Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nicaragua niger niue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fossil-Fuel CO2 Emissions - Niue  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Regional Oceania Niue Graphics Fossil-Fuel CO2 Emissions from Niue Data graphic Data Total Fossil-Fuel CO2 Emissions from Niue image Per Capita...

2

CO2 Emissions - Nicaragua  

NLE Websites -- All DOE Office Websites (Extended Search)

Central America, South America, and the Caribbean Nations Nicaragua Graphics CO2 Emissions from Nicaragua Data graphic Data CO2 Emissions from Nicaragua image Per capita CO2...

3

Nicaragua | OpenEI  

Open Energy Info (EERE)

Nicaragua Nicaragua Dataset Summary Description (Abstract): Stand-alone and easy to use geographic toolkit that allows non-GIS users to relate the renewable energy resource (solar and wind) data to other geographic data, such as land use, protected areas, elevation, etc. Source NREL Date Released October 31st, 2005 (9 years ago) Date Updated July 06th, 2012 (2 years ago) Keywords CNE GEF Geospatial Toolkit GIS Nicaragua NREL SUNY SWERA UNEP Data application/zip icon Download Executable Toolkit & Documentation (zip, 42.4 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2005 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

4

CO2 Emissions - Niger  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Niger Graphics CO2 Emissions from Niger Data graphic Data CO2 Emissions from Niger image Per capita CO2 Emission Estimates for Niger...

5

Team Bug Bag Biogas For Nicaragua  

E-Print Network (OSTI)

Team Bug Bag Biogas For Nicaragua Project Recap The task for Team Bug Bag was to create for under $100 (USD), and be able to produce biogas that could boil water for a thirty minute time period

Demirel, Melik C.

6

Nicaragua: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nicaragua: Energy Resources Nicaragua: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":13,"lon":-85,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

7

A New Geothermal Anomaly In Nicaragua | Open Energy Information  

Open Energy Info (EERE)

A New Geothermal Anomaly In Nicaragua A New Geothermal Anomaly In Nicaragua Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A New Geothermal Anomaly In Nicaragua Details Activities (0) Areas (0) Regions (0) Abstract: The information acquired during reconnaissance surface exploration in Nicaragua suggests a large geothermal reservoir in the region of Masaya-Nandaime. The exploration programme included geological, geophysical, geochemical, as well as hydrogeological investigations. Integration of the results from various disciplines permitted postulation of a conceptual model of the reservoir and of the thermal regime within the zone immediately above and around the reservoir. The reservoir with a temperature in excess of 200°C is emplaced at a depth between 2 and 4 km

8

A New Geothermal Resource Map Of Nicaragua | Open Energy Information  

Open Energy Info (EERE)

Map Of Nicaragua Map Of Nicaragua Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: A New Geothermal Resource Map Of Nicaragua Details Activities (0) Areas (0) Regions (0) Abstract: A recently completed Geothermal Master Plan Study of Nicaragua assesses the geothermal resource potential of the identified fields and prospects in the country. During the course of the 18-month study, existing data were compiled and evaluated and new exploration work was conducted to determine, for each of ten geothermal resource areas studied: 1) the current level of knowledge about the resource; 2) its exploration or development status; 3) a conceptual model of the geothermal system or systems (incorporating geology, volcanology, geophysics, hydrology, fluid chemistry and geothermometry); 4) estimated recoverable energy reserves; 5)

9

Integrated: Geospatial Toolkit for Nicaragua from NREL | OpenEI  

Open Energy Info (EERE)

Nicaragua from NREL Nicaragua from NREL Dataset Summary Description (Abstract): Stand-alone and easy to use geographic toolkit that allows non-GIS users to relate the renewable energy resource (solar and wind) data to other geographic data, such as land use, protected areas, elevation, etc. (Purpose): The Solar and Wind Energy Resource Assessment (SWERA) Geospatial Toolkit (GsT) is a map-based software application that can be used for decision making and policy analysis in addition to planning for future energy projects. The SWERA application utilizes Geographical Information Systems (GIS) to develop common scenarios to evaluate potential locations for solar or wind energy plants. (Supplemental Information): The zip file contains the geospatial toolkit executable, Getting Started Document, and metadata.

10

Nicaragua-Low-Carbon Energy for Central America: Building a Regional Model  

Open Energy Info (EERE)

Nicaragua-Low-Carbon Energy for Central America: Building a Regional Model Nicaragua-Low-Carbon Energy for Central America: Building a Regional Model Jump to: navigation, search Name Nicaragua-Low-Carbon Energy for Central America: Building a Regional Model Agency/Company /Organization World Watch Institute Sector Energy Focus Area Renewable Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.worldwatch.org/node Country Nicaragua Central America References Low-Carbon Energy for Central America: Building a Regional Model[1] Overview "This project will design a unified low-carbon development strategy for Central America through the use of renewable energy and energy efficiency maps, followed by technical, economic, and social feasibility studies for

11

Incorporation of plastics and other recyclables into building materials in Nicaragua  

E-Print Network (OSTI)

For three communities in Nicaragua: Bluefields, Little Corn Island, and Corn Island, incentives are needed to motivate residents to not burn their trash and recyclables. There are various methods that could encourage ...

Ohlmacher, Christopher J

2011-01-01T23:59:59.000Z

12

Niger: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Niger: Energy Resources Niger: Energy Resources (Redirected from ECOWAS Gateway-Niger) Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":16,"lon":8,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

AMF Deployment, Niamey, Niger, West Africa  

NLE Websites -- All DOE Office Websites (Extended Search)

West Africa West Africa Niamey Deployment AMF Home Niamey Home Data Plots and Baseline Instruments RADAGAST Website Rainfall Record (PDF) Publications List, (PDF) Experiment Planning RADAGAST Proposal Outreach Fact Sheets RADAGAST (PDF) Annual Climate Cycle in Niger, Africa (PDF) Posters AMF Poster, French Version We're Going to Sample the Sky in Africa! News Campaign Images AMMA International News AMF Deployment, Niamey, Niger, West Africa In 2006, the ARM Mobile Facility is collecting cloud and atmospheric property measurements from a location near the airport in Niamey, Niger, West Africa. Main Site: 13° 28' 39.15" N, 2° 10' 27.62" E Altitude: 205 meters Ancillary Site: 13° 31' 19.14" N, 2° 37' 56.46" E Altitude: 228.29 meters In January 2006, the second deployment of the ARM Mobile Facility (AMF)

14

Niger: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Niger: Energy Resources Niger: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":16,"lon":8,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

15

PRESSURE PREDICTION AND UNDERBALANCED DRILLING IN THE DEEPWATER NIGER DELTA.  

E-Print Network (OSTI)

??The mechanisms that cause overpressure can be broadly classified into two categories: loading and unloading. This study looks at eight wells from the deepwater Niger (more)

GOODWYNE, OLAR,KAMAL

2012-01-01T23:59:59.000Z

16

Niger - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Africa World. Rank . Niger: Production: 0.0220 , 0.0331 , 0.0496 , 0.1433 , 0.1653 , 0.1664 , 0.1367 ...

17

Integrated: Geospatial Toolkit GIS data for Nicaragua from NREL | OpenEI  

Open Energy Info (EERE)

Nicaragua from NREL Nicaragua from NREL Dataset Summary Description (Abstract): Geographic Information Systems (GIS) data intended for use in the Geospatial toolkit or with any GIS software. (Purpose): The Solar and Wind Energy Resource Assessment (SWERA) Geospatial Toolkit (GsT) is a map-based software application that can be used for decision making and policy analysis in addition to planning for future energy projects. The SWERA application utilizes Geographical Information Systems (GIS) to develop common scenarios to evaluate potential locations for solar or wind energy plants. (Supplemental Information): The zip file contains the available geospatial toolkit data and metadata. Each country's data package depends on the data provided by the SWERA partners. ---------------------------------------------------------

18

The Momotombo Geothermal Field, Nicaragua: Exploration and development case history study  

DOE Green Energy (OSTI)

This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultants produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of resources.

None

1982-07-01T23:59:59.000Z

19

Gourmet and Health-Promoting Specialty OilsChapter 9 Niger Seed Oil  

Science Conference Proceedings (OSTI)

Gourmet and Health-Promoting Specialty Oils Chapter 9 Niger Seed Oil Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press Downloadable pdf of Chapter 9 Niger Seed Oil from the b

20

Production of extremophilic bacterial cellulase enzymes in aspergillus niger.  

SciTech Connect

Enzymes can be used to catalyze a myriad of chemical reactions and are a cornerstone in the biotechnology industry. Enzymes have a wide range of uses, ranging from medicine with the production of pharmaceuticals to energy were they are applied to biofuel production. However, it is difficult to produce large quantities of enzymes, especially if they are non-native to the production host. Fortunately, filamentous fungi, such as Aspergillus niger, are broadly used in industry and show great potential for use a heterologous enzyme production hosts. Here, we present work outlining an effort to engineer A. niger to produce thermophilic bacterial cellulases relevant to lignocellulosic biofuel production.

Gladden, John Michael

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nicaragua niger niue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Mobile Facility Records Annual Climate Cycle in Niger, Africa  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Records Annual Facility Records Annual Climate Cycle in Niger, Africa Because dust can block incoming solar energy, and because solar energy drives weather and climate, scientists around the world are looking for ways to better understand these natural phenomena. In 2006, scientists sponsored by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility conducted a year-long field campaign in Niamey, Niger, to provide key information for the African Monsoon Multidisciplinary Analyses, or AMMA, project. During the 12-month experiment at the airport in Niamey, researchers used a portable atmospheric laboratory, airplanes, and satellites to collect information about clouds, aerosols, and solar and terrestrial energy in the skies above the site. Measurements obtained

22

Oil enclave economy and sexual liaisons in Nigeria's Niger Delta region.  

E-Print Network (OSTI)

??This thesis examines the intersection of oil enclave economy and the phenomenon of sexual liaisons in Nigerias Niger Delta region. The particular focus of this (more)

Gandu, Yohanna Kagoro

2011-01-01T23:59:59.000Z

23

Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88  

E-Print Network (OSTI)

expression profiles. Mol. Genet. Genomics 279:Comparative genomics of citric-acid producing Aspergillus2006. Aspergillusnigergenomics:past,presentandinto

Grigoriev, Igor V.

2011-01-01T23:59:59.000Z

24

DNN Cover(pg1).indd  

National Nuclear Security Administration (NNSA)

Mongolia Montenegro Morocco Namibia Nepal Netherlands Nicaragua Niger Nigeria North Korea Norway Oman Pakistan Panama Papua New Guinea Paraguay Peru Philippines Poland Portugal...

25

Niger-Pilot Program for Climate Resilience (PPCR) | Open Energy Information  

Open Energy Info (EERE)

Niger-Pilot Program for Climate Resilience (PPCR) Niger-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Niger-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Niger UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

26

Scholars from northeast Brazil, Costa Rica, southeast Mexico, Nicaragua, Italy, and the United States gathered for a think-tank international week April 18-22, 2011 to examine Latin America's equity-gap challenges using a community engagement  

E-Print Network (OSTI)

Scholars from northeast Brazil, Costa Rica, southeast Mexico, Nicaragua, Italy, and the United. The keynote address--Brazil's Unified Health System May Promote Social Inequality: Paradox or dialectic/northeastern Brazil constitute nadirs of economic and health inequality. The stunting rates among children

Liu, Taosheng

27

An Economic Analysis of Research and Technology Transfer of Millet, Sorghum, and Cowpeas in Niger  

E-Print Network (OSTI)

This paper has primarily been funded by the Food Security in Africa Cooperative Agreement (DAN-1190-A-00-4092-00) between Michigan State University and the United States Agency for International Development and has received supplementary funding from the Government of Belgium. The work was carried out by the International Service for National Agricultural Research and the Institut National de la Recherche Agronomique du Niger under contracts with Michigan State University with the supervision of Philip Pardey and Eric Crawford. * Research Policies and System Strategies Program, ISNAR ** Dpartement de Recherches en Economie Rurale, INRAN ii

Cowpeas In Niger; Valentina Mazzucato; Samba Ly; Carl Liedholm; Michael T. Weber

1994-01-01T23:59:59.000Z

28

Total Net Imports of Crude Oil and Petroleum Products into the U.S.  

U.S. Energy Information Administration (EIA) Indexed Site

Country: Total All Countries Persian Gulf OPEC Algeria Angola Ecuador Iran Iraq Kuwait Libya Nigeria Qatar Saudi Arabia United Arab Emirates Venezuela Non OPEC Afghanistan Albania Andora Anguilla Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bolivia Bosnia and Herzegovina Brazil Brunei Bulgaria Burma Cambodia Cameroon Canada Cayman Islands Chad Chile China Colombia Congo (Brazzaville) Congo (Kinshasa) Cook Islands Costa Rica Croatia Cyprus Czech Republic Denmark Djbouti Dominica Dominican Republic Egypt El Salvador Equatorial Guinea Ethiopia Eritrea Estonia Fiji Finland France French Pacific Islands French Guiana Gabon Georgia, Republic of Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guinea Guyana Haiti Honduras Hong Kong Hungary Iceland India Indonesia Ireland Israel Italy Ivory Coast Jamaica Japan Jordan Kazakhstan Kenya Korea, South Kutubu Kyrgyzstan Latvia Lebanon Liberia Lithuania Macau S.A.R. Macedonia Madagascar Malaysia Maldives Mali Malta Marshall Islands Mauritania Mauritius Mexico Micronesia, Federated States of Midway Islands Moldova Monaco Mongolia Montenegro Montserrat Morocco Mozambique Namibia Nepal Netherlands Netherlands Antilles New Caledonia New Zealand Nicaragua Niger Niue Norway Oman Pakistan Panama Papau New Guinea Paracel Islands Paraguay Peru Philippines Poland Portugal Puerto Rico Romania Russia St. Kitts and Nevis St. Lucia St. Pierre and Miquelon St. Vincent and the Grenadines Samoa San Marino Senegal Serbia and Montenegro Sierra Leone Singapore Slovakia Slovenia South Africa Spain Spratly Islands Sri Lanka Suriname Swaziland Sweden Switzerland Syria Taiwan Tanzania Thailand Togo Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Uganda Ukraine United Kingdom Uruguay Uzbekistan Vanuatu Vietnam Virgin Islands (British) Virgin Islands (U.S.) Yemen Yugoslavia Other Non OPEC Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day

29

Total All Countries Exports of Crude Oil and Petroleum Products by  

U.S. Energy Information Administration (EIA) Indexed Site

Destination: Total All Countries Afghanistan Albania Algeria Andora Angola Anguilla Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahama Islands Bahrain Barbados Belarus Belgium Belize Benin Bolivia Bosnia and Herzegovina Brazil Brunei Bulgaria Burma Bermuda Cambodia Cameroon Canada Cayman Islands Chad Chile China Colombia Congo (Brazzaville) Congo (Kinshasa) Costa Rica Croatia Cyprus Czech Republic Denmark Djbouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Fiji Finland France French Guiana French Pacific Islands Gabon Georgia, Republic of Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guinea Guyana Haiti Honduras Hong Kong Hungary Iceland India Indonesia Iran Iraq Ireland Israel Italy Ivory Coast Jamaica Japan Jordon Kazakhstan Kenya Korea, South Korea, North Kyrgyzstan Kutubu Kuwait Latvia Lebanon Liberia Libya Lithuania Macau S.A.R. Macedonia Madagascar Malaysia Maldives Mali Malta Marshall Islands Mauritania Mauritius Mexico Micronesia, Federated States of Midway Islands Moldova Monaco Mongolia Montenegro Montserrat Morocco Mozambique Namibia Nepal Netherlands Netherlands/Antilles New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norway Oman Pakistan Panama Papau New Guinea Paracel Islands Paraguay Peru Philippines Poland Portugal Puerto Rico Qatar Romania Russia St. Kitts and Nevis St. Lucia St. Pierre and Miquelon St. Vincent and the Grenadines Samoa San Marino Saudi Arabia Senegal Serbia and Montenegro Seychelles Sierra Leone Singapore Slovakia Slovenia Soloman Islands South Africa Spain Spratly Islands Sri Lanka Sudan Suriname Swaziland Sweden Switzerland Syria Taiwan Tanzania Thailand Tonga Togo Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Uganda Ukraine United Arab Emirates United Kingdom Uruguay Uzbekistan Vanuatu Venezuela Vietnam Virgin Islands (British) Virgin Islands (U.S.) Yemen Yugoslavia Zambia Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

30

Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-?-pyrone.  

SciTech Connect

The genome sequencing of the fungus Aspergillus niger, an industrial workhorse, uncovered a large cache of genes encoding enzymes thought to be involved in the production of secondary metabolites yet to be identified. Identification and structural characterization of many of these predicted secondary metabolites are hampered by their low concentration relative to the known A. niger metabolites such as the naphtho-?-pyrone family of polyketides. We deleted a nonreducing PKS gene in A. niger strain ATCC 11414, a daughter strain of A. niger ATCC strain 1015 whose genome was sequenced by the DOE Joint Genome Institute. This PKS encoding gene is a predicted ortholog of alb1 from Aspergillus fumigatus which is responsible for production of YWA1, a precursor of fungal DHN melanin. Our results show that the A. niger alb1 PKS is responsible for the production of the polyketide precursor for DHN melanin biosynthesis. Deletion of alb1 elimnates the production of major metabolites, naphtho-?-pyrones. The generation of an A. niger strain devoid of naphtho-?-pyrones will greatly facilitate the elucidation of cryptic biosynthetic pathways in this organism.

Chiang, Yi Ming; Meyer, Kristen M.; Praseuth , Michael; Baker, Scott E.; Bruno, Kenneth S.; Wang, Clay C.

2010-12-06T23:59:59.000Z

31

On farm yield and water use response of pearl millet to different management practices in Niger  

E-Print Network (OSTI)

Pearl millet [Pennisetum glaucum (L.) R.Br.] production under subsistence farmer management on the sandy soils of southwestern Niger is faced with many challenges, including declining soil fertility, highly variable and scarce rainfall and poor resource base of the peasant farmers in the region. This study was conducted to evaluate the potential of management to increase yield and water use efficiency of pearl millet grown on two farmers fields in Niger during two growing seasons, 2003 and 2004. The management practices tested were: 1) Five manure treatments (no manure, transported manure, current corralling, a year after corralling, and two years after corralling); 2) The microdose technology (20 kg di-ammonium phosphate ha-1, and 20 kg di-ammonium phosphate ha-1 + 10 kg urea ha-1); and lastly, 3) Three different pearl millet cultivars (Heini Kirei, Zatib, and ICMV IS 89305). In both growing seasons, manure had the greatest effect on the yield and water use of pearl millet at both sites. In 2003 grain yields were 389 kg ha-1 in the NM treatment and 1495 kg ha-1 in the C0 treatment at Banizoumbou whereas at Bagoua, the NM treatment had 423 kg ha-1 vs. 995 kg ha-1 in the C0 treatment. In 2004, the NM treatment at Banizoumbou had 123 kg ha-1 grain yield and the C0 treatment had 957 kg ha-1 whereas at Bagoua the NM treatment had 506 kg ha-1 vs. 1152 kg ha-1 in the C0 treatment. Residual effects of manure led to grain yields in the C1 and C2 treatments which were more than twice as high as in the NM treatment. The improved cultivars were generally superior for grain yields, whereas the local landrace was superior for straw yields at both sites. Root zone drainage was decreased by between 50 to 100 mm, and water use increased by the same amount in the current corrals at the two sites during the two growing seasons. Increased water use under corralling and presence of residual profile moisture at the end of each of the two seasons suggested that water did not limit pearl millet production at the two sites.

Manyame, Comfort

2006-12-01T23:59:59.000Z

32

Overview of observations from the RADAGAST experiment in Niamey, Niger: Meteorology and thermodynamic variables  

SciTech Connect

An overview is presented of the meteorological and thermodynamic data obtained during the RADAGAST experiment in Niamey, Niger, in 2006. RADAGAST (Radiative Atmospheric Divergence using ARM Mobile Facility, GERB data and AMMA STations), combined data from the Atmospheric Radiation Measurement (ARM) Program Mobile Facility (AMF) at Niamey airport with broadband satellite data from the Geostationary Earth Radiation Budget (GERB) instrument on Meteosat-8. The experiment was conducted in collaboration with the African Monsoon Multidisciplinary Analysis (AMMA) project. The focus in this paper is on the variations through the year of key surface and atmospheric variables. The seasonal advance and retreat of the InterTropical Front (ITF) and the seasonal changes in near-surface variables and precipitation in 2006 are discussed and contrasted with the behavior in 2005 and with long-term averages. Observations from the AMF at Niamey airport are used to document the evolution of near-surface variables and of the atmosphere above the site. There are large seasonal changes in these variables, from the arid and dusty conditions typical of the dry season to the much moister and more cloudy wet season accompanying the arrival and intensification of the West African monsoon. Back trajectories show the origin of the air sampled at Niamey and profiles for selected case studies from rawinsondes and from a MicroPulse Lidar at the AMF site reveal details of typical atmospheric structures. Radiative fluxes and divergences are discussed in the second part of this overview and the subsequent papers in this special section explore other aspects of the measurements and of the associated modeling.

Slingo, A.; Bharmal, N.; Robinson, G. J.; Settle, Jeff; Allan, R. P.; White, H. E.; Lamb, Peter J.; Lele, M.; Turner, David D.; McFarlane, Sally A.; Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Miller, Mark

2008-10-17T23:59:59.000Z

33

International RADAGAST Experiment in Niamey, Niger: Changes and Drivers of Atmospheric Radiation Balance  

Science Conference Proceedings (OSTI)

The Sahara desert is notorious as a source of massive dust storms. This dust dramatically influences the Earth-atmosphere energy budget through reflecting and absorbing the incoming sunlight. However, this budget is poorly understood, and in particular, we lack quantitative understanding of how the diurnal and seasonal variation of meteorological variables and aerosol properties influence the propagation of solar irradiance through the desert atmosphere. To improve our understanding of these influences, coincident and collocated observations of fluxes, measured from both space and the surface, are highly desirable. Recently, the unique capabilities of the African Monsoon Multidisciplinary Analysis (AMMA) Experiment, the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF), the Geostationary Earth Radiation Budget (GERB) instrument, and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) were combined effectively as part of a large international project: the Radiative Atmospheric Divergence using AMF, GERB data and AMMA Stations (RADAGAST), which took place in Niamey, Niger, in 2006. The RADAGAST objectives, instrumentation, and scientific background are presented in [1]. Initial results from RADAGAST documented the strong radiative impact of a major Saharan dust storm on the Earths radiation budget [2]. A special issue of the Journal of Geophysical Research will include a collection of papers with the more complete results from RADAGAST (e.g., [1,3], and references therein). In particular, a year-long time series from RADAGAST are used to investigate (i) the factors that control the radiative fluxes and the divergence of radiation across the atmosphere [3-5], (ii) seasonal changes in the surface energy balance and associated variations in atmospheric constituents (water vapor, clouds, aerosols) [6], and (iii) sensitivity of microphysical, chemical and optical properties of aerosols to their sources and the atmospheric conditions [7]. Here we show retrievals of the aerosol properties from spectrally resolved solar measurements, the simulated and observed radiative fluxes at the surface, and outline factors that control the magnitude and variability of aerosol and radiative properties [8].

