Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hydridable material for the negative electrode in a nickel-metal hydride storage battery  

DOE Patents [OSTI]

A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##

Knosp, Bernard (Neuilly-sur-Seine, FR); Bouet, Jacques (Paris, FR); Jordy, Christian (Dourdan, FR); Mimoun, Michel (Neuilly-sur-Marne, FR); Gicquel, Daniel (Lanorville, FR)

1997-01-01T23:59:59.000Z

2

Identification of a new pseudo-binary hydroxide during calendar corrosion of (La, Mg)2Ni7-type hydrogen storage alloys for Nickel-Metal Hydride batteries  

E-Print Network [OSTI]

hydrogen storage alloys for Nickel-Metal Hydride batteries J. Monnier 1 , H. Chen 1 , S. Joiret2,3 , J-MH batteries have been extensively studied during calendar storage and cycling [6-8]. In these alloys To improve the performances of Nickel-Metal Hydride batteries, an important step is the understanding

Boyer, Edmond

3

Current status of environmental, health, and safety issues of nickel metal-hydride batteries for electric vehicles  

SciTech Connect (OSTI)

This report identifies important environment, health, and safety issues associated with nickel metal-hydride (Ni-MH) batteries and assesses the need for further testing and analysis. Among the issues discussed are cell and battery safety, workplace health and safety, shipping requirements, and in-vehicle safety. The manufacture and recycling of Ni-MH batteries are also examined. This report also overviews the ``FH&S`` issues associated with other nickel-based electric vehicle batteries; it examines venting characteristics, toxicity of battery materials, and the status of spent batteries as a hazardous waste.

Corbus, D.; Hammel, C.J.; Mark, J.

1993-08-01T23:59:59.000Z

4

Metal Hydrides - Science Needs  

Broader source: Energy.gov (indexed) [DOE]

with traditions in metal hydride research Metal and Ceramic Sciences Condensed Matter Physics Materials Chemistry Chemical and Biological Sciences Located on campus of Tier...

5

Comprehensive Thermodynamics of Nickel Hydride Bis(Diphosphine...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermodynamics of Nickel Hydride Bis(Diphosphine) Complexes: A Predictive Model through Computations. Comprehensive Thermodynamics of Nickel Hydride Bis(Diphosphine) Complexes: A...

6

Metal Hydrides  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies |Charles Page -toMetabolic PathwaysMetal

7

Advanced nickel-metal hydride cell development. Final report, September 1993--March 1996  

SciTech Connect (OSTI)

Inert gas atomization using metal hydride alloys for a Ni/MH{sub x}cell was studied. Atomization of the alloys was demonstrated on a small production scale up to batch size of several kg. Relative performance of the atomized and nonatomized alloys was investigated for the electrode material in a Ni/MH{sub x} cell. The study included effects of charge-discharge rates, temperature, and particle size on cell voltage (polarization) and specific capacity. Results show that the specific capacity of the present atomized alloys was apprecialy smaller than that of the nonatomized powder, especially for initial cycles. Full activation of the atomized alloys oftentook several hundreds of cycles. However, no appreciable difference in discharge rate capability was observed with R10 and R12 alloys. Chemical compositions were indistinguishable, although the oxygen contents of the atomized alloys were always higher. Effects of Ni and Cu coating on alloy performance were studied after electroless coating; the coatings noticeably improved the electrode rate capability for all the alloys. The electrode polarization was esecially improved, but not the cycle life. Further studies are needed.

Lim, Hong S.

1996-03-01T23:59:59.000Z

8

Metal Hydride Hydrogen Storage R and D | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Metal Hydride Hydrogen Storage R and D Metal Hydride Hydrogen Storage R and D DOE's research on complex metal hydrides targets the development of advanced metal hydride materials...

9

A novel plating process for microencapsulating metal hydrides  

SciTech Connect (OSTI)

One approach to increasing the lifetime of the metal hydride electrode has been the use of conventional electroless plating to produce a coating of copper or nickel on the surface of the metal hydride powders. In this paper, a novel method for microencapsulating the active electrode powders is presented. This new plating technique takes advantage of the reducing power of hydrogen already stored inside the metal hydride to plate a variety of metals onto metal hydride materials. This method greatly simplifies electroless plating for these powders, eliminating the need for stabilizers and additives typically required for conventional electroless plating solutions. Metals that can be electrolessly plated with stored hydrogen have been identified based on thermodynamic considerations. Experimentally, micrometers thick coatings of copper, silver, and nickel have been plated on several metal hydrides.

Law, H.H.; Vyas, B.; Zahurak, S.M.; Kammlott, G.W. [AT and T Bell Labs., Murray Hill, NJ (United States)

1996-08-01T23:59:59.000Z

10

Method for preparing porous metal hydride compacts  

DOE Patents [OSTI]

A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

1980-01-21T23:59:59.000Z

11

Method for preparing porous metal hydride compacts  

DOE Patents [OSTI]

A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

Ron, Moshe (Haifa, IL); Gruen, Dieter M. (Downers Grove, IL); Mendelsohn, Marshall H. (Woodridge, IL); Sheft, Irving (Oak Park, IL)

1981-01-01T23:59:59.000Z

12

Development of a metal hydride electrode waste treatment process  

SciTech Connect (OSTI)

Manufacturing residues of metal hydride electrodes for nickel - metal hydride batteries were chemically processed to recover the metal part and heat treated for the organic part. Chemical recovery yielded Ni-Co alloy after electrolysis of the solution and hydroxides of other metal, mainly rare earths. The organic part, pyrolyzed at 700 C, led to separation between carbon and fluorinated matter. Infrared coupling at the output of the pyrolysis furnace was used to identify the pyrolysis gases.

Bianco, J.C.; Martin, D.; Ansart, F.; Castillo, S.

1999-12-01T23:59:59.000Z

13

Synthesis and Hydride Transfer Reactions of Cobalt and Nickel Hydride Complexes to BX3 Compounds  

SciTech Connect (OSTI)

Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H{sub 2} gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe){sub 2}, dmpe = 1,2-bis(dimethylphosphinoethane) was capable of reducing a variety of BX{sub 3} compounds having hydride affinity (HA) greater than or equal to HA of BEt{sub 3}. This study examines the reactivity of less expensive cobalt and nickel hydride complexes, (HCo(dmpe){sub 2} and [HNi(dmpe){sub 2}]{sup +}), to form B-H bonds. The hydride donor abilities ({Delta}G{sub H{sup -}}{sup o}) of HCo(dmpe){sub 2} and [HNi(dmpe){sub 2}]{sup +} were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX{sub 3} compounds. The collective data guided our selection of BX{sub 3} compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe){sub 2} was observed to transfer H{sup -} to BX{sub 3} compounds with X = H, OC{sub 6}F{sub 5} and SPh. The reaction with B(SPh){sub 3} is accompanied by formation of (BH{sub 3}){sub 2}-dmpe and (BH{sub 2}SPh){sub 2}-dmpe products that follow from reduction of multiple BSPh bonds and loss of a dmpe ligand from Co. Reactions between HCo(dmpe){sub 2} and B(SPh){sub 3} in the presence of triethylamine result in formation of Et{sub 3}N-BH{sub 2}SPh and Et{sub 3}N-BH{sub 3} with no loss of dmpe ligand. Reactions of the cationic complex [HNi(dmpe){sub 2}]{sup +} with B(SPh){sub 3} under analogous conditions give Et{sub 3}N-BH{sub 2}SPh as the final product along with the nickel-thiolate complex [Ni(dmpe){sub 2}(SPh)]{sup +}. The synthesis and characterization of HCo(dedpe){sub 2} (dedpe = diethyldiphenyl(phosphino)ethane) from H{sub 2} and a base is also discussed; including the formation of an uncommon trans dihydride species, trans-[(H{sub 2})Co(dedpe){sub 2}][BF{sub 4}].

Mock, Michael T.; Potter, Robert G.; O'Hagan, Molly J.; Camaioni, Donald M.; Dougherty, William G.; Kassel, W. S.; DuBois, Daniel L.

2011-12-05T23:59:59.000Z

14

E-Print Network 3.0 - alkali metal hydrides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hf for selected alkali metal hydrides, alkaline earth metal hydrides, transition metal hydrides... of binary hydrides based on alkali metals, alkaline earth ... Source:...

15

Proposed Virtual Center for Excellence for Metal Hydride Development  

Broader source: Energy.gov (indexed) [DOE]

& Engineering Sciences Center Atoms to Continuum Proposed Virtual Center of Excellence Proposed Virtual Center of Excellence for Metal Hydride Development for Metal Hydride...

16

Liquid suspensions of reversible metal hydrides  

DOE Patents [OSTI]

The reversibility of the process M + x/2 H/sub 2/ ..-->.. MH/sub x/, where M is a metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under a liquid, thereby to reduce contamination, provide better temperature control and provide in situ mobility of the reactants. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen (at high pressures) and to release (at low pressures) previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the former is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the H/sub 2/ pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

Reilly, J.J.; Grohse, E.W.; Winsche, W.E.

1983-12-08T23:59:59.000Z

17

Encapsulated Metal Hydride for Hydrogen Separation  

E-Print Network [OSTI]

concentration feed stock, not for low concentration ­ Hydrogen economy will need hydrogen recovery from lowEncapsulated Metal Hydride for Hydrogen Separation (Formerly Separation Membrane Development) DOE Hydrogen Program 2003 Merit Review and Peer Evaluation L. Kit Heung, Jim Congdon Savannah River Technology

18

Metal hydride fuel storage and method thereof  

DOE Patents [OSTI]

Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan F. (Livermore, CA); Yu, Conrad (Antioch, CA)

2006-10-17T23:59:59.000Z

19

Metal hydride fuel storage and method thereof  

DOE Patents [OSTI]

Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

Morse, Jeffrey D [Martinez, CA; Jankowski, Alan F [Livermore, CA; Yu, Conrad [Antioch, CA

2009-05-05T23:59:59.000Z

20

METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW  

SciTech Connect (OSTI)

Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

Bowman Jr, Robert C [ORNL] [ORNL; Yartys, Dr. Volodymyr A. [Institute for Energy Technology (IFE)] [Institute for Energy Technology (IFE); Lototskyy, Dr. Michael V [University of the Western Cape, South Africa] [University of the Western Cape, South Africa; Pollet, Dr. B.G. [University of the Western Cape, South Africa

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Proposed Virtual Center for Excellence for Metal Hydride Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Virtual Center for Excellence for Metal Hydride Development Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC....

22

Mathematical modelling of a metal hydride hydrogen storage system.  

E-Print Network [OSTI]

??In order for metal hydride hydrogen storage systems to compete with existing energy storage technology, such as gasoline tanks and batteries, it is important to… (more)

MacDonald, Brendan David

2009-01-01T23:59:59.000Z

23

Final Report for the DOE Metal Hydride Center of Excellence  

Broader source: Energy.gov (indexed) [DOE]

Figure 9. Organometallic approach to incorporation of metal hydrides into C aerogels. ...42 Figure 10. Comparison of H 2 evolution from bulk-like ball milled...

24

Project Profile: Engineering a Novel High Temperature Metal Hydride...  

Office of Environmental Management (EM)

ELEMENTS) funding program, is developing a concept for high energy density thermochemical energy storage for concentrating solar power (CSP) using metal hydrides. These materials...

25

Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems  

SciTech Connect (OSTI)

HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

None

2011-12-05T23:59:59.000Z

26

Metal hydride fuel storage and method thereof  

DOE Patents [OSTI]

An apparatus having a first substrate having (1) a cavity, (2) one or more resistive heaters, and (3) one or more coatings forming a diffusion barrier to hydrogen; a second substrate having (1) an outlet valve comprising a pressure relief structure and (2) one or more coatings forming a diffusion barrier to hydrogen, wherein said second substrate is coupled to said first substrate forming a sealed volume in said cavity; a metal hydride material contained within said cavity; and a gas distribution system formed by coupling a microfluidic interconnect to said pressure relief structure. Additional apparatuses and methods are also disclosed.

Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan F. (Livermore, CA); Yu, Conrad (Antioch, CA)

2010-08-10T23:59:59.000Z

27

Revêtements métalliques : Dépôts électrolytiques de nickel Metallic coatings : Electrodeposited coatings of nickel  

E-Print Network [OSTI]

Revêtements métalliques : Dépôts électrolytiques de nickel Metallic coatings : Electrodeposited coatings of nickel

International Organization for Standardization. Geneva

2002-01-01T23:59:59.000Z

28

Separation Membrane Development (Separation Using Encapsulated Metal Hydride)  

E-Print Network [OSTI]

Separation Membrane Development (Separation Using Encapsulated Metal Hydride) L. Kit Heung Savannah: The first is to produce a sol-gel encapsulated metal hydride packing material that will a) absorbs hydrogen may be that hydrogen must come from multiple sources. These sources will include renewable (solar

29

Process for production of a metal hydride  

DOE Patents [OSTI]

A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

2014-08-12T23:59:59.000Z

30

Recent advances in metal hydrides for clean energy applications  

SciTech Connect (OSTI)

Metal hydrides are a fascinating class of materials that can be utilized for a surprising variety of clean energy applications, including smart solar collectors, smart windows, sensors, thermal energy storage, and batteries, in addition to their traditional application for hydrogen storage. Over the past decade, research on metal hydrides for hydrogen storage increased due to global governmental incentives and an increased focus on hydrogen storage research for polymer electrolyte membrane fuel cell operation. Tremendous progress has been made in so-called complex metal hydrides for hydrogen storage applications with the discovery of many new hydrides containing covalently bound complex anions. Many of these materials have applications beyond hydrogen storage and are being investigated for lithium-ion battery separator and anode materials. In this issue of MRS Bulletin , we present the state of the art of key evolving metal-hydride-based clean energy technologies with an outlook toward future needs.

Ronnebro, Ewa; Majzoub, Eric H.

2013-06-01T23:59:59.000Z

31

Mathematical model of a NiOOH/metal hydride cell. Final report, September 15, 1993--November 14, 1996  

SciTech Connect (OSTI)

One of the objectives of work on the nickel/metal hydride cell has been to develop a mathematical model of the performance of the cell. This is a summary of work to date and is meant to be a Final Report of the BES project. Mathematical model of the nickel/metal hydride cell depends on the kinetics, thermodynamics, and transport properties of the metal hydride electrode. Consequently, investigations were carried out to determine: (1) the exchange current density and the equilibrium potential as a function of hydrogen content in the electrode; (2) the hydrogen diffusion coefficient in the bulk of the alloy; (3) the hydrogen reaction rate order; (4) the symmetry factor for hydrogen evolution reaction and (5) to determine the reaction mechanisms of the hydrogen charge and discharge processes including overcharge and overdischarge mechanism.

White, R.E.; Popov, B.N.

1996-12-31T23:59:59.000Z

32

Porous metal hydride composite and preparation and uses thereof  

DOE Patents [OSTI]

A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

Steyert, William A. (Los Alamos, NM); Olsen, Clayton E. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

33

Porous metal hydride composite and preparation and uses thereof  

DOE Patents [OSTI]

A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

Steyert, W.A.; Olsen, C.E.

1980-03-12T23:59:59.000Z

34

Metal Hydride Chemical Heat Pumps for Industrial Use  

E-Print Network [OSTI]

Hydriding alloys are intermetallic absorbent compounds which have the remarkable quality of absorbing very large quantities of hydrogen gas per unit volume of metallic powder. The absorption and desorption of hydrogen are exothermic and endothermic...

Ally, M. R.; Rebello, W. J.; Rosso, M. J., Jr.

1984-01-01T23:59:59.000Z

35

Influence of uranium hydride oxidation on uranium metal behaviour  

SciTech Connect (OSTI)

This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

2013-07-01T23:59:59.000Z

36

Characterization and High Throughput Analysis of Metal Hydrides for Hydrogen Storage  

E-Print Network [OSTI]

Metal Hydrides for Hydrogen Storage by Steven James BarceloMetal Hydrides for Hydrogen Storage by Steven James BarceloCo-chair Efficient hydrogen storage is required for fuel

Barcelo, Steven James

2009-01-01T23:59:59.000Z

37

Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.  

SciTech Connect (OSTI)

In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

2012-02-01T23:59:59.000Z

38

Models for Metal Hydride Particle Shape, Packing, and Heat Transfer  

E-Print Network [OSTI]

A multiphysics modeling approach for heat conduction in metal hydride powders is presented, including particle shape distribution, size distribution, granular packing structure, and effective thermal conductivity. A statistical geometric model is presented that replicates features of particle size and shape distributions observed experimentally that result from cyclic hydride decreptitation. The quasi-static dense packing of a sample set of these particles is simulated via energy-based structural optimization methods. These particles jam (i.e., solidify) at a density (solid volume fraction) of 0.665+/-0.015 - higher than prior experimental estimates. Effective thermal conductivity of the jammed system is simulated and found to follow the behavior predicted by granular effective medium theory. Finally, a theory is presented that links the properties of bi-porous cohesive powders to the present systems based on recent experimental observations of jammed packings of fine powder. This theory produces quantitative experimental agreement with metal hydride powders of various compositions.

Kyle C. Smith; Timothy S. Fisher

2012-05-04T23:59:59.000Z

39

Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis  

E-Print Network [OSTI]

A thermodynamically consistent mathematical model for hydrogen adsorption in metal hydrides is proposed. Beside hydrogen diffusion, the model accounts for phase transformation accompanied by hysteresis, swelling, temperature and heat transfer, strain, and stress. We prove existence of solutions of the ensuing system of partial differential equations by a carefully-designed, semi-implicit approximation scheme. A generalization for a drift-diffusion of multi-component ionized "gas" is outlined, too.

Tomas Roubicek; Giuseppe Tomassetti

2013-09-12T23:59:59.000Z

40

Diffusional exchange of isotopes in a metal hydride sphere.  

SciTech Connect (OSTI)

This report describes the Spherical Particle Exchange Model (SPEM), which simulates exchange of one hydrogen isotope by another hydrogen isotope in a spherical metal hydride particle. This is one of the fundamental physical processes during isotope exchange in a bed of spherical metal particles and is thus one of the key components in any comprehensive physics-based model of exchange. There are two important physical processes in the model. One is the entropy of mixing between the two isotopes; the entropy of mixing is increased by having both isotopes randomly placed at interstitial sites on the lattice and thus impedes the exchange process. The other physical process is the elastic interaction between isotope atoms on the lattice. The elastic interaction is the cause for {beta}-phase formation and is independent of the isotope species. In this report the coupled diffusion equations for two isotopes in the {beta}-phase hydride are solved. A key concept is that the diffusion of one isotope depends not only on its concentration gradient, but also on the concentration gradient of the other isotope. Diffusion rate constants and the chemical potentials for deuterium and hydrogen in the {beta}-phase hydride are reviewed because these quantities are essential for an accurate model of the diffusion process. Finally, a summary of some of the predictions from the SPEM model are provided.

Wolfer, Wilhelm G.; Hamilton, John C.; James, Scott Carlton

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Working with SRNL - Our Facilities - Metal Hydride Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 Table 1.14Working WithGloveboxMetal Hydride

42

Hydrogen storage material and process using graphite additive with metal-doped complex hydrides  

DOE Patents [OSTI]

A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

Zidan, Ragaiy (Aiken, SC); Ritter, James A. (Lexington, SC); Ebner, Armin D. (Lexington, SC); Wang, Jun (Columbia, SC); Holland, Charles E. (Cayce, SC)

2008-06-10T23:59:59.000Z

43

Non-stoichiometric AB5 alloys for metal hydride electrodes  

DOE Patents [OSTI]

The present invention provides a non-stoichiometric alloy comprising a composition having the formula AB.sub.5+X an atomic ratio wherein A is selected from the group consisting of the rare earth metals, yttrium, mischmetal, or a combination thereof; B is nickel and tin, or nickel and tin and at least a third element selected from the group consisting of the elements in group IVA of the periodic table, aluminum, manganese, iron, cobalt, copper, antimony or a combination thereof; X is greater than 0 and less than or equal to about 2.0; and wherein at least one substituted A site is occupied by at least one of the B elements. An electrode incorporating said alloy and an electrochemical cell incorporating said electrode are also described.

Reilly, James J. (Bellport, NY); Adzic, Gordana D. (Setauket, NY); Johnson, John R. (Calverton, NY); Vogt, Thomas (Cold Spring Harbor, NY); McBreen, James (Bellport, NY)

2001-01-01T23:59:59.000Z

44

Final report for the DOE Metal Hydride Center of Excellence.  

SciTech Connect (OSTI)

This report summarizes the R&D activities within the U.S. Department of Energy Metal Hydride Center of Excellence (MHCoE) from March 2005 to June 2010. The purpose of the MHCoE has been to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE 2010 and 2015 system goals for hydrogen storage materials. The MHCoE combines three broad areas: mechanisms and modeling (which provide a theoretically driven basis for pursuing new materials), materials development (in which new materials are synthesized and characterized) and system design and engineering (which allow these new materials to be realized as practical automotive hydrogen storage systems). This Final Report summarizes the organization and execution of the 5-year research program to develop practical hydrogen storage materials for light duty vehicles. Major results from the MHCoE are summarized, along with suggestions for future research areas.

Keller, Jay O.; Klebanoff, Leonard E.

2012-01-01T23:59:59.000Z

45

Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides  

SciTech Connect (OSTI)

HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

None

2011-12-01T23:59:59.000Z

46

X-ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films  

E-Print Network [OSTI]

X-ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films T. J. Richardsona@lbl.gov Abstract Mixed metal thin films containing magnesium and a first-row transition element exhibit very large and coordination of the magnesium and transition metal atoms during hydrogen absorption were studied using dynamic

47

Steps to Commercialization: Nickel Metal Hydride Batteries | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartmentResolveFuture |Energy Steps to

48

Materials Down-selection Decisions Made within the DOE Metal Hydride Center of Excellence (MHCoE) - September-October 2007  

Fuel Cell Technologies Publication and Product Library (EERE)

Reports on which hydrogen storage materials offer potential for further research as decided by DOE's Metal Hydride Center of Excellence.

49

Method and composition in which metal hydride particles are embedded in a silica network  

DOE Patents [OSTI]

A silica embedded metal hydride composition and a method for making such a composition. The composition is made via the following process: A quantity of fumed silica is blended with water to make a paste. After adding metal hydride particles, the paste is dried to form a solid. According to one embodiment of the invention, the solid is ground into granules for use of the product in hydrogen storage. Alternatively, the paste can be molded into plates or cylinders and then dried for use of the product as a hydrogen filter. Where mechanical strength is required, the paste can be impregnated in a porous substrate or wire network.

Heung, Leung K. (Aiken, SC)

1999-01-01T23:59:59.000Z

50

Metallic coatings: autocatalytic (electroless) nickel-phosphorus alloy coatings: specification and test methods  

E-Print Network [OSTI]

Metallic coatings: autocatalytic (electroless) nickel-phosphorus alloy coatings: specification and test methods

International Organization for Standardization. Geneva

2003-01-01T23:59:59.000Z

51

Effect of gold-nickel metallization microstructure on fluxless soldering  

SciTech Connect (OSTI)

Gold plating is used in the microelectronics industry to maintain the wettability of metal substrates. The nature of wetting during soldering of gold plated metals is discussed, and the results of experiments on the fluxless wettability and oxidation of gold plated nickel are described. The results suggest that electrodeposition of a thin gold plate (0.14 [mu]m) and the concurrent reduction of nickel oxide produce a gold-nickel system which will wet without flux. Oxidation of nickel was observed to occur via nickel out-diffusion and by direct exposure of the substrate through pinhole plating defects. Auger chemical analysis indicates that pinholes do not produce oxidation of the surrounding substrate area. 20 refs., 10 figs.

Cinque, R.B.; Morris, J.W. Jr. (Lawrence Berkeley Lab., CA (United States) Univ. of California, Berkeley, CA (United States))

1994-06-01T23:59:59.000Z

52

Mathematical Modelling of a Metal Hydride Hydrogen Storage System Brendan David MacDonald  

E-Print Network [OSTI]

Mathematical Modelling of a Metal Hydride Hydrogen Storage System by Brendan David MacDonald B of MASTER OF APPLIED SCIENCE in the Department of Mechanical Engineering © Brendan David MacDonald, 2006 Hydrogen Storage System by Brendan David MacDonald B.A.Sc., University of Waterloo, 2004 Supervisory

Victoria, University of

53

Hydrogen Internal Combustion Engine Two Wheeler with on-board Metal Hydride Storage  

E-Print Network [OSTI]

be obtained from sources such as electrolysis using low cost electricity, hydrogen as a by of cost- effective hydrogen in India (which we chose as a test case) is not a barrier. Thus, in the nearHydrogen Internal Combustion Engine Two Wheeler with on-board Metal Hydride Storage K. Sapru*, S

54

Evaluation of Protected Metal Hydride Slurries in a H2 Mini-  

E-Print Network [OSTI]

Evaluation of Protected Metal Hydride Slurries in a H2 Mini- Grid TIAX, LLC Acorn Park Cambridge_MERIT_REVIEW_MAY2003 2 Introduction Hydrogen Mini-Grid Concept Distributed FCPS utilizing a H2 Mini-Grid can provide waste heat can be used for hot water or space heating in buildings (i.e. "cogen") Distributed FCPS

55

First Principles Studies of Phase Stability and Reaction Dynamics in Complex Metal Hydrides  

SciTech Connect (OSTI)

Complex metal hydrides are believed to be one of the most promising materials for developing hydrogen storage systems that can operate under desirable conditions. At the same time, these are also a class of materials that exhibit intriguing properties. We have used state-of-the-art computational techniques to study the fundamental properties of these materials.

Chou, Mei-Yin

2014-09-29T23:59:59.000Z

56

Modeling of a Nickel-Hydrogen Cell Phase Reactions in the Nickel Active Material  

E-Print Network [OSTI]

submitted July 6, 2000; revised manuscript received February 18, 2001. The nickel-hydrogen battery has been the primary energy storage device in aerospace applications for more than two decades. Com- pared to the newly developed high-energy-density batteries, e.g., the nickel-metal hydride battery and the lithium-ion battery

57

Recycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid, nickel  

E-Print Network [OSTI]

metal hydride and lithium ion batteries. The use of these batteries is increasing as a green, nickel metal hydride and lithium ion batteries. Please contact EHS if you need an accumulation containerRecycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid

58

Metal hydrides as electrode/catalyst materials for oxygen evolution/reduction in electrochemical devices  

DOE Patents [OSTI]

An at least ternary metal alloy of the formula, AB.sub.(5-Y)X(.sub.y), is claimed. In this formula, A is selected from the rare earth elements, B is selected from the elements of groups 8, 9, and 10 of the periodic table of the elements, and X includes at least one of the following: antimony, arsenic, and bismuth. Ternary or higher-order substitutions, to the base AB.sub.5 alloys, that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

Bugga, Ratnakumar V. (Arcadia, CA); Halpert, Gerald (Pasadena, CA); Fultz, Brent (Pasadena, CA); Witham, Charles K. (Pasadena, CA); Bowman, Robert C. (La Mesa, CA); Hightower, Adrian (Whittier, CA)

1997-01-01T23:59:59.000Z

59

Filler metal alloy for welding cast nickel aluminide alloys  

DOE Patents [OSTI]

A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

Santella, M.L.; Sikka, V.K.

1998-03-10T23:59:59.000Z

60

Filler metal alloy for welding cast nickel aluminide alloys  

DOE Patents [OSTI]

A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Advanced Hydride Laboratory  

SciTech Connect (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-01-01T23:59:59.000Z

62

Advanced Hydride Laboratory  

SciTech Connect (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-12-31T23:59:59.000Z

63

Inhalation carcinogenicity study with nickel metal powder in Wistar rats  

SciTech Connect (OSTI)

Epidemiological studies of nickel refinery workers have demonstrated an association between increased respiratory cancer risk and exposure to certain nickel compounds (later confirmed in animal studies). However, the lack of an association found in epidemiological analyses for nickel metal remained unconfirmed for lack of robust animal inhalation studies. In the present study, Wistar rats were exposed by whole-body inhalation to 0, 0.1, 0.4, and 1.0 mg Ni/m{sup 3} nickel metal powder (MMAD = 1.8 {mu}m, GSD = 2.4 {mu}m) for 6 h/day, 5 days/week for up to 24 months. A subsequent six-month period without exposures preceded the final euthanasia. High mortality among rats exposed to 1.0 mg Ni/m{sup 3} nickel metal resulted in the earlier termination of exposures in this group. The exposure level of 0.4 mg Ni/m{sup 3} was established as the MTD for the study. Lung alterations associated with nickel metal exposure included alveolar proteinosis, alveolar histiocytosis, chronic inflammation, and bronchiolar-alveolar hyperplasia. No increased incidence of neoplasm of the respiratory tract was observed. Adrenal gland pheochromocytomas (benign and malignant) in males and combined cortical adenomas/carcinomas in females were induced in a dose-dependent manner by the nickel metal exposure. The incidence of pheochromocytomas was statistically increased in the 0.4 mg Ni/m{sup 3} male group. Pheochromocytomas appear to be secondary to the lung toxicity associated with the exposure rather than being related to a direct nickel effect on the adrenal glands. The incidence of cortical tumors among 0.4 mg Ni/m{sup 3} females, although statistically higher compared to the concurrent controls, falls within the historical control range; therefore, in the present study, this tumor is of uncertain relationship to nickel metal exposure. The lack of respiratory tumors in the present animal study is consistent with the findings of the epidemiological studies.

Oller, Adriana R. [NiPERA, 2605 Meridian Parkway, Suite 200, Durham, NC 27713 (United States)], E-mail: aoller@nipera.org; Kirkpatrick, Daniel T.; Radovsky, Ann [WIL Research Laboratories, LLC, 1407 George Road, Ashland, OH 44805 8946 (United States); Bates, Hudson K. [NiPERA, 2605 Meridian Parkway, Suite 200, Durham, NC 27713 (United States)

2008-12-01T23:59:59.000Z

64

Method for preparing hydride configurations and reactive metal surfaces  

DOE Patents [OSTI]

A method for preparing highly hydrogen-reactive surfaces on metals which normally require substantial heating, high pressures, or an extended induction period, which involves pretreatment of said surfaces with either a non-oxidizing acid or hydrogen gas to form a hydrogen-bearing coating on said surfaces, and subsequently heating said coated metal in the absence of moisture and oxygen for a period sufficient to decompose said coating and cooling said metal to room temperature. Surfaces so treated will react almost instantaneously with hydrogen gas at room temperature and low pressure. The method is particularly applicable to uranium, thorium, and lanthanide metals.

Silver, Gary L. (Centerville, OH)

1988-08-16T23:59:59.000Z

65

Analysis of Heat Transfer in Metal Hydride Based Hydrogen Separation  

SciTech Connect (OSTI)

This thesis presents a transient heat transfer analysis to model the heat transfer in the Pd/k packed column, and the impact of adding metallic foam.

Fleming, W.H. Jr.

1999-10-20T23:59:59.000Z

66

OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES  

SciTech Connect (OSTI)

Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

2011-07-14T23:59:59.000Z

67

LaNi{sub 5}-based metal hydride electrode in Ni-MH rechargeable cells  

DOE Patents [OSTI]

An at least ternary metal alloy of the formula AB{sub (Z-Y)}X{sub (Y)} is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB{sub 5} alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption. 16 figs.

Bugga, R.V.; Fultz, B.; Bowman, R.; Surampudi, S.R.; Witham, C.K.; Hightower, A.

1999-03-30T23:59:59.000Z

68

CRADA (AL-C-2009-02) Final Report: Phase I. Lanthanum-based Start Materials for Hydride Batteries  

SciTech Connect (OSTI)

The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La{sub 1-x}R{sub x})(Ni{sub 1-y}M{sub y})(Si{sub z}), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

Gschneidner, Jr., Karl [Ames Laboratory; Schmidt, Frederick [Ames Laboratory] [Ames Laboratory; Frerichs, A.E. [Ames Laboratory] [Ames Laboratory; Ament, Katherine A. [Ames Laboratory] [Ames Laboratory

2013-05-01T23:59:59.000Z

69

Metal hydride/chemical heat-pump development project. Phase I. Final report  

SciTech Connect (OSTI)

The metal hydride/chemical heat pump (MHHP) is a chemical heat pump containing two hydrides for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and/or cooling or temperature upgrading over a wide range of input and ambient temperatures. The system can thus be used with a variety of heat sources including waste heat, solar energy or a fossil fuel. The conceptual design of the MHHP was developed. A national market survey including a study of applications and market sectors was conducted. The technical tasks including conceptual development, thermal and mechanical design, laboratory verification of design and material performance, cost analysis and the detailed design of the Engineering Development Test Unit (EDTU) were performed. As a result of the market study, the temperature upgrade cycle of the MHHP was chosen for development. Operating temperature ranges for the upgrader were selected to be from 70 to 110/sup 0/C (160 to 230/sup 0/F) for the source heat and 140 to 190/sup 0/C (280 to 375/sup 0/F) for the product heat. These ranges are applicable to many processes in industries such as food, textile, paper and pulp, and chemical. The hydride pair well suited for these temperatures is LaNi/sub 5//LaNi/sub 4/ /sub 5/Al/sub 0/ /sub 5/. The EDTU was designed for the upgrade cycle. It is a compact finned tube arrangement enclosed in a pressure vessel. This design incorporates high heat transfer and low thermal mass in a system which maximizes the coefficient of performance (COP). It will be constructed in Phase II. Continuation of this effort is recommended.

Argabright, T.A.

1982-02-01T23:59:59.000Z

70

Hydriding and dehydriding characteristics of LiBH{sub 4} and transition metals-added magnesium hydride  

SciTech Connect (OSTI)

Graphical abstract: Hydriding reaction curves under 12 bar H{sub 2}, and dehydriding reaction curves under 1.0 bar H{sub 2}, at 593 K at the 1st cycle for MgH{sub 2}–10Ni–2LiBH{sub 4}–2Ti and MgH{sub 2}. Highlights: ? Addition of Ni, LiBH{sub 4}, and Ti to MgH{sub 2} to increase reaction rates. ? Sample preparation by reactive mechanical grinding. ? At n = 2, the sample absorbed 4.05 wt% H for 60 min at 593 K under 12 bar H{sub 2}. ? Analysis of rate-controlling step for dehydriding of the sample at n = 3. - Abstract: In this study, MgH{sub 2} was used as a starting material instead of Mg. Ni, Ti, and LiBH{sub 4} with a high hydrogen-storage capacity of 18.4 wt% were added. A sample with a composition of MgH{sub 2}–10Ni–2LiBH{sub 4}–2Ti was prepared by reactive mechanical grinding. The activation of MgH{sub 2}–10Ni–2LiBH{sub 4}–2Ti was completed after the first hydriding–dehydrding cycle. The hydriding rate decreases as the temperature increases due to the decrease in the driving force for the hydriding reaction. At the 1st cycle, the sample desorbs 1.45 wt% H for 10 min, 2.54 wt% H for 20 min, 3.13 wt% H for 30 min, and 3.40 wt% H for 60 min at 593 K under 1.0 bar H{sub 2}. At the 2nd cycle, the sample absorbs 3.84 wt% H for 5 min, 3.96 wt% H for 10 min, and 4.05 wt% H for 60 min at 593 K under 12 bar H{sub 2}. MgH{sub 2}–10Ni–2LiBH{sub 4}–2Ti after reactive mechanical grinding contained MgH{sub 2}, Mg, Ni, TiH{sub 1.924}, and MgO phases. The reactive mechanical grinding of Mg with Ni, LiBH{sub 4}, and Ti is considered to create defects on the surface and in the interior of Mg (to facilitate nucleation), and to reduce the particle size of Mg (to shorten diffusion distances of hydrogen atoms). The formation of Mg{sub 2}Ni during hydriding–dehydriding cycling increases the hydriding and dehydriding rates of the sample.

Song, Myoung Youp, E-mail: songmy@jbnu.ac.kr [Division of Advanced Materials Engineering, Hydrogen and Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 561-756 (Korea, Republic of); Kwak, Young Jun; Lee, Seong Ho [Department of Materials Engineering, Graduate School, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 561-756 (Korea, Republic of); Park, Hye Ryoung [Faculty of Applied Chemical Engineering, Chonnam National University, 300 Yongbongdong, Bukgu, Gwangju, 500-757 (Korea, Republic of)

2013-07-15T23:59:59.000Z

71

Trends in the electron-phonon coupling parameter in some metallic hydrides  

SciTech Connect (OSTI)

We present an evaluation of the electron-phonon coupling parameter lambda, using the McMillan formalism, for several classes of stoichiometric mono- and dihydrides with a metallic underlying fcc structure. We calculate the electronic term eta and use experimental estimates for the phonon energies when available. We derive systematic trends concerning both contributions to eta stemming, respectively, from the metallic site M and the hydrogen site H. We show that eta/sub H/ is generally small, but it may become large if the Fermi energy is in the metal s-p band as in the filled d-band transition-metal (TM) hydrides such as PdH; eta/sub H/ may also be large when a metal-hydrogen antibonding band crosses the Fermi level, a case which happens in AlH and may happen for some unstable dihydrides. The metallic contribution eta/sub M/ is calculated to be small for all stable mono- and dihydrides like PdH, NiH, ZrH/sub 2/, NbH/sub 2/, etc., but nothing in principle prevents this contribution from becoming as large as in some pure TM, if one sweeps the Fermi level through the whole metallic d band. Good agreement with the available experimental data is obtained concerning the occurrence of superconductivity in the compounds considered.

Gupta, M.; Burger, J.P.

1981-12-15T23:59:59.000Z

72

Comprehensive Thermodynamics of Nickel Hydride Bis(Diphosphine) Complexes: A Predictive Model through Computations  

SciTech Connect (OSTI)

Prediction of thermodynamic quantities such as redox potentials and homolytic and heterolytic metal hydrogen bond energies is critical to the a priori design of molecular catalysts. In this paper we expound upon a density functional theory (DFT)-based isodesmic methodology for the accurate computation of the above quantities across a series of Ni(diphosphine)2 complexes compounds that are potential catalysts for production of H2 from protons and electrons, or oxidation of H2 to electrons and protons. Isodesmic schemes give relative free energies between the complex of interest and a reference system. A natural choice is to use as a reference a compound that shares similarities with the chemical species under study and for which the properties of interest have been measured with accuracy. However, this is not always possible as in the case of the Ni complexes considered here where data are experimentally available for only some species. To overcome this difficulty we employed a theoretical reference compound, Ni(PH3)4, which is amenable to highly accurate electron-correlated calculations, which allows one to explore thermodynamics properties even when no experimental input is accessible. The reliability of this reference is validated against the available thermodynamics data in acetonitrile solution. Overall the proposed protocol yields excellent accuracy for redox potentials (~ 0.10 eV of accuracy), for acidities (~1.5 pKa units of accuracy), for hydricities (~2 kcal/mol of accuracy), and for homolytic bond dissociation free energies (~ 1-2 kcal/mol of accuracy). The calculated thermodynamic properties are then analyzed for a broad set of Ni complexes. The power of the approach is demonstrated through the validation of previously reported linear correlations among properties. New correlations are revealed. It emerges that only two quantities, the Ni(II)/Ni(I) and Ni(I)/Ni(0) redox potentials (which are easily accessible experimentally), suffice to predict with high confidence the energetics of all relevant species involved in the catalytic cycles for H2 oxidation and production. The approach is extendable to other transition metal complexes. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

Chen, Shentan; Rousseau, Roger J.; Raugei, Simone; Dupuis, Michel; DuBois, Daniel L.; Bullock, R. Morris

2011-11-28T23:59:59.000Z

73

Room-Temperature Metal-Hydride Discharge Source, with Observations on NiH and FeH Raphael Vallon,  

E-Print Network [OSTI]

Room-Temperature Metal-Hydride Discharge Source, with Observations on NiH and FeH Raphae¨l Vallon laser excitation and dispersed fluorescence spectra of NiH have also been recorded. The source has been are strong enough to record dispersed fluorescence from NiH by Fourier transform interferometry in magnetic

Ashworth, Stephen H.

