Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

AEO2011: Primary Natural Gas Flows Entering NGTDM Region from Neighboring  

Open Energy Info (EERE)

Primary Natural Gas Flows Entering NGTDM Region from Neighboring Primary Natural Gas Flows Entering NGTDM Region from Neighboring Regions Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 138, and contains only the reference case. This dataset is in billion cubic feet per year. The data is broken down into New England, Middle Atlantic, East North Central, West Central, South Atlantic, East South Central, West South Central, Mountain, Pacific, Florida, Arizona/New Mexico, California. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIS Natural Gas Data application/vnd.ms-excel icon AEO2011: Primary Natural Gas Flows Entering NGTDM Region from Neighboring Regions- Reference Case (xls, 60 KiB)

2

[working paper] Regional Economic Capacity, Economic Shocks,  

E-Print Network (OSTI)

1 [working paper] Regional Economic Capacity, Economic Shocks, and Economic that makes them more likely to resist economic shocks or to recover quickly from of resilience capacity developed by Foster (2012) is related to economic resilience

Sekhon, Jasjeet S.

3

AGA Producing Region Natural Gas Underground Storage Capacity (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,026,828 2,068,220 2,068,220 2,068,428 2,068,428 2,068,428 2,074,428 2,082,928 2,082,928 2,082,928 2,082,928 2,082,928 1995 2,082,928 2,096,611 2,096,611 2,096,176 2,096,176 2,096,176 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 1996 2,095,131 2,106,116 2,110,116 2,108,116 2,110,116 2,127,294 2,126,618 2,134,784 2,140,284 2,140,284 2,144,784 2,144,784 1997 2,143,603 2,149,088 2,170,288 2,170,288 2,170,178 2,170,178 2,189,642 2,194,242 2,194,242 2,194,242 2,194,242 2,194,242 1998 2,194,242 2,194,242 2,194,242 2,194,242 2,194,242 2,205,540 2,205,540 2,205,540 2,205,540 2,205,540 2,205,540 2,197,859

4

AGA Western Consuming Region Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,226,103 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1995 1,232,392 1,233,637 1,233,637 1,233,637 1,233,637 1,243,137 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1996 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1,228,208 1,270,505 1,270,505 1,270,505 1,270,505 1,270,505 1,270,505 1997 1,228,395 1,228,395 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1998 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586

5

AGA Eastern Consuming Region Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 4,737,921 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,446 4,727,446 4,727,446 4,727,509 1995 4,730,109 4,647,791 4,647,791 4,647,791 4,647,791 4,647,791 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 1996 4,593,948 4,600,548 4,603,048 4,603,048 4,607,048 4,740,509 4,740,509 4,742,309 4,743,309 4,743,309 4,743,309 4,743,309 1997 4,681,090 4,574,740 4,586,024 4,578,486 4,586,024 4,582,146 4,582,146 4,582,146 4,585,702 4,585,702 4,585,702 4,585,702 1998 4,585,702 4,585,702 4,585,702 4,585,702 4,585,702 4,799,753 4,799,753 4,799,753 4,799,753 4,799,753 4,799,753 4,805,622

6

Evaluation Model for Safety Capacity of Chemical Industrial Park Based on Acceptable Regional Risk  

Science Journals Connector (OSTI)

Abstract The paper defines the Safety Capacity of Chemical Industrial Park (SCCIP) from the perspective of acceptable regional risk. For the purpose to explore the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity for chemical industrial park, and then by combining with the safety storage capacity,a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level. The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized the regional risk control to the Park effectively.

Guohua Chen; Shukun Wang; Xiaoqun Tan

2014-01-01T23:59:59.000Z

7

Event:CBD Africa Regional Consultation and Capacity Building Workshop on  

Open Energy Info (EERE)

CBD Africa Regional Consultation and Capacity Building Workshop on CBD Africa Regional Consultation and Capacity Building Workshop on REDD+, Including on Relevant Biodiversity Safeguards Jump to: navigation, search Calendar.png CBD Africa Regional Consultation and Capacity Building Workshop on REDD+, Including on Relevant Biodiversity Safeguards: on 2011/09/19 "This workshop is being convened by the Secretariat of the Convention on Biological Diversity (CBD), in collaboration with the South African National Biodiversity Institute and with financial support from Norway, the UK and the UN-REDD Programme. Its purpose is to consult effectively with parties on the development of advice on relevant safeguards for biodiversity, so that REDD+ (reducing emissions from deforestation and forest degradation in developing countries, as well as conservation,

8

A Control Theoretic Interpretation for the Capacity Region of the MAC with Feedback  

E-Print Network (OSTI)

and Achilleas Anastasopoulos EECS Department, University of Michigan Abstract We consider the problem the error performance or simplifying the transmission scheme. When it comes to the multiple-access channels it was shown to be strictly smaller than the capacity region for other channels [5]. Along this line

Anastasopoulos, Achilleas

9

Multi-region capacity planning model with contracts of varying duration under uncertainty : a satellite capacity acquisition case study  

E-Print Network (OSTI)

This paper highlights the issues associated with and presents a modeling framework for long-term capacity planning problems constrained in a similar fashion to satellite capacity acquisition. Although ambiguities exist, ...

Lydiard, John M., IV

2014-01-01T23:59:59.000Z

10

Regional differences and convergence of resources carrying capacity: a comparison of nine provinces and municipalities in China  

Science Journals Connector (OSTI)

This paper applies an improved resources carrying capacity model established by Huang and He (2012), and estimates a single and composite resources carrying capacity, and uses sigma convergence, beta convergence and club convergence to investigate the dynamics of resources carrying capacity in nine provinces and municipalities in China from 1978 to 2008. Our results show that there exists time domain and regional characteristics in sigma convergence and club convergence of carrying capacity in China. But, the growth of carrying capacity of nine provinces and municipalities in China is beta absolute convergence.

Chang-Feng Huang; Jian Yu

2013-01-01T23:59:59.000Z

11

Factors predicting the capacity of Los Angeles city-region recreation programs to promote energy expenditure  

Science Journals Connector (OSTI)

Abstract An audit of recreation programs with moderate or higher levels of physical activity (PA) in Los Angeles area cities (N=82) was conducted using internet, telephone, and survey methods. Metabolic Equivalents (METs) were used to code programs? physical activity intensity. MET-hours per recreation program was associated with required age for enrollment, percent of residents >64 years of age, and fiscal capacity of cities. Capacity to promote energy expenditure may depend on targeted age groups, age of population, and municipal fiscal capacity. Cities with lower fiscal capacity might offer those higher MET-hour activities which require less specialized equipment and seek outside funding to offer higher MET programs.

Kim D. Reynolds; Nicholas Dahmann; Jennifer Wolch; Pascale Joassart-Marcelli; Genevieve Dunton; Diana Rudulph; Joshua Newell; Jennifer Thayer; Michael Jerrett

2014-01-01T23:59:59.000Z

12

Problems of regional energy provision in the energy strategy of Russia to 2030 and prospects for low-capacity nuclear power plant development  

Science Journals Connector (OSTI)

One problem of energy policy is stimulation of comprehensive development of a regional power supply, including power generation by low-capacity nuclear power plants in the regions where such sources could be comp...

N. I. Voropai; O. V. Marchenko; V. A. Stennikov

2012-03-01T23:59:59.000Z

13

Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1  

SciTech Connect

The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. Subsequent chapters of this report provide: an overview of NGTDM; a description of the interface between the NEMS and NGTDM; an overview of the solution methodology of the NGTDM; the solution methodology for the Annual Flow Module; the solution methodology for the Distributor Tariff Module; the solution methodology for the Capacity Expansion Module; the solution methodology for the Pipeline Tariff Module; and a description of model assumptions, inputs, and outputs.

NONE

1998-01-01T23:59:59.000Z

14

An interpretation of the Cover and Leung capacity region for the MAC with feedback through  

E-Print Network (OSTI)

stochastic control Achilleas Anastasopoulos and Kihyuk Sohn EECS Department, University of Michigan Abstract interpretation provides an understanding of the role of auxiliary random variables and can also hint at on-line capacity-achieving transmission schemes. I. INTRODUCTION Shannon showed in his early work [1

Anastasopoulos, Achilleas

15

Shape of the hydrogen adsorption regions of MOF-5 and its impact on the hydrogen storage capacity  

Science Journals Connector (OSTI)

The adsorption of molecular hydrogen on a metal-organic framework (MOF) material, MOF-5, has been studied using the density-functional formalism. The calculated potential-energy surface shows that there are two main adsorption regions: both near the OZn4 oxide cores at the vertices of the cubic skeleton of MOF-5. The adsorption energies in those regions are between 100 and 130 meV/molecule. Those adsorption regions have the shape of long, wide, and deep connected trenches and passage of the molecule between regions needs to surpass small barriers of 3050 meV. The shape of these regions, and not only the presence of metal atoms, explains the large storage capacity measured for MOF-5. The elongated shape explains why some authors have previously identified only one type of adsorption site, associated to the Zn oxide core, and others identified two or three sites. One should consider adsorption regions rather than adsorption sites. A third region of adsorption is near the benzenic rings of the MOF-5. We have also analyzed the possibility of dissociative chemisorption. The chemisorption energy with respect to two separated H atoms is 1.33 eV/H atom; but, since dissociating the free molecule costs 4.75 eV, the physisorbed H2 molecule is more stable than the dissociated chemisorbed state by about 2 eV. Dissociation of the adsorbed molecule costs less energy, but the dissociation barrier is still high.

I. Cabria; M. J. Lpez; J. A. Alonso

2008-11-24T23:59:59.000Z

16

The National Energy Modeling System: An Overview 1998 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

NATURAL GAS TRANSMISSION AND DISTRIBUTION MODULE NATURAL GAS TRANSMISSION AND DISTRIBUTION MODULE blueball.gif (205 bytes) Annual Flow Submodule blueball.gif (205 bytes) Capacity Expansion Submodule blueball.gif (205 bytes) Pipeline Tariff Submodule blueball.gif (205 bytes) Distributor Tariff Submodule The natural gas transmission and distribution module (NGTDM) is the component of NEMS that represents the natural gas market. The NGTDM models the natural gas transmission and distribution network in the lower 48 States, which links suppliers (including importers) and consumers of natural gas. The module determines regional market-clearing prices for natural gas supplies (including border prices) and end-use consumption. The NGTDM has four primary submodules: the annual flow submodule, the capacity expansion submodule, the pipeline tariff submodule, and the

17

127 Natural Gas Transmission and Distribution Module  

E-Print Network (OSTI)

and border prices, end-use prices, and flows of natural gas through a regional interstate representative pipeline network, for both a peak (December through March) and off-peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. Natural gas flow patterns are a function of the pattern in the previous year, coupled with the relative prices of the supply options available to bring gas to market centers within each of the NGTDM regions (Figure 9). The major assumptions used within the NGTDM are grouped into four general categories. They relate to (1) structural components of the model, (2) capacity expansion and pricing of transmission and distribution services, (3) Arctic pipelines, and (4) imports and exports. A complete listing of NGTDM assumptions and in-depth

Key Assumptions

18

Experimental and calculated evaluation of the supporting capacity of steel 13KhGMF welded joints in the low endurance region  

SciTech Connect

In recent years thermally-hardened low-alloy steel 13KhGMF, which exhibits high mechanical properties and good weldability, has found use in hydrotechnical structures. In this work, besides studying static and cyclic properties of individual zones of butt joints in steel 13KhGMF, consideration is given to regularities of deformation and failure for welded joints made by the methods indicated with measurement of the geometric parameters of the joints, and a calculated evaluation is also given for their supporting capacity in the region of loading cycles not exceeding 10/sup 5/. The results show that the mechanical properties of the different zones of joints made by manual and electroslag welding differ markedly. The metal resistance of different joints to low-cycle failure is presented. A comparison is shown of experimental and calculated curves for the development of a fatigue crack in welded joints of steel 13KhGMF. The effect of nonuniformity in mechanical properties on the supporting capacity of joints in steel 13KhGMF is shown to be most marked in the quasistatic failure region.

Yakubovskii, V.V.

1987-03-01T23:59:59.000Z

19

Fundamentals of Capacity Control  

Science Journals Connector (OSTI)

Whereas capacity planning determines in advance the capacities required to implement a production program, capacity control determines the actual capacities implemented shortly beforehand. The capacity control...

Prof. Dr.-Ing. habil. Hermann Ldding

2013-01-01T23:59:59.000Z

20

Capacity Markets for Electricity  

E-Print Network (OSTI)

ternative Approaches for Power Capacity Markets, Papers andprof id=pjoskow. Capacity Markets for Electricity [13]Utility Commission- Capacity Market Questions, available at

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

generation capacity | OpenEI  

Open Energy Info (EERE)

generation capacity generation capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

22

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

23

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each forecast year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. In addition, natural gas flow patterns are a function of the pattern in the previous year, coupled with the relative prices of gas supply options as translated to the represented market “hubs.” The major assumptions used within the NGTDM are grouped into five general categories. They relate to (1) the classification of demand into core and noncore transportation service classes, (2) the pricing of transmission and distribution services, (3) pipeline and storage capacity expansion and utilization, and (4) the implementation of recent regulatory reform. A complete listing of NGTDM assumptions and in-depth methodology descriptions are presented in Model Documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System, Model Documentation 2003, DOE/EIA- M062(2003) (Washington, DC, January 2003).

24

Assumptions to the Annual Energy Outlook 1999 - Natural Gas Transmission  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each forecast year. These are derived by obtaining market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. In addition, natural gas flow patterns are a function of the pattern in the previous year, coupled with the relative prices of gas supply options as translated to the represented market “hubs.” The major assumptions used within the NGTDM are grouped into five general categories. They relate to (1) the classification of demand into core and noncore transportation service classes, (2) the pricing of transmission and distribution services, (3) pipeline and storage capacity expansion and utilization, (4) the implementation of recent regulatory reform, and (5) the implementation of provisions of the Climate Change Action Plan (CCAP). A complete listing of NGTDM assumptions and in-depth methodology descriptions are presented in Model Documentation Report: Natural Gas Transmission and Distribution Model of the National Energy Modeling System, DOE/EIA-MO62/1, January 1999.

25

Assumptions to the Annual Energy Outlook 2000 - Natural Gas Transmission  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each forecast year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. In addition, natural gas flow patterns are a function of the pattern in the previous year, coupled with the relative prices of gas supply options as translated to the represented market “hubs.” The major assumptions used within the NGTDM are grouped into five general categories. They relate to (1) the classification of demand into core and noncore transportation service classes, (2) the pricing of transmission and distribution services, (3) pipeline and storage capacity expansion and utilization, (4) the implementation of recent regulatory reform, and (5) the implementation of provisions of the Climate Change Action Plan (CCAP). A complete listing of NGTDM assumptions and in-depth methodology descriptions are presented in Model Documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System, Model Documentation 2000, DOE/EIA-M062(2000), January 2000.

26

Monitoring Infrastructure Capacity Monitoring Infrastructure Capacity  

E-Print Network (OSTI)

Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban) task. Monitoring infrastructure capacity is at least as complex as monitoring urban land markets Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban

Levinson, David M.