Kassianov, Evgueni I.; McFarlane, Sally A.; Barnard, James C.; Flynn, Connor J.; Slingo, A.; Bharmal, N.; Robinson, G. J.; Turner, David D.; Miller, Mark; Ackerman, Thomas P.; Miller, R.

2009-03-11T23:59:59.000Z

34

Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger  

SciTech Connect

This study presents ground-based remote sensing measurements of aerosol optical properties and corresponding shortwave surface radiative effect calculations for the deployment of the Atmospheric Radiation Measurement (ARM) Programs Mobile Facility (AMF) to Niamey, Niger during 2006. Aerosol optical properties including aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry parameter (AP) were derived from multi-filter rotating shadowband radiometer (MFRSR) measurements during the two dry seasons (Jan-Apr and Oct-Dec) at Niamey. The vertical distribution of aerosol extinction was derived from the collocated micropulse lidar (MPL). The aerosol optical properties and vertical distribution of extinction varied significantly throughout the year, with higher AOD, lower SSA, and deeper aerosol layers during the Jan-Apr time period, when biomass burning aerosol layers were more frequent. Using the retrieved aerosol properties and vertical extinction profiles, broadband shortwave surface fluxes and atmospheric heating rate profiles were calculated. Corresponding calculations with no aerosol were used to estimate the aerosol direct radiative effect at the surface. Comparison of the calculated surface fluxes to observed fluxes for non-cloudy periods indicated that the remote sensing retrievals provided a reasonable estimation of the optical properties, with mean differences between calculated and observed fluxes of less than 5 W/m2 and RMS differences less than 25 W/m2. Sensitivity tests for a particular case study showed that the observed fluxes could be matched with variations of < 10% in the inputs to the radiative transfer model. We estimated the daily-averaged aerosol radiative effect at the surface by subtracting the clear calculations from the aerosol calculations. The average daily SW aerosol radiative effect over the study period was -27 W/m2, which is comparable to values estimated from satellite data and from climate models with sophisticated dust parameterizations.

McFarlane, Sally A.; Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Ackerman, Thomas P.

2009-03-18T23:59:59.000Z

35

Overview of observations from the RADAGAST experiment in Niamey, Niger. Part 2: Radiative fluxes and divergences  

SciTech Connect

Broadband shortwave and longwave radiative fluxes observed both at the surface and from space during the RADAGAST experiment in Niamey, Niger in 2006 are presented. The surface fluxes were measured by the Atmospheric Radiation Measurement (ARM) Program Mobile Facility (AMF) at Niamey airport, while the fluxes at the top of the atmosphere (TOA) are from the Geostationary Earth Radiation Budget (GERB) instrument on the Meteosat-8 satellite. The data are analyzed as daily averages, in order to minimise sampling differences between the surface and top of atmosphere instruments, while retaining the synoptic and seasonal changes that are the main focus of this study. A cloud mask is used to identify days with cloud from those with predominantly clear skies. The influence of temperature, water vapor, aerosols and clouds is investigated. Aerosols are ubiquitous throughout the year and have a significant impact on both the shortwave and longwave fluxes. The large and systematic seasonal changes in temperature and column integrated water vapor (CWV) through the dry and wet seasons are found to exert strong influences on the longwave fluxes. These influences are often in opposition to each other, because the highest temperatures occur at the end of the dry season when the CWV is lowest, while in the wet season the lowest temperatures are associated with the highest values of CWV. Apart from aerosols, the shortwave fluxes are also affected by clouds and by the seasonal changes in CWV. The fluxes are combined to provide estimates of the divergence of radiation across the atmosphere throughout 2006. The longwave divergence is remarkably constant through the year, because of a compensation between the seasonal variations in the outgoing longwave radiation (OLR) and surface net longwave radiation. A simple model of the greenhouse effect is used to interpret this result in terms of the dependence of the normalized greenhouse effect at the TOA and of the effective emissivity of the atmosphere at the surface on the CWV. It is shown that, as the CWV increases, the atmosphere loses longwave energy to the surface with about the same increasing efficiency with which it traps the OLR, thus keeping the atmospheric longwave divergence roughly constant. The shortwave divergence is mainly determined by the CWV and aerosol loadings and the effect of clouds is much smaller than on the component fluxes.

Slingo, A.; White, H. E.; Bharmal, N.; Robinson, G. J.

2009-02-25T23:59:59.000Z

36

Newsletter Signup Form  

NLE Websites -- All DOE Office Websites (Extended Search)

EETD NEWSLETTER - MANAGE SUBSCRIPTIONS EETD NEWSLETTER - MANAGE SUBSCRIPTIONS (red fields are required) Manage subscriptions: Subscribe Unsubscribe Name E-Mail Affiliation Address Address (line 2) City State/Province Zip/Postal Code Country (please select a country) none Afghanistan Albania Algeria American Samoa Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia Bosnia and Herzegowina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d'Ivoire Croatia (Hrvatska) Cuba Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic East Timor Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France France, Metropolitan French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guam Guatemala Guinea Guinea-Bissau Guyana Haiti Heard and Mc Donald Islands Holy See (Vatican City State) Honduras Hong Kong Hungary Iceland India Indonesia Iran (Islamic Republic of) Iraq Ireland Israel Italy Jamaica Japan Jordan Kazakhstan Kenya Kiribati Korea, Democratic People's Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People's Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macau Macedonia, The Former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Marshall Islands Martinique Mauritania Mauritius Mayotte Mexico Micronesia, Federated States of Moldova, Republic of Monaco Mongolia Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands Netherlands Antilles New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Northern Mariana Islands Norway Oman Pakistan Palau Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Puerto Rico Qatar Reunion Romania Russian Federation Rwanda Saint Kitts and Nevis Saint LUCIA Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Seychelles Sierra Leone Singapore Slovakia (Slovak Republic) Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands Spain Sri Lanka St. Helena St. Pierre and Miquelon Sudan Suriname Svalbard and Jan Mayen Islands Swaziland Sweden Switzerland Syrian Arab Republic Taiwan, Province of China Tajikistan Tanzania, United Republic of Thailand Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States United States Minor Outlying Islands Uruguay Uzbekistan Vanuatu Venezuela Viet Nam Virgin Islands (British) Virgin Islands (U.S.) Wallis and Futuna Islands Western Sahara Yemen Yugoslavia Zambia Zimbabwe

37

Integrated: Geospatial Toolkit for Nicaragua from NREL  

Open Energy Info (EERE)

and easy to use geographic toolkit that allows non-GIS users to relate the renewable energy resource (solar and wind) data to other geographic data, such as land use, protected...

38

Fuel Ethanol (Renewable) Imports from Nicaragua  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

39

Total Crude Oil and Products Imports from All Countries  

Gasoline and Diesel Fuel Update (EIA)

Country: All Countries Persian Gulf OPEC Algeria Angola Ecuador Iraq Kuwait Libya Nigeria Qatar Saudi Arabia United Arab Emirates Venezuela Non OPEC Albania Argentina Aruba Australia Austria Azerbaijan Bahamas Bahrain Barbados Belarus Belgium Belize Benin Bolivia Brazil Brunei Bulgaria Burma Cameroon Canada Chad Chile China Colombia Congo (Brazzaville) Congo (Kinshasa) Cook Islands Costa Rica Croatia Cyprus Czech Republic Denmark Dominican Republic Egypt El Salvador Equatorial Guinea Estonia Finland France Gabon Georgia, Republic of Germany Ghana Gibralter Greece Guatemala Guinea Hong Kong Hungary India Indonesia Ireland Israel Italy Ivory Coast Jamaica Japan Kazakhstan Korea, South Kyrgyzstan Latvia Liberia Lithuania Malaysia Malta Mauritania Mexico Midway Islands Morocco Namibia Netherlands Netherlands Antilles New Zealand Nicaragua Niue Norway Oman Pakistan Panama Papua New Guinea Peru Philippines Poland Portugal Puerto Rico Romania Russia Senegal Singapore Slovakia South Africa Spain Spratly Islands Swaziland Sweden Switzerland Syria Taiwan Thailand Togo Trinidad and Tobago Tunisia Turkey Turkmenistan Ukraine United Kingdom Uruguay Uzbekistan Vietnam Virgin Islands (U.S.) Yemen

40

CRC handbook of agricultural energy potential of developing countries  

Science Conference Proceedings (OSTI)

The contents of this book are: Introduction; Kenya; Korea (Republic of); Lesotho; Liberia; Malagasy; Malawi; Mali; Mauritania; Mexico, Mozambique, Nepal; Nicaragua; Niger; Nigeria; Pakistan; Panama; Paraguay; Peru; Philippines; Rwanda; Senegal; Sierra Leone; Somalia; Sri Lanka; Sudana; Surinam; Swaziland; Tanzania; Thailand; Togo; Uganda; Uruguay; Venezuela; Zaire; Zambia; Appendix I. Conventional and Energetic Yields; Appendix II, Phytomass Files; and References.

Duke, J.A.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nicaragua niger niue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

License Exceptions Supplement No. 1 to Part 740 page 1 Export Administration Regulations September 28, 2001  

E-Print Network (OSTI)

Group Nuclear Suppliers Group Argentina X X X Australia X X X X Austria1 X X X Belgium X X X X Brazil X Netherlands New Zealand Nicaragua Niger Nigeria Norway Oman Pakistan Palau Panama Papua New Guinea Paraguay Group D [D: 1] [D: 2] [D: 3] [D: 4] Country National Nuclear Chemical & Missile Security Biological

Bernstein, Daniel

42

High resolution sequence stratigraphic and reservoir characterization studies of D-07, D-08 and E-01 sands, Block 2 Meren field, offshore Niger Delta  

E-Print Network (OSTI)

Meren field, located offshore Niger Delta, is one of the most prolific oil-producing fields in the Niger Delta. The upper Miocene D-07, D-08 and E-01 oil sands comprise a series of stacked hydrocarbon reservoirs in Block 2 of Meren field. These reservoir sandstones were deposited in offshore to upper shoreface environments. Seven depositional facies were identified in the studied interval, each with distinct lithology, sedimentary structures, trace fossils, and wire-line log character. The dominant lithofacies are (1) locally calcite-cemented highly-bioturbated, fine-grained sandstones, (middle to lower shoreface facies); (2) cross-bedded, fine- to medium-grained well-sorted sandstones (upper shoreface facies); (3) horizontal to sub-horizontal laminated, very-fine- to fine-grained sandstone (delta front facies); (4) massive very-fine- to fine-grained poorly-sorted sandstone (delta front facies); (5) muddy silt- to fine-grained wavy-bedded sandstone (lower shoreface facies); (6) very-fine- to fine-grained sandy mudstone (lower shoreface facies); and (7) massive, silty shales (offshore marine facies). Lithofacies have distinct mean petrophysical properties, although there is overlap in the range of values. The highest quality reservoir deposits are cross-bedded sands that were deposited in high-energy upper shoreface environments. Calcite cements in lower shoreface facies significantly reduce porosity and permeability. Integration of core and wire-line log data allowed porosity and permeability to be empirically determined from bulk density. The derived equation indicated that bulk density values could predict 80% of the variance in core porosity and permeability values. Three parasequence sets were interpreted, including one lower progradational and two upper retrogradational parasequence sets. The progradational parasequence set consists of upward-coarsening delta front to upper shoreface facies, whereas the upward-fining retrogradational parasequence sets are composed of middle to lower shoreface deposits overlain by offshore marine shales. The limited amount of core data and the relatively small area of investigation place serious constraints on stratigraphic interpretations. Two possible sequence stratigraphic interpretations are presented. The first interpretation suggests the deposits comprise a highstand systems tract overlain by a transgressive systems tract. A lowstand systems tract is restricted to an incised valley fill at the southeastern end of the study area. The alternate interpretation suggests the deposits comprise a falling stage systems tract overlain by transgressive systems tract.

Esan, Adegbenga Oluwafemi

2002-12-01T23:59:59.000Z

43

Nicaragua-San Jacinto-Tizate Geothermal Power Project | Open...  

Open Energy Info (EERE)

Geothermal Power Project AgencyCompany Organization Inter-American Development Bank Sector Energy Focus Area Renewable Energy, Geothermal Topics Background analysis...

44

Nicaragua - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

US EIA provides data, forecasts, country analysis brief and other analyses, focusing on the energy industry including oil, natural gas and electricity.

45

Integrated: Geospatial Toolkit GIS data for Nicaragua from NREL...  

Open Energy Info (EERE)

that can be used for decision making and policy analysis in addition to planning for future energy projects. The SWERA application utilizes Geographical Information Systems...

46

BioCarbon Fund Project Portfolio | Open Energy Information  

Open Energy Info (EERE)

Portfolio Portfolio Jump to: navigation, search Name BioCarbon Fund Project Portfolio Agency/Company /Organization World Bank Sector Land Focus Area Forestry Topics Market analysis, Policies/deployment programs, Background analysis Website http://wbcarbonfinance.org/Rou Country Albania, China, Colombia, Costa Rica, Ethiopia, Honduras, India, Kenya, Madagascar, Mali, Moldova, Nicaragua, Niger, Uganda Southern Europe, Eastern Asia, South America, Central America, Eastern Africa, Central America, Southern Asia, Eastern Africa, Eastern Africa, Western Africa, Eastern Europe, Central America, Western Africa, Eastern Africa References BioFund Projects[1] Background "The BioCarbon Fund provides carbon finance for projects that sequester or conserve greenhouse gases in forests, agro- and other ecosystems. Through

47

The Effect of War and Its Aftermath on Land Use and Land Cover in Jinotega, Nicaragua  

E-Print Network (OSTI)

Return Outcomes in Bosnia- Herzegovina a Decade Beyond War.Agricultural Land in Bosnia-Herzegovina After the 1992-1995was seen after the Bosnia-Herzegovina war when the war left

Zeledon, Esther Beatriz

2010-01-01T23:59:59.000Z

48

From Resource Management to Political Activism: Civil Society Participation in Nicaragua's Rural Water Governance  

E-Print Network (OSTI)

of differentiated energy tariffs for CAPS whose waterof differentiated energy tariffs for CAPS (Art. 25); andinclude differentiated energy tariffs, tax exemptions for

Romano, Sarah T.

2012-01-01T23:59:59.000Z

49

From Resource Management to Political Activism: Civil Society Participation in Nicaragua's Rural Water Governance  

E-Print Network (OSTI)

government officials and state agencies. Successful CPRsor agreements, between state agencies and the internationalofficials, and state agencies? Drawing upon interviews with

Romano, Sarah T.

2012-01-01T23:59:59.000Z

50

Figure 1. Nicaragua at night. The circled area is the Bluefields region.  

E-Print Network (OSTI)

volt car battery, a radio, and the bulbs, switches and wiring needed to provide electric lighting of the world's population, live without access to electricity. Over 99% of these people live in developing countries and four out of five live in rural areas1 . As electricity is the most efficient fuel source

Kammen, Daniel M.

51

Niger - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

US EIA provides data, forecasts, country analysis brief and other analyses, focusing on the energy industry including oil, natural gas and electricity.

52

Maa-Bara : catalyzing change in Nigeria's Niger delta  

E-Print Network (OSTI)

Can architecture catalyze economic growth? This thesis serves as a design contribution to the war against poverty by proving that small-scale architectural interventions can propagate large-scale economic growth. It ...

Okiomah, Ogheneruno E. (Ogheneruno Elo)

2011-01-01T23:59:59.000Z

53

TECNOSOL | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name TECNOSOL Place Contigua a Panader-a Norma, Nicaragua Sector Hydro, Solar, Wind energy Product Nicaragua-based solar, wind, and hydroelectric system...

54

Rural electrification, climate change, and local economies: Facilitating communication in development policy and practice on Nicaragua's Atlantic Coast  

E-Print Network (OSTI)

cost,low?carbonruralenergy services. EnergyPolicy,39(Modi,V. (2005). Energyservicesforthepoor(NewYork,oflow?carbonenergyservicesinruralcommunities. The

Casillas, Christian E.

2012-01-01T23:59:59.000Z

55

Rural electrification, climate change, and local economies: Facilitating communication in development policy and practice on Nicaragua's Atlantic Coast  

E-Print Network (OSTI)

Lifetimecostsforwind/solarintegrationintoOrinocoandLifetimecostsforwind/solarintegrationintoOrinocoandbiogas,aswellasintegrationofwindandsolar. The

Casillas, Christian E.

2012-01-01T23:59:59.000Z

56

Rural electrification, climate change, and local economies: Facilitating communication in development policy and practice on Nicaragua's Atlantic Coast  

E-Print Network (OSTI)

streetlights .lightsensorsonthestreetlightsdonotfunction,andinstallation Smallerstreetlights Biogas Reducediesel

Casillas, Christian E.

2012-01-01T23:59:59.000Z

57

Rural electrification, climate change, and local economies: Facilitating communication in development policy and practice on Nicaragua's Atlantic Coast  

E-Print Network (OSTI)

Windturbine.havetakenmefromwindturbinestoplayinggameswithdieselplantcapacity Windturbine(class2) Replacestreet

Casillas, Christian E.

2012-01-01T23:59:59.000Z

58

Rural electrification, climate change, and local economies: Facilitating communication in development policy and practice on Nicaragua's Atlantic Coast  

E-Print Network (OSTI)

fuels Feed?intariffsforrenewableenergytechnologiesasthe marginaltariffratexenergysaved. Takingintoenergycostsrelativetobaselinediesel generationsupplyandtariff

Casillas, Christian E.

2012-01-01T23:59:59.000Z

59

Rural electrification, climate change, and local economies: Facilitating communication in development policy and practice on Nicaragua's Atlantic Coast  

E-Print Network (OSTI)

biogas/anaerobic_digestion/casestudy.pdf Aycrigg,M. (ofbiogasfrom theanaerobicdigestionofanimalwaste. productionthroughanaerobicdigestion,oroil extraction

Casillas, Christian E.

2012-01-01T23:59:59.000Z

60

Rural electrification, climate change, and local economies: Facilitating communication in development policy and practice on Nicaragua's Atlantic Coast  

E-Print Network (OSTI)

House,D. W. (2006). BiogasHandbook. AlternativeHousetermoperationofa smallbiogas/dieseldual?fuelenginegenerationwith biogasinCostaRica. Retrievedfrom

Casillas, Christian E.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nicaragua niger niue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Rural electrification, climate change, and local economies: Facilitating communication in development policy and practice on Nicaragua's Atlantic Coast  

E-Print Network (OSTI)

thecaseofdieselmicrogrids. SAPIENS,5(1),19. RuralElectrificationUsingMicrogrids. JournalofEnergythecasewithdieselmicrogrids. Whilegridextensionis

Casillas, Christian E.

2012-01-01T23:59:59.000Z

62

Rural electrification, climate change, and local economies: Facilitating communication in development policy and practice on Nicaragua's Atlantic Coast  

E-Print Network (OSTI)

lifetimecostsforbothwindandsolar. Thus,energyenergygeneratedbythewindorsunbeforethegridisin operation,whichcontributestoslightlyelevatedsystemcosts. costof conservedenergycurves,calculatedfortheclass1andclass2wind

Casillas, Christian E.

2012-01-01T23:59:59.000Z

63

Limitations of the advection-diffusion equation for modeling tephra fallout: 1992 eruption of Cerro Negro Volcano, Nicaragua.  

E-Print Network (OSTI)

??Detailed mapping and granulometric analyses of the 1992 Cerro Negro tephra blanket reveal remarkable departures from the expected distribution of tephra. Isomass maps show that (more)

Martin, Kristin Terese

2004-01-01T23:59:59.000Z

64

Rural electrification, climate change, and local economies: Facilitating communication in development policy and practice on Nicaragua's Atlantic Coast  

E-Print Network (OSTI)

GtCO 2 ?eq/yr) EnergySupply Industry Forestry/Forestsofenergysupply,transportation,buildings,industry,

Casillas, Christian E.

2012-01-01T23:59:59.000Z

65

Rural electrification, climate change, and local economies: Facilitating communication in development policy and practice on Nicaragua's Atlantic Coast  

E-Print Network (OSTI)

wellasresidentialelectricitybills. ThepovertymetricssanalysisofmonthlyelectricitybillsinOrinocoandtroublepayingtheelectricitybill,whichisthreetimes

Casillas, Christian E.

2012-01-01T23:59:59.000Z

66

Estimating the potential returns to research and development from sorghum value added products in El Salvador and Nicaragua.  

E-Print Network (OSTI)

??Sorghum bicolor (L.) Moench is a drought tolerant crop able to adapt to hot and dry weather. It has excellent chemical and physical properties, which (more)

Jaen Celada, Jaeljattin R.

2011-01-01T23:59:59.000Z

67

Rural electrification, climate change, and local economies: Facilitating communication in development policy and practice on Nicaragua's Atlantic Coast  

E-Print Network (OSTI)

E. I. ,Barley,C. D. ,&Drouilhet,S. (1997). DieselBaring?Gould,Barley,&Drouilhet,1997;IEG,2008;Solano?

Casillas, Christian E.

2012-01-01T23:59:59.000Z

68

Forest Stewardship Standards A Survival Guide  

E-Print Network (OSTI)

: Karlis Latisenko Nicaragua: Jaime Rafael Guillen Russia: Yuri Pautov Sweden: Peter Roberntz, Per Larsson

69

External costs of oil and gas exploration in the Niger Delta Region of Nigeria.  

E-Print Network (OSTI)

?? The purpose of this study was to investigate the phenomenal impact of oil and gas exploration on the host communities, with a central focus (more)

Amaefule, Ezewuchi Fidelis

2010-01-01T23:59:59.000Z

70

The Impact of Launching Surgery at the District Level in Niger  

E-Print Network (OSTI)

effects of this training program for generalist physiciansDescription of surgical training program Students chosen toSupervision of these training programs in the different

2009-01-01T23:59:59.000Z

71

Abstract Masaya volcano (560 m a.s.l.), Nicaragua, re-sumed its degassing activity in mid-1993 with the con-  

E-Print Network (OSTI)

) to characterise the dispersion of the gas emissions around the volcano, (2) to investigate the influence dispersion of the gas plume by the north-easterly trade winds over a 80­85° sector, which is equivalent). These observations suggest that the terrain topog- raphy strongly influences gas dispersion in the Masaya area

Mucci, Alfonso

72

LAC Regional Platform Workshop Insurance & Visas | Open Energy...  

