). While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (Birk et al., 2012 and NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. This document demonstrates a basic hydride precipitation model that is built on a recently developed hybrid Potts-phase field model that combines elements of Potts-Monte Carlo and the phase-field models (Homer et al., 2013; Tikare and Schultz, 2012). The model capabilities are demonstrated along with the incorporation of the starting microstructure, thermodynamics of the Zr-H system and the hydride formation mechanism.

  20. Toxicity of nickel and nickel electroplating water to the freshwater cladoceran Moina macrocopa

    SciTech Connect (OSTI)

    Wong, C.K.; Wong, P.K.; Tao, H. (Chinese Univ. of Hong Kong, Shatin (Hong Kong))

    1991-09-01

    The present study investigates the effects of Ni{sup 2+} and other components of nickel electroplating water on the survival and reproductive capacity of the cladoceran Moina macrocopa, a common inhabitant of small ponds and rice paddies in Hong Kong and Southern China.

  1. Microtwinning in Template-Synthesized Single-Crystal Metal Nanowires Jinguo Wang,*, Mingliang Tian,, Thomas E. Mallouk,, and Moses H. W. Chan,

    E-Print Network [OSTI]

    of metal nanowires and/or nanotubes.3 Arrays of nanowires are obtained by filling a porous template nanowires.9 Mem- branes filled with cobalt, nickel, and iron are magnetic nano- composites that have strong

  2. Proton Diffusion in Nickel Hydroxide Prediction of Active Material Utilization

    E-Print Network [OSTI]

    Weidner, John W.

    Proton Diffusion in Nickel Hydroxide Prediction of Active Material Utilization Sathya Motupally of the active material is controlled by the diffusion rate of protons through the film. This hypothesis- tion by including the effect of proton diffusion through the active material of the nickel electrode.6

  3. Computational Benchmarking in Biomimetic Nickel, Copper, and Iron Complexes 

    E-Print Network [OSTI]

    Brothers, Scott Michael

    2012-02-14

    in the absence of experimental data. In this dissertation, such techniques serve to elucidate the observed reactivity or electronic character of both nickel and copper bound in square planar N?S? ligand fields, and of {Fe(NO)?} units, respectively. Nickel...

  4. Nickel Sequestration in a Kaolinite-Humic Acid Complex

    E-Print Network [OSTI]

    Sparks, Donald L.

    Nickel Sequestration in a Kaolinite-Humic Acid Complex M A A R T E N N A C H T E G A A L * A N D D to elucidate the effect of humic acid (HA) coatings on the formation and stabilization of nickel precipitates of ubiquitous coating materials such as humic acids. Introduction The mobility and bioavailability of trace

  5. Part IB Metals Course A: Worked Examples (2022)

    E-Print Network [OSTI]

    Cambridge, University of

    2022-01-01

    and the surface finish is good. A heat­resistant nickel base alloy cast using the lost wax process in which a wax model is surrounded by ceramic, the wax is then burnt off and the metal cast into the ceramic mould

  6. Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors

    E-Print Network [OSTI]

    Wood, Mary. H.; Welbourn, Rebecca J. L.; Zarbakhsh, Ali; Gutfreund, Philipp; Clarke, Stuart M.

    2015-06-07

    period of 24 hours to ensure equilibration was attained. The solid was then separated by centrifugation, and the final concentration of the supernatant in each case measured using a Total Organic Carbon Analyser (Sievers InnovOx 3.00). PNR PNR... the reflectivity of the two aforementioned spin states without polarisation analysis. The beam footprint on the sample was fixed to (35 x 35) mm2 and the angular divergence of the incoming beam was ??/? = 3 % (FWHM). Two nickel-sputtered silicon substrates (from...

  7. Metal Dusting of Heat-Resistant Alloys

    E-Print Network [OSTI]

    Al-Meshari, Abdulaziz I.

    dusting can also be a serious problem in other industrial sectors including nuclear plants, coal gasification units, ethylene plants, fuel cells, chemical reactors, steam generators, acetic acid cracking furnaces, and waste heat boilers [14] [15] [16... is catalytically accelerated by contact with iron, nickel, and cobalt. For example, coking which is a chronic problem in ethylene furnaces was thought to be caused by the reduction of a porous (Fe, Ni, Cr) spinel oxide layer at the metal surface...

  8. Method for regeneration of electroless nickel plating solution

    DOE Patents [OSTI]

    Eisenmann, E.T.

    1997-03-11

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorus acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution. 1 fig.

  9. Method for regeneration of electroless nickel plating solution

    DOE Patents [OSTI]

    Eisenmann, Erhard T. (5423 Vista Sandia, NE., Albuquerque, NM 87111)

    1997-01-01

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorous acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution.

  10. High Activity of Ce1-xNixO2-y for H2 Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions

    SciTech Connect (OSTI)

    G Zhou; L Barrio; S Agnoli; S Senanayake; J Evans; A Kubacka; M Estrella; J Hanson; A Martinez-Arias; et al.

    2011-12-31

    The importance of the oxide: Ce{sub 0.8}Ni{sub 0.2}O{sub 2-y} is an excellent catalyst for ethanol steam reforming. Metal-oxide interactions perturb the electronic properties of the small particles of metallic nickel present in the catalyst under the reaction conditions and thus suppress any methanation activity. The nickel embedded in ceria induces the formation of O vacancies, which facilitate cleavage of the OH bonds in ethanol and water.

  11. ReaxFFMgH Reactive Force Field for Magnesium Hydride Systems Sam Cheung, Wei-Qiao Deng, Adri C. T. van Duin, and William A. Goddard III*

    E-Print Network [OSTI]

    van Duin, Adri

    ReaxFFMgH Reactive Force Field for Magnesium Hydride Systems Sam Cheung, Wei-Qiao Deng, Adri C. T and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 ReceiVed: September 3FFMgH) for magnesium and magnesium hydride systems. The parameters for this force field were derived from fitting

  12. Time-resolved photoluminescence studies of free and donor-bound exciton in GaN grown by hydride vapor phase epitaxy

    E-Print Network [OSTI]

    Time-resolved photoluminescence studies of free and donor-bound exciton in GaN grown by hydride and Electrical and Computer Engineering and Photonics Center, Boston University, Boston, Massachusetts, 02215 R in unintentionally doped GaN grown by hydride vapor phase epitaxy. Low temperature (4 K), time-integrated PL spectra

  13. Modifying Carbon Cryogel-Hydride Nanocomposites for H2 Storage Saghar Sepehri, Betzaida Batalla Garca, Aaron Feaver, Qifeng Zhang, and Guozhong Cao

    E-Print Network [OSTI]

    Cao, Guozhong

    Modifying Carbon Cryogel- Hydride Nanocomposites for H2 Storage Saghar Sepehri, Betzaida Batalla García, Aaron Feaver, Qifeng Zhang, and Guozhong Cao Materials Science and Engineering, University resorcinol-formaldehyde CCs as nanoscaffold for hydrides. Ammonia borane (AB), a stable, white, crystalline

  14. Calculation of properties of crystalline lithium hydride using correlated wave function theory S. J. Nolan,1 M. J. Gillan,2,3 D. Alf,2,3,4 N. L. Allan,1 and F. R. Manby1

    E-Print Network [OSTI]

    Alfč, Dario

    Calculation of properties of crystalline lithium hydride using correlated wave function theory S. J, and cohesive energy of lithium hydride are calculated to very high accuracy through a combination of periodic. All calculated properties of lithium hydride and deuteride agree with empirical observations to within

  15. Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films

    E-Print Network [OSTI]

    Reed, Mark

    Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform nanotubes grown on patterned nickel nanodots and uniform thin films by plasma-enhanced chemical vapor on patterned nickel nanodots and uniform thin films is different. During growth of carbon nanotubes, a nickel

  16. Ceramic-metal composite article and joining method

    DOE Patents [OSTI]

    Kang, Shinhoo (Wayland, MA); Selverian, John H. (Burlington, MA); Kim, Hans J. (Concord, MA); Dunn, Edmund M. (Lexington, MA); Kim, Kyung S. (Barrington, RI)

    1992-01-01

    A ceramic-metal article including a ceramic rod, a metal rod, and a braze joining the ceramic and metal rods at a braze area of a coaxial bore in the metal rod. The bore gradually decreases in diameter, having an inward seat area sized for close sliding fit about the ceramic, a larger brazing area near the joint end, and a void area intermediate the braze and seat areas. The ceramic is seated without brazing in the bore seat area. The side wall between the brazing area and the metal outer surface is about 0.030-0.080 inch. The braze includes an inner braze layer, an outer braze layer, and an interlayer about 0.030-0.090 inch thick. A shoulder between the brazing and void areas supports the interlayer during bonding while preventing bonding between the void area and the ceramic member, leaving a void space between the void area and the ceramic member. A venting orifice extends generally radially through the metal member from the outer surface to the void space. The braze layers are palladium, platinum, gold, silver, copper, nickel, indium, chromium, molybdenum, niobium, iron, aluminum, or alloys thereof. Preferred is a gold-palladium-nickel brazing alloy. The interlayer is nickel, molybdenum, copper, tantalum, tungsten, niobium, aluminum, cobalt, iron, or an alloy thereof.

  17. Process for forming a nickel foil with controlled and predetermined permeability to hydrogen

    DOE Patents [OSTI]

    Engelhaupt, Darell E. (Kansas City, MO)

    1981-09-22

    The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readily-corrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature.

  18. Mechanistic study of the isotopic-exchange reaction between gaseous hydrogen and palladium hydride powder

    SciTech Connect (OSTI)

    Outka, D.A.; Foltz, G.W. (Sandia National Labs., Livermore, CA (USA))

    1991-07-01

    A detailed mechanism for the isotopic-exchange reaction between gaseous hydrogen and solid palladium hydride is developed which extends previous model for this reaction by specifically including surface reactions. The modeling indicates that there are two surface-related processes that contribute to the overall rate of exchange: the desorption of hydrogen from the surface and the exchange between surface hydrogen and bulk hydrogen. This conclusion is based upon measurements examining the effect of small concentrations of carbon monoxide were helpful in elucidating the mechanism. Carbon monoxide reversibly inhibits certain steps in the exchange; this slows the overall rate of exchange and changes the distribution of products from the reactor.

  19. Measurements of Ionic Structure in Shock Compressed Lithium Hydride from Ultrafast X-Ray Thomson Scattering

    SciTech Connect (OSTI)

    Kritcher, A. L. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94709 (United States); Neumayer, P.; Doeppner, T.; Landen, O. L.; Glenzer, S. H. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Brown, C. R. D. [Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); AWE plc., Aldermaston, Reading, RG7 4PR (United Kingdom); Davis, P. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Department of Physics, University of California Berkeley, Berkeley, California 94709 (United States); Falcone, R. W.; Lee, H. J. [Department of Physics, University of California Berkeley, Berkeley, California 94709 (United States); Gericke, D. O.; Vorberger, J.; Wuensch, K. [CFSA, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Gregori, G. [Department of Physics, Oxford University, Oxford OX1 3PU (United Kingdom); Holst, B.; Redmer, R. [Universitaet Rostock, Institut fuer Physik, D-18051 Rostock (Germany); Morse, E. C. [Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94709 (United States); Pelka, A.; Roth, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Darmstadt (Germany)

    2009-12-11

    We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.

  20. Method and apparatus for storing hydrogen isotopes. [stored as uranium hydride in a block of copper

    DOE Patents [OSTI]

    McMullen, J.W.; Wheeler, M.G.; Cullingford, H.S.; Sherman, R.H.

    1982-08-10

    An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas is stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forms at a significantly lower temperature).

  1. Complex Hydrides-A New Frontier for Future Energy Applications | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the following commentsMethods for Estimating:ILaboratory Hydrides-A New

  2. REPORT FOR COMMERCIAL GRADE NICKEL CHARACTERIZATION AND BENCHMARKING

    SciTech Connect (OSTI)

    None

    2012-12-20

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, has completed the collection, sample analysis, and review of analytical results to benchmark the concentrations of gross alpha-emitting radionuclides, gross beta-emitting radionuclides, and technetium-99 in commercial grade nickel. This report presents methods, change management, observations, and statistical analysis of materials procured from sellers representing nine countries on four continents. The data suggest there is a low probability of detecting alpha- and beta-emitting radionuclides in commercial nickel. Technetium-99 was not detected in any samples, thus suggesting it is not present in commercial nickel.

  3. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    SciTech Connect (OSTI)

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  4. Atomistic computer simulation analysis of nanocrystalline nickel-tungsten alloys

    E-Print Network [OSTI]

    Engwall, Alison Michelle

    2009-01-01

    Nanocrystalline nickel-tungsten alloys are harder, stronger, more resistant to degradation, and safer to electrodeposit than chromium. Atomistic computer simulations have previously met with success in replicating the ...

  5. Solidification/stabilization of simulated uranium and nickel contaminated sludges 

    E-Print Network [OSTI]

    Ramabhadran, Sanjay

    1996-01-01

    Research missions in nuclear energy conducted by the U.S. Department of Energy facilities have generated large volumes of mixed wastes with hazardous and radioactive components. Uranium and nickel are the primary contaminants of concern...

  6. Metal aminoboranes

    DOE Patents [OSTI]

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya Kaviraj; Shrestha, Roshan P.

    2010-05-11

    Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  7. Geogenic Nickel Speciation in Serpentine Soils and Its Relationship to Nickel Uptake in Hyperaccumulator Plants. Tuesday, November 3, 2009: 3:00 PM

    E-Print Network [OSTI]

    Sparks, Donald L.

    Geogenic Nickel Speciation in Serpentine Soils and Its Relationship to Nickel Uptake Siebecker1, Tiziana Centofanti2, Rufus Chaney2 and Donald Sparks1, (1)Plant and Soil Sciences, Univ to extract pollutants from soil. Some can accumulate up to 20g/kg nickel in dry shoot biomass. This ability

  8. Extensive relativistic calculations on the palladium hydride molecule Merethe Sjo"voll, Hilde Fagerli, Odd Gropen, and Jan Almlofa)

    E-Print Network [OSTI]

    Helgaker, Trygve

    Extensive relativistic calculations on the palladium hydride molecule Merethe Sjo"voll, Hilde to a series of molecules.8 Palladium and palladium compounds are important in catalytic processes of this, there have been relatively few calculations on palladium compounds.10 Essential

  9. In-situ study of hydride precipitation kinetics and re-orientation in Zircaloy using synchrotron radiation

    E-Print Network [OSTI]

    Motta, Arthur T.

    In-situ study of hydride precipitation kinetics and re- orientation in Zircaloy using synchrotron. Banchik4 , P. Vizcaino4 and J. R. Santisteban5 1. Department of Mechanical and Nuclear Engineering, Penn, Argonne, IL, USA 3. Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON

  10. Identification and quantification of hydride phases in Zircaloy-4 cladding using synchrotron X-ray diffraction q

    E-Print Network [OSTI]

    Motta, Arthur T.

    Identification and quantification of hydride phases in Zircaloy-4 cladding using synchrotron X-ray diffraction q R.S. Daum a,1 , Y.S. Chu b,2 , A.T. Motta c,* a Nuclear Engineering Division, Argonne National, IL 60439, United States c Department of Mechanical and Nuclear Engineering, The Pennsylvania State

  11. Verification and Validation Strategy for Implementation of Hybrid Potts-Phase Field Hydride Modeling Capability in MBM

    SciTech Connect (OSTI)

    Jason D. Hales; Veena Tikare

    2014-04-01

    The Used Fuel Disposition (UFD) program has initiated a project to develop a hydride formation modeling tool using a hybrid Potts­phase field approach. The Potts model is incorporated in the SPPARKS code from Sandia National Laboratories. The phase field model is provided through MARMOT from Idaho National Laboratory.