27

Refinery Capacity Report  

Annual Energy Outlook 2012 (EIA)

Report --- Full report in PDF (1 MB) XLS --- Refinery Capacity Data by individual refinery as of January 1, 2006 Tables 1 Number and Capacity of Operable Petroleum...

28

Property:Plants with Unknown Planned Capacity | Open Energy Information  

Open Energy Info (EERE)

Plants with Unknown Planned Capacity Plants with Unknown Planned Capacity Jump to: navigation, search Property Name Plants with Unknown Planned Capacity Property Type String Description Number of plants with unknown planned capacity per GEA Pages using the property "Plants with Unknown Planned Capacity" Showing 21 pages using this property. A Alaska Geothermal Region + 1 + C Cascades Geothermal Region + 2 + Central Nevada Seismic Zone Geothermal Region + 9 + G Gulf of California Rift Zone Geothermal Region + 4 + H Hawaii Geothermal Region + 0 + Holocene Magmatic Geothermal Region + 0 + I Idaho Batholith Geothermal Region + 1 + N Northern Basin and Range Geothermal Region + 11 + Northern Rockies Geothermal Region + 0 + Northwest Basin and Range Geothermal Region + 9 + R Rio Grande Rift Geothermal Region + 1 +

29

First mideast capacity planned  

SciTech Connect

Kuwait catalyst Co.`s (KCC) plans to build a hydrodesulfurization (HDS) catalysts plant in Kuwait will mark the startup of the first refining catalysts production in the Persian Gulf region. KCC, owned by a conglomerate of Kuwait companies and governmental agencies, has licensed catalyst manufacturing technology from Japan Energy in a deal estimated at more than 7 billion ($62 million). Plant design will be based on technology from Orient Catalyst, Japan Energy`s catalysts division. Construction is expected to begin in January 1997 for production startup by January 1998. A source close to the deal says the new plant will eventually reach a capacity of 5,000 m.t./year of HDS catalysts to supply most of Kuwait`s estimated 3,500-m.t./year demand, driven primarily by Kuwait National Petroleum refineries. KCC also expects to supply demand from other catalyst consumers in the region. Alumina supply will be acquired on the open market. KCC will take all production from the plant and will be responsible for marketing.

Fattah, H.

1996-11-06T23:59:59.000Z

30

Property:PlannedCapacity | Open Energy Information  

Open Energy Info (EERE)

PlannedCapacity PlannedCapacity Jump to: navigation, search Property Name PlannedCapacity Property Type Quantity Description The total planned capacity for a given area, region or project. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

31

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

32

Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint  

SciTech Connect

An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.

Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

2014-08-01T23:59:59.000Z

33

Photovoltaics effective capacity: Interim final report 2  

SciTech Connect

The authors provide solid evidence, based on more than 8 million data points, that regional photovoltaic (PV) effective capacity is largely unrelated to the region`s solar resource. They confirm, however, that effective capacity is strongly related to load-shape characteristics. The load-shape effective-capacity relationship appears to be valid for end-use loads as small as 100 kW, except possibly in the case of electrically heated buildings. This relationship was used as a tool to produce a US map of PV`s effective capacity. The regions of highest effective capacities include (1) the central US from the northern Great Plains to the metropolitan areas of Chicago and Detroit, down to the lower Mississippi Valley, (2) California and western Arizona, and (3) the northeast metropolitan corridor. The features of this map are considerably different from the traditional solar resource maps. They tend to reflect the socio-economic and climatic factors that indirectly drive PV`s effective capacity: e.g., commercial air-conditioning, little use of electric heat, and strong summer heat waves. The map provides a new and significant insight to a comprehensive valuation of the PV resource. The authors assembled preliminary evidence showing that end-use load type may be related to PV`s effective capacity. Highest effective capacities were found for (nonelectrically heated) office buildings, followed by hospitals. Lowest capacities were found for airports and residences. Many more data points are needed, however, to ascertain and characterize these preliminary findings.

Perez, R.; Seals, R. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

1997-11-01T23:59:59.000Z

34

EIA - Electricity Generating Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010...

35

Planned Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Planned Geothermal Capacity Planned Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Planned Geothermal Capacity This article is a stub. You can help OpenEI by expanding it. General List of Development Projects Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and Development Report (April 2011). Related Pages: GEA Development Phases Geothermal Development Projects Add.png Add a new Geothermal Project Please be sure the project does not already exist in the list below before adding - perhaps under a different name. Technique Developer Phase Project Type Capacity Estimate (MW) Location Geothermal Area Geothermal Region GEA Report

36

Liquid heat capacity lasers  

DOE Patents (OSTI)

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

37

capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment

38

Nanofluid heat capacities  

Science Journals Connector (OSTI)

Significant increases in the heat capacity of heat transfer fluids are needed not only to reduce the costs of liquid heating and cooling processes but also to bring clean energy producing technologies like concentrating solar power (CSP) to price parity with conventional energy generation. It has been postulated that nanofluids could have higher heat capacities than conventional fluids. In this work nano- and micron-sized particles were added to five base fluids (poly-? olefin mineral oil ethylene glycol a mixture of water and ethylene glycol and calcium nitrate tetrahydrate) and the resulting heat capacities were measured and compared with those of the neat base fluids and the weighted average of the heat capacities of the components. The particles used were inert metals and metal oxides that did not undergo any phase transitions over the temperature range studied. In the nanofluids studied here we found no increase in heat capacity upon the addition of the particles larger than the experimental error.

Anne K. Starace; Judith C. Gomez; Jun Wang; Sulolit Pradhan; Greg C. Glatzmaier

2011-01-01T23:59:59.000Z

39

Preparing Guyana's REDD+ Participation: Developing Capacities for  

Open Energy Info (EERE)

Guyana's REDD+ Participation: Developing Capacities for Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Jump to: navigation, search Name Preparing Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Agency/Company /Organization Guyana Forestry Commission, The Government of Norway Sector Land Focus Area Forestry Topics Implementation, Policies/deployment programs, Background analysis Resource Type Workshop, Guide/manual Website http://unfccc.int/files/method Country Guyana UN Region Latin America and the Caribbean References Preparing Guyana's REDD+ Participation[1] Overview "In this context, the overall goal of the activities reported here are to develop a road map for the establishment of a MRV system for REDD+

40

WINDExchange: Wind Potential Capacity  

Wind Powering America (EERE)

area with a gross capacity factor1 of 35% and higher, which may be suitable for wind energy development. AWS Truepower LLC produced the wind resource data with a spatial...

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Panama Canal capacity analysis  

SciTech Connect

Predicting the transit capacities of the various Panama Canal alternatives required analyzing data on present Canal operations, adapting and extending an existing computer simulation model, performing simulation runs for each of the alternatives, and using the simulation model outputs to develop capacity estimates. These activities are summarized in this paper. A more complete account may be found in the project final report (TAMS 1993). Some of the material in this paper also appeared in a previously published paper (Rosselli, Bronzini, and Weekly 1994).

Bronzini, M.S. [Oak Ridge National Lab., Knoxville, TN (United States). Center for Transportation Analysis

1995-04-27T23:59:59.000Z

42

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel Tables (2006-2030) for Electricity Capacity and Generation by Fuel Tables (2006-2030) International Energy Outlook 2009 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2006-2030) Formats Data Table Titles (1 to 18 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

43

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) International Energy Outlook 2008 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) Formats Data Table Titles (1 to 12 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

44

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel Tables (2007-2035) for Electricity Capacity and Generation by Fuel Tables (2007-2035) International Energy Outlook 2010 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2007-2035) Formats Data Table Titles (1 to 18 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Appendix H. Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

45

Iceland Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Planned Estimate Plants with Unknown Planned Capacity Geothermal Areas within the Iceland Geothermal Region Energy Generation Facilities within the Iceland Geothermal Region...

46

Austria Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Planned Estimate Plants with Unknown Planned Capacity Geothermal Areas within the Austria Geothermal Region Energy Generation Facilities within the Austria Geothermal Region...

47

IAEA Planning and Economic Studies Section (PESS) Capacity Building | Open  

Open Energy Info (EERE)

IAEA Planning and Economic Studies Section (PESS) Capacity Building IAEA Planning and Economic Studies Section (PESS) Capacity Building Jump to: navigation, search Tool Summary Name: IAEA Planning and Economic Studies Section (PESS) Capacity Building Agency/Company /Organization: International Atomic Energy Agency Sector: Energy Focus Area: Non-renewable Energy, Energy Efficiency, Renewable Energy Topics: Pathways analysis Resource Type: Software/modeling tools, Training materials References: IAEA PESS capacity building[1] Logo: IAEA Planning and Economic Studies Section (PESS) Capacity Building "PESS offers assistance to Member States, particularly from developing regions, to improve their energy system analysis & planning capabilities. Assistance can include: transferring modern planning methods, tools and databanks

48

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report June 2013 With Data as of January 1, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table 1. Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013

49

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

Wolfe, R.W.

1984-10-30T23:59:59.000Z

50

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

Wolfe, Robert W. (Wilkinsburg, PA)

1984-01-01T23:59:59.000Z

51

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report With Data as of January 1, 2013 | Release Date: June 21, 2013 | Next Release Date: June 20, 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1997 1995 1994 Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

52

Capacity Building in Wind Energy for PICs  

E-Print Network (OSTI)

1 Capacity Building in Wind Energy for PICs Presentation of the project Regional Workshop Suva hydropower is relatively important (Papua New Guinea, Fiji and Samoa · The traditional use of wind energy has indicates that significant wind energy potential exists. · A monitoring project showed that in Rarotonga

53

Capacity of steganographic channels  

Science Journals Connector (OSTI)

An information-theoretic approach is used to determine the amount of information that may be safely transferred over a steganographic channel with a passive adversary. A steganographic channel, or stego-channel is a pair consisting of the channel transition ... Keywords: information spectrum, information theory, steganalysis, steganographic capacity, steganography, stego-channel

Jeremiah J. Harmsen; William A. Pearlman

2005-08-01T23:59:59.000Z

54

Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model  

SciTech Connect

An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

2014-03-01T23:59:59.000Z

55

ISO New England Forward Capacity Market (Rhode Island) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ISO New England Forward Capacity Market (Rhode Island) ISO New England Forward Capacity Market (Rhode Island) ISO New England Forward Capacity Market (Rhode Island) < Back Eligibility Developer Industrial State/Provincial Govt Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Generating Facility Rate-Making Under the Forward Capacity Market (FCM), ISO New England projects the capacity needs of the region's power system three years in advance and then holds an annual auction to purchase the power resources that will satisfy those future regional requirements. Resources that clear in the auction are obligated to provide power or curtail demand when called upon by the ISO. The Forward Capacity Market was developed by ISO New England, the six New

56

Capacity Value of Solar Power  

SciTech Connect

Evaluating the capacity value of renewable energy sources can pose significant challenges due to their variable and uncertain nature. In this paper the capacity value of solar power is investigated. Solar capacity value metrics and their associated calculation methodologies are reviewed and several solar capacity studies are summarized. The differences between wind and solar power are examined, the economic importance of solar capacity value is discussed and other assessments and recommendations are presented.

Duignan, Roisin; Dent, Chris; Mills, Andrew; Samaan, Nader A.; Milligan, Michael; Keane, Andrew; O'Malley, Mark

2012-11-10T23:59:59.000Z

57

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

58

AEOP2011:Electricity Generation Capacity by Electricity Market Module  

Open Energy Info (EERE)

AEOP2011:Electricity Generation Capacity by Electricity Market Module AEOP2011:Electricity Generation Capacity by Electricity Market Module Region and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 97, and contains only the reference case. The dataset uses billion kilowatthours. The data is broken down into Texas regional entity, Florida reliability coordinating council, Midwest reliability council and Northeast power coordination council. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB)

59

Africa - CCS capacity building | Open Energy Information  

Open Energy Info (EERE)

Africa - CCS capacity building Africa - CCS capacity building Jump to: navigation, search Name Africa - CCS capacity building Agency/Company /Organization Energy Research Centre of the Netherlands Partner EECG Consultants, the University of Maputo, the Desert Research Foundation Namibia and the South Africa New Energy Research Institute Sector Energy Focus Area Conventional Energy Resource Type Training materials Website http://www.ccs-africa.org/ Program Start 2010 Program End 2011 Country Botswana, Mozambique, Namibia UN Region "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

60

Worldwide Energy Efficiency Action through Capacity Building and Training  

Open Energy Info (EERE)

Worldwide Energy Efficiency Action through Capacity Building and Training Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Agency/Company /Organization National Renewable Energy Laboratory, The International Partnership for Energy Efficiency Cooperation Sector Energy Focus Area Energy Efficiency Topics Background analysis Resource Type Training materials Website http://www.nrel.gov/ce/ipeec/w Country Mexico, India UN Region Northern America References Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT)[1] Abstract Included are training materials for the Worldwide Energy Efficiency Action through Capacity Building & Training (WEACT) Workshop in Mexico City, 28-30 September 2010.

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

On the Capacity of a Class of MIMO Cognitive Radios  

E-Print Network (OSTI)

Cognitive radios have been studied recently as a means to utilize spectrum in a more efficient manner. This paper focuses on the fundamental limits of operation of a MIMO cognitive radio network with a single licensed user and a single cognitive user. The channel setting is equivalent to an interference channel with degraded message sets (with the cognitive user having access to the licensed user's message). An achievable region and an outer bound is derived for such a network setting. It is shown that the achievable region is optimal for a portion of the capacity region that includes sum capacity.

Sridharan, Sriram

2007-01-01T23:59:59.000Z

62

Electric Capacity | OpenEI  

Open Energy Info (EERE)

Capacity Capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated December 15th, 2010 (3 years ago) Keywords Electric Capacity Electricity Generation New Zealand projections

63

Adaptive capacity and its assessment  

SciTech Connect

This paper reviews the concept of adaptive capacity and various approaches to assessing it, particularly with respect to climate variability and change. I find that adaptive capacity is a relatively under-researched topic within the sustainability science and global change communities, particularly since it is uniquely positioned to improve linkages between vulnerability and resilience research. I identify opportunities for advancing the measurement and characterization of adaptive capacity by combining insights from both vulnerability and resilience frameworks, and I suggest several assessment approaches for possible future development that draw from both frameworks and focus on analyzing the governance, institutions, and management that have helped foster adaptive capacity in light of recent climatic events.

Engle, Nathan L.