74

Method of making crack-free zirconium hydride  

DOE Patents [OSTI]

Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

Sullivan, Richard W. (Denver, CO)

1980-01-01T23:59:59.000Z

75

Startup and Operation of a Metal Hydride Based Isotope Separation Process  

SciTech Connect (OSTI)

Production scale separation of tritium from other hydrogen isotopes at the Savannah River Site (SRS) in Aiken, SC, has been accomplished by several methods. These methods include thermal diffusion (1957--1986), fractional absorption (1964--1968), and cryogenic distillation (1967-present). Most recently, the Thermal Cycling Absorption Process (TCAP), a metal hydride based hydrogen isotope separation system, began production in the Replacement Tritium Facility (RTF) on April 9, 1994. TCAP has been in development at the Savannah River Technology Center since 1980. The production startup of this semi-continuous gas chromatographic separation process is a significant accomplishment for the Savannah River Site and was achieved after years of design, development, and testing.

Scogin, J.H.; Poore, A.S.

1995-02-27T23:59:59.000Z

76

Ductile filler metal alloys for welding nickel aluminide alloys  

DOE Patents [OSTI]

Nickel aluminum alloys are welded utilizing a nickel based alloy containing zirconium but substantially free of titanium and niobium which reduces the tendency to crack.

Santella, Michael L. (Knoxville, TN); McNabb, Jeffrey D. (Lenoir City, TN); Sikka, Vinod K. (Oak Ridge, TN)

2003-04-08T23:59:59.000Z

77

Erroneous Wave Functions of Ciuchi et al for Collective Modes in Neutron Production on Metallic Hydride Cathodes  

E-Print Network [OSTI]

There is a recent comment (Ciuchi et al., 2012) concerning the theory of collective many body effects on the neutron production rates in a chemical battery cathode. Ciuchi et al employ an inverse beta decay expression that contains a two body amplitude. Only one electron and one proton may exist in the Ciuchi et al model initial state wave function. A flaw in their reasoning is that one cannot in reality describe collective many body correlations with only a two particle wave function. One needs very many particles to describe collective effects. In the model wave functions of Ciuchi et al there are no metallic hydrides, there are no cathodes and there are no chemical batteries. Employing a wave function with only one electron and one proton is inadequate for describing collective metallic hydride surface quantum plasma physics in cathodes accurately.

Widom, A; Larsen, L

2012-01-01T23:59:59.000Z

78

Erroneous Wave Functions of Ciuchi et al for Collective Modes in Neutron Production on Metallic Hydride Cathodes  

E-Print Network [OSTI]

There is a recent comment (Ciuchi et al., 2012) concerning the theory of collective many body effects on the neutron production rates in a chemical battery cathode. Ciuchi et al employ an inverse beta decay expression that contains a two body amplitude. Only one electron and one proton may exist in the Ciuchi et al model initial state wave function. A flaw in their reasoning is that one cannot in reality describe collective many body correlations with only a two particle wave function. One needs very many particles to describe collective effects. In the model wave functions of Ciuchi et al there are no metallic hydrides, there are no cathodes and there are no chemical batteries. Employing a wave function with only one electron and one proton is inadequate for describing collective metallic hydride surface quantum plasma physics in cathodes accurately.

A. Widom; Y. N. Srivastava; L. Larsen

2012-10-17T23:59:59.000Z

79

Hydrogen, lithium, and lithium hydride production  

DOE Patents [OSTI]

A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

2014-03-25T23:59:59.000Z

80

Getting metal-hydrides to do what you want them to  

SciTech Connect (OSTI)

With the discovery of AB/sub 5/ compounds, intermetallic hydrides with unusual properties began to be developed (H dissociation pressures of one to several atmospheres, extremely rapid and reversible adsorption/desorption very large amounts of H adsorbed). This paper reviews the factors that must be controlled in order to modify these hydrides to make them useful. The system LaNi/sub 5/ + H/sub 2/ is used as example. Use of AB/sub 5/ hydrides to construct a chemical heat pumps is discussed. Results of a systematic study substituting Al for Ni are reported; the HYCSOS pump is described briefly. Use of hydrides as hydrogen getters (substituted ZrV/sub 2/) is also discussed. Finally, possible developments in intermetallic hydride research in the 1980's and the hydrogen economy are discussed. 10 figures. (DLC)

Gruen, D.M.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods  

SciTech Connect (OSTI)

UOP LLC, a Honeywell Company, Ford Motor Company, and Striatus, Inc., collaborated with Professor Craig Jensen of the University of Hawaii and Professor Vidvuds Ozolins of University of California, Los Angeles on a multi-year cost-shared program to discover novel complex metal hydrides for hydrogen storage. This innovative program combined sophisticated molecular modeling with high throughput combinatorial experiments to maximize the probability of identifying commercially relevant, economical hydrogen storage materials with broad application. A set of tools was developed to pursue the medium throughput (MT) and high throughput (HT) combinatorial exploratory investigation of novel complex metal hydrides for hydrogen storage. The assay programs consisted of monitoring hydrogen evolution as a function of temperature. This project also incorporated theoretical methods to help select candidate materials families for testing. The Virtual High Throughput Screening served as a virtual laboratory, calculating structures and their properties. First Principles calculations were applied to various systems to examine hydrogen storage reaction pathways and the associated thermodynamics. The experimental program began with the validation of the MT assay tool with NaAlH4/0.02 mole Ti, the state of the art hydrogen storage system given by decomposition of sodium alanate to sodium hydride, aluminum metal, and hydrogen. Once certified, a combinatorial 21-point study of the NaAlH4 â?? LiAlH4 â??Mg(AlH4)2 phase diagram was investigated with the MT assay. Stability proved to be a problem as many of the materials decomposed during synthesis, altering the expected assay results. This resulted in repeating the entire experiment with a mild milling approach, which only temporarily increased capacity. NaAlH4 was the best performer in both studies and no new mixed alanates were observed, a result consistent with the VHTS. Powder XRD suggested that the reverse reaction, the regeneration of the alanate from alkali hydride, Al and hydrogen, was hampering reversibility. The reverse reaction was then studied for the same phase diagram, starting with LiH, NaH, and MgH2, and Al. The study was extended to phase diagrams including KH and CaH2 as well. The observed hydrogen storage capacity in the Al hexahydrides was less than 4 wt. %, well short of DOE targets. The HT assay came on line and after certification with studies on NaAlH4, was first applied to the LiNH2 - LiBH4 - MgH2 phase diagram. The 60-point study elucidated trends within the system locating an optimum material of 0.6 LiNH2 â?? 0.3 MgH2 â?? 0.1 LiBH4 that stored about 4 wt. % H2 reversibly and operated below 220 °C. Also present was the phase Li4(NH2)3BH4, which had been discovered in the LiNH2 -LiBH4 system. This new ternary formulation performed much better than the well-known 2 LiNH2 â?? MgH2 system by 50 °C in the HT assay. The Li4(NH2)3BH4 is a low melting ionic liquid under our test conditions and facilitates the phase transformations required in the hydrogen storage reaction, which no longer relies on a higher energy solid state reaction pathway. Further study showed that the 0.6 LiNH2 â?? 0.3 MgH2 â?? 0.1 LiBH4 formulation was very stable with respect to ammonia and diborane desorption, the observed desorption was from hydrogen. This result could not have been anticipated and was made possible by the efficiency of HT combinatorial methods. Investigation of the analogous LiNH2 â?? LiBH4 â?? CaH2 phase diagram revealed new reversible hydrogen storage materials 0.625 LiBH4 + 0.375 CaH2 and 0.375 LiNH2 + 0.25 LiBH4 + 0.375 CaH2 operating at 1 wt. % reversible hydrogen below 175 °C. Powder x-ray diffraction revealed a new structure for the spent materials which had not been previously observed. While the storage capacity was not impressive, an important aspect is that it boron appears to participate in a low temperature reversible reaction. The last major area of study also focused

Lesch, David A; Adriaan Sachtler, J.W. J.; Low, John J; Jensen, Craig M; Ozolins, Vidvuds; Siegel, Don

2011-02-14T23:59:59.000Z

82

Sulfur resistance of Group VIII transition metal promoted nickel catalysts for synthesis gas methanation  

E-Print Network [OSTI]

SULFUR RESISTANCE OF GROUP VIII TRANSITION METAL PROMOTED NICKEL CATALYSTS FOR SYNTHESIS GAS METHANATION A Thesis by KELLEE HALL HAMLIN Submitted to the Graduate College of Texas AgrM University in partial fulfillment of the requirement...: Aydin Akger n (Chairman of Co 'ttee) Ahme M. Gadalla (Member) Michael . Rosynek (Member) aries D. Holland . ( ead of Department) May 1986 ABSTRACT Sulfur Resistance of Group VIII Transition Metal Promoted Nickel Catalysts For Synthesis Gas...

Hamlin, Kellee Hall

2012-06-07T23:59:59.000Z

83

Method for inhibiting alkali metal corrosion of nickel-containing alloys  

DOE Patents [OSTI]

Structural components of nickel-containing alloys within molten alkali metal systems are protected against corrosion during the course of service by dissolving therein sufficient aluminum, silicon, or manganese to cause the formation and maintenance of a corrosion-resistant intermetallic reaction layer created by the interaction of the molten metal, selected metal, and alloy.

DeVan, Jackson H. (Oak Ridge, TN); Selle, James E. (Westminster, CO)

1983-01-01T23:59:59.000Z

84

LaNi.sub.5 is-based metal hydride electrode in Ni-MH rechargeable cells  

DOE Patents [OSTI]

An at least ternary metal alloy of the formula AB.sub.(Z-Y) X.sub.(Y) is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB.sub.5 alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

Bugga, Ratnakumar V. (Arcadia, CA); Fultz, Brent (Pasadena, CA); Bowman, Robert (La Mesa, CA); Surampudi, Subra Rao (Glendora, CA); Witham, Charles K. (Pasadena, CA); Hightower, Adrian (Pasadena, CA)

1999-01-01T23:59:59.000Z

85

Regeneration of Aluminum Hydride - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydride is an attractive alternative to the traditional metal hydrides for the storage of hydrogen for its use as an energy source. Alanes use as the primary source of hydrogen has...

86

Improving nickel metal hydride batteries through research in negative electrode corrosion control and novel electrode materials  

E-Print Network [OSTI]

electrode materials. In order to fully understand the processes involved in the corrosion study, tests were carried at Brookhaven National Laboratory using X-ray Absorption Near Edge Spectroscopy. These tests showed that Zn prevented the corrosion of Ni-a...

Alexander, Michael Scott

1997-01-01T23:59:59.000Z

87

Method Of Charging Maintenance-Free Nickel Metal Hydride Storage Cells  

DOE Patents [OSTI]

A method of charging an industrial maintenance-free Ni-MH storage cell, the method comprising in combination a first stage at a constant current I.sub.1 lying in the range I.sub.c /10 to I.sub.c /2, and a second stage at a constant current I.sub.2 lying in the range I.sub.c /50 to I.sub.c /10, the changeover from the first stage to the second stage taking place when the time derivative of the temperature reaches a threshold value which varies as a function of the temperature at the time of the changeover.

Berlureau, Thierry (Bordeaux, FR); Liska, Jean-Louis (Bordeaux, FR)

1999-11-16T23:59:59.000Z

88

Electrodepositionof Metal Alloyand Mixed Oxide Films Usinga Single-PrecursorTetranuclearCopper-NickelComplex  

E-Print Network [OSTI]

Compositionally uniform mixed metals, metal oxides, and alloys are used extensively as corrosion protective and catalysts. I-~For example, nickel-containing oxides and alloys are used for oxidative protection of very. Although Cu-Ni alloy deposition has been stud- ied for many years, none of the previous approaches has led

Kounaves, Samuel P.

89

Activated aluminum hydride hydrogen storage compositions and uses thereof  

DOE Patents [OSTI]

In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

Sandrock, Gary (Ringwood, NJ); Reilly, James (Bellport, NY); Graetz, Jason (Mastic, NY); Wegrzyn, James E. (Brookhaven, NY)

2010-11-23T23:59:59.000Z

90

A unified view of coherent and incoherent dihydrogen exchange in transition metal hydrides by nuclear resonance and inelastic neutron scattering  

SciTech Connect (OSTI)

In this paper a unified view of coherent and incoherent dihydrogen exchange in transition metal hydrides by nuclear magnetic resonance (NMR) and inelastic neutron scattering (INS) is presented. It is shown that both exchange processes coexist i.e. do not transform into each other although they may dominate the spectra in different temperature ranges. This superposition is the consequence of the incorporation of the tunnel frequency J of the coherent process into the nuclear two-spin hamiltonian of hydrogen pairs which allows to treat the problem using the well known density matrix theory of NMR line-shapes developed by Alexander and Binsch. It is shown that this theory can also be used to predict the line-shapes of the rotational tunneling transitions observed in the INS spectra of transition metal dihydrogen complexes and that both NMR and INS spectra depend on similar parameters.

Limbach, H.H.; Ulrich, S.; Buntkowsky, G. [Freie Univ. Berlin (Germany). Inst. fuer Organische Chemie; Sabo-Etienne, S.; Chaudret, B. [Toulouse-3 Univ., 31 (France). Lab. de Chimie de Coordination du C.N.R.S.; Kubas, G.J.; Eckert, J. [Los Alamos National Lab., NM (United States)

1995-08-12T23:59:59.000Z

91

Experimental determination of equilibrium nickel isotope fractionation between metal and silicate from 500 C  

E-Print Network [OSTI]

Experimental determination of equilibrium nickel isotope fractionation between metal and silicate.04& between equilibrated bulk silicate Earth and chondrites, indicating that Ni isotopes are not likely- lation process involving a well-mixed silicate reservoir. Ã? 2012 Elsevier Ltd. All rights reserved. 1

Manning, Craig

92

Hydrogen Outgassing from Lithium Hydride  

SciTech Connect (OSTI)

Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

2006-04-20T23:59:59.000Z

93

URANIUM METAL POWDER PRODUCTION, PARTICLE DISTRIBUTION ANALYSIS, AND REACTION RATE STUDIES OF A HYDRIDE-DEHYDRIDE PROCESS  

E-Print Network [OSTI]

atmosphere to reduce sample oxidation .................................................................................................. 13 12 Aluminum oxide crucible located at the bottom of the hydride-dehydride rig. ... 14 13 Furnace and furnace... at 60 minutes, 5psig, 250?C hydride, 325?C dehydride ................................................................................................... 30 27 Rotary kiln designed at ORNL for use in voloxidation...

Sames, William

2011-08-08T23:59:59.000Z

94

E-Print Network 3.0 - air metal hydride Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

metal ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

95

Hydride compositions  

DOE Patents [OSTI]

Disclosed are a composition for use in storing hydrogen and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the H equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to H, and then heating below the softening temperature of any of the constituents. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P{sub H}{sub 2} and determining H/M from the isothermic function of the composition.

Lee, Myung, W.

1994-01-01T23:59:59.000Z

96

Hydrogen storage characteristics of nanograined free-standing magnesium–nickel films  

E-Print Network [OSTI]

of nanograined free-standing magnesium–nickel ?lms MatthewAbstract Free-standing magnesium–nickel (Mg–Ni) ?lms withfree- standing magnesium–nickel ?lms. Magnesium hydride (MgH

2009-01-01T23:59:59.000Z

97

The Use of Metal Hydrides for Hydrogen Recovery from Industrial Off-Gas Streams  

E-Print Network [OSTI]

to have potential for hydrogen separation technology. These were Edible Fats and Oils, Float Glass, Germanium, Heat Treating of Metal Parts, Molybdenum Powder, Powder Metallurgy, Rhenium, Silicon (Electronics) and Tungsten. While these industries... the hydrogen containing secondary streams are available, process steam is generally an important commodity and its generation during recovery of hydrogen presents a further conservation, partially off-setting the heating value reduction of the stream...

Rebello, W. J.; Guerrero, P. S.; Goodell, P. D.

98

Direct synthesis of catalyzed hydride compounds  

DOE Patents [OSTI]

A method is disclosed for directly preparing alkali metal aluminum hydrides such as NaAlH.sub.4 and Na.sub.3 AlH.sub.6 from either the alkali metal or its hydride, and aluminum. The hydride thus prepared is doped with a small portion of a transition metal catalyst compound, such as TiCl.sub.3, TiF.sub.3, or a mixture of these materials, in order to render them reversibly hydridable. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen while heating the mixture to about 125.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

Gross, Karl J.; Majzoub, Eric

2004-09-21T23:59:59.000Z

99

Experimental Design for Evaluation of Co-extruded Refractory Metal/Nickel Base Superalloy Joints  

SciTech Connect (OSTI)

Prior to the restructuring of the Prometheus Program, the NRPCT was tasked with delivering a nuclear space reactor. Potential NRPCT nuclear space reactor designs for the Prometheus Project required dissimilar materials to be in contact with each other while operating at extreme temperatures under irradiation. As a result of the high reactor core temperatures, refractory metals were the primary candidates for many of the reactor structural and cladding components. They included the tantalum-base alloys ASTAR-811C and Ta-10W, the niobium-base alloy FS-85, and the molybdenum base alloys Moly 41-47.5 Rhenium. The refractory metals were to be joined to candidate nickel base alloys such as Haynes 230, Alloy 617, or Nimonic PE 16 either within the core if the nickel-base alloys were ultimately selected to form the outer core barrel, or at a location exterior to the core if the nickel-base alloys were limited to components exterior to the core. To support the need for dissimilar metal joints in the Prometheus Project, a co-extrusion experiment was proposed. There are several potential methods for the formation of dissimilar metal joints, including explosive bonding, friction stir welding, plasma spray, inertia welding, HIP, and co-extrusion. Most of these joining methods are not viable options because they result in the immediate formation of brittle intermetallics. Upon cooling, intermetallics form in the weld fusion zone between the joined metals. Because brittle intermetallics do not form during the initial bonding process associated with HIP, co-extrusion, and explosive bonding, these three joining procedures are preferred for forming dissimilar metal joints. In reference to a Westinghouse Astronuclear Laboratory report done under a NASA sponsored program, joints that were fabricated between similar materials via explosive bonding had strengths that were directly affected by the width of the diffusion barrier. It was determined that the diffusion zone should not exceed a critical thickness (0.0005 in.). A diffusion barrier that exceeded this thickness would likely fail. The joint fabrication method must therefore mechanically bond the two materials causing little or no interdiffusion upon formation. Co-extrusion fits this description since it forms a mechanical joint between two materials by using heat and pressure. The two materials to be extruded are first assembled and sealed within a co-extrusion billet which is subsequently heated and then extruded through a die. For a production application, once the joint is formed, it is dejacketed to remove the outer canister. The remaining piece consists of two materials bonded together with a thin diffusion barrier. Therefore, the long-term stability of the joint is determined primarily by the kinetics of interdiffusion reaction between the two materials. An experimental design for co-extrusion of refractory metals and nickel-based superalloys was developed to evaluate this joining process and determine the long-term stability of the joints.

ME Petrichek

2005-12-16T23:59:59.000Z

100

Short-range order of low-coverage Ti/Al,,111...: Implications for hydrogen storage in complex metal hydrides  

E-Print Network [OSTI]

Short-range order of low-coverage Ti/Al,,111...: Implications for hydrogen storage in complex metal-coverage Ti atoms on Al 111 as a model surface system for transition metal doped alanate hydrogen storage the dissociative chemisorption of hydrogen in Ti-doped alanate storage materials. © 2007 American Institute

Ciobanu, Cristian

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Schottky barrier height reduction for holes by Fermi level depinning using metal/nickel oxide/silicon contacts  

SciTech Connect (OSTI)

We report the experimental demonstration of Fermi level depinning using nickel oxide (NiO) as the insulator material in metal-insulator-semiconductor (M-I-S) contacts. Using this contact, we show less than 0.1?eV barrier height for holes in platinum/NiO/silicon (Pt/NiO/p-Si) contact. Overall, the pinning factor was improved from 0.08 (metal/Si) to 0.26 (metal/NiO/Si). The experimental results show good agreement with that obtained from theoretical calculation. NiO offers high conduction band offset and low valence band offset with Si. By reducing Schottky barrier height, this contact can be used as a carrier selective contact allowing hole transport but blocking electron transport, which is important for high efficiency in photonic applications such as photovoltaics and optical detectors.

Islam, Raisul, E-mail: raisul@stanford.edu; Shine, Gautam; Saraswat, Krishna C. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

2014-11-03T23:59:59.000Z

102

Formation of amorphous metal alloys by chemical vapor deposition  

DOE Patents [OSTI]

Amorphous alloys are deposited by a process of thermal dissociation of mixtures or organometallic compounds and metalloid hydrides, e.g., transition metal carbonyl such as nickel carbonyl, and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit.

Mullendore, Arthur W. (Sandia Park, NM)

1990-01-01T23:59:59.000Z

103

First-principles study of the stability and electronic structure of metal hydrides H. Smithson,1,2  

E-Print Network [OSTI]

energy is the chemical bonding between the hydrogen and metal in which it is inserted. This is the only number s : 61.50.Ah, 61.66.Dk I. INTRODUCTION The absorption of hydrogen in materials is of wide to as hydro- gen embrittlement. The mechanism of such embrittlement is believed to be different depending

Ceder, Gerbrand

104

High capacity stabilized complex hydrides for hydrogen storage  

DOE Patents [OSTI]

Complex hydrides based on Al(BH.sub.4).sub.3 are stabilized by the presence of one or more additional metal elements or organic adducts to provide high capacity hydrogen storage material.

Zidan, Ragaiy; Mohtadi, Rana F; Fewox, Christopher; Sivasubramanian, Premkumar

2014-11-11T23:59:59.000Z

105

The effects of phosphorous donor ligand substitution on the reactivity of anionic group 6 transition metal carbonyl hydrides  

E-Print Network [OSTI]

and safe manner . The first of these procedures entails the reaction of Follows style and format of The Journal of The American Chemical Society M(CO) (amine) (amine = piper dine or trimethylamine) with PPNBH&, in 1 the solvent THF (tetnahydr ofuran... of the product HM(CO ) and the reactant M(CO) (pi per dine) to produce (u-H)M (CO) is not a significant side reaction. This byproduct, which is thermodynamically very stable, represents the major decomposition compound of the anionic group 6 transition metal...

Lusk, Richard Jay

1986-01-01T23:59:59.000Z

106

Relating metal binding to DNA binding in the nickel regulatory protein NikR  

E-Print Network [OSTI]

The concentration of transition metals within the cell must be tightly regulated. If the concentration of a given transition metal is too low the cell may not be able to perform life-sustaining processes, while high levels ...

Phillips, Christine M. (Christine Marie)

2010-01-01T23:59:59.000Z

107

Contaminated nickel scrap processing  

SciTech Connect (OSTI)

The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include {sup 234}Th, {sup 234}Pa, {sup 137}Cs, {sup 239}Pu (trace), {sup 60}Co, U, {sup 99}Tc, and {sup 237}Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs.

Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

1994-12-01T23:59:59.000Z

108

Hydrogen Storage Properties of New Hydrogen-Rich BH3NH3-Metal Hydride (TiH2, ZrH2, MgH2, and/or CaH2) Composite Systems  

SciTech Connect (OSTI)

Ammonia borane (AB = NH3BH3) is one of the most attractive materials for chemical hydrogen storage due to its high hydrogen contents of 19.6 wt.%, however, impurity levels of borazine, ammonia and diborane in conjunction with foaming and exothermic hydrogen release calls for finding ways to mitigate the decomposition reactions. In this paper we present a solution by mixing AB with metal hydrides (TiH2, ZrH2, MgH2 and CaH2) which have endothermic hydrogen release in order to control the heat release and impurity levels from AB upon decomposition. The composite materials were prepared by mechanical ball milling, and their H2 release properties were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The formation of volatile products from decomposition side reactions, such as borazine (N3B3H6) was determined by mass spectrometry (MS). Sieverts type pressure-composition-temperature (PCT) gas-solid reaction instrument was adopted to observe the kinetics of the H2 release reactions of the combined systems and neat AB. In situ 11B MAS-NMR revealed a destabilized decomposition pathway. We found that by adding specific metal hydrides to AB we can eliminate the impurities and mitigate the heat release.

Choi, Young Joon; Xu, Yimin; Shaw, Wendy J.; Ronnebro, Ewa

2012-04-19T23:59:59.000Z

109

Perfluorodiethoxymethane on nickel and nickel oxide surfaces  

SciTech Connect (OSTI)

The interaction of perfluorodiethoxymethane with a nickel single crystal, Ni(100); a nickel crystal with chemisorbed oxygen, Ni(100)-c(2x2)O; and a nickel crystal with nickel oxide crystallites, NiO(100) is investigated in an ultra high vacuum environment using thermal desorption spectroscopy and high resolution electron energy loss spectroscopy. Nickel, a component of hard disk drives and stainless steel, is used to represent metal surfaces in these {open_quotes}real{close_quotes} systems. Perfluorodiethoxymethane is used in this study as a model compound of industrial perfluoropolyether lubricants. These lubricants are known for their exceptional stability, except in the presence of metals. Perfluorodiethoxymethane contains the acetal group (-OCF{sub 2}O-), believed to be particularly vulnerable to attack in the presence of Lewis acids. Since the surfaces studied show increasing Lewis acidity at the nickel atom sites, one might expect to see increasing decomposition of perfluorodiethoxymethane due to acidic attack of the acetal group. No decomposition of perfluorodiethoxymethane is observed on the clean Ni(100) surface, while more research is needed to determine whether a small decomposition pathway is observed on the oxygenated surfaces, or whether sample impurities are interfering with results. The strength of the bonding of perfluorodiethoxymethane to the surface is found to increase as the nickel atoms sites become more acidic in moving from Ni(100) to Ni (100)-c(2x2)O to NiO (100).

Jacobson, J.

1994-03-03T23:59:59.000Z

110

Metal Hydrides | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies |Charles Page -toMetabolicHydrogen Storage

111

Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia  

SciTech Connect (OSTI)

Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300?°C from three recently synthesized M[N(t-Bu){sub 2}]{sub 2} precursors, where M?=?Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200?°C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18?nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities.

Cloud, Andrew N.; Abelson, John R., E-mail: abelson@illinois.edu [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 201 Materials Science and Engineering Building, 1304 W. Green St., Urbana, Illinois 61801 (United States); Davis, Luke M.; Girolami, Gregory S., E-mail: girolami@scs.illinois.edu [School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801 (United States)

2014-03-15T23:59:59.000Z

112

Benchmark Analysis of Subcritical Noise Measurements on a Nickel-Reflected Plutonium Metal Sphere  

SciTech Connect (OSTI)

Subcritical experiments using californium source-driven noise analysis (CSDNA) and Feynman variance-to-mean methods were performed with an alpha-phase plutonium sphere reflected by nickel shells, up to a maximum thickness of 7.62 cm. Both methods provide means of determining the subcritical multiplication of a system containing nuclear material. A benchmark analysis of the experiments was performed for inclusion in the 2010 edition of the International Handbook of Evaluated Criticality Safety Benchmark Experiments. Benchmark models have been developed that represent these subcritical experiments. An analysis of the computed eigenvalues and the uncertainty in the experiment and methods was performed. The eigenvalues computed using the CSDNA method were very close to those calculated using MCNP5; however, computed eigenvalues are used in the analysis of the CSDNA method. Independent calculations using KENO-VI provided similar eigenvalues to those determined using the CSDNA method and MCNP5. A slight trend with increasing nickel-reflector thickness was seen when comparing MCNP5 and KENO-VI results. For the 1.27-cm-thick configuration the MCNP eigenvalue was approximately 300 pcm greater. The calculated KENO eigenvalue was about 300 pcm greater for the 7.62-cm-thick configuration. The calculated results were approximately the same for a 5-cm-thick shell. The eigenvalues determined using the Feynman method are up to approximately 2.5% lower than those determined using either the CSDNA method or the Monte Carlo codes. The uncertainty in the results from either method was not large enough to account for the bias between the two experimental methods. An ongoing investigation is being performed to assess what potential uncertainties and/or biases exist that have yet to be properly accounted for. The dominant uncertainty in the CSDNA analysis was the uncertainty in selecting a neutron cross-section library for performing the analysis of the data. The uncertainty in the Feynman method was equally shared between the uncertainties in fitting the data to the Feynman equations and the neutron multiplicity of 239Pu. Material and geometry uncertainties in the benchmark experiment were generally much smaller than uncertainties in the analysis methods.

John D. Bess; Jesson Hutchinson

2009-09-01T23:59:59.000Z

113

Chemical Hydride Slurry for Hydrogen Production and Storage  

SciTech Connect (OSTI)

The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston University have demonstrated the technical viability of the process and have provided data for the cost analyses that have been performed. We also concluded that a carbothermic process could also produce magnesium at acceptable costs. The use of slurry as a medium to carry chemical hydrides has been shown during this project to offer significant advantages for storing, delivering, and distributing hydrogen: • Magnesium hydride slurry is stable for months and pumpable. • The oils of the slurry minimize the contact of oxygen and moisture in the air with the metal hydride in the slurry. Thus reactive chemicals, such as lithium hydride, can be handled safely in the air when encased in the oils of the slurry. • Though magnesium hydride offers an additional safety feature of not reacting readily with water at room temperatures, it does react readily with water at temperatures above the boiling point of water. Thus when hydrogen is needed, the slurry and water are heated until the reaction begins, then the reaction energy provides heat for more slurry and water to be heated. • The reaction system can be relatively small and light and the slurry can be stored in conventional liquid fuel tanks. When transported and stored, the conventional liquid fuel infrastructure can be used. • The particular metal hydride of interest in this project, magnesium hydride, forms benign byproducts, magnesium hydroxide (“Milk of Magnesia”) and magnesium oxide. • We have estimated that a magnesium hydride slurry system (including the mixer device and tanks) could meet the DOE 2010 energy density goals. ? During the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering hydrogen. Further evaluation and development of this concept will be performed as follow-on work under a

McClaine, Andrew W.

2008-09-30T23:59:59.000Z

114

Thermodynamic Studies and Hydride Transfer Reactions from a Rhodium Complex to BX3 Compounds  

SciTech Connect (OSTI)

This study examines the use of transition-metal hydride complexes that can be generated by the heterolytic cleavage of H2 gas to form B–H bonds. Specifically, these studies are focused on providing a reliable and quantitative method for determining when hydride transfer from transition-metal hydrides to three-coordinate BX3 compounds will be favorable. This involves both experimental and theoretical determinations of hydride transfer abilities. Thermodynamic hydride donor abilities (?G°H-) were determined for HRh(dmpe)2 and HRh(depe)2, where dmpe = 1,2-bis(dimethylphosphinoethane) and depe = 1,2-bis(diethylphosphinoethane), on a previously established scale in acetonitrile. This hydride donor ability was used to determine the hydride donor ability of [HBEt3]? on this scale. Isodesmic reactions between [HBEt3]? and various BX3 complexes to form BEt3 and [HBX3]? were examined computationally to determine the relative hydride affinities of various BX3 compounds. The use of these scales of hydride donor abilities and hydride affinities for transition-metal hydrides and BX3 compounds is illustrated with a few selected reactions relevant to the regeneration of ammonia borane. Our findings indicate that it is possible to form B?H bonds from B?X bonds, and the extent to which BX3 compounds are reduced by transition-metal hydride complexes forming species containing multiple B?H bonds depends on the heterolytic B?X bond energy. An example is the reduction of B(SPh)3 using HRh(dmpe)2 in the presence of triethylamine to form Et3N-BH3 in high yields. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Mock, Michael T.; Potter, Robert G.; Camaioni, Donald M.; Li, Jun; Dougherty, William G.; Kassel, W. S.; Twamley, Brendan; DuBois, Daniel L.

2009-10-14T23:59:59.000Z

115

Preparation of Mesoporous Silica Templated Metal Nanowire Films on Foamed Nickel Substrates  

SciTech Connect (OSTI)

A method has been developed for the formation of high surface area nanowire films on planar and three-dimensional metal electrodes. These nanowire films are formed via electrodeposition into a mesoporous silica film. The mesoporous silica films are formed by a sol-gel process using Pluronic tri-block copolymers to template mesopore formation on both planar and three-dimensional metal electrodes. Surface area increases of up to 120-fold have been observed in electrodes containing a templated film when compared to the same types of electrodes without the templated film.

Campbell, Roger [University of Alabama, Tuscaloosa; Kenik, Edward A [ORNL; Bakker, Martin [University of Alabama, Tuscaloosa; Havrilla, George [Los Alamos National Laboratory (LANL); Montoya, Velma [Los Alamos National Laboratory (LANL); Shamsuzzoha, Mohammed [University of Alabama, Tuscaloosa

2006-01-01T23:59:59.000Z

116

Electrochromic nickel oxide simultaneously doped with lithium and a metal dopant  

DOE Patents [OSTI]

An electrochromic device comprising a counter electrode layer comprised of lithium metal oxide which provides a high transmission in the fully intercalated state and which is capable of long-term stability, is disclosed. Methods of making an electrochromic device comprising such a counter electrode are also disclosed.

Gillaspie, Dane T; Weir, Douglas G

2014-04-01T23:59:59.000Z

117

X-ray absorption spectroscopy study of the local structure of heavy metal ions incorporated into electrodeposited nickel oxide films  

SciTech Connect (OSTI)

The incorporation of heavy metal ions into simulated corrosion films has been investigated using spectroscopic and electrochemical techniques. The films were formed by electrodeposition of the appropriate oxide (hydroxide) onto a graphite substrate. Synchrotron X-ray absorption spectroscopy (XAS) was used to determine the structure and composition of the host oxide film, as well as the local structure of the impurity ion. Results on the incorporation of Ce and Sr into surface films of Ni(OH){sub 2} and NiOOH are reported. Cathodically deposited Ni(OH){sub 2} was found to be mainly in the alpha form while anodically prepared NiOOH showed the presence of Ni{sup +2} and Ni{sup +4}. Cerium incorporated into Ni(OH){sub 2} exists as mixed Ce{sup +3} and Ce{sup +4} phases; a Ce{sup +4} species was found when Ce was codeposited with NiOOH. The structure of the Ce{sup +4} phase in anodic films appears similar to a Ce(OH){sub 4} standard. However, XAS, X-ray diffraction, and laser Raman measurements indicate that the latter chemical formulation is probably incorrect and that the material is really a disordered form of hydrous cerium oxide. The local structure of this material is similar to CeO{sub 2} but has much higher structural disorder. The significance of this finding on the question of the structure of Ce-based corrosion inhibitors in aluminum oxide films is pointed out. Moreover, the authors found it possible to form pure Ce oxide (hydroxide) films on graphite by both cathodic and anodic electrodeposition; their structures have also been elucidated. Strontium incorporated into nickel oxide films consists of Sr{sup +2} which is coordinated to oxygen atoms and is likely to exist as small domains of coprecipitated material.

Balasubramanian, M.; Melendres, C.A. [Argonne National Lab., IL (United States). Chemical Technology Div.] [Argonne National Lab., IL (United States). Chemical Technology Div.; Mansour, A.N. [Naval Surface Warfare Center, Bethesda, MD (United States). Carderock Div.] [Naval Surface Warfare Center, Bethesda, MD (United States). Carderock Div.

1999-02-01T23:59:59.000Z

118

Mechanochemical processing for metals and metal alloys  

DOE Patents [OSTI]

A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

Froes, Francis H. (Moscow, ID); Eranezhuth, Baburaj G. (Moscow, ID); Prisbrey, Keith (Moscow, ID)

2001-01-01T23:59:59.000Z

119

Ductility and chemical reactions at the interface between nickel and magnesium oxide single crystals.  

E-Print Network [OSTI]

??An investigation was conducted on the interaction between nickel metal and single crystals of magnesium oxide. The nickel was cleaned with purified hydrogen gas at… (more)

Hasselman, Didericus Petrus Hermannus

2011-01-01T23:59:59.000Z

120

Recycling Programs | Department of Energy  

Office of Environmental Management (EM)

Germantown Paperclips Supply Stores. Batteries accepted for recycling are: Alkaline, Lithium Ion, Nickel Cadmium (Ni-Cd), Nickel-Iron, and Nickel Metal Hydride (NiMH). Toner...

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Formation of Nickel Silicide from Direct-Liquid-Injection Chemical-Vapor-Deposited Nickel Nitride Films  

E-Print Network [OSTI]

. Published April 28, 2010. Metal silicides such as TiSi2 and CoSi2 have been commonly used as the contactsFormation of Nickel Silicide from Direct-Liquid-Injection Chemical-Vapor-Deposited Nickel Nitride as the intermediate for subsequent conversion into nickel silicide NiSi , which is a key material for source, drain

122

Modular hydride beds for mobile applications  

SciTech Connect (OSTI)

Design, construction, initial testing and simple thermal modeling of modular, metal hydride beds have been completed. Originally designed for supplying hydrogen to a fuel cell on a mobile vehicle, the complete bed design consists of 8 modules and is intended for use on the Palm Desert Vehicle (PDV) under development at the Schatz Energy Center, Humbolt State University. Each module contains approximately 2 kg of a commercially available, low temperature, hydride-forming metal alloy. Waste heat from the fuel cell in the form of heated water is used to desorb hydrogen from the alloy for supplying feed hydrogen to the fuel cell. In order to help determine the performance of such a modular bed system, six modules were constructed and tested. The design and construction of the modules is described in detail. Initial testing of the modules both individually and as a group showed that each module can store {approximately} 30 g of hydrogen (at 165 PSIA fill pressure, 17 C), could be filled with hydrogen in 6 minutes at a nominal, 75 standard liters/min (slm) fueling rate, and could supply hydrogen during desorption at rates of 25 slm, the maximum anticipated hydrogen fuel cell input requirement. Tests made of 5 modules as a group indicated that the behavior of the group run in parallel both in fueling and gas delivery could be directly predicted from the corresponding, single module characteristics by using an appropriate scaling factor. Simple thermal modeling of a module as an array of cylindrical, hydride-filled tubes was performed. The predictions of the model are in good agreement with experimental data.

Malinowski, M.E.; Stewart, K.D.

1997-08-01T23:59:59.000Z

123

Erbium hydride decomposition kinetics.  

SciTech Connect (OSTI)

Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

Ferrizz, Robert Matthew

2006-11-01T23:59:59.000Z

124

Complex Hydrides for Hydrogen Storage  

SciTech Connect (OSTI)

This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

Slattery, Darlene; Hampton, Michael

2003-03-10T23:59:59.000Z

125

Inhibition of nickel precipitation by organic ligands  

SciTech Connect (OSTI)

Wastewaters from electroplating are very complex due to the composition of the plating baths. A nickel plating bath typically consists of a nickel source (nickel chloride or nickel sulfate), complexing agents to solubilize nickel ions controlling their concentration in the solution, buffering agents to maintain pH, brighteners to improve brightness of the plated metal, stabilizers (inhibitors) to prevent undesired reactions, accelerators to enhance speed of reactions, wetting agents to reduce surface tension at the metal surface, and reducing agents (only for electroless nickel plating) to supply electrons for reduction of the nickel. Alkaline precipitation is the most common method of recovering nickel from wastewaters. However, organic constituents found in the wastewaters can mask or completely inhibit the precipitation of nickel. The objective of this study was to conduct an equilibrium study to explore the inhibition behavior of various organic ligands on nickel precipitation. This will lay the groundwork for development of technologies efficacious in the treatment of complexed nickel. The organic ligands used in this study are EDTA, triethanolamine (TEA), gluconate, and tartrate.

Hu, H.L.; Nikolaidis, N.P.; Grasso, D. [Univ. of Connecticut, Storrs, CT (United States)

1996-11-01T23:59:59.000Z

126

Photogeneration of Hydride Donors and Their Use Toward CO2 Reduction  

SciTech Connect (OSTI)

Despite substantial effort, no one has succeeded in efficiently producing methanol from CO2 using homogeneous photocatalytic systems. We are pursuing reaction schemes based on a sequence of hydride-ion transfers to carry out stepwise reduction of CO2 to methanol. We are using hydride-ion transfer from photoproduced C-H bonds in metal complexes with bio-inspired ligands (i.e., NADH-like ligands) that are known to store one proton and two electrons.

Fujita,E.; Muckerman, J.T.; Polyansky, D.E.

2009-06-07T23:59:59.000Z

127

Vanadium hydride deuterium-tritium generator  

DOE Patents [OSTI]

A pressure controlled vanadium hydride gas generator to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

Christensen, Leslie D. (Livermore, CA)

1982-01-01T23:59:59.000Z

128

Nickel aluminide alloys with improved weldability  

DOE Patents [OSTI]

Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys.