  12. Nickel coated aluminum battery cell tabs

    DOE Patents [OSTI]

    Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

    2014-07-29

    A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

  13. Final Report: Metal Perhydrides for Hydrogen Storage

    SciTech Connect (OSTI)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One LiH molecule contains one hydrogen atom because the valence of a Li ion is +1. One MgH2 molecule contains two hydrogen atoms because the valence of a Mg ion is +2. In metal perhydrides, a molecule could contain more hydrogen atoms than expected based on the metal valance, i.e. LiH1+n and MgH2+n (n is equal to or greater than 1). When n is sufficiently high, there will be plenty of hydrogen storage capacity to meet future requirements. The existence of hydrogen clusters, Hn+ (n = 5, 7, 9, 11, 13, 15) and transition metal ion-hydrogen clusters, M+(H2)n (n = 1-6), such as Sc(H2)n+, Co(H2)n+, etc., have assisted the development of this concept. Clusters are not stable species. However, their existence stimulates our approach on using electric charges to enhance the hydrogen adsorption in a hydrogen storage system in this study. The experimental and modeling work to verify it are reported here. Experimental work included the generation of cold hydrogen plasma through a microwave approach, synthesis of sorbent materials, design and construction of lab devices, and the determination of hydrogen adsorption capacities on various sorbent materials under various electric field potentials and various temperatures. The results consistently show that electric potential enhances the adsorption of hydrogen on sorbents. NiO, MgO, activated carbon, MOF, and MOF and platinum coated activated carbon are some of the materials studied. Enhancements up to a few hundred percents have been found. In general, the enhancement increases with the electrical potential, the pressure applied, and the temperature lowered. Theoretical modeling of the hydrogen adsorption on the sorbents under the electric potential has been investigated with the density functional theory (DFT) approach. It was found that the interaction energy between hydrogen and sorbent is increased remarkably when an electric field is applied. This increase of binding energy offers a potential solution for DOE when looking for a compromise between chemisorption and physisorption for hydrogen storage. Bonding of chemisorption is too

  14. Influence of process parameters on rolling-contact-fatigue life of ion plated nickel-copper-silver lubrication

    SciTech Connect (OSTI)

    Danyluk, Mike; Dhingra, Anoop

    2012-05-15

    In this paper, we present a connection between argon ion flux, element-mixing, and rolling contact fatigue (RCF) life of a thin film nickel-copper-silver lubricant on ball bearings. The film is deposited on the balls using an ion plating process and tested for RCF in high vacuum. The ion flux is measured using a Langmuir probe and the plane stress within the film during deposition is calculated using a thin film model. Experiments reveal that there is an inverse relationship between ion flux and RCF life for most deposition voltage and pressure combinations tested, specifically, 15.5-18.5 mTorr and 1.5-3.5 kV. For voltages up to 2.5 kV, RCF life decreases as ion flux increases due to increased compressive stress within the film, reaching as high as 2.6 GPa. For voltages between 2.5 and 3.5 kV, interlayer mixing of nickel and copper with the silver layer reduces RCF life due to contamination, even as ion flux and corresponding film compressive stress are reduced. A Monte Carlo-based simulation tool, SRIM is used to track collision cascades of the argon ions and metal atoms within the coating layers. At process voltages above 2.5 kV we observe elemental mixing of copper and nickel with the silver layer using Auger electron spectroscopy of coated steel and Si{sub 3}N{sub 4} balls. The authors conclude that an ion flux greater than 5.0 x 10{sup 14} cm{sup -2} s{sup -1} leads to reduced RCF life due to high film stress. In addition, process voltages greater than 2.5 kV also reduce RCF life due to contamination and interlayer mixing of nickel and copper within the silver layer.

  15. Nickel Phosphine Catalysts with Pendant Amines for Electrocatalytic Oxidation of Alcohols

    SciTech Connect (OSTI)

    Weiss, Charles J.; Wiedner, Eric S.; Roberts, John A.; Appel, Aaron M.

    2015-01-01

    Nickel phosphine complexes with pendant amines have been found to be electrocatalysts for the oxidation of primary and secondary alcohols, with turnover frequencies as high as 3.3 s-1. These complexes are the first electrocatalysts for alcohol oxidation based on non-precious metals, which will be critical for use in fuel cells. The research by CJW, ESW, and AMA was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The research by JASR was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  16. High Temperature Interactions of Antimony with Nickel

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.

    2012-07-01

    In this chapter, the surface and bulk interactions of antimony with the Ni-based anodes in solid oxide fuel cells (SOFC) will be discussed. High fuel flexibility is a significant advantage of SOFCs, allowing the direct use of fossil and bio fuels without a hydrogen separation unit. Synthesis gas derived from coal and biomass consists of a mixture of hydrogen, carbon monoxide, carbon dioxide, and steam, but finite amounts of tars and trace impurities such as S, Se, P, As, Sb, Cd, Pb, Cl, etc, are also always present. While synthesis gas is commonly treated with a series of chemical processes and scrubbers to remove the impurities, complete purification is not economical. Antimony is widely distributed in coals. During coal gasification antimony is volatilized, such that contact with the SOFC anodes and other SOFC parts, e.g., interconnect, current collecting wires, fuel gas supplying tubing, is most likely. This chapter addresses the following topics: high temperature Ni - Sb interactions; alteration phase, Ni3Sb, Ni5Sb2, NiSb, formation; thermochemical modeling; impact of Sb on the electrocatalytic activity of Ni toward the fuel oxidation and the presence of other impurities (sulfur, in particular); converted anode structural instability during long-term SOFC operation; comparison with nickel heterogeneous catalysts.

  17. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps

    SciTech Connect (OSTI)

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Yugova, T. G.; Cox, H.; Helava, H.; Makarov, Yu.; Usikov, A. S.

    2014-05-14

    Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ?10{sup 17}?cm{sup ?3} to (2–5)?×?10{sup 14}?cm{sup ?3}. The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ?5?×?10{sup 13}?cm{sup ?3} versus 2.9?×?10{sup 16}?cm{sup ?3} in the standard samples, with a similar decrease in the electron traps concentration.

  18. Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation

    DOE Patents [OSTI]

    Johnson, Jr., A. Burtron (Richland, WA); Levy, Ira S. (Kennewick, WA); Trimble, Dennis J. (Kennewick, WA); Lanning, Donald D. (Kennewick, WA); Gerber, Franna S. (Richland, WA)

    1990-01-01

    An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-bsed materials is disclosed. Samples of zirconium-based materials having different composition and/or fabrication are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280.degree. to 316.degree. C.). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hyriding for the same materials when subject to in-reactor (irradiated) corrision.

  19. RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride

    DOE Patents [OSTI]

    Jeffery, F.R.; Shanks, H.R.

    1980-08-26

    A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  20. THE COORDINATION CHEMISTRY OF METAL SURFACES

    SciTech Connect (OSTI)

    Muetterties, Earl L.

    1980-10-01

    In coordinately unsaturated molecular metal complexes, carbon-hydrogen bonds of the peripheral ligands may, if the stereochemistry allows, closely approach a metal center so as to develop a three-center two-electron bond between the carbon, the hydrogen, and the metal atoms, C-H-M. In some instances, the interaction .is followed by a scission of the C-H bond whereby the metal is effectively oxidized and discrete M-H and M-C {sigma} bonds are forrned. This class of metal-hydrogen-carbon interactions and reactions is shown to be a common phenomenon in metal surface chemistry. Ultra high vacuum studies of nickel and platinum with simple organic molecules like olefins, and arenes are described. These surface chemistry studies were done as a function of surface crystallography and surface composition. The discussion is largely limited to the chemistry of methyl isocyanide, acetonitrile, benzene and toluene. Molecular orbital calculations are presented that support the experimental identification of the importance of C-H-M metal bonding for metal surfaces.

  1. Method of making metal matrix composites reinforced with ceramic particulates

    DOE Patents [OSTI]

    Cornie, J.A.; Kattamis, T.; Chambers, B.V.; Bond, B.E.; Varela, R.H.

    1989-08-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys. 2 figs.

  2. Polymer filtration: A new technology for selective metals recovery

    SciTech Connect (OSTI)

    Smith, B.F.; Robison, T.W.; Cournoyer, M.E.; Wilson, K.V.; Sauer, N.N.; Mullen, K.I.; Lu, M.T.; Jarvinen, J.J.

    1995-04-01

    Polymer Filtration (PF) was evaluated for the recovery of electroplating metal ions (zinc and nickel) from rinse waters. Polymer Filtration combines the use of water-soluble metal-binding polymers and ultrafiltration to concentrate metal ions from dilute rinse water solutions. The metal ions are retained by the polymers; the smaller, unbound species freely pass through the ultrafiltration membrane. By using this process the ultrafiltered permeate more than meets EPA discharge limits. The metal ions are recovered from the concentrated polymer solution by pH adjustment using diafiltration and can be recycled to the original electroplating baths with no deleterious effects on the test panels. Metal-ion recovery is accomplished without producing sludge.

  3. Method of making metal matrix composites reinforced with ceramic particulates

    DOE Patents [OSTI]

    Cornie, James A. (North Chelmsford, MA); Kattamis, Theodoulos (Watertown, MA); Chambers, Brent V. (Cambridge, MA); Bond, Bruce E. (Bedford, MA); Varela, Raul H. (Canton, MA)

    1989-01-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys.

  4. Sub-Nanostructured Non Transition Metal Complex Grids for Hydrogen Storage

    SciTech Connect (OSTI)

    Dr. Orhan Talu; Dr. Surendra N. Tewari

    2007-10-27

    This project involved growing sub-nanostructured metal grids to increase dynamic hydrogen storage capacity of metal hydride systems. The nano particles of any material have unique properties unlike its bulk form. Nano-structuring metal hydride materials can result in: {sm_bullet}Increased hydrogen molecule dissociation rate, {sm_bullet} Increased hydrogen atom transport rate, {sm_bullet} Decreased decrepitation caused by cycling, {sm_bullet} Increased energy transfer in the metal matrix, {sm_bullet} Possible additional contribution by physical adsorption, and {sm_bullet} Possible additional contribution by quantum effects The project succeeded in making nano-structured palladium using electrochemical growth in templates including zeolites, mesoporous silica, polycarbonate films and anodized alumina. Other metals were used to fine-tune the synthesis procedures. Palladium was chosen to demonstrate the effects of nano-structuring since its bulk hydrogen storage capacity and kinetics are well known. Reduced project funding was not sufficient for complete characterization of these materials for hydrogen storage application. The project team intends to seek further funding in the future to complete the characterization of these materials for hydrogen storage.

  5. Martensite Strain Memory in the Shape Memory Alloy Nickel-Titanium Under Mechanical Cycling

    E-Print Network [OSTI]

    Daly, Samantha

    that largely stabilize during the first loading cycle. Keywords Shape memory alloy. Nickel-Titanium . Nitinol in the recovery of mechanically-induced strains as large as 8% in Nickel-Titanium (Nitinol), a nearly equi- atomic

  6. Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts

    SciTech Connect (OSTI)

    Cargnello, M; Doan-Nguyen, VVT; Gordon, TR; Diaz, RE; Stach, EA; Gorte, RJ; Fornasiero, P; Murray, CB

    2013-08-15

    Interactions between ceria (CeO2) and supported metals greatly enhance rates for a number of important reactions. However, direct relationships between structure and function in these catalysts have been difficult to extract because the samples studied either were heterogeneous or were model systems dissimilar to working catalysts. We report rate measurements on samples in which the length of the ceria-metal interface was tailored by the use of monodisperse nickel, palladium, and platinum nanocrystals. We found that carbon monoxide oxidation in ceria-based catalysts is greatly enhanced at the ceria-metal interface sites for a range of group VIII metal catalysts, clarifying the pivotal role played by the support.

  7. Metal inks

    DOE Patents [OSTI]

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  8. The anti-perovskite type hydride InPd{sub 3}H{sub 0.89}

    SciTech Connect (OSTI)

    Kohlmann, H.; Skripov, A.V.; Soloninin, A.V.; Udovic, T.J.

    2010-10-15

    Hydrogenation of tetragonal InPd{sub 3} in the ZrAl{sub 3} type structure (four-fold ccp superstructure) yields a hydride with a cubic AuCu{sub 3} type structure (one-fold ccp superstructure). Deuterium can be located by neutron powder diffraction in octahedral voids surrounded exclusively by palladium, [Pd{sub 6}], which are 88.5(6)% occupied in a statistical manner. The resulting deuteride InPd{sub 3}D{sub 0.89} thus crystallizes in a cubic anti-perovskite type structure (space group Pm3-bar m (no. 221), a=402.25(1) pm at 299(2) K). The Pd-D distance of 201.13(1) pm is typical for interstitial hydrides with palladium. Inelastic neutron scattering on the hydride InPd{sub 3}H{sub 0.89}, which shows a spectrum similar to that of binary palladium hydride, confirms the cubic site symmetry of hydrogen in [Pd{sub 6}] interstices. This is also confirmed by the absence of any quadrupole splitting in the {sup 2}D-NMR signal of the deuteride. {sup 1}H NMR spectra of InPd{sub 3}H{sub 0.89} do not show any motional narrowing. Values found for the H jump rate {tau}{sup -1} in InPd{sub 3}H{sub 0.89} remain below 10{sup 6} s{sup -1} in the studied temperature range 28-360 K, indicating a small hydrogen mobility in InPd{sub 3}H{sub 0.8} as compared with binary palladium hydride, PdH{sub {<=}1}. This can be attributed to the large spatial separation of the [Pd{sub 6}] sites. - Graphical abstract: Hydrogen induces a rearrangement in InPd{sub 3} from a ZrAl{sub 3} type structure to a cubic AuCu{sub 3} type structure, thus forming an anti-perovskite type hydride InPd{sub 3}H{sub 0.89}.

  9. Structural Basis of Low-Affinity Nickel Binding to the Nickel-Responsive Transcription Factor NikR from Escherichia coli

    SciTech Connect (OSTI)

    Phillips, C.; Schreiter, E; Stultz, C; Drennan, C

    2010-01-01

    Escherichia coli NikR regulates cellular nickel uptake by binding to the nik operon in the presence of nickel and blocking transcription of genes encoding the nickel uptake transporter. NikR has two binding affinities for the nik operon: a nanomolar dissociation constant with stoichiometric nickel and a picomolar dissociation constant with excess nickel [Bloom, S. L., and Zamble, D. B. (2004) Biochemistry 43, 10029-10038; Chivers, P. T., and Sauer, R. T. (2002) Chem. Biol. 9, 1141-1148]. While it is known that the stoichiometric nickel ions bind at the NikR tetrameric interface [Schreiter, E. R., et al. (2003) Nat. Struct. Biol. 10, 794-799; Schreiter, E. R., et al. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 13676-13681], the binding sites for excess nickel ions have not been fully described. Here we have determined the crystal structure of NikR in the presence of excess nickel to 2.6 {angstrom} resolution and have obtained nickel anomalous data (1.4845 {angstrom}) in the presence of excess nickel for both NikR alone and NikR cocrystallized with a 30-nucleotide piece of double-stranded DNA containing the nik operon. These anomalous data show that excess nickel ions do not bind to a single location on NikR but instead reveal a total of 22 possible low-affinity nickel sites on the NikR tetramer. These sites, for which there are six different types, are all on the surface of NikR, and most are found in both the NikR alone and NikR-DNA structures. Using a combination of crystallographic data and molecular dynamics simulations, the nickel sites can be described as preferring octahedral geometry, utilizing one to three protein ligands (typically histidine) and at least two water molecules.