2011-04-20T23:59:59.000Z

64

Enhancing Capacity for Low Emission Development Strategies (EC-LEDS)  

Open Energy Info (EERE)

Enhancing Capacity for Low Emission Development Strategies Program Enhancing Capacity for Low Emission Development Strategies Program Agency/Company /Organization United States Agency for International Development, United States Environmental Protection Agency, United States Department of Energy, United States Department of Agriculture, United States Department of State Sector Energy, Land Topics Low emission development planning, -LEDS Program Start 2010 Program End 2014 Country Albania, Bangladesh, Cambodia, Colombia, Costa Rica, Gabon, Georgia, Guatemala, Indonesia, Jamaica, Kazakhstan, Kenya, Republic of Macedonia, Malawi, Malaysia, Mexico, Moldova, Peru, Philippines, Serbia, South Africa, Thailand, Ukraine, Vietnam, Zambia UN Region Southern Asia References Enhancing Capacity for Low Emission Development Strategies Program[1]

65

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

66

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY Empowering Communities in the Age of E-Government Prepared by Melinda Downing, Environmental Justice Program Manager, U.S. Department of Energy MAR 06 MARCH 2006 Since 1999, the Department of Energy has worked with the National Urban Internet and others to create community capacity through technology.  Empowering Communities in the Age of E-Government Table of Contents Message from the Environmental Justice Program Manager . . . . . . . . 3 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Partnerships. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Process Chart: From Agency to Community. . . . . . . . . . . . . . . . . . . 7 Case Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

67

Outside a Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Outside a Geothermal Region Outside a Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Outside a Geothermal Region Details Areas (1) Power Plants (1) Projects (0) Techniques (0) This is a category for geothermal areas added that do not fall within an existing geothermal region. As a number of these accumulate on OpenEI, new regions can be created and areas moved into those regions accordingly. Geothermal Regions Map[1] References ↑ "Geothermal Regions Map" Geothermal Region Data State(s) Wyoming, Colorado Area USGS Resource Estimate for this Region Identified Mean Potential Undiscovered Mean Potential Planned Capacity Planned Capacity Plants Included in Planned Estimate Plants with Unknown Planned Capacity Geothermal Areas within the Outside a Geothermal Region

68

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

69

High Capacity Immobilized Amine Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Immobilized Amine Sorbents Capacity Immobilized Amine Sorbents Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,288,136 entitled "High Capacity Immobilized Amine Sorbents." Disclosed in this patent is the invention of a method that facilitates the production of low-cost carbon dioxide (CO 2 ) sorbents for use in large-scale gas-solid processes. This method treats an amine to increase the number of secondary amine groups and impregnates the amine in a porous solid support. As a result of this improvement, the method increases CO 2 capture capacity and decreases the cost of using an amine-enriched solid sorbent in CO 2 capture systems. Overview The U.S. Department of Energy has placed a high priority on the separation

70

Hospital-Based Coalition to Improve Regional Surge Capacity  

E-Print Network (OSTI)

and Response. Report on the hospital preparedness program.ORIGINAL RESEARCH Hospital-Based Coalition to Improveoptimization of access to hospital beds is a limiting factor

Terndrup, Thomas E; Leaming, James M.; Adams, R Jerry; Adoff, Spencer

2012-01-01T23:59:59.000Z

71

Africa Adaptation Programme: Capacity Building Experiences-Improving  

Open Energy Info (EERE)

Africa Adaptation Programme: Capacity Building Experiences-Improving Africa Adaptation Programme: Capacity Building Experiences-Improving Access, Understanding and Application of Climate Data and Information Jump to: navigation, search Tool Summary Name: Africa Adaptation Programme: Capacity Building Experiences-Improving Access, Understanding and Application of Climate Data and Information Agency/Company /Organization: United Nations Development Programme (UNDP) Sector: Climate, Energy Topics: Adaptation, Co-benefits assessment, - Energy Access Resource Type: Dataset, Lessons learned/best practices Website: www.undp.org/environment/library.shtml Cost: Free UN Region: Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa Language: English Africa Adaptation Programme: Capacity Building Experiences-Improving Access, Understanding and Application of Climate Data and Information Screenshot

72

Albania-Enhancing Capacity for Low Emission Development Strategies  

Open Energy Info (EERE)

Albania-Enhancing Capacity for Low Emission Development Strategies Albania-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Albania-Enhancing Capacity for Low Emission Development Strategies Program Agency/Company /Organization United States Agency for International Development, United States Environmental Protection Agency, United States Department of Energy, United States Department of Agriculture, United States Department of State Sector Climate, Energy, Land Topics Low emission development planning, -LEDS Program Start 2010 Program End 2016 Country Albania UN Region Southern Asia References Enhancing Capacity for Low Emission Development Strategies Program[1] Contents 1 Overview 2 Framework 3 Lessons Learned and Good Practices 4 Progress and Outcomes 5 Fact Sheet

73

California Working Natural Gas Underground Storage Capacity ...  

Gasoline and Diesel Fuel Update (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

74

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

75

Economic Dispatch of Electric Generation Capacity | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Dispatch of Electric Generation Capacity Economic Dispatch of Electric Generation Capacity A report to congress and the states pursuant to sections 1234 and 1832 of the...

76

November 15, 2012 Webinar: Exploring Opportunities for Energy Efficiency as a Revenue Stream in the Forward Capacity Markets  

Energy.gov (U.S. Department of Energy (DOE))

November 15, 2012 Webinar: Exploring Opportunities for Energy Efficiency as a Revenue Stream in the Forward Capacity Markets, Better Buildings Neighborhood Program; regional transmission organizations (RTOs)

77

production capacity | OpenEI  

Open Energy Info (EERE)

production capacity production capacity Dataset Summary Description No description given. Source Oak Ridge National Laboratory Date Released November 30th, 2009 (4 years ago) Date Updated Unknown Keywords biodiesel ethanol location production capacity transportation Data application/zip icon Biorefineries.zip (zip, 7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments If you rate this dataset, your published comment will include your rating.

78

installed capacity | OpenEI  

Open Energy Info (EERE)

installed capacity installed capacity Dataset Summary Description Estimates for each of the 50 states and the entire United States show Source Wind Powering America Date Released February 04th, 2010 (4 years ago) Date Updated April 13th, 2011 (3 years ago) Keywords annual generation installed capacity usa wind Data application/vnd.ms-excel icon Wind potential data (xls, 102.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments

79

Hybrid Zero-capacity Channels  

E-Print Network (OSTI)

There are only two known kinds of zero-capacity channels. The first kind produces entangled states that have positive partial transpose, and the second one - states that are cloneable. We consider the family of 'hybrid' quantum channels, which lies in the intersection of the above classes of channels and investigate its properties. It gives rise to the first explicit examples of the channels, which create bound entangled states that have the property of being cloneable to the arbitrary finite number of parties. Hybrid channels provide the first example of highly cloneable binding entanglement channels, for which known superactivation protocols must fail - superactivation is the effect where two channels each with zero quantum capacity having positive capacity when used together. We give two methods to construct a hybrid channel from any binding entanglement channel. We also find the low-dimensional counterparts of hybrid states - bipartite qubit states which are extendible and possess two-way key.

Sergii Strelchuk; Jonathan Oppenheim

2012-07-04T23:59:59.000Z

80

Building Regulatory Capacity for Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Capacity for Regulatory Capacity for Change PRESENTED BY Sarah Spencer-Workman, LEED AP July 27, 2011 "How to identify and review laws relevant to buildings and find places and opportunities that can accept changes that would support building energy objectives" Presentation Highlights Rulemaking Community and Stakeholder Identification To Support Code Changes Engagement: Building Capacity for Change Pay It Forward RULEMAKING : Plan Development and Research of Laws Relevant to Buildings How is it conducted? 'Landscape' Review Key words or phrases to look for Identify "home rule" jurisdictions Update and review cycle built in 'Landscape' Review:

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Capacity Allocation with Competitive Retailers Masabumi Furuhata  

E-Print Network (OSTI)

to uncertainty of market demands, costly capacity construction and time consuming capacity expansion. This makes the market to be unstable and malfunc- tioning. Such a problem is known as the capacity allocation investigate the properties of capacity allocation mechanisms for the markets where a sin- gle supplier

Zhang, Dongmo

82

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

83

EIA - Projections of Oil Production Capacity and Oil Production In three  

Gasoline and Diesel Fuel Update (EIA)

Projections of Oil Production Capacity and Oil Production in Three Cases (1990-2030) Projections of Oil Production Capacity and Oil Production in Three Cases (1990-2030) International Energy Outlook 2006 Projections of Oil Production Capacity and Oil Production In Three Cases Data Tables (1990-2030) Formats Table Data Titles (1 to 6 complete) Projections of Oil Production Capacity and Oil Production In Three Cases Tables. Need help, contact the National Energy Information Center at 202-586-8800. Projections of Oil Production Capacity and Oil Production In Three Cases Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table E1 World Oil Production Capacity by Region and Country, Reference Case Projections of Oil Production Capacity and Oil Production In Three Cases Tables. Need help, contact the National Energy Information Center at 202-586-8800.

84

Climate Change Capacity Development (C3D+) | Open Energy Information  

Open Energy Info (EERE)

C3D+) C3D+) Jump to: navigation, search Logo: Climate Change Capacity Development (C3D+) Name Climate Change Capacity Development (C3D+) Agency/Company /Organization United Nations Institute for Training and Research (UNITAR) Partner Caribbean Climate Change Community Centre (CCCCC), Climate System Analysis Group at UCT Cape Town (CSAG), Environment and Development Action in the Third World (ENDA-TM), University of Cape Town-Energy Research Centre, South Pacific Regional Environment Programme (SPREP), Munasinghe Institute (MIND), Center for International Forestry Research, International Institute for Sustainable Development (IISD), Stockholm Environment Institute Sector Climate Topics Low emission development planning Resource Type Training materials

85

OpenEI - Electric Capacity  

Open Energy Info (EERE)

New Zealand Energy New Zealand Energy Outlook (2010): Electricity and Generation Capacity http://en.openei.org/datasets/node/357 The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included.

License

86

High capacity immobilized amine sorbents  

DOE Patents (OSTI)

A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

Gray, McMahan L. (Pittsburgh, PA); Champagne, Kenneth J. (Fredericktown, PA); Soong, Yee (Monroeville, PA); Filburn, Thomas (Granby, CT)

2007-10-30T23:59:59.000Z

87

Too Much Mobility Limits the Capacity of Wireless Ad-hoc Networks  

E-Print Network (OSTI)

Too Much Mobility Limits the Capacity of Wireless Ad-hoc Networks Syed Ali Jafar Electrical@ece.uci.edu Abstract-- We consider a ? user isotropic fast fading ad-hoc network with no channel state information determine the capacity region of this ad-hoc network for any partition of the users into transmitters

Jafar, Syed A.

88

electricity generating capacity | OpenEI  

Open Energy Info (EERE)

generating capacity generating capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity generating capacity datasets: annual operational electricity generation capacity by plant type (1975 - 2009); estimated generating capacity by fuel type for North Island, South Island and New Zealand (2009); and information on generating plants (plant type, name, owner, commissioned date, and capacity), as of December 2009. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords biomass coal Electric Capacity electricity generating capacity geothermal Hydro Natural Gas wind Data application/vnd.ms-excel icon Operational Electricity Generation Capacity by Plant Type (xls, 42.5 KiB)

89

Load Hindcasting: A Retrospective Regional Load Prediction Method Using Reanalysis Weather Data.  

E-Print Network (OSTI)

??The capacity value (CV) of a power generation unit indicates the extent to which it contributes to the generation system adequacy of a regions bulk (more)

Black, Jonathan D

2011-01-01T23:59:59.000Z

90

Fair capacity sharing of multiple aperiodic servers  

E-Print Network (OSTI)

For handling multiple aperiodic tasks with different temporal requirements, multiple aperiodic servers are used. Since capacity is partitioned statically among the multiple servers, they suffer from heavy capacity exhaustions. Bernat and Burns...

Melapudi, Vinod Reddy

2002-01-01T23:59:59.000Z

91

Can Science and Technology Capacity be Measured?  

E-Print Network (OSTI)

The ability of a nation to participate in the global knowledge economy depends to some extent on its capacities in science and technology. In an effort to assess the capacity of different countries in science and technology, this article updates a classification scheme developed by RAND to measure science and technology capacity for 150 countries of the world.

Wagner, Caroline S; Dutta, Arindum

2015-01-01T23:59:59.000Z

92

Internal Markets for Supply Chain Capacity Allocation  

E-Print Network (OSTI)

Internal Markets for Supply Chain Capacity Allocation David McAdams and Thomas W. Malone Sloan David McAdams & Thomas Malone #12;Internal Markets for Supply Chain Capacity Allocation David Mc ("internal markets") to help allocate manufacturing capacity and determine the prices, delivery dates

93

Capacity Building on Promoting Sustainable Development in the GMS | Open  

Open Energy Info (EERE)

Promoting Sustainable Development in the GMS Promoting Sustainable Development in the GMS Jump to: navigation, search Name Capacity Building on Promoting Sustainable Development in the GMS Agency/Company /Organization AIT-UNEP Regional Resource Centre for Asia and the Pacific Sector Energy, Land Topics Implementation, Policies/deployment programs, Background analysis Resource Type Guide/manual Website http://www.rrcap.unep.org/nsds Country Cambodia, China, Laos, Thailand, Vietnam, Myanmar UN Region South-Eastern Asia References Capacity Building in GMS[1] Summary "The study assesses the state of sustainable development strategies (SDS) in the Greater Mekong Subregion (GMS) - within each of the six member-countries and in the subregion as a whole - with a view towards identifying appropriate improvements that would bring about strong national

94

Estimation of capacity credit for wind power in Libya  

Science Journals Connector (OSTI)

This paper presents the results of a study that evaluated the wind potential at the central region of the Libyan coast and estimated the capacity credit of wind power in the national network. Several sites were investigated to choose the most suitable sites for wind farm establishment. Different sizes of Wind Energy Converter Systems (WECSs) were selected to estimate the wind potential. The sizes were selected to satisfy present and future market development as well as to satisfy technical, economic, and environmental aspects. Wind data from three meteorological stations in the proposed region were used in assessing the wind potential. The wind potential was estimated according to the characteristics of the sites and power curves of the WECSs, and considering certain assumptions. The results showed that the capacity credit varied from about 20% to 50%, depending on penetration levels of wind power, for the assumptions made in this study.

Wedad B. El-Osta; Mohamed Ali Ekhlat; Amal S. Yagoub; Yousef Khalifa; E. Borass

2005-01-01T23:59:59.000Z

95

DOE Transmission Capacity Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission Capacity Report Transmission Capacity Report DOE Transmission Capacity Report DOE Transmission Capacity Report: Transmission lines, substations, circuit breakers, capacitors, and other equipment provide more than just a highway to deliver energy and power from generating units to distribution systems. Transmission systems both complement and substitute for generation. Transmission generally enhances reliability; lowers the cost of electricity delivered to consumers; limits the ability of generators to exercise market power; and provides flexibility to protect against uncertainties about future fuel prices, load growth, generator construction, and other factors affecting the electric system. DOE Transmission Capacity Report More Documents & Publications Report to Congress:Impacts of the Federal Energy Regulatory Commission's

96

Capacity Value of Concentrating Solar Power Plants  

SciTech Connect

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

97

Property:InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name InstalledCapacity Property Type Quantity Description Installed Capacity (MW) or also known as Total Generator Nameplate Capacity (Rated Power) Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

98

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation...  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation, and Capacity Factor " "PlantReactor Name","Generator ID","State","Type","2009 Summer Capacity"," 2010 Annual...