Santella, Michael L. (Knoxville, TN); Goodwin, Gene M. (Lenior City, TN)

1995-05-09T23:59:59.000Z

129

In situ X-ray absorption fine structure studies of foreign metal ions in nickel hydrous oxide electrodes in alkaline electrolytes  

SciTech Connect (OSTI)

Aspects of the structural and electronic properties of hydrous oxide films of composite (9:1) Ni/Co and (9:1) Ni/Fe, prepared by electrodeposition, have been examined in alkaline electrolytes using in situ X-ray absorption fine structure (XAFS). An analysis of the X-ray absorption near the edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) for the Co and Fe K-edges of these composite hydrous oxides revealed that, regardless of the oxidation state of nickel sites in the films, the guest metal ions are present as Co[sup 3+] and Fe[sup 3+] and that the cobalt-oxygen distance d(Co-O) = 1.9 [+-] 0.02 [angstrom] and d(Fe-O) = 1.92 [+-] 0.02 [angstrom]. The latter values are in excellent agreement with d(Me-O) (Me = Co or Fe) in CoOOH and [beta]- and [gamma]-FeOOH, respectively, determined by conventional X-ray diffraction. Two clearly defined Me-Ni first coordination shells could be observed in the Fourier transforms (FT) of the K-edge EXAFS of the guest metal recorded at a potential at which both Ni[sup 2+] and Ni[sup 3+] sites are expected to be present. 28 refs., 10 figs., 3 tabs.

Kim, Sunghyun; Tryk, D.A.; Scherson, D. (Case Western Reserve Univ., Cleveland, OH (United States)); Antonio, M.R. (Argonne National Lab., IL (United States)); Carr, R. (Stanford Synchrotron Radiation Lab., CA (United States))

1994-10-06T23:59:59.000Z

130

Comprehensive Thermodynamics of Nickel Hydride Bis(Diphosphine) Complexes:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity InvolvementCompositional Variation WithinHardMotifs inA

131

A Modular, Energy-Based Approach to the Development of Nickel Containing Molecular Electrocatalysts for Hydrogen Production and Oxidation  

SciTech Connect (OSTI)

This review discusses the development of molecular electrocatalysts for H2 production and oxidation based on nickel. A modular approach is used in which the structure of the catalyst is divided into first second and outer coordination spheres. The first coordination sphere consists of the ligands bound directly to the metal center, and this coordination sphere can be used to control such factors as the presence or absence of vacant coordination sites, redox potentials, hydride acceptor abilities and other important thermodynamic parameters. The second coordination sphere is defined as functional groups such as pendant acids or bases that can interact with bound substrates such as H2 molecules and hydride ligands, but that do not form strong bonds with the metal center. These functional groups can play diverse roles such as assisting the heterolytic cleavage of H2, controlling intra- and intermolecular proton transfer reactions, and provide a physical pathway for coupling proton and electron transfer reactions. By controlling both the hydride donor/acceptor ability of the catalysts using the first coordination sphere and the proton acceptor/donor abilities of the functional groups in the second coordination sphere, catalysts can be designed that are biased toward H2 production, H2 oxidation, or that are bidirectional (catalyzing both H2 oxidation and production). The outer coordination sphere is defined as that portion of the catalytic system that are not in the first and second coordination spheres. This coordination sphere can assist in the delivery of protons and electrons to and from the catalytically active site, thereby adding another important avenue for controlling catalytic activity. Many features of these simple catalytic systems are good models for enzymes and they provide the opportunity to probe certain aspects of catalysis that may be difficult in enzymes themselves, but that can provide insights into enzyme function and reactivity.

Shaw, Wendy J.; Helm, Monte L.; DuBois, Daniel L.

2013-08-01T23:59:59.000Z

132

Primary Water Stress Corrosion Cracks in Nickel Alloy Dissimilar Metal Welds: Detection and Sizing Using Established and Emerging Nondestructive Examination Techniques  

SciTech Connect (OSTI)

The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) as a follow-on to the international cooperative Program for the Inspection of Nickel Alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive evaluation (NDE) techniques to detect and characterize surface-breaking primary water stress corrosion cracks in dissimilar-metal welds (DMW) in bottom-mounted instrumentation (BMI) penetrations and small-bore (?400-mm diameter) piping components. A series of international blind round-robin tests were conducted by commercial and university inspection teams. Results from these tests showed that a combination of conventional and phased-array ultrasound techniques provided the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in BMIs by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field. The goal of PARENT is to continue the work begun in PINC and apply the lessons learned to a series of open and blind international round-robin tests that will be conducted on a new set of piping components including large-bore (?900-mm diameter) DMWs, small-bore DMWs, and BMIs. Open round-robin testing will engage universities and industry worldwide to investigate the reliability of emerging NDE techniques to detect and accurately size flaws having a wide range of lengths, depths, orientations, and locations. Blind round-robin testing will invite testing organizations worldwide, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from easy to very difficult to detect and size. This paper presents highlights of PINC and reports on the plans and progress for PARENT round-robin tests.

Braatz, Brett G.; Cumblidge, Stephen E.; Doctor, Steven R.; Prokofiev, Iouri

2012-12-31T23:59:59.000Z

133

Preparation and X-Ray diffraction studies of curium hydrides  

SciTech Connect (OSTI)

Curium hydrides were prepared by reaction of curium-248 metal with hydrogen and characterized by X-ray powder diffraction. Several of the syntheses resulted in a hexagonal compound with average lattice parameters of a/sub 0/ = 0.3769(8) nm and c/sub 0/ = 0.6732(12) nm. These products are considere to be CmH/sub 3//sup -//sub 8/ by analogy with the behavior of lanthanide-hydrogen and lighter actinide-hydrogen systems. Face-centered cubic products with an average lattice parameter of a/sub 0/ = 0.5322(4) nm were obtained from other curium hydride preparations. This parameter is slightly smaller than that reported previously for cubic curium dihydride, CmH /SUB 2-x/ (B.M. Bansal and D. Damien. Inorg. Nucl. Chem. Lett. 6 603, 1970). The present results established a continuation of typical heavy trivalent lanthanidelike behavior of the transuranium actinide-hydrogen systems through curium.

Gibson, J.K.; Maire, R.G.

1985-10-01T23:59:59.000Z

134

Thermodynamic properties of metal hydride nanostructures  

E-Print Network [OSTI]

Hydrogen is considered a good energy carrier candidate for future automotive applications because of its high abundance and its potential role in a carbon-free cycle. The high gravimetric and volumetric storage capacities ...

Bérubé, Vincent, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

135

Metal Hydrides - Science Needs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies |Charles Page -toMetabolic

136

Sandia National Laboratories: metal hydride storage tanks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime is the cumulative

137

Vanadium hydride deuterium-tritium generator  

DOE Patents [OSTI]

A pressure controlled vanadium hydride gas generator was designed to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

Christensen, L.D.

1980-03-13T23:59:59.000Z

138

Igniter containing titanium hydride and potassium perchlorate  

DOE Patents [OSTI]

An explosive device is described which employs a particular titanium hydride-potassium perchlorate composition directly ignitible by an electrical bridgewire.

Dietzel, Russel W. (Albuquerque, NM); Leslie, William B. (Albuquerque, NM)

1976-01-01T23:59:59.000Z

139

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary...  

Broader source: Energy.gov (indexed) [DOE]

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities...

140

argon hydrides: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

authors 2 Geoneutrino and Hydridic Earth model CERN Preprints Summary: Uranium, Thorium and Potassium-40 abundances in the Earth were calculated in the frame of Hydridic...

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

aluminium hydrides: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Norman A. 3 Geoneutrino and Hydridic Earth model CERN Preprints Summary: Uranium, Thorium and Potassium-40 abundances in the Earth were calculated in the frame of Hydridic...

142

automated hydride generation-cryotrapping-atomic: Topics by E...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mohammad 3 Geoneutrino and Hydridic Earth model CERN Preprints Summary: Uranium, Thorium and Potassium-40 abundances in the Earth were calculated in the frame of Hydridic...

143

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network [OSTI]

of hydride fueled BWRs. Nuclear Engineering and Design, 239:Fueled PWR Cores. Nuclear Engineering and Design, 239:1489–Hydride Fueled LWRs. Nuclear Engineering and Design, 239:

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

144

Electroless nickel recycling via electrodialysis  

SciTech Connect (OSTI)

Electroless nickel is widely used in the metal finishing industry as a coating. It plates evenly on a variety of surfaces and replicates or enhances the surface finish. It has high hardness and good corrosion resistance and machinability. However, its bath life is limited and it has a tendency to spontaneously plate out on the tank and associated equipment. These problems add to the cost per unit component plated. Also, expensive waste treatment is required before users can dispose of the spent solution. Electroless nickel`s limited bath life is inherent in its chemical make-up. Using hypophosphite as the reducing agent for the nickel ion generates by-products of nickel metal and orthophosphite. When the level of orthophosphite in the solution reaches a high concentration, the reaction slows and finally stops. The bath must be disposed of, and its treatment and replacement costs are high. Metal salts have a tendency to plate out because of the dissolved solids present, and this also makes it necessary to discard the bath. Lawrence Livermore National Laboratory (LLNL) has conducted a study of an electrodialysis process that can reduce both chemical purchases and disposal costs. Electrodialysis employs a membrane, deionized water, and an electromotive potential to separate the orthophosphite and other dissolved solids from the nickel ions. With the aid of the electromotive potential, the dissolved solids migrate across the membrane from the process solution into the water in the recycling unit`s holding cell. This migration lowers the total dissolved solids (TDS) in the process solution and improves plating performance. The dialysis process makes it possible to reuse the bath many times without disposal.

Steffani, C.; Meltzer, M.

1995-04-01T23:59:59.000Z

145

A non-isothermal model of a nickelmetal hydride cell , M. Mohammedb  

E-Print Network [OSTI]

) to avoid oxygen gas generation during over discharge and has extra capacity to avoid hydrogen gas generation during over- charge. Since the metal hydride material gradually loses capacity through usage due. The side reaction at the positive electrode is oxygen evolu- tion and at the negative electrode oxygen

146

Wire Wrapped Hexagonal Pin Arrays for Hydride Fueled PWRs  

E-Print Network [OSTI]

This work contributes to the Hydride Fuels Project, a collaborative effort between UC Berkeley and MIT

Diller, Peter

147

Effects of outgassing of loader chamber walls on hydriding of thin films for commercial applications  

SciTech Connect (OSTI)

An important aspect of understanding industrial processing is to know the characteristics of the materials used in such processes. A study was performed to determine the effects of hydriding chamber material on the degree of hydriding for the commercial production of thin film hydride targets for various research universities, commercial companies, and government national laboratories. The goal was to increase the degree of hydriding of various thin film hydrides and to study the vacuum environment during air-exposure hydriding. For this purpose, dynamic residual gas analysis during deuterium gas hydride processing was utilized with erbium thin films, employing a special set-up for direct dynamic hydride gas sampling during processing at elevated temperature and full loading gas pressure. Complete process data for (1) a copper–(1.83?wt.?%)beryllium wet hydrogen fired passivated (600?°C–1?h) externally heated pipe hydriding chamber are reported. Dynamic residual gas analysis comparisons during hydriding are presented for hydriding chambers made from (2) alumina (99.8 wt.?%), (3) copper (with an interior aluminum coating ?10 k Å thick, and (4) for a stainless-steel air-fired passivated (900?°C–1?h) chamber. Dynamic data with deuterium gas in the chamber at the hydriding temperature (450?°C) showed the presence and growth of water vapor (D{sub 2}O) and related mixed ion species(H{sub 2}O{sup +}, HDO{sup +}, D{sub 2}O{sup +}, and OD{sup +}) from hydrogen isotope exchange reactions during the 1?h process time. Peaks at mass-to-charge ratios (i.e., m/e) of 12(C{sup +}), 16(CD{sub 2}{sup +}), 17(CHD{sub 2}{sup +}), and 18(CD{sub 3}{sup +}, OD{sup +}) increased for approximately the first half hour of a 1?h hydriding process and then approach steady state. Mass-to-charge peaks at 19(HDO{sup +}) and 20(D{sub 2}O{sup +}) continue to increase throughout the process cycle. Using the m/e?=?20 (D{sub 2}O{sup +}) peak intensity from chamber (1)–Cu(1.83 wt.?%)Be as a standard, the peak intensity from chamber (4)—stainless-steel (air-fired) was 7.1× higher, indicating that the surface of stainless-steel had a larger concentration of reactive oxygen and/or water than hydrogen. The (D{sub 2}O{sup +}) peak intensity from chamber (3)—Cu (interior Al coating) was 1.55× larger and chamber (2)—alumina(99.8%) was 1.33× higher than Cu(1.83 wt.?%)Be. Thus copper–(1.83 wt.?%)beryllium was the best hydriding chamber material studied followed closely by the alumina (99.8 wt.?%) chamber. Gas take-up by Er occluder targets processed in Cu(1.83?wt.?%)Be hydriding chambers (i.e., gas/metal atomic ratios) correlate with the dynamic RGA data.

Provo, James L., E-mail: jlprovo@verizon.net [Consultant, J.L. Provo Consulting, Trinity, Florida 34655-7179 (United States)

2014-07-01T23:59:59.000Z

148

Hydrogen-storing hydride complexes  

DOE Patents [OSTI]

A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

Srinivasan, Sesha S. (Tampa, FL); Niemann, Michael U. (Venice, FL); Goswami, D. Yogi (Tampa, FL); Stefanakos, Elias K. (Tampa, FL)

2012-04-10T23:59:59.000Z

149

Titanium tritide radioisotope heat source development : palladium-coated titanium hydriding kinetics and tritium loading tests.  

SciTech Connect (OSTI)

We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom (Savannah River National Labs, Aiken, SC)

2012-01-01T23:59:59.000Z

150

High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides  

SciTech Connect (OSTI)

This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

2007-07-27T23:59:59.000Z

151

A PROTOTYPE FOUR INCH SHORT HYDRIDE (FISH) BED AS A REPLACEMENT TRITIUM STORAGE BED  

SciTech Connect (OSTI)

The Savannah River Site (SRS) tritium facilities have used 1st generation (Gen1) metal hydride storage bed assemblies with process vessels (PVs) fabricated from 3 inch nominal pipe size (NPS) pipe to hold up to 12.6 kg of LaNi{sub 4.25}Al{sub 0.75} metal hydride for tritium gas absorption, storage, and desorption for over 15 years. The 2nd generation (Gen2) of the bed design used the same NPS for the PV, but the added internal components produced a bed nominally 1.2 m long, and presented a significant challenge for heater cartridge replacement in a footprint limited glove-box. A prototype 3rd generation (Gen3) metal hydride storage bed has been designed and fabricated as a replacement candidate for the Gen2 storage bed. The prototype Gen3 bed uses a PV pipe diameter of 4 inch NPS so the bed length can be reduced below 0.7 m to facilitate heater cartridge replacement. For the Gen3 prototype bed, modeling results show increased absorption rates when using hydrides with lower absorption pressures. To improve absorption performance compared to the Gen2 beds, a LaNi{sub 4.15}Al{sub 0.85} material was procured and processed to obtain the desired pressure-composition-temperature (PCT) properties. Other bed design improvements are also presented.

Klein, J.; Estochen, E.; Shanahan, K.; Heung, L.

2011-02-23T23:59:59.000Z

152

Method for converting uranium oxides to uranium metal  

DOE Patents [OSTI]

A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

Duerksen, Walter K. (Norris, TN)

1988-01-01T23:59:59.000Z

153

ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE  

SciTech Connect (OSTI)

Hydrogen storage is one of the challenges to be overcome for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods. The direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali metal alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

2009-01-09T23:59:59.000Z

154

Nickel-catalyzed coupling reactions and synthetic studies toward ent-dioxepandehydrothyrsiferol via an epoxide-opening cascade  

E-Print Network [OSTI]

Nickel-Catalyzed Coupling Reactions. Nickel-catalyzed allene--aldehyde coupling and alkene--aldehyde coupling represent two methods of preparing allylic alcohols. Most asymmetric transition metal-catalyzed methods of ...

Ng, Sze-Sze

2008-01-01T23:59:59.000Z

155

High-Spin Cobalt Hydrides for Catalysis  

SciTech Connect (OSTI)

Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

Holland, Patrick L. [Yale University] [Yale University

2013-08-29T23:59:59.000Z

156

Thermal hydraulic analysis of hydride fuels in BWR's  

E-Print Network [OSTI]

This thesis contributes to the hydride nuclear fuel project being completed by UC Berkeley and MIT to assess the possible benefits of using hydride fuel in light water nuclear reactors (LWR's). More specifically, this ...

Creighton, John Everett

2005-01-01T23:59:59.000Z

157

Optimization of hydride fueled pressurized water reactor cores  

E-Print Network [OSTI]

This thesis contributes to the Hydride Fuels Project, a collaborative effort between UC Berkeley and MIT aimed at investigating the potential benefits of hydride fuel use in light water reactors (LWRs). This pursuit involves ...

Shuffler, Carter Alexander

2004-01-01T23:59:59.000Z

158

americium hydrides: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2012-01-01 3 Geoneutrino and Hydridic Earth model CERN Preprints Summary: Uranium, Thorium and Potassium-40 abundances in the Earth were calculated in the frame of Hydridic...

159

Dimensionality-induced insulator-metal crossover in layered nickelates La{sub n+1}Ni{sub n}O{sub 2n+2} (n = 2, 3, and ?)  

SciTech Connect (OSTI)

Low-valence layered nickelates are a structural analog to the superconducting cuprates and possess interesting properties. In this work, we have systematically studied the electronic structure of La{sub n+1}Ni{sub n}O{sub 2n+2} using first-principles calculations. Our results reveal that the Ni-3d 3z{sup 2} ? r{sup 2} orbital state is active and evolves from discrete molecular levels to a continuous solid band and its filling varies as the dimensionality (or n) increases. The two-dimensional (2D) La{sub 3}Ni{sub 2}O{sub 6} and La{sub 4}Ni{sub 3}O{sub 8} are thus found to have a molecular insulating state. In contrast, the 3D LaNiO{sub 2} is metallic and its 3z{sup 2} ? r{sup 2} band surprisingly becomes 3D due to the Ni-La hybridization, and the La-5d xy orbital also forms a 2D metallic band. Therefore, La{sub n+1}Ni{sub n}O{sub 2n+2} is a dimensionality-controlled insulator-metal crossover system.

Liu, Ting; Jia, Ting; Zhang, Xiaoli [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)] [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wu, Hua, E-mail: wuh@fudan.edu.cn [Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, and Department of physics, Fudan University, Shanghai 200433 (China)] [Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, and Department of physics, Fudan University, Shanghai 200433 (China); Zeng, Zhi, E-mail: zzeng@theory.issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China) [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Lin, H. Q. [Beijing Computational Science Research Center, Beijing 100084 (China)] [Beijing Computational Science Research Center, Beijing 100084 (China); Li, X. G. [Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026 (China)] [Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026 (China)

2014-04-15T23:59:59.000Z

160

Nickel assisted healing of defective graphene S. Karoui,1  

E-Print Network [OSTI]

nickel or transition-metal-carbide surfaces can pro- duce thin graphitic layers.5 However, for the most of graphene grown from a metallic substrate is investigated using tight-binding Monte Carlo simulations and 1000 C, using metallic substrates (such as Co, Ni, Ir, Ru) that catalyze the decomposition

Boyer, Edmond

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Structural transformation of nickel hydroxide films during anodic oxidation  

SciTech Connect (OSTI)

The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

Crocker, R.W.; Muller, R.H.

1992-05-01T23:59:59.000Z

162

Geoneutrino and Hydridic Earth model. Version 2  

E-Print Network [OSTI]

Uranium, Thorium and Potassium-40 abundances in the Earth were calculated in the frame of Hydridic Earth model. Terrestrial heat producton from U, Th and K40 decays was calculated also. We must admit the existance of Earth expansion process to understand the obtained large value of terrestrial heat producton. The geoneutrino detector with volume more than 5 kT (LENA type) must be constructed to definitely separate between Bulk Silicat Earth model and Hydridic Earth model. In second version of the article we assume that K40 concentration distributes in the Earth uniformly.

Leonid Bezrukov

2014-02-12T23:59:59.000Z

163

Structural and electrochemical properties of nanostructured nickel silicides by reduction and silicification of high-surface-area nickel oxide  

SciTech Connect (OSTI)

Graphical abstract: Nanostructured nickel silicides have been synthesized by reduction and silification of high-surface-area nickel oxide, and exhibited remarkably like-noble metal property, lower electric resistivity, and ferromagnetism at room temperature. Highlights: Black-Right-Pointing-Pointer NiSi{sub x} have been prepared by reduction and silification of high-surface-area NiO. Black-Right-Pointing-Pointer The structure of nickel silicides changed with increasing reaction temperature. Black-Right-Pointing-Pointer Si doping into nickel changed the magnetic properties of metallic nickel. Black-Right-Pointing-Pointer NiSi{sub x} have remarkably lower electric resistivity and like-noble metal property. -- Abstract: Nanostructured nickel silicides have been prepared by reduction and silicification of high-surface-area nickel oxide (145 m{sup 2} g{sup -1}) produced via precipitation. The prepared materials were characterized by nitrogen adsorption, X-ray diffraction, thermal analysis, FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, magnetic and electrochemical measurements. The nickel silicide formation involves the following sequence: NiO (cubic) {yields} Ni (cubic) {yields} Ni{sub 2}Si (orthorhombic) {yields} NiSi (orthorhombic) {yields} NiSi{sub 2} (cubic), with particles growing from 13.7 to 21.3 nm. The nickel silicides are ferromagnetic at room temperature, and their saturation magnetization values change drastically with the increase of Si content. Nickel silicides have remarkably low electrical resistivity and noble metal-like properties because of a constriction of the Ni d band and an increase of the electronic density of states. The results suggest that such silicides are promising candidates as inexpensive yet functional materials for applications in electrochemistry as well as catalysis.

Chen, Xiao [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Zhang, Bingsen [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany)] [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany); Li, Chuang; Shao, Zhengfeng [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Su, Dangsheng [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany)] [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany); Williams, Christopher T. [Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina (United States)] [Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina (United States); Liang, Changhai, E-mail: changhai@dlut.edu.cn [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

2012-03-15T23:59:59.000Z

164

Fabrication of nickel microbump on aluminum using electroless nickel plating  

SciTech Connect (OSTI)

Fabrication of nickel microbumps on an aluminum electrode using a nickel displacement and a direct nickel plating process was investigated. Electroless nickel plating reaction with hypophosphite as a reducing agent was not initiated on the aluminum substrate, because aluminum does not have catalytic action on the oxidation of hypophosphite. Accordingly, nickel was initially deposited on the aluminum using nickel displacement plating for the initiation of the electroless plating. Nickel bumps on the aluminum electrode were fabricated by treatment of the nickel displacement plating followed by electroless nickel plating. Nickel microbumps also can be formed on the aluminum electrode without the displacement plating process. Activation of the aluminum surface is an indispensable process to initiate electroless nickel plating. Uniform bumps 20 {micro}m wide and 15 {micro}m high with good configuration were obtained by direct nickel plating after being activated with dimethyl amine borane.

Watanabe, H.; Honma, H. [Kanto Gakuin Univ., Yokohama, Kanagawa (Japan). Faculty of Engineering

1997-02-01T23:59:59.000Z

165

Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells  

DOE Patents [OSTI]

A solid oxide fuel assembly is made, wherein rows (14, 25) of fuel cells (17, 19, 21, 27, 29, 31), each having an outer interconnection (20) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh member (22) between each row of cells, the corrugated mesh (22) having top crown portions and bottom portions, where the top crown portion (40) have a top bonded open cell nickel foam (51) which contacts outer interconnections (20) of the fuel cells, said mesh and nickel foam electrically connecting each row of fuel cells, and where there are no more metal felt connections between any fuel cells.

Draper, Robert; Prevish, Thomas; Bronson, Angela; George, Raymond A.

2007-01-02T23:59:59.000Z

166

Ductility Evaluation of As-Hydrided and Hydride Reoriented Zircaloy-4 Cladding under Simulated Dry-Storage Condition  

SciTech Connect (OSTI)

Pre-storage drying-transfer operations and early stage storage expose cladding to higher temperatures and much higher pressure-induced tensile hoop stresses relative to normal operation in-reactor and pool storage under these conditions. Radial hydrides could precipitate during slow cooling and provide an additional embrittlement mechanism as the cladding temperature decreases below the ductile-to-brittle transition temperature. As a means of simulating this behavior, unirradiated hydrided Zircaloy-4 samples were fabricated by a gas charging method to levels that encompass the range of hydrogen concentrations observed in current used fuel. Mechanical testing was carried out by the ring compression test (RCT) method at various temperatures to evaluate the sample s ductility for both as-hydrided and post-hydride reorientation treated specimens. As-hydrided samples with higher hydrogen concentration (>800 ppm) resulted in lower strain before fracture and reduced maximum load. Increasing RCT temperatures resulted in increased ductility of the as-hydrided cladding. A systematic radial hydride treatment was conducted at various pressures and temperatures for the hydrided samples with H content around 200 ppm. Following the radial hydride treatment, RCTs on the hydride reoriented samples were conducted and exhibited lower ductility compared to as-hydrided samples.

Yan, Yong [ORNL] [ORNL; Plummer, Lee K [ORNL] [ORNL; Ray, Holly B [ORNL] [ORNL; Cook, Tyler S [ORNL] [ORNL; Bilheux, Hassina Z [ORNL] [ORNL

2014-01-01T23:59:59.000Z

167

An electrochemical route for making porous nickel oxide electrochemical capacitors  

SciTech Connect (OSTI)

Porous nickel oxide films were prepared by electrochemically precipitating nickel hydroxide and heating the hydroxide in air at 300 C. The resulting nickel oxide films behave as an electrochemical capacitor with a specific capacitance of 59 F/g electrode material. These nickel oxide films maintain high utilization at high rates of discharge (i.e., high power density) and have excellent cycle life. Porous cobalt oxide films were also synthesized. Although the specific capacitances of these films are approximately one-fifth that of the nickel oxide films, the results demonstrate the versatility of fabricating a wide range of porous metal oxide films using this electrochemical route for use in capacitor applications. Electrochemical capacitors have generated wide interest in recent years for use in high power applications (e.g., in a hybrid electric vehicle, where they are expected to work in conjunction with a conventional battery).

Srinivasan, V.; Weidner, J.W. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemical Engineering

1997-08-01T23:59:59.000Z

168

Empirical and physics based mathematical models of uranium hydride decomposition kinetics with quantified uncertainties.  

SciTech Connect (OSTI)

Metal particle beds have recently become a major technique for hydrogen storage. In order to extract hydrogen from such beds, it is crucial to understand the decomposition kinetics of the metal hydride. We are interested in obtaining a a better understanding of the uranium hydride (UH3) decomposition kinetics. We first developed an empirical model by fitting data compiled from different experimental studies in the literature and quantified the uncertainty resulting from the scattered data. We found that the decomposition time range predicted by the obtained kinetics was in a good agreement with published experimental results. Secondly, we developed a physics based mathematical model to simulate the rate of hydrogen diffusion in a hydride particle during the decomposition. We used this model to simulate the decomposition of the particles for temperatures ranging from 300K to 1000K while propagating parametric uncertainty and evaluated the kinetics from the results. We compared the kinetics parameters derived from the empirical and physics based models and found that the uncertainty in the kinetics predicted by the physics based model covers the scattered experimental data. Finally, we used the physics-based kinetics parameters to simulate the effects of boundary resistances and powder morphological changes during decomposition in a continuum level model. We found that the species change within the bed occurring during the decomposition accelerates the hydrogen flow by increasing the bed permeability, while the pressure buildup and the thermal barrier forming at the wall significantly impede the hydrogen extraction.

Salloum, Maher N.; Gharagozloo, Patricia E.

2013-10-01T23:59:59.000Z

169

Kinetic model of catalytic oxidation of carbon monoxide on nickel  

SciTech Connect (OSTI)

A mechanism is proposed for describing the previous disclosed multiplicity of equilibrium states in the oxidation of carbon monoxide on metallic nickel. In contrast to the known mechanism for oxidation of CO on platinum metals it includes a nonlinear stage of carbon monoxide adsorption and a linear stage of oxygen adsorption. A kinetic model has been obtained and stage velocity constants have been found, providing a basis for obtaining a quantitative agreement between the calculated and experimental relations between the reaction velocity and the reagent concentrations. Opinions are stated in relation to the causes for evolution of the CO oxidation reaction from platinum metals to nickel.

Pyatnitskii, Yu.I.; Ostapyuk, V.A.

1986-07-01T23:59:59.000Z

170

Waste water treatment and metal recovery  

E-Print Network [OSTI]

Waste water treatment and metal recovery Nickel catalysts for hydrogen production Nickel and single versions of which contained cobalt, chromium, carbon, molybdenum, tungsten, and nickel. In 1911 and 1912% on their stainless steel production. The company paid sizable dividends to its owners until it was dissolved

Braun, Paul

171

LANL/PNNL Virtual Center for Chemical Hydrides and New Concepts...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

LANLPNNL Virtual Center for Chemical Hydrides and New Concepts for Hydrogen Storage LANLPNNL Virtual Center for Chemical Hydrides and New Concepts for Hydrogen Storage...

172

E-Print Network 3.0 - antimony hydrides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Sb(V) were the only hydride-forming species found... WATERS BY HYDRIDE GENERATION ATOMIC ABSORPTION SPECTROMETRY Water-Resources Investigations Report 03... Prior to the...

173

Metallic glass composition  

DOE Patents [OSTI]

A metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon carbon and phosphorous to which is added an amount of a ductility enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

Kroeger, Donald M. (Knoxville, TN); Koch, Carl C. (Raleigh, NC)

1986-01-01T23:59:59.000Z

174

Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity  

SciTech Connect (OSTI)

The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ? 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ? 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space between alkaline metal hydrides (AmH), Alkaline earth metal hydrides (AeH2), alane (AlH3), transition metal (Tm) hydrides (TmHz, where z=1-3) and molecular hydrogen (H2). The effort started first with variations of known alanates and subsequently extended the search to unknown compounds. In this stage, the FPM techniques were developed and validated on known alanate materials such as NaAlH4 and Na2LiAlH6. The coupled predictive methodologies were used to survey over 200 proposed phases in six quaternary spaces, formed from various combinations of Na, Li Mg and/or Ti with Al and H. A wide range of alanate compounds was examined using SSP having additions of Ti, Cr, Co, Ni and Fe. A number of compositions and reaction paths were identified having H weight fractions up to 5.6 wt %, but none meeting the 7.5 wt%H reversible goal. Similarly, MSP of alanates produced a number of interesting compounds and general conclusions regarding reaction behavior of mixtures during processing, but no alanate based candidates meeting the 7.5 wt% goal. A novel alanate, LiMg(AlH4)3, was synthesized using SBP that demonstrated a 7.0 wt% capacity with a desorption temperature of 150°C. The deuteride form was synthesized and characterized by the Institute for Energy (IFE) in Norway to determine its crystalline structure for related FPM studies. However, the reaction exhibited exothermicity and therefore was not reversible under acceptable hydrogen gas pressures for on-board recharging. After the extensive studies of alanates, the material class of emphasis was shifted to borohydrides. Through SBP, several ligand-stabilized Mg(BH4)2 complexes were synthesized. The Mg(BH4)2*2NH3 complex was found to change behavior with slightly different synthesis conditions and/or aging. One of the two mechanisms was an amine-borane (NH3BH3) like dissociation reaction which released up to 16 wt %H and more conservatively 9 wt%H when not including H2 released from the NH3. From FPM, the stability of the Mg(BH4)2*2NH3 compound was found to increase with the inclusion of NH3 groups in the inner-Mg coordination

Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

2008-02-18T23:59:59.000Z

175

Results of NDE Technique Evaluation of Clad Hydrides  

SciTech Connect (OSTI)

This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used to detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of contributing parameters. These contributing factors need to be recognized and a means to control them or separate their contributions will be required to obtain the desired information.

Dennis C. Kunerth

2014-09-01T23:59:59.000Z

176

Highly Concentrated Palladium Hydrides/Deuterides; Theory  

SciTech Connect (OSTI)

Accomplishments are reported in these areas: tight-binding molecular dynamics study of palladium; First-principles calculations and tight-binding molecular dynamics simulations of the palladium-hydrogen system; tight-binding studies of bulk properties and hydrogen vacancies in KBH{sub 4}; tight-binding study of boron structures; development of angular dependent potentials for Pd-H; and density functional and tight-binding calculations for the light-hydrides NaAlH4 and NaBH4

Papaconstantopoulos, Dimitrios

2013-11-26T23:59:59.000Z

177

E-Print Network 3.0 - active filler metal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. The dissolution of the base metal in the liquid filler metal could eventually shift the eutectic point, however... -temperature brazing with nickel-based filler ... Source:...

178

Production of Hydrogen by Electrocatalysis: Making the H-H Bond by Combining Protons and Hydrides  

SciTech Connect (OSTI)

Generation of hydrogen by reduction of two protons by two electrons can be catalysed by molecular electrocatalysts. Determination of the thermodynamic driving force for elimination of H2 from molecular complexes is important for the rational design of molecular electrocatalysts, and allows the design of metal complexes of abundant, inexpensive metals rather than precious metals (“Cheap Metals for Noble Tasks”). The rate of H2 evolution can be dramatically accelerated by incorporating pendant amines into diphosphine ligands. These pendant amines in the second coordination sphere function as protons relays, accelerating intramolecular and intermolecular proton transfer reactions. The thermodynamics of hydride transfer from metal hydrides and the acidity of protonated pendant amines (pKa of N-H) contribute to the thermodynamics of elimination of H2; both of the hydricity and acidity can be systematically varied by changing the substituents on the ligands. A series of Ni(II) electrocatalysts with pendant amines have been developed. In addition to the thermochemical considerations, the catalytic rate is strongly influenced by the ability to deliver protons to the correct location of the pendant amine. Protonation of the amine endo to the metal leads to the N-H being positioned appropriately to favor rapid heterocoupling with the M-H. Designing ligands that include proton relays that are properly positioned and thermodynamically tuned is a key principle for molecular electrocatalysts for H2 production as well as for other multi-proton, multi-electron reactions important for energy conversions. The research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for DOE.

Bullock, R. Morris; Appel, Aaron M.; Helm, Monte L.

2014-03-25T23:59:59.000Z

179

ENVIRONMENTAL REACTIVITY OF SOLID STATE HYDRIDE MATERIALS  

SciTech Connect (OSTI)

In searching for high gravimetric and volumetric density hydrogen storage systems, it is inevitable that higher energy density materials will be used. In order to make safe and commercially acceptable condensed phase hydrogen storage systems, it is important to understand quantitatively the risks involved in using and handling these materials and to develop appropriate mitigation strategies to handle potential material exposure events. A crucial aspect of the development of risk identification and mitigation strategies is the development of rigorous environmental reactivity testing standards and procedures. This will allow for the identification of potential risks and implementation of risk mitigation strategies. Modified testing procedures for shipping air and/or water sensitive materials, as codified by the United Nations, have been used to evaluate two potential hydrogen storage materials, 2LiBH{sub 4} {center_dot} MgH{sub 2} and NH{sub 3}BH{sub 3}. The modified U.N. procedures include identification of self-reactive substances, pyrophoric substances, and gas-emitting substances with water contact. The results of these tests for air and water contact sensitivity will be compared to the pure material components where appropriate (e.g. LiBH{sub 4} and MgH{sub 2}). The water contact tests are divided into two scenarios dependent on the hydride to water mole ratio and heat transport characteristics. Air contact tests were run to determine whether a substance will spontaneously react with air in a packed or dispersed form. In the case of the 2LiBH{sub 4} {center_dot} MgH{sub 2} material, the results from the hydride mixture compared to the pure materials results showed the MgH{sub 2} to be the least reactive component and LiBH{sub 4} the more reactive. The combined 2LiBH{sub 4} {center_dot} MgH{sub 2} resulted in a material having environmental reactivity between these two materials. Relative to 2LiBH{sub 4} {center_dot} MgH{sub 2}, the chemical hydride NH{sub 3}BH{sub 3} was observed to be less environmentally reactive.

Gray, J; Donald Anton, D

2009-04-23T23:59:59.000Z

180

annulus metal hydride: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to the infinite strip A which has zero Lebesgue measure rotation number. If the rotation number of f restricted of its rotation set. This is a partial solution to a conjecture of...

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Isotope exchange kinetics in metal hydrides I : TPLUG model.  

SciTech Connect (OSTI)

A one-dimensional isobaric reactor model is used to simulate hydrogen isotope exchange processes taking place during flow through a powdered palladium bed. This simple model is designed to serve primarily as a platform for the initial development of detailed chemical mechanisms that can then be refined with the aid of more complex reactor descriptions. The one-dimensional model is based on the Sandia in-house code TPLUG, which solves a transient set of governing equations including an overall mass balance for the gas phase, material balances for all of the gas-phase and surface species, and an ideal gas equation of state. An energy equation can also be solved if thermodynamic properties for all of the species involved are known. The code is coupled with the Chemkin package to facilitate the incorporation of arbitrary multistep reaction mechanisms into the simulations. This capability is used here to test and optimize a basic mechanism describing the surface chemistry at or near the interface between the gas phase and a palladium particle. The mechanism includes reversible dissociative adsorptions of the three gas-phase species on the particle surface as well as atomic migrations between the surface and the bulk. The migration steps are more general than those used previously in that they do not require simultaneous movement of two atoms in opposite directions; this makes possible the creation and destruction of bulk vacancies and thus allows the model to account for variations in the bulk stoichiometry with isotopic composition. The optimization code APPSPACK is used to adjust the mass-action rate constants so as to achieve the best possible fit to a given set of experimental data, subject to a set of rigorous thermodynamic constraints. When data for nearly isothermal and isobaric deuterium-to-hydrogen (D {yields} H) and hydrogen-to-deuterium (H {yields} D) exchanges are fitted simultaneously, results for the former are excellent, while those for the latter show pronounced deviations at long times. These discrepancies can be overcome by postulating the presence of a surface poison such as carbon monoxide, but this explanation is highly speculative. When the method is applied to D {yields} H exchanges intentionally poisoned by known amounts of CO, the fitting results are noticeably degraded from those for the nominally CO-free system but are still tolerable. When TPLUG is used to simulate a blowdown-type experiment, which is characterized by large and rapid changes in both pressure and temperature, discrepancies are even more apparent. Thus, it can be concluded that the best use of TPLUG is not in simulating realistic exchange scenarios, but in extracting preliminary estimates for the kinetic parameters from experiments in which variations in temperature and pressure are intentionally minimized.

Larson, Rich; James, Scott Carlton; Nilson, Robert H.

2011-05-01T23:59:59.000Z

182

Project Profile: Engineering a Novel High Temperature Metal Hydride  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,-CommitteeItems at6ACityThermochemical Storage |

183

Designation of Sites for Remedial Action - Metal Hydrides, Beverly,  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntownRockyDeparttient,of Energy Washington,T:

184

Proposed Virtual Center for Excellence for Metal Hydride Development |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment of Energy 0 DOE VehicleProposed agenda379632 of 43

185

Sandia National Laboratories: low-pressure metal hydride design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturinglife-cycleion

186

Sandia National Laboratories: metal hydride storage thermal-management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime is the cumulativeissues thermal-management

187

Metal Hydride Hydrogen Storage Research and Development | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthComments MEMA:May 14, 2014 -Melody C.andDepartment

188

ab5 metal hydride: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Hydrogen Research, for providing me wreath a generous assistantship and a great environment to conduct my... continued interest in my research long after I left BNL....

189

Transient analysis of hydride fueled pressurized water reactor cores  

E-Print Network [OSTI]

This thesis contributes to the hydride nuclear fuel project led by U. C. Berkeley for which MIT is to perform the thermal hydraulic and economic analyses. A parametric study has been performed to determine the optimum ...

Trant, Jarrod Michael

2004-01-01T23:59:59.000Z

190

888Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aserosol.   