  10. Design of a creep resistant nickel base superalloy for power plant applications

    E-Print Network [OSTI]

    Cambridge, University of

    Design of a creep resistant nickel base superalloy for power plant applications Part 2­Phase and used as tools to design a new `made to measure' nickel base superalloy for power plant applications (wt-%) nickel base superalloy has been proposed, for use in future fossil fuel power plant, to operate

  11. Development and Validation of ReaxFF Reactive Force Field for Hydrocarbon Chemistry Catalyzed by Nickel

    E-Print Network [OSTI]

    Goddard III, William A.

    nickel has also been used extensively to catalyze the formation and growth of carbon nanotubes from by Nickel Jonathan E. Mueller, Adri C. T. van Duin, and William A. Goddard III*, Materials and Process reactions catalyzed by nickel surfaces and particles using reactive molecular dynamics on thousands of atoms

  12. Phase transformations in nickel-rich nickel-titanium alloys : influence of strain-rate, temperature, thermomechanical treatment and nickel composition on the shape memory and superelastic characteristics

    E-Print Network [OSTI]

    Adharapurapu, Raghavendra R.

    2007-01-01

    melting and casting followed by primary metal working (metal working Most medical devices are fabricated from wire, strip or tube; investment casting

  13. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  14. Nickel aluminide alloy for high temperature structural use

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN); Sikka, Vinod K. (Clinton, TN)

    1991-01-01

    The specification discloses nickel aluminide alloys including nickel, aluminum, chromium, zirconium and boron wherein the concentration of zirconium is maintained in the range of from about 0.05 to about 0.35 atomic percent to improve the ductility, strength and fabricability of the alloys at 1200.degree. C. Titanium may be added in an amount equal to about 0.2 to about 0.5 atomic percent to improve the mechanical properties of the alloys and the addition of a small amount of carbon further improves hot fabricability.

  15. DETERMINATION OF IN-VITRO LUNG SOLUBILITY AND INTAKE-TO-DOSE CONVERSION FACTOR FOR TRITIATED LANTHANUM NICKEL ALUMINUM ALLOY

    SciTech Connect (OSTI)

    Farfan, E.; Labone, T.; Staack, G.; Cheng, Y.; Zhou, Y.; Varallo, T.

    2011-11-11

    A sample of tritiated lanthanum nickel aluminum alloy (LaNi4.25Al0.75 or LANA.75) similar to that used at the Savannah River Site Tritium Facilities was analyzed to estimate the particle size distribution of this metal tritide powder and the rate, at which this material dissolves in the human respiratory tract after it is inhaled. This information is used to calculate the committed effective dose received by a worker after inhaling the material. These doses, which were calculated using the same methodology given in the DOE Tritium Handbook, are presented as inhalation intake-to-dose conversion factors (DCF). The DCF for this metal tritide is less than the DCF for tritiated water and radiation worker bioassay programs designed for tritiated water are adequate to monitor for intakes of this material.

  16. Nanoscale Chemical and Structural Characterization of Transient Metallic Nanowires using Aberration-Corrected STEM-EELS

    E-Print Network [OSTI]

    -sur-Yvette, France ABSTRACT: Direct chemical and structural characterization of transient iron-nickel alloy nanowiresNanoscale Chemical and Structural Characterization of Transient Metallic Nanowires using Aberration-energy facets were observed. The hitherto unknown rich variety of structural and chemical behavior in alloyed

  17. Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors

    DOE Patents [OSTI]

    Brehm, Jr., William F. (Richland, WA); Colburn, Richard P. (Pasco, WA)

    1982-01-01

    An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.

  18. Development of an in situ Remediation Strategy for a Metals-Contaminated, Alkaline Groundwater

    E-Print Network [OSTI]

    King, Aaron Scott

    (mg/L) 0.755 0.169 0.390 0.352 Nickel (mg/L) 0.02 Eh) may result in dissolved metal species that are more or less amenable to a particular removal mechanism. This section summarizes the relevant environmental chemistries of copper, lead, arsenic...

  19. Advanced batteries for electric vehicle applications

    SciTech Connect (OSTI)

    Henriksen, G.L.

    1993-08-01

    A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

  20. Airbrushed Nickel Nanoparticles for Large-Area

    SciTech Connect (OSTI)

    Sarac, Mehmet; ANDERSON, BRYAN; Pearce, Ryan; Railsback, Justin; Oni, Adedapo; White, Ryan M.; Hensley, Dale K; Lebeau, James M; Melechko, Anatoli; Tracy, Joseph B

    2013-01-01

    Vertically aligned carbon nanofibers (VACNFs) were grown by plasma-enhanced chemical vapor deposition (PECVD) using Ni nanoparticle (NP) catalysts that were deposited by airbrushing onto Si, Al, Cu, and Ti substrates. Airbrushing is a simple method for depositing catalyst NPs over large areas that is compatible with roll-to-roll processing. The distribution and morphology of VACNFs are affected by the airbrushing parameters and the composition of the metal foil. Highly concentrated Ni NPs in heptane give more uniform distributions than pentane and hexanes, resulting in more uniform coverage of VACNFs. For VACNF growth on metal foils, Si micropowder was added as a precursor for Si-enriched coatings formed in situ on the VACNFs that impart mechanical rigidity. Interactions between the catalyst NPs and the metal substrates impart control over the VACNF morphology. Growth of carbon nanostructures on Cu is particularly noteworthy because the miscibility of Ni with Cu poses challenges for VACNF growth, and carbon nanostructures anchored to Cu substrates are desired as anode materials for Li-ion batteries and for thermal interface materials.

  1. Difference in the Reactivities of H-and Me-Substituted Dinucleating Bis(iminopyridine) Ligands with Nickel(0)

    E-Print Network [OSTI]

    Müller, Peter

    with Nickel(0) Amarnath Bheemaraju, Richard L. Lord, Peter Muller, and Stanislav Groysman*, Department

  2. The Use of Heterogeneous Metal Alkoxide Catalysts in Biodiesel Transesterification Reactions. 

    E-Print Network [OSTI]

    Rooney, William 1991-

    2012-04-18

    for such a catalyst. Some previously studied heterogeneous catalysts include: metal oxides such as KOH/ZrO2-SiO2, Co2O3- SiO2, Mo2O5- SiO2, Na2O- SiO2, ZrO2- SiO2; metal powders of nickel and palladium; cast iron shavings; steel shavings; zeolites; salts...

  3. Polymer filtration: An emerging technology for selective metals recovery

    SciTech Connect (OSTI)

    Smith, B.F.; Robison, T.W.; Cournoyer, M.E.

    1995-12-31

    A new technology is under development to selectively recover regulated metal ions from electroplating rinse waters. The electroplating metal ions are recovered in a concentrated form with the appropriate counter ions ready for return to the original electroplating bath. The technology is based on the use of specially designed water-soluble polymers that selectively bind with the metal ions in the rinse bath. The polymers have such a large molecular weight that they can be physically separated using available ultrafiltration technology. The advantages of this technology are high metal selectivity with no sludge formation, rapid processing, low energy, low capital costs, and small size. We have tested and demonstrated the recovery of zinc and nickel (a new alloy electroplating bath designed to replace cadmium) from rinse waters. The metal-ion concentrate was returned to the original electroplating bath. Applications of this technology include waste treatment for textile, paint and dye production, chemical manufacturing, and nuclear reactor and reprocessing operations.

  4. Biosorption of Lead and Nickel by Biomass of Marine Algae

    E-Print Network [OSTI]

    Volesky, Bohumil

    Biosorption of Lead and Nickel by Biomass of Marine Algae Z.R. Holan and B. Volesky" Department 22, 1993 Screening tests of different marine algae biomass types revealed a high passive biosorptive uptake of lead up to 270 mg Pb/g of biomass in some brown marine algae. Members of the order Fucales

  5. Enantioselective nickel catalysis : exploiting activated C-H bonds

    E-Print Network [OSTI]

    Bencivenga, Nicholas Ernest

    2012-01-01

    A method for the nickel-catalyzed cross-coupling between benzoxazole and secondary halides was explored. This method was to make use of the activated C-H bond found in benzoxazole at the 2-position to generate the nucleophilic ...

  6. Nickel(0)-Catalyzed Asymmetric Hydrocyanation of 1,3-Dienes

    E-Print Network [OSTI]

    RajanBabu, T. V. "Babu"

    (0)-catalyzed hydrocyanation of certain types of 1,3-dienes. 1-Phenyl-1,3-butadiene, 1-vinyl-3 in support of the development of the adiponitrile process from 1,3-butadiene and HCN by the DupontNickel(0)-Catalyzed Asymmetric Hydrocyanation of 1,3-Dienes Biswajit Saha and T. V. Rajan

  7. Nickel precatalysts as enabling tools for catalytic coupling reactions

    E-Print Network [OSTI]

    Standley, Eric A. (Eric Alan)

    2015-01-01

    [Chemical formula] A series of air-stable nickel complexes of the form L?Ni(aryl)X (L = monodentate phosphine, X = Cl, Br) and LNi(aryl)X (L = bis-phosphine) have been synthesized and are presented as a library of precatalysts ...

  8. ELECTRON BEAM -DIRECTED VAPOR DEPOSITION OF MULTIFUNCTIONAL D. T. QUEHEILLALT, Y. KATSUMI, H. N. G. WADLEY

    E-Print Network [OSTI]

    Wadley, Haydn

    . KATSUMI, H. N. G. WADLEY University of Virginia, Department of Materials Science & Engineering, 116 Engineers Way Charlottesville, Virginia, U.S.A. 22904-4745, dougq@virginia.edu ABSTRACT Multifunctional-pipe structures and porous electrode coatings for rechargeable nickel - metal hydride cells. In addition to load

  9. J. Electrochem. Soc., Vol. 142, No. 5, May 1995 9 The Electrochemical Society, Inc. 1401 1. E.g. Lawrence and E. Tannas, Jr., Flat-Panel Displays

    E-Print Network [OSTI]

    Weidner, John W.

    , and H. Sawai, J. Inst. Television Engineers Jpn., 47, 1006 (1993). 8. K. Machida, K. Amano, M. TokuraMotupaUy,*ChristopherC. Streinz,and JohnW. Weidner** Department of Chemical Engineering, University of South Carolina, Columbia/hydrogen, and nickel/metal hydrides. The re- dox reaction taking place at the electrode during discharge and charge can

  10. A Novel Routing Metric for Environmentally-Powered Sensors With Hybrid

    E-Print Network [OSTI]

    Ingram, Mary Ann

    Aravind Kailas and Mary Ann Ingram School of Electrical and Computer Engineering, Georgia Institute of Electrical and Computer Engineering, Georgia Institute of Technology, Savannah, Georgia 31407-3039, USA Email, depending on is type (e.g. Nickel Metal Hydride (NiMH) or Lithium Ion Polymer) can have cycle life ranging

  11. 3/21/11 1:37 PMUntitled Page 1 of 3

    E-Print Network [OSTI]

    Braun, Paul

    -like power with battery-like energy," said Braun, a professor of materials science and engineering. "Most both." The performance of typical lithium-ion (Li-ion) or nickel metal hydride (NiMH) rechargeable think of this the same way you do an internal combustion engine. You would just pull up to a charging

  12. Last Revised: 10/2013 Battery Waste Collection Request

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    Only Storage Location Mixed Batteries (alkaline, carbon zinc, Ni-Cad, nickel metal hydride, mercuryLast Revised: 10/2013 Battery Waste Collection Request www.ehs.washington.edu/forms/epo/1943.pdf Instructions: Fill out the approximate weight of each battery type KG For Environmental Health and Safety Use

  13. Page 1 of 2 UNIVERSAL WASTE

    E-Print Network [OSTI]

    Jia, Songtao

    -Cadmium (Ni-Cd) Nickel Metal Hydride (Ni-MH) Lithium Ion (Li-ion) Large or Small sealed lead acid (Pb) MercuryPage 1 of 2 UNIVERSAL WASTE and OTHER ENVIRONMENTALLY DELETERIOUS PRODUCTS Batteries All Universal Waste Batteries generated in laboratories must be collected through the hazardous waste program

  14. Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow

    E-Print Network [OSTI]

    Wang, Chao-Yang

    Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow W-dimensional model is developed to simulate discharge of a primary lithium/thionyl chloride battery. The model to the first task with important examples of lead-acid,1-3 nickel-metal hydride,4-8 and lithium-based batteries

  15. Maxim > App Notes > BATTERY MANAGEMENT INTERFACE CIRCUITS Keywords: USB, USB Charger, Li+ USB charger, Lithium Ion USB charger, NiMH USB charger, USB battery

    E-Print Network [OSTI]

    Allen, Jont

    charger, Lithium Ion USB charger, NiMH USB charger, USB battery charger, charging batteries from USB, and cabling. An overview of nickel metal hydride (NiMH) and lithium battery technologies, charging methodsMaxim > App Notes > BATTERY MANAGEMENT INTERFACE CIRCUITS Keywords: USB, USB Charger, Li+ USB

  16. On Modeling Bonds in Fused, Porous Networks: 3D Simulations

    E-Print Network [OSTI]

    Sastry, Ann Marie

    , fused, joint, mechanics, nanotube, network, random, sintered, welded. INTRODUCTION EXAMPLES OF FUSED.1177/002199803029725 ß 2003 Sage Publications #12;(nickel-metal hydride) and Li-ion (lithium ion) batteries that contain nanotube mat are among the newest engineered materials constructed in this way. Applications

  17. * corresponding Auithor. Email: cxw31@psu.edu Modeling Discharge and Charge Characteristics

    E-Print Network [OSTI]

    Wang, Chao-Yang

    of OH ­ with respect to the solvent velocity U j,ref open­circuit potential for reaction j: nickel­metal hydride battery, oxygen reaction, modeling and computer simulation #12; 3 LIST OF SYMBOLS _ nj transfer current density of reaction j, A/cm 2 i 0j,ref exchange current density of reaction j

  18. Powering the Next Billion Devices with Wi-Fi Vamsi Talla, Bryce Kellogg, Benjamin Ransford, Saman Naderiparizi,

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    - nication performance. Building on our design, we prototype battery-free temperature and camera sensors to wirelessly trickle-charge nickel­ metal hydride and lithium-ion coin-cell batteries at distances of up to 28 performance. 1. INTRODUCTION In the late 19th century, Nikola Tesla dreamed of elim- inating wires for both

  19. Resistive companion battery modeling for electric circuit simulations , R. Dougalb

    E-Print Network [OSTI]

    Resistive companion battery modeling for electric circuit simulations B. Wua , R. Dougalb , R be achieved based on RC models. In this study, the construction of RC battery models is investigated. A general battery model and a nickel±metal hydride cell model have been built. Simulations of RC battery

  20. Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals

    DOE Patents [OSTI]

    Maroni, Victor A. (Naperville, IL); von Winbush, Samuel (Huntington, NY)

    1988-01-01

    A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500.degree. C., electrolysis at a voltage not more negative than about -1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

  1. Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals

    DOE Patents [OSTI]

    Maroni, V.A.; von Winbush, S.