99

Design and Evaluation of Novel High Capacity Cathode Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Capacity Cathodes Vehicle Technologies Office Merit Review 2014: Design and Evaluation of High Capacity Cathodes Design and Evaluation of Novel High Capacity Cathode Materials...

100

EIA - Natural Gas Pipeline System - Western Region  

U.S. Energy Information Administration (EIA) Indexed Site

Western Region Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving any region (see Table below). Slightly more than half the capacity entering the region is on natural gas pipeline systems that carry natural gas from the Rocky Mountain area and the Permian and San Juan basins. These latter systems enter the region at the New Mexico-Arizona and Nevada-Utah State lines. The rest of the capacity arrives on natural gas pipelines that access Canadian natural gas at the Idaho and Washington State border crossings with British Columbia, Canada.

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Definition: Deferred Generation Capacity Investments | Open Energy  

Open Energy Info (EERE)

Generation Capacity Investments Generation Capacity Investments Utilities and grid operators ensure that generation capacity can serve the maximum amount of load that planning and operations forecasts indicate. The trouble is, this capacity is only required for very short periods each year, when demand peaks. Reducing peak demand and flattening the load curve should reduce the generation capacity required to service load and lead to cheaper electricity for customers.[1] Related Terms load, electricity generation, peak demand, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Generation_Capacity_Investments&oldid=50257

102

Installed Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Geothermal Capacity Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Installed Geothermal Capacity International Market Map of U.S. Geothermal Power Plants List of U.S. Geothermal Power Plants Throughout the world geothermal energy is looked at as a potential source of renewable base-load power. As of 2005 there was 8,933 MW of installed power capacity within 24 countries. The International Geothermal Association (IGA) reported 55,709 GWh per year of geothermal electricity. The generation from 2005 to 2010 increased to 67,246 GWh, representing a 20% increase in the 5 year period. The IGA has projected that by 2015 the new installed capacity will reach 18,500 MW, nearly 10,000 MW greater than 2005. [1] Countries with the greatest increase in installed capacity (MW) between

103

Property:MeanCapacity | Open Energy Information  

Open Energy Info (EERE)

MeanCapacity MeanCapacity Jump to: navigation, search Property Name MeanCapacity Property Type Quantity Description Mean capacity potential at location based on the USGS 2008 Geothermal Resource Assessment if the United States Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

104

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2013 | Release Date: November 27, 2013 | Next Release Date: May 29, 2013 Previous Issues Year: September 2013 March 2013 September 2012 March 2012 September 2011 March 2011 September 2010 Go Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an

105

Definition: Nameplate Capacity | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Nameplate Capacity Jump to: navigation, search Dictionary.png Nameplate Capacity The maximum amount of electric energy that a generator can produce under specific conditions, as rated by the manufacturer. Generator nameplate capacity is expressed in some multiple of watts such as megawatts (MW), as indicated on a nameplate that is physically attached to the generator.[1] View on Wikipedia Wikipedia Definition Also Known As Capacity Related Terms electricity generation, power References ↑ http://www.nrc.gov/reading-rm/basic-ref/glossary/generator-nameplate-capacity.html Retr LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ieved from "http://en.openei.org/w/index.php?title=Definition:Nameplate_Capacity&oldid=480378"

106

EEI/DOE Transmission Capacity Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRANSMISSION CAPACITY: TRANSMISSION CAPACITY: PRESENT STATUS AND FUTURE PROSPECTS Eric Hirst Consulting in Electric-Industry Restructuring Bellingham, Washington June 2004 Prepared for Energy Delivery Group Edison Electric Institute Washington, DC Russell Tucker, Project Manager and Office of Electric Transmission and Distribution U.S. Department of Energy Washington, DC Larry Mansueti, Project Manager ii iii CONTENTS Page SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. TRANSMISSION CAPACITY: DATA AND PROJECTIONS . . . . . . . . . . . . . . . . . . . 5 HISTORICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 CURRENT CONDITIONS . . . . . . .

107

Quantum capacity of channel with thermal noise  

E-Print Network (OSTI)

The quantum capacity of thermal noise channel is studied. The extremal input state is obtained at the postulation that the coherent information is convex or concave at its vicinity. When the input energy tends to infinitive, it is verified by perturbation theory that the coherent information reaches its maximum at the product of identical thermal state input. The quantum capacity is obtained for lower noise channel and it is equal the one shot capacity.

Xiao-yu Chen

2006-02-11T23:59:59.000Z

108

Controlling the bullwhip with transport capacity constraints  

Science Journals Connector (OSTI)

The bullwhip effect can be costly to companies in terms of capacity-on costs and stock-out costs. This paper examines the possibilities for controlling the bullwhip effect with transport capacity management in the supply chain. The goal is to examine how inventories and service levels react to transport capacity constraints in a simulated supply chain that is prone to the bullwhip effect. By controlling the transport capacities, the companies may be able to reduce the impacts of demand amplification and inventory variations. Thus, there may be significant practical implications of the findings for logistics managers in today's volatile business environments.

Jouni Juntunen; Jari Juga

2009-01-01T23:59:59.000Z

109

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage Capacity",12,"Annual",2013,"6301988" ,"Release...

110

Increasing the Capacity of Existing Power Lines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

works with Idaho Power engineers to train system operators in the use of weather station data and software tools to generate transmission capacity operat- ing limits. The ability...

111

Generation capacity expansion in restructured energy markets.  

E-Print Network (OSTI)

??With a significant number of states in the U.S. and countries around the world trading electricity in restructured markets, a sizeable proportion of capacity expansion (more)

Nanduri, Vishnuteja

2009-01-01T23:59:59.000Z

112

Increasing water holding capacity for irrigation  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing water holding capacity for irrigation Reseachers recommend solutions for sediment trapping in irrigation system LANL and SNL leveraged technical expertise to determine...

113

Property:USGSMeanCapacity | Open Energy Information  

Open Energy Info (EERE)

Resource Assessment of the United States. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For...

114

Solar Energy and Capacity Value (Fact Sheet)  

SciTech Connect

This is a one-page, two-sided fact sheet on the capacity of solar power to provide value to utilities and power system operators.

Not Available

2013-09-01T23:59:59.000Z

115

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas Storage Capacity",11,"Annual",2013,"6301988" ,"Release...

116

WINDExchange: U.S. Installed Wind Capacity  

Wind Powering America (EERE)

The animation shows the progress of installed wind capacity between 1999 and 2013. The Energy Department's annual Wind Technologies Market Report provides information about wind...

117

Template:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

GeothermalRegion GeothermalRegion Jump to: navigation, search This is the GeothermalRegion template. To define a new Geothermal Region, please use the Geothermal Region form. Parameters Map - The map of the region. State - The state in which the resource area is located. Area - The estimated size of the area in which the resource area is located, in km². IdentifiedHydrothermalPotential - The identified hydrothermal electricity generation potential in megawatts, from the USGS resource estimate. UndiscoveredHydrothermalPotential - The estimated undiscovered hydroelectric generation potential in megawatts from the USGS resource estimate. PlannedCapacity - The total planned capacity for the region in megawatts. Number of Plants Included in Planned Estimate - The number of plants

118

Representation of the Solar Capacity Value in the ReEDS Capacity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model Preprint Ben Sigrin, Patrick Sullivan, Eduardo Ibanez, and Robert Margolis Presented at the 40th...

119

On Quantum Capacity and its Bound  

E-Print Network (OSTI)

The quantum capacity of a pure quantum channel and that of classical-quantum-classical channel are discussed in detail based on the fully quantum mechanical mutual entropy. It is proved that the quantum capacity generalizes the so-called Holevo bound.

Masanori Ohya; Igor V. Volovich

2004-06-29T23:59:59.000Z

120

Property:Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Property:GeneratingCapacity | Open Energy Information  

Open Energy Info (EERE)

GeneratingCapacity GeneratingCapacity Jump to: navigation, search Property Name GeneratingCapacity Property Type Quantity Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

122

Definition: Deferred Distribution Capacity Investments | Open Energy  

Open Energy Info (EERE)

Deferred Distribution Capacity Investments Deferred Distribution Capacity Investments Jump to: navigation, search Dictionary.png Deferred Distribution Capacity Investments As with the transmission system, reducing the load and stress on distribution elements increases asset utilization and reduces the potential need for upgrades. Closer monitoring and load management on distribution feeders could potentially extend the time before upgrades or capacity additions are required.[1] Related Terms load, transmission lines, transmission line, sustainability References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Distribution_Capacity_Investments&oldid=502613

123

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

124

WORK PROGRAMME 2010 REGIONS OF KNOWLEDGE  

E-Print Network (OSTI)

of regional players in enhancing science and technology based development. Its purpose is to enable regions to strengthen their capacity for investing in and conducting research and technological development activities components of the cluster; · business entities (large enterprises and SMEs as defined in the EC

Milano-Bicocca, Università

125

Hanford Waste Vitrification Plant capacity increase options  

SciTech Connect

Studies are being conducted by the Hanford Waste Vitrification Plant (HWVP) Project on ways to increase the waste processing capacity within the current Vitrification Building structural design. The Phase 1 study on remote systems concepts identification and extent of capacity increase was completed. The study concluded that the HWVP capacity could be increased to four times the current capacity with minor design adjustments to the fixed facility design, and the required design changes would not impact the current footprint of the vitrification building. A further increase in production capacity may be achievable but would require some technology development, verification testing, and a more systematic and extensive engineering evaluation. The primary changes included a single advance melter with a higher capacity, new evaporative feed tank, offgas quench collection tank, ejector venturi scrubbers, and additional inner canister closure station,a smear test station, a new close- coupled analytical facility, waste hold capacity of 400,000 gallon, the ability to concentrate out-of-plant HWVP feed to 90 g/L waste oxide concentration, and limited changes to the current base slab construction package.

Larson, D.E.

1996-04-01T23:59:59.000Z

126

wind power capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international

127

Ethylene capacity tops 77 million mty  

SciTech Connect

World ethylene production capacity is 77.8 million metric tons/year (mty). This total represents an increase of more than 6 million mty, or almost 9%, over last year`s survey. The biggest reason for the large change is more information about plants in the CIS. Also responsible for the increase in capacity is the start-up of several large ethylene plants during the past year. The paper discusses construction of ethylene plants, feedstocks, prices, new capacity, price outlook, and problems in Europe`s ethylene market.

Rhodes, A.K.; Knott, D.

1995-04-17T23:59:59.000Z

128

renewable energy generating capacity | OpenEI  

Open Energy Info (EERE)

energy generating capacity energy generating capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 16, and contains only the reference case. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO generation renewable energy renewable energy generating capacity Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generating Capacity and Generation- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

129

U.S. Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

2008 2009 2010 2011 2012 2013 View History Gross Input to Atmospheric Crude Oil Distillation Units 15,027 14,659 15,177 15,289 15,373 15,724 1985-2013 Operable Capacity (Calendar...

130

Information capacity of a single photon  

Science Journals Connector (OSTI)

Quantum states of light are the obvious choice for communicating quantum information. To date, encoding information into the polarization states of single photons has been widely used as these states form a natural closed two-state qubit. However, photons are able to encode much morein principle, infiniteinformation via the continuous spatiotemporal degrees of freedom. Here we consider the information capacity of an optical quantum channel, such as an optical fiber, where a spectrally encoded single photon is the means of communication. We use the Holevo bound to calculate an upper bound on the channel capacity, and relate this to the spectral encoding basis and the spectral properties of the channel. Further, we derive analytic bounds on the capacity of such channels, and, in the case of a symmetric two-state encoding, calculate the exact capacity of the corresponding channel.

Peter P. Rohde; Joseph F. Fitzsimons; Alexei Gilchrist

2013-08-09T23:59:59.000Z

131

Information capacity of holograms in photorefractive crystals  

Science Journals Connector (OSTI)

From a single measurement of the signal-to-noise ratio of the image reconstructed from a hologram it is possible to estimate the information capacity of superimposed holograms and to...

Miridonov, S V; Kamshilin, A A; Khomenko, A V; Tentori, D

1994-01-01T23:59:59.000Z

132

Internal Markets for Supply Chain Capacity Allocation  

E-Print Network (OSTI)

This paper explores the possibility of solving supply chain capacity allocation problems using internal markets among employees of the same company. Unlike earlier forms of transfer pricing, IT now makes it easier for such ...

McAdams, David

2005-07-08T23:59:59.000Z

133

Tripling the capacity of wireless communications using  

E-Print Network (OSTI)

channels of electric-®eld polarization for wireless communication. In order to make our statements more................................................................. Tripling the capacity of wireless .............................................................................................................................................. Wireless communications are a fundamental part of modern information infrastructure. But wireless bandwidth

134

Heat Capacity as A Witness of Entanglement  

E-Print Network (OSTI)

We demonstrate that the presence of entanglement in macroscopic bodies (e.g. solids) in thermodynamical equilibrium could be revealed by measuring heat-capacity. The idea is that if the system were in a separable state, then for certain Hamiltonians heat capacity would not tend asymptotically to zero as the temperature approaches absolute zero. Since this would contradict the third law of thermodynamics, one concludes that the system must contain entanglement. The separable bounds are obtained by minimization of the heat capacity over separable states and using its universal low-temperature behavior. Our results open up a possibility to use standard experimental techniques of solid state physics -- namely, heat capacity measurements -- to detect entanglement in macroscopic samples.

Marcin Wiesniak; Vlatko Vedral; Caslav Brukner

2005-08-26T23:59:59.000Z

135

Measuring the capacity impacts of demand response  

SciTech Connect

Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

Earle, Robert; Kahn, Edward P.; Macan, Edo

2009-07-15T23:59:59.000Z

136

Capacity factors and solar job creation  

Science Journals Connector (OSTI)

We discuss two main job creation statistics often used by solar advocates to support increased solar deployment. Whilst overall solar technologies have a tendency to be labor-intensive, we find that the jobs per gigawatt hour statistic is relatively mis-leading as it has a tendency to reward technologies that have a low capacity factor. Ultimately the lower the capacity factor the more amplified the solar job creation number.