E-Print Network [OSTI]

Metal and Silicate Particles Including Nanoparticles Areiron, nickel, aluminum, and silicate and nanoparticles (,100The presence of metal and silicate particles in cartomizer

Talbot, Prue

2013-01-01T23:59:59.000Z

191

Optimization of Hydride Rim Formation in Unirradiated Zr 4 Cladding  

SciTech Connect (OSTI)

The purpose of this work is to build on the results reported in the M2 milestone M2FT 13PN0805051, document number FCRD-USED-2013-000151 (Hanson, 2013). In that work, it was demonstrated that unirradiated samples of zircaloy-4 cladding could be pre-hydrided at temperatures below 400°C in pure hydrogen gas and that the growth of hydrides on the surface could be controlled by changing the surface condition of the samples and form a desired hydride rim on the outside diameter of the cladding. The work performed at Pacific Northwest National Laboratory since the issuing of the M2 milestone has focused its efforts to optimize the formation of a hydride rim on available zircaloy-4 cladding samples by controlling temperature variation and gas flow control during pre-hydriding treatments. Surface conditioning of the outside surface was also examined as a variable. The results of test indicate that much of the variability in the hydride thickness is due to temperature variation occurring in the furnaces as well as how hydrogen gas flows across the sample surface. Efforts to examine other alloys, gas concentrations, and different surface conditioning plan to be pursed in the next FY as more cladding samples become available

Shimskey, Rick W.; Hanson, Brady D.; MacFarlan, Paul J.

2013-09-30T23:59:59.000Z

192

Transition Metal Switchable Mirror  

ScienceCinema (OSTI)

The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

None

2013-05-29T23:59:59.000Z

193

Transition Metal Switchable Mirror  

ScienceCinema (OSTI)

The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

None

2010-01-08T23:59:59.000Z

194

OBSERVATIONS IN REACTIVITY BETWEEN BH CONTAINING COMPOUNDS AND ORGANOMETALLIC REAGENTS: SYNTHESIS OF BORONIC ACIDS, BORONIC ESTERS, AND MAGNESIUM HYDRIDES  

E-Print Network [OSTI]

Reaction of BH 3 :THF with magnesium hydride byproduct. A.It was also observed that magnesium hydride can partiallyACIDS, BORONIC ESTERS, AND MAGNESIUM HYDRIDES A dissertation

Clary, Jacob William

2012-01-01T23:59:59.000Z

195

Comparison of various battery technologies for electric vehicles  

E-Print Network [OSTI]

four technologies; Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual...

Dickinson, Blake Edward

1993-01-01T23:59:59.000Z

196

Nickel-cobalt alloy nanosheets obtained from reductive hydrothermal-treatment of nickel-cobalt hydroxide carbonate  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer An anionic layered material, nickel-cobalt hydroxide carbonate was synthesized. Black-Right-Pointing-Pointer Reductive hydrothermal-treatment of the layered precursor produced an alloy. Black-Right-Pointing-Pointer The alloy is a bimetallic nanostructured nickel-cobalt and a soft magnet material. -- Abstract: Nickel-cobalt hydroxide carbonate, a layered material was synthesized by the co-precipitation method using urea as precipitant agent. This anionic layered material with hexagonal structure is constructed from nickel and cobalt ions within the layers and carbonate anions between the layers. Nickel-cobalt alloy with pure cubic phase was obtained by a reductive hydrothermal-treatment of the layered precursor. Powder X-ray diffraction pattern and Fourier transform infrared spectroscopy confirmed the formation of the initial layered material and its metallic alloy product. That is, the nickel-cobalt alloy has really produced via a wet chemical route for the first time. Magnetic measurement revealed that the alloy sample is a soft magnet material.

Ghotbi, Mohammad Yeganeh, E-mail: yeganehghotbi@gmail.com [Nanomaterials and Nanotechnology Program, Ceramic Engineering Department, Faculty of Engineering, Malayer University, Malayer (Iran, Islamic Republic of); Jolagah, Ali; Afrasiabi, Hasan-ali [Nanomaterials and Nanotechnology Program, Ceramic Engineering Department, Faculty of Engineering, Malayer University, Malayer (Iran, Islamic Republic of)] [Nanomaterials and Nanotechnology Program, Ceramic Engineering Department, Faculty of Engineering, Malayer University, Malayer (Iran, Islamic Republic of)

2012-03-15T23:59:59.000Z

197

Attack polish for nickel-base alloys and stainless steels  

DOE Patents [OSTI]

A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels is described. The chemical attack polich comprises FeNO/sub 3/, concentrated CH/sub 3/COOH, concentrated H/sub 2/SO/sub 4/ and H/sub 2/O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

Not Available

1980-05-28T23:59:59.000Z

198

Method of polishing nickel-base alloys and stainless steels  

DOE Patents [OSTI]

A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

Steeves, Arthur F. (Schenectady, NY); Buono, Donald P. (Schenectady, NY)

1981-01-01T23:59:59.000Z

199

Attack polish for nickel-base alloys and stainless steels  

DOE Patents [OSTI]

A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

Steeves, Arthur F. (Schenectady, NY); Buono, Donald P. (Schenectady, NY)

1983-01-01T23:59:59.000Z

200

Infiltration of nickel into alumina compact by electrodeposition  

SciTech Connect (OSTI)

Ni metal was electrodeposited into pores of an alumina compact in the aqueous solution of nickel nitrate/urea/ethylene glycol/ammonium sulfate. The Ni{sup 2+} ions in pores of the alumina compact deposited in proportion to t{sup 0.45}-t{sup 0.61} of deposition time (t) on Au electrode sputtered on the alumina surface. The deposition rate of Ni was higher for direct current than pulsed current Nickel grew dendritically in the alumina pores.

Hirata, Yoshihiro; Kyoda, Hideharu; Iwamoto, Takayuki [Kagoshima Univ. (Japan)

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

PREPRINT submitted to Journal of Physics B Electronic structure of the Magnesium hydride  

E-Print Network [OSTI]

PREPRINT submitted to Journal of Physics B Electronic structure of the Magnesium hydride molecular: 31.15.AR,31.15.Ct,31.50.Be,31.50.Df #12; Electronic structure of the Magnesium hydride molecular ion

Recanati, Catherine

202

Support and crystallite effects in CO hydrogenation on nickel  

SciTech Connect (OSTI)

The adsorption and reaction of carbon monoxide and hydrogen were studied on seven alumina-supported catalysts containing 0.5-23% nickel, four silica-supported catalysts containing 2.7-15% nickel, and 2.8 and 15% nickel on titanium oxide. On the silica and alumina-supported catalysts, hydrogen adsorption, per cent reduction of metal, carbon monoxide/hydrogen adsorption ratio, and methane yield increased with increasing metal dispersion, the methane turnover number decreased with increasing metal dispersion, and the carbon monoxide turnover number was not affected by dispersion. Hydrogen adsorption was suppressed by the titanium dioxide support. The suppression of hydrogen adsorption and the activity for carbon monoxide hydrogenation decreased as a function of support in the order TiO/sub 2/ > Al/sub 2/O/sub 3/ > SiO/sub 2/ and apparently depended on the strength of the electronic interaction of support and metal. The selectivity shifted to higher hydrocarbons as the metal dispersion increased and as the carbon monoxide/hydrogen adsorption ratio increased. Effects of preparation method are also reported.

Bartholomew, C.H.; Pannell, R.B.; Butler, J.L.

1980-10-01T23:59:59.000Z

203

Formation of Nickel Silicide from Direct-liquid-injection Chemical-vapor-deposited Nickel Nitride Films  

SciTech Connect (OSTI)

Smooth, continuous, and highly conformal nickel nitride (NiN{sub x}) films were deposited by direct liquid injection (DLI)-chemical vapor deposition (CVD) using a solution of bis(N,N{prime}-di-tert-butylacetamidinato)nickel(II) in tetrahydronaphthalene as the nickel (Ni) source and ammonia (NH{sub 3}) as the coreactant gas. The DLI-CVD NiNx films grown on HF-last (100) silicon and on highly doped polysilicon substrates served as the intermediate for subsequent conversion into nickel silicide (NiSi), which is a key material for source, drain, and gate contacts in microelectronic devices. Rapid thermal annealing in the forming gas of DLI-CVD NiNx films formed continuous NiSi films at temperatures above 400 C. The resistivity of the NiSi films was 15{mu}{Omega} cm, close to the value for bulk crystals. The NiSi films have remarkably smooth and sharp interfaces with underlying Si substrates, thereby producing contacts for transistors with a higher drive current and a lower junction leakage. Resistivity and synchrotron X-ray diffraction in real-time during annealing of NiNx films showed the formation of a NiSi film at about 440 C, which is morphologically stable up to about 650 C. These NiSi films could find applications in future nanoscale complementary metal oxide semiconductor devices or three-dimensional metal-oxide-semiconductor devices such as Fin-type field effect transistors for the 22 nm technology node and beyond.

Li, Z.; Gordon, R; Li, H; Shenai, D; Lavoie, C

2010-01-01T23:59:59.000Z

204

THERMAL ENHANCEMENT CARTRIDGE HEATER MODIFIED TECH MOD TRITIUM HYDRIDE BED DEVELOPMENT PART I DESIGN AND FABRICATION  

SciTech Connect (OSTI)

The Savannah River Site (SRS) tritium facilities have used 1{sup st} generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and 3{sup rd} generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen 3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due to tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed.

Klein, J.; Estochen, E.

2014-03-06T23:59:59.000Z

205

A Novel Zr-1Nb Alloy and a New Look at Hydriding  

SciTech Connect (OSTI)

A novel Zr-1Nb has begun development based on a working model that takes into account the hydrogen permeabilities for zirconium and niobium metals. The beta-Nb secondary phase particles (SPPs) in Zr-1Nb are believed to promote more rapid hydrogen dynamics in the alloy in comparison to other zirconium alloys. Furthermore, some hydrogen release is expected at the lower temperatures corresponding to outages when the partial pressure of H2 in the coolant is less. These characteristics lessen the negative synergism between corrosion and hydriding that is otherwise observed in cladding alloys without niobium. In accord with the working model, development of nanoscale precursors was initiated to enhance the performance of existing Zr-1Nb alloys. Their characteristics and properties can be compared to oxide-dispersion strengthened alloys, and material additions have been proposed to zirconium-based LWR cladding to guard further against hydriding and to fix the size of the SPPs for microstructure stability enhancements. A preparative route is being investigated that does not require mechanical alloying, and 10 nanometer molybdenum particles have been prepared which are part of the nanoscale precursors. If successful, the approach has implications for long term dry storage of used fuel and for new routes to nanoferritic and ODS alloys.

Robert D. Mariani; James I. Cole; Assel Aitkaliyeva

2013-09-01T23:59:59.000Z

206

Opening of a Post Doctoral Position Complex hydrides for hydrogen storage applications  

E-Print Network [OSTI]

Opening of a Post Doctoral Position Complex hydrides for hydrogen storage applications on complex hydrides for hydrogen storage applications in connection with the « Fast, reliable and cost effective boron hydride based high capacity solid state hydrogen storage materials» project co

207

Dispersion enhanced metal/zeolite catalysts  

DOE Patents [OSTI]

Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

1987-03-31T23:59:59.000Z

208

Photoelectron spectroscopy of boron aluminum hydride cluster anions  

SciTech Connect (OSTI)

Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, B{sub x}Al{sub y}H{sub z}{sup ?}, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H., E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Xiang [Center for Space Science and Technology, University of Maryland–Baltimore County, Baltimore, Maryland 21250 (United States)] [Center for Space Science and Technology, University of Maryland–Baltimore County, Baltimore, Maryland 21250 (United States); Kiran, Boggavarapu, E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry and Physics, McNeese State University, Lake Charles, Louisiana 70609 (United States)] [Department of Chemistry and Physics, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K. [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)] [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

2014-04-28T23:59:59.000Z

209

Synthesis of Graphene Layers from Metal-Carbon Melts: Nucleation and Growth Kinetics  

E-Print Network [OSTI]

both stable graphite and metal stable carbide formation. ForCarbide Eutectic in Nickel-Carbon Alloys The Physics of Metals andcarbide transition As it was explained in section 1.2 in some of metal-

Amini, Shaahin

2012-01-01T23:59:59.000Z

210

Raman Spectroscopy of Lithium Hydride Corrosion: Selection of an Appropriate Excitation Wavelength to Minimize Fluorescence  

SciTech Connect (OSTI)

The recent interest in a hydrogen-based fuel economy has renewed research into metal hydride chemistry. Many of these compounds react readily with water to release hydrogen gas and form a caustic. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT) has been used to study the hydrolysis reaction. The LiOH stretch appears at 3670 cm{sup -1}. Raman spectroscopy is a complementary technique that employs monochromatic excitation (laser) allowing access to the low energy region of the vibrational spectrum (<600 cm{sup -1}). Weak scattering and fluorescence typically prevent Raman from being used for many compounds. The role of Li{sub 2}O in the moisture reaction has not been fully studied for LiH. Li{sub 2}O can be observed by Raman while being hidden in the Infrared spectrum.

Stowe, A. C.; Smyrl, N. R.

2011-05-26T23:59:59.000Z

211

Hydride generation from the Exide load-leveling cells  

SciTech Connect (OSTI)

Stibine and arsine evolution from lead-acid cells in a 36-kWh Exide load-leveling module was measured as this module approached 1900 cycles of operation. A gas-collection apparatus enabled us to determine the maximum and average rates for evolution of both toxic hydrides. Hydride generation began once the cell voltage exceeded 2.4 V. The maximum rate for arsine occurred just above 2.5 V and consistently preceded the peak rate for stibine for each sampled cell. The average rates of hydride generation were found to be 175 ..mu..g/min for stibine and 12.6 ..mu..g/min for arsine. The former rate proved to be the critical value in determining safe ventilation requirements for cell off-gases. The minimum airflow requirement was calculated to be 340 L/min per cell. Projections for a hypothetical 1-MWh Exide battery without an abatement system indicated that the normal ventilation capacity in the Battery Energy Storage Test facility provides nearly five times the airflow needed for safe hydride removal.

Marr, J.J.; Smaga, J.A.

1987-05-01T23:59:59.000Z

212

HYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES  

E-Print Network [OSTI]

, Michael D. HamptonDarlene K. Slattery, Michael D. Hampton FL Solar Energy Center, U. of Central FLFL Solar Energy Center, U. of Central FL #12;Objective · Identify a hydrogen storage system that meets the DOEHYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES Darlene K. Slattery

213

Complexation effects in the electrodeposition of nickel-iron alloys  

SciTech Connect (OSTI)

The nickel-iron alloy electrodeposition system exhibits a phenomenon known as anomalous codeposition, where the less noble metal (Fe) deposits preferentially to the more noble metal (Ni). One explanation for this behavior is that ferrous hydroxide adsorbs to the surface of the electrode and inhibits the electrodeposition of the nickel. This mechanism is being tested through the use of {open_quotes}selective{close_quotes} complexing agents for Ni{sup 2+}, Fe{sup 2+} and Fe{sup 3+}. The complexation behavior of these ions with acetate, chloroacetate,and aminoacetate ions is being characterized by potentiometric titration and polarographic measurements. The effect of these complexants on the electrodeposition of the alloys is also being studied.

Huynh, T.; Harris, T. [Univ. of Tulsa, OK (United States)

1995-12-01T23:59:59.000Z

214

Complexation effects in the electrodeposition of nickel-zinc alloys  

SciTech Connect (OSTI)

The nickel-zinc alloy electrodeposition system exhibits a phenomenon known as anomalous codeposition, where the less noble metal (Zn) deposits preferentially to the more noble metal (Ni). One explanation for this behavior is that zinc hydroxide adsorbs to the surface of the electrode and inhibits the electrodeposition of the nickel. This mechanism is being tested through the use of {open_quotes}selective{close_quotes} complexing agents for Ni{sup 2+} and Zn{sup 2+}. The complexation behavior of these ions with citrate, aspartate and pyrophosphate ions is being characterized by potentiometric titration and polarographic measurements. The effect of these complexants on the electrodeposition of the alloys is also being studied.

Melville, A.; Harris, T. [Univ. of Tulsa, OK (United States)

1995-12-01T23:59:59.000Z

215

Thermally tolerant multilayer metal membrane  

DOE Patents [OSTI]

A composite metal membrane including a first metal layer of a Group IVB or Group VB metal sandwiched between two layers of a Group VIIIB metal selected from the group consisting of palladium, platinum, nickel, rhodium, iridium, cobalt, and alloys thereof, and a non-continuous layer of a metal chalcogenide upon one layer of the Group VIIIB metal is disclosed together with a process for the recovery of hydrogen from a gaseous mixture using such a composite membrane and a process for forming such a composite metal membrane.

Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

216

JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 13, NO. 5, OCTOBER 2004 791 Electroplated Metal Microstructures Embedded  

E-Print Network [OSTI]

of multiwafer, MEMS devices. [1276] Index Terms--Copper, encapsulation, micromachining, nickel alloys, permalloy metallization of electroplated materials in polymer micromolds [9]. Electrodeposition has proven

217

Magnetism in metal-organic capsules  

SciTech Connect (OSTI)

Nickel and cobalt seamed metal-organic capsules have been isolated and studied using structural, magnetic and computational approaches. Antiferromagnetic exchange in the Ni capsule results from coordination environments enforced by the capsule framework.

Atwood, Jerry L.; Brechin, Euan K; Dalgarno, Scott J.; Inglis, Ross; Jones, Leigh F.; Mossine, Andrew; Paterson, Martin J.; Power, Nicholas P.; Teat, Simon J.

2010-01-07T23:59:59.000Z

218

Metal Dusting of Heat-Resistant Alloys  

E-Print Network [OSTI]

Metal dusting leads to disintegration of such alloys as iron and nickel-based into a “dust” of particulate metal, metal carbide, carbon, and/or oxide. It occurs in strongly carburising environments at 400-900°C. Literature survey has shown...

Al-Meshari, Abdulaziz I

219

A plant growth-promoting bacterium that decreases nickel toxicity in seedlings  

SciTech Connect (OSTI)

A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni{sup 2+}, Pb{sup 2+}, Zn{sup 2+}, and CrO{sub 4}{sup {minus}}, produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride were partially protected against nickel toxicity. In addition, protection by the bacterium against nickel toxicity was evident in pot experiments with canola and tomato seeds. The presence of K. ascorbata SUD165 had no measurable influence on the amount of nickel accumulated per milligram (dry weight) of either roots or shoots of canola plants. Therefore, the bacterial plant growth-promoting effect in the presence of nickel was probably not attributable to the reduction of nickel uptake by seedlings. Rather, it may reflect the ability of the bacterium to lower the level of stress ethylene induced by the nickel.

Burd, G.I.; Dixon, D.G.; Glick, B.R. [Univ. of Waterloo, Ontario (Canada). Dept. of Biology

1998-10-01T23:59:59.000Z

220

Electron screening in nickel  

SciTech Connect (OSTI)

In order to further investigate electron screening phenomenon we studied proton induced nuclear reactions over an energy range from 1.35 to 3.08 MeV for different environments: Ni metal and NiO insulator. The measurements were based on observation of the {gamma}-ray yields of {sup 59,61,63,64,65}Cu and {sup 58,60,62}Ni. Also, we have studied the decay of {sup 61}Cu produced in the reaction {sup 60}Ni(p,{gamma}), in order to find a possible decay rate perturbation by atomic electrons and found a small difference in half-life for metallic compared to oxide environment, respectively. The present results clearly show that the metallic environment affects the fusion reactions at low energy and that it might also affect the decay rate.

Gajevic, Jelena; Lipoglavsek, Matej; Petrovic, Toni; Pelicon, Primoz [Jozef Stefan Institute, Jamova cesta 39, Ljubljana (Slovenia); Jozef Stefan Institute, Jamova cesta 39, Ljubljana (Slovenia) and Cosylab d.d, Teslova ulica 30, Ljubljana (Slovenia); Jozef Stefan Institute, Jamova cesta 39, Ljubljana (Slovenia)

2012-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Neutron diffraction studies of nickel-containing perovskite oxide catalysts exposed to autothermal reforming environments.  

SciTech Connect (OSTI)

Six nickel-containing perovskite oxides (La{sub 1-x}Sr{sub x})M{sub 0.9}Ni{sub 0.1}O{sub 3{+-}{delta}}, where x = 0 or 0.2 and M = Cr, Fe, or Mn were used to catalyze the autothermal reforming of isooctane (C{sub 8}H{sub 18}) into a hydrogen-rich gas during short-term tests at 700 C. To determine the phase stability of the samples in the reducing environment of the reforming reactor, characterization studies of the as-prepared and tested perovskite samples were conducted using powder X-ray diffraction, powder neutron diffraction, transmission electron microscopy, and scanning electron microscopy. We determined that the reducing conditions of the microreactor caused metallic nickel to form in all six compositions. However, the extent of the nickel loss from the perovskite lattices varied: the chromium-containing compositions lost the least nickel, compared to the manganese- and iron-containing compositions, and the strontium-free compositions lost more nickel than their strontium-containing analogs. Five of the six perovskite compositions tested showed no breakdown of the perovskite lattice despite the loss of nickel from the B-sites, producing only the third example of a B-cation-deficient, 3d transition-metal-containing perovskite.

Mawdsley, J. R.; Vaughey, J. T.; Krause, T. R.; Chemical Sciences and Engineering Division

2009-10-27T23:59:59.000Z

222

FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL  

SciTech Connect (OSTI)

The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

2009-03-10T23:59:59.000Z

223

Electron screening in nickel  

SciTech Connect (OSTI)

In order to investigate the interplay between nuclei and their surroundings we studied proton induced nuclear reactions over an energy range from 1.35 to 3.08 MeV for different environments: Ni metal and NiO insulator. The measurements were based on observation of the {gamma}-ray yields of {sup 59,61,63,64,65}Cu and {sup 58,60,62}Ni. The presented results clearly show that the metallic environment affects the fusion reactions at low energies.

Gajevic, Jelena; Lipoglavsek, Matej; Petrovic, Toni; Pelicon, Primoz [Jozef Stefan Institute, Jamova cesta 39, Ljubljana (Slovenia); Jozef Stefan Institute, Jamova cesta 39, Ljubljana (Slovenia) and Cosylab d.d, Teslova ulica 30, Ljubljana (Slovenia); Jozef Stefan Institute, Jamova cesta 39, Ljubljana (Slovenia)

2012-10-20T23:59:59.000Z

224

Elemental composition of nickel silicide layers using thermal and fast neutrons  

SciTech Connect (OSTI)

Metal silicides are important contact materials used in the manufacture of semiconductor devices. The presence of impurities has been observed to alter or control the formation of the silicide during fabrication and to influence critically the thermal and electrical performance characteristics of the metal-semiconductor interface. The purpose of this investigation has been to use neutron activation analysis (NAAA), relying on both thermal and fast neutrons, to determine relative concentrations of nickel and impurity elements in nickel silicide/silicon systems. 5 refs., 2 figs., 1 tab.

McGuire, S.C.; Wong, K.; Silcox, J. (Cornell Univ., Ithaca, NY (United States))

1992-01-01T23:59:59.000Z

225

ALUMINUM HYDRIDE: A REVERSIBLE STORAGE MATERIAL FOR HYDROGEN STORAGE  

SciTech Connect (OSTI)

One of the challenges of implementing the hydrogen economy is finding a suitable solid H{sub 2} storage material. Aluminium (alane, AlH{sub 3}) hydride has been examined as a potential hydrogen storage material because of its high weight capacity, low discharge temperature, and volumetric density. Recycling the dehydride material has however precluded AlH{sub 3} from being implemented due to the large pressures required (>10{sup 5} bar H{sub 2} at 25 C) and the thermodynamic expense of chemical synthesis. A reversible cycle to form alane electrochemically using NaAlH{sub 4} in THF been successfully demonstrated. Alane is isolated as the triethylamine (TEA) adduct and converted to unsolvated alane by heating under vacuum. To complete the cycle, the starting alanate can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride (NaH) This novel reversible cycle opens the door for alane to fuel the hydrogen economy.

Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

2009-01-09T23:59:59.000Z

226

LANL/PNNL Virtual Center for Chemical Hydrides and New Concepts...  

Broader source: Energy.gov (indexed) [DOE]

LANLPNNL Virtual Center for Chemical Hydrides and New Concepts for Hydrogen Storage * Thermodynamics * Kinetics * Recycle * WeightVolume Capacity * Durability Investigate...

227

E-Print Network 3.0 - arsenic hydrides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(2002) 1080-703902.50 Summary: for arsenic species using hydride generation and atomic absorption spectroscopy. The detec- tion limit for As... by ASP Estimation of...

228

E-Print Network 3.0 - aluminum hydride phases Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The nonlinear coupled dierential equations... enhancement by the aluminum sheets and the optimization of the operation of hydride bed are examined... It consists of a quantity...

229

Nickel crystallite thermometry during methanation  

SciTech Connect (OSTI)

A magnetic method to measure the average temperature of superparamagnetic nickel crystallites has been applied during CO methanation. The method takes advantage of the temperature dependence of the low field magnetization of such catalysts; however, the adsorption of carbon monoxide and the formation of surface carbon species complicate the interpretation of results. Calibrations to account for temperature change and the adsorption of reactants are described. The calibration for the effects of CO is based on the assumption that the interaction of CO with nickel is the same for methanation and disproportionation. Interphase heat transfer calculations based on the thermometric data compare favorably with previous results from ethane hyrogenolysis, and give no indication of microscopic temperature differences between the nickel crystallites and support.

Ludlow, D.K.; Cale, T.S.

1986-01-01T23:59:59.000Z

230

Microcompression of nanocrystalline nickel B. E. Schuster  

E-Print Network [OSTI]

on electrodeposited nanocrystalline nickel a material system where the grain size is much smaller than the specimenMicrocompression of nanocrystalline nickel B. E. Schuster Department of Mechanical Engineering of face-centered-cubic nanocrystalline nickel nano-Ni have been closely examined in recent years

Wei, Qiuming

231

Metal-ceramic joint assembly  

DOE Patents [OSTI]

A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

Li, Jian (New Milford, CT)

2002-01-01T23:59:59.000Z

232

Intercrystalline density on nanocrystalline nickel  

SciTech Connect (OSTI)

Most methods currently available for the synthesis of nanostructured materials result in considerable residual porosity. Studies concerned with the novel structures and properties of these materials are thus compromised by the intrinsically high levels of porosity. As recently shown by Kristic et al., porosity can have a significant effect on fundamental materials properties such as Young`s modulus. One of the most promising techniques for the production of fully dense nanocrystalline materials is electrodeposition. In the present work, the residual porosity and density of nanostructured nickel produced by the electrodeposition method is assessed and discussed in light of the intrinsic intercrystalline density of nickel.

Haasz, T.R.; Aust, K.T. [Univ. of Toronto, Ontario (Canada). Dept. of Metallurgy and Materials Science] [Univ. of Toronto, Ontario (Canada). Dept. of Metallurgy and Materials Science; Palumbo, G. [Ontario Hydro Research Div., Toronto, Ontario (Canada)] [Ontario Hydro Research Div., Toronto, Ontario (Canada); El-Sherik, A.M.; Erb, U. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Materials and Metallurgical Engineering] [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Materials and Metallurgical Engineering

1995-02-01T23:59:59.000Z

233

Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices  

DOE Patents [OSTI]

An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

2014-11-18T23:59:59.000Z

234

Homogeneous Precipitation of Nickel Hydroxide Powders  

SciTech Connect (OSTI)

Precipitation and characterization of nickel hydroxide powders were investigated. A comprehensive precipitation model incorporating the metal ion hydrolysis, complexation and precipitation reactions was developed for the production of the powders with urea precipitation method. Model predictions on Ni{sup 2+} precipitation rate were confirmed with precipitation experiments carried out at 90 C. Experimental data and model predictions were in remarkable agreement. Uncertainty in the solubility product data of nickel hydroxides was found to be the large contributor to the error. There were demonstrable compositional variations across the particle cross-sections and the growth mechanism was determined to be the aggregation of primary crystallites. This implied that there is a change in the intercalate chemistry of the primary crystallites with digestion time. Predicted changes in the concentrations of simple and complex ions in the solution support the proposed mechanism. The comprehensive set of hydrolysis reactions used in the model described above allows the investigation of other systems provided that accurate reaction constants are available. the fact that transition metal ions like Ni{sup 2+} form strong complexes with ammonia presents a challenge in the full recovery of the Ni{sup 2+}. On the other hand, presence of Al{sup 3+} facilitates the complete precipitation of Ni{sup 2+} in about 3 hours of digestion. A challenge in their predictive modeling studies had been the fact that simultaneous incorporation of more than one metal ion necessitates a different approach than just using the equilibrium constants of hydrolysis, complexation and precipitation reactions. Another limitation of using equilibrium constants is that the nucleation stage of digestion, which is controlled mainly by kinetics, is not fully justified. A new program released by IBM Almaden Research Center (Chemical Kinetics Simulator{trademark}, Version 1.01) lets the user change the order of kinetic components of a reaction which was set to stoichiometric constant with which the species appear in the reaction in KINSIM by default. For instance, in the case of LDH precipitation, the new program allows to change the order of species in the reactions associated with Al{sup 3+} and let the Ni{sup 2+} reactions take over. This could be carried on iteratively until a good fit between the experimental data and the predictions were observed. However for such studies availability of accurate equilibrium constants (especially for the solubility products for the solid phase) is a prerequisite.

Bora Mavis

2003-12-12T23:59:59.000Z

235

Solid-State Gadolinium-Magnesium Hydride Optical Switch R. Armitage  

E-Print Network [OSTI]

-state electrochromic device. With positive polarization of the hydride electrode, the visible reflectance approaches 35 and reflecting states. Keywords: gadolinium-magnesium; electrochromic hydride; optical switching device. 2 #12;A conventional electrochromics5 . Optical switching has also been demonstrated by varying the H content

236

Hydride production in zircaloy-4 as a function of time and temperature  

E-Print Network [OSTI]

..................................................................................................... 40 Figure 15 Formation of zirconium hydride as a function of temperature................ 44 Figure 16 Time dependence of hydrogen pickup with Avrami correlation............. 50 Figure 17 Time dependence of hydrogen pickup with parabolic... rate study....................................................... 43 Table 8 Results of rate study using Avrami equation .......................................... 50 Table 9 Constants for parabolic hydride rate...

Parkison, Adam Joseph

2009-05-15T23:59:59.000Z

237

Hydrogen Storage Properties of New Hydrogen-Rich BH3NH3-Metal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Properties of New Hydrogen-Rich BH3NH3-Metal Hydride (TiH2, ZrH2, MgH2, andor CaH2) Composite Systems. Hydrogen Storage Properties of New Hydrogen-Rich BH3NH3-Metal...

238

Microstructure and hydriding studies of AB/sub 5/ hydrogen storage compounds. Final report  

SciTech Connect (OSTI)

New data on the microstructure, pressure-composition-temperature, and absorption/desorption kinetics of AB/sub 5/ metal hydrides are presented. The most significant result to emerge from the investigation is that many of the AB/sub 5/ metal hydrides, especially the LaNi/sub 5/ related materials, show instantaneous absorption and desorption response in proportion to the amount of cooling or heating which is provided. Eight categories of materials were studied: reference alloys (LaNi/sub 5/, LaNi/sub 4/ /sub 9/Al/sub 0/ /sub 1/, LaNi/sub 3/Co/sub 2/); Ni second phase particles (LaNi/sub 5/ /sub 67/, LaNi/sub 7/, LaNi/sub 11/ /sub 3/); eutectoid microstructure (SmCo/sub 5/); other second phases (LaNi/sub 3/ /sub 8/Fe/sub 1/ /sub 2/, LaNi/sub 3/ /sub 5/Cr/sub 1/ /sub 5/, LaNi/sub 4/Cr, LaNi/sub 4/Si; LaNi/sub 4/Sn, MNi/sub 4/Sn, MNi/sub 4/ /sub 3/Al/sub 0/ /sub 7/); substitutional elements (LaNi/sub 4/Cu, LaNi/sub 4/ /sub 5/Pd/sub 0/ /sub 5/, LaNi/sub 4/ /sub 7/Sn/sub 0/ /sub 3/, LaNi/sub 4/ /sub 8/C/sub 0/ /sub 2/, MNi/sub 4/ /sub 3/Mn/sub 0/ /sub 7/); surface active elements (LaNi/sub 4/ /sub 8/B/sub 0/ /sub 2/, LaNi/sub 4/ /sub 9/S/sub 0/ /sub 1/, LaNi/sub 4/ /sub 9/Se/sub 0/ /sub 1/); large diameter atom substitutions (Mg/sub 0/ /sub 1/La/sub 0/ /sub 9/Ni/sub 5/, Ca/sub 0/ /sub 2/La/sub 0/ /sub 8/Ni/sub 5/, Sr/sub 0/ /sub 2/La/sub 0/ /sub 8/Ni/sub 5/, Ba/sub 0/ /sub 2/La/sub 0/ /sub 8/Ni/sub 5/); other compositions (LaNi/sub 3/); and Pd plating (electroless plated samples and mechanically alloyed specimens).

Goodell, P.D.; Sandrock, G.D.; Huston, E.L.

1980-01-01T23:59:59.000Z

239

Iron aluminides and nickel aluminides as materials for chemical air separation  

DOE Patents [OSTI]

The present invention is directed to a chemical air separation process using a molten salt solution of alkali metal nitrate and nitrite wherein the materials of construction of the containment for the process are chosen from intermetallic alloys of nickel and/or iron aluminide wherein the aluminum content is 28 atomic percent or greater to impart enhanced corrosion resistance.

Kang, D.

1991-01-29T23:59:59.000Z

240

Iron aluminides and nickel aluminides as materials for chemical air separation  

DOE Patents [OSTI]

The present invention is directed to a chemical air separation process using a molten salt solution of alkali metal nitrate and nitrite wherein the materials of construction of the containment for the process are chosen from intermetallic alloys of nickel and/or iron aluminide wherein the aluminum content is 28 atomic percent or greater to impart enhanced corrosion resistance.

Kang, Doohee (Macungie, PA)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE  

SciTech Connect (OSTI)

Hydrogen storage is one of the greatest challenges for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods; the direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

Fewox, C; Ragaiy Zidan, R; Brenda Garcia-Diaz, B

2008-12-31T23:59:59.000Z

242

Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications  

SciTech Connect (OSTI)

Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

2012-04-16T23:59:59.000Z

243

Electrochemical process and production of novel complex hydrides  

DOE Patents [OSTI]

A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

Zidan, Ragaiy

2013-06-25T23:59:59.000Z

244

Dissimilar-weld failure analysis and development. Comparative behavior of similar and dissimilar welds. Final report. [Welds of 2-1/4Cr-1Mo to 2-1/4Cr-1Mo using 2-1/4Cr-1Mo filler material; and austenitic to ferritic steel welds made by fusion welding alloy-800H to 2-1/4Cr-1Mo using nickel base filler metal ERNiCr-3  

SciTech Connect (OSTI)

The 593/sup 0/C (1100/sup 0/F) stress rupture behavior of similar metal welds (SMWs) and dissimilar metal welds (DMWs) was investigated under cyclic load and cyclic temperature conditions to provide insight into the question, ''Why do DMWs fail sooner than SMWs in the fossil fuel boilers.'' The weld joints of interest were an all ferritic steel SMW made by fusion welding 2-1/4Cr-1Mo to 2-1/4Cr-1Mo using 2-1/4Cr-1Mo filler metal and an austenitic to ferritic steel DMW made by fusion welding Alloy-800H to 2-1/4Cr-1Mo using a nickel base filler metal ERNiCr-3. The stress rupture behavior obtained on cross weld specimens was similar for both types of welds with only a 20% reduction in rupture life for the DMW. For rupture times less than 1500 hours, failures occurred in the 2-1/4Cr-1Mo base metal whereas, for rupture times greater than 1500 hours, failures occurred in the 2-1/4Cr-1Mo heat affected zone (HAZ). The HAZ failures exhibited a more brittle appearance than the base metal failures for both types of welds and it appears that the life of both joints was limited by the stress rupture properties of the HAZ. These results support the hypothesis that increased residual stresses due to abrupt changes in hardness (strength) of metals involved are the major contributors to the reduction in life of DMWs as compared to SMWs. 10 refs., 15 figs., 7 tabs.

Busboom, H.; Ring, P.J.

1986-07-01T23:59:59.000Z

245

Icosahedral structure in hydrogenated cobalt and nickel clusters  

SciTech Connect (OSTI)

Reactions with ammonia and with water are used to probe the geometrical structures of cobalt and nickel clusters that are saturated with hydrogen. Ammonia saturation experiments allow the determination of the number of primary NH{sub 3} binding sites on cluster surfaces, and this number shows a repeated minimization to values of 12 for many cluster sizes in the 50- to 200-atom size region. These sizes correspond to closed shells and subshells of icosahedra, suggesting that the ammoniated clusters have metal frameworks with icosahedral structure. The equilibrium reaction of the hydrogenated clusters with a single water molecule shows a pattern of local maxima in the cluster--water binding energy, with the maxima in most cases coming at clusters having one metal atom more than those showing minima in ammonia binding. This correlation suggests that nonammoniated clusters likewise have icosahedral structure, and is consistent with the nature of the metal--water interaction. Some of the larger clusters do not show clear evidence for icosahedral structure at room temperature, although they begin to do so at elevated temperature. Annealing experiments suggest that many of these clusters are icosahedral in their most stable configuration at room temperature, although the 147-atom nickel cluster is not. In general, hydrogenation enhances the icosahedral features in the ammonia and water binding patterns compared to those seen for bare clusters, and extends the cluster size region over which icosahedral structure is evident.

Klots, T.D.; Winter, B.J.; Parks, E.K.; Riley, S.J. (Chemistry Division, Argonne National Laboratory, Argonne, Illinois (USA))

1991-12-15T23:59:59.000Z

246

Microstructural, mechanical and weldability assessments of the dissimilar welds between ??- and ??-strengthened nickel-base superalloys  

SciTech Connect (OSTI)

Dissimilar welding of ??- and ??-strengthened nickel-base superalloys has been investigated to identify the relationship between the microstructure of the welds and the resultant mechanical and weldability characteristics. ??-Strengthened nickel-base Alloy 500 and ??-strengthened nickel-base Alloy 718 were used for dissimilar welding. Gas tungsten arc welding operations were utilized for performing the autogenous dissimilar welding. Alloy 500 and Alloy 718 base metals showed various types of phases, carbides, intermetallics and eutectics in their microstructure. The results for Alloy 500 weld metal showed severe segregation of titanium to the interdendritic regions. The Alloy 718 weld metal compositional analysis confirmed the substantial role of Nb in the formation of low-melting eutectic-type morphologies which can reduce the weldability. The microstructure of dissimilar weld metal with dilution level of 65% wt.% displayed semi-developed dendritic structure. The less segregation and less formation of low-melting eutectic structures caused to less susceptibility of the dissimilar weld metal to the solidification cracking. This result was confirmed by analytic modeling achievements. Dissolution of ??-Ni{sub 3}Nb precipitations took place in the Alloy 718 heat-affected zone leading to sharp decline of the microhardness in this region. Remelted and resolidified regions were observed in the partially-melted zone of Alloy 500 and Alloy 718. Nevertheless, no solidification and liquation cracking happened in the dissimilar welds. Finally, this was concluded that dissimilar welding of ??- and ??-strengthened nickel-base superalloys can successfully be performed. - Highlights: • Dissimilar welding of ??- and ??-strengthened nickel-base superalloys is studied. • Microstructural, mechanical and weldability aspects of the welds are assessed. • Microstructure of welds, bases and heat-affected zones is characterized in detail. • The type, morphology and distribution of the phases are thoroughly investigated. • Dissimilar welding is successfully performed without occurrence of any hot cracks.

Naffakh Moosavy, Homam, E-mail: homam_naffakh@iust.ac.ir [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Mapelli, Carlo [Dipartimento di Meccanica, Politecnico di Milano, Via La Massa 34, Milan 20156 (Italy)

2013-08-15T23:59:59.000Z

247

Evaluation of nickel flash smelting through piloting and simulation  

SciTech Connect (OSTI)

An extensive study of the nickel flash smelting process has been undertaken. It is aimed at the optimization of the burner design to improve the smelting performance and to increase the throughput of the rebuilt furnace. A design-based mathematical model was developed to simulate the operation of the four burners and the reaction shaft of the flash furnace at Western Mining Corporation Ltd.`s Kalgoorlie Nickel Smelter. A modified single burner version of the model was validated against data obtained from the pilot plant at the Pyrometallurgical Research Centre (PRC) of the Sumitomo Metal Mining Co.`s Toyo Smelter. The approach taken involved experimental measurements of key process parameters in the pilot plant and detailed numerical simulation of the fluid flow, heat transfer, and combustion in the entire burner-shaft complex. Several burner designs have been tested experimentally at the pilot plant and theoretically through computer simulation. The main outcome of the study was the development of an experimentally validated mathematical model of the flash smelter providing a new powerful design tool. The insight gained about the process from the application of this tool led to the design of a more efficient nickel flash smelting process.