Open Energy Info (EERE)

Kenya Kirguizistn Kosovo Kuwait Lesotho Liberia * Lybia Lebanon Madagascar Malaysia Malawi Mali Morocco Mauritania Moldavia Mongolia Mozambique Namibia Nepal Nicaragua...

73

CHILE, A FOOD POWER: THE IMPORTANCE OF THE ...  

Science Conference Proceedings (OSTI)

... well as 35 laboratories from Argentina, Peru, Brazil, Panam, Nicaragua, Ecuador among others. GRAFICO N1 RESULTADOS ...

2012-07-27T23:59:59.000Z

74

Emulating the fast-start swimming performance of the Chain Pickerel (Esox niger) using a mechanical fish design  

E-Print Network (OSTI)

Mean maximum start-up accelerations and velocities achieved by the fast-start specialist, northern pike, are reported at 120 ms-2 and 4 ms-1, respectively (Harper and Blake, 1990). In this thesis, a simple mechanical system ...

Watts, Matthew Nicholas

2006-01-01T23:59:59.000Z

75

Characterization and space/time downscaling of the inundation extent over the Inner Niger Delta using GIEMS and MODIS data  

Science Conference Proceedings (OSTI)

Our objective is to develop downscaling methodologies to obtain long time record of inundation extent at high spatial resolution, based on the existing low spatial resolution results of the Global Inundation Extent from Multi-Satellite dataset. In ...

Filipe Aires; Fabrice Papa; Catherine Prigent; Jean-Franois Crtaux; Muriel Berge-Nguyen

76

Atmospheric Radiation Measurement (ARM) Data from Niamey, Niger for the Radiative Atmospheric Divergence using AMF, GERB and AMMA Stations (RADAGAST)  

DOE Data Explorer (OSTI)

The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory.

77

A geospatial analysis of market integration: the case of the 2004/5 food crisis in Niger  

E-Print Network (OSTI)

The Agricultural Market Information System (SIMA) of Nigerinfrastructure and information may inhibit market integra-the absence of information about how markets are related and

Shin, Michael

2010-01-01T23:59:59.000Z

78

CI-OFF Ex A (Rev. 0.2, 4/9/13) Exhibit A General Conditions  

NLE Websites -- All DOE Office Websites (Extended Search)

Republic, El Salvador, Guatemala, Honduras, Israel, Mexico, Morocco, Nicaragua, Oman, Peru, or Singapore); or (3) A least developed country (Afghanistan, Angola, Bangladesh,...

79

WorldWideScience.org | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Mexico, Nepal, The Netherlands, New Zealand, Nicaragua, Nigeria, Norway, Philippines, Poland, Portugal, Russia, Rwanda, Senegal, Sierra Leone, South Africa, Sierra Leone, Spain,...

80

The Heroic Framing of US Foreign Policy  

E-Print Network (OSTI)

Lebanon, Libya, Nicaragua, Pakistan, Panama, Saudi Arabia,Since 1979, the US and Pakistan have had a relationshipis governed mainly by Pakistans antagonistic relations with

Shaw, Emily D.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nicaragua niger niue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions  

E-Print Network (OSTI)

electricity GHG factors from the WRI - part II [g-CO 2eq /kWh] Nicaragua Nigeria Norway Oman Pakistan Panama Peru Philippines

Reich-Weiser, Corinne

2010-01-01T23:59:59.000Z

82

Joint Programme on Resource Efficient and Cleaner Production...  

Open Energy Info (EERE)

Mozambique, Nicaragua, Peru, Romania, Russia, Serbia, Slovakia, South Africa, South Korea, Sri Lanka, Tanzania, Tunisia, Uganda, Ukraine, Uzbekistan, Vietnam, Zimbabwe Western...

83

DPI403 NORRIS FALL 2009 8/13/2009 12:31 PM DEMOCRATIC GOVERNANCE  

E-Print Network (OSTI)

SALVADOR HONDURAS NICARAGUA COSTA RICA PANAMÁ COLOMBIA VENEZUELA ECUADOR PER? BRASIL BOLIVIA PARAGUAY CHILE NICARAGUA VENEZUELA BRASIL BOLIVIA URUGUAY ARGENTINA JAMAICA HAITÍ REP. DOMINICANA TRINIDAD Y TOBAGO (incluyendoa Venezuela)seconcentrael25%dela biodiversidaddelplaneta. EnlosAndes estánpresentes84delas114zonasde

Milchberg, Howard

84

Export.gov - NI Home page  

NLE Websites -- All DOE Office Websites (Extended Search)

nicaragüenses nicaragüenses Register | Manage Account Search Our Site Click to Search Our Site Export.gov Home Opportunities By Industry By Country Market Research Trade Events Trade Leads Free Trade Agreements Solutions International Sales & Marketing International Financing International Logistics Licenses & Regulations Trade Data & Analysis Trade Problems Locations Domestic Offices International Offices FAQ Blog Connect Home > Nicaragua Local Time: Print | E-mail Page Nicaragua Nicaragua Home Doing Business in Nicaragua Market Research on Nicaragua Services for U.S. Companies Trade Events SelectUSA U.S.-Central America Free Trade Agreement (CAFTA) The Staff Contact Us Our Worldwide Network About Us Press Room Other Central American Markets Other American Markets Other Worldwide Markets

85

UNAIDS RepoRt oN the globAl AIDS epIDemIc | 2012  

E-Print Network (OSTI)

Australia Azerbaijan Bangladesh Belarus Belize Brazil Bulgaria Cameroon Canada Cape Verde Colombia Costa Indonesia Nicaragua Nigeria Pakistan 25­49% Azerbaijan Benin Bolivia Brazil Chile Democratic Republic Hungary Philippines Lebanon Republic of Korea Lithuania Tunisia Serbia Algeria Slovenia Azerbaijan Armenia

Lycan, Deborah E.

86

Design of fuel efficient brick kiln for ceramic water filter firing in Ghana  

E-Print Network (OSTI)

Ceramic water filters are currently produced in Ghana in order to provide a household solution to contaminated water. These filters, locally branded with the name Kosim filter by originating from Potters for Peace-Nicaragua, ...

Adjorlolo, Eric (Eric James Kofi)

2007-01-01T23:59:59.000Z

87

Alteration Patterns In Volcanic Rocks Within An East-West Traverse Through  

Open Energy Info (EERE)

Patterns In Volcanic Rocks Within An East-West Traverse Through Patterns In Volcanic Rocks Within An East-West Traverse Through Central Nicaragua Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Alteration Patterns In Volcanic Rocks Within An East-West Traverse Through Central Nicaragua Details Activities (0) Areas (0) Regions (0) Abstract: The volcanic rocks investigated in a cross-section between the Pacific and Atlantic coasts of Nicaragua - with the exception of Recent and some Pleistocene lavas - are incipiently to strongly altered. Alteration patterns on different scales can be discerned in the Tertiary sequences: (i) a regional burial diagenesis or very low-grade burial metamorphism at the low-temperature end of the zeolite facies (mordenite subfacies) with an inferred thermal gradient of < 50°C/km, grading into (ii) a geothermal

88

www.eia.gov  

U.S. Energy Information Administration (EIA)

Kenya Lesotho Liberia Libya Madagascar Malawi Mali Mauritania Mauritius Morocco Mozambique Namibia Niger Nigeria Reunion Rwanda Saint Helena Sao Tome and Principe ...

89

Uncertainty analysis of the mud infill prediction of the Olokola LNG terminal.  

E-Print Network (OSTI)

??For a proposed liquefied natural gas export facility, Olokola LNG (OKLNG), located at the western limits of the Niger Delta in Nigeria a 10 km (more)

Bakker, S.A.

2009-01-01T23:59:59.000Z

90

Moving Images Against The Current: The Aesthetics and Geopolitics of (Im)mobility in Contemporary Europe  

E-Print Network (OSTI)

the labor force at the uranium mine in Arlit. 143 SimonesThe French built a uranium mine at Arlit in Niger during the

Bayraktar, Nilgun

2011-01-01T23:59:59.000Z

91

Biosciences Center, National Renewable Energy Laboratory, Golden...  

NLE Websites -- All DOE Office Websites (Extended Search)

nidulans , A. niger Soil, wood rot Cellulomonas fimi Soil Agaricus bisporus Compost Cellvibrio japonicus Soil Coprinus truncorum Soil, compost Cytophaga hutchinsonii ...

92

Die Jontophorese der mit medikamentö  

Science Conference Proceedings (OSTI)

Flora, 131. N.F. 31, 87--112, 1936. Die bevorzugte Aufnahme saurer Farbstoffe bei hoher Wasserstoffionen- konzentration der die Zellen yon Asperffillus niger...

93

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

include extended operations in the diverse environments of Niamey, Niger and Germany's Black Forest. Capitalizing on the AMF's continuous record of vertically pointing 95 GHz...

94

Precious Coral Fisheries of Hawaii and the U.S. Pacific Islands Introduction  

E-Print Network (OSTI)

,India,Kenya,LesserSunda Islands,Malaysia,NewCaledonia,New Guinea,Nicaragua,Philippines,Samoa. Solomon.Trop.Bot.Gard.(740137-001)from seedcollectedfromcultivatedplantson Kauai,parentplantfromMoorea,French Polynesia Andaman,MalukuIslands,MascareneIslands, NewCaledonia,NewGuinea,NicobarIslands, Philippines,RyukyuIslands,Seychelles, Sri

95

OBSERVING THE OCEAN IN THE 2000'S: A STRATEGY FOR THE ROLE OF ACOUSTIC TOMOGRAPHY  

E-Print Network (OSTI)

,India,Kenya,LesserSunda Islands,Malaysia,NewCaledonia,New Guinea,Nicaragua,Philippines,Samoa. Solomon.Trop.Bot.Gard.(740137-001)from seedcollectedfromcultivatedplantson Kauai,parentplantfromMoorea,French Polynesia Andaman,MalukuIslands,MascareneIslands, NewCaledonia,NewGuinea,NicobarIslands, Philippines,RyukyuIslands,Seychelles, Sri

Dushaw, Brian

96

NEWS FOR ECE ILLINOIS ALUMNI AND FRIENDS SPRING 2008  

E-Print Network (OSTI)

in Nicaragua is a much-needed safety factor," says Anders Sonnenburg (EE'08), Xcel Energy Strategic Technol Aeronautic and Space Administration, and local partners Xcel Energy, Minnesota Power, Great River Energy including Xcel and Great River Energy. In addition, Prof. Mohan was recognized as a University of Minnesota

Liu, Gang "Logan"

97

2010 Environmental Benefits Report Minnesota Technical Assistance Program  

E-Print Network (OSTI)

in Nicaragua is a much-needed safety factor," says Anders Sonnenburg (EE'08), Xcel Energy Strategic Technol Aeronautic and Space Administration, and local partners Xcel Energy, Minnesota Power, Great River Energy including Xcel and Great River Energy. In addition, Prof. Mohan was recognized as a University of Minnesota

Minnesota, University of

98

95 12 18 12 14 ( ) TaiwanICDF _ 3/5  

E-Print Network (OSTI)

95 12 18 12 14 ( ) 2006.12.05 70 TaiwanICDF _ 3/5 2006.11.30 Nicaragua TaiwanICDF 10/1-10/4 Universidad Americana Thomas More TaiwanICDF TaiwanICDF #12;95 12 18 12 14 ( ) Thomas More Thomas More Thomas More Thomas More

Huang, Haimei

99

Watch Out for the Snakes! 21 Biologists and one Physicist in a Rain Forest  

NLE Websites -- All DOE Office Websites (Extended Search)

Watch Out for the Snakes! 21 Biologists and one Physicist in a Rain Forest Watch Out for the Snakes! 21 Biologists and one Physicist in a Rain Forest in Nicaragua Speaker(s): Donald Grether Date: June 29, 2007 - 12:00pm Location: 90-3122 Don, his wife Becky, and their granddaughter Briana recently returned from spending almost three weeks at a field station in a rain forest in Nicaragua, along with UCLA faculty members, graduate students, and undergraduates. Our location was way off the beaten track, even for "eco-tourists", and could only be reached by a three-hour boat trip on Rio San Juan. No hot water or space heating or cooling, running water most but not all of the time, no electricity in our rooms, no windows, and no Internet. Sort of like a near-zero energy building. Don's presentation will include photos that give some sense of why we went, what it took to

100

Technical Report - Central America Wind Energy Resource Assessment | OpenEI  

Open Energy Info (EERE)

Central America Wind Energy Resource Assessment Central America Wind Energy Resource Assessment Dataset Summary Description (Abstract): This document describes the development of detailed high-resolution (1 km2) wind energy resource maps for the region of Central America that includes the countries of Belize, El Salvador, Guatemala, Honduras, and Nicaragua. (Purpose): To provide information on the wind resource potential within the following countries in Central America: Belize, El Salvador, Guatemala, Honduras, and Nicaragua. Source NREL Date Released August 21st, 2006 (8 years ago) Date Updated August 21st, 2006 (8 years ago) Keywords Central America documentation GEF NREL SWERA UNEP wind Data application/pdf icon Download Report (pdf, 60.9 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

Note: This page contains sample records for the topic "nicaragua niger niue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

File:Central America 50m Wind Power.pdf | Open Energy Information  

Open Energy Info (EERE)

America 50m Wind Power.pdf America 50m Wind Power.pdf Jump to: navigation, search File File history File usage Central America - 50m Wind Power Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 1.54 MB, MIME type: application/pdf) Title Central America - 50m Wind Power Description Central America - 50m Wind Power Sources NREL Related Technologies Wind Creation Date 2004/10/22 Extent International Countries Belize, Guatemala, Honduras, El Salvador, Nicaragua UN Region Central America Coordinates 13.846614265322°, -85.703613460064° 50 m wind power density (W/m2) maps of Central America provide information on the wind resource potential within the following countries in Central America: Belize, El Salvador, Guatemala, Honduras, and Nicaragua.

102

Solar: hourly solar (direct normal (DNI), global horizontal (GHI), and  

Open Energy Info (EERE)

Nicaragua from SUNY Nicaragua from SUNY Dataset Summary Description (Abstract): Zip file contains year-site specific files including time series of global, direct and diffuse irradiance (Purpose): The time series are useful for performing site specific simulation of customized solar energy systems (Supplemental Information): Each file's name identifies year and location, by listing Country_City_latitude-longitude_year, e.g., EL_SALVADOR_San_Salvador_13.75-89.15_98.out is for the city of San Salvador, in El Salvador, latitude 13.75 degrees, longitude -89.15 degrees, year 1998. The content of each file includes A one line header, listing latitude, longitude and ground elevation in meters,Hourly records including, year, month, day, time (GMT), global irradiance, direct irradiance and

103

Gateway:América Latina | Open Energy Information  

Open Energy Info (EERE)

Latina Latina Jump to: navigation, search Banner vertical.jpg Energías Renovables Energia_solar Solar Eolica Eólica Geotermica Geotérmica Hidráulica Hidráulica Biomasa Biomasa Marina Marina Centros Latinoamericanos Desarrollo de Proyectos Marco Regulatorio Países Latinoamericanos Argentina Argentina Bolivia Bolivia Brazil Brazil Chile Chile Colombia Colombia Costa Rica Costa Rica Cuba Cuba Ecuador Ecuador El Salvador El Salvador Guatemala Guatemala Haiti Haiti Honduras Honduras Mexico Mexico Nicaragua Nicaragua Panama Panama Paraguay Paraguay Peru Peru Republica Dominicana Dominican Republic Uruguay Uruguay Venezuela Venezuela Otros sitios de interés Reegle, el motor de búsqueda de energías renovables y eficiencia energética Power Technologies Energy Data Book Asociación Latinoaméricana de Energía Eólica

104

Comparison of Simulated and Observed Continental Tropical Anvil Clouds and Their Radiative Heating Profiles  

Science Conference Proceedings (OSTI)

Vertically pointing millimeter-wavelength radar observations of anvil clouds extending from mesoscale convective systems (MCSs) that pass over an Atmospheric Radiation Measurement Program (ARM) field site in Niamey, Niger, are compared to anvil ...

Scott W. Powell; Robert A. Houze Jr.; Anil Kumar; Sally A. McFarlane

2012-09-01T23:59:59.000Z

105

Soil Moisture Modeling Based on Multiyear Observations in the Sahel  

Science Conference Proceedings (OSTI)

Two simple soil moisture models useful for drought monitoring and climate change studies were proposed, based on 4-yr ground observations of root-zone soil moisture in Sahelian Niger. One is a water balance model that calculates soil moisture ...

Y. Yamaguchi; M. Shinoda

2002-11-01T23:59:59.000Z

106

A Comparison of the Water Budgets between Clouds from AMMA and TWP-ICE  

Science Conference Proceedings (OSTI)

Two field campaigns, the African Monsoon Multidisciplinary Analysis (AMMA) and the Tropical Warm PoolInternational Cloud Experiment (TWP-ICE), took place in 2006 near Niamey, Niger, and Darwin, Northern Territory, Australia, providing extensive ...

Xiping Zeng; Wei-Kuo Tao; Scott W. Powell; Robert A. Houze Jr.; Paul Ciesielski; Nick Guy; Harold Pierce; Toshihisa Matsui

2013-02-01T23:59:59.000Z

107

Radar Observations of Convective System Variability in Relationship to African Easterly Waves during the 2006 AMMA Special Observing Period  

E-Print Network (OSTI)

A radar-based analysis of the structure, motion, and rainfall variability of westward-propagating squall-line mesoscale convective systems (SLMCSs) in Niamey, Niger, during the African Monsoon Multidisciplinary Activities ...

Williams, Earle R.

108

ARM - Instrument - irt  

NLE Websites -- All DOE Office Websites (Extended Search)

Niger OLI M1 Browse Data Oliktok Point, Alaska PVC M1 Browse Data Highland Center, Cape Cod MA; AMF 1 PYE M1 Browse Data Point Reyes, CA Contact(s) Victor Morris (509) 372-6144...

109

ARM - Instrument - mwrp  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Niamey, Niger PGH M1 Browse Data ARIES Observatory, Nainital, Uttarkhand, India PVC M1 Browse Data Highland Center, Cape Cod MA; AMF 1 PYE M1 Browse Data Point Reyes, CA...

110

Diurnal and Seasonal Cycles of Cloud Occurrences, Types, and Radiative Impact over West Africa  

Science Conference Proceedings (OSTI)

This study focuses on the occurrence and type of clouds observed in West Africa, a subject that has been neither much documented nor quantified. It takes advantage of data collected above Niamey, Niger, in 2006 with the Atmospheric Radiation ...

Dominique Bouniol; Fleur Couvreux; Pierre-Honor Kamsu-Tamo; Madeleine Leplay; Franoise Guichard; Florence Favot; Ewan J. OConnor

2012-03-01T23:59:59.000Z

111

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Adieu to Niger, Guten Tag to Germany Bookmark and Share The AMF decommissioning team poses for a group photo at the AMF site near the airport in Niamey. The AMF decommissioning...

112

Radar Observations of Convective System Variability in Relationship to African Easterly Waves during the 2006 AMMA Special Observing Period  

Science Conference Proceedings (OSTI)

A radar-based analysis of the structure, motion, and rainfall variability of westward-propagating squall-line mesoscale convective systems (SLMCSs) in Niamey, Niger, during the African Monsoon Multidisciplinary Activities (AMMA) 2006 special ...

Rosana Nieto Ferreira; Thomas Rickenbach; Nick Guy; Earle Williams

2009-12-01T23:59:59.000Z

113

PUBLICATIONS RECORD The University of British Columbia -Department of Civil Engineering  

E-Print Network (OSTI)

imparting substances in biologically treated pulp mill effluent using Aspergillus niger fungal biomass and requirements for jobs. Water Science and Technology, 59(4): 745-753. 61. Geng, Z., E.R. Hall and P. Bérubé

Froese, Thomas

114

Observations of Saharan Aerosols: Results of ECLATS Field Experiment. Part I: Optical Thicknesses and Aerosol Size Distributions  

Science Conference Proceedings (OSTI)

A series of ground-based and airborne observations of desert aerosols, the ECLATS experiment was carried out in December 1980 in the vicinity of Niamey (Niger). This paper deals with aerosol optical thicknesses and size distributions derived from ...

Y. Fouquart; B. Bonnel; M. Chaoui Roquai; R. Santer; A. Cerf

1987-01-01T23:59:59.000Z

115

www.eia.gov  

U.S. Energy Information Administration (EIA)

PU Kenya KE Lesotho LT Liberia LI Libya LY Madagascar MA Malawi MI Mali ML Mauritania MR Mauritius MP Morocco MO Mozambique MZ Namibia WA Niger NG Nigeria NI Reunion ...

116

Interactions between the Land Surface and Mesoscale Rainfall Variability during HAPEX-Sahel  

Science Conference Proceedings (OSTI)

The Hydrological Atmospheric Pilot Experiment in the Sahel (HAPEX-Sahel) was designed to investigate landatmosphere interactions in the semiarid conditions of southwest Niger. During the intensive observation period (IOP) in 1992, a pronounced ...

Christopher M. Taylor; Frdrique Sad; Thierry Lebel

1997-09-01T23:59:59.000Z

117

ARM - Niamey News  

NLE Websites -- All DOE Office Websites (Extended Search)

RADAGAST Proposal Outreach Fact Sheets RADAGAST (PDF) Annual Climate Cycle in Niger, Africa (PDF) Posters AMF Poster, French Version We're Going to Sample the Sky in Africa News...

118

University of Missouri Foreign Visitor  

E-Print Network (OSTI)

Nicaragua 47 78 Iran 46 79 Vanuatu 46 79 Azerbaijan 45 81 Belize 43 82 El Salvador 42 83 Honduras 42 83 81 0 25970 77 - 103 25x 33x Azerbaijan 81 74 45 55 35 7697 121 5 550 70 97 96 - - Bahamas 129 68 21 - - - - - - - - - Azerbaijan 81 6 26 49 - 10 2 3 22 - - Bahamas 129 - - - - - - - - - - Bahrain 142 6x 36 69 - 9 2 5 10

Zeng, Yong - Department of Mathematics and Statistics, University of Missouri

119

Unmarried cohabitation among deprived families in Chile  

E-Print Network (OSTI)

% 80% 90% 100% Chile Uruguay Mexico Costa Rica Argentina Bolivia Paraguay Brazil Ecuador Guatemala Belize Cuba Peru Venezuela Nicaragua El Salvador Colombia Panama Honduras Dominican Republic Unmarried Cohabitation Marriage Data sources: For all... of all unions. This group is formed by Venezuela, Peru, Cuba, Belize, Guatemala. Finally, the countries where unmarried cohabitation represents no more than one third of total unions are geographically located in the outer circle.2 Thus, the countries...