    1987-05-01

    A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500/degree/C, electrolysis at a voltage not more negative that about /minus/1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

  2. Effects of Additive Elements on the Phase Formation and Morphological Stability of Nickel Monosilicide Films

    SciTech Connect (OSTI)

    Lavoie,C.; Detavernier, C.; Cabral, Jr. , C.; d'Heurle, F.; Kellock, A.; Jordan-Sweet, J.; Harper, J.

    2006-01-01

    Alloying elements can substantially affect the formation and morphological stability of nickel monosilicide. A comprehensive study of phase formation was performed on 24 Ni alloys with varying concentrations of alloying elements. Silicide films have been used for more than 15 years to contact the source, drain and gate of state-of-the-art complementary-metal-oxide-semiconductor (CMOS) devices. In the past, the addition of alloying elements was shown to improve the transformation from the high resistivity C49 to the low resistivity C54-TiSi{sub 2} phase and to allow for the control of surface and interface roughness of CoSi{sub 2} films as well as produce significant improvements with respect to agglomeration of the films. Using simultaneous time-resolved X-ray diffraction (XRD), resistance and light scattering measurements, we follow the formation of the silicide phases in real time during rapid thermal annealing. Additions to the Ni-Si system lead to modifications in the phase formation sequence at low temperatures (metal-rich phases), to variations in the formation temperatures of NiSi and NiSi{sub 2}, and to changes in the agglomeration behavior of the films formed. Of the 24 elements studied, additions of Mo, Re, Ta and W are amongst the most efficient to retard agglomeration while elements such as Pd, Pt and Rh are most efficient to retard the formation of NiSi{sub 2}.

  3. Studies of isotopic exchange between gaseous hydrogen and palladium hydride powder

    SciTech Connect (OSTI)

    Foltz, G.W.; Melius, C.F.

    1987-12-01

    A gas flow apparatus has been constructed and used to study the isotopic exchange reaction occurring between the solid and gas phases in hydrogen (deuterium) gas flows directed through packed-powder beds of ..beta..-phase palladium deuteride (hydride). Spontaneous Raman light scattering is employed to obtain a real-time analysis of the isotopic composition of the gas (H/sub 2/, D/sub 2/, HD) exiting from the bed. A parametric rate-equation model is described which depicts the time-dependent behavior of the isotopic exchange process. The exchange mechanism is assumed to be rate-limited by processes occurring on the surface of the powder. The fundamental kinetic parameter of the model is the isotopic exchange probability, p, which is the probability that an isotopic exchange event occurs during a collision of a gas-phase atom with the surface. Isotope effects between the gas and solid phases are explicitly included in terms of the isotope separation factor, ..cap alpha... Results of the model are compared with the experimental measurements and, using a literature value of ..cap alpha.. = 2.4, good agreement is obtained for p approx. = 10/sup -7/. In view of the importance of the isotope effects in the hydrogen/palladium system and the range of a values reported for the ..beta..-phase in the literature, the sensitivity of the model results to a variation in the value of ..cap alpha.. is examined.

  4. ExoMol molecular line lists X: The spectrum of sodium hydride

    E-Print Network [OSTI]

    Rivlin, Tom; Yurchenko, Sergei N; Tennyson, Jonathan; Roy, Robert J Le

    2015-01-01

    Accurate and complete rotational, rotational-vibrational and rotational-vibrational-electronic line lists are calculated for sodium hydride: both the NaH and NaD isotopologues are considered. These line lists cover all ro-vibrational states of the ground ($X$~$^1\\Sigma^+$) and first excited ($A$~$^1\\Sigma^+$) electronic states. The calculations use available spectroscopically-determined potential energy curves and new high-quality, \\textit{ab initio} dipole moment curves. Partition functions for both isotopologues are calculated and the effect of quasibound states is considered. The resulting line lists are suitable for temperatures up to about 7000~K and are designed for studies of exoplanet atmospheres, brown dwarfs and cool stars. In particular, the NaH $A-X$ band is found to show a broad absorption feature at about 385 nm which should provide a signature for the molecule. All partition functions, lines and transitions are available as Supplementary Information to this article and at \\url{www.exomol.com}.

  5. Atomic-Scale Chemical, Physical and Electronic Properties of the Subsurface Hydride of Palladium

    SciTech Connect (OSTI)

    Weiss, Paul

    2014-01-20

    We employed low-temperature, extreme-high vacuum scanning tunneling microscopy (STM) to investigate the roles of subsurface hydride (H) and deuteride (D) in the surface reconstruction and surface reactivity of Pd{110}. Specifically, we gained the ability to tailor the surface structure of Pd{110} both by preparation method and by deposition of deuterium from the gas phase. We observed thiophene at low coverage on Pd{110} to determine its adsorption orientation and electronic structure through scanning tunneling spectroscopy (STS) – namely, conductance spectroscopy and differential conductance imaging. We developed the methods necessary to coadsorb D adatoms with thiophene molecules, and to induce the reaction of individual molecules with predefined subsurface H or D features. In the case of Pd{110}, we found a much more pronounced effect from subsurface D, as it is influenced by the surface directionality. These experiments facilitate an understanding of the role of surface and subsurface H and D in heterogeneous catalytic processes, specifically in the hydrodesulfuization (HDS) of thiophene, an important and ubiquitous component found to be detrimental to petroleum refining.

  6. Modeling of temporal behavior of isotopic exchange between gaseous hydrogen and palladium hydride power

    SciTech Connect (OSTI)

    Melius, C F; Foltz, G W

    1987-01-01

    A parametric rate-equation model is described which depicts the time dependent behavior of the isotopic exchange process occurring between the solid and gas phases in gaseous hydrogen (deuterium) flows through packed-powder palladium deuteride (hydride) beds. The exchange mechanism is assumed to be rate-limited by processes taking place on the surface of the powder. The fundamental kinetic parameter of the model is the isotopic exchange probability, p, which is the probability that an isotopic exchange event occurs during a collision of a gas phase atom with the surface. Isotope effects between the gas and solid phases are explicitly included in terms of the isotope separation factor, ..cap alpha... Results of the model are compared with recent experimental measurements of isotope exchange in the ..beta..-phase hydrogen/palladium system and, using a literature value of ..cap alpha.. = 2.4, a good description of the experimental data is obtained for p approx. 10/sup -7/. In view of the importance of the isotope effects in the hydrogen/palladium system and the range of ..cap alpha.. values reported for the ..beta..-phase in the literature, the sensitivity of the model results to a variation in the value of ..cap alpha.. is examined.

  7. A Broadly Applicable Strategy for Entry into Homogeneous Nickel(0) Catalysts from Air-Stable Nickel(II) Complexes

    E-Print Network [OSTI]

    Smith, Stacey J.

    A series of air-stable nickel complexes of the form L[subscript 2]Ni(aryl) X (L = monodentate phosphine, X = Cl, Br) and LNi(aryl)X (L = bis-phosphine) have been synthesized and are presented as a library of precatalysts ...

  8. Particle size effect of hydride formation and surface hydrogen absorption of nanosized palladium catalysts : L{sub 3} edge vs K edge x-ray absorption spectroscopy.

    SciTech Connect (OSTI)

    Tew, M. W.; Miller, J. T.; van Bokhoven, J. A.

    2009-08-01

    The particle size effect on the formation of palladium hydride and on surface hydrogen adsorption was studied at room temperature using in situ X-ray absorption spectroscopy at the Pd K and L{sub 3} edges. Hydride formation was indirectly observed by lattice expansion in Pd K edge XANES spectra and by EXAFS analysis. Hydride formation was directly detected in the L{sub 3} edge spectra. A characteristic spectral feature caused by the formation of a Pd-H antibonding state showed strong particle size dependence. The L{sub 3} edge spectra were reproduced using full multiple scattering analysis and density of state calculations, and the contributions of bulk absorbed and surface hydrogen to the XANES spectra could be distinguished. The ratio of hydrogen on the surface versus that in the bulk increased with decreasing particle size, and smaller particles dissolved less hydrogen.

  9. Deciphering the structure of nano-nickel composites

    SciTech Connect (OSTI)

    Johnson, Oliver K

    2009-01-01

    A model has been developed to predict piezoresistivity in Silicone/Nickel Nanostrand composites. This model combines the theory of quantum mechanical tunneling with percolation theory to obtain macroscopic composite resistivity as a function of strain from quantum mechanical principles and statistical characterization of constituent morphology. It has been shown that a model incorporating quantum mechanical tunneling and percolation theory can be used to predict piezoresistivity in Silicone/Nickel Nanostrand composites. The predictions of this model qualitatively demonstrate the large drop in resistivity with strain that these composites exhibit. The quantitative accuracy of the model was shown to be usually within one order of magnitude. Further work must be done to obtain an empirical distribution of inter-nanostrand gap distances, the tunneling barrier height ({lambda}), and the fraction of conductive junctions as a function of strain for these composites.

  10. Self-lubricating carbon nanotube reinforced nickel matrix composites

    SciTech Connect (OSTI)

    Scharf, T. W.; Neira, A.; Hwang, J. Y.; Banerjee, R.; Tiley, J.

    2009-07-01

    Nickel (Ni)--multiwalled carbon nanotube (CNT) composites have been processed in a monolithic form using the laser-engineered net shape (LENS) processing technique. Auger electron spectroscopy maps determined that the nanotubes were well dispersed and bonded in the nickel matrix and no interfacial chemical reaction products were determined in the as-synthesized composites. Mechanisms of solid lubrication have been investigated by micro-Raman spectroscopy spatial mapping of the worn surfaces to determine the formation of tribochemical products. The Ni-CNT composites exhibit a self-lubricating behavior, forming an in situ, low interfacial shear strength graphitic film during sliding, resulting in a decrease in friction coefficient compared to pure Ni.

  11. Method for heat treating iron-nickel-chromium alloy

    DOE Patents [OSTI]

    Not Available

    1980-04-03

    A method is described for heat treating an age-hardenable iron-nickel-chromium alloy to obtain a morphology of the gamma-double prime phase enveloping the gamma-prime, the alloy consisting essentially of about 25 to 45% nickel, 10 to 16% chromium, 1.5 to 3% of an element selected from the group consisting of molybdenum and niobium, about 2% titanium, about 3% aluminum, and the remainder substantially all iron. To obtain optimum results, the alloy is heated to a temperature of 1025 to 1075/sup 0/C for 2 to 5 minutes, cold-worked about 20 to 60%, aged at a temperature of about 775/sup 0/C for 8 hours followed by an air-cool, and then heated to a temperature in the range of 650 to 700/sup 0/C for 2 hours followed by an air-cool.

  12. A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.

    SciTech Connect (OSTI)

    Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

    2013-03-01

    Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

  13. Process for the electrodeposition of low stress nickel-manganese alloys

    DOE Patents [OSTI]

    Kelly, James John; Goods, Steven Howard; Yang, Nancy Yuan-Chi; Cadden, Charles Henry

    2005-06-07

    A process for electrodepositing a low stress nickel-manganese multilayer alloy on an electrically conductive substrate is provided. The process includes the steps of immersing the substrate in an electrodeposition solution containing a nickel salt and a manganese salt and repeatedly passing an electric current through an immersed surface of the substrate. The electric current is alternately pulsed for predetermined durations between a first electrical current that is effective to electrodeposit nickel and a second electrical current that is effective to electrodeposit nickel and manganese. A multilayered alloy having adjacent layers of nickel and a nickel-manganese alloy on the immersed surface of the substrate is thereby produced. The resulting multilayered alloy exhibits low internal stress, high strength and ductility, and high strength retention upon exposure to heat.

  14. A biotemplated nickel nanostructure: Synthesis, characterization and antibacterial activity

    SciTech Connect (OSTI)

    Ashtari, Khadijeh; Fasihi, Javad; Mollania, Nasrin; Khajeh, Khosro

    2014-02-01

    Highlights: • Nickel nanostructure-encapsulated bacteria were prepared using electroless deposition. • Bacterium surface was activated by red-ox reaction of its surface amino acids. • Interfacial changes at cell surfaces were investigated using fluorescence spectroscopy. • TEM and AFM depicted morphological changes. • Antibacterial activity of nanostructure was examined against different bacteria strains. - Abstract: Nickel nanostructure-encapsulated bacteria were prepared using the electroless deposition procedure and activation of bacterium cell surface by red-ox reaction of surface amino acids. The electroless deposition step occurred in the presence of Ni(II) and dimethyl amine boran (DMAB). Interfacial changes at bacteria cell surfaces during the coating process were investigated using fluorescence spectroscopy. Fluorescence of tryptophan residues was completely quenched after the deposition of nickel onto bacteria surfaces. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) depicted morphological changes on the surface of the bacterium. It was found that the Ni coated nanostructure was mechanically stable after ultrasonication for 20 min. Significant increase in surface roughness of bacteria was also observed after deposition of Ni clusters. The amount of coated Ni on the bacteria surface was calculated as 36% w/w. The antibacterial activity of fabricated nanostructure in culture media was examined against three different bacteria strains; Escherichia coli, Bacillus subtilis and Xantomonas campestris. The minimum inhibitory concentrations (MIC) were determined as 500 mg/L, 350 mg/L and 200 mg/L against bacteria, respectively.

  15. Catalytic Hydrogenolysis of Biphenylene with Platinum, Palladium, and Nickel Phosphine Complexes

    E-Print Network [OSTI]

    Jones, William D.

    Catalytic Hydrogenolysis of Biphenylene with Platinum, Palladium, and Nickel Phosphine Complexes activation and formation by plati- num and palladium phosphine complexes.4g The oper- ating catalytic cycle

  16. The distribution of potentially toxic heavy metals in the sediments of San Antonio Bay and the northwest Gulf of Mexico 

    E-Print Network [OSTI]

    Trefry, John Harold

    1974-01-01

    from 48 locations in the northwest Gulf of Mexico, including San Antonio Bay and the Mississippi River Delta, were acid leached and analyzed for iron, manganese, lead, zinc, cadmium, copper, and nickel by atomic absorption spectrophotometry. HNO... and HNO -HC1 solutions leached 60-70% of the iron and 60 to more than 90% of the other metals from the sediments Hcavy metal concentrations in the acid lese'hable frac- tion of the sediments were normalized against the acid lcachable iron...

  17. Hydride production in zircaloy-4 as a function of time and temperature 

    E-Print Network [OSTI]

    Parkison, Adam Joseph

    2009-05-15

    The experiments performed for this thesis were designed to define the primary process variables of time, temperature, and atmosphere for an engineering system that will produce metal powder from recycled nuclear fuel ...

  18. Design of an Integrated System to Recycle Zircaloy Cladding Using a Hydride-Milling-Dehydride Process 

    E-Print Network [OSTI]

    Kelley, Randy Dean

    2011-10-21

    A process for recycling spent nuclear fuel cladding, a zirconium alloy (Zircaloy), into a metal powder that may be used for advanced nuclear fuel applications, was investigated to determine if it is a viable strategy. The process begins...