Varnas, S.R.; Koh, P.T.L. [CSIRO, Clayton, Victoria (Australia). Div. of Minerals; Kemori, N. [Sumitomo Metal Mining Co., Ehime (Japan)

1998-12-01T23:59:59.000Z

248

Templated synthesis of nickel nanoparticles: Toward heterostructured nanocomposites for efficient hydrogen storage  

SciTech Connect (OSTI)

The world is currently facing an energy and environmental crisis for which new technologies are needed. Development of cost-competitive materials for catalysis and hydrogen storage on-board motor vehicles is crucial to lead subsequent generations into a more sustainable and energy independent future. This thesis presents work toward the scalable synthesis of bimetallic heterostructures that can enable hydrogen to compete with carbonaceous fuels by meeting the necessary gravimetric and volumetric energy densities and by enhancing hydrogen sorption/desorption kinetics near ambient temperatures and pressures. Utilizing the well-known phenomenon of hydrogen spillover, these bimetallic heterostructures could work by lowering the activation energy for hydrogenation and dehydrogenation of metals. Herein, we report a novel method for the scalable synthesis of silica templated zero-valent nickel particles (Ni?SiO{sub 2}) that hold promise for the synthesis of nickel nanorods for use in bimetallic heterostructures for hydrogen storage. Our synthesis proceeds by chemical reduction of a nickel-hydrazine complex with sodium borohydride followed by calcination under hydrogen gas to yield silica encapsulated nickel particles. Transmission electron microscopy and powder X-ray diffraction were used to characterize the general morphology of the resultant nanocapsules as well as the crystalline phases of the incorporated Ni{sup 0} nanocrystals. The structures display strong magnetic behavior at room temperature and preliminary data suggests nickel particle size can be controlled by varying the amount of nickel precursor used in the synthesis. Calcination under different environments and TEM analysis provides evidence for an atomic migration mechanism of particle formation. Ni?SiO{sub 2} nanocapsules were used as seeds to induce heterogeneous nucleation and subsequent growth within the nanocapsule via electroless nickel plating. Nickel nanoparticle growth occurs under high temperature alkaline conditions, however silica nanocapsule integrity is not maintained due to the incompatibility of silica with the growth conditions. Silica nanocapsule integrity is maintained under low temperature neutral conditions, but nickel particle growth is not observed. Through FTIR and UV/Vis analysis, we show the degree of crosslinking and condensation increases in calcined silica compared to as-synthesized silica. We propose the increased density of the silica nanocapsule hinders mass transfer of the bulky nickel precursor complex from solution and onto the surface of the “catalytic” zero-valent nickel seed within the nanocapsule cavity. Decreasing the density of the silica nanocapsule can be achieved through co-condensation of tetraethylorthosilicate with an alkyl functionalized silane followed by calcination to remove the organic component or by chemical etching in alkaline solution, but will not be addressed in this thesis.

Nelson, Nicholas Cole [Ames Laboratory

2013-05-07T23:59:59.000Z

249

Metal articles having ultrafine particles dispersed therein  

SciTech Connect (OSTI)

This patent describes a metal article of manufacture. It comprises: a metal selected from the group consisting of copper, silver, gold, lead, tin, nickel, zinc, cobalt, antimony, bismuth, iron, cadmium, chromium, germanium, gallium, selenium, tellurium, mercury, tungsten arsenic, manganese, iridium, indium, ruthenium, rhenium, rhodium, molybdenum, palladium, osmium and platinum; and a plurality of ultrafine particles.

Alexander, G.B.; Nadkarni, R.A.

1992-07-28T23:59:59.000Z

250

Precipitates Suppress Mobility Of Metals in Soil and Water  

E-Print Network [OSTI]

and water with hazardous metals ­ such as cadmium, copper, lead, and nickel ­ is a national environ- mental increased over time. This increase may be due to activi- ties at industries like tanneries and smelters

Sparks, Donald L.

251

GAS-PHASE REACTIONS OF HYDRIDE ANION, H{sup -}  

SciTech Connect (OSTI)

Rate constants were measured at 300 K for the reactions of the hydride anion, H{sup -}, with neutral molecules C{sub 2}H{sub 2}, H{sub 2}O, CH{sub 3}CN, CH{sub 3}OH, (CH{sub 3}){sub 2}CO, CH{sub 3}CHO, N{sub 2}O, CO{sub 2}, O{sub 2}, CO, CH{sub 3}Cl, (CH{sub 3}){sub 3}CCl, (CH{sub 3}CH{sub 2}){sub 2}O, C{sub 6}H{sub 6}, and D{sub 2} using a flowing-afterglow instrument. Experimental work was supplemented by ab initio calculations to provide insight into the viability of reaction pathways. Our reported rate constants should prove useful to models of astrophysical environments where conditions prevail for the existence of both H{sup -} and neutral species. The variety of neutral reactants studied includes representative species from prototypical chemical groups, effectively mapping reactivity trends for the hydride anion.

Martinez, Oscar; Yang Zhibo; Demarais, Nicholas J.; Bierbaum, Veronica M. [Department of Chemistry and Biochemistry, 215 UCB, University of Colorado, Boulder, CO 80309-0215 (United States); Snow, Theodore P., E-mail: Oscar.Martinez@colorado.ed, E-mail: Zhibo.Yang@colorado.ed, E-mail: Nicholas.Demarais@colorado.ed, E-mail: Veronica.Bierbaum@colorado.ed, E-mail: Theodore.Snow@colorado.ed [Department of Astrophysical and Planetary Sciences, 391 UCB, University of Colorado, Boulder, CO 80309-0391 (United States)

2010-09-01T23:59:59.000Z

252

Method of generating hydrogen-storing hydride complexes  

DOE Patents [OSTI]

A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

Srinivasan, Sesha S; Niemann, Michael U; Goswami, D. Yogi; Stefanakos, Elias K

2013-05-14T23:59:59.000Z

253

Electrochemical, Structural and Surface Characterization of Nickel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical, Structural and Surface Characterization of NickelZirconia Solid Oxide Fuel Cell Anodes in Coal Gas Containing Electrochemical, Structural and Surface...

254

An XAFS Study of Nickel Chloride in the Ionic Liquid 1-ethyl-3-methyl Imidazolium Chloride/ Aluminum Chloride  

SciTech Connect (OSTI)

The electrodeposition of metals from aqueous solutions has a successful history for many metals. However, some metals cannot be deposited from aqueous solutions because their potentials fall outside of the window of stability for water. Using ionic liquids for the electrodeposition of metals can avoid some of these difficulties because they have a larger region of stability than water. The electrochemical window can be tailored to fit a particular application by choosing appropriate anions and cations to form the melt. There is also the possibility to deposit pure metals without the oxides and hydrides that can form in aqueous solutions. The study of the structure of metal salts in ionic liquids is an important step towards achieving these goals.

Roeper, D.; Cheek, G; Pandya, K; O'Gragy, W

2008-01-01T23:59:59.000Z

255

Atomic, electronic and magnetic structure of graphene/iron and nickel interfaces: theory and experiment  

E-Print Network [OSTI]

First-principles calculations of the effect of carbon coverage on the atomic, electronic and magnetic structure of nickel and iron substrates demonstrate insignificant changes in the interatomic distances and magnetic moments on the atoms of the metallic substrates. The coverage of the iron surface by mono- and few-layer graphene induces significant changes in the orbital occupancies and exchange interactions between the layers in contrast to the case of a nickel substrate for which changes in the orbital ordering and exchange interactions are much smaller. Experimental measurements demonstrate the presence of ferromagnetic fcc-iron in Fe@C nanoparticles and the superparamagnetic behavior of Ni@C nanoparticles.

Boukhvalov, D W; Uimin, M A; Korolev, A V; Yermakov, A Ye

2014-01-01T23:59:59.000Z

256

Reduction of metal oxides through mechanochemical processing  

DOE Patents [OSTI]

The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.

Froes, Francis H. (Moscow, ID); Eranezhuth, Baburaj G. (Moscow, ID); Senkov, Oleg N. (Moscow, ID)

2000-01-01T23:59:59.000Z

257

Electroless (autocatalytic) nickel-cobalt thin films as solar control coatings  

SciTech Connect (OSTI)

This paper describes the deposition of nickel-cobalt-phosphorus coatings by the electroless deposition technique for use as solar control coatings in architectural glazing of buildings. Electroless deposition is characterized by the autocatalytic deposition of a metal/alloy from an aqueous solution of its ions by interaction with a chemical reducing agent. The reducing agent provides electrons for the metal ions to be neutralized. The reduction is initiated by the catalyzed surface of the substrate and continued by the self catalytic activity of the deposited metal/alloy as long as the substrate is immersed in the electroless bath and operating conditions are maintained. Electroless nickel-cobalt-phosphorus thin films were deposited from a solution containing 15 g/l nickel sulphate, 5 g/l cobalt sulphate, 60 g/l ammonium citrate and 25 g/l sodium hypophosphite operating at 30 C, at a pH of 9.5 for two minutes. Electroless nickel-cobalt-phosphorus coatings are found to satisfy the basic requirements of solar control coatings. Autocatalytic deposition technique offers the possibilities of producing large area coatings with low capital investment, stability and good adhesion to glass substrates.

John, S.; Srinivasan, K.N.; Selvam, M. [Central Electrochemical Research Inst., Tamilnadu (India); Anuradha, S.; Rajendran, S. [Alagappa Univ., Tamilnadu (India). Dept. of Physics

1994-12-31T23:59:59.000Z

258

Metallic glass composition. [That does not embrittle upon annealing  

DOE Patents [OSTI]

This patent pertains to a metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon, carbon and phosphorous to which is added an amount of a ductility-enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

Kroeger, D.M.; Koch, C.C.

1984-09-14T23:59:59.000Z

259

Conflicting Roles Of Nickel In Controlling Cathode Performance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conflicting Roles Of Nickel In Controlling Cathode Performance In Lithium-ion Batteries. Conflicting Roles Of Nickel In Controlling Cathode Performance In Lithium-ion Batteries....

260

Biosensors Based on Carbon Nanotubes/Nickel Hexacyanoferrate...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biosensors Based on Carbon NanotubesNickel HexacyanoferrateGlucose Oxidase Nanocomposites. Biosensors Based on Carbon NanotubesNickel HexacyanoferrateGlucose Oxidase...

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electrodeposition From Acidic Solutions of Nickel Bis(benzenedithiolat...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From Acidic Solutions of Nickel Bis(benzenedithiolate) Produces a Hydrogen-Evolving Ni-S Film on Glassy Carbon Electrodeposition From Acidic Solutions of Nickel...

262

Conformational Dynamics and Proton Relay Positioning in Nickel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dynamics and Proton Relay Positioning in Nickel Catalysts for Hydrogen Production and Oxidation. Conformational Dynamics and Proton Relay Positioning in Nickel Catalysts for...

263

Mar 24th 2011 | from the print edition 0 40Like Battery technology  

E-Print Network [OSTI]

by electrodeposition--like nickel-plating a piece of steel. After that, the material is heated, to melt the polystyrene, nickel-metal hydride batteries were preferred for many applications. Even now, they are cheaper than, indeed, opalescent. The next stage is to fill the gaps between the spheres with nickel. This is done

Braun, Paul

264

Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article  

DOE Patents [OSTI]

An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined. 3 figures.

Hunt, T.K.; Novak, R.F.

1991-05-07T23:59:59.000Z

265

Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article  

DOE Patents [OSTI]

An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined.

Hunt, Thomas K. (Ann Arbor, MI); Novak, Robert F. (Farmington Hills, MI)

1991-01-01T23:59:59.000Z

266

Rapidly solidified magnesium: nickel alloys as hydrogen storage materials.  

E-Print Network [OSTI]

??Due to high hydrogen capacity, good reversibility and low cost, magnesium hydride is one of the most promising hydrogen storage materials. However, the high desorption… (more)

Yi, Xiaodong

2014-01-01T23:59:59.000Z

267

Biodegradation of orthodontic appliances and their effects on the blood level of nickel and chromium. Master's thesis  

SciTech Connect (OSTI)

Austenitic stainless steels containing approximately 18 percent chromium and 8 percent nickel for orthodontic bands, brackets and wires is universally used in orthodontic practices. With the introduction of nickel-titanium alloys as orthodontic archwires in the 1970's an additional source of patient exposure to metal corrosion products has been introduced. Since the oral environment is particularly ideal for the biodegradation of metals due to its ionic, thermal, microbiologic and enzymatic properties some level of patient exposure to the corrosion products of these alloys is assured.

Barrett, R.D.

1990-05-01T23:59:59.000Z

268

Polar intermetallic compounds of the silicon and arsenic family elements and their ternary hydrides and fluorides  

SciTech Connect (OSTI)

An investigation has been made on the effects of hydrogen and fluoride in the solid state chemistry of alkaline-earth and divalent rare-earth metal pnictide (Pn) and tetrelide (Tt) phases A{sub 5}(Pn,Tt,){sub 3}Z{sub x}, where A = Ca, Sr, Ba, Sm, Eu, Yb; Pn = As, Sb, Bi; Tt = Si, Ge, Sn, Pb and Z = H, F. Several trivalent rare-earth-metal pnictides, RE{sub 5}Pn{sub 3} (RE = Y, La, Gd, Tb, Dy, Ho, Er, Tm) and alkaline-earth-metal trielides, A{sub 5}Tr{sub 3}Z{sub x} (Tr = Ga, In, Tl) have been included in an effort to complete observed structural trends. Two main experimental techniques were followed throughout this work, (a) reactions in absence of hydrogen or under continuous high vacuum, and (b) reactions with binary metal hydrides, AH{sub x}, in closed containers. The results demonstrate that all the phases reported with the {beta}-Yb{sub 5}Sb{sub 3}-type structure in the A{sub 5}Pn{sub 3} systems are hydrogen-stabilized compounds. Reactions in absence of hydrogen lead to compounds with the Mn{sub 5}Si{sub 3}-type structure. The structure type {beta}-Yb{sub 5}Sb{sub 3} (= Ca{sub 5}SB{sub 3}F) was found to be characteristic of ternary systems and inaccurately associated with phases that form in the Y{sub 5}Bi{sub 3}-type. A new series of isomorphous Zintl compounds with the Ca{sub 16}Sb{sub 11}-type structure were prepared and studied as well. All the alkaline-earth-metal tetrelides, A{sub 5}Tt{sub 3}, that crystallize in the Cr{sub 5}B{sub 3}-type structure can be interstitially derivatized by hydrogen or fluoride. Binary and ternary compounds were characterized by Guinier powder patterns, single crystal X-ray and powder neutron diffraction techniques. In an effort to establish property-structure relationships, electrical resistivity and magnetic measurements were performed on selected systems, and the results were explained in terms of the Zintl concepts, aided by extended Hueckel band calculations.

Leon-Escamilla, E.A.

1996-10-17T23:59:59.000Z

269

The Fate of Heavy Metals in Highway Stormwater Runoff: The Characterization of a Bioretention Basin in the Midwest  

E-Print Network [OSTI]

The usual wear of automobiles and road surfaces deposits numerous environmental pollutants on roadways and parking lots, including heavy metals such as copper, zinc, lead, nickel and cadmium. During rainfall and snow events, these metals are washed...

Lacy, Sarah

2009-01-01T23:59:59.000Z

270

Technological assessment and evaluation of high power batteries and their commercial values  

E-Print Network [OSTI]

Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

Teo, Seh Kiat

2006-01-01T23:59:59.000Z

271

New sealed rechargeable batteries and supercapacitors  

SciTech Connect (OSTI)

This conference was divided into the following sections: supercapacitors; nickel-metal hydride batteries; lithium polymer batteries; lithium/carbon batteries; cathode materials; and lithium batteries. Separate abstracts were prepared for the 46 papers of this conference.

Barnett, B.M. (ed.) (Arthur D. Little, Inc., Cambridge, MA (United States)); Dowgiallo, E. (ed.) (Dept. of Energy, Washington, DC (United States)); Halpert, G. (ed.) (Jet Propulsion Lab., Pasadena, CA (United States)); Matsuda, Y. (ed.) (Yamagushi Univ., Ube (Japan)); Takehara, Z.I. (ed.) (Kyoto Univ. (Japan))

1993-01-01T23:59:59.000Z

272

1. MOST SIGNIFICANT RESEARCH ACCOMPLISHMENTS IN POWER SOURCES Currently, Dr. Popov is professor at USC and Director of the Center for  

E-Print Network [OSTI]

Research Novel high performance anode materials were developed for Nickel-Metal Hydride (Ni-MH) batteries and corrosion resistance. From this research one step electroless process was discovered for deposition of Ni

Popov, Branko N.

273

Abstract--This paper outlines the design of an autonomous flying vehicle (AFV) for use in researching formation  

E-Print Network [OSTI]

with a full suite of integrated peripherals. Today, Nickel- Metal Hydride (NiMH) batteries can source more predators and efficiently forage for food [6]. Both the Air Force and NASA have identified autonomous

Sukhatme, Gaurav S.

274

Are batteries ready for plug-in hybrid buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

275

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel- metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

276

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

277

Parasitic corrosion resistant anode for use in metal/air or metal/O.sub.2 cells  

DOE Patents [OSTI]

A consumable metal anode which is used in refuelable electrochemical cells and wherein at least a peripheral edge portion of the anode is protected against a corrosive alkaline environment of the cell by the application of a thin metal coating, the coating being formed of metals such as nickel, silver, and gold.

Joy, Richard W. (Santa Clara, CA); Smith, David F. (Boulder Creek, CA)

1983-01-01T23:59:59.000Z

278

Parasitic corrosion-resistant anode for use in metal/air or metal/O/sub 2/ cells  

DOE Patents [OSTI]

A consumable metal anode is described which is used in refuelable electrochemical cells and wherein at least a peripheral edge portion of the anode is protected against a corrosive alkaline environment of the cell by the application of a thin metal coating, the coating being formed of metals such as nickel, silver, and gold.

Joy, R.W.; Smith, D.F.

1982-09-20T23:59:59.000Z

279

Effect of the composition of polypyrrole substrate on the electrodeposition of copper and nickel  

SciTech Connect (OSTI)

Electrodeposition of copper and nickel on a variety of substrates including conductive polymer films with two different compositions has been studied. The enhancement of the copper and nickel electrodeposition rate was observed for composite polypyrrole films with cation-exchange properties in comparison to undoped polypyrrole films with anion-exchange properties. Significant enhancement of the nickel electrodeposition rate on both types of conductive polymer vs. the bare gold electrode was also found. An explanation of these effects is presented. An electrochemical quartz crystal microbalance (EQCM) with 10 MHz AT-cut piezoelectrodes was used in this study. Use of the EQCM technique allowed for simultaneous monitoring of voltamperometric and resonance frequency vs. potential or time characteristics. The thickness of electropolymerized polypyrrole films as well as the amounts of electrodeposited metals were controlled by monitoring the EQCM resonant frequency. The nucleation density has been determined from scanning electron microscope experiments.

Hepel, M.; Chen, Y.M.; Stephenson, R. [State Univ. of New York, Potsdam, NY (United States). Dept. of Chemistry

1996-02-01T23:59:59.000Z

280

Electroless plating of graphite with copper and nickel  

SciTech Connect (OSTI)

Decommissioning in the European Union of gas-cooled nuclear reactors using graphite as the moderator will generate a large amount of irradiated graphite as waste. Graphite is a radioactive waste of relatively low activity and consequently the options considered for the management of the waste may include: (i) incineration, (ii) ocean bed disposal, (iii) deep geological disposal, and (iv) shallow land burial. In case the last is the selected mode, an appropriate conditioning procedure is necessary before final disposal, by covering the graphite with a material avoiding or reducing the emission of radionuclides to its surrounding. This work analyses the possibility of conditioning graphite pieces (with a large proportion of pores of different sizes up to 100 {micro}m) with a metal coating of copper or nickel produced by electroless plating, with the aim of completely isolating the graphite from its surrounding. Electroless plating with copper results in a very large proportion of pores filled or covered, but a fraction of the pores remain in the graphite, which decreases with increasing thickness of metal deposit. Furthermore, the copper plating is permeable to liquids and consequently the graphite does not become completely isolated from the surrounding. The percentage of porosity filled or covered by nickel deposits is similar to copper, but they are not permeable to liquids, at least when the thickness is relatively high, and consequently the access of the liquids to the graphite is rather limited. However, when electroless plating with copper is followed by nickel deposition the graphite becomes isolated from the exterior.

Caturla, F.; Molina, F.; Molina-Sabio, M.; Rodriguez-Reinoso, F. [Univ. de Alicante (Spain). Dept. de Quimica Inorganica; Esteban, A. [CIEMAT, Madrid (Spain)

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hard metal composition  

DOE Patents [OSTI]

A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

Sheinberg, H.

1983-07-26T23:59:59.000Z

282

Hard metal composition  

DOE Patents [OSTI]

A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

Sheinberg, Haskell (Los Alamos, NM)

1986-01-01T23:59:59.000Z

283

The structure of nickel clusters  

SciTech Connect (OSTI)

The reactions of nickel clusters with ammonia and with water are used to probe cluster geometrical structure. Ammonia uptake experiments allow the determination of the number of preferred binding sites on cluster surfaces. This number shows pronounced minima in the 50- to 116- atom size range for many of the cluster sizes that appear as magic numbers in mass spectra of rare gas clusters. Since these magic numbers arise from closings of shells and subshells of the Mackay icosahedra, the correlation suggests that ammoniated nickel clusters in this size region also have icosahedral structure. Similar structure is found for ammoniated clusters smaller than {similar to}30 atoms, but is not seen for room temperature clusters in the vicinity of the third shell closing at 147 atoms. Icosahedral features do appear for the larger clusters at elevated temperatures. For many clusters above 50 atoms, prolonged exposure to ammonia causes a conversion from the icosahedral structure to some other structure that binds more ammonia molecules, and often the two structures are seen together. The equilibrium reaction of a single water molecule with the bare clusters probes the strength of the cluster--water bond. Enhanced water adsorption is often seen for clusters one atom larger than those showing minima in ammonia uptake, suggesting that these bare clusters likewise have icosahedral structure. The reasons for minima in ammonia uptake and maxima in water binding are discussed.

Parks, E.K.; Winter, B.J.; Klots, T.D.; Riley, S.J. (Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 (US))

1991-02-01T23:59:59.000Z

284

First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities  

SciTech Connect (OSTI)

Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

2013-09-01T23:59:59.000Z

285

Initiation of electroless nickel plating on copper, palladium-activated copper, gold, and platinum  

SciTech Connect (OSTI)

The catalytic activity of copper, palladium-activated copper, gold, and platinum for electro-oxidation of hypophosphite and electroless nickel plating was investigated in an ammoniacal solution of pH 8.8 at 50/sup 0/C by potential measurements and linear sweep voltammetry from -0.3 to -0.92V vs. SCE. Early stages of nickel plating on copper-palladium substrates were studied by scanning electron microscopy in conjunction with EDAX. It was found that palladium-activated copper and gold were catalytically active in the entire range of potentials examined; copper was active below -0.6 platinum was not active at all. Small amounts of electrolytically deposited nickel considerably increased the electro-oxidation rate of hypophosphite on copper, gold, and palladium. TEM examinations showed that activation of copper in a PdCl/sub 2//HCl solution resulted in the deposition of palladium in the form of separate patches. Electroless nickel deposition on copper substrates with separate palladium spots took place on copper and palladium independently of each other. The deposition on palladium was faster than that on copper. It was concluded that the activation of copper substrates around palladium spots occurred solely through a spontaneous potential shift, induced by electro-oxidation of hypophosphite on the palladium spots. It was suggested that small amounts of one metal synergistically enhanced the catalytic activity of the other metals.

Flis, J.; Duquette, D.J.

1984-02-01T23:59:59.000Z

286

The effect of iron dilution on strength of nickel/steel and Monel/steel welds  

SciTech Connect (OSTI)

The weld strength, as a function of iron content, for nickel/steel and Monel/steel welds was determined. Samples were prepared using a Gas Metal Arc (GMAW) automatic process to weld steel plate together with nickel or Monel to produce a range of iron contents typical of weld compositions. Tensile specimens of each iron content were tested to obtain strength and ductility measurements for that weld composition. Data indicate that at iron contents of less than 20% iron in a nickel/steel weld, the weld fails at the weld interface, due to a lack of fusion. Between 20% and 35% iron, the highest iron dilution that could be achieved in a nickel weld, the welds were stronger than the steel base metal. This indicates that a minimum amount of iron dilution (20%) is necessary for good fusion and optimum strength. On the other hand for Monel/steel welds, test results showed that the welds had good strength and integrity between 10% and 27% iron in the weld. Above 35% iron, the welds have less strength and are more brittle. The 35% iron content also corresponds to the iron dilution in Monel welds that has been shown to produce an increase in corrosion rate. This indicates that the iron dilution in Monel welds should be kept below 35% iron to maximize both the strength and corrosion resistance. 2 refs., 6 figs., 3 tabs.

Fout, S.L.; Wamsley, S.D.

1983-03-28T23:59:59.000Z

287

Aspects of electroless nickel plating on molybdenum  

SciTech Connect (OSTI)

A process for depositing an adherent coating of an electroless nickel-phosphorus alloy on molybdenum was developed. The required pretreatment processes included an anodic etch in a chromic acid-nitric acid solution, an anodic etch in a phosphonic acid solution, and an oxide stripping step in a chromic acid-nitric acid solution. Initiation of the electroless nickel plating was accomplished through a series of strikes in the nickel bath. Scale up from laboratory parts to large components involved optimization of parameters such as pretreat time, current density, anode to cathode ratio and strike time.

Mikkola, R.D.; Daugherty, C.E.; Harris, G.E.; Neff, W.A.; Owens, W.W.

1984-07-01T23:59:59.000Z

288

Documentation of Hybrid Hydride Model for Incorporation into Moose-Bison and Validation Strategy  

SciTech Connect (OSTI)

This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride ?-ZrH1.5 precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding (Hanson et al., 2011). While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (Birk et al., 2012 and NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. In this work, a model to numerically simulate hydride precipitation at the microstructural scale, in a wide variety of Zr-based claddings, under dry-storage conditions is being developed. It will be used to aid in the evaluation of the mechanical integrity of used fuel rods during dry storage and transportation by providing the structural conditions from the microstructural scale to the continuum scale to engineering component scale models to predict if the used fuel rods will perform without failure under normal and off-normal conditions. The microstructure, especially, the hydride structure is thought to be a primary determinant of cladding failure, thus this component of UFD’s storage and transportation analysis program is critical. The model development, application and validation of the model are documented and the limitations of the current model are discussed. The model has been shown to simulate hydride precipitation in Zircaloy-4 cladding with correct morphology, thermodynamics and kinetics. An unexpected insight obtained from simulations hydride formation in Zircaloy-4 is that small (sub-micron) precipitates need to order themselves to form the larger hydrides typically described as radially-reoriented precipitates. A limitation of this model is that it does not currently solve the stress state that forms dynamically in the precipitate or matrix surrounding the precipitate. A method to overcome the limitations is suggested and described in detail. The necessary experiments to provide key materials physics and to validate the model are also recommended.

Veena Tikare; Philippe Weck; Peter Schultz; Blythe Clark; John Mitchell; Michael Glazoff; Eric Homer

2014-10-01T23:59:59.000Z

289

Elastic moduli of nickel and iron aluminides  

E-Print Network [OSTI]

ELASTIC MODULI OF NICKEL AND IRON ALUMINIDES A Thesis by SREEDHAR MAN JIGANI Submitted to the Oifice of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1993... Major Subject: Mechanical Engineering ELASTIC MODULI OF NICKEL AND IRON ALUMINIDES A Thesis by SREEDHAR MAN JIGANI Submitted to Texas AkM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved...

Manjigani, Sreedhar

2012-06-07T23:59:59.000Z

290

Ligand effects on the X-ray absorption of a nickel porphyrin complex: a simulation study  

E-Print Network [OSTI]

.elsevier.com/locate/chemphys #12;where W l PP stands for the atomic absorption spectrum for the lth site: W l PP ¼ 1 2 1 X2 x R ZLigand effects on the X-ray absorption of a nickel porphyrin complex: a simulation study Luke Abstract We present a simulation of the X-ray absorption near-edge spectrum (XANES) of the metal porphyrin

Mukamel, Shaul

291

Monolithic Nickel (II) Oxide Aerogels Using an Organic Epoxide: The Importance of the Counter Ion  

SciTech Connect (OSTI)

The synthesis and characterization of nickel (II) oxide aerogel materials prepared using the epoxide addition method is described. The addition of the organic epoxide propylene oxide to an ethanolic solution of NiCl{sub 2} 6H{sub 2}O resulted in the formation of an opaque light green monolithic gel and subsequent drying with supercritical CO{sub 2} gave a monolithic aerogel material of the same color. This material has been characterized using powder X-ray diffraction, electron microscopy, elemental analysis, and nitrogen adsorption/desorption analysis. The results indicate that the nickel (II) oxide aerogel has very low bulk density (98 kg/m{sup 3} ({approx}98 %porous)), high surface area (413 m{sup 2}/g), and has a particulate-type aerogel microstructure made up of very fine spherical particles with an open porous network. By comparison, a precipitate of Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} is obtained when the same preparation is attempted with the common Ni(NO{sub 3}){sub 2} 6H{sub 2}O salt as the precursor. The implications of the difference of reactivity of the two different precursors are discussed in the context of the mechanism of gel formation via the epoxide addition method. The synthesis of nickel (II) oxide aerogel, using the epoxide addition method, is especially unique in our experience. It is our first example of the successful preparation of a metal oxide aerogel using a metal divalent metal ion and may have implications for the application of this method to the preparation of aerogels or nanoparticles of other divalent metal oxides. To our knowledge this is the first report of a monolithic pure nickel (II) oxide aerogel materials.

Gash, A E; Satcher, J H; Simpson, R L

2004-01-13T23:59:59.000Z

292

Journal of Solid State Chemistry 178 (2005) 25272532 Gas sorption properties of microporous metal organic frameworks  

E-Print Network [OSTI]

, liquefaction, metal hydrides and porous carbon-based adsorbents, have various difficulties that must be overcome before large-scale commercialization can be considered [1]. Developing new storage materials of these porous materials are well-characterized pores, small pore dimension, high micropore volume, and high

Li, Jing

293

Weldability and microstructure development in nickel-base superalloys  

SciTech Connect (OSTI)

The integrity of nickel-base superalloy single-crystal welds depends on the weld cracking tendency, weld metal dendrite selection process, stray crystal formation, and macro- and microstructure development. These phenomena have been investigated in commercial nickel-base superalloy single crystal welds. During electron beam and laser beam welding, transverse and longitudinal weld cracking occurred. However, the weld cracking tendency was reduced with preheating. Most of the dendritic growth pattern development in these welds can be explained by a geometric model. However, the welds also contained misoriented stray crystals, which were frequently associated with weld cracks. The formation of stray crystals was related to thermal and constitutional supercooling effects. Fine-scale elemental partitioning between {gamma} and {gamma}{prime} phase was measured with atom-probe field-ion microscopy. Marked differences in partitioning characteristics in two welds were observed and are related to differences in cooling rates. In this paper, the modeling tools available to describe the above are reviewed.

David, S.A.; Babu, S.S.; Vitek, J.M.

1997-11-01T23:59:59.000Z

294

Study of electroless nickel plating of ceramic particles  

SciTech Connect (OSTI)

In the production of aluminum-based metal matrix composites (MMC), the wettability of the reinforcement particulates by the matrix is an important factor. The manufacture of MMC reinforced with alumina particles require the use of specialized fabrication techniques such as rheocasting in order to achieve effective particle incorporation. Several surface treatments have been applied to alumina and other reinforcement particulates in order to modify particle wettability. The aim of this study was to investigate the deposition of Ni-P onto several ceramic particulate surfaces without the use of the conventional sensitization and activation steps. This nickel plating treatment, had the potential to improve the incorporation of alumina particles in aluminum melts, with respect to MMC formation by the plasma transferred arc (PTA) surfacing process.

Deuis, R.L.; Subramanian, C.; Strafford, K.N.; Arora, P. [Univ. of South Australia (Australia)] [Univ. of South Australia (Australia); Yellup, J.M. [CSIRO, Woodville North, South Australia (Australia). Div. of Manufacturing Technology] [CSIRO, Woodville North, South Australia (Australia). Div. of Manufacturing Technology

1995-10-15T23:59:59.000Z

295

Crystallographic studies of the metal-responsive transcription factor NikR  

E-Print Network [OSTI]

Metal ion homeostasis is critical to the survival of all cells, because requirements for these essential nutrients must be balanced with their toxicity when present at elevated concentrations. Regulation of nickel ...

Schreiter, Eric R. (Eric Robert)

2005-01-01T23:59:59.000Z

296

Electrodeposition of nickel-iron alloys: Regular codeposition induced by the presence of ethylenediamine  

SciTech Connect (OSTI)

The nickel-iron alloy electrodeposition system typically exhibits a phenomenon known as {open_quotes}anomalous codeposition{close_quotes}, where the less noble metal (Fe) deposits preferentially to the more noble metal (Ni). The addition of ethylenediamine to the bath changes the electrodeposition toward {open_quotes}regular codeposition{close_quotes}, i.e. less Fe and more Ni am found in the deposit. The impact of various electrodeposition parameters, including the concentrations of ferrous ion and ethylenediamine and the pH of the bath, on this change in behavior will be presented.

St. Clair, J.; Harris, T. [Univ. of Tulsa, OK (United States)

1996-10-01T23:59:59.000Z

297

Inspection of Nickel Alloy Welds: Results from Five Year International Program  

SciTech Connect (OSTI)

The U.S. Nuclear Regulatory Commission established and coordinated the international Program for the Inspection of Nickel alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive examination (NDE) techniques to detect and characterize primary water stress corrosion cracking (PWSCC) in dissimilar metal welds. Round-robin results showed that a combination of conventional and phased-array ultrasound provide the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in bottom-mounted instrumentation penetrations by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field.

Prokofiev, Iouri; Cumblidge, Stephen E.; Doctor, Steven R.

2011-06-23T23:59:59.000Z

298

Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer  

DOE Patents [OSTI]

Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

Fish, Richard H. (Berkeley, CA)

1987-01-01T23:59:59.000Z

299

Removal of arsenic, vanadium, and/or nickel compounds from petroliferous liquids  

DOE Patents [OSTI]

Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids (shale oil, SRC, etc.) by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20/sup 0/ to 100/sup 0/C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

Fish, R.H.

1985-05-17T23:59:59.000Z

300

Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer  

DOE Patents [OSTI]

Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20 to 100 C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

Fish, R.H.

1987-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Removal of arsenic, vanadium, and/or nickel compounds from petroliferous liquids  

DOE Patents [OSTI]

Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

Fish, Richard H. (Berkeley, CA)

1986-01-01T23:59:59.000Z

302

Amorphous metal alloy and composite  

DOE Patents [OSTI]

Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

Wang, Rong (Richland, WA); Merz, Martin D. (Richland, WA)

1985-01-01T23:59:59.000Z

303

Stabilization of Nickel Metal Catalysts for Aqueous Processing Systems -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4 By I. Tudosa,SpreadingStabilityEnergy

304

A mechanistic study of aryl halide reactions with lithium aluminum hydride  

E-Print Network [OSTI]

A M:"CHA~JISTIC STUDv OF ARYL HALID RHAC IC~JS ' ITH LITHIUM ALUM 'J"M HYDRIDE A Thesis FU-FAJJ CHUI'JG Submitted to the Graduate College of Texas ARM University in nartial fulfillment of the reauirement for the degree of MASTER OF SCI- JC... of this stud!y :a to investigate possibility o f a. fr ee r a . 1 ca machina=--. by;;h:ch ". thium alum'num hydride may reduce organic ccmnounds. evzcus results have irdicated that thc reductior of o-allylcxy- 'oenzene diazonium icn by . ributyltin hydrioe...

Chung, Fu-Fan

1980-01-01T23:59:59.000Z

305

Advanced technologies for decontamination and conversion of scrap metal  

SciTech Connect (OSTI)

In October 1993, Manufacturing Sciences Corporation was awarded DOE contract DE-AC21-93MC30170 to develop and test recycling of radioactive scrap metal (RSM) to high value and intermediate and final product forms. This work was conducted to help solve the problems associated with decontamination and reuse of the diffusion plant barrier nickel and other radioactively contaminated scrap metals present in the diffusion plants. Options available for disposition of the nickel include decontamination and subsequent release or recycled product manufacture for restricted end use. Both of these options are evaluated during the course of this research effort. work during phase I of this project successfully demonstrated the ability to make stainless steel from barrier nickel feed. This paved the way for restricted end use products made from stainless steel. Also, after repeated trials and studies, the inducto-slag nickel decontamination process was eliminated as a suitable alternative. Electro-refining appeared to be a promising technology for decontamination of the diffusion plant barrier material. Goals for phase II included conducting experiments to facilitate the development of an electro-refining process to separate technetium from nickel. In parallel with those activities, phase II efforts were to include the development of the necessary processes to make useful products from radioactive scrap metal. Nickel from the diffusion plants as well as stainless steel and carbon steel could be used as feed material for these products.

MacNair, V.; Muth, T.; Shasteen, K.; Liby, A.; Hradil, G.; Mishra, B.

1996-12-31T23:59:59.000Z

306

Reversible Poisoning of the Nickel/Zirconia Solid Oxide Fuel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Poisoning of the NickelZirconia Solid Oxide Fuel Cell Anodes by Hydrogen Chloride in Coal Gas. Reversible Poisoning of the NickelZirconia Solid Oxide Fuel Cell Anodes by Hydrogen...

307

Nickel-Catalyzed Allylic Substitution of Simple Alkenes  

E-Print Network [OSTI]

This report describes a nickel-catalyzed allylic substitution process of simple alkenes whereby an important structural motif, a 1,4-diene, was prepared. The key to success is the use of an appropriate nickel–phosphine ...

Matsubara, Ryosuke

308

Preliminary evaluation of electrowinning for nickel scrap processing  

SciTech Connect (OSTI)

Purification of the 70,000 to 245,000 tons of diffusion plant nickel scrap permit its use in a variety of DOE and, with establishment of de minimus standards, foreign and domestic industrial applications. Nickel recycle would also substantially decrease DOE legacy wastes. This report presents data on electrolytes and separations which could be used in electrolytic purification of radiologically contaminated nickel scrap from first generation diffusion plants. Potentiometric scans and plating tests indicate that both industrial electrolytes, buffered nickel sulfate-sodium chloride and nickel chloride, provide good current densities. Electrolytes which contain ammonium thiocyanate or ammonium chloride also perform well. Nickel does not plate appreciably from nitrate solutions because the nitrate was preferentially reduced to nitrite. Solvent extractions of cobalt, a common contaminant in commercial nickel, and pertechnate, a radiological contaminant expected in DOE nickel scrap, are also successful.

Brown, G.M.; Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

1996-12-01T23:59:59.000Z

309

Formation of Carbon Nanostructures in Cobalt- and Nickel-Doped Carbon Aerogels  

SciTech Connect (OSTI)

We have prepared carbon aerogels (CAs) doped with cobalt or nickel through sol-gel polymerization of formaldehyde with the potassium salt of 2,4-dihydroxybenzoic acid, followed by ion-exchange with M(NO{sub 3}){sub 2} (where M = Co{sup 2+} or Ni{sup 2+}), supercritical drying with liquid CO{sub 2} and carbonization at temperatures between 400 C and 1050 C under an N{sub 2} atmosphere. The nanostructures of these metal-doped carbon aerogels were characterized by elemental analysis, nitrogen adsorption, high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Metallic nickel and cobalt nanoparticles are generated during the carbonization process at about 400 C and 450 C, respectively, forming nanoparticles that are {approx}4 nm in diameter. The sizes and size dispersion of the metal particles increase with increasing carbonization temperatures for both materials. The carbon frameworks of the Ni- and Co-doped aerogels carbonized below 600 C mainly consist of interconnected carbon particles with a size of 15 to 30 nm. When the samples are pyrolyzed at 1050 C, the growth of graphitic nanoribbons with different curvatures is observed in the Ni and Co-doped carbon aerogel materials. The distance of graphite layers in the nanoribbons is about 0.38 nm. These metal-doped CAs retain the overall open cell structure of metal-free CAs, exhibiting high surface areas and pore diameters in the micro and mesoporic region.