Ramm Santelices, Alejandra Margarita

2013-06-12T23:59:59.000Z

120

East Coast (PADD 1) Imports from All Countries  

U.S. Energy Information Administration (EIA) Indexed Site

Import Area: East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Import Area: East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Country: All Countries Persian Gulf OPEC Algeria Angola Ecuador Iraq Kuwait Libya Nigeria Qatar Saudi Arabia United Arab Emirates Venezuela Non OPEC Argentina Aruba Australia Austria Azerbaijan Bahamas Bahrain Barbados Belarus Belgium Brazil Brunei Bulgaria Cameroon Canada Chad Chile China Colombia Congo (Brazzaville) Congo (Kinshasa) Costa Rica Croatia Cyprus Denmark Dominican Republic Egypt El Salvador Equatorial Guinea Estonia Finland France Gabon Georgia, Republic of Germany Ghana Gibralter Greece Guatemala Guinea Hong Kong Hungary India Indonesia Ireland Israel Italy Ivory Coast Jamaica Japan Kazakhstan Korea, South Kyrgyzstan Latvia Liberia Lithuania Malaysia Malta Mauritania Mexico Morocco Namibia Netherlands Netherlands Antilles Niue Norway Oman Pakistan Panama Peru Philippines Poland Portugal Puerto Rico Romania Russia Senegal Singapore South Africa Spain Swaziland Sweden Switzerland Syria Taiwan Thailand Togo Trinidad and Tobago Tunisia Turkey Turkmenistan Ukraine United Kingdom Uruguay Vietnam Virgin Islands (U.S.) Yemen

Note: This page contains sample records for the topic "nicaragua niger niue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Primer_Summer_2011_061011_v2.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Volume 8 Issue 3 1 Volume 8 Issue 3 For decades, citric acid has been produced on a commercial- scale basis with the help of the fungus Aspergillus niger. Outside industry, A. niger is also known to be involved in the global carbon cycle, and its enzymes can be used to break down plant cell walls and get at the sugars that can in turn be fermented for use as biofuels. "Aspergillus niger is an industrial workhorse for enzymes and small molecules such as organic acids," said Scott Baker of the Pacific Northwest National Laboratory. "We know that this single organism is used for production of organic acids and for enzymes, and it can degrade plant cell wall matter for sugar production. For biofuels it's a highly relevant organism since it's already been

122

DOE Joint Genome Institute: Same Fungus, Different Strains: A Comparative  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 2011 3, 2011 Same Fungus, Different Strains: A Comparative Genomics Approach for Improved "Green" Chemical Production WALNUT CREEK, Calif.-Fungi play key roles in nature and are valued for their great importance in industry. Consider citric acid, a key additive in several foods and pharmaceuticals produced on a large-scale basis for decades with the help of the filamentous fungus Aspergillus niger. While A. niger is an integral player in the carbon cycle, it possesses an arsenal of enzymes that can be deployed in breaking down plant cell walls to free up sugars that can then be fermented and distilled into biofuel, a process being optimized by U.S. Department of Energy researchers. Susannah Tringe Photo: Aspergillus niger conidiospore by Kathie T. Hodges, Cornell.

123

Geospatial Toolkit | Open Energy Information  

Open Energy Info (EERE)

Geospatial Toolkit Geospatial Toolkit Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geospatial Toolkit (GsT) Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar, Wind Phase: Determine Baseline Topics: Resource assessment Resource Type: Guide/manual, Software/modeling tools User Interface: Desktop Application Website: www.nrel.gov/applying_technologies/geospatial_toolkits.html Country: Afghanistan, Bangladesh, Bhutan, Brazil, China, El Salvador, Ghana, Guatemala, Honduras, India, Nepal, Nicaragua, Oaxaca, Pakistan, Sri Lanka, Turkey Cost: Free Southern Asia, Southern Asia, Southern Asia, South America, Eastern Asia, Central America, Western Africa, Central America, Central America, Southern Asia, Southern Asia, Central America, , Southern Asia, Southern Asia, Western Asia

124

Forest Carbon Partnership Facility | Open Energy Information  

Open Energy Info (EERE)

Forest Carbon Partnership Facility Forest Carbon Partnership Facility Jump to: navigation, search Logo: Forest Carbon Partnership Facility Name Forest Carbon Partnership Facility Agency/Company /Organization World Bank Sector Land Focus Area Forestry Topics Co-benefits assessment, Finance Resource Type Lessons learned/best practices, Training materials Website http://www.forestcarbonpartner Country Argentina, Bolivia, Cambodia, Cameroon, Central African Republic, Chile, Colombia, Costa Rica, Democratic Republic of Congo, El Salvador, Equatorial Guinea, Ethiopia, Gabon, Ghana, Guatemala, Guyana, Honduras, Indonesia, Kenya, Laos, Laos, Liberia, Madagascar, Mexico, Moldova, Mozambique, Nepal, Nicaragua, Panama, Papua New Guinea, Paraguay, Peru, Republic of the Congo, Suriname, Tanzania, Thailand, Uganda, Vanuatu, Vietnam

125

US EPA Landfill Methane Outreach Program | Open Energy Information  

Open Energy Info (EERE)

Landfill Methane Outreach Program Landfill Methane Outreach Program Jump to: navigation, search Name US EPA Landfill Methane Outreach Program Agency/Company /Organization United States Environmental Protection Agency Sector Energy, Land Focus Area Biomass Topics Policies/deployment programs, Resource assessment, Background analysis Resource Type Software/modeling tools, Workshop Website http://www.epa.gov/lmop/intern Country China, Ecuador, Mexico, Philippines, Thailand, Ukraine, Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama Eastern Asia, South America, Central America, South-Eastern Asia, South-Eastern Asia, Eastern Europe, Central America, Central America, Central America, Central America, Central America, Central America, Central America References LMOP[1]

126

Observatory of Renewable Energy for Latin America and the Caribbean | Open  

Open Energy Info (EERE)

Observatory of Renewable Energy for Latin America and the Caribbean Observatory of Renewable Energy for Latin America and the Caribbean Jump to: navigation, search Logo: Observatory of Renewable Energy for Latin America and the Caribbean Name Observatory of Renewable Energy for Latin America and the Caribbean Agency/Company /Organization Latin America Energy Organization Partner UNIDO Sector Energy Focus Area Renewable Energy, Agriculture, Biomass, Energy Efficiency, Industry, Solar Topics Background analysis, Technology characterizations Resource Type Dataset, Software/modeling tools Website http://www.renenergyobservator Program Start 2009 Country Brazil, Chile, Costa Rica, Colombia, Cuba, Dominican Republic, Ecuador, Mexico, Nicaragua, Paraguay, Peru, Uruguay UN Region Caribbean, Central America, South America

127

Managing Nicaraguan Water Resources Definition and Relative Importance of Information Needs  

Science Conference Proceedings (OSTI)

This report provides an overview of the results of the Vital the Nicaraguan Water Resources Management Initiative, Issues process as implemented for a collaborative effort between the Nicaraguan Ministry of Environment and Natural Resources and Sandia National Laboratories. This initiative is being developed to assist in the development of an efficient and sustainable water resources management system for Nicamgua. The Vital Issues process was used to provide information for developing a project that will develop and implement an advanced information system for managing Nicaragua's water resources. Three Vital Issues panel meetings were convened to 1) develop a mission statement and evaluation criteria for identifying and ranking the issues vital to water resources management in Nicaragua 2) define and rank the vital issues; and 3) identify a preliminary list of information needed to address the vital issues. The selection of panelists from the four basic institutional perspectives- government, industiy, academe, and citizens' groups (through nongovernmental organizations (NGOs))-ensured a high level of stakeholder representation on the panels. The already existing need for a water resource management information system has been magnified in the aftemnath of Hurricane Mitch. This information system would be beneficial for an early warning system in emergencies, and the modeling and simulation capabilities of the system would allow for advanced planning. Additionally, the outreach program will provide education to help Nicaraguan improve their water hygiene practices.

Engi, D.; Guillen, S.M.; Vammen, K.

1999-01-01T23:59:59.000Z

128

Finite-Time Singularity Signature of Hyperinflation  

E-Print Network (OSTI)

We present a novel analysis extending the recent work of Mizuno et al. [2002] on the hyperinflations of Germany (1920/1/1-1923/11/1), Hungary (1945/4/30-1946/7/15), Brazil (1969-1994), Israel (1969-1985), Nicaragua (1969-1991), Peru (1969-1990) and Bolivia (1969-1985). On the basis of a generalization of Cagan's model of inflation based on the mechanism of ``inflationary expectation'' or positive feedbacks between realized growth rate and people's expected growth rate, we find that hyperinflations can be characterized by a power law singularity culminating at a critical time $t_c$. Mizuno et al.'s double-exponential function can be seen as a discrete time-step approximation of our more general nonlinear ODE formulation of the price dynamics which exhibits a finite-time singular behavior. This extension of Cagan's model, which makes natural the appearance of a critical time $t_c$, has the advantage of providing a well-defined end of the clearly unsustainable hyperinflation regime. We find an excellent and reliable agreement between theory and data for Germany, Hungary, Peru and Bolivia. For Brazil, Israel and Nicaragua, the super-exponential growth seems to be already contaminated significantly by the existence of a cross-over to a stationary regime.

D. Sornette; H. Takayasu; W. -X. Zhou

2003-01-06T23:59:59.000Z

129

Observation of the Diurnal Cycle in the Low Troposphere of West Africa  

Science Conference Proceedings (OSTI)

The authors give an overview of the diurnal cycle of the low troposphere during 2006 at two different sites, Niamey (Niger) and Nangatchori (Benin). This study is partly based on the first observations of UHF wind profilers ever made in West ...

Marie Lothon; Frdrique Sad; Fabienne Lohou; Bernard Campistron

2008-09-01T23:59:59.000Z

130

Industrial Oil Products Division List  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountryIndustrial Oil Products Division2013 Members241 Members as of July 1, 2013Abend, SvenKolb Distribution LtdHedingen, SwitzerlandAbraham, TimothyCargill IncHopkins, MN, USAAkinrinade, FrancisNational Open University, Niger

131

Application of Evapoclimatonomy to Monthly Surface Water Balance Calculations at the HAPEX-Sahel Supersites  

Science Conference Proceedings (OSTI)

In this paper a revised verstion of Lettau's evapoclimatonomy model is used to simulate climate in West Africa. The model is applied specifically to the study sites of the HAPEX-Sahel region in Niger, an international regional experiment to study ...

JosA. Marengo; Sharon E. Nicholson; Andrew R. Lare; Bruno A. Monteny; Sylvie Galle

1996-04-01T23:59:59.000Z

132

The Potential of Infrared Satellite Data for the Retrieval of Saharan-Dust Optical Depth over Africa  

Science Conference Proceedings (OSTI)

Optical depth of Saharan dust derived from photometric measurements made during the dry season at a Sahelian site (Niamey, Republic of Niger) is compared with METEOSAT-2 radiance in the 10.512.5 ?m channel for different times of the daily cycle. ...

M. Legrand; J. J. Bertrand; M. Desbois; L. Menenger; Y. Fouquart

1989-04-01T23:59:59.000Z

133

A Political Ecology of Hydraulic Fracturing for Natural Gas in  

E-Print Network (OSTI)

[:] shale gas in the US, sand mines in Wisconsin, oil in the Ecuadoran Amazon, oil in the Niger Delta's Marcellus Shale Laura J. Stroup, Ph.D. Dept. of Geography, Texas State University Michael H. Finewood, Ph ! Background of Marcellus Shale Gas Play ! Current Events: The Case of PA ! Geography of Fracking in Study

Scott, Christopher

134

Effective sea-level rise and deltas: Causes of change and human dimension implications  

E-Print Network (OSTI)

deltas are the site of significant oil and gas accumulations and extraction as in the Niger, Magdalena rates of wetland loss resulting from ESLR are as high as 100 km2 /yr in the delta. Day et al., 2000 construction on the Volta River. Subsidence in the delta is attributed to the extraction of oil, which provides

New Hampshire, University of

135

Wind: wind power density maps at 50m above ground and 1km resolution for  

Open Energy Info (EERE)

924 924 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142257924 Varnish cache server Wind: wind power density maps at 50m above ground and 1km resolution for Central America from NREL Dataset Summary Description (Abstract): 50 m wind power density (W/m2) maps of Central America. (Purpose): To provide information on the wind resource potential within the following countries in Central America: Belize, El Salvador, Guatemala, Honduras, and Nicaragua. Source NREL Date Released June 30th, 2004 (10 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords Central America GIS maps NREL SWERA UNEP wind Data application/zip icon Download Maps (zip, 2.2 MiB) Quality Metrics

136

Production of High Resolution Irradiance Data for Central America and Cuba  

Open Energy Info (EERE)

Production of High Resolution Irradiance Data for Central America and Cuba Production of High Resolution Irradiance Data for Central America and Cuba Dataset Summary Description (Abstract): The main object of the SUNY task for SWERA is to prepare high resolution global irradiance (GHI) and direct irradiance (DNI) data sets for the countries of Cuba, El Salvador, Guatemala, Honduras and Nicaragua.Much of our initial effort focused on building up the satellite data tx_metadatatool, and in strengthening and validating the models capable of converting that data into ground surface irradiances. Three research articles, acknowledging all or partial funding from UNEP & SWERA have been published on this subject. (Purpose): SWERA documentation Source SUNY Albany Date Released July 31st, 2003 (11 years ago) Date Updated August 29th, 2003 (11 years ago)

137

File:NREL-camdirjan.pdf | Open Energy Information  

Open Energy Info (EERE)

camdirjan.pdf camdirjan.pdf Jump to: navigation, search File File history File usage Central America - January Direct Normal Solar Radiation Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 66 KB, MIME type: application/pdf) Title Central America - January Direct Normal Solar Radiation Description Central America - January Direct Normal Solar Radiation Sources National Renewable Energy Laboratory Authors Donna Heimiller Related Technologies Solar, Solar-CSP, Solar-40km Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

138

File:NREL-camdirnov.pdf | Open Energy Information  

Open Energy Info (EERE)

camdirnov.pdf camdirnov.pdf Jump to: navigation, search File File history File usage Central America - November Direct Normal Solar Radiation Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 66 KB, MIME type: application/pdf) Title Central America - November Direct Normal Solar Radiation Description Central America - November Direct Normal Solar Radiation Sources National Renewable Energy Laboratory Authors Donna Heimiller Related Technologies Solar, Solar-CSP, Solar-40km Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

139

Central America | OpenEI  

Open Energy Info (EERE)

Central America Central America Dataset Summary Description (Abstract): 50 m wind power density (W/m2) maps of Central America. (Purpose): To provide information on the wind resource potential within the following countries in Central America: Belize, El Salvador, Guatemala, Honduras, and Nicaragua. Source NREL Date Released June 30th, 2004 (10 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords Central America GIS maps NREL SWERA UNEP wind Data application/zip icon Download Maps (zip, 2.2 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2004 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset

140

methodology | OpenEI  

Open Energy Info (EERE)

methodology methodology Dataset Summary Description (Abstract): The main object of the SUNY task for SWERA is to prepare high resolution global irradiance (GHI) and direct irradiance (DNI) data sets for the countries of Cuba, El Salvador, Guatemala, Honduras and Nicaragua.Much of our initial effort focused on building up the satellite data tx_metadatatool, and in strengthening and validating the models capable of converting that data into ground surface irradiances. Three research articles, acknowledging all or partial funding from UNEP & SWERA have been published on this subject. Source SUNY Albany Date Released July 31st, 2003 (11 years ago) Date Updated August 29th, 2003 (11 years ago) Keywords Cuba methodology solar SWERA UNEP Data application/pdf icon Download Report (pdf, 2.6 MiB)

Note: This page contains sample records for the topic "nicaragua niger niue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

File:NREL-camdirdec.pdf | Open Energy Information  

Open Energy Info (EERE)

camdirdec.pdf camdirdec.pdf Jump to: navigation, search File File history File usage Central America - December Direct Normal Solar Radiation Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 66 KB, MIME type: application/pdf) Title Central America - December Direct Normal Solar Radiation Description Central America - December Direct Normal Solar Radiation Sources National Renewable Energy Laboratory Authors Donna Heimiller Related Technologies Solar, Solar-CSP, Solar-40km Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

142

United Nations geothermal activities in developing countries  

SciTech Connect

The United Nations implements technical cooperation projects in developing countries through its Department of Technical Cooperation for Development (DTCD). The DTCD is mandated to explore for and develop natural resources (water, minerals, and relevant infrastructure) and energy - both conventional and new and renewable energy sources. To date, the United Nations has been involved in over 30 geothermal exploration projects (completed or underway) in 20 developing countries: 8 in Africa (Djibouti, Ethiopia, Kenya, Madagascar); 8 in Asia (China, India, Jordan, Philippines, Thailand); 9 in Latin America (Bolivia, Chile, El Salvador, Honduras, Mexico, Nicaragua, Panama) and 6 in Europe (Greece, Romania, Turkey, Yugoslavia). Today, the DTCD has seven UNDP geothermal projects in 6 developing countries. Four of these (Bolivia, China, Honduras, and Kenya) are major exploration projects whose formulation and execution has been possible thanks to the generous contributions under cost-sharing arrangements from the government of Italy. These four projects are summarized.

Beredjick, N.

1987-07-01T23:59:59.000Z

143

Grid Renewable Energy-Policy and Regulatory Studies | Open Energy  

Open Energy Info (EERE)

Policy and Regulatory Studies Policy and Regulatory Studies Jump to: navigation, search Tool Summary Name: Grid Renewable Energy-Policy and Regulatory Studies Agency/Company /Organization: World Bank Sector: Energy Topics: Policies/deployment programs, Co-benefits assessment, Background analysis Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, Country: Nicaragua, China, Mexico, Peru Central America, Eastern Asia, Central America, South America References: Grid Renewable Energy-Policy and Regulatory Studies[1] Resources Independent Evaluation of the ILZRO/RAPS Diesel/PV Hybrid System in Padre Cocha, the Amazon Region of Peru (CONSOLIDATED SUMMARY) Evaluating Impacts of Air Pollution in China on Public Health: Implications for Future Air Pollution and Energy Policies, Xiaoping Wang

144

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

RAIS User's Group RAIS User's Group The connection is no longer here Fill out the following section for addition to the RAIS User's List: CONTACT DETAILS First name: * Required Last name: * Required Company: Street: City: State: Country: Anguilla Antigua and Barbuda Aruba Bahamas Barbados Belize Bermuda Virgin Islands, British Canada Cayman Islands Costa Rica Cuba Dominica Dominican Republic El Salvador Falkland Islands (Malvinas) Greenland Grenada Guadeloupe Guatemala Haiti Honduras Jamaica Martinique Mexico Montserrat Netherlands Antilles Nicaragua Panama Puerto Rico Saint Kitts and Nevis Saint Lucia Saint Pierre and Miquelon Saint Vincent and The Grenadines Trinidad and Tobago Turks and Caicos Islands United States United States Minor Outlying Islands Virgin Islands, U.S. Argentina Bolivia

145

Microsoft Word - central-america-document_de-dh.doc  

Open Energy Info (EERE)

Wind Energy Resource Mapping Activity Wind Energy Resource Mapping Activity Introduction This document describes the development of detailed high-resolution (1 km 2 ) wind energy resource maps for the region of Central America that includes the countries of Belize, El Salvador, Guatemala, Honduras, and Nicaragua. These maps were created at the United States Department of Energy's National Renewable Energy Laboratory (NREL) as part of the Solar and Wind Energy Resource Assessment (SWERA) project for the United Nations Environment Programme. The regional wind mapping activity covered vast areas totaling about 400,000 km 2 of land area and, including offshore areas, almost 500,000 km 2 . The maps can be found in a separate part of the SWERA archive. NREL's Wind Resource Assessment and Mapping System (WRAMS) is a combination of analytical,

146

CNE | OpenEI  

Open Energy Info (EERE)

5 5 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278295 Varnish cache server CNE Dataset Summary Description (Abstract): Stand-alone and easy to use geographic toolkit that allows non-GIS users to relate the renewable energy resource (solar and wind) data to other geographic data, such as land use, protected areas, elevation, etc. Source NREL Date Released October 31st, 2005 (9 years ago) Date Updated July 06th, 2012 (2 years ago) Keywords CNE GEF Geospatial Toolkit GIS Nicaragua NREL SUNY SWERA UNEP Data application/zip icon Download Executable Toolkit & Documentation (zip, 42.4 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

147

File:NREL-camdirsept.pdf | Open Energy Information  

Open Energy Info (EERE)

camdirsept.pdf camdirsept.pdf Jump to: navigation, search File File history File usage Central America - September Direct Normal Solar Radiation Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 66 KB, MIME type: application/pdf) Title Central America - September Direct Normal Solar Radiation Description Central America - September Direct Normal Solar Radiation Sources National Renewable Energy Laboratory Authors Donna Heimiller Related Technologies Solar, Solar-CSP, Solar-40km Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

148

Initiative for the Transformation and Strengthening of the Solar Water  

Open Energy Info (EERE)

Transformation and Strengthening of the Solar Water Transformation and Strengthening of the Solar Water Heating Market Jump to: navigation, search Name Initiative for the Transformation and Strengthening of the Solar Water Heating Market Agency/Company /Organization Latin America Energy Organization Partner UNEP Sector Energy Focus Area - Solar Hot Water Topics Market analysis, Policies/deployment programs Resource Type Workshop Website http://www.olade.org/iniciativ Country Argentina, Barbados, Brazil, Colombia, Nicaragua, Peru UN Region Caribbean, Central America, South America References Renewable Energy and Environment Coordination[1] OLADE is a Latin American organization working with Central American countries on climate change vulnerability for hydroelectric systems and adaptation options. Specific activities include: methodology for climate

149

EPA-GHG Inventory Targeted Data Collection Strategies and Software Tools |  

Open Energy Info (EERE)

EPA-GHG Inventory Targeted Data Collection Strategies and Software Tools EPA-GHG Inventory Targeted Data Collection Strategies and Software Tools Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Targeted Data Collection Strategies and Software Tools Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory Resource Type: Dataset, Lessons learned/best practices, Training materials, Software/modeling tools User Interface: Spreadsheet Website: www.epa.gov/climatechange/emissions/ghginventorycapacitybuilding/swtoo Country: Nicaragua, Panama, Guatemala, Costa Rica, El Salvador, Honduras, Belize Cost: Free Central America, Central America, Central America, Central America, Central America, Central America, Central America Coordinates: 13.7040888°, -89.1814075°

150

Wind: wind power density GIS data at 50m above ground and 1km resolution  

Open Energy Info (EERE)