  19. On Transition Metal Catalyzed Reduction of N-nitrosodimethlamine

    E-Print Network [OSTI]

    Zhou, Jun; Tian, Junhua; Zhao, Zhun

    2014-01-01

    This report provides a critical review on "Metal-Catalyzed Reduction of N-Nitrosodimethylamine with Hydrogen in Water", by Davie et al. N-nitrosodimethlamine (NDMA) is a contaminant in drinking and ground water which is difficult to remove by conventional physical methods, such as air stripping. Based on the reported robust capability of metal based powder shaped catalysts in hydrogen reduction, several monometallic and bimetallic catalyst are studied in this paper on the reduction of NDMA with hydrogen. Two kinds of kinetics, metal weight normalized and surface area normalized, are compared between each catalyst in terms of pseudo-first order reaction rate. Palladium, copper enhanced palladium and nickel are found to be very efficient in NDMA reduction, with half-lives on the order of hours per 10 mg/l catalyst metal. Preliminary LC-MS data and carbon balance showed no intermediates. Finally, a simple hydrogen and NMDA surface activated reaction mechanism is proposed by the author for palladium and nickel.

  20. Lead, Uranium, and Nickel Compound Data from the XAFS Library at the Stanford Synchrotron Radiation Laboratory (SSRL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The x-ray absorption fine structure spectroscopy (XAFS) library at the Stanford Synchrotron Radiation Laboratory is intended to be a reference library of XAFS spectra for various lead, uranium, and nickel compounds. Compounds are organized by central atom and all spectra are transmission data. Molecular Environmental Science (MES) research at SSRL focuses on the fundamental interfacial, molecular- and nano-scale processes that control contaminant and nutrient cycling in the biosphere with the goal of elucidating global elemental cycles and anthropogenic influences on the environment. Key areas of investigation include the: (a) Structural chemistry of water and dissolved solutes, (b) Structural chemistry and reactivity of complex natural environmental materials with respect to heavy metals and metalloids (biominerals, Fe- and Mn-oxides, biofilms, and organic materials), (c) Reactions at environmental interfaces, including sorption, precipitation and dissolution processes that affect the bioavailability of heavy metals and other contaminants, and (d) Microbial transformations of metals and anions. SSRL-based MES research utilizes synchrotron-based x-ray absorption spectroscopy (XAS), x-ray diffraction (XRD), small-angle x-ray scattering (SAXS), x-ray standing wave (XSW) spectroscopy, and photoemission spectroscopy (PES) because of their unique capabilities to probe structure/composition relationships in complex, non-crystalline, and dilute materials. [copied from http://www-ssrl.slac.stanford.edu/mes/index.html

  1. X-ray absorption spectroscopic studies of the active sites of nickel- and copper-containing metalloproteins

    SciTech Connect (OSTI)

    Tan, G.O.

    1993-06-01

    X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it, from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here.

  2. Novel Ternary Molten Salt Electrolytes for intermediate-temperature sodium/nickel chloride batteries

    SciTech Connect (OSTI)

    Li, Guosheng; Lu, Xiaochuan; Coyle, Christopher A.; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

    2012-12-15

    The sodium-nickel chloride (ZEBRA) battery is typically operated at relatively high temperature (250~350°C) to achieve adequate electrochemical performance. Reducing the operating temperature in the range of 150 to 200°C can lead to enhanced cycle life by suppressing temperature related degradation mechanisms. The reduced temperature range also allows for lower cost materials of construction such as elastomeric sealants and gaskets. To achieve adequate electrochemical performance at lower operating temperatures requires an overall reduction in ohmic losses associated with temperature. This includes reducing the ohmic resistance of ?”-alumina solid electrolyte (BASE) and the incorporation of low melting point molten salt as the secondary electrolyte. In present work, planar-type Na/NiCl2 cells with a thin flat plate BASE (600 ?m) and low melting point secondary electrolyte were evaluated at reduced temperatures. Molten salt formulation for use as secondary electrolytes were fabricated by the partial replace of NaCl in the standard secondary electrolyte (NaAlCl4) with other lower melting point alkali metal salts such as NaBr, LiCl, and LiBr. Electrochemical characterization of the ternary molten salts demonstrated , improved ionic conductivity, and sufficient electrochemical window at reduced temperatures. Furthermore, Na/NiCl2 cells with 50 mol% NaBr-containing secondary electrolyte exhibited reduced polarizations at 175°C compared to the cell with the standard NaAlCl4 catholyte. The cells also exhibited stable cycling performance even at 150oC.

  3. Nickel-catalyzed reductive coupling reactions of 1,6-enynes and the total synthesis of (+)-acutiphycin

    E-Print Network [OSTI]

    Moslin, Ryan Thomas McLeod

    2007-01-01

    Nickel-Catalyzed Reductive Coupling Reactions of Aldehydes and Chiral 1,6-Enynes. A study of nickel-catalyzed reductive coupling reactions of aldehydes and chiral 1,6-enynes has provided evidence for stereospecific ligand ...

  4. Nickel-catalyzed asymmetric cross-couplings of secondary allylic chlorides and planar-chiral compounds in asymmetric synthesis

    E-Print Network [OSTI]

    Son, Sunghee

    2008-01-01

    In Part I, nickel-catalyzed asymmetric carbon-carbon bond-forming reactions are described. A nickel/Pybox system effectively catalyzes regio- and enantioselective cross-couplings between racemic secondary allylic chlorides ...

  5. Battery Electrode Materials with High Cycle Lifetimes

    SciTech Connect (OSTI)

    Prof. Brent Fultz

    2001-06-29

    In an effort to understand the capacity fade of nickel-metal hydride (Ni-MH) batteries, we performed a systematic study of the effects of solute additions on the cycle life of metal hydride electrodes. We also performed a series of measurements on hydrogen absorption capacities of novel carbon and graphite-based materials including graphite nanofibers and single-walled carbon nanotubes. Towards the end of this project we turned our attention to work on Li-ion cells with a focus on anode materials.

  6. Mechanisms of nickel sorption by a bacteriogenic birnessite

    E-Print Network [OSTI]

    Pena, J.

    2010-01-01

    metal dynamics in acid rock drainage. Environmental Scienceon biofilms formed in acid rock drainage from a Ni mine in

  7. Presented at the NuMat 2012 Conference, 2225 October 2012, Osaka, Japan Effect of thermo-mechanical cycling on zirconium hydride reorientation

    E-Print Network [OSTI]

    Motta, Arthur T.

    -mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction Kimberly B and Nuclear Engineering, Penn State University, University Park, PA 16802, USA b Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, Canada K7L 3N6 c Advanced Photon Source, Argonne

  8. Polymer quenched prealloyed metal powder

    DOE Patents [OSTI]

    Hajaligol, Mohammad R. (Midlothian, VA); Fleischhauer, Grier (Midlothian, VA); German, Randall M. (State College, PA)

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  9. Industrial Technologies Program ORNL-developed cast nickel aluminide rolls

    E-Print Network [OSTI]

    strength and oxidation resistance. · · · · Metal Infusion Surface Treatment (MIST) (2006)--a process for infusing up to 51 elements into metal and alloy surfaces, MIST lengthens the life of metalworking technology and the deployment of industrial wireless technologies. #12;Nanomanufacturing Metal Infusion

  10. Electrodepositionof Metal Alloyand Mixed Oxide Films Usinga Single-PrecursorTetranuclearCopper-NickelComplex

    E-Print Network [OSTI]

    Kounaves, Samuel P.

    coatings, nanostructurally designed materials with unique mechanical and electronic properties, methanol oxidation, and coal liquefactionJ '2The syn- thesis of bimetallic alloys and oxides is much more-known catalysts for some useful chemical processes ~'2'5and have superior corrosion properties when compared

  11. Nickel(II) and Copper(I,II)-based Metal-Organic Frameworks Incorporating an

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser Work Featured onNewsNews and Newsroom

  12. Orientation dependence of plastic deformation in nickel-based single crystal superalloys: Discretecontinuous model simulations

    E-Print Network [OSTI]

    Devincre, Benoit

    Orientation dependence of plastic deformation in nickel-based single crystal superalloys: Discrete of single-crystal nickel-based superalloys is simulated. At 1123 K, two uniaxial tensile loading cases though no cubic slip systems are activated. In the [001] case, the plastic flow is distributed more

  13. Determination of cadmium, chromium, nickel, and lead in urine using Graphite Furnace Atomic Absorption spectrophotometry

    SciTech Connect (OSTI)

    Hamilton, L.G.; Farrar, R.B.

    1980-12-01

    Procedures using graphite furnace atomic absorption spectrophotometry for the determination of cadmium, chromium, nickel, and lead are described in this report. The lowest concentrations reported using the procedure are 5 ..mu..g/l for cadmium, chromium, and nickel and 10 ..mu..g/l for lead.

  14. Mathematical modeling of lithium-ion and nickel battery systems Parthasarathy M. Gomadama

    E-Print Network [OSTI]

    Weidner, John W.

    Mathematical modeling of lithium-ion and nickel battery systems Parthasarathy M. Gomadama , John W of lithium and nickel battery systems developed at the University of South Carolina is presented. Models of Li/Li-ion batteries are reviewed that simulated the behavior of single electrode particles, single

  15. The role of martensite reorientation in the fretting behaviour of nickel titanium shape memory alloy

    E-Print Network [OSTI]

    Sun, Qing-Ping

    887 The role of martensite reorientation in the fretting behaviour of nickel titanium shape memory.1243/13506501JET427 Abstract: In this study, fretting tests of a GCr15 steel ball against a nickel titanium (Ni. It is found that the martensite reorientation plays an important role in the fretting behaviour of Ni

  16. Stress dependence of cross slip energy barrier for face-centered cubic nickel

    E-Print Network [OSTI]

    Cai, Wei

    Stress dependence of cross slip energy barrier for face-centered cubic nickel Keonwook Kang a , Jie-centered cubic (FCC) nickel as a function of multiple stress components is predicted by both continuum line tension and discrete atomistic models. Contrary to Escaig's claim that the Schmid stress component has

  17. Use of the Niyama Criterion To Predict Shrinkage-Related Leaks in High-Nickel

    E-Print Network [OSTI]

    Beckermann, Christoph

    used by foundries to detect solidification shrinkage defects in steel castings is the Niyama criterion to Predict Shrinkage-Related Leaks in High-Nickel Steel and Nickel-Based Alloy Castings," in Proceedings shrinkage that is not visible on a standard radiographic film), other casting features, or some combination

  18. Atomic force microscopy of nickel dot arrays with tuning fork and nanotube probe

    E-Print Network [OSTI]

    Chandrasekhar, Venkat

    Atomic force microscopy of nickel dot arrays with tuning fork and nanotube probe S. Rozhok,a) S microscopy are combined with the unique properties of carbon nanotubes to improve the spatial resolution of atomic force microscopy AFM images of nickel dot arrays. These arrays have high relief features

  19. Nickel-mediated polyol synthesis of hierarchical V2O5 hollow microspheres with enhanced lithium

    E-Print Network [OSTI]

    Cao, Guozhong

    Nickel-mediated polyol synthesis of hierarchical V2O5 hollow microspheres with enhanced lithium microspheres has been developed, based on a nickel-mediated polyol process and subsequent calcinations, such as one-dimensional structures (nanowires, nanorods, and nanotubes),21­23 nanosheets,5 and nanobers12

  20. In situ reduction and oxidation of nickel from solid oxide fuel cells in a Titan ETEM

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    In situ reduction and oxidation of nickel from solid oxide fuel cells in a Titan ETEM A. Faes1. C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cell - Fundamentals, Design, Denmark antonin.faes@epfl.ch Keywords: In situ ETEM, nickel oxide, reduction, RedOx, SOFC Solid Oxide Fuel

  1. Hydrocracking of n-decane over zeolite-supported metal sulfide catalysts. 2: Zeolite Y-supported Ni and Ni-Mo sulfides

    SciTech Connect (OSTI)

    Welters, W.J.J.; Waerden, O.H. van der; Beer, V.H.J. de; Santen, R.A. van [Eindhoven Univ. of Technology (Netherlands). Schuit Inst. of Catalysis

    1995-04-01

    For zeolite Y-supported nickel sulfide catalysts the influence of the metal sulfide dispersion on the hydrocracking properties for n-decane is examined. In order to obtain different nickel sulfide distributions (inside or outside the zeolite structure) and dispersions, the preparation method (impregnation of CaY or ion exchange of NaY), sulfidation procedure (direct sulfidation or sulfidation after drying), and metal loading are varied. A higher nickel sulfide surface (as measured by dynamic oxygen chemisorption) results in a strong increase of the n-decane conversion, but this is not accompanied by an improvement of the catalytic properties toward ideal hydrocracking. Additionally, some zeolite Y-supported Ni-Mo sulfide catalysts (varying in preparation method and sulfidation procedure) are tested for the hydroconversion of it-decane. However, no promoter effect could be observed. The activity of the bimetallic sulfide catalysts is always almost equal to that of the most active monometallic sulfide constituent.

  2. Vertically Grown Multiwalled Carbon Nanotube Anode and Nickel Silicide Integrated High Performance Microsized (1.25 L) Microbial

    E-Print Network [OSTI]

    Vertically Grown Multiwalled Carbon Nanotube Anode and Nickel Silicide Integrated High Performance multiwalled carbon nanotubes (MWCNTs) with a nickel silicide (NiSi) contact area that produced 197 mA/m2, carbon nanotube, nickel silicide, surface-to-volume ratio, power density Microbial fuel cells (MFCs

  3. Calorimetric study of the palladium hydride and deuteride systems. Preliminary report

    SciTech Connect (OSTI)

    Wagner, J.E.

    1985-08-12

    Pressure differential scanning calorimetry was applied to a study of the hydrogenation of palladium metal. The effects of hydrogen and deuterium absorption by palladium metal, the effects of isotope exchanges, and hydrogen and deuterium pressure changes which affect the stoichiometry of PdH/sub x/ and PdD/sub x/ are presented in some detail by this experimental technique. It is emphasized that a pressure differential scanning calorimeter is a quick and convenient experimental means for assessing hydrogen absorption properties of hydrogen storage materials. 13 refs., 4 figs., 1 tab.

  4. Advanced nickel base alloys for high strength, corrosion applications

    DOE Patents [OSTI]

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  5. Plasma-assisted catalytic ionization using porous nickel plate

    SciTech Connect (OSTI)

    Oohara, W.; Maeda, T.; Higuchi, T.

    2011-09-15

    Hydrogen atomic pair ions, i.e., H{sup +} and H{sup -} ions, are produced by plasma-assisted catalytic ionization using a porous nickel plate. Positive ions in a hydrogen plasma generated by dc arc discharge are irradiated to the porous plate, and pair ions are produced from the back of the irradiation plane. It becomes clear that the production quantity of pair ions mainly depends on the irradiation current of positive ions and the irradiation energy affects the production efficiency of H{sup -} ions.

  6. Preparation and electrochemical properties of multiwalled carbon nanotubes-nickel oxide porous composite for supercapacitors

    SciTech Connect (OSTI)

    Zheng Yanzhen; Zhang Milin . E-mail: dhyzyz@yahoo.com.cn; Gao Peng

    2007-09-04

    Porous nickel oxide/multiwalled carbon nanotubes (NiO/MWNTs) composite material was synthesized using sodium dodecyl phenyl sulfate as a soft template and urea as hydrolysis-controlling agent. Scanning electron microscopy (SEM) results show that the as-prepared nickel oxide nanoflakes aggregate to form a submicron ball shape with a porous structure, and the MWNTs with entangled and cross-linked morphology are well dispersed in the porous nickel oxide. The composite shows an excellent cycle performance at a high current of 2 A g{sup -1} and keeps a capacitance retention of about 89% over 200 charge/discharge cycles. A specific capacitance approximate to 206 F g{sup -1} has been achieved with NiO/MWNTs (10 wt.%) in 2 M KOH electrolyte. The electrical conductivity and the active sites for redox reaction of nickel oxide are significantly improved due to the connection of nickel nanoflakes by the long entangled MWNTs.