Fu, R; Baumann, T F; Cronin, S; Dresselhaus, G; Dresselhaus, M; Satcher, Jr., J H

2004-11-09T23:59:59.000Z

310

Advanced technologies for decomtamination and conversion of scrap metal  

SciTech Connect (OSTI)

The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ``Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a laser cutting demonstration, an investigation of commercial markets for RSM, and refinement of methods to quantify isotopic elements.

Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

1999-05-27T23:59:59.000Z

311

Selective Electroless Nickel Plating of Particle Arrays on Polyelectrolyte Multilayers  

E-Print Network [OSTI]

Selective Electroless Nickel Plating of Particle Arrays on Polyelectrolyte Multilayers Ilsoon Lee Received June 30, 2003. Revised Manuscript Received September 25, 2003 Selective electroless nickel plating, it was demonstrated that selective electroless nickel plating on complex 3-D microstructures with submicron resolution

Lee, Ilsoon

312

Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows  

E-Print Network [OSTI]

Berkeley, California Abstract Proof-of-principle gas-reservoir MnNiMg electrochromic mirror devices have and therefore has limitations in controlling the energy flux associated with solar illumination. The issue storage capacity with the amount of hydrogen needed for maximum switching range. For this reason, as well

313

Characterization and High Throughput Analysis of Metal Hydrides for Hydrogen Storage.  

E-Print Network [OSTI]

??Efficient hydrogen storage is required for fuel cell vehicles to be competitive with those driven by internal combustion engines. Current methods of storage such as… (more)

Barcelo, Steven James

2009-01-01T23:59:59.000Z

314

Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows  

E-Print Network [OSTI]

gas-reservoir MnNiMg electrochromic mirror devices have beencontrast to conventional electrochromic approaches, hydrogenThe application of electrochromic devices based on tungsten

Anders, Andre

2008-01-01T23:59:59.000Z

315

Materials Go/No-Go Decisions Made Within the Department of Energy Metal Hydride  

E-Print Network [OSTI]

Laboratories (currently at University of Missouri St. Louis) Dr. Ragaiy Zidan Savannah River National Laboratory Dr. Donald Anton Savannah River National Laboratory Prof. Bruce Clemens Stanford University Dr-selection Lennie Klebanoff, Director Sandia National Laboratories Livermore, CA 94551 September/October 2007

316

Low-Cost Metal Hydride TES Systems- FY13 Q1  

Broader source: Energy.gov [DOE]

This document summarizes the progress for this Savannah Reiver National Laboratory project, funded by SunShot, for the first quarter of fiscal year 2013.

317

Low-Cost Metal Hydride Thermal Energy Storage System- FY13 Q2  

Broader source: Energy.gov [DOE]

This document summarizes the progress of this SRNL project, funded by SunShot, for the second quarter of fiscal year 2013.

318

Low-Cost Metal Hydride TES Systems- FY13 Q3  

Broader source: Energy.gov [DOE]

This document summarizes the progress of this SRNL project, funded by SunShot, for the third quarter of fiscal year 2013.

319

Final Report for the DOE Metal Hydride Center of Excellence | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry Comments May 4-9,Francisco,446 Federal

320

Hydrogen Storage Properties of New Hydrogen-Rich BH3NH3-Metal Hydride  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubbles andof the Trough and(TiH2, ZrH2,

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Project Profile: Low-Cost Metal Hydride Thermal Energy Storage System |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309DepartmentDepartment ofCyclesEnergy Heliostat

322

Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation Systems  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

323

Mechanical and metallographic characterization of LIGA fabricated nickel and 80%Ni-20%Fe Permalloy  

SciTech Connect (OSTI)

A table top servohydraulic load frame equipped with a laser displacement measurement system was constructed for the mechanical characterization of LIGA fabricated electroforms. A drop in tensile specimen geometry which includes a pattern to identify gauge length via laser scanning has proven to provide a convenient means to monitor and characterize mechanical property variations arising during processing. In addition to tensile properties, hardness and metallurgical data were obtained for nickel deposit specimens of current density varying between 20 and 80 mA/cm{sup 2} from a sulfamate based bath. Data from 80/20 nickel-iron deposits is also presented for comparison. As expected, substantial mechanical property differences from bulk metal properties are observed as well as a dependence of material strength on current density which is supported by grain size variation. While elastic modulus values of the nickel electrodeposit are near 160 GPa, yield stress values vary by over 60%. A strong orientation in the metal electrodeposits as well as variations in nucleating and growth morphology present a concern for anisotropic and geometry dependent mechanical properties within and between different LIGA components.

Christenson, T.R.; Buchheit, T.E.; Schmale, D.T. [Sandia National Labs., Albuquerque, NM (United States); Bourcier, R.J. [Corning Inc., NY (United States). Photonic Technologies Div.

1998-04-13T23:59:59.000Z

324

Preparation of Ag Schottky contacts on n-type GaN bulk crystals grown in nitrogen rich atmosphere by the hydride vapor phase epitaxy technique  

SciTech Connect (OSTI)

Electrical properties of Schottky contacts on n-type GaN grown in nitrogen rich atmosphere with different N/Ga ratios by hydride vapor phase epitaxy were investigated. We show that tunneling of electrons from the conduction band of GaN to the metal is dominant in our samples. The quality of Schottky contacts does not only depend on surface preparation but also on the growth conditions of the crystals. Schottky contacts on these crystals show an increasing deterioration when higher N/Ga growth ratios are used. We correlate our results with the presence of negatively charged gallium vacancies in the samples. These charges compensate the positively charged donors and lead to a significant increase in series resistance.

Stübner, R., E-mail: ronald.stuebner@physik.tu-dresden.de; Kolkovsky, Vl.; Weber, J. [Technische Universität Dresden, 01062 Dresden (Germany); Leibiger, Gunnar; Habel, Frank [Freiberger Compound Materials GmbH, 09599 Freiberg (Germany)

2014-10-14T23:59:59.000Z

325

Black nickel selective absorber, optimization of parameters  

SciTech Connect (OSTI)

Electroplated black nickel selective absorber is one of the most commercially used element of solar energy systems. Electrodeposition parameters such as time of deposition, pH, current density, electrolyte temperature should be optimized to produce the most efficient selective absorber. The topology of the substrate material is very effective on selectivity and it should also be optimized. In this study, by controlling the conditions of electrodeposition black nickel selective absorbers are produced and their reflectivities are measured. The effects of the electrodeposition parameters together with the topology of the substrate, on the selective properties are investigated.

Akinoglu, B.; Cercioglu, V.; Ecevit, A.

1983-12-01T23:59:59.000Z

326

On the role of mass-transport in electrodeposition of nickel-iron alloys  

SciTech Connect (OSTI)

Despite the extensive use of nickel-iron, the mechanism of codeposition is not well understood. The interactions occurring during codeposition are such that nickel deposition is inhibited in the presence of iron, and the resulting alloy deposit has a much higher iron to nickel ratio than the electrolyte. This type of interactive deposition is an example of what has been termed anomalous codeposition, which is also used in describing electrodeposition of iron group elements (iron, cobalt, and nickel) with each other, or with zinc, tin, lead, and cadmium. In Chapter 2 of this thesis, a critical review of the literature is presented. Various interpretations and proposed mechanisms for the anomalous deposition of the iron-group alloys, particularly nickel-iron, is discussed. The major objectives of this review are to provide unambiguous definitions for various codeposition schemes, including the anomalous deposition itself, reflect on some of the more widely accepted hypothesis describing this phenomenon, and summarize the more recent results of other investigators in the field. To elucidate the electrodeposition mechanism of magnetic alloys, a mathematical model is developed in Chapter 3. The model is applied to a rotating disk electrode system, with well understood hydrodynamics, and incorporates homogeneous reactions of metal-hydroxide complexes. In Chapter 4, the model is further used to investigate the effect of buffering agents which are commonly used in electroplating baths. Our understanding of the mechanism of electrode processes depends on the accurate measurement of these concentrations. The interfacial value of pH is particularly important for electrodeposition of the iron-group alloys. In Chapters 5 and 6, an in-situ nonintrusive technique for surface pH measurement is investigated by theoretical and experimental methods.

Hessami, S.; Tobias, C.W.

1990-11-01T23:59:59.000Z

327

Water treatment process and system for metals removal using Saccharomyces cerevisiae  

DOE Patents [OSTI]

A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

Krauter, Paula A. W. (Livermore, CA); Krauter, Gordon W. (Livermore, CA)

2002-01-01T23:59:59.000Z

328

Development of encapsulated lithium hydride thermal energy storage for space power systems  

SciTech Connect (OSTI)

Inclusion of thermal energy storage in a pulsed space power supply will reduce the mass of the heat rejection system. In this mode, waste heat generated during the brief high-power burst operation is placed in the thermal store; later, the heat in the store is dissipated to space via the radiator over the much longer nonoperational period of the orbit. Thus, the radiator required is of significantly smaller capacity. Scoping analysis indicates that use of lithium hydride as the thermal storage medium results in system mass reduction benefits for burst periods as long as 800 s. A candidate design for the thermal energy storage component utilizes lithium hydride encapsulated in either 304L stainless steel or molybdenum in a packed-bed configuration with a lithium or sodium-potassium (NaK) heat transport fluid. Key issues associated with the system design include phase-change induced stresses in the shell, lithium hydride and shell compatibility, lithium hydride dissociation and hydrogen loss from the system, void presence and movement associated with the melt-freeze process, and heat transfer limitations on obtaining the desired energy storage density. 58 refs., 40 figs., 11 tabs.

Morris, D.G.; Foote, J.P.; Olszewski, M.

1987-12-01T23:59:59.000Z

329

Friction Stir Welding of Hydrided Titanium Alloys Mark Taylor, D.P. Field  

E-Print Network [OSTI]

Friction Stir Welding of Hydrided Titanium Alloys Mark Taylor, D.P. Field Multi-Scale Engineering for Undergraduates program under grant number EEC-0754370 During Friction Stir Welding (FSW), a non-consumable tool-state welding process, much frictional heating and force is required of the tool. This steep demand on the tool

Collins, Gary S.

330

The influence of hydride blisters on the fracture of Zircaloy-4 O.N. Pierron a  

E-Print Network [OSTI]

.elsevier.com/locate/jnucmat Journal of Nuclear Materials 322 (2003) 21­35 #12;hydrogen embrittlement [15]. Such an effect becomes, and radiation damage [1]. As the cladding undergoes oxidation with the associated hydrogen pickup, the total amount of hydrogen increases, and hydride precipitates form pref- erentially near the outer (cooler

Motta, Arthur T.

331

Observations of proton beam enhancement due to erbium hydride on gold foil targets  

SciTech Connect (OSTI)

Recent theoretical work suggests that the conversion efficiency from laser to protons in laser irradiated thin foil experiments increases if the atomic mass of nonhydrogen atoms on the foil rear surface increases. Experiments were performed at the Lawrence Livermore National Laboratory Jupiter Laser Facility to observe the effect of thin foils coated with erbium hydride on the conversion efficiency from laser to protons. Gold foils with and without the rear surface coated with ErH{sub 3} were irradiated using the ultrashort pulse, 40 TW Callisto laser. An argon-ion etching system was used to remove naturally occurring nanometer thick surface layer contaminants from the hydride. With the etcher, gold with ErH{sub 3} showed a 25% increase in the conversion efficiency to protons above 3.4 MeV relative to contaminants, where C{sup +4} and H{sup +} were the dominant ion species. No difference in the ion signal was observed without first cleaning the hydrides. Simulations using the hybrid PIC code, LSP, revealed that the increase due to erbium hydride versus contaminants is 37% for protons above 3 MeV.

Offermann, D. T.; Van Woerkom, L. D. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Freeman, R. R. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States); Department of Applied Science, University of California Davis, Livermore, California 94550 (United States); Foord, M. E.; Hey, D.; Key, M. H.; Mackinnon, A. J.; MacPhee, A. G.; Patel, P. K.; Ping, Y.; Sanchez, J. J.; Shen, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bartal, T.; Beg, F. N. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States); Espada, L. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Chen, C. D. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2009-09-15T23:59:59.000Z

332

Complex Hydrides for Hydrogen Storage Darlene K. Slattery and Michael D. Hampton  

E-Print Network [OSTI]

at a temperature of less than 100 o C in order to be compatible with fuel cells and must have an installed hydrogen have reported the discovery of a number of catalysts that improve the reversing of the hydrogen release the hydrogenation/dehydrogenation of sodium aluminum hydride. Mechanical incorporation of the catalyst

333

Status of the International Cooperative Program for Inspection of Nickel Alloy Components - PINC  

SciTech Connect (OSTI)

Primary water stress corrosion cracking (PWSCC) has occurred world-wide in nuclear power plants and is seen as a serious issue. Crack samples show very tight and very complex cracks in the nickel-base weld metal and forgings that are difficult to detect, size, and characterize. Pacific Northwest National Laboratory (PNNL) is conducting a research program on non-destructive evaluation (NDE) reliability in detecting and characterizing PWSCC. This program is part of an international cooperative research project called the Program for the Inspection of Nickel-Alloy Components (PINC), led by the U.S. Nuclear Regulatory Commission (NRC), which has been set up to leverage efforts in several countries to address this significant and common problem. This work has the general goal of developing an understanding of the morphology of PWSCC and assessing the NDE responses from it.

Schuster, George J.; Cumblidge, Stephen E.; Doctor, Steven R.; Moyer, Carol E.

2008-01-01T23:59:59.000Z

334

Quantitative adhesion data for electroless nickel deposited on various substrates  

SciTech Connect (OSTI)

This paper includes a review of the literature on quantitative adhesion of electroless nickel coatings and then presents recent ring shear quantitative data for the electroless nickel deposited on a variety of substrates. Procedures for obtaining good adhesion between electroless nickel coatings and a variety of aluminum alloys (1100, 2024, 5083, 6061 and 7075), beryllium-copper, 4340 steel, HP 9-4-20 steel, and U-0.75 Ti are outlined. In addition, data are presented on a procedure for activating electroless nickel for subsequent coating with electrodeposited nickel. 6 tables.

Dini, J.W.; Johnson, H.R.

1982-09-20T23:59:59.000Z

335

Quantitative adhesion data for electroless nickel deposited on various substrates  

SciTech Connect (OSTI)

A review of the literature on quantitative adhesion of electroless nickel coatings is given and recent ring shear quantitative data for the electroless nickel deposited on a variety of substrates are presented. Procedures for obtaining good adhesion between electroless nickel coatings and a variety of aluminum alloys (1100, 2024, 5083, 6061 and 7075), beryllium-copper, 4340 steel and HP 9-4-20 steel are outlined. In addition, data are presented on a procedure for activating electroless nickel for subsequent coating with electrodeposited nickel.

Dini, J.W.; Johnson, H.R.

1983-01-01T23:59:59.000Z

336

Low temperature iron- and nickel-catalyzed reactions leading to coalbed gas formation  

SciTech Connect (OSTI)

Hydrocarbon hydrogenolysis and CO{sub 2} hydrogenation in the presence of Fe/SiO{sub 2} and Ni/SiO{sub 2} catalysts were evaluated as potential mechanisms contributing to natural gas formation in coalbeds. The hydrocarbons used as reactants in hydrogenolysis included butane, octane, 1-octene, and 1-dodecene. The reactions carried out in a laboratory batch reactor produced gas that contained methane concentrations greater than 90%, which resembles the composition of natural gas. Reaction temperatures were selected to resemble natural coalbed conditions. Evidence is presented to show that iron and nickel minerals, which can be present in coals at levels of 2,000 and 10 ppm, respectively, can become active under geologic conditions. The oxides (Fe{sub 2}O{sub 3} and NiO) used as precursors of the active catalysts (Fe and Ni metals) were reduced at 200 C under a hydrogen atmosphere. Moessbauer spectroscopy showed that ca. 6% of the iron oxide was converted to the metal; in the case of nickel, oxygen titration showed that the extent of reduction to the metal was ca. 29%. The resultant fractions of the active metals in coals are adequate to catalyze generation of appreciable amounts of methane over geologic time.

Medina, J.C.; Butala, S.J.; Bartholomew, C.H.; Lee, M.L.

2000-02-01T23:59:59.000Z

337

Effect of a fluorinated nickel surface on the decomposition of perfluorodiethoxymethane  

SciTech Connect (OSTI)

Perfluoropolyethers (PFPEs) are a commercial class of lubricants widely used in computer and aerospace industries. This is a study of the degradation of a perfluorinated ether in the presence of a metal fluoride. Perfluorodiethoxymethane (PFDEM) is a PFPE analog. Temperature programmed desorption shows no contribution of PFDEM toward nickel fluoride on an NiF{sub 2} surface obtained by CF{sub 3}I adsorption. Higher coverages of nickel fluoride do not show any evidence of NiF{sub 2} contribution from PFDEM. The results do not agree with the idea that a fluorinated surface might induce decomposition of PFPEs, leading to addition fluoride formation on the surface. The metal fluoride bond strength is not a legitimate concern for decomposition of PFE lubricants. Impurity in PFPEs might be the cause of initial surface fluoridation leading to breakdown of PFPEs which could cause additional metal fluoride formation. It is clear that the reaction of PFPEs with metals does not involve a direct formation of a simple M-F bond; results do not show any C-F bond cleavage of the fluorinated ether and do not support a proposed autocatalytic mechanism.

Sreevidya, S.

1995-11-09T23:59:59.000Z

338

Threat of Hydride Re-orientation to Spent Fuel Integrity During Transportation Accidents: Myth or Reality?  

SciTech Connect (OSTI)

The source-term study conducted by Sandia National Laboratories nearly two decades ago for the spent fuel inventory known at the time, which was in the low-to-medium burnup range ({approx}35 GWd/MTU), showed that the effects of transportation accidents on spent fuel failures, and consequential radioactivity release to the environment, were relatively benign. However, with today's discharged fuel burnups routinely greater than 45 GWd/MTU, potential hydride reorientation during interim dry storage, and its effects on cladding properties, has become one of the primary concerns for spent fuel transportation. Laboratory tests of un-irradiated cladding specimens subjected to heat treatments promoting hydride dissolution followed by re-precipitation in the radial direction have shown that relatively moderate concentrations ({approx}70 ppm) of radial hydrides can significantly degrade cladding ductility, at least at room temperature. The absence of specific data that are relevant to high-burnup spent fuel under dry storage conditions have led to the conjecture, deduced from those tests, that massive cladding failures, possibly resulting in fuel reconfiguration, can be expected during cask drop events. Such conclusions are not borne out by the findings in this paper. The analysis results indicate that cladding failure is bi-modal: a state of failure initiation at the cladding ID remaining as part-wall damage with less than 2% probability of occurrence, and a through-wall failure at a probability of 1 E-5. These results indicate that spent fuel conditions that could promote the formation of radial hydrides during dry storage are not sufficient to produce radial hydrides concentrations of significant levels to cause major threat to spent fuel integrity. It is important to note in this regard that the through-wall cladding failure probability of 1 E-5 is of the same order of magnitude as calculated in the cited Sandia study for low burnup fuel. (authors)

Rashid, Joe [ANATECH, 5435 Oberlin Drive, San Diego, CA 92121 (United States); Machiels, Albert [EPRI, 3420 Hillview Avenue, Palo Alto, CA 94304 (United States)

2007-07-01T23:59:59.000Z

339

Proposed sale of radioactively contaminated nickel ingots located at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) proposes to sell 8,500 radioactively contaminated nickel ingots (9.350 short tons), currently in open storage at the Paducah Gaseous Diffusion Plant (PGDP), to Scientific Ecology Group, Inc. (SEG) for decontamination and resale on the international market. SEG would take ownership of the ingots when they are loaded for transport by truck to its facility in Oak Ridge, Tennessee. SEG would receive approximately 200 short tons per month over approximately 48 months (an average of 180 ingots per month). The nickel decontamination process specified in SEG`s technical proposal is considered the best available technology and has been demonstrated in prototype at SEG. The resultant metal for resale would have contamination levels between 0.3 and 20 becquerel per gram (Bq/g). The health hazards associated with release of the decontaminated nickel are minimal. The activity concentration of the end product would be further reduced when the nickel is combined with other metals to make stainless steel. Low-level radioactive waste from the SEG decontamination process, estimated to be approximately 382 m{sup 3} (12,730 ft), would be shipped to a licensed commercial or DOE disposal facility. If the waste were packaged in 0.23 m{sup 3}-(7.5 ft{sup 3}-) capacity drums, approximately 1,500 to 1,900 drums would be transported over the 48-month contract period. Impacts from the construction of decontamination facilities and the selected site are minimal.

NONE

1995-10-01T23:59:59.000Z

340

Delayed Nickel Decay in Gamma Ray Bursts  

E-Print Network [OSTI]

Recently observed emission lines in the X-ray afterglow of gamma ray bursts suggest that iron group elements are either produced in the gamma ray burst, or are present nearby. If this material is the product of a thermonuclear burn, then such material would be expected to be rich in Nickel-56. If the nickel remains partially ionized, this prevents the electron capture reaction normally associated with the decay of Nickel-56, dramatically increasing the decay timescale. Here we examine the consequences of rapid ejection of a fraction of a solar mass of iron group material from the center of a collapsar/hypernova. The exact rate of decay then depends on the details of the ionization and therefore the ejection process. Future observations of iron, nickel and cobalt lines can be used to diagnose the origin of these elements and to better understand the astrophysical site of gamma ray bursts. In this model, the X-ray lines of these iron-group elements could be detected in suspected hypernovae that did not produce an observable gamma ray burst due to beaming.

G. C. McLaughlin; R. A. M. J. Wijers

2002-05-19T23:59:59.000Z

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Highly Reversible Open Framework Nanoscale Electrodes for Divalent Ion Batteries  

E-Print Network [OSTI]

Blue family of open framework materials, such as nickel hexacyanoferrate, allow for the reversible of protons and lithium ions into solid materials has led to the success of nickel metal hydride and lithium materials have been studied extensively.15,16,18,20-23 Electrodeposited PB thin films have demonstrated

Cui, Yi

342

J. Electrochem. Soc., in press (1998) Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells  

E-Print Network [OSTI]

to simulate batteries and fuel cells was described. The model is capable of incorporating interfacial non1 J. Electrochem. Soc., in press (1998) Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells Part 2. Application to Nickel-Cadmium and Nickel-Metal Hydride Cells W.B. Gu and C.Y. Wang 1

Wang, Chao-Yang

343

J. Electrochem. Soc., in press (1998) MicroMacroscopic Coupled Modeling of Batteries and Fuel Cells  

E-Print Network [OSTI]

to simulate batteries and fuel cells was described. The model is capable of incorporating interfacial non1 J. Electrochem. Soc., in press (1998) Micro­Macroscopic Coupled Modeling of Batteries and Fuel Cells Part 2. Application to Nickel­Cadmium and Nickel­Metal Hydride Cells W.B. Gu and C.Y. Wang 1

Wang, Chao-Yang

344

Fly ash enhanced metal removal process  

SciTech Connect (OSTI)

The primary objective of the study was to evaluate the effectiveness of fly ashes from local thermal power plants in the removal of cadmium, nickel, chromium, lead, and copper from aqueous waste streams. Physical and chemical characteristics of fly ashes were determined, batch isotherm studies were conducted. A practical application of using fly ash in treating spent electroless nickel (EN) plating baths by modified conventional precipitation or solid enhanced metal removal process (SEMR) was investigated. In addition to nickel the EN baths also contains completing agents such as ammonium citrate and succinic acid reducing agents such as phosphate and hypophosphite. SEMR experiments were conducted at different pHs, fly ash type and concentrations, and settling times.

Nonavinakere, S. [Plexus Scientific Corp., Annapolis, MD (United States); Reed, B.E. [West Virginia Univ., Morgantown, WV (United States). Dept. of Civil Engineering

1995-12-31T23:59:59.000Z

345

Thermal analysis of uranium zirconium hydride fuel using a lead-bismuth gap at LWR operating temperatures  

E-Print Network [OSTI]

Next generation nuclear technology calls for more advanced fuels to maximize the effectiveness of new designs. A fuel currently being studied for use in advanced light water reactors (LWRs) is uranium zirconium hydride ...

Ensor, Brendan M. (Brendan Melvin)

2012-01-01T23:59:59.000Z

346

Fourier transform-infrared spectroscopic study of the adsorption of hydrogen on chromia and on some metal chromites  

SciTech Connect (OSTI)

Adsorption of hydrogen and deuterium on samples of chromia and on nonstoichiometric zinc, cobalt, and manganese chromites (M/Cr atomic ratio 1:1; M = Zn, Co, Mn), previously activated in hydrogen and vacuum, was studied by means of Fourier transform-infrared spectroscopy. Parallel CO adsorption experiments indicate that all four catalysts are essentially in an oxide form after hydrogen adsorption. Only in the case of the cobalt compound are zerovalent centers observed. Terminal hydrides Cr-H are formed on chromia, whereas on the three chromites, both terminal and bridged hydride species, thought to be bonded to Zn{sup 2+}, Co{sup 2+}, and Mn{sup 2+} centers, respectively, are observed. These assignments are based on the H(D) isotopic shift and on a comparison with the spectra of known hydride species of the same metals. The mechanism of formation of these adsorbed forms is briefly discussed.

Busca, G. (Universita di Genova, Genoa (Italy))

1989-12-01T23:59:59.000Z

347

Experiences with polishing electroless nickel  

SciTech Connect (OSTI)

During recent years the bureaucracy has become increasingly rigid in demanding a mechanical observance of the minimum bid specified on the simplest terms. Qualifications of the vendor and specifications of the product are increasingly viewed as attempts to thwart the progress of the process toward minimum quality, Any such qualification or specification must be justified as to not only reasonableness but necessity. This provides the purpose of this paper, to record forever the existence of the wild dingleberry and to disclose its habits with respect to laps and the marvelous effects it has on the emotional state of the lappers. Among metal polishers, the term dingleberry refers to a type of nodule or wartlike structure sometimes seen in isolation and occasionally in considerable profusion particularly in chemically plated surfaces. 2 refs.

Brown, N.J.; Taylor, J.S.; Fuchs, B.A.

1991-04-01T23:59:59.000Z

348

Hydrogenation of anthraquinone on metal-containing catalysts  

SciTech Connect (OSTI)

The present work studied the reaction of hydrogen activated on metal-containing catalysts (platinum black, Pt/Al/sub 2/O/sub 3/ (AP-15), and the hydride ZrNiH/sub 2.8/ with anthraquinone. The hydrogenation of anthraquinone bound into a strong donor-acceptor complex on the surface of Al/sub 2/O/sub 3/ and AP-15 and physically absorbed on silica gel was investigated. Results indicated that under conditions of mechanical mixing of silica gel with catalysts containing platinum or hydrides of intermetallic compounds in an atmosphere of hydrogen, anthraquinone physically adsorbed on silica gel is able to undergo hydrogenation at temperature above 100/sup 0/ C with formation of anthracene.

Lunin, V.V.; Markaryan, G.L.; Chetina, O.V.

1982-12-01T23:59:59.000Z

349

Process for production of an aluminum hydride compound  

DOE Patents [OSTI]

A compound of formula M(AlH.sub.3OR.sup.1).sub.y, wherein R.sup.1 is phenyl substituted by at least one of: (i) an alkoxy group having from one to six carbon atoms; and (ii) an alkyl group having from three to twelve carbon atoms; wherein M is an alkali metal, Be or Mg; and y is one or two.

Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Miller, Dean Michael; Molzahn, David Craig

2013-08-06T23:59:59.000Z

350

Advanced technologies for decontamination and conversion of scrap metals  

SciTech Connect (OSTI)

Recycle of radioactive scrap metals (RSM) from decommissioning of DOE uranium enrichment and nuclear weapons manufacturing facilities is mandatory to recapture the value of these metals and avoid the high cost of disposal by burial. The scrap metals conversion project detailed below focuses on the contaminated nickel associated with the gaseous diffusion plants. Stainless steel can be produced in MSC`s vacuum induction melting process (VIM) to the S30400 specification using nickel as an alloy constituent. Further the case alloy can be rolled in MSC`s rolling mill to the mechanical property specification for S30400 demonstrating the capability to manufacture the contaminated nickel into valuable end products at a facility licensed to handle radioactive materials. Bulk removal of Technetium from scrap nickel is theoretically possible in a reasonable length of time with the high calcium fluoride flux, however the need for the high temperature creates a practical problem due to flux volatility. Bulk decontamination is possible and perhaps more desirable if nickel is alloyed with copper to lower the melting point of the alloy allowing the use of the high calcium fluoride flux. Slag decontamination processes have been suggested which have been proven technically viable at the Colorado School of Mines.

Muth, T.R. [Manufacturing Sciences Corp., Oak Ridge, TN (United States); Moore, J.; Olson, D.; Mishra, B. [Colorado School of Mines, Golden, CO (United States)

1994-12-31T23:59:59.000Z

351

Electrohydrodynamic atomization (EHDA) assisted wet chemical synthesis of nickel nanoparticles  

SciTech Connect (OSTI)

Highlights: ? Electrohydrodynamic atomization (EHDA) assisted chemical synthesis of nickel nanoparticles is reported. ? Substituting water with non-aqueous media prevents the formation of nickel hydroxide. ? Size of particles decreased from 10 to 20 nm down to 2–4 nm by using multi-jet mode. ? Synthesized nanoparticles have diffraction patterns similar to amorphous materials. -- Abstract: In this study nickel nanoparticles were prepared via chemical reduction of nickel acetate using sodium borohydride using electrohydrodynamic atomization (EHDA) technique. This technique was used to spray a finely dispersed aerosol of nickel precursor solution into the reductive bath. Obtained particles were characterized by means of X-ray diffraction (XRD), UV–Visible spectroscopy, and transmission electron microscopy (TEM). Results confirmed the formation of nickel nanoparticles and showed that applying EHDA technique to chemical reduction method results in producing smaller particles with narrower size distribution in comparison with conventional reductive precipitation method.

Barzegar Vishlaghi, M. [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)] [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Farzalipour Tabriz, M., E-mail: meisam.fa@gmail.com [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Mohammad Moradi, O. [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)] [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

2012-07-15T23:59:59.000Z

352

Competitive adsorption effects in the electrodeposition of iron-nickel alloys  

SciTech Connect (OSTI)

Two-step reaction mechanisms involving adsorbed monovalent intermediate ions for the electrodeposition of iron and nickel as single metals can be combined to form a predictive model for the codeposition of iron-nickel alloys. Inhibition of the more noble nickel in the presence of iron is caused by preferential surface coverage of the adsorbed iron intermediate resulting from a difference between the two elements in Tafel constant for the electrosorption step. The role of hydrolyzed cations and surface pH is investigated and methods for evaluating the influence of pH are explored. The analysis shows that changes in surface pH with potential are not necessary for iron-rich (anomalous) deposits, but that variations in pH from one electrolyte to another may influence deposit composition. The tendency toward iron-rich deposits with increasing overpotential exists in all systems, however, and can be prevented only by decreasing the iron concentration of the bath. An extension of the analysis to account for transport limitations in baths with low iron concentration is developed and calculations with the model are presented to illustrate the effects of current density and electrolyte convection under conditions similar to those investigated experimentally in the literature.

Matlosz, M. (Ecole Polytechnique Federale de Lausanne, (Switzerland). Dept. des materiaux)

1993-08-01T23:59:59.000Z

353

Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation  

DOE Patents [OSTI]

An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-based materials is disclosed. Samples of zirconium-based materials having different compositions and/or fabrication methods are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280 to 316 C). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hydriding for the same materials when subject to in-reactor (irradiated) corrosion. 1 figure.

Johnson, A.B. Jr.; Levy, I.S.; Trimble, D.J.; Lanning, D.D.; Gerber, F.S.

1990-04-10T23:59:59.000Z

354

Use of Solid Hydride Fuel for Improved long-Life LWR Core Designs  

SciTech Connect (OSTI)

The primary objective of this project was to assess the feasibility of improving the performance of PWR and BWR cores by using solid hydride fuels instead of the commonly used oxide fuel. The primary measure of performance considered is the bus-bar cost of electricity (COE). Additional performance measures considered are safety, fuel bundle design simplicity – in particular for BWR’s, and plutonium incineration capability. It was found that hydride fuel can safely operate in PWR’s and BWR’s without restricting the linear heat generation rate of these reactors relative to that attainable with oxide fuel. A couple of promising applications of hydride fuel in PWR’s and BWR’s were identified: (1) Eliminating dedicated water moderator volumes in BWR cores thus enabling to significantly increase the cooled fuel rods surface area as well as the coolant flow cross section area in a given volume fuel bundle while significantly reducing the heterogeneity of BWR fuel bundles thus achieving flatter pin-by-pin power distribution. The net result is a possibility to significantly increase the core power density – on the order of 30% and, possibly, more, while greatly simplifying the fuel bundle design. Implementation of the above modifications is, though, not straightforward; it requires a design of completely different control system that could probably be implemented only in newly designed plants. It also requires increasing the coolant pressure drop across the core. (2) Recycling plutonium in PWR’s more effectively than is possible with oxide fuel by virtue of a couple of unique features of hydride fuel – reduced inventory of U-238 and increased inventory of hydrogen. As a result, the hydride fuelled core achieves nearly double the average discharge burnup and the fraction of the loaded Pu it incinerates in one pass is double that of the MOX fuel. The fissile fraction of the Pu in the discharged hydride fuel is only ~2/3 that of the MOX fuel and the discharged hydride fuel is more proliferation resistant. Preliminary feasibility assessment indicates that by replacing some of the ZrH1.6 by ThH2 it will be possible to further improve the plutonium incineration capability of PWR’s. Other possibly promising applications of hydride fuel were identified but not evaluated in this work. A number of promising oxide fueled PWR core designs were also found as spin-offs of this study: (1) The optimal oxide fueled PWR core design features smaller fuel rod diameter of D=6.5 mm and a larger pitch-to-diameter ratio of P/D=1.39 than presently practiced by industry – 9.5mm and 1.326. This optimal design can provide a 30% increase in the power density and a 24% reduction in the cost of electricity (COE) provided the PWR could be designed to have the coolant pressure drop across the core increased from the reference 29 psia to 60 psia. (2) Using wire wrapped oxide fuel rods in hexagonal fuel assemblies it is possible to design PWR cores to operate at 54% higher power density than the reference PWR design that uses grid spacers and a square lattice, provided 60 psia coolant pressure drop across the core could be accommodated. Uprating existing PWR’s to use such cores could result in 40% reduction in the COE. The optimal lattice geometry is D = 8.08 mm and P/D = 1.41. The most notable advantages of wire wraps over grid spacers are their significant lower pressure drop, higher critical heat flux and improved vibrations characteristics.

Greenspan, E

2006-04-30T23:59:59.000Z

355

Nanostructured metal foams: synthesis and applications  

SciTech Connect (OSTI)

Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

Luther, Erik P [Los Alamos National Laboratory; Tappan, Bryce [Los Alamos National Laboratory; Mueller, Alex [Los Alamos National Laboratory; Mihaila, Bogdan [Los Alamos National Laboratory; Volz, Heather [Los Alamos National Laboratory; Cardenas, Andreas [Los Alamos National Laboratory; Papin, Pallas [Los Alamos National Laboratory; Veauthier, Jackie [Los Alamos National Laboratory; Stan, Marius [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

356

Positive Active Material For Alkaline Electrolyte Storage Battert Nickel Electrodes  

DOE Patents [OSTI]

A method of manufacturing a positive active material for nickel electrodes of alkaline storage batteries which consists of particles of hydroxide containing mainly nickel and covered with a layer of a hydroxide phase based on nickel and yttrium is disclosed. The proportion of the hydroxide phase is in the range 0.15% to 3% by weight of yttrium expressed as yttrium hydroxide relative to the total weight of particles.

Bernard, Patrick (Massy, FR); Baudry, Michelle (Le Pontaroux, FR)

2000-12-05T23:59:59.000Z

357

Electrodeposition of amorphous ternary nickel-chromium-phosphorus alloy  

SciTech Connect (OSTI)

Amorphous ternary nickel-chromium-phosphorus alloys are electrodeposited from a bath comprising a nickel salt, a chromium salt, a phosphorus source such as sodium hypophosphite, a complexing agent for the nickel ions, supporting salts to increase conductivity, and a buffering agent. The process is carried out at about room temperature and requires a current density between about 20 to 40 A/dm.sup.2.

Guilinger, Terry R. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

358

MECHANISTIC STUDIES OF ARYL-OXYGEN BOND ACTIVATION IN A NICKEL(0) DIPHOSPHINE-ETHER COMPLEX  

E-Print Network [OSTI]

with nickel precursors was studied. A series of nickel(0) complexes containing nickel-arene interactions.1).1a,1b Quenching of the lithium species with an electrophilic species leads to the functionalization

Winfree, Erik

359

Electrochimica Acta xxx (2005) xxxxxx Electrochemical and AFM study of nickel nucleation mechanisms on  

E-Print Network [OSTI]

electrodeposition was carried out from solutions with higher nickel concentrations. The clusters were also larger investigations. © 2005 Elsevier Ltd. All rights reserved. Keywords: Nickel electrodeposition; Ammonia; Nucleation [13,14] for nickel electrodeposition from acidicchloridesolutionscontaininghighnickelconcentration

Pesic, Batric

2005-01-01T23:59:59.000Z

360

Direct Reduction of Waste through Refining of DOE Metal Assets - 13632  

SciTech Connect (OSTI)

CVMR{sup R} presents a technology for refining nickel from the enrichment barrier materials of the DOE that is proven through 100 years of use by the metals industry. CVMR{sup R} applies modern controls, instrumentation for process and monitoring of the system, and innovative production methods to produce a wide spectrum of products that generate new technology applications and improvements to our society and economy. CVMR{sup R} will receive barrier materials as a secure operation and size reduce the metal to a shred that is fed to a carbonylation reactor where nickel is reacted with carbon monoxide and generate nickel carbonyl. The carbonyl will be filtered and decomposed with heat to form a variety of products that include high value nano powders, coated substrates, net shapes and pure nickel. The residue from the reactor will retain radionuclides from enrichment activities. The carbon monoxide will only react and extract nickel under the operating conditions to leave volumetric contamination in the unreacted residue. A demonstration plant was designed and built by CVMR{sup R} and operated by BWXT, to demonstrate the systems capabilities to DOE in 2006. A pilot plant operation precedes the detailed design of the nickel refinery and provides essential data for design, safe work practices, waste characterizations and system kinetics and confirms the project feasibility. CVMR{sup R} produces nickel products that are cleaner than the nickel in U.S. commerce and used by industry today. The CVMR{sup R} process and systems for nickel refining is well suited for DOE materials and will provide value through environmental stewardship, recovery of high value assets, and support of the DOE environmental remediation programs as the refined nickel generates additional long term benefits to local communities. (authors)

Hargett, Michael C.; Terekhov, Dimitri; Khozan, Kamran M. [Chemical Vapour Metal Refining - CVMR (United States)] [Chemical Vapour Metal Refining - CVMR (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Systems Modeling, Simulation and Material Operating Requirements for Chemical Hydride Based Hydrogen Storage  

SciTech Connect (OSTI)

Research on ammonia borane (AB, NH3BH3) has shown it to be a promising material for chemical hydride based hydrogen storage. AB was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to 19.6% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. A new systems concept based on augers, ballast tank, hydrogen heat exchanger and H2 burner was designed and implemented in simulation. In this design, the chemical hydride material was assumed to produce H2 on the augers itself, thus minimizing the size of ballast tank and reactor. One dimensional models based on conservation of mass, species and energy were used to predict important state variables such as reactant and product concentrations, temperatures of various components, flow rates, along with pressure, in various components of the storage system. Various subsystem components in the models were coded as C language S-functions and implemented in Matlab/Simulink environment. The control variable AB (or alane) flow rate was determined through a simple expression based on the ballast tank pressure, H2 demand from the fuel cell and hydrogen production from AB (or alane) in the reactor. System simulation results for solid AB, liquid AB and alane for both steady state and transient drive cycle cases indicate the usefulness of the model for further analysis and prototype development.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.