Matt Croucher

2011-01-01T23:59:59.000Z

137

Regional Purchasing  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Purchasing Regional Purchasing Regional Purchasing Pursuant to Appendix M of Prime Contract No. DE-AC52-06NA25396 between DOE/NNSA and Los Alamos National Security, LLC (LANS), LANS is committed to building a strong supplier base with Northern New Mexico businesses and the local Native American pueblos in the purchases of goods and services. Contact Small Business Office (505) 667-4419 Email We seek out and utilize known Northern New Mexico business as suppliers The Northern New Mexico counties included are Los Alamos Santa Fe Rio Arriba Taos Mora San Miguel Sandoval The eight regional pueblos included are Nambe Ohkay Owingeh (formerly known as San Juan) Picuris Pojoaque San Ildefonso Santa Clara Taos Tesuque When the Laboratory cannot identify regional firms, it will expand its

138

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 In 2005-06, the Office of Electricity Delivery and Energy Reliability (OE) conducted a study on the adequacy of interstate natural gas pipeline capacity serving the northeastern United States to meet natural gas demand in the event of a pipeline disruption. The study modeled gas demand for select market areas in the Northeast under a range of different weather conditions. The study then determined how interstate pipeline flow patterns could change in the event of a pipeline disruption to one or more of the pipelines serving the region in order to meet the gas demand. The results

139

GIZ-Developing Climate Policy Capacity within the South African Department  

Open Energy Info (EERE)

Policy Capacity within the South African Department Policy Capacity within the South African Department of Environmental Affairs (DEA) Jump to: navigation, search Name South Africa - Developing Climate Policy Capacity within DEA Agency/Company /Organization German Agency for International Cooperation (GIZ) Partner South African Department of Environmental Affairs (DEA), Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) Sector Energy Focus Area Energy Efficiency Topics Background analysis, Low emission development planning, Pathways analysis Website http://www.gtz.de/en/weltweit/ Program Start 2009 Program End 2011 Country South Africa UN Region Eastern Africa References Championing Action against Climate Change in South Africa[1] "This project will support DEA in its climate policy capacity building, in

140

Regional Inventories  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: This year has not started well for gasoline inventories, with inventories being low across regions of the country. The Midwest region (PADD II) had been running lower than most regions, but began to catch up during the last week in April. Gasoline inventories ran about 9% below their 5-year average for this time of year and about 4% below where they were last year. The recent refinery problems in the Midwest, though, could erase some of that recovery. The impacts of Tosco's Wood River refinery and Marathon's St Paul refinery are not fully realized. But inventories were also precariously low along the East Coast (PADD I) and are extremely low in the Rocky Mountain region (PADD IV), although the size of this market mitigates any national impact. While the

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DECENTRALIZING SEMICONDUCTOR CAPACITY PLANNING VIA INTERNAL MARKET COORDINATION  

E-Print Network (OSTI)

1 DECENTRALIZING SEMICONDUCTOR CAPACITY PLANNING VIA INTERNAL MARKET COORDINATION SULEYMAN KARABUK semiconductor manufacturer: marketing managers reserve capacity from manufacturing based on product demands, while attempting to maximize profit; manufacturing managers allocate capacity to competing marketing

Wu, David

142

Increasing the Capacity of Existing Power Lines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Increasing the Capacity of Existing Power Lines Increasing the Capacity of Existing Power Lines The capacity of the grid has been largely unchanged for decades and needs to expand...

143

Colorado Working Natural Gas Underground Storage Capacity (Million...  

Annual Energy Outlook 2012 (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

144

Expanded Capacity Microwave-Cleaned Diesel Particulate Filter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Expanded Capacity Microwave-Cleaned Diesel Particulate Filter Expanded Capacity Microwave-Cleaned Diesel Particulate Filter 2002 DEER Conference Presentation: Industrial Ceramic...

145

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

146

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

147

Los Alamos Neutron Science Center gets capacity boost  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Science Center capacity boost Los Alamos Neutron Science Center gets capacity boost The facility can simulate the effects of hundreds or thousands of years of...

148

Working and Net Available Shell Storage Capacity as of September...  

Gasoline and Diesel Fuel Update (EIA)

capacity and also allows for tracking seasonal shifts in petroleum product usage of tanks and underground storage. Using the new storage capacity data, it will be possible to...

149

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2012p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

150

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2011p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

151

Guatemala-Enhancing Capacity for Low Emission Development Strategies...  

Open Energy Info (EERE)

Guatemala-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Guatemala-Enhancing Capacity for Low Emission Development Strategies...

152

Kazakhstan-Enhancing Capacity for Low Emission Development Strategies...  

Open Energy Info (EERE)

Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Kazakhstan-Enhancing Capacity for Low Emission Development Strategies...

153

Study Finds 54 Gigawatts of Offshore Wind Capacity Technically...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 September 11, 2014 -...

154

California Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) California Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

155

National CHP Roadmap: Doubling Combined Heat and Power Capacity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the...

156

High-capacity hydrogen storage in lithium and sodium amidoboranes...  

NLE Websites -- All DOE Office Websites (Extended Search)

capacity hydrogen storage in lithium and sodium amidoboranes. High-capacity hydrogen storage in lithium and sodium amidoboranes. Abstract: A substantial effort worldwide has been...

157

Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

158

Development of High-Capacity Cathode Materials with Integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of High-Capacity Cathode Materials with Integrated Structures Development of High-Capacity Cathode Materials with Integrated Structures 2013 DOE Hydrogen and Fuel Cells...

159

Design and Evaluation of Novel High Capacity Cathode Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design and Evaluation of Novel High Capacity Cathode Materials Design and Evaluation of Novel High Capacity Cathode Materials 2009 DOE Hydrogen Program and Vehicle Technologies...

160

Development of high-capacity cathode materials with integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of high-capacity cathode materials with integrated structures Development of high-capacity cathode materials with integrated structures 2009 DOE Hydrogen Program and...

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Design and Evaluation of Novel High Capacity Cathode Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Evaluation of Novel High Capacity Cathode Materials Design and Evaluation of Novel High Capacity Cathode Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

162

,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...  

U.S. Energy Information Administration (EIA) Indexed Site

Other",,,"All Technologies" ,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...

163

DOE mixed waste treatment capacity analysis  

SciTech Connect

This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

1994-06-01T23:59:59.000Z

164

Ethical receptive capacity and teaching business ethics  

Science Journals Connector (OSTI)

In this study, we proposed the ethical receptive capacity (ERC) perspective on teaching business ethics. The ERC perspective was developed on two premises: the separation of personal moral values and professional ethics, and the path dependent nature of professional ethics, such that individuals in the early stage of their profession have higher ERC (i.e., individuals' capacity to receive ethical contents) and thus are more receptive to new ethical contents prescribed to them. The experimental results in this study supported the ERC perspective, suggesting that business ethics education should be introduced to students as early as possible in their business programme.

Chanchai Tangpong; Michael D. Michalisin; Jin Li

2012-01-01T23:59:59.000Z

165

The effect of rain on freeway capacity  

E-Print Network (OSTI)

. The procedure used was basically a process of selection and processing of data from historical records. The facility used as a source of traific information was t' he Gulf Freeway in Houston, Texas, and rs. infall records were obtained from the Weather... to separate acceptable data, and the accepted capacity figures were related to the weather condition of wet or dry which prevs. iled on the relevant occs. sion. The results showed that rain does have a significant effect on freevray capacity which is very...

Jones, Edward Roy

2012-06-07T23:59:59.000Z

166

Definition: Capacity Benefit Margin | Open Energy Information  

Open Energy Info (EERE)

Benefit Margin Benefit Margin Jump to: navigation, search Dictionary.png Capacity Benefit Margin The amount of firm transmission transfer capability preserved by the transmission provider for Load- Serving Entities (LSEs), whose loads are located on that Transmission Service Provider's system, to enable access by the LSEs to generation from interconnected systems to meet generation reliability requirements. Preservation of CBM for an LSE allows that entity to reduce its installed generating capacity below that which may otherwise have been necessary without interconnections to meet its generation reliability requirements. The transmission transfer capability preserved as CBM is intended to be used by the LSE only in times of emergency generation deficiencies.[1] Related Terms

167

Power, Capacity, and Efficiency of Pumps  

Science Journals Connector (OSTI)

Power, Capacity, and Efficiency of Pumps ... p. motor through a 40-foot head, friction head included, efficiency of the pump being 50 per cent, join the 40 (column A ) with the 50 per cent (column E ) and locate the intersection with column C . ...

W. F. SCHAPHORST

1940-08-10T23:59:59.000Z

168

Building Environmental Health Capacity in Allegheny County  

E-Print Network (OSTI)

Building Environmental Health Capacity in Allegheny County: Environmental Indicators Outcomes standard Air Quality Computer Systems Days exceeding ozone standard Air Quality Computer Systems Attainment of the annual PM-2.5 standard (Fine particulates) Air Quality Computer Systems Annual PM-2.5 level Air Quality

169

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY  

E-Print Network (OSTI)

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY ANALYSIS TOOLS APPLICABLE TO MULTI Commercial HVAC Design Process 12 5.0 Conclusion 18 6.0 References 19 TABLE OF CONTENTS SECTIONS #12;MULTI performance by collectively improving the enve- lope, lighting and HVAC systems. The primary goals of the UC

California at Davis, University of

170

Fagatele Bay National Marine Sanctuary GIS Capacity  

E-Print Network (OSTI)

Report, configuration notes American Samoa Spatial Data Infrastructure Maps GIS Data CDs Operating System, a number of issues regarding map projections and datums were resolved allowing GIS users to processFagatele Bay National Marine Sanctuary GIS Capacity Binder Index Background 2 Hardware, Software

Wright, Dawn Jeannine

171

CSEM WP 124 Capacity Markets for Electricity  

E-Print Network (OSTI)

CSEM WP 124 Capacity Markets for Electricity Anna Creti, LEEERNA, University of Toulouse for Electricity Anna Creti LEEERNA, University of Toulouse Natalia Fabra Universidad Carlos III de Madrid February 2004 Abstract The creation of electricity markets has raised the fundamental question as to whether

California at Berkeley. University of

172

Partial energies fluctuations and negative heat capacities  

E-Print Network (OSTI)

We proceed to a critical examination of the method used in nuclear fragmentation to exhibit signals of negative heat capacity. We show that this method leads to unsatisfactory results when applied to a simple and well controlled model. Discrepancies are due to incomplete evaluation of potential energies.

Xavier Campi; H. Krivine; E. Plagnol; N. Sator

2004-08-03T23:59:59.000Z

173

Wireless Network Capacity Management: A Real Options Approach  

E-Print Network (OSTI)

capacity, market price of risk, investment timing option 1 Introduction Wireless networks are now regarded

Forsyth, Peter A.

174

Effects of structural rearrangements on sorption capacity of coals  

SciTech Connect

Recently, the problems in practical application of experimental data and modeling to the sequestration of carbon dioxide in coal seams and the concurrent enhanced coalbed methane (ECBM) recovery have underscored the need for new approaches that take into account the ability of coal for structural rearrangements. Areas of interest include plasticization of coal due to CO2 dissolution, the effect of coal swelling on estimation of the capacity of a coal-seam to adsorb CO2 (adsorption isotherm), and the stability of the CO2 saturated phase once formed, especially with respect to how it might be affected by changes in the post-sequestration environment (environmental effects). Coals are organic macromolecular systems well known to imbibe organic liquids and carbon dioxide. CO2 dissolves in coals and swells them. The problems become more prominent in the region of supercritical CO2. We investigated the effects of moisture content and pressure cycling history on temporal changes in the coal sorptive capacity for a set of Argonne premium coals. The samples were tested as received, dried at 80oC for 36 hours, and moisture equilibrated at 96-97% RH and 30oC for 48 hours. The powders were compared to core samples. Additionally, plasticization of coal powders was studied by high pressure dilatometer.

Romanov, Vyacheslav; Soong, Yee; Warzinski, R.P.; Lynn, R.J.

2006-09-01T23:59:59.000Z

175

"Table A7. Shell Storage Capacity of Selected Petroleum Products by Census"  

U.S. Energy Information Administration (EIA) Indexed Site

Shell Storage Capacity of Selected Petroleum Products by Census" Shell Storage Capacity of Selected Petroleum Products by Census" " Region, Industry Group, and Selected Industries, 1991" " (Estimates in Thousand Barrels)" " "," "," "," "," ","Other","RSE" "SIC"," ","Motor","Residual"," ","Distillate","Row" "Code(a)","Industry Groups and Industry","Gasoline","Fuel Oil","Diesel","Fuel Oil","Factors" ,,"Total United States" ,"RSE Column Factors:",1,0.9,1,1.1 , 20,"Food and Kindred Products",38,1448,306,531,12.1 2011," Meat Packing Plants",1,229,40,13,13.2

176

Hawaii Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Geothermal Region Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hawaii Geothermal Region Details Areas (16) Power Plants (1) Projects (2) Techniques (0) References Geothermal Region Data State(s) Hawaii Area 28,311 km²28,311,000,000 m² 10,928.046 mi² 304,736,772,900 ft² 33,859,956,000 yd² 6,995,789.655 acres USGS Resource Estimate for this Region Identified Mean Potential 181 MW181,000 kW 181,000,000 W 181,000,000,000 mW 0.181 GW 1.81e-4 TW Undiscovered Mean Potential 2,435 MW2,435,000 kW 2,435,000,000 W 2,435,000,000,000 mW 2.435 GW 0.00244 TW Planned Capacity Planned Capacity 50 MW50,000 kW 50,000,000 W 50,000,000,000 mW 0.05 GW 5.0e-5 TW Plants Included in Planned Estimate 1 Plants with Unknown Planned Capacity 0 Geothermal Areas within the Hawaii Geothermal Region

177

Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay  

Science Journals Connector (OSTI)

We report on the application of a simple and versatile antioxidant capacity assay for dietary polyphenols, vitamin C and vitamin E utilizing the copper(II)-neocuproine (Cu(II)-Nc) reagent as the chromogenic ox...

Re?at Apak; Kubilay Gl; Mustafa zyrek; Saliha Esin elik

2008-04-01T23:59:59.000Z

178

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Working and Net Available Shell Storage Capacity November 2013 With Data as of September 30, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Working and Net Available Shell Storage Capacity as of September 30, 2013 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

179

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

180

Kuwait pressing toward preinvasion oil production capacity  

SciTech Connect

Oil field reconstruction is shifting focus in Kuwait as the country races toward prewar production capacity of 2 million b/d. Oil flow last month reached 1.7 million b/d, thanks largely to a massive workover program that has accomplished about as much as it can. By midyear, most of the 19 rigs in Kuwait will be drilling rather than working over wells vandalized by retreating Iraqi troops in February 1991. Seventeen gathering centers are at work, with capacities totaling 2.4 million b/d, according to state-owned Kuwait Oil Co. (KOC). This article describes current work, the production infrastructure, facilities strategy, oil recovery, well repairs, a horizontal pilot project, the drilling program, the constant reminders of war, and heightened tensions.

Tippee, B.

1993-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Net Available Shell Storage Capacity by PAD District as of September 30, 2013 Net Available Shell Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 Refineries Crude Oil 17,334 831 21,870 1,721 86,629 3,468 4,655 174 39,839 1,230 170,327 7,424 Fuel Ethanol 174 - 175 1 289 - 134 - 92 - 864 1 Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,267 23 11,599 382 28,865 78 641 19 2,412 23 44,784 525 Propane/Propylene (dedicated)

182

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working Storage Capacity by PAD District as of September 30, 2013 Working Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity 1 2 3 4 5 U.S. Total Ending Stocks Utilization Rate 1 Refineries Crude Oil 15,154 17,952 72,858 4,109 35,324 145,397 90,778 62% Fuel Ethanol 151 142 257 114 79 743 482 65% Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,149 10,996 24,902 581 2,219 39,847 19,539 49% Propane/Propylene (dedicated) 3 405 3,710 3,886 54 199 8,254 4,104 NA Motor Gasoline (incl. Motor Gasoline Blending Components)

183

Calculations of Heat-Capacities of Adsorbates  

E-Print Network (OSTI)

PHYSICAL REVIEW B VOLUME 14, NUMBER 7 1 OCTOBER 1976 Calculations of heat capacities of adsorbates W. R. Lawrence and R. E. Allen Department of Physics, Texas A& M University, College Station, Texas 77843 (Received 2 September 1975) The phonon... the substrate has a perfect (100) surface and the adsorbate goes down as a solid monolayer in registry with the substrate. The quasiharmonic approximation was used, and the results for Ne adsorbates were considerably different from those obtained...