  7. The synthesis, characterization and reactivity of high oxidation state nickel fluorides

    SciTech Connect (OSTI)

    Chacon, L.C. [Univ. of Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States). Chemical Sciences Div.

    1997-12-01

    The research described in this thesis has mainly addressed the challenge of the synthesis of thermodynamically unstable nickel fluorides, which cannot be made by traditional thermal methods. A low-temperature approach towards the synthesis of such transition metal fluorides exploits the greater thermodynamic stability of high oxidation states in anions and involves the use of anhydrous hydrogen fluoride (aHF) as a solvent. The general method consists of combining an aHF soluble starting material (e.g., K{sub 2}NiF{sub 6}) with a Lewis fluoroacid (e.g., BF{sub 3}), which precipitates a neutral polymeric solid state fluoride: 2 K{sup +} + NiF{sub 6}{sup 2{minus}} + BF{sub 3} {r_arrow} NiF{sub 4} + 2 BF{sub 4}{sup {minus}} + 2 K{sup +}. At room temperature, this reaction yields a different structural phase, with composition K{sub x}NiF{sub 3} (x {approx} 0.18). This material has a pseudo-hexagonal tungsten bronze structure (H{sub 0}-K{sub x}NiF{sub 3}), and is an ionic conductor, probably due to K{sup +} ions hosted in the lattice channels. R-NiF{sub 3} is capable of fluorinating a wide range of inorganic and organic substrates. These reactions have probably shed light on the mechanism of the Simons Electrochemical Fluorination (ECF) Process, an important industrial method of fluorinating organic compounds. It has long been speculated that NiF{sub 3} plays a role in the ECF process, which uses nickel electrodes in aHF solvent. K{sub 2}NiF{sub 6} also fluorinates organic compounds in aHF, but interestingly, yields different fluorinated products. The reduction of R-NiF{sub 3} and K{sub 2}NiF{sub 6} during fluorination reactions yields NiF{sub 2}. A method has been developed to regenerate NiF{sub 6}{sup 2{minus}} from NiF{sub 2}.

  8. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, Nathaniel M. (Espanola, NM); Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM); Birdsell, Stephan A. (Los Alamos, NM)

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  9. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  10. The affect of erbium hydride on the conversion efficience to accelerated protons from ultra-shsort pulse laser irradiated foils

    SciTech Connect (OSTI)

    Offermann, D

    2008-09-04

    This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 10{sup 16} protons with an average energy of about 3MeV. This is far more than the 10{sup 12} protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH{sub 3} coatings on 5 {micro}m gold foils are compared with typical contaminants which are approximately equivalent to CH{sub 1.7}. It will be shown that there was a factor of 1.25 {+-} 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 10{sup 19}W/cm{sup 2}. The total number of protons from either target type was on the order of 10{sup 10}. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 10{sup 20} W/cm{sup 2}. In this experiment 10{sup 12} protons were seen from both erbium hydride and contaminants on 14 {micro} m gold foils. Significant improvements were also observed but possibly because of the depletion of hydrogen in the contaminant layer case.

  11. OBSERVATIONS IN REACTIVITY BETWEEN BH CONTAINING COMPOUNDS AND ORGANOMETALLIC REAGENTS: SYNTHESIS OF BORONIC ACIDS, BORONIC ESTERS, AND MAGNESIUM HYDRIDES

    E-Print Network [OSTI]

    Clary, Jacob William

    2012-01-01

    zinc metal significantly accelerated the reaction. The neopentylglycolborylation of aryl iodides, bromides,

  12. Gas-Phase Reactions of Doubly Charged Lanthanide Cations with Alkanes and Alkenes. Trends in Metal(2+) Reactivity

    SciTech Connect (OSTI)

    Gibson, John K.; Marcalo, Joaquim; Santos, Marta; Pires de Matos, Antonio; Haire, Richard G.

    2008-12-08

    The gas-phase reactivity of doubly-charged lanthanide cations, Ln2+ (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), with alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) was studied by Fourier transform ion cyclotron resonance mass spectrometry. The reaction products consisted of different combinations of doubly-charged organometallic ions?adducts or species formed via metal-ion-induced hydrogen, dihydrogen, alkyl, or alkane eliminations from the hydrocarbons?and singly-charged ions that resulted from electron, hydride, or methide transfers from the hydrocarbons to the metal ions. The only lanthanide cations capable of activating the hydrocarbons to form doubly-charged organometallic ions were La2+, Ce2+, Gd2+, and Tb2+, which have ground-state or low-lying d1 electronic configurations. Lu2+, with an accessible d1 electronic configuration but a rather high electron affinity, reacted only through transfer channels. The remaining Ln2+ reacted via transfer channels or adduct formation. The different accessibilities of d1 electronic configurations and the range of electron affinities of the Ln2+ cations allowed for a detailed analysis of the trends for metal(2+) reactivity and the conditions for occurrence of bond activation, adduct formation, and electron, hydride, and methide transfers.

  13. Influence of Mn and Ni on the microstructure and toughness of C-Mn-Ni weld metals

    SciTech Connect (OSTI)

    Zhang, Z.; Farrar, R.A. [Univ. of Southampton (United Kingdom). Dept. of Mechanical Engineering

    1997-05-01

    A systematic investigation has been carried out to study the microstructure and toughness of C-Mn-Ni low-alloy shielded metal arc (SMA) weld metals. The manganese and nickel concentrations were progressively changed to determine their influence on weld microstructure and mechanical properties as well as to identify their interactions. The results obtained showed that manganese and nickel have considerable effect on the weld metal microstructure, and both Mn and Ni affect the microstructure in a similar way, i.e., promoting acicular ferrite at the expense of proeutectoid ferrite (grain boundary ferrite and ferrite sideplates). The results in the top bead also showed that there is an optimum composition range that produces an optimum balance of weld metal microstructures. For optimum toughness, a combination of 0.6--1.4% manganese and 1.0--3.7% nickel is suggested. Additions beyond this limit promotes the formation of martensite and other microstructural features, which may be detrimental to weld metal toughness.

  14. CCCOOOLLLUUUMMMBBBIIIAAA UUUNNNIIIVVVEEERRRSSSIIITTTYYY CCCHHHEEEMMMIIICCCAAALLL SSSEEEGGGRRREEEGGGAAATTTIIIOOONNN aaannnddd SSSTTTOOORRRAAAGGGEEE CCCHHHAAARRRTTT

    E-Print Network [OSTI]

    Jia, Songtao

    shelves* Organic acids - Acetic acid, Trichloroacetic acid, Lactic acid, Oxaly Flammable liquids- Sodium metal, Potassium metal, Lithium metal, Lithium Aluminium hydride, Sodium Hydride Separate from all. Lithium Aluminum Hydride, Sodium

  15. SURFACE MODIFICATION OF ZIRCALOY-4 SUBSTRATES WITH NICKEL ZIRCONIUM INTERMETALLICS

    SciTech Connect (OSTI)

    Luscher, Walter G.; Gilbert, Edgar R.; Pitman, Stan G.; Love, Edward F.

    2013-02-01

    Surfaces of Zircaloy-4 (Zr-4) substrates were modified with nickel-zirconium (NiZr) intermetallics to tailor oxidation performance for specialized applications. Surface modification was achieved by electroplating Zr-4 substrates with nickel (Ni) and then performing thermal treatments to fully react the Ni plating with the substrates, which resulted in a coating of NiZr intermetallics on the substrate surfaces. Both plating thickness and thermal treatment were evaluated to determine the effects of these fabrication parameters on oxidation performance and to identify an optimal surface modification process. Isothermal oxidation tests were performed on surface-modified materials at 290°, 330°, and 370°C under a constant partial pressure of oxidant (i.e., 1 kPa D2O in dry Ar at 101 kPa) for 64 days. Test results revealed an enhanced, transient oxidation rate that decreased asymptotically toward the rate of the Zr-4 substrate. Oxidation kinetics were analyzed from isothermal weight gain data, which were correlated with microstructure, hydrogen pickup, strength, and hardness.

  16. Magnetically Responsive PDMS with aligned nickel coated carbon fibres

    E-Print Network [OSTI]

    David C. Stanier; Jacopo Ciambella; Sameer S. Rahatekar

    2015-07-02

    We detail a technique to produce actuators able to bear large strain and respond to an external magnetic field. The material used is PDMS reinforced with nickel coated carbon fibres. Thanks to the nickel functionalisation, the fibre orientation can be achieved by embedding the viscous solution into a low external magnetic field ($magnetic properties can be controlled by tailoring the material anisotropy through properly orientating the reinforcing fibres in the pre-curing phase. The large strain behaviour is investigated by tensile testing up to 60 % of deformation and shows a strong dependence on the fibre orientation. The magnetic properties are investigated by placing beam-like specimens into a uniform magnetic field. The results show a multistable behaviour with a transition from a bending-only deformed configuration for the 0$^\\circ$ fibres specimen, to a twisting only configuration, achieved for fibres at 90$^\\circ$ whereas all the intermediate angles show both bending and twisting. This behaviour is accurately captured by the large rotations beam model introduced. Such an actuator can be used in all applications which require fast response times and large strain.

  17. Li{sub 4}FeH{sub 6}: Iron-containing complex hydride with high gravimetric hydrogen density

    SciTech Connect (OSTI)

    Saitoh, Hiroyuki, E-mail: cyto@spring8.or.jp [Quantum Beam Science Center, Japan Atomic Energy Agency, Hyogo 679-5148 (Japan); Takagi, Shigeyuki; Matsuo, Motoaki; Aoki, Katsutoshi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Iijima, Yuki [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Endo, Naruki [Renewable Energy Research Center, National Institute of Advanced Industrial Science and Technology, Fukushima 963-0215 (Japan); Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2014-07-01

    Li{sub 4}FeH{sub 6}, which has the highest gravimetric hydrogen density of iron-containing complex hydrides reported so far, is synthesized by hydrogenation of a powder mixture of iron and LiH above 6.1 GPa at 900?°C. In situ synchrotron radiation X-ray diffraction measurements reveal that while kinetics require high temperature and thus high pressure for the synthesis, Li{sub 4}FeH{sub 6} is expected to be thermodynamically stable slightly below room temperature at ambient pressure; further synthetic studies to suppress the kinetic effects may enable us to synthesize Li{sub 4}FeH{sub 6} at moderate pressures. Li{sub 4}FeH{sub 6} can be recovered at ambient conditions where Li{sub 4}FeH{sub 6} is metastable.

  18. A molecular dynamics study of the effect of a substrate on catalytic metal clusters in nucleation process of single-walled carbon nanotubes

    E-Print Network [OSTI]

    Maruyama, Shigeo

    process of single-walled carbon nanotubes Yasushi Shibuta1 *, Shigeo Maruyama2 1 Department of Materials of the substrate on catalytic metal clusters in nucleation process of single-walled carbon nanotubes was studied by classical molecular dynamics (MD) simulation. The melting point of a nickel cluster decreased

  19. Study of thin metal films and oxide materials for nanoelectronics applications

    E-Print Network [OSTI]

    De Los Santos Valladares, Luis

    2012-01-10

    ions in a solution are moved by an electric field to coat a surface (Schlesinger & Paunovic, 2010). The process uses an electrical current to reduce cations of a desired material from a solution and coat a conductive object with a metal. Electroplating... ??Controlled electroplating and electromigration in nickel electrodes for nanogap formationâ?ť, Nanotechnology 21 (2010) 445304. 6. Luis De Los Santos V., Angel Bustamante D., Justin Llandro, Seiichi Suzuki, Thanos Mitrelias, Richard Bellido Q., Crispin H.W. Barnes and Yutaka...

  20. Method of preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals

    SciTech Connect (OSTI)

    Peng, Yu-Min (Hsinchu, TW); Wang, Jih-Wen (Hsinchu, TW); Liue, Chun-Ying (Tau-Yung, TW); Yeh, Shinn-Horng (Kaohsiung, TW)

    1994-01-01

    A method for preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals includes the steps of washing the silicon carbide particles with an organic solvent; washing the silicon carbide particles with an inorganic acid; grinding the silicon carbide particles; and heating the silicon carbide particles in a nickel-containing solution at a boiling temperature for a predetermined period of time.

  1. Method of determining the extent to which a nickel structure has been attached by a fluorine-containing gas

    DOE Patents [OSTI]

    Brusie, James P. (Oak Ridge, TN)

    2004-07-13

    The method of determining the extent to which a nickel structure has been attacked by a halogen containing gas to which it has been exposed which comprises preparing a quantity of water substantially free from dissolved oxygen, passing ammonia gas through a cuprammonium solution to produce ammonia substantially free from oxygen, dissolving said oxygen-free ammonia in said water to produce a saturated aqueous ammonia solution free from uncombined oxygen, treating at least a portion of said nickel structure of predetermined weight with said solution to dissolve nickel compounds from the surface of said structure without dissolving an appreciable amount of said nickel and analyzing the resulting solution to determine the quantity of said nickel compounds that was associated with said said portion of said structure to determine the proportion of combined nickel in said nickel structure.

  2. Method of Determining the Extent to which a Nickel Structure has been Attached by a Fluorine-Containing Gas

    DOE Patents [OSTI]

    Brusie, James P.

    2004-07-13

    The method of determining the extent to which a nickel structure has been attacked by a halogen containing gas to which it has been exposed which comprises preparing a quantity of water substantially free from dissolved oxygen, passing ammonia gas through a cuprammonium solution to produce ammonia substantially free from oxygen, dissolving said oxygen-free ammonia in said water to produce a saturated aqueous ammonia solution free from uncombined oxygen, treating at least a portion of said nickel structure of predetermined weight with said solution to dissolve nickel compounds from the surface of said structure without dissolving an appreciable amount of said nickel and analyzing the resulting solution to determine the quantity of said nickel compounds that was associated with said said portion of said structure to determine the proportion of combined nickel in said nickel structure.

  3. Low temperature formation of electrode having electrically conductive metal oxide surface

    DOE Patents [OSTI]

    Anders, Simone (Albany, CA); Anders, Andre (Albany, CA); Brown, Ian G. (Berkeley, CA); McLarnon, Frank R. (Orinda, CA); Kong, Fanping (Berkeley, CA)

    1998-01-01

    A low temperature process is disclosed for forming metal suboxides on substrates by cathodic arc deposition by either controlling the pressure of the oxygen present in the deposition chamber, or by controlling the density of the metal flux, or by a combination of such adjustments, to thereby control the ratio of oxide to metal in the deposited metal suboxide coating. The density of the metal flux may, in turn, be adjusted by controlling the discharge current of the arc, by adjusting the pulse length (duration of on cycle) of the arc, and by adjusting the frequency of the arc, or any combination of these parameters. In a preferred embodiment, a low temperature process is disclosed for forming an electrically conductive metal suboxide, such as, for example, an electrically conductive suboxide of titanium, on an electrode surface, such as the surface of a nickel oxide electrode, by such cathodic arc deposition and control of the deposition parameters. In the preferred embodiment, the process results in a titanium suboxide-coated nickel oxide electrode exhibiting reduced parasitic evolution of oxygen during charging of a cell made using such an electrode as the positive electrode, as well as exhibiting high oxygen overpotential, resulting in suppression of oxygen evolution at the electrode at full charge of the cell.