2012-02-01T23:59:59.000Z

362

alliages base nickel: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XI, Universit de 5 Machining of nickel based superalloys using coated PCBN tooling. Open Access Theses and Dissertations Summary: ??Following a comprehensive literature...

363

High Catalytic Rates for Hydrogen Production Using Nickel Electrocatal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Catalytic Rates for Hydrogen Production Using Nickel Electrocatalysts with Seven-Membered Diphosphine Ligands Containing High Catalytic Rates for Hydrogen Production Using...

364

Nickel Alloy Primary Water Bulk Surface and SCC Corrosion Film Analytical Characterization and SCC Mechanistic Implications  

SciTech Connect (OSTI)

Alloy 600 corrosion coupon tests were performed: (1) to quantify the temperature dependency of general corrosion and (2) to characterize the composition and structure of bulk surface corrosion films for comparison with ongoing primary water SCC (PWSCC) crack tip corrosion film analyses. Results suggest that the thermal activation energy of Alloy 600 corrosion is consistent with the thermal activation energy of nickel alloy PWSCC. Analytical investigations of the structure and composition of Alloy 600 bulk surface corrosion oxides revealed a duplex (inner and outer) oxide layer structure. The outer layer is discontinuous and comprised of relatively large (1 to 3 {micro}m) nickel ferrite crystals and smaller ({approx}0.1 {micro}m) chromium containing nickel ferrite crystals. The inner layer consists of a relatively continuous chromite spinel (major phase) and chromia (Cr{sub 2}O{sub 3} minor phase) which formed through non-selective oxidation. Chromia and dealloyed Alloy 600 (highly Ni enriched metal) were only observed at 337 C (640 F) and only along the boundaries of deformation induced fine grains and subcells. Specimens having deformation free surfaces exhibited continuous uniform inner chromite spinel oxide layers. Specimens with machining induced surface deformation produced non-uniform inner layer oxides (chromite spinel, Cr{sub 2}O{sub 3} and unoxidized material). PWSCC crack tip oxides, in contrast, were fine grain (no duplex structure) and consisted of both chromium rich spinels and ''NiO'' structure oxides. Generally, nickel rich oxides were more abundant under more oxidized conditions (reduced coolant hydrogen) and spinel rich crack tip oxides were favored under more reducing conditions (increased coolant hydrogen). Bulk surface corrosion film thickness did not correlate with observed SCC growth rates. These results suggest that corrosion is not the rate controlling step of PWSCC but rather that PWSCC and corrosion have a common rate controlling sub process (e.g., cation diffusion, oxygen ingress).

Morton, D.; Lewis, N.; Hanson, M.; Rice, S.; Sanders, P.

2007-04-18T23:59:59.000Z

365

Effect of titania surface species on the chemisorption of CO and H/sub 2/ on polycrystalline nickel  

SciTech Connect (OSTI)

A submonolayer amount of titanium was deposited and subsequently oxidized in situ on a clean polycrystalline nickel foil in ultrahigh vacuum. Temperature-programmed desorption revealed the activation energy for CO desorption was reduced significantly by the presence of titania surface species. The titania-containing Ni surface showed three binding states for dissociative hydrogen adsorption. Adsorption into the strongest of these three states was an activated process. These results suggest the apparent suppression of CO and H/sub 2/ adsorption typically observed at 300 K for titania-supported group 8 metals may be due to the existence of titania species on the surfaces of the metal particles.

Raupp, G.B.; Dumesic, J.A.

1984-02-16T23:59:59.000Z

366

E-Print Network 3.0 - acid nickel ii Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Use of Magnetic and Electrically Conductive Fillers in a Polymer Matrix for Electromagnetic Interference Shielding Summary: of nickel powder were used, namely nickel powder I and...

367

E-Print Network 3.0 - aluminium nickel arsenic Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and electrothermal Summary: , copper, nickel and palladium nitrates on the arsenic atomic absorption signal magnitude were examined... stabilisation of platform); C, nickel...

368

A new family of metal chalogenide thin film electrodes for photoelectrochemical applications  

SciTech Connect (OSTI)

A new family of metal/semiconductor electrocomposite photoelectrodes is described for photoelectrochemical (PEC) applications. These electrocomposites are prepared from an aqueous dispersion containing the targeted metal (in ionic form) and the semiconductor particles. Electrodeposition of the metal affords a matrix in which the semiconductor particles are occluded. This approach is illustrated for nickel/TiO{sub 2} and nickel/CdS model candidates. The influence of preparation variables (deposition potential, temperature, pH, semiconductor content) on the PEC behavior is described.

Rajeshwar, K.; Tacconi, N.R. de [Univ. of Texas, Arlington, TX (United States)

1996-10-01T23:59:59.000Z

369

Draft of M2 Report on Integration of the Hybrid Hydride Model into INL’s MBM Framework for Review  

SciTech Connect (OSTI)

This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride {delta}-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding (Hanson et al., 2011). While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (Birk et al., 2012 and NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. This document demonstrates a basic hydride precipitation model that is built on a recently developed hybrid Potts-phase field model that combines elements of Potts-Monte Carlo and the phase-field models (Homer et al., 2013; Tikare and Schultz, 2012). The model capabilities are demonstrated along with the incorporation of the starting microstructure, thermodynamics of the Zr-H system and the hydride formation mechanism.

Tikare, Veena; Weck, Philippe F.; Schultz, Peter A.; Clark, Blythe; Michael Glazoff; Eric Homer

2014-07-01T23:59:59.000Z

370

Soft-x-ray hollow fiber optics with inner metal coating  

SciTech Connect (OSTI)

A glass capillary with an inner metal coating is proposed to be used as soft-x-ray fiber optics in medical applications. Based on the results of theoretical calculations, nickel was chosen as the coating material for x rays radiated from a conventional x-ray tube. A nickel-coated capillary was fabricated by electroless deposition, and focusing and collimating effects were observed from measurements of the transmission efficiency of soft x rays. The transmission of a nickel-coated capillary with an inner diameter of 0.53 mm and a length of 300 mm was 10%, which is approximately double that of an uncoated glass capillary.

Matsuura, Yuji; Oyama, Tadaaki; Miyagi, Mitsunobu

2005-10-10T23:59:59.000Z

371

Adsorption of carbonyl sulfide on nickel and tungsten films  

SciTech Connect (OSTI)

The interaction of carbonyl sulfide with evaporated nickel and tungsten films has been investigated in the temperature range 195-450 K using gas pressures ranging from 1 to 13 N m/sup -2/. Rapid but mainly associative chemisorption of COS occurred on both metals at 195 K. Further adsorption of COS on W at temperatures 293-450 K was extremely slow and accompanied by more CO desorption than COS adsorbed. Sulfidation of Ni film by COS occurred at temperatures greater than or equal to 293 K with the liberation of carbon monoxide. The rate of adsorption increased with temperature but was independent of COS pressure. The activation energy (E/sub x/) increased with extent (X) of sulfidation to a limiting value of 97 kJ mol/sup -1/. A linear relationship was obtained from the plot of E/sub x/ against 1/X, suggesting the applicability of Cabrera-Mott theory to the sulfidation of Ni film by COS. 20 references, 2 figures, 1 table.

Saleh, J.M.; Nasser, F.A.K.

1985-07-18T23:59:59.000Z

372

Disproportionation of carbon monoxide on supported nickel catalysts  

SciTech Connect (OSTI)

The disproportionation of carbon monoxide was investigated mainly on a 5.5% Ni/Al/sub 2/O/sub 3/ catalyst by infrared spectroscopy and temperature-programmed desorption. The reaction was found to be of first order with respect to the surface concentration of CO below 200/sup 0/C, while at 450/sup 0/C the reaction proceeded as a second order reaction for the pressure of CO. Results obtained with predeposited carbon indicated that the disproportionation reaction requires an ensemble of several nickel atoms. In agreement with this result, the disproportionation did not take place readily on a 1.1% Ni/Al/sub 2/O/sub 3/ catalyst on which a high dispersion of the metal was indicated by both infrared spectroscopy and the chemisorption of hydrogen. In the temperature-programmed desorption (TPD) carbon monoxide desorbed in a single peak before 300/sup 0/C. Some of the carbon monoxide, however, underwent disproportionation during TPD and a carbon dioxide peak appeared at about 220/sup 0/C. Furthermore, carbon thus deposited on the surface was oxidized to carbon monoxide by oxygen supplied from the catalysts and gave a second peak of CO in TPD at temperatures higher than 300/sup 0/C. Possible sources of the oxygen were discussed.

Galuszka, J.; Chang, J.R.; Amenomiya, Y.

1981-03-01T23:59:59.000Z

373

JOURNAL DE PHYSIQUE Colfoque Cl, supplkrnent au no 4, Tome 38, Auril 1977, page Cl-333 METAL-OXIDES COMPOSITES FOR BaFe,,Ol PERMANENT MAGNETS  

E-Print Network [OSTI]

the possibility of producing composites of Ba ferrite with various metals such as cobalt, nickel, iron, copper of a CO deposit with preferential orientation obtained by chemical reduction and electrodeposition. 2. CO

Paris-Sud XI, Université de

374

Stabilization of Electrocatalytic Metal Nanoparticles at Metal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene...

375

Toxicity of nickel and nickel electroplating water to the freshwater cladoceran Moina macrocopa  

SciTech Connect (OSTI)

The present study investigates the effects of Ni{sup 2+} and other components of nickel electroplating water on the survival and reproductive capacity of the cladoceran Moina macrocopa, a common inhabitant of small ponds and rice paddies in Hong Kong and Southern China.

Wong, C.K.; Wong, P.K.; Tao, H. (Chinese Univ. of Hong Kong, Shatin (Hong Kong))

1991-09-01T23:59:59.000Z

376

Thermal conductivity of electroless nickel-phosphorus alloy plating  

SciTech Connect (OSTI)

Properties of specific heat, thermal diffusivity, density, and calculated thermal conductivity have been determined for a modified acid bath electroless nickel-12.7 wt% phosphorus alloy between 298 ad 423 K. Thermal conductivity values are about half those of pure nickel.

Smith, D.D.

1982-04-01T23:59:59.000Z

377

Titanium Metal Powder Production by the Plasma Quench Process  

SciTech Connect (OSTI)

The goals of this project included the scale-up of the titanium hydride production process to a production rate of 50 kg/hr at a purity level of 99+%. This goal was to be achieved by incrementally increasing the production capability of a series of reactor systems. This methodic approach was designed to allow Idaho Titanium Technologies to systematically address the engineering issues associated with plasma system performance, and powder collection system design and performance. With quality powder available, actual fabrication with the titanium hydride was to be pursued. Finally, with a successful titanium production system in place, the production of titanium aluminide was to be pursued by the simultaneously injection of titanium and aluminum precursors into the reactor system. Some significant accomplishments of the project are: A unique and revolutionary torch/reactor capable of withstanding temperatures up to 5000 C with high thermal efficiency has been operated. The dissociation of titanium tetrachloride into titanium powder and HC1 has been demonstrated, and a one-megawatt reactor potentially capable of producing 100 pounds per hour has been built, but not yet operated at the powder level. The removal of residual subchlorides and adsorbed HC1 and the sintering of powder to form solid bodies have been demonstrated. The production system has been operated at production rates up to 40 pounds per hour. Subsequent to the end of the project, Idaho Titanium Technologies demonstrated that titanium hydride powder can indeed be sintered into solid titanium metal at 1500 C without sintering aids.

R. A. Cordes; A. Donaldson

2000-09-01T23:59:59.000Z

378

High Activity of Ce1-xNixO2-y for H2 Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions  

SciTech Connect (OSTI)

The importance of the oxide: Ce{sub 0.8}Ni{sub 0.2}O{sub 2-y} is an excellent catalyst for ethanol steam reforming. Metal-oxide interactions perturb the electronic properties of the small particles of metallic nickel present in the catalyst under the reaction conditions and thus suppress any methanation activity. The nickel embedded in ceria induces the formation of O vacancies, which facilitate cleavage of the OH bonds in ethanol and water.

G Zhou; L Barrio; S Agnoli; S Senanayake; J Evans; A Kubacka; M Estrella; J Hanson; A Martinez-Arias; et al.

2011-12-31T23:59:59.000Z

379

Pulsed electrodeposition of iron-nickel alloys  

SciTech Connect (OSTI)

This paper reports on the effects of dc, pulse, and pulse reverse current waveforms on deposition of Fe-Ni alloys studied in unagitated solutions and with a rotating cylindrical electrode. A nickel sulfamate/ferrous chloride electrolyte system at pH 2 less than 2 A/dm{sup 2}. Pulse reverse plating led to a decrease in anomalous deposition at low current densities. Rotating cylindrical electrodes indicated significant mass transfer effects at high current densities. During pulse reverse plating an increase in anodic pulse magnitude decreased anomalous deposition; pulse frequency had its greatest effect in reducing anomalous deposition between 100 and 300 Hz.

Grimmett, D.L.; Schwartz, M.; Nobe, K. (Dept. of Chemical Engineering, Univ. of California, Los Angeles, CA (US))

1990-11-01T23:59:59.000Z

380

Production of H2 at Fast Rates Using a Nickel Electrocatalyst in Water/Acetonitrile Solutions  

SciTech Connect (OSTI)

Efficient production of molecular hydrogen for storage of energy from renewable sources is crucial for the development of wind and solar power. Hydrogenase enzymes in nature catalyze H2 production using earth-abundant metals (iron and nickel) using precise delivery of protons to the metal center. Here we report a synthetic nickel complex containing proton relays, [Ni(PPh2NC6H4OH2)2](BF4)2 (PPh2NC6H4OH2 = 1,5-bis(p-hydroxyphenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane), that catalyzes the production of H2 in an aqueous environment with turnover frequencies of 750-170,000 s-1 at directly measured overpotentials of 310-470 mV. The remarkable performance of this catalyst in aqueous environments exceeds the requirements necessary for molecular catalytic production of H2 by energy derived from photovoltaic solar cells. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

Hoffert, Wesley A.; Roberts, John A.; Bullock, R. Morris; Helm, Monte L.

2013-09-14T23:59:59.000Z

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Method for regeneration of electroless nickel plating solution  

SciTech Connect (OSTI)

An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorous acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution.

Eisenmann, Erhard T. (5423 Vista Sandia, NE., Albuquerque, NM 87111)

1997-01-01T23:59:59.000Z

382

Method for regeneration of electroless nickel plating solution  

SciTech Connect (OSTI)

An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorus acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution. 1 fig.

Eisenmann, E.T.

1997-03-11T23:59:59.000Z

383

Effects of oxygen reduction on nickel deposition from unbuffered aqueous solutions. 2: Characterization of the electrode interface in electrodeposition  

SciTech Connect (OSTI)

Contrary to the reactive electrodeposition of cobalt, porous nickel is not easily produced by electrodeposition from neutral aqueous solutions in the presence of dissolved oxygen. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) examination of the electrode surface detected the presence of a highly stable metal hydroxide layer of the same characteristics as precipitated Ni(OH){sub 2}. The hydroxide layer inhibits the nucleation of nickel nuclei and increases the irreversibility in electrodeposition. For reactive deposition to result in a porous deposit, the hydroxide layer should have only moderate stability so that it can be continuously removed and reinstated by interfacial chemical and electrochemical reactions. The surface Ni(OH){sub 2} formed in neutral solutions lacks the reactivity for such dynamism. Nonetheless, the stability of surface Ni(OH){sub 2} could be lowered by increasing the acidity of the deposition medium. Careful pH control seems to be a requirement for nickel reactive electrodeposition to produce porous metal deposits.

Cui, C.Q.; Lee, J.Y.; Lin, J.; Tan, K.L. [National Univ. of Singapore (Singapore)

1995-04-01T23:59:59.000Z

384

Metalization of lipid vesicles via electroless plating  

SciTech Connect (OSTI)

The encapsulation of metallic particles and metallic oxides within lipid vesicles has recently been of interest for applications such as catalysis, water splitting, and magnetic control of spin coupling. In this communication the authors introduce the concept and practice of the deposition of metal on vesicles by using electroless plating techniques. Coordination of low valent transition metals to organic functional groups on the surface of the bilayer membrane provides a means of binding metal atoms to vesicles. Chemical reduction produced zero valent atoms which serve as sites for further metal deposition by the chemical reduction techniques of electroless plating. Specifically, this procedure involved the binding of a small amount of tetrachloropalladate to the vesicle bilayer, reduction of the palladium(II) to palladium(0), followed by the deposition of much larger amounts of metal from an electroless plating solution. Electroless plating solutions were used for the deposition of palladium, nickel, cobalt, or copper metal onto the catalytic palladium centers. Since the metallic particles were associated with the vesicles, colloids were formed that were stable in water for much longer periods than the control metal particles formed in water alone. If the vesicles were composed in part of unsaturated lipids, with the olefinic groups on the hydrocarbon chains, the initial evidence suggests the transition metal was directed into the bilayer, rather than staying on the surface.

Ferrar, W.T.; O'Brien, D.F.; Warshawsky, A.; Voycheck, C.L.

1988-01-06T23:59:59.000Z

385

ReaxFFMgH Reactive Force Field for Magnesium Hydride Systems Sam Cheung, Wei-Qiao Deng, Adri C. T. van Duin, and William A. Goddard III*  

E-Print Network [OSTI]

ReaxFFMgH Reactive Force Field for Magnesium Hydride Systems Sam Cheung, Wei-Qiao Deng, Adri C. TFFMgH) for magnesium and magnesium hydride systems. The parameters for this force field were derived from fitting to quantum chemical (QM) data on magnesium clusters and on the equations of states for condensed phases

van Duin, Adri

386

Nickel-free duplex stainless steels  

SciTech Connect (OSTI)

It is well known that nitrogen-alloying in steel produces a variety of exceptional properties such as high strength, high ductility and, eventually, resistance to stress corrosion cracking. High-nitrogen steels (HNS), therefore, have recently been developed to enhance the strength and corrosion resistance of stainless steels. However, due to a low solubility of nitrogen in a liquid steel under atmospheric pressure, the production of such high-nitrogen alloys needs high-pressure facilities that cause an extra cost. A possible route of developing high-nitrogen alloys under atmospheric pressure is to choose a duplex microstructure, where the amount of austenite and ferrite phase is nearly equal. A much lower nitrogen content is needed to maintain a 50% austenite phase compared with the necessary addition of nitrogen to reach a 100% austenitic microstructure. In addition, duplex stainless steels (DSS) with 40--60% ferrite can significantly improve the SCC-resistance. The objective of this work was to develop a new group of nickel-free, high strength and corrosion resistant DSS. Nickel was completely replaced by nitrogen in order to enhance SCC resistance and reduce the alloying element cost. The microstructure, mechanical properties, corrosion resistance and cost analysis of new alloys are investigated in comparison with some commercial stainless steels.

Wang, J.; Uggowitzer, P.J.; Magdowski, R.; Speidel, M.O. [ETH-Zentrum, Zurich (Switzerland). Inst. of Metallurgy] [ETH-Zentrum, Zurich (Switzerland). Inst. of Metallurgy

1998-12-04T23:59:59.000Z

387

A comprehensive review on the hydro metallurgical process for the production of nickel and copper powders by hydrogen reduction  

SciTech Connect (OSTI)

Production of nickel and copper powders from leach solutions and other aqueous streams by hydrogen reduction under pressure has been reviewed in the present paper. By optimising the optimum process condition, powders or composite materials of required specification could be produced from different types of acidic and alkaline solutions by coating nickel or copper powders on the secondary materials such as graphite, tungsten carbide and aluminium. The paper also highlights the kinetics of reduction and the use of various inorganic and organic additives to improve the quality of the powder on bench and commercial scale. Effect of various experimental factors such as pH of the solution, concentration of metals, particle size and nature of additives, operating condition of autoclave, etc. on the rate of reduction and quality of powder are also discussed.

Agrawal, A. [Non Ferrous Process Group, National Metallurgical Laboratory, Jamshedpur 831007 (India)]. E-mail: archana@nmlindia.com; Kumar, V. [Non Ferrous Process Group, National Metallurgical Laboratory, Jamshedpur 831007 (India); Pandey, B.D. [Non Ferrous Process Group, National Metallurgical Laboratory, Jamshedpur 831007 (India); Sahu, K.K. [Non Ferrous Process Group, National Metallurgical Laboratory, Jamshedpur 831007 (India)

2006-04-13T23:59:59.000Z

388

High Variability of the Metal Content of Tree Growth Rings as Measured by Synchrotron Micro X-ray Fluorescence Spectrometry  

SciTech Connect (OSTI)

Synchrotron radiation analysis was used to investigate the metal content of tree rings collected from paper birch, Betula papyrifera Marsh, on transects downwind from two metal smelters (nickel and copper). Individual trees reflected changes in ring metal content with time, which may be presumed to represent changes in local metal bioavailability. However, between-tree variations were large and no statistically significant differences in metal content as a function of time were found within or between sites. Although concentrations of both total and exchangeable copper and nickel in the soil increased with proximity to the respective smelter, this pattern was reflected only in the nickel content of rings near the nickel smelter; copper content did not vary with distance from either smelter. The sites did differ with respect to lead, manganese and zinc content of the rings, which may be related to pH. In conclusion, the variability between trees at each site suggests that dendroanalysis is a poor method for evaluating metal exposure at a large (site) scale. Tree ring metal content may be used to evaluate the metal uptake by individual trees but metal mobility in the stem makes it difficult to establish a reliable chronology.

Martin,R.; Naftel, S.; Macfie, S.; Jones, K.; Feng, H.; Trembley, C.

2006-01-01T23:59:59.000Z

389

Method and apparatus for storing hydrogen isotopes. [stored as uranium hydride in a block of copper  

DOE Patents [OSTI]

An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas is stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forms at a significantly lower temperature).

McMullen, J.W.; Wheeler, M.G.; Cullingford, H.S.; Sherman, R.H.

1982-08-10T23:59:59.000Z

390

Measurements of Ionic Structure in Shock Compressed Lithium Hydride from Ultrafast X-Ray Thomson Scattering  

SciTech Connect (OSTI)

We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.

Kritcher, A. L. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94709 (United States); Neumayer, P.; Doeppner, T.; Landen, O. L.; Glenzer, S. H. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Brown, C. R. D. [Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); AWE plc., Aldermaston, Reading, RG7 4PR (United Kingdom); Davis, P. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Department of Physics, University of California Berkeley, Berkeley, California 94709 (United States); Falcone, R. W.; Lee, H. J. [Department of Physics, University of California Berkeley, Berkeley, California 94709 (United States); Gericke, D. O.; Vorberger, J.; Wuensch, K. [CFSA, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Gregori, G. [Department of Physics, Oxford University, Oxford OX1 3PU (United Kingdom); Holst, B.; Redmer, R. [Universitaet Rostock, Institut fuer Physik, D-18051 Rostock (Germany); Morse, E. C. [Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94709 (United States); Pelka, A.; Roth, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Darmstadt (Germany)

2009-12-11T23:59:59.000Z

391

Parameters affecting the fate of metals in various soils  

E-Print Network [OSTI]

At Different Mixed Spike Concentrations 200 150 a Cadmium p Copper Lead Q Nickel 0 Zinc L. O LI 1 00 O O O 50 10 Mixed Spike Concentration 100 FIGURE 12. Per Cent Of Metal Accounted For In Bastrop Soil At Different Mixed Spike Concentrations..., copper, lead, nickel, and zinc along with four soils native to Texas . The following questions The citations on the following pages follow the style of the Jo 1 fthE loentt~Eai i Diplo, A icS sty of Civil Engineers. directed the course of the study...

Covar, Andrew Prescott

1975-01-01T23:59:59.000Z

392

Theory of Hydride-Proton Transfer (HPT) Carbonyl Reduction by [Os(III)(tpy)(Cl)(NH=CHCH3)(NSAr)  

SciTech Connect (OSTI)

Quantum mechanical analysis reveals that carbonyl reduction of aldehydes and ketones by the imine-based reductant cis-[Os{sup III}(tpy)(Cl)(NH?CHCH{sub 3})(NSAr)] (2), which is accessible by reduction of the analogous nitrile, occurs by hydride-proton transfer (HPT) involving both the imine and sulfilimido ligands. In carbonyl reduction, water or alcohol is necessary to significantly lower the barrier for proton shuttling between ligands. The ?N(H)SAr group activates the carbonyl group through hydrogen bonding while the ?NC(H)CH{sub 3} ligand delivers the hydride.

Ess, Daniel H.; Schauer, Cynthia; Meyer, Thomas J.

2010-01-01T23:59:59.000Z

393

Distribution of copper, nickel, and cadmium in the surface waters of the North Atlantic and North Pacific Ocean  

SciTech Connect (OSTI)

Concentrations of copper, nickel, and cadmium have been determined for about 250 surface water samples. Nonupwelling open-ocean concentrations of these metals are Cu, 0.5-1.4 nmol/kg: Ni, 1-2 nmol/kg; and Cd, less than 10 pmol/kg. In the equatorial Pacific upwelling zone, concentrations of Ni (3 nmol/kg) and Cd (80 pmol/kg) are higher than in the open ocean, but Cu (0.9 nmol/kg) is not significantly enriched. Metal concentrations are higher in cool, nutrient-rich eastern boundary currents: Cu, 1.5 nmol/kg: Ni, 3.5 nmol/kg and Cd, 30-50 pmol/kg. Copper is distinctly higher in the coastal waters of the Gulf of Panama (3--4 nmol/kg) and also higher in the shelf waters north of the Gulf Stream (2.5 nmol/kg): these copper enrichments may be caused by copper remobilized from mildly reducing shelf sediments and maintained by a coastal nutrient trap. In the open ocean, events of high-Cu water (1.5--3.5 nmol/kg) are seen on scales up to 60 km; presumably, these are due to the advection of coastal water into the ocean interior. The lowest copper concentrations in the North Pacific central gyre (0.5 nmol/kg: (Bruland, 1980) are lower than in the Sargasso Sea (1.3 nmol/kg), while for nickel the lowest concentrations are 2 nmol/kg in both the North Pacific and the North Atlantic. Nickel and cadmium, while generally correlated with the nutrients in surface waters, show distinct regional changes in their element-nutrient correlations. The residual concentrations of trace metals in the surface waters of the ocean can be explained if biological discrimination against trace metals relative to phosphorus increases as productivity decreases.

Boyle, E.A.; Huested, S.S.; Jones, S.P.

1981-09-20T23:59:59.000Z

394

Boronization of nickel and nickel clad materials for potential use in polymer electrolyte membrane fuel cells  

SciTech Connect (OSTI)

A new low-cost, nickel clad bipolar plate concept is currently being developed for use in polymer electrolyte membrane fuel cells. Reported in this paper are the details of a powder-pack boronization process that would be used to establish a passivation layer on the electrolyte exposed surfaces of the bipolar plate in the final stage of manufacture. Results from energy dispersive X-ray analysis, X-ray diffraction, and scanning electron microscopy indicate that under moderate boronization conditions a homogeneous Ni3B layer grows on the exposed surfaces of the nickel clad material, the thickness of which depends on the time and temperature of boronization according to a Wagner-type scale growth relationship. At higher temperatures and longer reaction times, a Ni2B overlayer forms on top of the Ni3B during boronization.

Weil, K. Scott; Kim, Jin Yong Y.; Xia, Gordon; Coleman, J. E.; Yang, Z Gary

2006-12-20T23:59:59.000Z

395

Desorption of carbon monoxide from nickel using mercaptans  

SciTech Connect (OSTI)

An IR spectroscopic study on the displacement of carbon monoxide with 1-propyl, 2-propyl-, 1-butyl-, 2-butyl-, and tert.-butyl mercaptan from nickel foil and silica-supported nickel showed that at low carbon monoxide coverage on supported nickel, mercaptan adsorption initially converted bridged to linear carbon monoxide surface species. At higher mercaptan pressures, carbon monoxide desorbed into the gas phase. A small amount of carbon monoxide remained on the surface when the poisoned sample was evacuated, and additional carbon monoxide adsorbed when 5 mm Hg of carbon monoxide was added to the evacuated sample.

Neff, L.D.; Sturdivant, A.E.; Wallace, J.L.

1980-06-01T23:59:59.000Z

396

Metal aminoboranes  

DOE Patents [OSTI]

Metal aminoboranes of the formula M(NH2BH3)n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya; Shrestha, Roshan P.

2010-05-11T23:59:59.000Z

397

Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.  

SciTech Connect (OSTI)

Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

2011-09-01T23:59:59.000Z

398

Mechanical Behavior Studies of Depleted Uranium in the Presence of Hydrides  

SciTech Connect (OSTI)

This project addresses critical issues related to aging in the presence of hydrides (UH{sub 3}) in DU and the subsequent effect on mechanical behavior. Rolled DU specimens with three different hydrogen concentrations and the as-rolled condition were studied. The texture measurements indicate that the hydrogen charging is affecting the initial as-rolled DU microstructure/texture. The macroscopic mechanical behavior suggests the existence of a threshold between the 0 wpmm H and 0.3 wppm H conditions. A VPSC simulation of the macroscopic strain-stress behavior, when taking into account only a texture effect, shows no agreement with the experiment. This suggests that the macroscopic mechanical behavior observed is indeed due to the presence of hydrogen/hydrides in the DU bulk. From the lattice strain variation it can be concluded that the hydrogen is affecting the magnitude and/or the nature of CRSS. The metallography indicates the specimens that underwent the hydrogen charging process, developed large grains and twinning, which were enhanced by the presence of hydrogen. Further studies using electron microscopy and modeling will be conducted to learn about the deformation mechanisms responsible for the observed behavior.

Garlea, E.; Morrell, J. S.; Bridges, R. L.; Powell, G. L.; Brown, d. W.; Sisneros, T. A.; Tome, C. N.; Vogel, S. C.

2011-02-14T23:59:59.000Z

399

Quantifying the effect of metal-rich precipitates on minority carrier diffusion length in multicrystalline silicon using synchrotron-based  

E-Print Network [OSTI]

Quantifying the effect of metal-rich precipitates on minority carrier diffusion length diffusion length of individual transition metal species in multicrystalline silicon. SR-XBIC, -XRF, and -XAS correlation between local concentrations of copper and nickel silicide precipitates and a decrease of minority

400

Master of Science project in advanced computational material physics Electrical conductivity of the correlated metal LaNiO3  

E-Print Network [OSTI]

Master of Science project in advanced computational material physics Electrical conductivity of the correlated metal LaNiO3 Lanthanum nickelate, LaNiO3, belongs to the class of materials named strongly correlated metals. Several properties of these materials can not be understood based on standard

Hellsing, Bo

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Figure and finish characterization of high performance metal mirrors  

SciTech Connect (OSTI)

Most metal mirrors currently used in synchrotron radiation (SR) beam lines to reflect soft x-rays are made of electroless nickel plate on an aluminum substrate. This material combination has allowed optical designers to incorporate exotic cylindrical aspheres into grazing incidence x-ray beam-handling systems by taking advantage of single-point diamond machining techniques. But the promise of high-quality electroless nickel surfaces has generally exceeded the performance. We will examine the evolution of electroless nickel surfaces through a study of the quality of mirrors delivered for use at the National Synchrotron Light Source over the past seven years. We have developed techniques to assess surface quality based on the measurement of surface roughness and figure errors with optical profiling instruments. It is instructive to see how the quality of the surface is related to the complexity of the machine operations required to produce it.

Takacs, P.Z. [Brookhaven National Lab., Upton, NY (United States); Church, E.L. [Army Armament Research and Development Command, Dover, NJ (United States)

1991-10-01T23:59:59.000Z

402

Atomistic computer simulation analysis of nanocrystalline nickel-tungsten alloys  

E-Print Network [OSTI]

Nanocrystalline nickel-tungsten alloys are harder, stronger, more resistant to degradation, and safer to electrodeposit than chromium. Atomistic computer simulations have previously met with success in replicating the ...

Engwall, Alison Michelle

2009-01-01T23:59:59.000Z

403

Final Report: Metal Perhydrides for Hydrogen Storage  

SciTech Connect (OSTI)

Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One LiH molecule contains one hydrogen atom because the valence of a Li ion is +1. One MgH2 molecule contains two hydrogen atoms because the valence of a Mg ion is +2. In metal perhydrides, a molecule could contain more hydrogen atoms than expected based on the metal valance, i.e. LiH1+n and MgH2+n (n is equal to or greater than 1). When n is sufficiently high, there will be plenty of hydrogen storage capacity to meet future requirements. The existence of hydrogen clusters, Hn+ (n = 5, 7, 9, 11, 13, 15) and transition metal ion-hydrogen clusters, M+(H2)n (n = 1-6), such as Sc(H2)n+, Co(H2)n+, etc., have assisted the development of this concept. Clusters are not stable species. However, their existence stimulates our approach on using electric charges to enhance the hydrogen adsorption in a hydrogen storage system in this study. The experimental and modeling work to verify it are reported here. Experimental work included the generation of cold hydrogen plasma through a microwave approach, synthesis of sorbent materials, design and construction of lab devices, and the determination of hydrogen adsorption capacities on various sorbent materials under various electric field potentials and various temperatures. The results consistently show that electric potential enhances the adsorption of hydrogen on sorbents. NiO, MgO, activated carbon, MOF, and MOF and platinum coated activated carbon are some of the materials studied. Enhancements up to a few hundred percents have been found. In general, the enhancement increases with the electrical potential, the pressure applied, and the temperature lowered. Theoretical modeling of the hydrogen adsorption on the sorbents under the electric potential has been investigated with the density functional theory (DFT) approach. It was found that the interaction energy between hydrogen and sorbent is increased remarkably when an electric field is applied. This increase of binding energy offers a potential solution for DOE when looking for a compromise between chemisorption and physisorption for hydrogen storage. Bonding of chemisorption is too

Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

2011-07-26T23:59:59.000Z

404

Verification and Validation Strategy for Implementation of Hybrid Potts-Phase Field Hydride Modeling Capability in MBM  

SciTech Connect (OSTI)

The Used Fuel Disposition (UFD) program has initiated a project to develop a hydride formation modeling tool using a hybrid Potts­phase field approach. The Potts model is incorporated in the SPPARKS code from Sandia National Laboratories. The phase field model is provided through MARMOT from Idaho National Laboratory.

Jason D. Hales; Veena Tikare

2014-04-01T23:59:59.000Z

405

OBSERVATIONS IN REACTIVITY BETWEEN BH CONTAINING COMPOUNDS AND ORGANOMETALLIC REAGENTS: SYNTHESIS OF BORONIC ACIDS, BORONIC ESTERS, AND MAGNESIUM HYDRIDES  

E-Print Network [OSTI]

aryl bromides and H 2 BN(iPr) 2 Scheme 2.7. Hydroboration oftransfer hydride to BH 2 -N(iPr) 2 Scheme 2.10. Conversionchloride with BH 2 -N(iPr) 2 Scheme 3; Aqueous quench of p-

Clary, Jacob William

2012-01-01T23:59:59.000Z

406

Performance of electroless nickel coated steel in oil field environments  

SciTech Connect (OSTI)

Details of test programs to establish the corrosion and erosion resistance of electroless nickel coating in saline/CO/sub 2//H/sub 2/S petroleum production environments at temperatures up to 180/sup 0/C (350 F) are presented, together with actual experience with their use. Data on heat treatment and deposit composition effects on electroless nickel corrosion in oil field services are given.

Duncan, R.N.

1983-01-01T23:59:59.000Z

407

Performance of Electroless Nickel coatings in oil field environments  

SciTech Connect (OSTI)

Recent experience has shown functional Electroless Nickel to have outstanding resistance to corrosion and erosion in petroleum production facilities. Details of test programs to establish the performance of this coating in saline/CO/sub 2//H/sub 2/S environments at temperatures up to 180 C (350 F) are reported, together with actual experience with their use. Data also are presented on the effect of heat treatment and of deposit composition on the corrosion of Electroless Nickel in oil field services.

Duncan, R.N.

1982-01-01T23:59:59.000Z

408

In-situ scanning probe microscopy of electrodeposited nickel.  

SciTech Connect (OSTI)

The performance characteristics and material properties such as stress, microstructure, and composition of nickel coatings and electroformed components can be controlled over a wide range by the addition of small amounts of surface-active compounds to the electroplating bath. Saccharin is one compound that is widely utilized for its ability to reduce tensile stress and refine grain size in electrodeposited nickel. While the effects of saccharin on nickel electrodeposition have been studied by many authors in the past, there is still uncertainty over saccharin's mechanisms of incorporation, stress reduction, and grain refinement. In-situ scanning probe microscopy (SPM) is a tool that can be used to directly image the nucleation and growth of thin nickel films at nanometer length scales to help elucidate saccharin's role in the development and evolution of grain structure. In this study, in-situ atomic force microscopy (AFM) and scanning tunneling microscopy (STM) techniques are used to investigate the effects of saccharin on the morphological evolution of thin nickel films. By observing mono-atomic height nickel island growth with and without saccharin present we conclude that saccharin has little effect on the nickel surface mobility during deposition at low overpotentials where the growth occurs in a layer-by-layer mode. Saccharin was imaged on Au(l11) terraces as condensed patches without resolved packing structure. AFM measurements of the roughness evolution of nickel films up to 1200 nm thick on polycrystalline gold indicate that saccharin initially increases the roughness and surface skewness of the deposit that at greater thickness becomes smoother than films deposited without saccharin. Faceting of the deposit morphology decreases as saccharin concentration increases even for the thinnest films that have 3-D growth.

Kelly, James J.; Dibble, Dean C.

2004-10-01T23:59:59.000Z

409

Corrosion resistance of nickel-containing alloys in petrochemical environments  

SciTech Connect (OSTI)

Numerous nickel-containing alloys possess a desirable combination of properties vital to long term dependability within petrochemical and refinery plants. Critical to many operations is the requirement for elevated temperature sulfidation resistance under either reducing or oxidizing environments. This paper surveys the role of materials, environmental factors, alloying elements and the formation of protective scales on the performance of selected nickel-containing alloys.

Smith, G.D. [Inco Alloys International, Inc., Huntington, WV (United States)

1997-09-01T23:59:59.000Z

410

Nickel coated aluminum battery cell tabs  

DOE Patents [OSTI]

A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

2014-07-29T23:59:59.000Z

411

Rapid substitution of gold for aluminum metallization on integrated circuits  

SciTech Connect (OSTI)

A rapid procedure for substitution of gold for aluminum metallization on integrated solid-state circuits, such as solid-state chemical multisensor chips, has been developed. The final product consists of original aluminum overlaid with nickel and gold, both deposited by an electroless process. The final metallization is chemically inert and the resistance of the contacts remains ohmic and unchanged from the original value. The substitution can be performed either at the wafer or at the chip level. After the plasma etching, the metallization process takes only 25 min.

Krasopoulos, A.V. [Washington State Univ., Pullman, WA (United States). Dept. of Chemical Engineering; Li, J.; Josowicz, M.; Janata, J. [Pacific Northwest National Lab., Richland, WA (United States)

1997-03-01T23:59:59.000Z

412

Kinetic method for the determination of iridium in copper and copper-nickel alloys and in industrial solutions  

SciTech Connect (OSTI)

This article discusses the kinetic determination of iridium in copper and copper-nickel alloys, in ores and ore processing products containing down to 10/sup -8/%, and in waste solutions down to 0.01 mg/liter. The procedure for the kinetic determination of iridium based on the oxidation of mercury(I) and cerium(IV) is described. The applications of the schemes presented allows one to widen significantly the range of products to be analyzed, to determine iridium at a concentration of 10/sup -8/% in the presence of copper and noble metals, and to shorten the time required for the analysis.

Danilova, F.I.; Fedotova, I.A.; Ustinova, N.V.