LAWRENCE, WR; Allen, Roland E.

1976-01-01T23:59:59.000Z

184

West Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

185

Kansas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

186

Montana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

187

Minnesota Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

188

Kentucky Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

189

Tennessee Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

190

Missouri Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

191

Oregon Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

192

Alabama Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

193

Pennsylvania Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

194

Oklahoma Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

195

Mississippi Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

196

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

197

Texas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

198

Louisiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

199

Indiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

200

Michigan Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Maryland Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

202

New York Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

203

Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

204

EPA-GHG Inventory Capacity Building | Open Energy Information  

Open Energy Info (EERE)

EPA-GHG Inventory Capacity Building EPA-GHG Inventory Capacity Building Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Training materials, Lessons learned/best practices References: US EPA GHG inventory Capacity Building[1] Logo: US EPA GHG inventory Capacity Building "Developing greenhouse gas inventories is an important first step to managing emissions. U.S. EPA's approach for building capacity to develop GHG inventories is based on the following lessons learned from working alongside developing country experts: Technical expertise for GHG inventories already exists in developing countries.

205

CAPITAL REGION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

t 09/20/07 15:28 FAX 301 903 4656 t 09/20/07 15:28 FAX 301 903 4656 CAPITAL REGION 0 j002 SDOE F 1325.8 (8-89) EFG (0790) Energy United States Government Department of Energy Memorandum DATE. September 18, 2007 Audit Report No.: OAS-L-07-23 REPLY TO: IG-34 (A07TG036) SUBJECT: Evaluation of "The Federal Energy Regulatory Commission's Cyber Security Program-2007" TO: Chairman, Federal Energy Regulatory Commission The purpose of this report is to inform you of the results o Four evaluation of the Federal Energy Regulatory Commission's (Commission) cyber security program. The evaluation was initiated in May 2007, and our fieldwork was conducted through September 2007. Our methodology is described in the attachment to this report. . INTRODUCTION AND OBJECTIVE The Commission reports that it is constantly improving thl stability, reliability, and

206

electricity market module region | OpenEI  

Open Energy Info (EERE)

342 342 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281342 Varnish cache server electricity market module region Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

207

Capacity computations of right-turn-on-red using the Highway Capacity Manual  

SciTech Connect

Right-turn-on-red (RTOR) is a traffic control strategy at signalized intersections that allows vehicles to turn right during red phases provided they do not impede the vehicles and pedestrians in green phases. RTOR is primarily a delay and energy conservation measure. Several studies that examined the impact of RTOR on vehicular delays have shown the potential of reducing fuel consumption by about 5 percent on urban streets. The reduction of delay and fuel consumption is related to extra capacity because RTOR allows vehicles to pass through an intersection in red phases. The extra capacity can be significant if an exclusive right-turn lane is provided. The 1985 {ital Highway Capacity Manual} (HCM) provides a powerful technique for evaluating how well an intersection will operate. This technique, however, is less successful in dealing with intersections where RTOR movement is permitted because it requires the analyst to supply RTOR volumes. This situation has led to a need for a formula to compute RTOR capacity. This paper proposes a method to calculate this capacity.

Luh, J.Z. (Langan Engineering Associates, NJ (US)); Lu, Y.J. (Concordia Univ., Loyola Campus, Montreal, PQ (Canada))

1990-04-01T23:59:59.000Z

208

1992 Annual Capacity Report. Revision 1  

SciTech Connect

The Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (10 CFR Part 961) requires the Department of Energy (DOE) to issue an Annual Capacity Report (ACR) for planning purposes. This report is the fifth in the series published by DOE. In May 1993, DOE published the 1992 Acceptance Priority Ranking (APR) that established the order in which DOE will allocate projected acceptance capacity. As required by the Standard Contract, the acceptance priority ranking is based on the date the spent nuclear fuel (SNF) was permanently discharged, with the owners of the oldest SNF, on an industry-wide basis, given the highest priority. The 1992 ACR applies the projected waste acceptance rates in Table 2.1 to the 1992 APR, resulting in individual allocations for the owners and generators of the SNF. These allocations are listed in detail in the Appendix, and summarized in Table 3.1. The projected waste acceptance rates for SNF presented in Table 2.1 are nominal and assume a site for a Monitored Retrievable Storage (MRS) facility will be obtained; the facility will initiate operations in 1998; and the statutory linkages between the MRS facility and the repository set forth in the Nuclear Waste Policy Act of 1982, as amended (NWPA), will be modified. During the first ten years following projected commencement of Civilian Radioactive Waste Management System (CRWMS) operation, the total quantity of SNF that could be accepted is projected to be 8,200 metric tons of uranium (MTU). This is consistent with the storage capacity licensing conditions imposed on an MRS facility by the NWPA. The annual acceptance rates provide an approximation of the system throughput and are subject to change as the program progresses.

Not Available

1993-05-01T23:59:59.000Z

209

Parametric study of relay seismic capacity  

Science Journals Connector (OSTI)

An evaluation of the existing relay test data base at Brookhaven National Laboratory (BNL) has indicated that the seismic capacity of a relay may depend on various parameters related to the design or the input motion. In order to investigate the effect of these parameters on the seismic fragility level, BNL has conducted a relay test program. Establishing the correlation between the single frequency fragility test input and the corresponding multifrequency response spectrum (TRS) is also an objective of this test program. The testing has been performed at Wyle Laboratories. This paper discusses the methodology used for testing and presents a brief summary of important test results.

K. Bandyopadhyay; C. Hofmayer

1992-01-01T23:59:59.000Z

210

LEDS Capacity Building and Training Inventory | Open Energy Information  

Open Energy Info (EERE)

LEDS Capacity Building and Training Inventory LEDS Capacity Building and Training Inventory Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve LEDS Capacity Building and Training Activities and Resources Upcoming Capacity Building Events CLEAN shares capacity building activity information to encourage technical institutions to better coordinate efforts and avoid duplication of effort. If you are aware of an upcoming LEDS-related training or capacity building event please add it to the calendar below. Add Capacity Building or Training Event Webinars Title Developer Biopower Tool Webinar National Renewable Energy Laboratory United States Department of Energy Centro de Energías Renovables (CER) CESC-Webinar: Building an Innovation and Entrepreneurship Driven Economy: How Policies Can Foster Risk Capital Investment in Renewable Energy Clean Energy Solutions Center

211

Natural Gas Productive Capacity for the Lower-48 States  

Gasoline and Diesel Fuel Update (EIA)

for the Lower-48 States for the Lower-48 States 6/4/01 Click here to start Table of Contents Natural Gas Productive Capacity for the Lower-48 States Natural Gas Productive Capacity for the Lower-48 States Natural Gas Productive Capacity for the Lower-48 States - Summary - Natural Gas Productive Capacity for the Lower-48 States - Summary - PPT Slide Natural Gas Productive Capacity for the Lower-48 States - Summary - Natural Gas Productive Capacity for the Lower-48 States - Methodology - Natural Gas Productive Capacity for the Lower-48 States - Methodology - Natural Gas Productive Capacity for the Lower-48 States - Methodology - PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide Other Areas PPT Slide PPT Slide PPT Slide

212

U.S. Fuel Ethanol Plant Production Capacity  

Gasoline and Diesel Fuel Update (EIA)

U.S. Fuel Ethanol Plant Production Capacity U.S. Fuel Ethanol Plant Production Capacity Release Date: May 20, 2013 | Next Release Date: May 2014 Previous Issues Year: 2013 2012 2011 Go Notice: Changes to Petroleum Supply Survey Forms for 2013 This is the third release of U.S. Energy Information Administration data on fuel ethanol production capacity. EIA first reported fuel ethanol production capacities as of January 1, 2011 on November 29, 2011. This new report contains production capacity data for all operating U.S. fuel ethanol production plants as of January 1, 2013. U.S. Nameplate Fuel Ethanol Plant Production Capacity as of January 1, 2013 PAD District Number of Plants 2013 Nameplate Capacity 2012 Nameplate Capacity (MMgal/year) (mb/d) (MMgal/year) (mb/d) PADD 1 4 360 23 316 21

213

A reduction theorem for capacity of positive maps  

E-Print Network (OSTI)

We prove a reduction theorem for capacity of positive maps of finite dimensional C*-algebras, thus reducing the computation of capacity to the case when the image of a nonscalar projection is never a projection.

Erling Stormer

2005-10-06T23:59:59.000Z

214

Evaluation of capacity release transactions in the natural gas industry  

E-Print Network (OSTI)

The purpose of this thesis is to analyze capacity release transactions in the natural gas industry and to state some preliminary conclusions about how the capacity release market is functioning. Given FERC's attempt to ...

Lautzenhiser, Stephen

1994-01-01T23:59:59.000Z

215

Storage and capacity rights markets in the natural gas industry  

E-Print Network (OSTI)

This dissertation presents a different approach at looking at market power in capacity rights markets that goes beyond the functional aspects of capacity rights markets as access to transportation services. In particular, ...

Paz-Galindo, Luis A.

1999-01-01T23:59:59.000Z

216

Economics and Design of Capacity Markets for the Power Sector  

Science Journals Connector (OSTI)

Capacity markets are a means to assure resource adequacy. The need for a capacity market stems from several market failures the most prominent of which is the absence of a robust demand-side. Limited demand response

Peter Cramton; Axel Ockenfels

2012-06-01T23:59:59.000Z

217

Temperature, Energy, and Heat Capacity of Asymptotically Anti-De Sitter Black Holes  

E-Print Network (OSTI)

We investigate the thermodynamical properties of black holes in (3+1) and (2+1) dimensional Einstein gravity with a negative cosmological constant. In each case, the thermodynamic internal energy is computed for a finite spatial region that contains the black hole. The temperature at the boundary of this region is defined by differentiating the energy with respect to entropy, and is equal to the product of the surface gravity (divided by~$2\\pi$) and the Tolman redshift factor for temperature in a stationary gravitational field. We also compute the thermodynamic surface pressure and, in the case of the (2+1) black hole, show that the chemical potential conjugate to angular momentum is equal to the proper angular velocity of the black hole with respect to observers who are at rest in the stationary time slices. In (3+1) dimensions, a calculation of the heat capacity reveals the existence of a thermodynamically stable black hole solution and a negative heat capacity instanton. This result holds in the limit that the spatial boundary tends to infinity only if the comological constant is negative; if the cosmological constant vanishes, the stable black hole solution is lost. In (2+1) dimensions, a calculation of the heat capacity reveals the existence of a thermodynamically stable black hole solution, but no negative heat capacity instanton.

J. D. Brown; J. Creighton; R. B. Mann

1994-05-03T23:59:59.000Z

218

Development of high-capacity cathode materials with integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to improve rate performance * Optimize composition (Li- and Mn composition) and synthesis conditions * Evaluation of electrochemical properties (capacity, cycling performance...

219

Weak locking capacity of quantum channels can be much larger than private capacity  

E-Print Network (OSTI)

We show that it is possible for the so-called weak locking capacity of a quantum channel [Guha et al., PRX 4:011016, 2014] to be much larger than its private capacity. Both reflect different ways of capturing the notion of reliable communication via a quantum system while leaking almost no information to an eavesdropper; the difference is that the latter imposes an intrinsically quantum security criterion whereas the former requires only a weaker, classical condition. The channels for which this separation is most straightforward to establish are the complementary channels of classical-quantum (cq-)channels, and hence a subclass of Hadamard channels. We also prove that certain symmetric channels (related to photon number splitting) have positive weak locking capacity in the presence of a vanishingly small pre-shared secret, whereas their private capacity is zero. These findings are powerful illustrations of the difference between two apparently natural notions of privacy in quantum systems, relevant also to quantum key distribution (QKD): the older, naive one based on accessible information, contrasting with the new, composable one embracing the quantum nature of the eavesdropper's information. Assuming an additivity conjecture for constrained minimum output Renyi entropies, the techniques of the first part demonstrate a single-letter formula for the weak locking capacity of complements to cq-channels, coinciding with a general upper bound of Guha et al. for these channels. Furthermore, still assuming this additivity conjecture, this upper bound is given an operational interpretation for general channels as the maximum weak locking capacity of the channel activated by a suitable noiseless channel.

Andreas Winter

2014-03-25T23:59:59.000Z

220

Theory of Molecular Machines. I. Channel Capacity of Molecular Machines  

E-Print Network (OSTI)

Theory of Molecular Machines. I. Channel Capacity of Molecular Machines running title: Channel Capacity of Molecular Machines Thomas D. Schneider version = 5.76 of ccmm.tex 2004 Feb 3 Version 5.67 was submitted 1990 December 5 Schneider, T. D. (1991). Theory of molecular machines. I. Channel capacity

Schneider, Thomas D.

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electrical Generating Capacities of Geothermal Slim Holes  

SciTech Connect

Theoretical calculations are presented to estimate the electrical generating capacity of the hot fluids discharged from individual geothermal wells using small wellhead generating equipment over a wide range of reservoir and operating conditions. The purpose is to appraise the possibility of employing slim holes (instead of conventional production-size wells) to power such generators for remote off-grid applications such as rural electrification in developing countries. Frequently, the generating capacity desired is less than one megawatt, and can be as low as 100 kilowatts; if slim holes can be usefully employed, overall project costs will be significantly reduced. This report presents the final results of the study. Both self-discharging wells and wells equipped with downhole pumps (either of the ''lineshaft'' or the ''submersible'' type) are examined. Several power plant designs are considered, including conventional single-flash backpressure and condensing steam turbines, binary plants, double-flash steam plants, and steam turbine/binary hybrid designs. Well inside diameters from 75 mm to 300 mm are considered; well depths vary from 300 to 1200 meters. Reservoir temperatures from 100 C to 240 C are examined, as are a variety of reservoir pressures and CO2 contents and well productivity index values.

Pritchett, J.W.

1998-10-01T23:59:59.000Z

222

Thermal capacity of composite floor slabs  

Science Journals Connector (OSTI)

AbstractObjective Thermal building simulation tools take account of the thermal capacity of the walls and floors by a one-dimensional characterization. The objective was to obtain thermal equivalent parameters for ribbed or composite slab elements that can be input into one-dimensional models. Method Transient finite element calculations (FEM) were used to establish the heat transfer to and from composite floors using four deck profiles and for daily heating cycles in compartments with defined heat gains and operating conditions. Results The performance of composite slabs was compared to a concrete flat slab for a typical office in the UK and Germany. It was shown that a deep ribbed slab generates a maximum heat flux of 30.5W/m2 for a 5C temperature variation about the mean, and that the daily heat absorbed by a typical composite slab was 220Wh/m2 floor area. Conclusions Using the thermal capacity of the ribbed floor slabs, the comfort conditions defined in terms of the number of hours over 25C are acceptable for many classes of offices. Practical implications Thermally equivalent properties of ribbed slabs can be used in conventional software to predict the thermal performance.