  4. Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell

    DOE Patents [OSTI]

    Ruka, Roswell J. (Pittsburgh, PA); Vora, Shailesh D. (Monroeville, PA)

    2001-01-01

    A fuel cell structure (2) is provided, having a pre-sintered nickel-zirconia fuel electrode (6) and an air electrode (4), with a ceramic electrolyte (5) disposed between the electrodes, where the pre-sintered fuel electrode (6) contains particles selected from the group consisting of nickel oxide, cobalt and cerium dioxide particles and mixtures thereof, and titanium dioxide particles, within a matrix of yttria-stabilized zirconia and spaced-apart filamentary nickel strings having a chain structure, and where the fuel electrode can be sintered to provide an active solid oxide fuel cell.

  5. Crystalline ropes of metallic carbon nanotubes

    SciTech Connect (OSTI)

    Thess, A.; Lee, R.; Nikolaev, P.

    1996-07-26

    Fullerene single-wall nanotubes (SWNTs) were produced in yields of more than 70 percent by condensation of a laser-vaporized carbon-nickel-cobalt mixture at 1200{degrees}C. X-ray diffraction and electron microscopy showed that these SWNTs are nearly uniform in diameter and that they self-organize into {open_quotes}ropes,{close_quotes} which consist of 100 to 500 SWNTs in a two-dimensional triangular lattice with a lattice constant of 17 angstroms. The x-ray form factor is consistent with that of uniformly charged cylinders 13.8 {plus_minus} 0.2 angstroms in diameter. The ropes were metallic, with a single-rope resistivity of <10{sup {minus}4} ohmcentimeters at 300 kelvin. The uniformity of SWNT diameter is attributed to the efficient annealing of an initial fullerene tubelet kept open by a few metal atoms; the optimum diameter is determined by competition between the strain energy of curvature of the graphene sheet and the dangling-bond energy of the open edge, where growth occurs. These factors strongly favor the metallic (10,10) tube with C{sub 5v} symmetry and an open edge stabilized by triple bonds. 33 refs., 5 tabs.

  6. Method for the preparation of metal colloids in inverse micelles and product preferred by the method

    DOE Patents [OSTI]

    Wilcoxon, Jess P. (Albuquerque, NM)

    1992-01-01

    A method is provided for preparing catalytic elemental metal colloidal particles (e.g. gold, palladium, silver, rhodium, iridium, nickel, iron, platinum, molybdenum) or colloidal alloy particles (silver/iridium or platinum/gold). A homogeneous inverse micelle solution of a metal salt is first formed in a metal-salt solvent comprised of a surfactant (e.g. a nonionic or cationic surfactant) and an organic solvent. The size and number of inverse micelles is controlled by the proportions of the surfactant and the solvent. Then, the metal salt is reduced (by chemical reduction or by a pulsed or continuous wave UV laser) to colloidal particles of elemental metal. After their formation, the colloidal metal particles can be stabilized by reaction with materials that permanently add surface stabilizing groups to the surface of the colloidal metal particles. The sizes of the colloidal elemental metal particles and their size distribution is determined by the size and number of the inverse micelles. A second salt can be added with further reduction to form the colloidal alloy particles. After the colloidal elemental metal particles are formed, the homogeneous solution distributes to two phases, one phase rich in colloidal elemental metal particles and the other phase rich in surfactant. The colloidal elemental metal particles from one phase can be dried to form a powder useful as a catalyst. Surfactant can be recovered and recycled from the phase rich in surfactant.

  7. Micrographic detection of plastic deformation in nickel base alloys

    DOE Patents [OSTI]

    Steeves, Arthur F. (Schenectady, NY); Bibb, Albert E. (Clifton Park, NY)

    1984-01-01

    A method for detecting low levels of plastic deformation in metal articles comprising electrolytically etching a flow free surface of the metal article with nital at a current density of less than about 0.1 amp/cm.sup.2 and microscopically examining the etched surface to determine the presence of alternating striations. The presence of striations indicates plastic deformation in the article.

  8. Maternal exposure to metals—Concentrations and predictors of exposure

    SciTech Connect (OSTI)

    Callan, A.C., E-mail: a.callan@ecu.edu.au [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia); Hinwood, A.L.; Ramalingam, M.; Boyce, M. [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia)] [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia); Heyworth, J. [School Population Health, The University of Western Australia, 35 Stirling Highway Crawley, WA 6009 (Australia)] [School Population Health, The University of Western Australia, 35 Stirling Highway Crawley, WA 6009 (Australia); McCafferty, P. [ChemCentre, PO Box 1250, Bentley, WA 6983 (Australia)] [ChemCentre, PO Box 1250, Bentley, WA 6983 (Australia); Odland, J.Ř. [Department of Community Medicine, University of Tromsř, N-9037 Tromsř (Norway)] [Department of Community Medicine, University of Tromsř, N-9037 Tromsř (Norway)

    2013-10-15

    A variety of metals are important for biological function but have also been shown to impact health at elevated concentrations, whereas others have no known biological function. Pregnant women are a vulnerable population and measures to reduce exposure in this group are important. We undertook a study of maternal exposure to the metals, aluminium, arsenic, copper, cobalt, chromium, lithium, manganese, nickel, selenium, tin, uranium and zinc in 173 participants across Western Australia. Each participant provided a whole blood and urine sample, as well as drinking water, residential soil and dust samples and completed a questionnaire. In general the concentrations of metals in all samples were low with the notable exception of uranium (blood U mean 0.07 µg/L, range <0.01–0.25 µg/L; urinary U mean 0.018 µg/g creatinine, range <0.01–0.199 µg/g creatinine). Factors that influenced biological concentrations were consumption of fish which increased urinary arsenic concentrations, hobbies (including mechanics and welding) which increased blood manganese concentrations and iron/folic acid supplement use which was associated with decreased concentrations of aluminium and nickel in urine and manganese in blood. Environmental concentrations of aluminium, copper and lithium were found to influence biological concentrations, but this was not the case for other environmental metals concentrations. Further work is underway to explore the influence of diet on biological metals concentrations in more detail. The high concentrations of uranium require further investigation. -- Highlights: • High concentrations of uranium with respect to international literature. • Environmental concentrations of Al, Cu and Li influenced urinary concentrations. • Exposure to mechanics/welding hobbies increased blood Mn concentrations. • Iron/Folic acid supplements reduced biological concentrations of Al, Ni and Mn.

  9. Studies on nickel-tungsten oxide thin films

    SciTech Connect (OSTI)

    Usha, K. S. [Department of Physics, Alagappa University, Karaikudi - 630 004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi - 630 004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi - 630 004 (India)

    2014-10-15

    Nickel-Tungsten oxide (95:5) thin films were prepared by rf sputtering at 200W rf power with various substrate temperatures. X-ray diffraction study reveals the amorphous nature of films. The substrate temperature induced decrease in energy band gap with a maximum transmittance of 71%1 was observed. The Micro-Raman study shows broad peaks at 560 cm{sup ?1} and 1100 cm{sup ?1} correspond to Ni-O vibration and the peak at 860 cm{sup ?1} can be assigned to the vibration of W-O-W bond. Photoluminescence spectra show two peaks centered on 420 nm and 485 nm corresponding to the band edge emission and vacancies created due to the addition of tungsten, respectively.

  10. Size dependent phase diagrams of Nickel-Carbon nanoparticles

    E-Print Network [OSTI]

    Magnin, Yann; Amara, Hakim; Ducastelle, François; Bichara, Christophe

    2015-01-01

    The carbon rich phase diagrams of nickel-carbon nanoparticles, relevant to catalysis and catalytic chemical vapor deposition synthesis of carbon nanotubes, are calculated for system sizes up to about 3 nanometers (807 Ni atoms). A tight binding model for interatomic interactions drives the Grand Canonical Monte Carlo simulations used to locate solid, core/shell and liquid stability domains, as a function of size, temperature and carbon chemical potential or concentration. Melting is favored by carbon incorporation from the nanoparticle surface, resulting in a strong relative lowering of the eutectic temperature and a phase diagram topology different from the bulk one. This should be taken into account in our understanding of the nanotube growth mechanisms.

  11. Metal filled porous carbon

    DOE Patents [OSTI]

    Gross, Adam F. (Los Angeles, CA); Vajo, John J. (West Hills, CA); Cumberland, Robert W. (Malibu, CA); Liu, Ping (Irvine, CA); Salguero, Tina T. (Encino, CA)

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  12. Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium-Nickel Nanoalloys

    SciTech Connect (OSTI)

    Shan, Shiyao; Petkov, Valeri; Yang, Lefu; Luo, Jin; Joseph, Pharrah; Mayzel, Dina; Prasai, Binay; Wang, Lingyan; Engelhard, Mark H.; Zhong, Chuan-Jian

    2014-05-05

    Alloying palladium (Pd) with other transition metals at the nanoscale has become an important pathway for preparation of low-cost, highly-active and stable catalysts. However the lack of understanding of how the alloying phase state, chemical composition and atomic-scale structure of the alloys at the nanoscale influence their catalytic activity impedes the rational design of Pd-nanoalloy catalysts. This work addresses this challenge by a novel approach to investigating the catalytic oxidation of carbon monoxide (CO) over palladium-nickel (PdNi) nanoalloys with well-defined bimetallic composition, which reveals a remarkable a maximal catalytic activity at Pd:Ni ratio of ~50:50. Key to understanding the structural-catalytic synergy is the use of high-energy synchrotron X-ray diffraction coupled to atomic pair distribution function (HE-XRD/PDF) analysis to probe the atomic structure of PdNi nanoalloys under controlled thermochemical treatments and CO reaction conditions. Three-dimensional (3D) models of the atomic structure of the nanoalloy particles were generated by reverse Monte Carlo simulations (RMC) guided by the experimental HE-XRD/PDF data. Structural details of the PdNi nanoalloys were extracted from the respective 3D models and compared with the measured catalytic properties. The comparison revealed a strong correlation between the phase state, chemical composition and atomic-scale structure of PdNi nanoalloys and their catalytic activity for CO oxidation. This correlation is further substantiated by analyzing the first atomic neighbor distances and coordination numbers inside the nanoalloy particles and at their surfaces. These findings have provided new insights into the structural synergy of nanoalloy catalysts by controlling the phase state, composition and atomic structure, complementing findings of traditional density functional theory studies.

  13. Nickel-Catalyzed Heck-Type Reactions of Benzyl Chlorides and Simple Olefins

    E-Print Network [OSTI]

    Matsubara, Ryosuke

    Nickel-catalyzed intermolecular benzylation and heterobenzylation of unactivated alkenes to provide functionalized allylbenzene derivatives are described. A wide range of both the benzyl chloride and alkene coupling partners ...

  14. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells

    E-Print Network [OSTI]

    . Introduction Most current hydrogen production methods use processes such as steam reforming and coal to the catalytic activity of the SS and the increased surface area of the brush [6]. Electrodeposited nickel alloys

  15. Dispersion and Characterization of Nickel Nanostrands in Thermoset and Thermoplastic Polymers 

    E-Print Network [OSTI]

    Whalen, Casey Allen

    2012-02-14

    Nickel Nanostrands (NiNS) are nano-particles that are highly branched and have a high aspect ratio. These particles show promise as excellent additives to composites when electrical conductivity is desired. Unfortunately, ...

  16. Removal of nickel(II) from aqueous solution and nickel plating industry wastewater using an agricultural waste: Peanut hulls

    SciTech Connect (OSTI)

    Periasamy, K.; Namasivayam, C. [Bharathair Univ. Tamil Nadu (India)] [Bharathair Univ. Tamil Nadu (India)

    1995-07-01

    Activated carbon prepared from peanut hulls (PHC), an agricultural waste by-product, has been used for the adsorption of Ni(II) from aqueous solution. The process of uptake obeys both Freundlich and Langmuir adsorption isotherms. The applicability of Lagergren kinetic model has also been investigated. Quantitative removal of Ni(II) from 100 mL aqueous solution containing 20 mg/L Ni(II) by 85 mg PHC was observed over a pH range of 4.0 to 10.0. The suitability of PHC for treating nickel plating industry wastewater was also tested. A comparative study with a commercial granular activated carbon (GAC) showed that PHC is 36 times more efficient compared to GAC based on Langmuir adsorption capacity (Q{sub O}).

  17. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  18. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  19. COORDINATION CHEMISTRY OF METAL SURFACES AND METAL COMPLEXES

    E-Print Network [OSTI]

    Muetterties, E.L.

    2013-01-01

    4, 1980 Catalysis~ COORDINATION CHEMISTRY OF METAL SURFACESAND METAL COMPLEXES Earl L. Muetterties December 1979 TWO-10308 COORDINATION CHEt1ISTRY OF METAL SURFACES AND METAL

  20. Effect of Gaseous Impurities on Long-Term Thermal Cycling and Aging Properties of Complex Hydrides for Hydrogen Storage

    SciTech Connect (OSTI)

    Chandra, Dhanesh; Lamb, Joshua; Chien, Wen-Ming; Talekar, Anjali; and Pal, Narendra.

    2011-03-28

    This program was dedicated to understanding the effect of impurities on Long-Term Thermal Cycling and aging properties of Complex Hydrides for Hydrogen Storage. At the start of the program we found reversibility between Li2NH+LiH ? LiH+LiNH2 (yielding ~5.8 wt.%H capacity). Then we tested the effect of impurity in H2 gas by pressure cycling at 255oC; first with industrial gas containing ppm levels of O2 and H2O as major impurities. Both these impurities had a significant impact on the reversibility and decreased the capacity by 2.65 wt.%H. Further increase in number of cycles from 500 to 1100 showed only a 0.2 wt%H more weight loss, showing some capacity is still maintained after a significant number of cycles. The loss of capacity is attributed to the formation of ~55 wt% LiH and ~30% Li2O, as major contaminant phases, along with the hydride Li2NH phase; suggesting loss of nitrogen during cycling. The effect of 100 ppm H2O in H2 also showed a decrease of ~2.5 wt.%H (after 560 cycles), and 100ppm O2 in H2; a loss of ~4.1 wt.%. Methane impurity (100 ppm, 100cycles), showed a very small capacity loss of 0.9 wt.%H under similar conditions. However, when Li3N was pressure cycled with 100ppmN2-H2 there were beneficial effects were observed (255oC); the reversible capacity increased to 8.4wt.%H after 853 cycles. Furthermore, with 20 mol.%N2-H2 capacity increased to ~10 wt.%H after 516 cycles. We attribute this enhancement to the reaction of nitrogen with liquid lithium during cycling as the Gibbs free energy of formation of Li3N (?Go = -98.7 kJ/mol) is more negative than that of LiH (?Go = -50.3 kJ/mol). We propose that the mitigation of hydrogen capacity losses is due to the destabilization of the LiH phase that tends to accumulate during cycling. Also more Li2NH phase was found in the cycled product. Mixed Alanates (3LiNH2:Li3AlH6) showed that 7 wt% hydrogen desorbed under dynamic vacuum. Equilibrium experiments (maximum 12 bar H2) showed up to 4wt% hydrogen reversibly stored in the material after the first desorption. The activation energy was found to be 51 kJ/mol, as compared to 81 kJ/mol for pure lithium alanate. It is proposed that based on the data obtained and CALPHAD modeling that the improvement in cycling is due to the formation of pure lithium (liquid at 255oC), which is able to react with nitrogen specifically forming Li3N. The presence of nitrogen in the 80/20 molar mixtures in a hydride bed along with hydrogen causes Li to form Li3N rather than LiH, and subsequently regenerates the Li2NH phase and yields a ~10 wt.%H reversibly.