1986-02-01T23:59:59.000Z

413

Development of Regenerable High Capacity Boron Nitrogen Hydrides as Hydrogen Storage Materials  

SciTech Connect (OSTI)

The objective of this three-phase project is to develop synthesis and hydrogen extraction processes for nitrogen/boron hydride compounds that will permit exploitation of the high hydrogen content of these materials. The primary compound of interest in this project is ammonia-borane (NH{sub 3}BH{sub 3}), a white solid, stable at ambient conditions, containing 19.6% of its weight as hydrogen. With a low-pressure on-board storage and an efficient heating system to release hydrogen, ammonia-borane has a potential to meet DOE's year 2015 specific energy and energy density targets. If the ammonia-borane synthesis process could use the ammonia-borane decomposition products as the starting raw material, an efficient recycle loop could be set up for converting the decomposition products back into the starting boron-nitrogen hydride. This project is addressing two key challenges facing the exploitation of the boron/nitrogen hydrides (ammonia-borane), as hydrogen storage material: (1) Development of a simple, efficient, and controllable system for extracting most of the available hydrogen, realizing the high hydrogen density on a system weight/volume basis, and (2) Development of a large-capacity, inexpensive, ammonia-borane regeneration process starting from its decomposition products (BNHx) for recycle. During Phase I of the program both catalytic and non-catalytic decomposition of ammonia borane are being investigated to determine optimum decomposition conditions in terms of temperature for decomposition, rate of hydrogen release, purity of hydrogen produced, thermal efficiency of decomposition, and regenerability of the decomposition products. The non-catalytic studies provide a base-line performance to evaluate catalytic decomposition. Utilization of solid phase catalysts mixed with ammonia-borane was explored for its potential to lower the decomposition temperature, to increase the rate of hydrogen release at a given temperature, to lead to decomposition products amenable for regeneration, and direct catalytic hydrogenation of the decomposition products. Two different approaches of heating ammonia-borane are being investigated: (a) 'heat to material approach' in which a fixed compartmentalized ammonia-borane is heated by a carefully controlled heating pattern, and (b) 'material to heat approach' in which a small amount of ammonia-borane is dispensed at a time in a fixed hot zone. All stages of AB decomposition are exothermic which should allow the small 'hot zone' used in the second approach for heating to be self-sustaining. During the past year hydrogen release efforts focused on the second approach determining the amount of hydrogen released, kinetics of hydrogen release, and the amounts of impurities released as a function of AB decomposition temperature in the 'hot zone.'

Damle, A.

2010-02-03T23:59:59.000Z

414

Measurement of the Nickel/Nickel Oxide Transition in Ni-Cr-Fe Alloys and Updated Data and Correlations to Quantify the Effect of Aqueous Hydrogen on Primary Water SCC  

SciTech Connect (OSTI)

Alloys 600 and X-750 have been shown to exhibit a maximum in primary water stress corrosion cracking (PWSCC) susceptibility, when testing is conducted over a range of aqueous hydrogen (H{sub 2}) levels. Contact electric resistance (CER) and corrosion coupon testing using nickel specimens has shown that the maximum in SCC susceptibility occurs in proximity to the nickel-nickel oxide (Ni/NiO) phase transition. The measured location of the Ni/NiO transition has been shown to vary with temperature, from 25 scc/kg H{sub 2} at 360 C to 4 scc/kg H{sub 2} at 288 C. New CER measurements show that the Ni/NiO transition is located at 2 scc/kg H{sub 2} at 260 C. An updated correlation of the phase transition is provided. The present work also reports CER testing conducted using an Alloy 600 specimen at 316 C. A large change in resistance occurred between 5 and 10 scc/kg H{sub 2}, similar to the results obtained at 316 C using a nickel specimen. This result adds confidence in applying the Ni/NiO transition measurements to Ni-Cr-Fe alloys. The understanding of the importance of the Ni/NiO transition to PWSCC has been used previously to quantify H{sub 2} effects on SCC growth rate (SCCGR). Specifically, the difference in the electrochemical potential (EcP) of the specimen or component from the Ni/NiO transition (i.e., EcP{sub Ni/NiO}-EcP) has been used as a correlating parameter. In the present work, these SCCGR-H{sub 2} correlations, which were based on SCCGR data obtained at relatively high test temperatures (338 and 360 C), are evaluated via SCCGR tests at a reduced temperature (316 C). The 316 C data are in good agreement with the predictions, implying that the SCCGR-H{sub 2} correlations extrapolate well to reduced temperatures. The SCCGR-H{sub 2} correlations have been revised to reflect the updated Ni/NiO phase transition correlation. New data are presented for EN82H weld metal (also known as Alloy 82) at 338 C. Similar to other nickel alloys, SCC of EN82H is a function of the aqueous H{sub 2} level, with the SCCGR exhibiting a maximum near the Ni/NiO transition. For example, the SCCGR at 8 scc/kg H{sub 2} is {approx} 81 x higher than at 60 scc/kg H{sub 2}. The 8 scc/kg H{sub 2} condition is near the Ni/NiO transition (located at {approx} 14 scc/kg H{sub 2} at 338 C), while 60 scc/kg H{sub 2} is well into the nickel metal regime. A hydrogen-SCCGR correlation is provided for EN82H. The data and understanding obtained from the present work show that SCC can be mitigated by adjusting the aqueous H{sub 2} level. For example, SCCGR is typically minimized at relatively high aqueous H{sub 2} levels, that are well into the nickel metal regime (i.e., far from the Ni/NiO transition).

Steven A. Attanasio; David S. Morton

2003-06-16T23:59:59.000Z

415

Method of making metal matrix composites reinforced with ceramic particulates  

DOE Patents [OSTI]

Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys.

Cornie, James A. (North Chelmsford, MA); Kattamis, Theodoulos (Watertown, MA); Chambers, Brent V. (Cambridge, MA); Bond, Bruce E. (Bedford, MA); Varela, Raul H. (Canton, MA)

1989-01-01T23:59:59.000Z

416

Method of making metal matrix composites reinforced with ceramic particulates  

DOE Patents [OSTI]

Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys. 2 figs.

Cornie, J.A.; Kattamis, T.; Chambers, B.V.; Bond, B.E.; Varela, R.H.

1989-08-01T23:59:59.000Z

417

Quantum Simulation of Helium Hydride in a Solid-State Spin Register  

E-Print Network [OSTI]

\\emph{Ab initio} computation of molecular properties is one of the most promising applications of quantum computing. While this problem is widely believed to be intractable for classical computers, efficient quantum algorithms exist which have the potential to vastly accelerate research throughput in fields ranging from material science to drug discovery. Using a solid-state quantum register realized in a nitrogen-vacancy (NV) defect in diamond, we compute the bond dissociation curve of the minimal basis helium hydride cation, HeH$^+$. Moreover, we report an energy uncertainty (given our model basis) of the order of $10^{-14}$ Hartree, which is ten orders of magnitude below desired chemical precision. As NV centers in diamond provide a robust and straightforward platform for quantum information processing, our work provides several important steps towards a fully scalable solid state implementation of a quantum chemistry simulator.

Ya Wang; Florian Dolde; Jacob Biamonte; Ryan Babbush; Ville Bergholm; Sen Yang; Ingmar Jakobi; Philipp Neumann; Alán Aspuru-Guzik; James D. Whitfield; Jörg Wrachtrup

2014-05-12T23:59:59.000Z

418

Mechanistic Insights into Hydride Transfer for Catalytic Hydrogenation of CO2 with Cobalt Complexes  

SciTech Connect (OSTI)

The catalytic hydrogenation of CO2 to formate by Co(dmpe)2H can proceeds via direct hydride transfer or via CO2 coordination to Co followed by reductive elimination of formate. Both pathways have activation barriers consistent with experiment (~17.5 kcal/mol). Controlling the basicity of Co by ligand design is key to improve catalysis. The research by N.K., D.M.C. and A.M.A. was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The research by S.R. and M.D. was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for the DOE by Battelle.

Kumar, Neeraj; Camaioni, Donald M.; Dupuis, Michel; Raugei, Simone; Appel, Aaron M.

2014-08-21T23:59:59.000Z

419

Molecular characterization of vanadyl and nickel non-porphyrin compounds in heavy crude petroleums and residua  

SciTech Connect (OSTI)

The molecular characterization of vanadium and nickel compounds in heavy crude petroleums has been the subject of current research. Arabian Heavy, Maya, Boscan, Cerro Negro, Prudhoe Bay, Wilmington Beta, Kern River, and Morichal crude petroleums have been examined. Fractions from D 2007 separations, porphyrin extractions, and solvent selective extraction with reversed phase column separations of these petroleums have been studied thoroughly by EPR. Important structural aspects are emerging from the presented data: (1) There are non-porphyrin metal complexes in the crude petroleums. (2) They appear to be smaller molecules with MW < 400 which are liberated when the tertiary structure of the large asphaltics is denatured. (3) The first coordination spheres of this class of compounds are possibly 4N, N O 2S, and 4S. 10 references, 3 figures, 1 table.

Reynolds, J.G.; Biggs, W.R.; Fetzer, J.C.; Gallegos, E.J.; Fish, R.H.; Komlenic, J.J.; Wines, B.K.

1984-01-01T23:59:59.000Z

420

Metal inks  

DOE Patents [OSTI]

Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

2014-02-04T23:59:59.000Z

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Kinetics of methanation on nickel catalysts  

SciTech Connect (OSTI)

Extensive steady-state and transient measurements of the disproportionation of carbon monoxide, the hydrogenation of deposited carbon, and methanation of carbon monoxide were performed over 2 and 10% nickel on silica support. The results indicated that the methanation of carbon monoxide involves competitively adsorbed species; that the reaction is nearly zero order in carbon monoxide at 0.1-0.5 atm CO and 1 atm H/sub 2/, but negative at higher CO partial pressures and that it becomes less negative with increasing temperature or increasing hydrogen pressure; and that the reaction order with respect to hydrogen changes from 0.5 to 1.0 with increasing CO pressure and decreasing H/sub 2/ pressure. A reaction mechanism is proposed which consists of the molecular adsorption of CO, the dissociative adsorption of H/sub 2/, dissociation of the surface CO species, and reaction of two adsorbed hydrogen atoms with the oxygen; and a multistep hydrogenation and desorption process for the adsorbed carbon. The dissociation and reaction of adsorbed CO is probably the rate-limiting step. The kinetic behavior is best represented with the assumption of a heterogeneous catalyst surface, containing three types of sites of widely varying activity.

Ho, S.V.; Harriott, P.

1980-08-01T23:59:59.000Z

422

Neuroendocrine effects of acute nickel chloride administration in rats  

SciTech Connect (OSTI)

An sc injection of nickel chloride (20 and 10 mg/kg) led to a profound and consistent increase of circulating prolactin (PRL) levels after 1 day and lasted for 4 days (p < 0.001) in male rats. Increases in insulin levels occurred 1 and 2 days postinjection. The nickel-induced PRL rise could be abolished by a simultaneous administration of 2-bromo-..cap alpha..-ergocryptine (CB 154). In vitro incubation of pituitaries from rats that received 20 mg/kg of nickel chloride 48 hr prior to sacrifice released more PRL into the culture medium, as well as contained more PRL in the final tissue than did the pituitaries from control animals. The hypothalamic extracts (HE) obtained from hypothalami of nickel-injected rats were tested also in vitro on normal rat pituitaries and the results showed that the HE from such rats released more PRL and therefore had less prolactin-inhibiting factor (PIF) than the HE obtained from control rats. The results show that nickel chloride has effects on the endocrine system that (a) last considerably longer than previously reported, (b) are mediated through the neuroendocrine system, and (c) instead of specifically inhibiting PRL secretion from the pituitary promote high circulating PRL levels lasting from 1 to 4 days.

Clemons, G.K.; Garcia, J.F.

1981-01-01T23:59:59.000Z

423

Leaching of metals from ores. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations of selected patents concerning the extraction of metals from ores by leaching. Topics include leaching of metals from ore heaps, mine tailings, smelter wastes, and sea nodules. Metals covered include gold, uranium, copper, nickel, silver, manganese, and cobalt. Bacterio-electric, biological-acid, and hydrogen peroxide leaching are included. (Contains 50-250 citations and includes a subject term index and title list.)

NONE

1995-05-01T23:59:59.000Z

424

Silicone metalization  

DOE Patents [OSTI]

A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

2008-12-09T23:59:59.000Z

425

Silicone metalization  

DOE Patents [OSTI]

A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

2006-12-05T23:59:59.000Z

426

Magnetization of an electroless deposited nickel-phosphorus alloy J. Flchon, S. Karbal, F. Machizaud  

E-Print Network [OSTI]

1405 Magnetization of an electroless deposited nickel-phosphorus alloy J. Fléchon, S. Karbal, F) du nickel c.f.c. et l'on observe une brusque augmentation de 03C3*o,o et de Tc. Ces résultats sont en cristallin de nickel pur et de phosphure de nickel Ni3P après un recuit à 773 K. Nous avons confirmé l

Paris-Sud XI, Université de

427

Chromium modified nickel-iron aluminide useful in sulfur bearing environments  

DOE Patents [OSTI]

An improved nickel-iron aluminide containing chromium and molybdenum additions to improve resistance to sulfur attack.

Cathcart, John V. (Knoxville, TN); Liu, Chain T. (Oak Ridge, TN)

1989-06-13T23:59:59.000Z

428

Ductile tungsten-nickel alloy and method for making same  

DOE Patents [OSTI]

The present invention is directed to a ductile, high-density tungsten-nickel alloy which possesses a tensile strength in the range of 100,000 to 140,000 psi and a tensile elongation of 3.1 to 16.5 percent in 1 inch at 25.degree.C. This alloy is prepared by the steps of liquid phase sintering a mixture of tungsten-0.5 to 10.0 weight percent nickel, heat treating the alloy at a temperature above the ordering temperature of approximately 970.degree.C. to stabilize the matrix phase, and thereafter rapidly quenching the alloy in a suitable liquid to maintain the matrix phase in a metastable, face-centered cubic, solid- solution of tungsten in nickel.

Snyder, Jr., William B. (Knoxville, TN)

1976-01-01T23:59:59.000Z

429

Determination of Tin in Nickel-based Alloys by Electrothermal Laser-excited  

E-Print Network [OSTI]

Determination of Tin in Nickel-based Alloys by Electrothermal Laser-excited Atomic Fluorescence. The determination of tin in nickel-based alloys by laser-excited sampling, has been the most frequently employed technique for the determination of tin in nickel-based alloys.3­5 The useatomic fluorescence in a graphite

Michel, Robert G.

430

Effects of Catalyst Introduction Methods Using PAMAM Dendrimers on Selective Electroless Nickel Deposition on Polyelectrolyte  

E-Print Network [OSTI]

Effects of Catalyst Introduction Methods Using PAMAM Dendrimers on Selective Electroless Nickel stamping. After patterning, the sample surfaces were placed in an electroless bath where nickel the effects of catalyst introduction methods using poly(amidoamine) (PAMAM) dendrimers on the nickel

Lee, Ilsoon

431

Dissolution of Nickel Oxide in a Smelter Contaminated Soil. (S02-mcnear100330-Oral)  

E-Print Network [OSTI]

Dissolution of Nickel Oxide in a Smelter Contaminated Soil. (S02-mcnear100330-Oral) Abstract: Aerially dispersed nickel oxide particles from a nickel smelter were studied. SXRF mapping and SEM imaging oxides used in previous studies may not be representative of that generated from the smelter facility due

Sparks, Donald L.

432

Journal of Magnetism and Magnetic Materials 288 (2005) 196204 Micromagnetic studies of nickel microbars fabricated by  

E-Print Network [OSTI]

Abstract Micromagnetic configurations and macromagnetic properties of electrodeposited nickel microbars: 75.50.Cc; 75.75.+a; 81.15.Pq Keywords: Electrodeposited nickel; Magnetic microbar; Magnetic vortex (VSM) studies of nickel microbars with round corners, produced by nanoimprinting and electrodeposition

Pesic, Batric

2005-01-01T23:59:59.000Z

433

Numerical analysis of a model for Nickel-Iron alloy electrodeposition on rotating disk  

E-Print Network [OSTI]

Numerical analysis of a model for Nickel-Iron alloy electrodeposition on rotating disk electrode N the nickel-iron electrodeposition process, we have developed one-dimensional numerical model. This model ad can predict characteristic features of the nickel-iron sys- tem. this work was supported

Paris-Sud XI, Université de

434

An Experimental Study of Microfabricated Nickel Spark Plug Georgia Institute of technology  

E-Print Network [OSTI]

electrodeposition through polymer molds. The nickel spark plugs are tested at 20 Hz using spark energies of 5 mAn Experimental Study of Microfabricated Nickel Spark Plug Georgia Institute of technology Atlanta presents experimental. results of the erosion and wear characteristics of micromachined nickel spark plugs

435

Flexible metal film with micro-and nanopatterns transferred by electrochemical deposition  

E-Print Network [OSTI]

if the film can bend or even can roll up. Generally, the metal film can be produced by electroless deposition film A nickel film ð25 mm � 30 mm � 2 mm� was chosen as master, which was cleaned by acetone, methanol

436

ThreeDimensional Metallic Microstructures Fabricated by Soft Lithography and Microelectrodeposition  

E-Print Network [OSTI]

will require new approaches not drawn from existing tech­ nologies. Electroforming (electrodeposition structures by repairing any strain­induced defects with electrodeposition of ad­ ditional metal over bubblememorydevices, 11 thin­ film chip carriers, 2 and components for MEMS (nickel turbine rotor, 5 magnetic

Whitesides, Sue

437

Three-Dimensional Metallic Microstructures Fabricated by Soft Lithography and Microelectrodeposition  

E-Print Network [OSTI]

existing tech- nologies. Electroforming (electrodeposition and electromachin- ing) is a technique with electrodeposition of ad- ditional metal over the damaged areas. Most techniques that are used in conjunction (nickel turbine rotor,5 magnetic microactuator,12 microgears, microvalves and pumps,13 capacitive

Prentiss, Mara

438

Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors  

DOE Patents [OSTI]

An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.

Brehm, Jr., William F. (Richland, WA); Colburn, Richard P. (Pasco, WA)

1982-01-01T23:59:59.000Z

439

A nonchromate method for refurbishment of worn metallic components  

SciTech Connect (OSTI)

Hard chrome electrodeposition is a widely used method for building up worn metallic components, but regulations concerning hexavalent chromium effluent are making this process less acceptable. A new method is described in which electroless nickel with phosphorus is used in a closed-loop system in order to build up the worn surface, and an amorphous diamond-like carbon (DLC) coating is bonded to this to provide a low-friction bearing surface. The combination is highly resistant to wear and corrosion.

Dearnaley, G.; Badger, P. [Southwest Research Inst., San Antonio, TX (United States); [Wear-Cote International Inc., Rock Island, IL (United States)

1995-12-31T23:59:59.000Z

440

DETERMINATION OF IN-VITRO LUNG SOLUBILITY AND INTAKE-TO-DOSE CONVERSION FACTOR FOR TRITIATED LANTHANUM NICKEL ALUMINUM ALLOY  

SciTech Connect (OSTI)

A sample of tritiated lanthanum nickel aluminum alloy (LaNi4.25Al0.75 or LANA.75) similar to that used at the Savannah River Site Tritium Facilities was analyzed to estimate the particle size distribution of this metal tritide powder and the rate, at which this material dissolves in the human respiratory tract after it is inhaled. This information is used to calculate the committed effective dose received by a worker after inhaling the material. These doses, which were calculated using the same methodology given in the DOE Tritium Handbook, are presented as inhalation intake-to-dose conversion factors (DCF). The DCF for this metal tritide is less than the DCF for tritiated water and radiation worker bioassay programs designed for tritiated water are adequate to monitor for intakes of this material.

Farfan, E.; Labone, T.; Staack, G.; Cheng, Y.; Zhou, Y.; Varallo, T.

2011-11-11T23:59:59.000Z

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electrodeposition of amorphous ternary nickel-chromium-phosphorus alloy  

SciTech Connect (OSTI)

This patent describes a method of forming amorphous ternary nickel-phosphorus-chromium alloy deposits by electrodeposition on an electrically conductive substrate. It comprises: subjecting the substrate to an applied current density between about 20 and 40 A/dm{sup 2} at a temperature from the range of about 20{degrees} to 30{degrees} C. in a bath comprising: a chromium salt and a nickel salt in a weight ratio of about 3:1, a phosphorus source of about 0.3 M P concentration; about 0.3 M of a complexing agent; about 0.1 M of a supporting salt; and about 0.1 M of buffer.

Guilinger, T.R.

1990-01-09T23:59:59.000Z

442

Electrodeposition of nickel oxyhydroxide films through polymer masks  

SciTech Connect (OSTI)

Electrochromic materials have attracted much attention for devices including ``smart windows`` and displays. Nickel oxyhydroxide films were electrodeposited through gelatin masks, whose thicknesses may control the optical transmittances of the deposited electrochromic films. The difference of transmittance, {Delta}T{sub 540}, between bleaching and coloration states at wavelength of 540 nm has a linear relationship with the gelatin mask thickness. {Delta}T{sub 540} increased if nickel oxyhydroxide was prepared in agitated electrolyte. The electrodeposited films, prepared with gelatin masks, may have higher stability. These results showed the feasibility of fabricating an electrochromic device with a controlled image whose contrast and brightness are adjustable with potential or current.

Yang, M.C.; Lin, C.K.; Su, C.L. [National Cheng Kung Univ., Tainan (Taiwan, Province of China). Dept. of Chemical Engineering

1995-04-01T23:59:59.000Z

443

Regenerate metal-plating baths to cut waste and save  

SciTech Connect (OSTI)

During electrode-based metal plating of equipment components, the formation of an electrical field causes metal deposits to be thicker at edges and seams, and thinner on flat surfaces. And, electrode-based methods consume large amounts of energy. Electroless-nickel (EN) -- or autocatalytic -- plating systems were pioneered in the 1940s to solve these problems. EN plating produces a more uniform coating, irrespective of the complexity of the part, and it consumes less electricity, since to electric current is required during plating. Plating in an EN system results from a chemical reaction between nickel in the bath and the substrate of the equipment component. The downside of electroless plating, however, is the limited life of the nickel bath, and the large volume of metal waste produced by bath disposal. Ionsep Corp. (Wilmington, Del.) has developed an electrodialytic system that continuously reforms the EN plating baths, to give them longer life. Its patented system has been successfully laboratory tested in a 1-ft{sup 2} cell, and the firm recently won a $250,000 grant from the US Dept. of Energy (Washington, D.C.) and Environmental Protection Agency (Washington, D.C.), to design and engineer a commercial-scale version of the system.

NONE

1995-03-01T23:59:59.000Z

444

25. Steenbock symposium -- Biosynthesis and function of metal clusters for enzymes: Proceedings  

SciTech Connect (OSTI)

This symposium was held June 10--14, 1997 in Madison, Wisconsin. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on biochemistry of enzymes that have an affinity for metal clusters. Attention is focused on the following: metal clusters involved in energy conservation and remediation; tungsten, molybdenum, and cobalt-containing enzymes; Fe proteins, and Mo-binding proteins; nickel enzymes; and nitrogenase.

NONE

1997-12-31T23:59:59.000Z

445

Research, development, and demonstration of nickel-zinc batteries for electric-vehicle propulsion. Annual report for 1981  

SciTech Connect (OSTI)

Progress is reported on battery design and development, nickel cathode development, and electrochemical studies. (WHK)

Not Available

1982-03-01T23:59:59.000Z

446

Review of hydrogen isotope permeability through materials  

SciTech Connect (OSTI)

This report is the first part of a comprehensive summary of the literature on hydrogen isotope permeability through materials that do not readily form hydrides. While we mainly focus on pure metals with low permeabilities because of their importance to tritium containment, we also give data on higher-permeability materials such as iron, nickel, steels, and glasses.

Steward, S.A.

1983-08-15T23:59:59.000Z

447

CHEMICAL WASTE RECYCLING PROGRAM All types of batteries are collected by Chemical Waste Services (CWS) for recycling. These include  

E-Print Network [OSTI]

Services (CWS) for recycling. These include alkaline, lithium, rechargeable, coin batteries, lead-cadmium (ni-cads), nickel metal hydride, lithium, etc. They are individually bagged and placed phones, drills, computers, cameras, PDAs, toys and games. It is also used as a corrosion resistant

Baker, Chris I.

448

2nd RESPOND project Workshop "Id tifi ti d l f k t b d ti"Identification and analyses of market-based response options  

E-Print Network [OSTI]

pricing A t ti l d t l Nickel-Hydride, Lithium-Ion, Polymer, Metal-air (Zn, Al, Mg) Compressed air energy-based response options aimed at increasing the contribution of variable energy resources such as Wind, technology) ­ Storage of electricity or heat 4 ­ Storage of electricity or heat ­ New demand technologies

449

Crack growth rates of nickel alloy welds in a PWR environment.  

SciTech Connect (OSTI)

In light water reactors (LWRs), vessel internal components made of nickel-base alloys are susceptible to environmentally assisted cracking. A better understanding of the causes and mechanisms of this cracking may permit less conservative estimates of damage accumulation and requirements on inspection intervals. A program is being conducted at Argonne National Laboratory to evaluate the resistance of Ni alloys and their welds to environmentally assisted cracking in simulated LWR coolant environments. This report presents crack growth rate (CGR) results for Alloy 182 shielded-metal-arc weld metal in a simulated pressurized water reactor (PWR) environment at 320 C. Crack growth tests were conducted on 1-T compact tension specimens with different weld orientations from both double-J and deep-groove welds. The results indicate little or no environmental enhancement of fatigue CGRs of Alloy 182 weld metal in the PWR environment. The CGRs of Alloy 182 in the PWR environment are a factor of {approx}5 higher than those of Alloy 600 in air under the same loading conditions. The stress corrosion cracking for the Alloy 182 weld is close to the average behavior of Alloy 600 in the PWR environment. The weld orientation was found to have a profound effect on the magnitude of crack growth: cracking was found to propagate faster along the dendrites than across them. The existing CGR data for Ni-alloy weld metals have been compiled and evaluated to establish the effects of key material, loading, and environmental parameters on CGRs in PWR environments. The results from the present study are compared with the existing CGR data for Ni-alloy welds to determine the relative susceptibility of the specific Ni-alloy weld to environmentally enhanced cracking.

Alexandreanu, B.; Chopra, O. K.; Shack, W. J.; Energy Technology

2006-05-31T23:59:59.000Z

450

Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals  

DOE Patents [OSTI]

A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500/degree/C, electrolysis at a voltage not more negative that about /minus/1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

Maroni, V.A.; von Winbush, S.

1987-05-01T23:59:59.000Z

451

Biosorption of Lead and Nickel by Biomass of Marine Algae  

E-Print Network [OSTI]

Biosorption of Lead and Nickel by Biomass of Marine Algae Z.R. Holan and B. Volesky" Department 22, 1993 Screening tests of different marine algae biomass types revealed a high passive biosorptive uptake of lead up to 270 mg Pb/g of biomass in some brown marine algae. Members of the order Fucales

Volesky, Bohumil

452

Discovery of Chromium, Manganese, Nickel, and Copper Isotopes  

E-Print Network [OSTI]

Twenty-seven chromium, twenty-five manganese, thirty-one nickel and twenty-six copper isotopes have so far been observed and the discovery of these isotopes is discussed. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

K. Garofali; R. Robinson; M. Thoennessen

2010-12-07T23:59:59.000Z

453

Dynamics, Brandom-Style Bernhard Nickel Harvard University  

E-Print Network [OSTI]

Dynamics, Brandom-Style Bernhard Nickel · Harvard University June 26, 2011 Abstract This paper understood as a special version of dynamic semantics, so that these semantics by themselves offer and motivations. Keywords static semantics · dynamic semantics · incompatibility se- mantics · brandom · norms

Nickel, Bernhard

454

Review of metallic surface treatments for corrosion mitigation. Final report  

SciTech Connect (OSTI)

Innovative metallic surface treatments for corrosion protection of facility systems and components were reviewed, including plasma spraying, electroless nickel plating, and ion plating. The work is part of the U.S. Army Corps of Engineers effort to find coatings with properties superior to conventional polymeric types. The three methods were judged for adhesion, corrosion and erosion resistance, rust mitigation, and possible use in electromagnetic shielding. A brief description of physics is given for these methods along with case studies documenting their performance. Such metallic treatments may be a cost-effective, long-term corrosion protection alternative to traditional polymeric coatings, depending on component design and purpose.

Hock, V.F.; Rigsbee, J.M.; Boy, J.H.

1984-09-01T23:59:59.000Z

455

Pollution prevention and waste minimization in metal finishing  

SciTech Connect (OSTI)

This study was done to identify pollution prevention and waste minimization opportunities in the general plating department and the printed circuit board processing department. Recommendations for certain recycle and recovery technologies were mad in order to reduce usage of acids and the volume of heavy metal sludge that is formed at the industrial Wastewater Pretreatment Facility (IWPF). Some of these technologies discussed were acid purification, electrowinning, and ion exchange. Specific technologies are prescribed for specific processes. Those plating processes where the metals can be recovered are copper, nickel, gold, cadmium, tin, lead, and rhodium.

Stimetz, C.J.

1994-12-01T23:59:59.000Z

456

Nickel-Specific Response in the Transcriptional Regulator, 'Escherichia Coli'NikR  

SciTech Connect (OSTI)

Studies of the transcriptional repression of the Ni-specific permease encoded by the Pnik operon by Escherichia coli NikR using a LacZ reporter assay establish that the NikR response is specific to nickel in vivo. Toward understanding this metal ion-specific response, X-ray absorption spectroscopy (XAS) analysis of various M-NikR complexes (M = Co(II), Ni(II), Cu(II), Cu(I), and Zn(II)) was used to show that each high-affinity binding site metal adopts a unique structure, with Ni(II) and Cu(II) being the only two metal ions to feature planar four-coordinate complexes. The results are consistent with an allosteric mechanism whereby the geometry and ligand selection of the metal present in the high-affinity site induce a unique conformation in NikR that subsequently influences DNA binding. The influence of the high-affinity metal on protein structure was examined using hydrogen/deuterium (H/D) exchange detected by liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS). Each NikR complex gives rise to differing amounts of H/D exchange; Zn(II)- and Co(II)-NikR are most like apo-NikR, while the exchange time course is substantially different for Ni(II) and to a lesser extent for Cu(II). In addition to the high-affinity metal binding site, E. coli NikR has a low-affinity metal-binding site that affects DNA binding affinity. We have characterized this low-affinity site using XAS in heterobimetallic complexes of NikR. When Cu(II) occupies the high-affinity site and Ni(II) occupies the low-affinity site, the Ni K-edge XAS spectra show that the Ni site is composed of six N/O-donors. A similar low-affinity site structure is found for the NikR complex when Co(II) occupies the low-affinity site and Ni(II) occupies the high-affinity site, except that one of the Co(II) ligands is a chloride derived from the buffer.

Leitch, S.; Bradley, M.J.; Rowe, J.L.; Chivers, P.T.; Maroney, M.J.; /Massachusetts U., Amherst /Washington U., St. Louis

2007-07-10T23:59:59.000Z

457

Nickel-Specific Response in the Transcriptional Regulator, Escherichia coli NikR  

SciTech Connect (OSTI)

Studies of the transcriptional repression of the Ni-specific permease encoded by the P{sub nik} operon by Escherichia coli NikR using a LacZ reporter assay establish that the NikR response is specific to nickel in vivo. Toward understanding this metal ion-specific response, X-ray absorption spectroscopy (XAS) analysis of various M-NikR complexes (M = Co(II), Ni(II), Cu(II), Cu(I), and Zn(II)) was used to show that each high-affinity binding site metal adopts a unique structure, with Ni(II) and Cu(II) being the only two metal ions to feature planar four-coordinate complexes. The results are consistent with an allosteric mechanism whereby the geometry and ligand selection of the metal present in the high-affinity site induce a unique conformation in NikR that subsequently influences DNA binding. The influence of the high-affinity metal on protein structure was examined using hydrogen/deuterium (H/D) exchange detected by liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS). Each NikR complex gives rise to differing amounts of H/D exchange; Zn(II)- and Co(II)-NikR are most like apo-NikR, while the exchange time course is substantially different for Ni(II) and to a lesser extent for Cu(II). In addition to the high-affinity metal binding site, E. coli NikR has a low-affinity metal-binding site that affects DNA binding affinity. We have characterized this low-affinity site using XAS in heterobimetallic complexes of NikR. When Cu(II) occupies the high-affinity site and Ni(II) occupies the low-affinity site, the Ni K-edge XAS spectra show that the Ni site is composed of six N/O-donors. A similar low-affinity site structure is found for the NikR complex when Co(II) occupies the low-affinity site and Ni(II) occupies the high-affinity site, except that one of the Co(II) ligands is a chloride derived from the buffer.

Leitch,S.; Bradley, M.; Rowe, J.; Chivers, P.; Maroney, M.

2007-01-01T23:59:59.000Z

458

Modeling of temporal behavior of isotopic exchange between gaseous hydrogen and palladium hydride power  

SciTech Connect (OSTI)

A parametric rate-equation model is described which depicts the time dependent behavior of the isotopic exchange process occurring between the solid and gas phases in gaseous hydrogen (deuterium) flows through packed-powder palladium deuteride (hydride) beds. The exchange mechanism is assumed to be rate-limited by processes taking place on the surface of the powder. The fundamental kinetic parameter of the model is the isotopic exchange probability, p, which is the probability that an isotopic exchange event occurs during a collision of a gas phase atom with the surface. Isotope effects between the gas and solid phases are explicitly included in terms of the isotope separation factor, ..cap alpha... Results of the model are compared with recent experimental measurements of isotope exchange in the ..beta..-phase hydrogen/palladium system and, using a literature value of ..cap alpha.. = 2.4, a good description of the experimental data is obtained for p approx. 10/sup -7/. In view of the importance of the isotope effects in the hydrogen/palladium system and the range of ..cap alpha.. values reported for the ..beta..-phase in the literature, the sensitivity of the model results to a variation in the value of ..cap alpha.. is examined.

Melius, C F; Foltz, G W

1987-01-01T23:59:59.000Z

459

Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications  

SciTech Connect (OSTI)

A fixed bed reactor was designed, modeled and simulated for hydrogen storage on-board the vehicle for PEM fuel cell applications. Ammonia Borane (AB) was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to {approx}16% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. The design evaluated consisted of a tank with 8 thermally isolated sections in which H2 flows freely between sections to provide ballast. Heating elements are used to initiate reactions in each section when pressure drops below a specified level in the tank. Reactor models in Excel and COMSOL were developed to demonstrate the proof-of-concept, which was then used to develop systems models in Matlab/Simulink. Experiments and drive cycle simulations showed that the storage system meets thirteen 2010 DOE targets in entirety and the remaining four at greater than 60% of the target.

Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; Holladay, Jamelyn D.

2011-10-05T23:59:59.000Z

460

Atomic-Scale Chemical, Physical and Electronic Properties of the Subsurface Hydride of Palladium  

SciTech Connect (OSTI)

We employed low-temperature, extreme-high vacuum scanning tunneling microscopy (STM) to investigate the roles of subsurface hydride (H) and deuteride (D) in the surface reconstruction and surface reactivity of Pd{110}. Specifically, we gained the ability to tailor the surface structure of Pd{110} both by preparation method and by deposition of deuterium from the gas phase. We observed thiophene at low coverage on Pd{110} to determine its adsorption orientation and electronic structure through scanning tunneling spectroscopy (STS) – namely, conductance spectroscopy and differential conductance imaging. We developed the methods necessary to coadsorb D adatoms with thiophene molecules, and to induce the reaction of individual molecules with predefined subsurface H or D features. In the case of Pd{110}, we found a much more pronounced effect from subsurface D, as it is influenced by the surface directionality. These experiments facilitate an understanding of the role of surface and subsurface H and D in heterogeneous catalytic processes, specifically in the hydrodesulfuization (HDS) of thiophene, an important and ubiquitous component found to be detrimental to petroleum refining.

Weiss, Paul

2014-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "nickel metal hydride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hydride vapor phase epitaxy and characterization of high-quality ScN epilayers  

SciTech Connect (OSTI)

The heteroepitaxial growth of ScN films was investigated on various substrates by hydride vapor phase epitaxy (HVPE). Single crystalline mirror-like ScN(100) and ScN(110) layers were successfully deposited on r- and m-plane sapphire substrates, respectively. Homogeneous stoichiometric films (N/Sc ratio 1.01?±?0.10) up to 40??m in thickness were deposited. Their mosaicity drastically improved with increasing the film thickness. The band gap was determined by optical methods to be 2.06?eV. Impurity concentrations including H, C, O, Si, and Cl were investigated through energy dispersive X-ray spectrometry and secondary ion mass spectrometry. As a result, it was found that the presence of impurities was efficiently suppressed in comparison with that of HVPE-grown ScN films reported in the past, which was possible thanks to the home-designed corrosion-free HVPE reactor. Room-temperature Hall measurements indicated that the residual free electron concentrations ranged between 10{sup 18}–10{sup 20}?cm{sup ?3}, which was markedly lower than the reported values. The carrier mobility increased monotonically with the decreasing in carrier concentration, achieving the largest value ever reported, 284?cm{sup 2}?V{sup ?1}?s{sup ?1} at n?=?3.7?×?10{sup 18}?cm{sup ?3}.

Oshima, Yuichi, E-mail: OSHIMA.Yuichi@nims.go.jp; Víllora, Encarnación G.; Shimamura, Kiyoshi [Environment and Energy Materials Research Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

2014-04-21T23:59:59.000Z

462

Effects of Additive Elements on the Phase Formation and Morphological Stability of Nickel Monosilicide Films  

SciTech Connect (OSTI)

Alloying elements can substantially affect the formation and morphological stability of nickel monosilicide. A comprehensive study of phase formation was performed on 24 Ni alloys with varying concentrations of alloying elements. Silicide films have been used for more than 15 years to contact the source, drain and gate of state-of-the-art complementary-metal-oxide-semiconductor (CMOS) devices. In the past, the addition of alloying elements was shown to improve the transformation from the high resistivity C49 to the low resistivity C54-TiSi{sub 2} phase and to allow for the control of surface and interface roughness of CoSi{sub 2} films as well as produce significant improvements with respect to agglomeration of the films. Using simultaneous time-resolved X-ray diffraction (XRD), resistance and light scattering measurements, we follow the formation of the silicide phases in real time during rapid thermal annealing. Additions to the Ni-Si system lead to modifications in the phase formation sequence at low temperatures (metal-rich phases), to variations in the formation temperatures of NiSi and NiSi{sub 2}, and to changes in the agglomeration behavior of the films formed. Of the 24 elements studied, additions of Mo, Re, Ta and W are amongst the most efficient to retard agglomeration while elements such as Pd, Pt and Rh are most efficient to retard the formation of NiSi{sub 2}.

Lavoie,C.; Detavernier, C.; Cabral, Jr. , C.; d'Heurle, F.; Kellock, A.; Jordan-Sweet, J.; Harper, J.

2006-01-01T23:59:59.000Z

463

CHARACTERIZATION OF THE STRUCTURE AND REACTIVITY OF A NICKEL(II)-TRIPEPTIDE MIMIC OF NICKEL SUPEROXIDE DISMUTASE  

E-Print Network [OSTI]

. However, prior to this work, the structure and chemical reactivity of the nickel-peptide complex were undefined. The work presented herein involves structural and reactivity investigations of the MAP-tag bound with NiII in the dianionic complex [Ni-NCC]2...

Glass, Amanda M.

2012-08-31T23:59:59.000Z

464

Please cite this article in press as: Malen, J.A., et al., Thermal hydraulic design of a hydride-fueled inverted PWR core. Nucl. Eng. Des. (2009), doi:10.1016/j.nucengdes.2009.02.026  

E-Print Network [OSTI]

Please cite this article in press as: Malen, J.A., et al., Thermal hydraulic design of a hydride hydraulic design of a hydride-fueled inverted PWR core J.A. Malena, , N.E. Todreasb , P. Hejzlarb , P and its thermal hydraulic performance is compared to that of a standard rod bundle core design also fueled

Malen, Jonathan A.

2009-01-01T23:59:59.000Z

465

Metal oxide films on metal  

DOE Patents [OSTI]

A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

1995-01-01T23:59:59.000Z

466

Positive electrode current collector for liquid metal cells  

DOE Patents [OSTI]

A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.

Shimotake, Hiroshi (Hinsdale, IL); Bartholme, Louis G. (Joliet, IL)

1984-01-01T23:59:59.000Z

467

Positive-electrode current collector for liquid-metal cells  

DOE Patents [OSTI]

A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.

Shimotake, H.; Bartholme, L.G.

1982-09-27T23:59:59.000Z

468

A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.  

SciTech Connect (OSTI)

Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

2013-03-01T23:59:59.000Z

469

PLUTONIUM METALLIC FUELS FOR FAST REACTORS  

SciTech Connect (OSTI)

Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including bi