Central America from NREL Central America from NREL Dataset Summary Description (Abstract): Raster GIS data, 50 m wind power density for Central America (Purpose): To provide information on the wind resource potential within the following countries in Central America: Belize, El Salvador, Guatemala, Honduras, and Nicaragua. (Supplemental Information): ***** Spatial Reference Information (Beg) *****Projection ParametersCoordinate System:Lambert_Azimuthal_Equal_AreaFalse_Easting: 0.000000False_Northing: 0.000000Central_Meridian: -87.450000Latitude_Of_Origin: 13.300000GCS_Sphere_ARC_INFODatum: D_Sphere_ARC_INFOPrime Meridian: 0Units: MetersSpatial InformationRaster:Number of Columns: 1374Number of Rows: 1143Pixel Resolution (m): 1000Data Type: integer***** Spatial Reference Information (End) *****

151

Production of high Resoulution Irradiance Data for Central America and Cuba  

Open Energy Info (EERE)

DRAFT REPORT - JULY 2003 DRAFT REPORT - JULY 2003 Production of high Resolution Irradiance Data For Central America and Cuba Prepared by Richard Perez ASRC, the University at Albany (SUNY) For United Nations Environmental Program Solar Energy and Wind Resource Assessment (SWERA) Deliverable for July, 2003 The main objective of the SUNY task for SWERA is to prepare high resolution global irradiance (GHI) and direct irradiance (DNI) data sets for the countries of Cuba, El Salvador, Guatemala, Honduras and Nicaragua. Much of our initial effort focused on building up the satellite data archive, and in strengthening and validating the models capable of converting that data into ground surface irradiances. Three research articles, acknowledging all or partial funding

152

EPA-GHG Inventory Targeted Data Collection Strategies and Software Tools |  

Open Energy Info (EERE)

EPA-GHG Inventory Targeted Data Collection Strategies and Software Tools EPA-GHG Inventory Targeted Data Collection Strategies and Software Tools (Redirected from US EPA GHG Inventory Targeted Data Collection Strategies and Software Tools) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: US EPA GHG inventory Targeted Data Collection Strategies and Software Tools Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory Resource Type: Dataset, Lessons learned/best practices, Training materials, Software/modeling tools User Interface: Spreadsheet Website: www.epa.gov/climatechange/emissions/ghginventorycapacitybuilding/swtoo Country: Nicaragua, Panama, Guatemala, Costa Rica, El Salvador, Honduras, Belize Cost: Free Central America, Central America, Central America, Central America, Central America, Central America, Central America

153

Mini Grid Renewable Energy-Financing Mechanisms | Open Energy Information  

Open Energy Info (EERE)

Mini Grid Renewable Energy-Financing Mechanisms Mini Grid Renewable Energy-Financing Mechanisms Jump to: navigation, search Tool Summary Name: Mini Grid Renewable Energy-Financing Mechanisms Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy Topics: Finance Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: Mini Grid Renewable Energy-Financing Mechanisms[1] Resources Rural Electrification, Micro-finance and Micro and Small Business (MSB) Development: Lessons for the Nicaragua Off-grid Rural Electrification Project, ESMAP, M. Motta and K. Reiche. References ↑ "Mini Grid Renewable Energy-Financing Mechanisms" Retrieved from "http://en.openei.org/w/index.php?title=Mini_Grid_Renewable_Energy-Financing_Mechanisms&oldid=328980

154

File:NREL-camdirapr.pdf | Open Energy Information  

Open Energy Info (EERE)

File File Edit with form History Facebook icon Twitter icon » File:NREL-camdirapr.pdf Jump to: navigation, search File File history File usage Central America - April Direct Normal Solar Radiation Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 65 KB, MIME type: application/pdf) Title Central America - April Direct Normal Solar Radiation Description Central America - April Direct Normal Solar Radiation Sources National Renewable Energy Laboratory Authors Donna Heimiller Related Technologies Solar, Solar-CSP, Solar-40km Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a date/time to view the file as it appeared at that time.

155

Energy-Economic Information System (SIEE) | Open Energy Information  

Open Energy Info (EERE)

Energy-Economic Information System (SIEE) Energy-Economic Information System (SIEE) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy-Economic Information System (SIEE) Database Agency/Company /Organization: Latin American Energy Organization Sector: Energy Topics: Baseline projection, GHG inventory, Background analysis Resource Type: Dataset Website: www.olade.org/sieeEn.html Country: Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama, Mexico, Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela, Barbados, Cuba, Grenada, Haiti, Jamaica, Trinidad & Tobago, Dominican Republic Central America, Central America, Central America, Central America, Central America, Central America, Central America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean

156

Export.gov - Look South Home Page - 2  

NLE Websites -- All DOE Office Websites (Extended Search)

Americas > Look South Americas > Look South Print | E-mail Page Look South Look South Home Best Prospect Sectors Countries Information and Fact Sheets Contact Us Resources for Exporters Services for U.S. Companies Opportunities and Education Trade Financing Market Research Find Your Local Office What is Look South? Look South is a coordinated federal government effort led by the U.S. Department of Commerce to help more American companies "Look South" to do business with Mexico and the United States' 10 other Free Trade Agreement (FTA) partners in Latin America. These 11 economies - Chile, Colombia, Costa Rica, Dominican Republic, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama, and Peru - all have a rapidly growing base of middle-class consumers and diversifying industries. The Look South

157

OLADE-Latin American and Caribbean Energy Efficiency Seminar | Open Energy  

Open Energy Info (EERE)

OLADE-Latin American and Caribbean Energy Efficiency Seminar OLADE-Latin American and Caribbean Energy Efficiency Seminar Jump to: navigation, search Tool Summary LAUNCH TOOL Name: OLADE-Latin American and Caribbean Energy Efficiency Seminar Agency/Company /Organization: Latin America Energy Organization Sector: Energy Focus Area: Energy Efficiency Topics: Implementation, Technology characterizations Resource Type: Presentation, Webinar, Workshop, Lessons learned/best practices Website: www.olade.org/eficiencia/indexEn.html Country: Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama, Mexico, Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela, Barbados, Cuba, Grenada, Haiti, Jamaica, Trinidad & Tobago, Dominican Republic Central America, Central America, Central America, Central America, Central America, Central America, Central America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean

158

Geospatial Toolkit | Open Energy Information  

Open Energy Info (EERE)

Geospatial Toolkit Geospatial Toolkit (Redirected from Geospatial Toolkits) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geospatial Toolkit (GsT) Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar, Wind Phase: Determine Baseline Topics: Resource assessment Resource Type: Guide/manual, Software/modeling tools User Interface: Desktop Application Website: www.nrel.gov/applying_technologies/geospatial_toolkits.html Country: Afghanistan, Bangladesh, Bhutan, Brazil, China, El Salvador, Ghana, Guatemala, Honduras, India, Nepal, Nicaragua, Oaxaca, Pakistan, Sri Lanka, Turkey Cost: Free Southern Asia, Southern Asia, Southern Asia, South America, Eastern Asia, Central America, Western Africa, Central America, Central America, Southern Asia, Southern Asia, Central America, , Southern Asia, Southern Asia, Western Asia

159

Low-Carbon Energy for Central America: Building a Regional Model | Open  

Open Energy Info (EERE)

Low-Carbon Energy for Central America: Building a Regional Model Low-Carbon Energy for Central America: Building a Regional Model Jump to: navigation, search Name Low-Carbon Energy for Central America: Building a Regional Model Agency/Company /Organization World Watch Institute Sector Energy Focus Area Renewable Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.worldwatch.org/node Country Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama Central America, Central America, Central America, Central America, Central America, Central America, Central America References Low-Carbon Energy for Central America: Building a Regional Model[1] Overview "This project will design a unified low-carbon development strategy for

160

File:NREL-camdirfeb.pdf | Open Energy Information  

Open Energy Info (EERE)

camdirfeb.pdf camdirfeb.pdf Jump to: navigation, search File File history File usage Central America - February Direct Normal Solar Radiation Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 66 KB, MIME type: application/pdf) Title Central America - February Direct Normal Solar Radiation Description Central America - February Direct Normal Solar Radiation Sources National Renewable Energy Laboratory Authors Donna Heimiller Related Technologies Solar, Solar-CSP, Solar-40km Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

Note: This page contains sample records for the topic "nicaragua niger niue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DNI GHI | OpenEI  

Open Energy Info (EERE)

DNI GHI DNI GHI Dataset Summary Description (Abstract): Zip file contains year-site specific files including time series of global, direct and diffuse irradiance (Purpose): The time series are useful for performing site specific simulation of customized solar energy systems Source Richard Perez Date Released June 30th, 2004 (10 years ago) Date Updated November 07th, 2007 (7 years ago) Keywords DNI GHI hourly data Nicaragua solar SUNY SWERA TILT UNEP Data application/zip icon Download Data (zip, 3 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 01/01/1998 - 12/31/2002 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

162

Geospatial Toolkit | Open Energy Information  

Open Energy Info (EERE)

Geospatial Toolkit Geospatial Toolkit (Redirected from GsT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geospatial Toolkit (GsT) Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar, Wind Phase: Determine Baseline Topics: Resource assessment Resource Type: Guide/manual, Software/modeling tools User Interface: Desktop Application Website: www.nrel.gov/applying_technologies/geospatial_toolkits.html Country: Afghanistan, Bangladesh, Bhutan, Brazil, China, El Salvador, Ghana, Guatemala, Honduras, India, Nepal, Nicaragua, Oaxaca, Pakistan, Sri Lanka, Turkey Cost: Free Southern Asia, Southern Asia, Southern Asia, South America, Eastern Asia, Central America, Western Africa, Central America, Central America, Southern Asia, Southern Asia, Central America, , Southern Asia, Southern Asia, Western Asia

163

OLADE-Central America Climate Change Vulnerability Program | Open Energy  

Open Energy Info (EERE)

OLADE-Central America Climate Change Vulnerability Program OLADE-Central America Climate Change Vulnerability Program Jump to: navigation, search Name OLADE-Central America Climate Change Vulnerability Program Agency/Company /Organization Latin America Energy Organization Partner Ministries of Energy and Energy Enterprises Sector Energy, Land Topics Background analysis Website http://www.olade.org/proyecto_ Program Start 2010 Program End 2011 Country Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama Central America, Central America, Central America, Central America, Central America, Central America, Central America References OLADE Energy and Climate Change Projects[1] OLADE is a Latin American organization working with Central American countries on climate change vulnerability for hydroelectric systems and

164

Stand Alone Renewable Energy Systems Case Studies | Open Energy Information  

Open Energy Info (EERE)

Stand Alone Renewable Energy Systems Case Studies Stand Alone Renewable Energy Systems Case Studies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Stand Alone Renewable Energy Systems Case Studies Agency/Company /Organization: World Bank Sector: Energy Focus Area: - Landfill Gas, Solar, - Solar PV, Offsets and Certificates Topics: Market analysis, Co-benefits assessment, - Energy Access, Background analysis Resource Type: Lessons learned/best practices, Case studies/examples Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, Country: Nepal, Sri Lanka, India, China, Bangladesh, Argentina, Honduras, Bolivia, Nicaragua, Uganda, Senegal Southern Asia, Southern Asia, Southern Asia, Eastern Asia, Southern Asia, South America, Central America, South America, Central America, Eastern Africa, Western Africa

165

File:NREL-camdiroct.pdf | Open Energy Information  

Open Energy Info (EERE)

camdiroct.pdf camdiroct.pdf Jump to: navigation, search File File history File usage Central America - October Direct Normal Solar Radiation Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 66 KB, MIME type: application/pdf) Title Central America - October Direct Normal Solar Radiation Description Central America - October Direct Normal Solar Radiation Sources National Renewable Energy Laboratory Authors Donna Heimiller Related Technologies Solar, Solar-CSP, Solar-40km Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

166

OLADE Sustainable Energy Planning Manual | Open Energy Information  

Open Energy Info (EERE)

OLADE Sustainable Energy Planning Manual OLADE Sustainable Energy Planning Manual Jump to: navigation, search Tool Summary Name: OLADE Sustainable Energy Planning Manual Agency/Company /Organization: Latin American Energy Organization Sector: Energy Focus Area: Energy Efficiency, Renewable Energy Topics: Implementation, Background analysis Website: www.olade.org/proyectoPlanificacionEnergetica.html Country: Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama, Mexico, Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela, Barbados, Cuba, Grenada, Haiti, Jamaica, Trinidad & Tobago, Dominican Republic Central America, Central America, Central America, Central America, Central America, Central America, Central America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean

167

Legal Energy Information System (SIEL) Database | Open Energy Information  

Open Energy Info (EERE)

Legal Energy Information System (SIEL) Database Legal Energy Information System (SIEL) Database Jump to: navigation, search Tool Summary Name: Legal Energy Information System (SIEL) Database Agency/Company /Organization: Latin American Energy Organization Sector: Energy Focus Area: Renewable Energy Topics: Policies/deployment programs, Background analysis Resource Type: Dataset Website: www.olade.org/sielEn.html Country: Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama, Mexico, Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela, Barbados, Cuba, Grenada, Haiti, Jamaica, Trinidad & Tobago, Dominican Republic Central America, Central America, Central America, Central America, Central America, Central America, Central America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean

168

Geothermal power plants of Mexico and Central America: a technical survey of existing and planned installations  

DOE Green Energy (OSTI)

In this report, the fifth in a series describing the geothermal power plants of the world, the countries of Mexico and of Central America are studied. The geothermal plants are located in areas of recent and active volcanism; the resources are of the liquid-dominated type. Details are given about the plants located at Cerro Prieto in Mexico and at Ahuachapan in El Salvador. In both cases, attention is paid to the geologic nature of the fields, the well programs, geofluid characteristics, energy conversion systems, materials of construction, effluent handling systems, economic factors and plant operating experience. Exploration and development activities are described for other promising geothermal areas in Mexico and El Salvador, along with those in the countries of Costa Rica, Nicaragua, Guatemala, Honduras, and Panama.

DiPippo. R.

1978-07-01T23:59:59.000Z

169

West African Clean Energy Gateway-Resource Assessment | Open Energy  

Open Energy Info (EERE)

African Clean Energy Gateway-Resource Assessment African Clean Energy Gateway-Resource Assessment Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo SWERA-thumb.jpg The SWERA landing page allows for the quick browsing of global data layers.

170

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2010 [Facility News] 8, 2010 [Facility News] Europeans Keen to Hear About Effects of Dust Using Data from Africa Bookmark and Share In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. Researcher Xiaohong Liu from Pacific Northwest National Laboratory was

171

ARM - Datastreams - rad  

NLE Websites -- All DOE Office Websites (Extended Search)

Datastreamsrad Datastreamsrad Documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : RAD Radiation measurements at AMF/Niamey, Niger/S1 Active Dates 2006.01.13 - 2008.12.13 Measurement Categories Radiometric Originating Instrument Radiation Measurements at AMF (RAD) Measurements Only measurements considered scientifically relevant are shown below by default. Show all measurements Measurement Units Variable Altitude above mean sea level m alt Base time in Epoch seconds since 1970-1-1 0:00:00 0:00 base_time Longwave broadband downwelling irradiance Downwelling Longwave Hemispheric Irradiance, Pyrgeometer W/m^2 down_long_hemisp ( time ) Downwelling Pyrgeometer Case Thermistor Resistance Kohms down_long_hemisp_case_resist ( time )

172

Could a Common Household Fungus Reduce Oil Imports? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a Common Household Fungus Reduce Oil Imports? a Common Household Fungus Reduce Oil Imports? Could a Common Household Fungus Reduce Oil Imports? June 21, 2011 - 11:37am Addthis A view of Aspergillus niger with the fungus’ DNA highlighted in green | Photo Courtesy of: PNNL. A view of Aspergillus niger with the fungus' DNA highlighted in green | Photo Courtesy of: PNNL. Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy What does this mean for me? The Department's Pacific Northwest National Laboratory (PNNL) are working to harness the natural process that spoils fruits and vegetables as a way to make fuel and other petroleum substitutes from the parts of plants that we can't eat. The genetic bases of the behaviors and abilities of these two industrially relevant fungal strains will allow researchers to exploit

173

Pilot Program for Climate Resilience (PPCR) | Open Energy Information  

Open Energy Info (EERE)

Resilience (PPCR) Resilience (PPCR) Jump to: navigation, search Name Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Bangladesh, Bolivia, Cambodia, Dominica, Grenada, Haiti, Jamaica, Mozambique, Nepal, Niger, Papua New Guinea, Saint Lucia, Saint Vincent and the Grenadines, Samoa, Tajikistan, Tonga, Yemen, Zambia UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea

174

ECOWAS Clean Energy Gateway-Links | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » ECOWAS Clean Energy Gateway-Links Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo

175

ECOWAS Clean Energy Gateway-Policy/ProgramDesign | Open Energy Information  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway-Policy/ProgramDesign ECOWAS Clean Energy Gateway-Policy/ProgramDesign Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo Background → Design → Implementation →

176

ECOWAS Clean Energy Gateway-News | Open Energy Information  

Open Energy Info (EERE)

News News Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo Regional News Renewable Energy News Today-West Africa Renewable Energy News Failed to load RSS feed from http://renewableenergy.einnews.com/xml/west-africa/: Error fetching URL: Operation timed out after 5000 milliseconds with 0 bytes received

177

Gateway:ECOWAS Clean Energy Gateway | Open Energy Information  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway ECOWAS Clean Energy Gateway Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo West Africa Organizations, Programs, and Tools Countries (15)

178

Could a Common Household Fungus Reduce Oil Imports? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could a Common Household Fungus Reduce Oil Imports? Could a Common Household Fungus Reduce Oil Imports? Could a Common Household Fungus Reduce Oil Imports? June 21, 2011 - 11:37am Addthis A view of Aspergillus niger with the fungus’ DNA highlighted in green | Photo Courtesy of: PNNL. A view of Aspergillus niger with the fungus' DNA highlighted in green | Photo Courtesy of: PNNL. Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy What does this mean for me? The Department's Pacific Northwest National Laboratory (PNNL) are working to harness the natural process that spoils fruits and vegetables as a way to make fuel and other petroleum substitutes from the parts of plants that we can't eat. The genetic bases of the behaviors and abilities of these two industrially relevant fungal strains will allow researchers to exploit

179

ECOWAS Clean Energy Gateway-Transportation | Open Energy Information  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway-Transportation ECOWAS Clean Energy Gateway-Transportation Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo Introduction→ Step 1 Step 2 Step 3 Step 4

180

ECOWAS Clean Energy Gateway-About | Open Energy Information  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway-About ECOWAS Clean Energy Gateway-About Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo The ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE) is

Note: This page contains sample records for the topic "nicaragua niger niue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy System and Scenario Analysis Toolkit | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo What analysis tools and methods can I use to study my country's energy system? Understanding approaches

182

ECOWAS Clean Energy Gateway-Organizations and Networks | Open Energy  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway-Organizations and Networks ECOWAS Clean Energy Gateway-Organizations and Networks Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo Registered Technical and Research Organizations

183

Remittances: determinants, motivations and effects  

E-Print Network (OSTI)

This dissertation examines the determinants, motivations and effects of remittances. In that last two decades remittances have gained interest due to their large size. For several developing countries remittances constitute a large portion of their gross domestic product and sometimes exceed foreign direct investment. In the first essay, I use a unique data set from Nicaragua to asses the behavior of persons who send money back home. I estimate a heteroskedastic Tobit with a known form of variance to estimate the correlation of the remitting decisions of migrants. Working, residing in a developed country and belonging to the nuclear family positively affect remittances. The labor status and the level of education of the head of the household both affect remittances. The decision to participate in the remitting process appears to be positively related across migrants within the same receiving household. The second essay presents a simple theoretical model of migrants' remitting behavior. I consider two general motivations for remitting: altruism and self-interest. From the same data set used in the first chapter, I estimate a heteroskedastic Tobit and a sample selection equation to empirically test the findings of the theoretical model. Evidence suggests that migrants from Nicaragua remit for altruistic reasons. Moreover some gender heterogeneity exists in the remitting behavior. In the last essay, I study the impact of remittances on a small open economy using a stochastic limited participation model with cash in advance constraints and costly adjustment of cash holdings. I examine the impact of remittances on the steady state of the economy and on the dynamic response of variables to money shocks, output shocks, and shocks to remittance flows. I also examine the impact on dynamic responses to shocks of alternative specifications regarding the initial impact of a monetary injection or a remittances shock on the economy. I find that a positive remittances shock forces the exchange rate to depreciate and lowers both output and consumption in the period of the shock, irrespective of adjustment costs on money balances. Also, the positive remittance shock lowers utility during the period of the shock but improves it thereafter.