B. Doering; C. Kendrick; R.M. Lawson

2013-01-01T23:59:59.000Z

223

Natural Gas Underground Storage Capacity (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 9,072,508 9,104,181 9,111,242 9,117,296 9,132,250 9,171,017 1989-2013 Alaska 83,592 83,592 83,592 83,592 83,592 83,592 2013-2013 Lower 48 States 8,988,916 9,020,589 9,027,650 9,033,704 9,048,658 9,087,425 2012-2013 Alabama 35,400 35,400 35,400 35,400 35,400 35,400 2002-2013 Arkansas 21,853 21,853 21,853 21,853 21,853 21,853 2002-2013 California 592,711 592,711 592,711 599,711 599,711 599,711 2002-2013 Colorado 122,086 122,086 122,086 122,086 122,086 122,086 2002-2013

224

UNDP-Low Emission Capacity Building Programme | Open Energy Information  

Open Energy Info (EERE)

Programme Programme Jump to: navigation, search Logo: UNDP-Low Emission Capacity Building Programme Name UNDP-Low Emission Capacity Building Programme Agency/Company /Organization United Nations Development Programme (UNDP), European Union Sector Climate, Energy, Land, Water Topics Low emission development planning Resource Type Training materials Website http://www.undp.org/climatestr References UNDP-Low Emission Capacity Building Programme[1] UNDP-Low Emission Capacity Building Programme Screenshot "This collaborative programme aims to strengthen technical and institutional capacities at the country level, while at the same time facilitating inclusion and coordination of the public and private sector in national initiatives addressing climate change. It does so by utilizing the

225

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

226

Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion: Preprint  

SciTech Connect

Climate change has the potential to exacerbate water availability concerns for thermal power plant cooling, which is responsible for 41% of U.S. water withdrawals. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water projections from Coupled Model Intercomparison Project 3 (CMIP3) data are applied to surface water rights available to new generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water rights. The mean climate projection has only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water rights to offset climate impacts. Climate impacts are notable in southwestern states that purchase fewer water rights and obtain a greater share from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.

Cohen, S. M.; Macknick, J.; Averyt, K.; Meldrum, J.

2014-05-01T23:59:59.000Z

227

EPA-GHG Inventory Capacity Building | Open Energy Information  

Open Energy Info (EERE)

EPA-GHG Inventory Capacity Building EPA-GHG Inventory Capacity Building (Redirected from US EPA GHG Inventory Capacity Building) Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Training materials, Lessons learned/best practices References: US EPA GHG inventory Capacity Building[1] Logo: US EPA GHG inventory Capacity Building "Developing greenhouse gas inventories is an important first step to managing emissions. U.S. EPA's approach for building capacity to develop GHG inventories is based on the following lessons learned from working alongside developing country experts: Technical expertise for GHG inventories already exists in developing

228

Maryland Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 64,000 64,000 64,000 64,000 64,000 64,000 1988-2012 Salt Caverns

229

Ohio Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 572,477 572,477 580,380 580,380 580,380 577,944 1988-2012

230

Texas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 690,678 740,477 766,768 783,579 812,394 831,190 1988-2012

231

Kentucky Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 220,359 220,359 220,368 221,751 221,751 221,751 1988-2012

232

Oregon Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 29,415 29,415 29,565 29,565 29,565 28,750 1989-2012 Salt Caverns

233

Michigan Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 1,060,558 1,062,339 1,069,405 1,069,898 1,075,472 1,078,979

234

Tennessee Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 1,200 1,200 1,200 0 1998-2012 Salt Caverns 0 1999-2012

235

Alabama Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 19,300 26,900 26,900 32,900 35,400 35,400 1995-2012 Salt Caverns

236

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 114,067 111,167 111,120 111,120 106,764 124,937 1988-2012

237

Indiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 114,294 114,937 114,274 111,271 111,313 110,749 1988-2012

238

Louisiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 588,711 615,858 651,968 670,880 690,295 699,646 1988-2012

239

Montana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 374,201 374,201 376,301 376,301 376,301 376,301 1988-2012

240

Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 9,560 6,200 9,500 9,500 9,500 9,500 1998-2012 Salt Caverns

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mississippi Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 166,909 187,251 210,128 235,638 240,241 289,416 1988-2012

242

Pennsylvania Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 759,365 759,153 776,964 776,822 776,845 774,309 1988-2012

243

The NASA CSTI High Capacity Power Program  

SciTech Connect

The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems - Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability and 7 to 10 years lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operation as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed.

Winter, J.M.

1994-09-01T23:59:59.000Z

244

Region 9: Pacific Rim Region, Regional Sustainability Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REGION 9: PACIFIC RIM REGION REGION 9: PACIFIC RIM REGION Regional Sustainability Plan Presented by Ruth Cox Region 9 Regional Administrator Federal Utility Partnership Working Group (FUPWG) May 22 nd , 2013 REGION 9 INFORMATION MANAGE Federal space  36 million RSF in Region Nine * 173 owned buildings, 955 leased buildings * 100,000 Federal workers housed DESIGN & CONSTRUCT new Federal buildings $1.4 billion in FY12 capital construction projects $318 million in FY13 - Los Angeles Courthouse project PROVIDE PROCUREMENT LEADERSHIP across the Federal government  $1.24 billion in total GSA Schedule sales in FY12  $468 million to small businesses  34,000 fleet vehicles, 53% of which are Alternative Fuel Vehicles Pacific Rim Profile - CA, AZ, NV, HI

245

Multifractal analysis based on the Choquet capacity: Application to solar magnetograms  

Science Journals Connector (OSTI)

We explore the multiscale properties of the line-of-sight component of Solar magnetic fields using magnetograms of the full disc obtained from the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO). Multifractal spectra are estimated by different methods, based on the Choquet capacity, instead of the traditional Borel measure. We have extracted spectra corresponding to active regions (AR) as well as those from quiet regions of the Sun. The shapes of spectra of active regions and those of quiet regions of the Sun are different, displaying different lengths of left-hand and right-hand branches. We indicate that multifractal scaling of magnetograms can be produced by a set of statistically similar elements in digital high resolution images. The same features are found in images of many terrestrial scenes.

N.G. Makarenko; L.M. Karimova; B.V. Kozelov; M.M. Novak

2012-01-01T23:59:59.000Z

246

Estimating Water Needs to Meet 2025 Electricity Generating Capacity Forecasts by NERC Region  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL-2006/1235 NETL-2006/1235 August 2006 Revised April 8, 2008 Estimating Freshwater Needs to Meet Future Thermoelectric Generation Requirements Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

247

Projected impacts of climate change on regional capacities for global plant species richness  

Science Journals Connector (OSTI)

...A1, B1, B2). The dark green colour stands for 100% congruence...Hawkins, B. A. , 2003 Energy, water, and broad-scale...between contemporary water-energy dynamics and other non-climatic...significantly (-9.4%) under the 'business as usual' A1FI/+4.0 degrees...

2010-01-01T23:59:59.000Z

248

State & Regional Resources  

Energy.gov (U.S. Department of Energy (DOE))

The Bioenergy Technologies Office partners with the National Biomass State and Regional Partnerships' five regional organizations that provide leadership in their regions with regard to policies...

249

Regional Summary Pacific Region Management Context  

E-Print Network (OSTI)

, for the Eastern Pacific Ocean, and the Western and Central Pacific Fishery Commission, for the Western PacificRegional Summary Pacific Region Management Context The Pacific Region includes California, Oregon, and Washington. Federal fisheries in this region are managed by the Pacific Fishery Management Council (PFMC

250

E-Print Network 3.0 - affecting energy capacity Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

reserves provided by the block with capacity... , which, in turn, impacts the capacity markets, be they energy or ancillary services markets, is adequacy... capacity ofsellers'...

251

EIA - Natural Gas Pipeline Network - Regional/State Underground Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Regional/State Underground Natural Gas Storage Table Regional/State Underground Natural Gas Storage Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Underground Natural Gas Storage, Close of 2007 Depleted-Reservoir Storage Aquifer Storage Salt-Cavern Storage Total Region/ State # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) Central Region Colorado 8 42 1,088 0 0 0 0 0 0 8 42 1,088 Iowa 0 0 0 4 77 1,060 0 0 0 4 77 1,060

252

Regional Climate Change Adaptation Platform for Asia | Open Energy  

Open Energy Info (EERE)

Platform for Asia Platform for Asia Jump to: navigation, search Logo: Regional Climate Change Adaptation Platform for Asia Name Regional Climate Change Adaptation Platform for Asia Agency/Company /Organization United Nations Environment Programme, Swedish International Development Cooperation Agency, Stockholm Environment Institute, Asian Institute of Technology/UNEP Regional Resource Centre for Asia and the Pacific Topics Adaptation, Policies/deployment programs Website http://www.climateadapt.asia/ Country Cambodia, China, Laos, Myanmar, Thailand, Vietnam, Bangladesh, Bhutan, Nepal, Sri Lanka, Indonesia, Malaysia, Philippines UN Region Eastern Asia, South-Eastern Asia References Regional Climate Change Adaptation Platform for Asia[1] Overview "This initiative supports research and capacity building on climate change

253

FAO-Capacity Development on Climate Change | Open Energy Information  

Open Energy Info (EERE)

FAO-Capacity Development on Climate Change FAO-Capacity Development on Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: FAO-Capacity Development on Climate Change Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Land, Climate Focus Area: Forestry, Agriculture Resource Type: Training materials, Lessons learned/best practices, Case studies/examples Website: www.fao.org/climatechange/learning/en/ Cost: Free FAO-Capacity Development on Climate Change Screenshot References: FAO-Capacity Development on Climate Change[1] Logo: FAO-Capacity Development on Climate Change This portal provides a one-stop window for Member States, partners, UN staff and other development actors to access FAO climate change learning resources to facilitate experience-sharing.

254

Property:PotentialEGSGeothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialEGSGeothermalCapacity PotentialEGSGeothermalCapacity Jump to: navigation, search Property Name PotentialEGSGeothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from EGS Geothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

255

Capacity Building Project with Howard University | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capacity Building Project with Howard University Capacity Building Project with Howard University Capacity Building Project with Howard University The purpose of this initiative is to build community capacity for public participation in environmental and energy decision making. The target communities are those impacted by U.S. Department of Energy (DOE) facilities and in Washington, DC, the DOE Headquarters host community. The primary focus is on environmental justice communities-low-income and minority communities. Capacity Building Project with Howard University More Documents & Publications National Conference of Black Mayors, Inc. Capacity Building Project with Howard University The State of Environmental Justice in America 2010 Conference Environmental Justice at the U.S. Department of Energy - A Decade of

256

Microsoft Word - GasCapacityReport3-17.doc  

Gasoline and Diesel Fuel Update (EIA)

for the Lower-48 States Executive Summary This analysis examines the availability of effective productive capacity to meet the projected wellhead demand for natural gas through 2003. Effective productive capacity is defined as the maximum production available from natural gas wells considering limitations of the production, gathering, and transportation systems. Surplus or unutilized capacity is the difference between the effective productive capacity and the actual production. This report contains projections of natural gas effective productive capacity in the Lower-48 States for 2003 and is based on prices and production forecasts in EIA's February 2003 Short Term Energy Outlook (STEO). The analysis projects an average surplus capacity of 5.6 Bcf/d in 2003 under STEO Base

257

Property:PotentialOffshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindCapacity PotentialOffshoreWindCapacity Jump to: navigation, search Property Name PotentialOffshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

258

Property:PotentialGeothermalHydrothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialGeothermalHydrothermalCapacity PotentialGeothermalHydrothermalCapacity Jump to: navigation, search Property Name PotentialGeothermalHydrothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from Geothermal Hydrothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

259

Property:PotentialHydropowerCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerCapacity PotentialHydropowerCapacity Jump to: navigation, search Property Name PotentialHydropowerCapacity Property Type Quantity Description The nameplate capacity technical potential from Hydropower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

260

Property:PotentialBiopowerGaseousCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerGaseousCapacity PotentialBiopowerGaseousCapacity Jump to: navigation, search Property Name PotentialBiopowerGaseousCapacity Property Type Quantity Description The nameplate capacity technical potential from gaseous biopower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Spain Installed Wind Capacity Website | Open Energy Information  

Open Energy Info (EERE)

Spain Installed Wind Capacity Website Spain Installed Wind Capacity Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook. References Retrieved from "http://en.openei.org/w/index.php?title=Spain_Installed_Wind_Capacity_Website&oldid=514562"

262

Property:PotentialOnshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindCapacity PotentialOnshoreWindCapacity Jump to: navigation, search Property Name PotentialOnshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Onshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

263

Property:PotentialBiopowerSolidCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerSolidCapacity PotentialBiopowerSolidCapacity Jump to: navigation, search Property Name PotentialBiopowerSolidCapacity Property Type Quantity Description The nameplate capacity technical potential from solid biopower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

264

GIZ-Best Practices in Capacity Building Approaches | Open Energy  

Open Energy Info (EERE)

GIZ-Best Practices in Capacity Building Approaches GIZ-Best Practices in Capacity Building Approaches Jump to: navigation, search Tool Summary LAUNCH TOOL Name: GIZ-Best Practices in Capacity Building Approaches: Recommendations for the Design of a Long -Term Capacity Building Strategy for the Wind and Solar Sectors by the MEF Working Group Agency/Company /Organization: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector: Energy, Climate Focus Area: Solar, Wind Resource Type: Publications, Training materials, Lessons learned/best practices Website: prod-http-80-800498448.us-east-1.elb.amazonaws.com/w/images/8/80/Best_ Cost: Free GIZ-Best Practices in Capacity Building Approaches: Recommendations for the Design of a Long -Term Capacity Building Strategy for the Wind and Solar Sectors by the MEF Working Group Screenshot

265

U.S. Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Gross Input to Atmospheric Crude Oil Distillation Units 15,283 15,709 16,327 16,490 16,306 16,162 1985-2013 Operable Capacity (Calendar Day) 17,814 17,815 17,815 17,815 17,815 17,818 1985-2013 Operating 17,005 17,228 17,239 17,450 17,439 17,623 1985-2013 Idle 809 587 576 365 376 195 1985-2013 Operable Utilization Rate (%) 85.8 88.2 91.7 92.6 91.5 90.7 1985-2013 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum of components due to independent rounding. See Definitions, Sources, and Notes link above for more information on this table. Release Date: 11/27/2013

266

Ukraine-Capacity Building for Low Carbon Growth | Open Energy...  

Open Energy Info (EERE)

Jump to: navigation, search Name UNDP-Capacity Building for Low Carbon Growth in Ukraine AgencyCompany Organization United Nations Development Programme Sector Energy,...

267

Thailand-Enhancing Capacity for Low Emission Development Strategies...  

Open Energy Info (EERE)

Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) AgencyCompany Organization United States Agency for International Development, United States Environmental...