  1. Nondestructive volumetric 3-D chemical mapping of nickel-sulfur compounds at the nanoscale

    SciTech Connect (OSTI)

    Harris W. M.; Chu Y.; Nelson, G.J.; Kiss, A.M.; Izzo Jr, J.R.; Liu, Y.; Liu, M.; Wang, S.; Chiu W.K.S.

    2012-04-04

    Nano-structures of nickel (Ni) and nickel subsulfide (Ni{sub 3}S{sub 2}) materials were studied and mapped in 3D with high-resolution x-ray nanotomography combined with full field XANES spectroscopy. This method for characterizing these phases in complex microstructures is an important new analytical imaging technique, applicable to a wide range of nanoscale and mesoscale electrochemical systems.

  2. Paste Type Nickel Electrode Containing Compound And At Least One Other Element

    DOE Patents [OSTI]

    Bernard, Patrick (Massy, FR); Bertrand, Fran.cedilla.oise (Ris Orangis, FR); Simonneau, Olivier (Dourdan, FR)

    1999-11-30

    The present invention provides a paste type nickel electrode for a storage cell having an alkaline electrolyte, the electrode comprising a current collector and a paste containing a nickel-based hydroxide and an oxidized compound of cobalt syncrystallized with at least one other element, wherein said hydroxide forms a first powder and wherein said compound forms a second powder distinct from said first powder, said powders being mixed mechanically within said paste.

  3. Process for the displacement of cyanide ions from metal-cyanide complexes

    DOE Patents [OSTI]

    Smith, Barbara F. (Los Alamos, NM); Robinson, Thomas W. (Los Alamos, NM)

    1997-01-01

    The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.

  4. Stationary storage and purification of hydrogen using nickel-coated magnesium powder. Final technical report

    SciTech Connect (OSTI)

    NONE

    1999-12-30

    The following conclusions were reached: (1) The concept of a coating on a magnesium particle serving as a well-supported hydrogen-permselective membrane is sound. (2) Magnesium nitride can be made to coat magnesium particles through chemical vapor deposition within a fluidized bed. (3) Magnesium nitride exhibits the properties necessary for such a coating. (4) Magnesium nitride is not chemically inert to hydrogen in the absence of ammonia at temperatures typically used to hydride/dehydride magnesium.

  5. Twelve Year Study of Underground Corrosion of Activated Metals

    SciTech Connect (OSTI)

    M. Kay Adler Flitton; Timothy S. Yoder

    2012-03-01

    The subsurface radioactive disposal facility located at the U.S. Department of Energy’s Idaho site contains neutron-activated metals from non-fuel nuclear-reactor-core components. A long-term corrosion study is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in an arid vadose zone environment. The study uses non-radioactive metal coupons representing the prominent neutron-activated material buried at the disposal location, namely, two types of stainless steels, welded stainless steel, welded nickel-chromium steel alloy, zirconium alloy, beryllium, and aluminum. Additionally, carbon steel (the material used in cask disposal liners and other disposal containers) and duplex stainless steel (high-integrity containers) are also included in the study. This paper briefly describes the test program and presents the corrosion rate results through twelve years of underground exposure.

  6. Molten carbonate fuel cell reduction of nickel deposits

    DOE Patents [OSTI]

    Smith, James L. (Lemont, IL); Zwick, Stanley A. (Darien, IL)

    1987-01-01

    A molten carbonate fuel cell with anode and cathode electrodes and an eleolyte formed with two tile sections, one of the tile sections being adjacent the anode and limiting leakage of fuel gas into the electrolyte with the second tile section being adjacent the cathode and having pores sized to permit the presence of oxygen gas in the electrolyte thereby limiting the formation of metal deposits caused by the reduction of metal compositions migrating into the electrolyte from the cathode.

  7. 3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography

    SciTech Connect (OSTI)

    Nelson, George; Harris, William; Izzo, John; Grew, Kyle N.

    2012-01-20

    Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

  8. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Print Wednesday, 29 May 2013 00:00 Metal oxides are important for scientific and technical applications in a variety of...

  9. Hydrovinylation of Olefins Catalyzed by an Iridium Complex via CH Activation

    E-Print Network [OSTI]

    Goddard III, William A.

    of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 Received migratory mech- anism involving relatively electron-rich metal hydrides. We provide experimental evidence insertion of olefins into a cationic metal hydride intermediate that subsequently undergoes -hydride

  10. The role of destabilization of palladium hydride on the hydrogen uptake of Pd-containing activated carbons

    SciTech Connect (OSTI)

    Bhat, Vinay V; Contescu, Cristian I; Gallego, Nidia C

    2009-01-01

    This paper reports on differences in stability of Pd hydride phases in palladium particles with various degrees of contact with microporous carbon supports. A sample containing Pd embedded in activated carbon fiber (Pd-ACF; 2 wt% Pd) was compared with commercial Pd nanoparticles deposited on microporous activated carbon (Pd-catalyst, 3 wt% Pd) and with support-free nanocrystalline palladium (Pd-black). The morphology of materials was characterized by electron microscopy, and the phase transformations were analyzed over a large range of hydrogen partial pressures (0.003 - 10 bar) and at several temperatures using in-situ X-ray diffraction. The results were verified with volumetric hydrogen uptake measurements. Results indicate that higher degree of Pd-carbon contacts for Pd particles embedded in a microporous carbon matrix induce efficient pumping of hydrogen out of -PdHx. It was also found that thermal cleaning of carbon surface groups prior to exposure to hydrogen further enhances the hydrogen pumping power of the microporous carbon support. In brief, this study highlights that the stability of -PdHx phase supported on carbon depends on the degree of contact between Pd-carbon and the nature of the carbon surface.

  11. Effects of residues from municipal solid waste landfill on corn yield and heavy metal content

    SciTech Connect (OSTI)

    Prabpai, S. [Suphan Buri Campus Establishment Project, Kasetsart University, 50 U Floor, Administrative Building, Paholyothin Road, Jatujak, Bangkok 10900 (Thailand)], E-mail: s.prabpai@hotmail.com; Charerntanyarak, L. [Department of Epidemiology, Faculty of Public Health, Khon Kaen University, Khon Kaen 40002 (Thailand)], E-mail: lertchai@kku.ac.th; Siri, B. [Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002 (Thailand)], E-mail: boonmee@kku.ac.th; Moore, M.R. [The University of Queensland, The National Research Center for Environmental Toxicology, 39 Kessels Road, Coopers Plans, Brisbane, Queensland 4108 (Australia)], E-mail: m.moore@uq.edu.au; Noller, Barry N. [The University of Queensland, Centre for Mined Land Rehabilitation, Brisbane, Queensland 4072 (Australia)], E-mail: b.noller@uq.edu.au

    2009-08-15

    The effects of residues from municipal solid waste landfill, Khon Kaen Municipality, Thailand, on corn (Zea mays L.) yield and heavy metal content were studied. Field experiments with randomized complete block design with five treatments (0, 20, 40, 60 and 80% v/v of residues and soil) and four replications were carried out. Corn yield and heavy metal contents in corn grain were analyzed. Corn yield increased by 50, 72, 85 and 71% at 20, 40, 60 and 80% treatments as compared to the control, respectively. All heavy metals content, except cadmium, nickel and zinc, in corn grain were not significantly different from the control. Arsenic, cadmium and zinc in corn grain were strongly positively correlated with concentrations in soil. The heavy metal content in corn grain was within regulated limits for human consumption.

  12. Three-dimensional mapping of nickel oxidation states using full field x-ray absorption near edge structure nanotomography

    SciTech Connect (OSTI)

    Nelson, George J.; Harris, William M.; Izzo, John R. Jr.; Grew, Kyle N.; Chiu, Wilson K. S. [HeteroFoaM Center, a DOE Energy Frontier Research Center, Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Rd., Storrs, Connecticut 06269-3139 (United States); Chu, Yong S. [National Synchrotron Light Source II, Brookhaven National Laboratory, Bldg. 703 Upton, New York 11973-5000 (United States); Yi, Jaemock [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Bldg. 438-B007 Argonne, Illinois 60439 (United States); Andrews, Joy C.; Liu Yijin; Pianetta, Piero [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., MS 69 Menlo Park, California 94025 (United States)

    2011-04-25

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  13. FINAL TECHNICAL REPORT Synthetic, Structural and Mechanistic Investigations of Olefin Polymerization Catalyzed by Early Transition Metal Compounds

    SciTech Connect (OSTI)

    Bercaw, John E. [California Institute of Technology

    2014-05-23

    The goal of this project is to develop new catalysts and provide understanding of ligand effects on catalyst composition in order to guide development of superior catalyst systems for polymerization of olefins. Our group is designing and synthesizing new “LX2”,“pincer” type ligands and complexing early transition metals to afford precatalysts. In a collaboration with Hans Brintzinger from the University of Konstanz, we are also examining the structures of the components of catalyst systems obtained from reaction of zirconocene dichlorides with aluminum alkyls and aluminum hydrides. Such systems are currently used commercially to produce polyolefins, but the nature of the active and dormant species as well as the mechanisms of their interconversions are not understood. New information on catalyst design and performance may lead to new types of polymers and/or new chemical transformations between hydrocarbons and transition metal centers, ultimately contributing to the development of catalytic reactions for the production of fuels, commodity and polymeric materials.

  14. Nickel-hydrogen battery with oxygen and electrolyte management features

    DOE Patents [OSTI]

    Sindorf, John F. (Pewaukee, WI)

    1991-10-22

    A nickel-hydrogen battery or cell having one or more pressure vessels containing hydrogen gas and a plurality of cell-modules therein. Each cell-module includes a configuration of cooperatively associated oxygen and electrolyte mangement and component alignment features. A cell-module having electrolyte includes a negative electrode, a positive electrode adapted to facilitate oxygen diffusion, a separator disposed between the positive and negative electrodes for separating them and holding electrolyte for ionic conductivity, an absorber engaging the surface of the positive electrode facing away from the separator for providing electrolyte to the positive electrode, and a pair of surface-channeled diffusion screens for enclosing the positive and negative electrodes, absorber, and separator and for maintaining proper alignment of these components. The screens, formed in the shape of a pocket by intermittently sealing the edges together along as many as three sides, permit hydrogen gas to diffuse therethrough to the negative electrodes, and prevent the edges of the separator from swelling. Electrolyte is contained in the cell-module, absorbhed by the electrodes, the separator and the absorber.

  15. Powder metallurgy processing and deformation characteristics of bulk multimodal nickel

    SciTech Connect (OSTI)

    Farbaniec, L.; Dirras, G.; Krawczynska, A.; Mompiou, F.; Couque, H.; Naimi, F.; Bernard, F.; Tingaud, D.

    2014-08-15

    Spark plasma sintering was used to process bulk nickel samples from a blend of three powder types. The resulting multimodal microstructure was made of coarse (average size ? 135 ?m) spherical microcrystalline entities (the core) surrounded by a fine-grained matrix (average grain size ? 1.5 ?m) or a thick rim (the shell) distinguishable from the matrix. Tensile tests revealed yield strength of ? 470 MPa that was accompanied by limited ductility (? 2.8% plastic strain). Microstructure observation after testing showed debonding at interfaces between the matrix and the coarse entities, but in many instances, shallow dimples within the rim were observed indicating local ductile events in the shell. Dislocation emission and annihilation at grain boundaries and twinning at crack tip were the main deformation mechanisms taking place within the fine-grained matrix as revealed by in-situ transmission electron microscopy. Estimation of the stress from loop's curvature and dislocation pile-up indicates that dislocation emission from grain boundaries and grain boundary overcoming largely contributes to the flow stress. - Highlights: • Bulk multi-modal Ni was processed by SPS from a powder blend. • Ultrafine-grained matrix or rim observed around spherical microcrystalline entities • Yield strength (470 MPa) and ductility (2.8% plastic strain) were measured. • Debonding was found at the matrix/microcrystalline entity interfaces. • In-situ TEM showed twinning, dislocation emission and annihilation at grain boundaries.

  16. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments

    SciTech Connect (OSTI)

    Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua; Dawson, Katherine; Sun, S; Chourey, Karuna; Pan, Chongle; Hettich, Robert {Bob} L; Orphan, V

    2013-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyse important biogeochemical reactions. In anoxic methane- and sulphiderich environments, microbes may have unique adaptations for metal acquisition and utilization because of decreased bioavailability as a result of metal sulphide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulphidic (> 1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5 270 nM), cobalt (0.5 6 nM), molybdenum (10 5600 nM) and tungsten (0.3 8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalysing anaerobic oxidation of methane (AOM) utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria. Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrophilic microorganisms. Overall, our data suggest that AOM consortia use specialized biochemical strategies to overcome the challenges of metal availability in sulphidic environments.

  17. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulfidic marine sediments

    SciTech Connect (OSTI)

    Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua; Dawson, Katherine; Sun, S; Chourey, Karuna; Hettich, Robert {Bob} L; Orphan, V

    2014-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyze important biogeochemical reactions. In anoxic methane- and sulfide-rich environments, microbes may have unique adaptations for metal acquisition and utilization due to decreased bioavailability as a result of metal sulfide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulfidic (>1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5,600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalyzing anaerobic oxidation of methane utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrotolerant microorganisms. Finally, our data suggest that chemical speciation of metals in highly sulfidic porewaters may exert a stronger influence on microbial bioavailability than total concentration

  18. Heavy metal biosensor

    DOE Patents [OSTI]

    Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

    2014-04-15

    Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

  19. Ferrocyanide Safety Project Dynamic X-Ray Diffraction studies of sodium nickel ferrocyanide reactions with equimolar nitrate/nitrite salts

    SciTech Connect (OSTI)

    Dodds, J.N. [Washington State Univ., Pullman, WA (United States). Dept. of Chemical Engineering]|[UNOCAL, Brea, CA (United States). Hartley Research Center

    1994-07-01

    Dynamic X-ray Diffraction (DXRD) has been to used to identify and quantify the solid state reactions that take place between sodium nickel ferrocyanide, Na{sub 2}NiFe(CN){sub 6}, and equimolar concentrations of sodium nitrate/nitrite, reactions of interest to the continued environmental safety of several large underground waste storage tanks at the Hanford site in eastern Washington. The results are supportive of previous work, which indicated that endothermic dehydration and melting of the nitrates take place before the occurrence of exothermic reactions that being about 300{degrees}C. The DXRD results show that a major reaction set at these temperatures is the occurrence of a series reaction that produces sodium cyanate, NaCNO, as an intermediate in a mildly exothermic first step. In the presence of gaseous oxygen, NaCNO subsequently reacts exothermally and at a faster rate to form metal oxides. Measurements of the rate of this reaction are used to estimate the heat release. Comparisons of this estimated heat release rate with heat transfer rates from a hypothetical ``hot spot`` show that, even in a worst-case scenario, the heat transfer rates are approximately eight times higher than the rate of energy release from the exothermic reactions.

  20. High conductivity composite metal

    DOE Patents [OSTI]

    Zhou, R.; Smith, J.L.; Embury, J.D.

    1998-01-06

    Electrical conductors and methods of producing them are disclosed, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps. 10 figs.