Naufal, Georges Sami

2007-12-01T23:59:59.000Z

184

African Biofuel & Renewable Energy Fund (ABREF) | Open Energy Information  

Open Energy Info (EERE)

Biofuel & Renewable Energy Fund (ABREF) Biofuel & Renewable Energy Fund (ABREF) Jump to: navigation, search Name African Biofuel & Renewable Energy Fund (ABREF) Agency/Company /Organization African Biofuel & Renewable Energy Compnay (ABREC) Sector Energy Focus Area Renewable Energy, Biomass, - Biofuels Website http://www.bidc-ebid.com/en/fo Country Benin, Burkina Faso, Cape Verde, Ivory Coast, Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali, Niger, Nigeria, Senegal, Sierra Leone, Togo Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa References African Biofuel & Renewable Energy Fund (ABREF)[1]

185

National Action Programmes on Desertification | Open Energy Information  

Open Energy Info (EERE)

Programmes on Desertification Programmes on Desertification Jump to: navigation, search Name National Action Programmes on Desertification Agency/Company /Organization United Nations Convention to Combat Desertification Sector Land Focus Area Forestry, Agriculture Topics Co-benefits assessment, GHG inventory, Policies/deployment programs, Background analysis Resource Type Publications Website http://www.unccd.int/actionpro Country Algeria, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Chad, Democratic Republic of Congo, Djibouti, Egypt, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Kenya, Lesotho, Madagascar, Malawi, Mali, Mauritania, Morocco, Mozambique, Namibia, Niger, Nigeria, Senegal, South Africa, Sudan, Swaziland, Tanzania, Togo, Tunisia, Uganda, Zambia, Zimbabwe

186

File:NREL-camdirmar.pdf | Open Energy Information  

Open Energy Info (EERE)

camdirmar.pdf camdirmar.pdf Jump to: navigation, search File File history File usage Central America - March Direct Normal Solar Radiation Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 65 KB, MIME type: application/pdf) Title Central America - March Direct Normal Solar Radiation Description Central America - March Direct Normal Solar Radiation Sources National Renewable Energy Laboratory Authors Donna Heimiller Related Technologies Solar, Solar-CSP, Solar-40km Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:56, 14 December 2010 Thumbnail for version as of 15:56, 14 December 2010 1,650 × 1,275 (65 KB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

187

File:NREL-camdirjune.pdf | Open Energy Information  

Open Energy Info (EERE)

camdirjune.pdf camdirjune.pdf Jump to: navigation, search File File history File usage Central America - June Direct Normal Solar Radiation Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 66 KB, MIME type: application/pdf) Title Central America - June Direct Normal Solar Radiation Description Central America - June Direct Normal Solar Radiation Sources National Renewable Energy Laboratory Authors Donna Heimiller Related Technologies Solar, Solar-CSP, Solar-40km Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:55, 14 December 2010 Thumbnail for version as of 15:55, 14 December 2010 1,650 × 1,275 (66 KB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

188

File:NREL-camdirmay.pdf | Open Energy Information  

Open Energy Info (EERE)

camdirmay.pdf camdirmay.pdf Jump to: navigation, search File File history File usage Central America - May Direct Normal Solar Radiation Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 65 KB, MIME type: application/pdf) Title Central America - May Direct Normal Solar Radiation Description Central America - May Direct Normal Solar Radiation Sources National Renewable Energy Laboratory Authors Donna Heimiller Related Technologies Solar, Solar-CSP, Solar-40km Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:56, 14 December 2010 Thumbnail for version as of 15:56, 14 December 2010 1,650 × 1,275 (65 KB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

189

File:NREL-camdirjuly.pdf | Open Energy Information  

Open Energy Info (EERE)

camdirjuly.pdf camdirjuly.pdf Jump to: navigation, search File File history File usage Central America - July Direct Normal Solar Radiation Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 66 KB, MIME type: application/pdf) Title Central America - July Direct Normal Solar Radiation Description Central America - July Direct Normal Solar Radiation Sources National Renewable Energy Laboratory Authors Donna Heimiller Related Technologies Solar, Solar-CSP, Solar-40km Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:55, 14 December 2010 Thumbnail for version as of 15:55, 14 December 2010 1,650 × 1,275 (66 KB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

190

Mini Grid Renewable Energy-Best Practices and Lessons Learnt | Open Energy  

Open Energy Info (EERE)

Mini Grid Renewable Energy-Best Practices and Lessons Learnt Mini Grid Renewable Energy-Best Practices and Lessons Learnt Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Mini Grid Renewable Energy-Best Practices and Lessons Learnt Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy Topics: Background analysis Resource Type: Lessons learned/best practices Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, Country: China, Nicaragua Eastern Asia, Central America Coordinates: 12.119424°, -86.264068° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":12.119424,"lon":-86.264068,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

High Resolution Solar Energy Resource Assessment within the UNEP Project  

Open Energy Info (EERE)

High Resolution Solar Energy Resource Assessment within the UNEP Project High Resolution Solar Energy Resource Assessment within the UNEP Project SWERA Dataset Summary Description (Abstract): To expand the world wide use of renewable energy a consistent, reliable, verifiable, and easily accessible database of solar energy resources is needed. Within the UNEP (United Nations Environment Programme) Project SWERA (Solar and Wind Energy Resource Assessment, http://swera.unep.net), funded by GEF (Global Environment Facility), a global database of solar and wind energy resources will be set up. SWERA will provide, beside the wind products, global horizontal irradiance, which is mostly used to plan photovoltaic systems, and direct normal irradiance, which is needed for solar concentrating systems. For selected countries throughout the world, additionally high resolution data will be produced which is required to plan solar energy systems in detail. Within SWERA, the partners DLR, SUNY and INPE calculate solar irradiance with high temporal resolution of 1 hour and with a spatial resolution of 10km x 10km. By processing data from geostationary satellites we provide solar irradiance data for Cuba, El Salvador, Honduras, Nicaragua, Guatemala, Brazil, Ghana, Ethiopia, Kenya, China, Sri Lanka, Nepal, and Bangladesh. In this paper we describe the ongoing work of developing this high resolution solar irradiance tx_metadatatool and cross-checking of the used solar irradiance algorithms for various satellite data.

192

File:NREL-camdiraug.pdf | Open Energy Information  

Open Energy Info (EERE)

camdiraug.pdf camdiraug.pdf Jump to: navigation, search File File history File usage Central America - August Direct Normal Solar Radiation Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 66 KB, MIME type: application/pdf) Title Central America - August Direct Normal Solar Radiation Description Central America - August Direct Normal Solar Radiation Sources National Renewable Energy Laboratory Authors Donna Heimiller Related Technologies Solar, Solar-CSP, Solar-40km Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:54, 14 December 2010 Thumbnail for version as of 15:54, 14 December 2010 1,650 × 1,275 (66 KB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

193

Establishing Ergonomics in Industrially Developing Countries  

SciTech Connect

The introduction of ergonomics is an ongoing effort in industrially developing countries and will ultimately require an organized, programmatic approach spanning several countries and organizations. Our preliminary efforts with our partner countries of Viet Nam, Thailand, and Nicaragua have demonstrated that a one-time course is just the first step in a series of necessary events to provide skills and create an infrastructure that will have lasting impact for the host country. To facilitate that any sort of training has a lasting impact, it is recommended that host countries establish a 'contract' with class participants and the guest instructors for at least one follow-up visit so instructors can see the progress and support the participants in current and future efforts. With repeated exchanges, the class participants can become the 'in country experts' and the next generation of ergonomic trainers. Additionally, providing participants with an easy to use hazard assessment tool and methods for evaluating the financial impact of the project (cost/benefit analysis) will assist increase the likelihood of success and establish a foundation for future projects. In the future, developing trade and regionally/culturally specific 'ergonomics toolkits' can help promote broader implementation, especially where training resources may be limited.

Stewart, K; Silverstein, B; Kiefer, M

2005-08-29T23:59:59.000Z

194

Geothermal power plants around the world. A sourcebook on the production of electricity from geothermal energy, draft of Chapter 10  

DOE Green Energy (OSTI)

This report constitutes a consolidation and a condensation of several individual topical reports dealing with the geothermal electric power stations around the world. An introduction is given to various types of energy conversion systems for use with geothermal resouces. Power plant performance and operating factors are defined and discussed. Existing geothermal plants in the following countries are covered: China, El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, the Philippines, Turkey, the Union of Soviet Socialist Republics, and the United States. In each case, the geological setting is outlined, the geothermal fluid characteristics are given, the gathering system, energy conversion system, and fluid disposal method are described, and the environmental impact is discussed. In some cases the economics of power generation are also presented. Plans for future usage of geothermal energy are described for the above-mentioned countries and the following additional ones: the Azores (Portugal), Chile, Costa Rica, Guatemala, Honduras, Indonesia, Kenya, Nicaragua, and Panama. Technical data is presented in twenty-two tables; forty-one figures, including eleven photographs, are also included to illustrate the text. A comprehensive list of references is provided for the reader who wishes to make an in-depth study of any of the topics mentioned.

DiPippo, R.

1979-02-01T23:59:59.000Z

195

ARM Aerosol Working Group Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

and MFRSR Measurements ARM STM 2008 Norfolk, VA Connor Flynn 1 , Annette Koontz 1 , Anne Jefferson 2 , Jim Barnard 1 , Sally McFarlane 1 1 Pacific Northwest National Laboratory 2 CIRES, University of Colorado, Boulder Progress towards ARM DOE 2008 Performance Metric 3 & 4 * Produce and make available new continuous time series of aerosol total column depth, based on results from the AMF deployment in Niger, Africa. * Produce and make available new continuous time series of retrieved dust properties, based on results from the AMF deployment in Niger, Africa. 0 100 200 300 400 0 20 40 60 80 100 ITF movement and surface RH % RH day of year (2006) 0 100 200 300 400 0 50 100 150 200 250 300 350 day of year wind direction (N = 0, E = 90) 2 4 6 8 10 12 14 Wind speed m/s 0 100 200 300 1.4 1.6 1.8 2 MFRSR Vo for filter2, Niamey

196

JGR-Atmospheres Papers from the RADAGAST Research Team  

NLE Websites -- All DOE Office Websites (Extended Search)

JGR-Atmospheres Papers from the RADAGAST Research Team JGR-Atmospheres Papers from the RADAGAST Research Team Bharmal, N.A., A. Slingo, G.J. Robinson, and J.J. Settle, 2009: Simulation of surface and top of atmosphere thermal fluxes and radiances from the RADAGAST experiment. Journal of Geophysical Research-Atmospheres, 114, doi:10.1029/2008JD010504, in press. Kollias, P., M.A. Miller, K.L. Johnson, M.P. Jensen, and D.T. Troyan, 2009: Cloud, thermodynamic, and precipitation observations in West Africa during 2006. Journal of Geophysical Research- Atmospheres, 114, doi: 10.1029/2008JD010641, in press. McFarlane, S.A., E.I. Kassianov, J. Barnard, C. Flynn, and T. Ackerman, 2009: Surface shortwave aerosol forcing during the ARM Mobile Facility deployment in Niamey, Niger. Journal of Geophysical Research-Atmospheres, 114, doi: 10.1029/2008JD010491, 17 pages.

197

ARM - Mobile Aerosol Observing System  

NLE Websites -- All DOE Office Websites (Extended Search)

FacilitiesMobile Aerosol Observing System FacilitiesMobile Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Aerosol Observing System Intensive aerosol observations conducted on the campus of Brookhaven National Laboratory on Long Island, New York, using the ARM Mobile Aerosol Observing System. Intensive aerosol observations conducted on the campus of Brookhaven

198

Impact Assessment Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Impact Assessment Toolkit Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png

199

Creating an Evergreen Agriculture in Africa: for Food Security and  

Open Energy Info (EERE)

Creating an Evergreen Agriculture in Africa: for Food Security and Creating an Evergreen Agriculture in Africa: for Food Security and Environmental Resilience Jump to: navigation, search Name Creating an Evergreen Agriculture in Africa: for Food Security and Environmental Resilience Agency/Company /Organization World Agroforestry Centre Partner Program on Forests Sector Land Focus Area Forestry, Agriculture Topics Co-benefits assessment, Policies/deployment programs, Background analysis Resource Type Publications, Lessons learned/best practices Website http://www.profor.info/profor/ Country Niger, Malawi, Zambia UN Region "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

200

ARM - AMF2 Architecture  

NLE Websites -- All DOE Office Websites (Extended Search)

Architecture Architecture AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 AMF2 Architecture The core AMF2 instrumentation is designed to operate out of modules; small independent climate controlled systems that house instrument computers, data loggers and other support equipment. This design feature sets the AMF2 apart in its flexibility and mobility at deployment sites.

Note: This page contains sample records for the topic "nicaragua niger niue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Desert Dust Determines Aerial Spread of Thunderstorm Clouds Desert Dust Determines Aerial Spread of Thunderstorm Clouds Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Zeng X, W Tao, SW Powell, RA Houze, P Ciesielski, N Guy, H Pierce, and T Matsui. 2013. "A comparison of the water budgets between clouds from AMMA and TWP-ICE." Journal of the Atmospheric Sciences, 70(2), doi:10.1175/JAS-D-12-050.1. The sun, seen through a dusty atmosphere, sets at Niamey, the capital of Niger, which is located in the African Sahara. Anvil clouds that accompany thunderstorms. Contrasts often provide unique perspectives, and scientists seize any such opportunity-when it arises. In a new research paper, published in the Journal of Atmospheric Sciences,

202

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Sunphotometer to Obtain Additional Aerosol Data in Niamey Sunphotometer to Obtain Additional Aerosol Data in Niamey Bookmark and Share Located nearby the AMF ground instruments, the sunphotometer, in the foreground, requires an unobstructed hemispheric view of the sky to obtain its measurements. Located nearby the AMF ground instruments, the sunphotometer, in the foreground, requires an unobstructed hemispheric view of the sky to obtain its measurements. In early August, a new Cimel sunphotometer (CSPHOT) was deployed at the ARM Mobile Facility site in Niamey, Niger, as part of the ongoing RADAGAST field campaign. The CSPHOT measures the solar and sky radiance at various wavelengths in the visible and near-infrared spectrum (340, 380, 440, 500, 670, 870, 936, 1020 nm). From these measurements, a number of aerosol

203

ECOWAS Clean Energy Gateway-Finance | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » ECOWAS Clean Energy Gateway-Finance Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png

204

1  

NLE Websites -- All DOE Office Websites (Extended Search)

Dust Properties Derived from Multi-Filter Rotating Dust Properties Derived from Multi-Filter Rotating Shadowband Radiometer Data in Niamey E. Kassianov, T. Ackerman, J. Barnard, C. Flynn, and S. McFarlane Pacific Northwest National Laboratory Richland, Washington Introduction One of the key uncertainties in the earth's radiation balance is the effect of dust on radiative fluxes (aerosol radiative forcing), which in turn affects climatic processes on both planetary and local scales (e.g., Intergovernmental Panel on Climate Change 2001; Sokolik et al. 2001). Since Saharan dust is one of the main sources of dust over the globe, its radiative effect has long been the subject of intensive studies. Recently, the ARM Mobile Facility (AMF) was deployed to Niamey, Niger, to participate in a large field campaign directed at elucidating the radiative effect of Saharan dust

205

1  

NLE Websites -- All DOE Office Websites (Extended Search)

Background Climatology for the Atmospheric Background Climatology for the Atmospheric Radiation Measurement Program Mobile Facility Deployment in Niamey: Mean Annual Cycle and 2004-2005 Interannual Variability P.J. Lamb and M. Issa Lélé Cooperative Institute for Mesoscale Meteorological Studies The University of Oklahoma Norman, Oklahoma Abstract This study is comprised of two parts. The first part provides the long-term mean annual cycle context for the deployment of Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) in Niamey, Niger, Africa, during the entire year of 2006. Documentation includes the annual cycles (calendar month basis) of the following surface meteorological variables that will be important for the ARM deployment-rainfall, visibility (proxy for atmospheric dust), vapor pressure (proxy for column

206

ARM_Overview_black_43.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

- In and Out of Africa - In and Out of Africa Gary Robinson, Tony Slingo, Nazim Bharmal and Jeff Settle Environmental Systems Science Centre, Reading University, UK RADAGAST is a collaborative project, involving UK, US and European scientists, to investigate the radiative divergence across the atmosphere. West Africa was chosen as the study area because the combination of wide range of column water vapour, episodic wind-generated dust events and seasonal aerosols from biomass burning presents a particular challenge to radiative transfer models. The primary data inputs are top-of-atmosphere narrow and broad-band observations from METEOSAT Second Generation (MSG) satellites and surface observations from the ARM Mobile Facility (AMF), which was deployed throughout 2006 at Niamey, Niger, in support of RADAGAST.

207

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2006 [Facility News] January 15, 2006 [Facility News] ARM Mobile Facility Begins Year-Long Deployment in Africa Bookmark and Share Beginning on January 9, the ARM Mobile Facility began officially collecting atmospheric data from a location at the airport in Niamey, Niger, Africa. As part of the RADAGAST field campaign, the AMF will measure the effects of absorbing aerosols from desert dust in the dry season, and the effects of deep convective clouds and associated moisture loadings on the transmission of atmospheric radiation during the summer monsoon. These measurements will be combined with associated satellite data to provide the first well-sampled direct estimates of the energy balance across the atmosphere. This dataset will provide valuable information to an ongoing effort called

208

Papua New Guinea-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Papua New Guinea-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Papau New Guinea-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Papau New Guinea UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa

209

ARM - Datastreams - twrcam3m  

NLE Websites -- All DOE Office Websites (Extended Search)

Datastreamstwrcam3m Datastreamstwrcam3m Documentation Data Quality Plots Citation DOI: 10.5439/1025311 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : TWRCAM3M Three Meter Tower: video camera Active Dates 2002.03.25 - 2013.07.09 Measurement Categories Surface Properties Originating Instrument Tower Camera (TWRCAM) Measurements The measurements below provided by this product are those considered scientifically relevant. Measurement Variable Surface condition jpg Locations North Slope Alaska NSA C2 Browse Data Central Facility, Atqasuk AK ARM Mobile Facility FKB M1 Browse Data Black Forest, Germany GRW M1 Browse Data Graciosa Island, Azores, Portugal NIM M1 Browse Data Niamey, Niger

210

Communications: NREL PowerPoint Presentation Template with Light Background  

NLE Websites -- All DOE Office Websites (Extended Search)

AMF/GNDRAD Reconfiguration: AMF/GNDRAD Reconfiguration: Moving the White CoolCell ARM Radiative Processes Working Group Analyses by Mary Anderberg & Tom Stoffel March 10, 2008 ACRF Upwelling Irradiances Infrared UIR Shortwave US Pt Reyes, CA Banizoumbou Niger AMF Upwelling Irradiances Warren et al. visits FKB... BCR 01402: Move 7 m before on 10 m Tower AMF Upwelling Irradiances July 14, 2007 UIR US AMF Upwelling Irradiances July 15, 2007 UIR US AMF Upwelling Irradiances August 1, 2007 UIR US AMF Upwelling Irradiances August 5, 2007 UIR US Surface Albedo (AM) Surface Albedo (PM) Radiometer View Factors * * * 90% Irradiance Contribution Height (AGL) Effective Radius 3 m 9 m 10 m 29 m Radiometer Sensitivities Pyranometer +/- 10 Wm -2 vs 0.4% of 200 Wm-2 (0.8 Wm

211

American Goldfinch  

NLE Websites -- All DOE Office Websites (Extended Search)

American Goldfinch American Goldfinch Name: Mary-Ellen Location: N/A Country: N/A Date: N/A Question: I happened on an American Goldfinch in my yard last week who could not fly. I captured it and now have it living in a large box. I have been feeding it commericial wild finch seed, niger seed and some sunflower seed. I have also provided a small cup of fine sand and a dish of water. Am I missing anything in it's diet? I had hoped to find someone to take it and care for it until it could fly again but have been unsuccessful so I may end up caring for it. It's wing is not visibly injured, however it can only flutter. I have been caring for it for 6 days now and it appears OK. Have also provided it with a small perch (branch) which it seems to use most of the time. Any other suggestions?

212

USAID West Africa Climate Program | Open Energy Information  

Open Energy Info (EERE)

West Africa Climate Program West Africa Climate Program Jump to: navigation, search Name USAID West Africa Climate Program Agency/Company /Organization U.S. Agency for International Development Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy, Forestry, Agriculture Topics Background analysis Website http://www.usaid.gov/our_work/ Country Ghana, Togo, Benin, Senegal, Niger, Nigeria, Mali, Liberia, Gambia, Ivory Coast, Burkina Faso, Sierra Leone, Mauritania, Guinea, Guinea-Bissau, Cameroon, Gabon, Equatorial Guinea, Chad, Sao Tome and Principe, Cape Verde Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Middle Africa, Middle Africa, Middle Africa, Middle Africa, Middle Africa, Western Africa

213

West African Clean Energy Gateway-Software Analysis Tools | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » West African Clean Energy Gateway-Software Analysis Tools Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png

214

Saint Vincent and the Grenadines-Pilot Program for Climate Resilience  

Open Energy Info (EERE)

Saint Vincent and the Grenadines-Pilot Program for Climate Resilience Saint Vincent and the Grenadines-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Saint Vincent and the Grenadines-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Saint Vincent and the Grenadines UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan

215

Microsoft PowerPoint - Lamb_et_al_Norfolk_Poster  

NLE Websites -- All DOE Office Websites (Extended Search)

AMF 2006 Niamey Radiosonde AMF 2006 Niamey Radiosonde Data: Some Preliminary Results Peter J. Lamb 1 , Abdelkrim Ben Mohamed 2 , Mark Miller 3 , Ibrah Seidou Sanda 2 , Hamidou Hama 4 , Abebe Abdou Adam 5 1 University of Oklahoma-CIMMS, 2 Université Abdou Moumouni, 3 Rutgers University, 4 ASECNA-Niger, 5 ACMAD Introduction The 2006 ARM Mobile Facility (AMF) deployment in Niamey in support of the RADAGAST component of the AMMA Programme brought out a more complete picture of the Sahelian atmospheric environment. This poster presents an analysis of the AMF rawinsonde soundings made in Niamey between January 07, 2006 and January 07, 2007. This is a comprehensive study of all soundings considered together and at the principal synoptic observation times (0000, 0600, 1200, and 1800 UTC). The analysis focuses on temperature, humidity,

216

ARM - AMF2 Organization and Contact Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization and Contact Information Organization and Contact Information AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 AMF2 Organization and Contact Information The Argonne AMF2 Operations Office manages the operation of the second ARM mobile facility. Basic contact information, phone numbers, email, and shipping information to personnel in this office is available on this page.

217

Mobile Climate Monitoring Facility to Sample Skies in Africa | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mobile Climate Monitoring Facility to Sample Skies in Africa Mobile Climate Monitoring Facility to Sample Skies in Africa Mobile Climate Monitoring Facility to Sample Skies in Africa January 18, 2006 - 10:47am Addthis WASHINGTON, D.C. -- The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program is placing a new, portable atmospheric laboratory with sophisticated instruments and data systems in Niger, Africa, to gain a better understanding of the potential impacts of Saharan dust on global climate. Dust from Africa's Sahara desert-the largest source of dust on the planet-reaches halfway around the globe. Carried by winds and clouds, the dust travels through West African, Mediterranean, and European skies, and across the Atlantic into North America. Unfortunately, Africa is one of the most under-sampled climate regimes in the world, leaving scientists to

218

Layout 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Few stop to consider the consequences Few stop to consider the consequences of their daily ablutions, the washing of clothes, the watering of lawns, and the flush of a toilet. However, wastewater treatment-one of the cornerstones of modern civilization-is inside this issue 2. Finishers Convene in NM Spot Awards 3. Termites in Costa Rica 4. Profile: Erika Lindquist 5. Plant Pathogens Decoded OPA Recipients 6. Young Investigator Winner 8. Spotlight on Safety 9. Hazards of Being a Microbiologist 10. All About Webfeeds 11. Eukaryotic Finishing at Stanford 12. Symbiotic Tree Fungus 17. New CSP Targets 19. Pichia stipitis 20. Aspergillus niger PRIMER the October 2006 Volume 3 Issue 2 First Tree Genome Is Published: Poplar Holds Promise as Renewable Bioenergy Resource Wood from a common tree may one day figure prominently in meeting trans-

219

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2005 [Facility News] 31, 2005 [Facility News] Ancillary Site to Provide Key Data from Africa Bookmark and Share In January 2006, the ARM Mobile Facility (AMF) begins a year-long field campaign in Africa as part of a multi-year international experiment called the African Monsoon Multidisciplinary Analysis (AMMA). The AMF will be placed at the airport in Niamey, Niger, well within view of the Global Earth Radiation Budget (GERB) geostationary satellite. Cloud and radiative property measurements collected by the AMF will be used in conjunction with GERB data for a greater understanding of the atmosphere than could be gained from either dataset alone. While preparing for the campaign, the science team identified the need for instrumentation at an off-site location to compare radiative measurements from the natural environment of

220

ECOWAS Clean Energy Gateway-Help | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » ECOWAS Clean Energy Gateway-Help Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png

Note: This page contains sample records for the topic "nicaragua niger niue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

nab-ARM_land2_v5.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

corresponding result can be seen in the corresponding result can be seen in the top-of-atmosphere long-wave flux. Figure 3 shows the modelled OLR and that measured by the ARG product. The difference is postulated to be because the AMF ground measurements are not representative of the area within the ARG pixel. Figure 4 shows the SEVIRI 10.8μm-derived skin temperatures: over the region, the temperature variations can account for an upwelling flux variation of 70 Wm -2 . At the AMF, Niamey airport site itself, the November-averaged skin temperature is ~319K. Figure 2: 0.6μm SEVIRI radiances. Mean of all times during November 2006 without cloud-cover. The dark band is the Niger river. Figure 1: TOA SW fluxes via two products from satellite measurements: ARG and HR. Figure 5: Daily-averaged down-welling LW flux, from AMF

222

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 15, 2010 [Facility News] April 15, 2010 [Facility News] Second Phase of African Scientific Exchange Underway Bookmark and Share Left to right: Dr. Zewdu Segele and Hama Hamidou examine reflectivity measurements made by the W-band ARM cloud radar in Niamey during July 2006. Left to right: Dr. Zewdu Segele and Hama Hamidou examine reflectivity measurements made by the W-band ARM cloud radar in Niamey during July 2006. Continuing an international collaboration that began with the ARM Mobile Facility deployment to Niamey, Niger, in 2006, meteorologist Hama Hamidou from the University of Niamey recently arrived at the Cooperative Institute for Mesoscale Meteorological Studies at the University of Oklahoma for a six-month scientific exchange. Under the guidance of Dr. Zewdu Segele, a

223

ECOWAS Clean Energy Gateway-Technology Data | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » ECOWAS Clean Energy Gateway-Technology Data Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png

224

Mobile Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Facility AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility is configured in a standard layout. Pictured here in Gan, the second mobile facility is configured in a standard layout. To explore science questions beyond those addressed by ARM's fixed sites at

225

ARM - Surface Aerosol Observing System  

NLE Websites -- All DOE Office Websites (Extended Search)

FacilitiesSurface Aerosol Observing System FacilitiesSurface Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Surface Aerosol Observing System The ARM Mobile Facility (AMF) is equipped to quantify the interaction between clouds and aerosol particles. A counter-flow virtual impactor (CVI) is used to selectively sample cloud drops. The CVI takes advantage of the

226

W-band ARM Cloud Radar (WACR) Update and Status  

NLE Websites -- All DOE Office Websites (Extended Search)

W-band ARM Cloud Radar (WACR) Update and Status W-band ARM Cloud Radar (WACR) Update and Status PopStefanija, Ivan ProSensing, Inc. Mead, James ProSensing Inc. Widener, Kevin Pacific Northwest National Laboratory Category: Instruments Two W-band ARM Cloud Radars (WACR) have been developed for the SGP and the ARM Mobile Facility (AMF) by ProSensing. The SGP WACR was successfully deployed in the same shelter as the MMCR in 2005. It is currently collecting co-polarization and cross-polarization spectral moments (reflectivity, Doppler velocity, and spectral width) along with spectra data. The AMF WACR will be deployed with the AMF in Niamey, Niger early in 2006. We will present ingested WACR data formats available from the ARM Archive, a selected comparisons of WACR and MMCR data at SGP, and data from

227

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2006 [Facility News] 15, 2006 [Facility News] Radar Wind Profiler Joins ARM Mobile Facility Instrument Suite Bookmark and Share This spring, a 915 MHz radar wind profiler (RWP) was successfully installed at the ARM Mobile Facility (AMF) site in Niamey, Niger, West Africa, for the remainder of the 1-year RADAGAST field campaign which started in January. The RWP will provide information about wind speed, wind direction, and wind shear, and also enable measurements of the turbulence in the lower part of the troposphere. This may be a key variable in determining the vertical distribution of dust in the experimental domain. Gradients in the radar's reflectivity spectrum may also help to provide continuous identification of the depth of the boundary layer in the summer months, when refractive gradients are likely to be maximized by low-level moisture.

228

JeffersonSTM09.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

AOS: Measurements of Aerosol Optical and AOS: Measurements of Aerosol Optical and AOS: Measurements of Aerosol Optical and Cloud-forming Properties Cloud-forming Properties Anne Jefferson and John Ogren NOAA Environmental Science Research Laboratory CIRES, University of Colorado ARM STM 2009 Aerosol Observing Systems In-situ surface measurements of aerosol optical, chemical, size, hygroscopic and cloud-forming properties * SGP - ARM central facility Lamont, OK *AMF - Pt Reyes, CA 3/2005 - 9/2005 - Niamey, Niger 12/2005-1/2007 - Murg Valley, Germany 4/2007 -1/2008 - Shouxian China 5/2008 - 12/2008 - Graciosa Island, Azores 4/2009 *BRW/NSA - Barrow Alaska *AMF2 ? Darwin? - What instruments support the science? AMF deployment in Shouxian China, HFE HFE was located at a rural, agricultural area ~120 km from Hefei, ~200 km from Nanking

229

The AMMA mulid network for aerosol characterization in West Africa  

E-Print Network (OSTI)

Three ground based portable low power consumption microlidars (MULID) have been built and deployed at three remote sites in Banizoumbou (Niger), Cinzana (Mali) and M'Bour (Senegal) in the framework of the African Monsoon Multidisciplinary Analyses (AMMA) project for the characterization of aerosols optical properties. A description of the instrument and a discussion of the data inversion method, including a careful analysis of measurement uncertainties (systematic and statistical errors) are presented. Some case studies of typical lidar profiles observed over the Banizoumbou site during 2006 are shown and discussed with respect to the AERONET 7-day back-trajectories and the biomass burning emissions from the Combustion Emission database for the AMMA campaign.

Cavalieri, Olga; Cairo, Francesco; Fierli, Federico; Snels, Marcel; Viterbini, Maurizio; Cardillo, Francesco; Chatenet, Bernadette; Formenti, Paola; Marticorena, Beatrice; Rajot, Jean Louis

2010-01-01T23:59:59.000Z

230

Alcoholic fermentation of raw sweet potato by a nonconventional method using Endomycopsis fibuligera glucoamylase preparation  

Science Conference Proceedings (OSTI)

In recent years, alcoholic fermentation has received much attention as an alternative energy source. In conventional alcoholic fermentation from starchy materials, precooking is necessary for liquefaction and saccharification of the broth, which requires a large amount of heat energy - about 30-40% of all energy spent for alcohol production. Ueda and his co-workers have attempted to produce ethanol from raw starch in a single-step process, which combines liquefaction, saccharification, and yeast fermentation without cooking and autoclaving by using glucoamylase preparation from Aspergillus niger in order to save the cost of energy consumption by cooking. Ueda has also reported alcoholic fermentation of sweet potato without cooking by using Rhizopus glucoamylase preparation. In the present communication, we report the effectiveness of alcoholic fermentation of sweet potato without cooking by using Endomycopsis fibuligers glucoamylase preparation. (Refs. 5).

Saha, B.C.; Ueda, S.

1983-04-01T23:59:59.000Z

231

Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006  

SciTech Connect

This annual report describes the purpose and structure of the ARM Climate Research Facility and ARM Science programs and presents key accomplishments in 2006. Noteworthy scientific and infrastructure accomplishments in 2006 include: Collaborating with the Australian Bureau of Meteorology to lead the Tropical Warm Pool-International Cloud Experiment, a major international field campaign held in Darwin, Australia Successfully deploying the ARM Mobile Facility in Niger, Africa Developing the new ARM Aerial Vehicles Program (AVP) to provide airborne measurements Publishing a new finding on the impacts of aerosols on surface energy budget in polar latitudes Mitigating a long-standing double-Intertropical Convergence Zone problem in climate models using ARM data and a new cumulus parameterization scheme.

LR Roeder

2005-11-30T23:59:59.000Z

232

Sunny prospects for heat engines  

SciTech Connect

The world's largest solar power plant is being built at Amilly, France and will be installed next year in Dire, Mali. Its capacity will be 80,000 watts. Each day it will pump 300,000 cubic feet of water up 23 feet from the Niger River to irrigate 37 acres of land. From a well 60 feet deep, it will pump another 21,200 cubic feet daily to supply drinking water for 10,000 people in Dire. It will refrigerate a cold room for an agricultural cooperative and, finally, after sundown, will generate 5 kW of electrical power to light both the cooperative and a 40-room tourist hotel. Jean-Pierre Girardier developed the heat engine utilizing the temperature difference between the hot African sun overhead and the cold water under the ground. (MCW)

Behrman, D.

1978-10-01T23:59:59.000Z

233

Productivity and Quality of Brown Midrib (bmr) Sorghum Varieties to Producers in Central America  

E-Print Network (OSTI)

The improved dry matter digestibility of the brown midrib (bmr) sorghum cultivars is attributed to constitutive deficiencies of the lignin biosynthesis pathways which results in lower lignin concentrations. The lower lignin concentrations are expressed only in a homozygous recessive genotypes and it is phenotypically identified by a brown to tan vascular coloration present in the mid-rib of the leaf blades. Utilizing this trait increases forage consumption and productivity of both dairy and beef production. There is a need to extend this trait into more forage production systems, including those in Central America where forages constitute a major portion of the ruminants diets. To achieve this goal, the bmr12 gene was incorporated via conventional breeding, into 16 lines derived from commonly used Central American sorghum varieties. These experimental lines were tested for agronomic performance during 2010 and 2011 in the Central American region. In addition, grain and biomass composition were estimated using near-infrared reflectance spectroscopy (NIRS) whereas the dry biomass digestibility was evaluated using an in vitro approach. The combined analysis indicated the bmr trait increased in vitro dry matter digestibility and reduced acid detergent lignin and acid detergent fiber levels. This combination results in improved sorghum forage quality. Furthermore, negative traits typically associated with bmr mutants such as plant height reduction, delayed flowering, and lodging problems were not observed and the bmr trait had no effect on grain composition. Additionally, post hoc tests identified CI0947bmr as the best experimental line for dry both biomass and grain yield across multiple environments. Stability analysis, identified CI0947bmr as the most stable genotype for both traits. Finally, the which-won-where biplot analysis graphically identified CI0947bmr as the best bmr inbred for Honduras, Guatemala and Nicaragua across several environments.

Portillo Rodriguez, Ostilio Rolando

2013-05-01T23:59:59.000Z

234

Twenty-first workshop on geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

PREFACE The Twenty-First Workshop on Geothermal Reservoir Engineering was held at the Holiday Inn, Palo Alto on January 22-24, 1996. There were one-hundred fifty-five registered participants. Participants came from twenty foreign countries: Argentina, Austria, Canada, Costa Rica, El Salvador, France, Iceland, Indonesia, Italy, Japan, Mexico, The Netherlands, New Zealand, Nicaragua, the Philippines, Romania, Russia, Switzerland, Turkey and the UK. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Sixty-six papers were presented in the technical sessions of the workshop. Technical papers were organized into twenty sessions concerning: reservoir assessment, modeling, geology/geochemistry, fracture modeling hot dry rock, geoscience, low enthalpy, injection, well testing, drilling, adsorption and stimulation. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bobbie Bishop-Gollan, Tom Box, Jim Combs, John Counsil, Sabodh Garg, Malcolm Grant, Marcel0 Lippmann, Jim Lovekin, John Pritchett, Marshall Reed, Joel Renner, Subir Sanyal, Mike Shook, Alfred Truesdell and Ken Williamson. Jim Lovekin gave the post-dinner speech at the banquet and highlighted the exciting developments in the geothermal field which are taking place worldwide. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager.

None

1996-01-26T23:59:59.000Z

235

Yemen-Pilot Program for Climate Resilience (PPCR) | Open Energy Information  

Open Energy Info (EERE)

Yemen-Pilot Program for Climate Resilience (PPCR) Yemen-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Yemen-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Yemen UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

236

Samoa-Pilot Program for Climate Resilience (PPCR) | Open Energy Information  

Open Energy Info (EERE)

Samoa-Pilot Program for Climate Resilience (PPCR) Samoa-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Samoa-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Samoa UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

237

Nepal-Pilot Program for Climate Resilience (PPCR) | Open Energy Information  

Open Energy Info (EERE)

Nepal-Pilot Program for Climate Resilience (PPCR) Nepal-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Nepal-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Nepal UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

238

Tropical Africa: Land Use, Biomass, and Carbon Estimates for 1980 (NDP-055)  

SciTech Connect

This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980. The biomass data and carbon estimates are associated with woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with estimating historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth's land surface and is comprised of countries that are located in tropical Africa (Angola, Botswana, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Congo, Benin, Equatorial Guinea, Ethiopia, Djibouti, Gabon, Gambia, Ghana, Guinea, Ivory Coast, Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria, Guinea-Bissau, Zimbabwe (Rhodesia), Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Tanzania, Togo, Uganda, Burkina Faso (Upper Volta), Zaire, and Zambia). The database was developed using the GRID module in the ARC/INFO{trademark} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

Brown, S.

2002-04-16T23:59:59.000Z

239

Tajikistan-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Tajikistan-Pilot Program for Climate Resilience (PPCR) Tajikistan-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Tajikistan-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Tajikistan UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

240

Bolivia-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Bolivia-Pilot Program for Climate Resilience (PPCR) Bolivia-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Bolivia-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Bolivia UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

Note: This page contains sample records for the topic "nicaragua niger niue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Bangladesh-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Bangladesh-Pilot Program for Climate Resilience (PPCR) Bangladesh-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Bangladesh-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Bangladesh UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

242

Zambia-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Zambia-Pilot Program for Climate Resilience (PPCR) Zambia-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Zambia-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Zambia UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

243

Jamaica-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Jamaica-Pilot Program for Climate Resilience (PPCR) Jamaica-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Jamaica-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Jamaica UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

244

Haiti-Pilot Program for Climate Resilience (PPCR) | Open Energy Information  

Open Energy Info (EERE)

Haiti-Pilot Program for Climate Resilience (PPCR) Haiti-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Haiti-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Haiti UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

245

Saint Lucia-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Saint Lucia-Pilot Program for Climate Resilience (PPCR) Saint Lucia-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Saint Lucia-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Saint Lucia UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

246

Grenada-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Grenada-Pilot Program for Climate Resilience (PPCR) Grenada-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Grenada-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Grenada UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

247

Mozambique-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Mozambique-Pilot Program for Climate Resilience (PPCR) Mozambique-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Mozambique-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Mozambique UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

248

Dominica-Pilot Program for Climate Resilience (PPCR) | Open Energy  

Open Energy Info (EERE)

Dominica-Pilot Program for Climate Resilience (PPCR) Dominica-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Dominica-Pilot Program for Climate Resilience (PPCR) Agency/Company /Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Dominica UN Region Southern Asia References Pilot Program for Climate Resilience (PPCR)[1] Contents 1 Overview 2 Programs by Country 2.1 Bangladesh 2.2 Bolivia 2.3 Cambodia 2.4 Dominica 2.5 Grenada 2.6 Haiti 2.7 Jamaica 2.8 Mozambique 2.9 Nepal 2.10 Niger 2.11 Papua New Guinea 2.12 Saint Lucia 2.13 Saint Vincent and the Grenadines 2.14 Samoa 2.15 Tajikistan 2.16 Tonga 2.17 Yemen 2.18 Zambia 3 References Overview "The Pilot Program for Climate Resilience (PPCR), approved in November

249

Comparison of Simulated and Observed Continental Tropical Anvil Clouds and Their Radiative Heating Profiles  

Science Conference Proceedings (OSTI)

Vertically pointing millimeter-wavelength radar observations of anvil clouds extending from mesoscale convective systems (MCSs) that pass over an Atmospheric Radiation Measurement Program (ARM) field site in Niamey, Niger, are compared to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model using six different microphysical schemes. The radar data provide the statistical distribution of the radar reflectivity values as a function of height and anvil thickness. These statistics are compared to the statistics of the modeled anvil cloud reflectivity at all altitudes. Requiring the model to be statistically accurate at all altitudes is a stringent test of the model performance. The typical vertical profile of radiative heating in the anvil clouds is computed from the radar observations. Variability of anvil structures from the different microphysical schemes provides an estimate of the inherent uncertainty in anvil radiative heating profiles. All schemes underestimate the optical thickness of thin anvils and cirrus, resulting in a bias of excessive net anvil heating in all of the simulations.

Powell, Scott W.; Houze, R.; Kumar, Anil; McFarlane, Sally A.

2012-09-06T23:59:59.000Z

250

Mercury concentrations in Maine sport fishes  

Science Conference Proceedings (OSTI)

To assess mercury contamination of fish in Maine, fish were collected from 120 randomly selected lakes. The collection goal for each lake was five fish of the single most common sport fish species within the size range commonly harvested by anglers. Skinless, boneless fillets of fish from each lake were composited, homogenized, and analyzed for total mercury. The two most abundant species, brook trout Salvelinus fontinalis and smallmouth bass Micropterus dolomieu, were also analyzed individually. The composite fish analyses indicate high concentrations of mercury, particularly in large and long-lived nonsalmonid species. Chain pickerel Esox niger, smallmouth bass, largemouth bass Micropterus salmoides, and white perch Morone americana had the highest average mercury concentrations, and brook trout and yellow perch Perca flavescens had the lowest. The mean species composite mercury concentration was positively correlated with a factor incorporating the average size and age of the fish. Lakes containing fish with high mercury concentrations were not clustered near known industrial or population centers but were commonest in the area within 150 km of the seacoast, reflecting the geographical distribution of species that contained higher mercury concentrations. Stocked and wild brook trout were not different in length or weight, but wild fish were older and had higher mercury concentrations. Fish populations maintained by frequent introductions of hatchery-produced fish and subject to high angler exploitation rates may consist of younger fish with lower exposure to environmental mercury and thus contain lower concentrations than wild populations.

Stafford, C.P. [Univ. of Maine, Orono, ME (United States); Haines, T.A. [Geological Survey, Orono, ME (United States)

1997-01-01T23:59:59.000Z

251

Sequencing the Black Aspergilli species complex  

Science Conference Proceedings (OSTI)

The ~15 members of the Aspergillus section Nigri species complex (the "Black Aspergilli") are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as food processing and spoilage agents and agricultural toxigens. Despite their utility and ubiquity, the morphological and metabolic distinctiveness of the complex's members, and thus their taxonomy, is poorly defined. We are using short read pyrosequencing technology (Roche/454 and Illumina/Solexa) to rapidly scale up genomic and transcriptomic analysis of this species complex. To date we predict 11197 genes in Aspergillus niger, 11624 genes in A. carbonarius, and 10845 genes in A. aculeatus. A. aculeatus is our most recent genome, and was assembled primarily from 454-sequenced reads and annotated with the aid of >2 million 454 ESTs and >300 million Solexa ESTs. To most effectively deploy these very large numbers of ESTs we developed 2 novel methods for clustering the ESTs into assemblies. We have also developed a pipeline to propose orthologies and paralogies among genes in the species complex. In the near future we will apply these methods to additional species of Black Aspergilli that are currently in our sequencing pipeline.

Kuo, Alan; Salamov, Asaf; Zhou, Kemin; Otillar, Robert; Baker, Scott; Grigoriev, Igor

2011-03-11T23:59:59.000Z

252

Use of solar generators in Africa for broadcasting equipment. [For powering educational tv receivers  

SciTech Connect

In Africa, solar cells were used for the first time in 1968 to provide power supply for the TV receivers in Niger. In that country, school television programs are essentially devised for the schools located in regions not provided with power mains. The transmissions are received by the means of TV sets that are especially devised to operate under warm and wet weather conditions. These receivers, model CATEL CI 17, are equipped with 61-cm screens, and are completely solid-state. They can be powered by a d.c. power supply, between 30 and 36 V. Their consumption, extremely modest, ranges around 32 W. The power supply for these receivers had, at the beginning, been provided by high-capacity alkaline electrolyte cells. In order to secure a more practical and less expensive source of energy, an experimental solar cell was installed in 1968. Following a satisfactory operation of this experimental solar cell, a careful study was conducted, after which some twenty installations were set up, using silicon cells and lead-acid batteries. A description of the installations is presented; and maintenance, reliability, and cost of the installations are discussed. (WHK)

Polgar, S.

1977-01-01T23:59:59.000Z

253

Molecular genetic analysis reveals that a nonribosomal peptide synthetase-like (NRPS-like) gene in Aspergillus nidulans is responsible for microperfuranone biosynthesis  

SciTech Connect

Genome sequencing of Aspergillus species including A. nidulans has revealed that there are far more secondary metabolite biosynthetic gene clusters than secondary metabolites isolated from these organisms. This implies that these organisms can produce additional secondary metabolites have not yet been elucidated. The A. nidulans genome contains twelve nonribosomal peptide synthetase (NRPS), one hybrid polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS), and fourteen NRPS-like genes. The only NRPS-like gene in A. nidulans with a known product is tdiA which is involved in terrequinone A biosynthesis. To attempt to identify the products of these NRPS-like genes, we replaced the native promoters of the NRPS-like genes with the inducible alcohol dehydrogenase (alcA) promoter. Our results demonstrated that induction of the single NRPS-like gene AN3396.4 led to the enhanced production of microperfuranone. Furthermore, heterologous expression of AN3396.4 in A. niger confirmed that only one NRPS-like gene, AN3396.4, is necessary for the production of microperfuranone.

Yeh, Hsu-Hua; Chiang, Yi Ming; Entwistle, Ruth; Ahuja, Mammeet; Lee, Kuan-Han; Bruno, Kenneth S.; Wu, Tung-Kung; Oakley, Berl R.; Wang, Clay C.

2012-04-10T23:59:59.000Z

254

Feasibility of waterflooding Soku E7000 gas-condensate reservoir  

E-Print Network (OSTI)

We performed a simple 3D compositional reservoir simulation study to examine the possibility of waterflooding the Soku E7 gas-condensate reservoir. This study shows that water injection results in higher condensate recovery than natural depletion. To achieve this recovery, the reservoir should return to natural depletion after four years of water injection, before water invades the producing wells. Factors that affect the effectiveness of water injection in this reservoir include aquifer strength, reservoir property distribution, timing of the start of injection, and intra-reservoir shale thickness and continuity. Sensitivity analyses used to quantify the effects of these factors on condensate recovery indicate the need to acquire more production, pressure and log data to reduce the present large uncertainty on aquifer strength before proceeding on waterflooding this reservoir. The study also shows that the injection scheme should be implemented as soon as possible to avoid further loss of condensate recovery. The result of this study is applicable to other gas condensate reservoirs in the Niger delta with similar depositional environments.

Ajayi, Arashi

2002-01-01T23:59:59.000Z

255

Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm  

SciTech Connect

Endo-xylanase (from Bacillus subtilis) or ferulic acid esterase (from Aspergillus niger) were expressed in wheat under the control of the endosperm specific 1DX5 glutenin promoter. Constructs both with and without the endoplasmic reticulum retention signal KDEL were used. Transgenic plants were recovered in all four cases but no qualitative differences could be observed whether KDEL was added or not. Endo-xylanase activity in transgenic grains was increased between two and three fold relative to wild type. The grains were shriveled and had a 25-33% decrease in mass. Extensive analysis of the cell walls showed a 10-15% increase in arabinose to xylose ratio, a 50% increase in the proportion of water extractable arabinoxylan, and a shift in the MW of the water extractable arabinoxylan from being mainly larger than 85 kD to being between 2 kD and 85 kD. Ferulic acid esterase expressing grains were also shriveled and the seed weight was decreased by 20-50%. No ferulic acid esterase activity could be detected in wild type grains whereas ferulic acid esterase activity was detected in transgenic lines. The grain cell walls had 15-40% increase in water unextractable arabinoxylan and a decrease in monomeric ferulic acid between 13 and 34%. In all the plants the observed changes are consistent with a plant response that serves to minimize the effect of the heterologously expressed enzymes by increasing arabinoxylan biosynthesis and cross-linking.

Harholt, Jesper; Bach, Inga C; Lind-Bouquin, Solveig; Nunan, Kylie J.; Madrid, Susan M.; Brinch-Pedersen, Henrik; Holm, Preben B.; Scheller, Henrik V.

2009-12-08T23:59:59.000Z

256

Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model Fourth Quarter 2008  

SciTech Connect

In 2008, the Atmospheric Radiation Measurement (ARM) Program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the metrics will deal with a decade-long control simulation using geodesic grid-coupled climate model. For ARM, the metrics will deal with observations associated with the 2006 deployment of the ARM Mobile Facility (AMF) to Niamey, Niger. Specifically, ARM has been asked to deliver data products for Niamey that describe cloud, aerosol, and dust properties. The first quarter milestone was the initial formulation of the algorithm for retrieval of these properties. The second quarter milestone included the time series of ARM-retrieved cloud properties and a year-long CCPP control simulation. The third quarter milestone included the time series of ARM-retrieved aerosol optical depth and a three-year CCPP control simulation. This final fourth quarter milestone includes the time-series of aerosol and dust properties and a decade-long CCPP control simulation.

JH Mather; DA Randall; CJ Flynn

2008-09-30T23:59:59.000Z

257

Identifying and characterizing the most significant ?-glucosidase of the novel species Aspergillus saccharolyticus  

Science Conference Proceedings (OSTI)

A newly discovered fungal species, Aspergillus saccharolyticus, was found to produce a culture broth rich in beta-glucosidase activity. In this present work, the main beta-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high beta-glucosidase activity and only one visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to beta-glucosidases from aspergilli. Through a PCR approach using degenerate primers and genome walking, a 2919 base pair sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger, respectively, both belonging to Glycoside hydrolase family 3. Homology modeling studies suggested beta-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared to other beta-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, pNPG, and cellodextrins. The enzyme showed good thermostability, was stable at 50C, and at 60C it had a half-life of approximately 6 hours.

Sorensen, Anette; Ahring, Birgitte K.; Lubeck, Mette; Ubhayasekera, Wimal; Bruno, Kenneth S.; Culley, David E.; Lubeck, Peter S.

2012-08-20T23:59:59.000Z

258

Aerosol-to-Hydrosol Transfer Stages for use in bioaerosol sampling  

E-Print Network (OSTI)

Single-Jet and Multi-Jet Aerosol to Hydrosol Transfer Stages (AHTS) with cutpoints of 2 and 0.8 []m AD, respectively, were designed and evaluated. Both devices operate at nominal air sampling flow rate of 1 L/min, 0.1% Tween20, and 0.3 mL/min. collection liquid flow rate. Both systems have an ideal air power consumption of 1.4 mW and 4.5 mW, respectively. The total electrical power consumption, including that needed to heat the airstream and a sampling enclosure, is approximately 55 W at -23C (-10F) outside air temperature. The AHTSs were tested using polystyrene solid and oleic acid liquid aerosol particles to determine the collection efficiencies. The effectiveness of the fractional collection efficiency for the Single-Jet and Multi-Jet are 91% over the size range of 2 to 10 []m AD, and 90% over the size range of 1 to 10 []m AD, respectively. The hydrosol collection efficiency of the Multi-Jet is 95% over the size of 1 to 3 []m AD. The influence of a cleaning solution that was comprised of distilled water and 0.1% Tween20 yielded an average collection efficiency of above 90% for the Single-Jet and 98% for the Multi-Jet. When the liquid flow rate is equal to or greater than 0.3 mL/min, the hydrosol collection efficiency is constant at 90%. The time responses for Single-Jet and Multi-Jet are 1.4 and 0.75 minutes, respectively. Preliminary results of bioaerosol testing with 0.7 []m AD single spores of Bacillus globigii var. niger show efficiencies over 100%. These discrepancies are probably due to the testing procedures at the U.S. Army Research Office, Chemical Biological Center, Edgewood, MD, facilities.

Phan, Huy Ngoc

2002-01-01T23:59:59.000Z

259

U.S. Energy Information Administration / 2012 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

Uranium Marketing Annual Report Uranium Marketing Annual Report Purchases Weighted- Average Price Purchases Weighted- Average Price Purchases Weighted- Average Price Purchases Weighted- Average Price Purchases Weighted- Average Price Australia 12,758 41.59 11,164 52.25 7,112 51.35 6,001 57.47 6,724 51.17 Brazil W W W W W W W W W W Canada 9,791 48.72 8,975 42.25 10,238 50.35 10,832 56.08 13,584 56.75 China 0 -- 0 -- 0 -- W W W W Czech Republic W W W W W W 0 -- 0 -- Germany 0 -- 0 -- W W 0 -- 0 -- Hungary 0 -- 0 -- W W 0 -- 0 -- Kazakhstan 3,818 60.61 4,985 43.41 6,830 47.81 9,728 53.71 6,234 51.69 Malawi 0 -- 0 -- W W 780 65.44 W W Namibia 3,880 54.79 5,732 47.30 4,913 47.90 6,199 56.74 5,986 54.56 Niger W W 2,001 47.55 587 49.00 1,744 54.38 2,133 50.45 Russia 12,080 27.64 7,938 37.98 10,544 50.28 10,199 56.57 7,643 54.40 South Africa 783 27.50 W W W W 1,524 53.62 1,243 56.45 Ukraine 0 -- 0 -- W W W W W W United Kingdom W W 0 -- 0 -- 0 -- 0 -- Uzbekistan

260

Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance  

SciTech Connect

Saharan dust storms transport large quantities of material across the African continent and beyond, causing widespread disruption and hazards to health. The dust may be deposited into the Atlantic Ocean, where it provides an important source of nutrients1, and may be carried as far as the West Indies. Such events may also influence the growth of Atlantic tropical cyclones. Satellite observations have enabled estimates to be made of the effect of the dust on the radiation budget seen from space, but only limited in situ observations have hitherto been made at the surface. Here we present the first simultaneous and continuous observations of the effect of a major dust storm in March 2006 on the radiation budget both at the top of the atmosphere (TOA) and at the surface. We combine data from the Geostationary Earth Radiation Budget (GERB) broadband radiometer and the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on the Meteosat-8 weather satellite with remote sensing and in situ measurements from a new Mobile Facility located in Niamey, Niger (13{sup o} 29'N, 2{sup o} 10'E), operated by the US Atmospheric Radiation Measurement (ARM) program. We show that the dust produced major perturbations to the radiation budget seen from space and from the surface. By combining the two datasets, we estimate the impact on the radiation budget of the atmosphere itself. Using independent data from the Mobile Facility, we derive the optical properties of the dust and input these and other information into radiation codes to simulate the radiative fluxes. Comparisons with the observed fluxes provides a stringent test of the ability of the codes to represent the radiative properties of this important component of the global aerosol burden.

Slingo, A.; Ackerman, Thomas P.; Allan, R. P.; Kassianov, Evgueni I.; McFarlane, Sally A.; Robinson, G. J.; Barnard, James C.; Miller, Mark; Harries, J. E.; Russell, J. E.; Dewitte, S.

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "nicaragua niger niue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Methodology for estimating volumes of flared and vented natural gas  

Science Conference Proceedings (OSTI)

The common perception in the United States that natural gas produced with oil is a valuable commodity probably dates from the 1940's. Before that time, most operators regarded natural gas associated with or dissolved in oil as a nuisance. Indeed, most associated/dissolved natural gas produced in the United States before World War II probably was flared or vented to the atmosphere. This situation has changed in the United States, where flaring and venting have decreased dramatically in recent years, in part because of environmental concerns, but also because of the changing view of the value of natural gas. The idea that gas is a nuisance is beginning to change almost everywhere, as markets for gas have developed in Europe, Japan, and elsewhere, and as operators have increasingly utilized or reinjected associated-dissolved gas in their oil-production activities. Nevertheless, in some areas natural gas continues to be flared or vented to the atmosphere. Gas flares in Russia, the Niger Delta, and the Middle East are some of the brightest lights on the nighttime Earth. As we increasingly consider the global availability and utility of natural gas, and the environmental impacts of the consumption of carbon-based fuels, it is important to know how much gas has been flared or vented, how much gas is currently being flared or vented, and the distribution of flaring or venting through time. Unfortunately, estimates of the volumes of flared and vented gas are generally not available. Despite the inconsistency and inavailability of data, the extrapolation method outlined provides a reliable technique for estimating amounts of natural gas flared and vented through time. 36 refs., 7 figs., 6 tabs.

Klett, T.R.; Gautier, D.L. (Geological Survey, Denver, CO (United States))

1993-01-01T23:59:59.000Z

262

Tourism development, rural livelihoods, and conservation in the Okavango Delta, Botswana  

E-Print Network (OSTI)

This study analyzed changes in livelihoods before and after tourism development at Khwai, Mababe and Sankoyo villages in the Okavango Delta. Specifically, it analyzed how people interacted with species like giraffe (Giraffa camelopardalis), sable antelope (Hippotragus niger) and thatching grass (Cymbopogon excavatus) before and after tourism development. This analysis was expected to measure the effectiveness of tourism development as a tool to improve livelihoods and conservation. The concept of social capital, sustainable livelihoods framework and the Community- Based Natural Resource Management (CBNRM) paradigm informed the study. Qualitative and quantitative data were gathered through field-based research, using tools of participant observation, semi-structured interviews, and key informant interviews. Results indicate that local customs and institutions at Khwai, Mababe and Sankoyo ensured the conservation of resources in pre-colonial Botswana. However, British colonial rule (1885-1966) affected traditional institutions of resource use hence the beginning of resource decline. The British colonial rule and the first 15-20 years after Botswanas independence from British rule saw an increase in resource degradation. Results also indicate that since CBNRM began in the 1990s, tourism development has positive and negative effects on rural livelihoods. On the positive side, tourism development in some ways is achieving its goals of improved livelihoods and conservation. Residents attitudes towards tourism development and conservation have also become positive compared to a decade ago when these communities were not involved in tourism development. On the negative side, tourism is emerging as the single livelihood option causing either a decline or abandonment of traditional options like hunting and gathering and agricultural production. Reliance on tourism alone as a livelihood option is risky in the event of a global social, economic and political instability especially in countries where most tourists that visit the Okavango originate or in Botswana itself. There is need, therefore, for communities to diversify into domestic tourism and small-scale enterprises. On the overall, tourism development through CBNRM indicates that it is a viable tool to achieve improved livelihoods and conservation in the Okavango Delta.

Mbaiwa, Joseph Elizeri

2008-08-01T23:59:59.000Z

263

Seasonal Contrasts in the Surface Energy Balance of the Sahel  

SciTech Connect

Over most of the world ocean, heating of the surface by sunlight is balanced predominately by evaporative cooling. Even over land, moisture for evaporation is available from vegetation or the soil reservoir. However, at the ARM Mobile Facility in Niamey, Niger, soil moisture is so depleted that evaporation makes a significant contribution to the surface energy balance only at the height of the rainy season, when precipitation has replenished the soil reservoir. Using observations at the Mobile Facility from late 2005 to early 2007, we describe how the surface balances radiative forcing. How the surface compensates time-averaged solar heating varies with seasonal changes in atmospheric water vapor, which modulates the greenhouse effect and the ability of the surface to radiate thermal energy directly to space. During the dry season, sunlight is balanced mainly by longwave radiation and the turbulent flux of sensible heat. The ability of longwave radiation to cool the surface drops after the onset of the West African summer monsoon, when moist, oceanic air flows onshore, increasing local column moisture and atmospheric opacity at these wavelengths. After the monsoon onset, but prior to significant rainfall, solar heating is compensated mainly by the sensible heat flux. During the rainy season, the magnitude of evaporation is initially controlled by the supply of moisture from precipitation. However, by the height of the rainy season, sufficient precipitation has accumulated at the surface that evaporation is related to the flux demanded by solar radiation, and radiative forcing of the surface is balanced comparably by the latent, sensible, and longwave fluxes. Radiative forcing of the surface also varies on a subseasonal time scale due to fluctuations in water vapor, clouds, and aerosol concentration. Except at the height of the rainy season, subseasonal forcing is balanced mainly by sensible heating and longwave anomalies. The efficacy of the sensible heat flux depends upon a positive feedback, where forcing changes mixing within the boundary layer and amplifies the sensible heating anomaly. How the surface responds to radiative forcing is fundamental to the climate response to dust and carbonaceous aerosols.

Miller, Ron; Slingo, A.; Barnard, James C.; Kassianov, Evgueni I.

2009-03-14T23:59:59.000Z

264

Evaluation of cowpea (Vigna unguiculata L. Walp) genotypes for adaptation to low soil-phosphorus conditions and to rock phosphate application  

E-Print Network (OSTI)

Cowpea (Vigna ungiculata L. Walp) is a major food and fodder legume in poor countries, particularly Sub-Saharan Africa countries. It is generally produced in sandy, acid soils, deficient in phosphorus (P) which severely limits its production. Because processed phosphate fertilizers are expensive and poorly available to farmers, rock phosphate is viewed as a cheap alternative phosphate source. The present study evaluated 696 U.S Core Collection and IITA cowpea accessions for adaptation to low soil P environments and for response to rock phosphate application. Subsequently, organic acid exudation by selected cowpea genotypes as a mechanism for P acquisition from Fe-oxide and Ca bound P was investigated. A low P soil from Nacogdoches pine forest was used to grow plants. There were two P treatments: 0 and 300 mg P/kg of soil as Tahoua (Niger) rock phosphate. At harvest, plant height, shoot and root dry weights were determined and total biomass and shoot-to-root ratios were computed. Shoot P contents of 100 selected accessions were measured. Sixteen accessions reflecting the wide array of responses observed were selected for the organic acid study. Plants were grown in a growth chamber hydroponically with no P and +P nutrient solutions for 3 weeks. Organic acids were collected in a CaCl2-KCl solution. The nature and quantity of the collected organic acids was determined. Cowpea accessions were significantly different in their ability to adapt to Pdeficiency stress and to acquire P from rock phosphate. The parameters most effective in separating the accessions were shoot mass and total biomass. This data will be potentially useful in the selection of cowpea germplasm for (1) adaptation to West African soils of low P fertility, and (2) ability to utilize P from poorly soluble rock phosphate. The predominant organic acid exuded by cowpea roots was a tricarboxylic acid not yet identified. There was surprisingly more exudation of this acid under +P than under P conditions. Exudation was more highly correlated to roots than to shoots.

Mahamane, Sabiou

2008-05-01T23:59:59.000Z

265

Canadian National Energy Use Database: Statistics and Analysis | Open  

Open Energy Info (EERE)

Canadian National Energy Use Database: Statistics and Analysis Canadian National Energy Use Database: Statistics and Analysis Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian National Energy Use Database: Statistics and Analysis Focus Area: Energy Efficiency Topics: Potentials & Scenarios Website: oee.nrcan.gc.ca/corporate/statistics/neud/dpa/home.cfm?attr=24 Equivalent URI: cleanenergysolutions.org/content/canadian-national-energy-use-database Language: "English,French" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

266

Improved Biomass Cooking Stoves | Open Energy Information  

Open Energy Info (EERE)

Improved Biomass Cooking Stoves Improved Biomass Cooking Stoves Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Improved Biomass Cooking Stoves Agency/Company /Organization: various Sector: Energy Focus Area: Biomass Phase: Determine Baseline, Evaluate Options, Prepare a Plan, Create Early Successes Topics: Co-benefits assessment, - Energy Access Resource Type: Case studies/examples, Guide/manual, Presentation, Video User Interface: Website Website: ttp://www.bioenergylists.org/ Cost: Free Language: "English, Spanish; Castilian" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

267

Handbook of Emission Factors for Road Transport (HBEFA) | Open Energy  

Open Energy Info (EERE)

of Emission Factors for Road Transport (HBEFA) of Emission Factors for Road Transport (HBEFA) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Handbook of Emission Factors for Road Transport (HBEFA) Focus Area: Clean Transportation Topics: Policy, Deployment, & Program Impact Website: www.hbefa.net/e/index.html Equivalent URI: cleanenergysolutions.org/content/handbook-emission-factors-road-transp Language: "English,French,German" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

268

Renewable Energy and Energy Efficiency Toolkit Website | Open Energy  

Open Energy Info (EERE)

Renewable Energy and Energy Efficiency Toolkit Website Renewable Energy and Energy Efficiency Toolkit Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy and Energy Efficiency Toolkit Website Focus Area: Renewable Energy Topics: Policy Impacts Website: toolkits.reeep.org/ Equivalent URI: cleanenergysolutions.org/content/renewable-energy-and-energy-efficienc Language: "English,Chinese,French,Portuguese,Spanish" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

269

IGES-Market Mechanism Group | Open Energy Information  

Open Energy Info (EERE)

IGES-Market Mechanism Group IGES-Market Mechanism Group Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IGES-Market Mechanism Agency/Company /Organization: Institute for Global Environmental Strategies (IGES) Sector: Climate, Energy Focus Area: Renewable Energy Topics: Market analysis Resource Type: Training materials Website: www.iges.or.jp/en/cdm/index.html Cost: Free Language: "English, Japanese" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

270

Eco TransIT World | Open Energy Information  

Open Energy Info (EERE)

Eco TransIT World Eco TransIT World Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Eco TransIT World Focus Area: Low Carbon Communities Topics: Opportunity Assessment & Screening Website: www.ecotransit.org/index.en.html Equivalent URI: cleanenergysolutions.org/content/eco-transit-world Language: "English,Dutch,French,German,Spanish" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

271

CRiSTAL Project Management Tool | Open Energy Information  

Open Energy Info (EERE)

CRiSTAL Project Management Tool CRiSTAL Project Management Tool Jump to: navigation, search Tool Summary Name: CRiSTAL Project Management Tool Agency/Company /Organization: International Institute for Sustainable Development (IISD) Sector: Climate, Energy, Land Topics: Implementation Resource Type: Guide/manual, Software/modeling tools User Interface: Spreadsheet Website: www.iisd.org/cristaltool/ Cost: Free Language: "English, French, Portuguese, Spanish; Castilian" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

272

Miljoforden Website | Open Energy Information  

Open Energy Info (EERE)

Miljoforden Website Miljoforden Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Miljoforden Website Focus Area: Natural Gas Topics: Deployment Data Website: www.miljofordon.se/in-english/this-is-miljofordon-se Equivalent URI: cleanenergysolutions.org/content/miljoforden-website Language: "English,Swedish" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

273

Overview of China's Vehicle Emission Control Program: Past Successes and  

Open Energy Info (EERE)

Overview of China's Vehicle Emission Control Program: Past Successes and Overview of China's Vehicle Emission Control Program: Past Successes and Future Prospects Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Overview of China's Vehicle Emission Control Program: Past Successes and Future Prospects Focus Area: Propane Topics: Socio-Economic Website: theicct.org/sites/default/files/publications/Retrosp_final_bilingual.p Equivalent URI: cleanenergysolutions.org/content/overview-china's-vehicle-emission-con Language: "English,Chinese" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

274

Photovoltaics Design and Installation Manual | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Design and Installation Manual Photovoltaics Design and Installation Manual Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaics Design and Installation Manual Agency/Company /Organization: Solar Energy International Sector: Energy Focus Area: Renewable Energy, Solar, - Solar PV Resource Type: Training materials User Interface: Other Website: www.solarenergy.org/bookstore/photovoltaics-design-installation-manual Cost: Paid Language: "English, Spanish; Castilian" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

275

OLADE-Solar Thermal World Portal | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » OLADE-Solar Thermal World Portal Jump to: navigation, search Tool Summary Name: OLADE-Solar Thermal World Portal Agency/Company /Organization: Latin American Energy Organization (OLADE) Sector: Energy Focus Area: Renewable Energy, Solar, - Concentrating Solar Power, - Solar Hot Water User Interface: Website Website: www.solarthermalworld.org/ Cost: Free UN Region: Caribbean, South America Language: "English, Spanish; Castilian" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Proven√ßal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volap√ºk, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

276

Freight Best Practice Website | Open Energy Information  

Open Energy Info (EERE)

Freight Best Practice Website Freight Best Practice Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Freight Best Practice Website Focus Area: Public Transit Topics: Policy, Deployment, & Program Impact Website: www.freightbestpractice.org.uk/ Equivalent URI: cleanenergysolutions.org/content/freight-best-practice-website Language: "English,Welsh" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

277

COMFAR III: Computer Model for Feasibility Analysis and Reporting | Open  

Open Energy Info (EERE)

COMFAR III: Computer Model for Feasibility Analysis and Reporting COMFAR III: Computer Model for Feasibility Analysis and Reporting Jump to: navigation, search Tool Summary Name: COMFAR III: Computer Model for Feasibility Analysis and Reporting Agency/Company /Organization: United Nations Industrial Development Organization Focus Area: Industry Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.unido.org/index.php?id=o3470 Language: "Arabic, Chinese, English, French, German, Japanese, Portuguese, Russian, Spanish; Castilian" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

278

Sustainable Logistics Website | Open Energy Information  

Open Energy Info (EERE)

Sustainable Logistics Website Sustainable Logistics Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sustainable Logistics Website Focus Area: Clean Transportation Topics: Best Practices Website: www.duurzamelogistiek.nl/ Equivalent URI: cleanenergysolutions.org/content/sustainable-logistics-website Language: "English,Dutch" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.