268

Information capacity and resolution in an optical system  

Science Journals Connector (OSTI)

The concept of invariance of information capacity is discussed and applied to the resolution of an optical system. Methods of obtaining superresolution in microscopy are discussed, and...

Cox, I J; Sheppard, C J R

1986-01-01T23:59:59.000Z

269

Design and Evaluation of Novel High Capacity Cathode Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design and Evaluation of Novel High Capacity Cathode Materials Christopher Johnson and Michael Thackeray Chemical Sciences and Engineering Division, Argonne Annual Merit Review DOE...

270

Open versus closed loop capacity equilibria in electricity markets ...  

E-Print Network (OSTI)

May 7, 2012 ... Abstract: We consider two game-theoretic models of the generation capacity expansion problem in liberalized electricity markets. The first is an...

S. Wogrin

2012-05-07T23:59:59.000Z

271

John S. Wright Forestry Center Room Sizes, Capacities, and Rates  

E-Print Network (OSTI)

Appendix 1 John S. Wright Forestry Center Room Sizes, Capacities, and Rates Room College the Wright Center contact: Marlene Mann, Administrative Assistant Forestry and Natural Resources Voice: 765

272

Africa Adaptation Programme: Capacity Building Experiences-Improving...  

Open Energy Info (EERE)

Data and Information Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa Adaptation Programme: Capacity Building Experiences-Improving Access, Understanding...

273

Yellowstone Caldera Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Yellowstone Caldera Geothermal Region Yellowstone Caldera Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Yellowstone Caldera Geothermal Region Details Areas (3) Power Plants (0) Projects (0) Techniques (25) Map: {{{Name}}} Replace Citation[1] References ↑ "Replace Citation" Geothermal Region Data State(s) Wyoming, Idaho, Montana Area 11,841 km²11,841,000,000 m² 4,570.626 mi² 127,455,339,900 ft² 14,161,836,000 yd² 2,925,970.305 acres USGS Resource Estimate for this Region Identified Mean Potential 44.0 MW44,000 kW 44,000,000 W 44,000,000,000 mW 0.044 GW 4.4e-5 TW Undiscovered Mean Potential 209.9 MW209,900 kW 209,900,000 W 209,900,000,000 mW 0.21 GW 2.099e-4 TW Planned Capacity Planned Capacity 0 MW0 kW 0 W 0 mW 0 GW 0 TW Plants Included in Planned Estimate 0 Plants with Unknown

274

Program Program Organization Country Region Topic Sector Sector  

Open Energy Info (EERE)

Program Organization Country Region Topic Sector Sector Program Organization Country Region Topic Sector Sector Albania Enhancing Capacity for Low Emission Development Strategies EC LEDS Albania Enhancing Capacity for Low Emission Development Strategies EC LEDS United States Agency for International Development USAID United States Environmental Protection Agency United States Department of Energy United States Department of Agriculture United States Department of State Albania Southern Asia Low emission development planning LEDS Energy Land Climate Algeria Clean Technology Fund CTF Algeria Clean Technology Fund CTF African Development Bank Asian Development Bank European Bank for Reconstruction and Development EBRD Inter American Development Bank IDB World Bank Algeria South Eastern Asia Background analysis Finance Implementation

275

Dynamic Long-Term Modelling of Generation Capacity Investment and Capacity Margins  

E-Print Network (OSTI)

is the capital expenditure vector for the project with ??x?1i=0 Mxi = 1. For simplicity, the expenditure schedule uses a lagged 3Which in the case of natural gas match quite well with available future prices from ICE Futures Europe (out to 2017) but are arguably... capacity I(t), which is a parallel cascade of the four technology categories. Each single category is defined by a Delay Differential Equation (DDE): dIx dt = ? (?j ,?j)??x ?j?(t? ?j ? ?x)? ? (?j ,?j)??x ?j?(t? ?j ? ?x ? ?x), (1) where ?(t) is the Dirac...

Eager, Dan; Hobbs, Benjamin; Bialek, Janusz

2012-04-25T23:59:59.000Z

276

Building Partnership Capacity and Sustainability in Financially Challenging Times  

E-Print Network (OSTI)

Building Partnership Capacity and Sustainability in Financially Challenging Times Introduction educational inequality. Partnership Question From the outset, the core objective was to design a sustainable that by focusing on capacity building and sustainability from the beginning, it is possible to build a partnership

277

Capacity of a UMTS system for aeronautical communications  

Science Journals Connector (OSTI)

Current Air Traffic Management and Air Traffic Control systems will experience a demand increase in the following years due to the large number of operating aircrafts. As a consequence, new solution must be studied to overcome this capacity limitation ... Keywords: ATC, ATM, ENR, SDR, TMA, UMTS, W-CDMA, air traffic, capacity

Miguel Calvo Ramn; Ramn Martnez Rodrguez-Osorio; Bazil Taha Ahmed; Juan Jos Iglesias Jimnez

2007-07-01T23:59:59.000Z

278

Prediction methods for capacity of drag anchors in clayey soils  

E-Print Network (OSTI)

A drag anchor is a marine foundation element, which is penetrated into the seabed by dragging in order to generate a required capacity. The holding capacity of a drag anchor in a particular soil condition is developed by soil resistance acting...

Yoon, Yeo Hoon

2002-01-01T23:59:59.000Z

279

THE MAXIMUM CAPACITY OF A LINE PLAN IS INAPPROXIMABLE  

E-Print Network (OSTI)

THE MAXIMUM CAPACITY OF A LINE PLAN IS INAPPROXIMABLE CHRISTINA PUHL AND SEBASTIAN STILLER Abstract a network, upper arc-capacities and a line pool. E-mail: puhl@math.tu-berlin.de, stiller of the European Commission under contract no. FP6-021235-2. 1 #12;2 CHRISTINA PUHL AND SEBASTIAN STILLER We

Nabben, Reinhard

280

Optimal Demand Response Capacity of Automatic Lighting Control  

E-Print Network (OSTI)

1 Optimal Demand Response Capacity of Automatic Lighting Control Seyed Ataollah Raziei and Hamed-mails: razieis1@udayton.edu and hamed@ee.ucr.edu Abstract--Demand response programs seek to ad- just the normal prior studies have extensively studied the capacity of offering demand response in buildings

Mohsenian-Rad, Hamed

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A dynamic programming approach for the airport capacity allocation problem  

Science Journals Connector (OSTI)

......between air traffic demand and system capacity...IMA Journal of Management Mathematics 14...traffic flow management model. In this...considered traffic demand and capacity...the left-hand side are the number...traffic flow management. ADYNAMIC PROGRAMMING...and the current demand. The state of......

Paolo Dell'Olmo; Guglielmo Lulli

2003-07-01T23:59:59.000Z

282

Software-Defined Networking Based Capacity Sharing in Hybrid Networks  

E-Print Network (OSTI)

Software-Defined Networking Based Capacity Sharing in Hybrid Networks Mateus A. S. Santos and Bruno proposes a novel approach to capacity sharing in hybrid networked environments, i.e., environments that consist of infrastructure-based as well as infrastructure- less networks. The proposed framework is based

Turletti, Thierry

283

Towards Optimal Capacity Segmentation with Hybrid Cloud Pricing  

E-Print Network (OSTI)

and EC2 spot market. Furthermore, we formulate the optimal capacity segmentation strategy as a MarkovTowards Optimal Capacity Segmentation with Hybrid Cloud Pricing Wei Wang, Baochun Li, and Ben Liang markets with different service guarantees. For example, Amazon EC2 prices virtual instances under three

Li, Baochun

284

Towards Optimal Capacity Segmentation with Hybrid Cloud Pricing  

E-Print Network (OSTI)

between periodic auctions and EC2 spot market. Furthermore, we formulate the optimal capacity segmentationTowards Optimal Capacity Segmentation with Hybrid Cloud Pricing Wei Wang, Baochun Li, and Ben Liang priced in multiple markets with different service guarantees. For example, Amazon EC2 prices virtual

Li, Baochun

285

Mechanism Design for Capacity Allocation with Price Competition  

E-Print Network (OSTI)

. This paper examines the problem of mechanism design for capacity allocation in two connected markets whereMechanism Design for Capacity Allocation with Price Competition Masabumi Furuhata Intelligent-users in price competition. We consider the problems of how allocation mechanisms in the upstream market de

Zhang, Dongmo

286

Capacity expansion analysis in a chemical plant using linear programming  

Science Journals Connector (OSTI)

An analysis of the fuel additive production process of a US mid-western chemical manufacturer is described. Material balance constraints for each potential bottleneck of the manufacturing process are included as part of a linear programming model. Several capacity expansion scenarios are evaluated. The optimal way of modifying and expanding manufacturing capacity to meet forecast demand is determined.

Kenneth H. Myers; Reuven R. Levary

1996-01-01T23:59:59.000Z

287

Table 1. U.S. Biodiesel Production Capacity and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Biodiesel Production Capacity and Production Biodiesel Production Capacity and Production (million gallons) Period 2011 January 2,114 35 February 2,104 40 March 2,081 60 April 2,101 71 May 2,064 77 June 2,069 81

288

Artificial neural network analysis for reliability prediction of regional runoff utilization  

Science Journals Connector (OSTI)

Many factors in the reliability analysis of planning the regional rainwater utilization tank capacity need to be considered. Based on the historical daily rainfall data, the following four analyzing procedures wi...

S. C. Lee; H. T. Lin; T. Y. Yang

2010-02-01T23:59:59.000Z

289

Increased oxidative stress in barn swallows from the Chernobyl region Andrea Bonisoli-Alquati a,  

E-Print Network (OSTI)

Increased oxidative stress in barn swallows from the Chernobyl region Andrea Bonisoli-Alquati a Available online 5 November 2009 Keywords: Antioxidant capacity Barn swallow Chernobyl Oxidative stress Radioactive contamination Reactive oxygen species The Chernobyl nuclear accident produced the largest

Mousseau, Timothy A.

290

Assess public and private sector capacity to support initiatives | Open  

Open Energy Info (EERE)

public and private sector capacity to support initiatives public and private sector capacity to support initiatives Jump to: navigation, search Stage 2 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other

291

Underground Natural Gas Working Storage Capacity - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Underground Natural Gas Working Storage Capacity Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Overview Natural gas working storage capacity increased by about 2 percent in the Lower 48 states between November 2011 and November 2012. The U.S. Energy Information Administration (EIA) has two measures of working gas storage capacity, and both increased by similar amounts: Demonstrated maximum volume increased 1.8 percent to 4,265 billion cubic feet (Bcf) Design capacity increased 2.0 percent to 4,575 Bcf Maximum demonstrated working gas volume is an operational measure of the highest level of working gas reported at each storage facility at any time

292

Building MRV Standards and Capacity in Key Countries | Open Energy  

Open Energy Info (EERE)

MRV Standards and Capacity in Key Countries MRV Standards and Capacity in Key Countries Jump to: navigation, search Name Building MRV Standards and Capacity in Key Countries Agency/Company /Organization World Resources Institute (WRI) Sector Climate Focus Area Renewable Energy Topics Implementation Website http://www.wri.org/topics/mrv Program Start 2011 Program End 2014 Country Brazil, Colombia, Ethiopia, India, South Africa, Thailand South America, South America, Eastern Africa, Southern Asia, Southern Africa, South-Eastern Asia References World Resources Institute (WRI)[1] Program Overview Developing countries will be required to measure, report, and verify (MRV) mitigation actions according to international guidelines, but few have the capacity to do so. The goal of this project is to build the capacity of a

293

Property:GrossProdCapacity | Open Energy Information  

Open Energy Info (EERE)

GrossProdCapacity GrossProdCapacity Jump to: navigation, search Property Name GrossProdCapacity Property Type Quantity Description Sum of the property AvgAnnlGrossOpCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

294

Assess current country plans, policies, practices, and capacities | Open  

Open Energy Info (EERE)

Assess current country plans, policies, practices, and capacities Assess current country plans, policies, practices, and capacities Jump to: navigation, search Stage 2 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other

295

NREL: Energy Analysis - Utility-Scale Energy Technology Capacity Factors  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility-Scale Energy Technology Capacity Factors Utility-Scale Energy Technology Capacity Factors This chart indicates the range of recent capacity factor estimates for utility-scale renewable energy technologies. The dots indicate the average, and the vertical lines represent the range: Average +1 standard deviation and average -1 standard deviation. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation. Capital Cost (September 2013 Update) Operations & Maintenance (September 2013 Update) Utility-Scale Capacity Factors Useful Life Land Use by System Technology LCOE Calculator Capacity factor for energy technologies. For more information, please download supporting data for energy technology costs.

296

AEO2011: Electricity Generating Capacity | OpenEI  

Open Energy Info (EERE)

Generating Capacity Generating Capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed

297

India-Vulnerability Assessment and Enhancing Adaptive Capacities to Climate  

Open Energy Info (EERE)

Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Jump to: navigation, search Name India-Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Agency/Company /Organization Swiss Agency for Development and Cooperation Sector Energy, Land, Water Focus Area Agriculture Topics Co-benefits assessment, Background analysis Resource Type Lessons learned/best practices Website http://www.intercooperation.or Country India Southern Asia References India-Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change[1] India-Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Screenshot Contents 1 Introduction [1] 2 Community-based Institutions [2] 3 Pasture Land Development [3]

298

Property:Device Nameplate Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Nameplate Capacity (MW) Nameplate Capacity (MW) Jump to: navigation, search Property Name Device Nameplate Capacity (MW) Property Type String Pages using the property "Device Nameplate Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 8MW 1MW Farms of multiple machines will be deployed with installed capacity of circa 20MW + MHK Projects/Algiers Light Project + 40 kW + MHK Projects/Anconia Point Project + 40 kW + MHK Projects/Ashley Point Project + 40 kW + MHK Projects/Avondale Bend Project + 40 kW + MHK Projects/Bar Field Bend + 40 kW + MHK Projects/Barfield Point + 40 kW + MHK Projects/Bayou Latenache + 40 kW + MHK Projects/BioSTREAM Pilot Plant + 250kW pilot 1MW commercial scale + MHK Projects/Bondurant Chute + 40 kW +

299

Property:NetProdCapacity | Open Energy Information  

Open Energy Info (EERE)

NetProdCapacity NetProdCapacity Jump to: navigation, search Property Name NetProdCapacity Property Type Quantity Description Sum of the property SummerPeakNetCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

300

Influence of Surface Structure on the Capacity and Irreversible Capacity Loss of Sn-Based Anodes for Lithium Ion Batteries  

Science Journals Connector (OSTI)

(1-5) Numerous solar and wind power energy plants have been invested in to exploit sustainable and renewable energy. ... These materials demonstrate discharge capacities on the order of 1000 mAh/(g Sn), which is consistent with the alloying capacity limit of 4.4 Li atoms per Sn atom, or 991 mAh/(g Sn). ...

Li Li; Xuan Liu; Shulan Wang; Wenzhi Zhao

2014-05-19T23:59:59.000Z

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Social Logics in Development of Institutional Capacity The Case of Capacity Development for the Clean Development Mechanism in Uganda  

E-Print Network (OSTI)

for the Clean Development Mechanism in Uganda Karen Holm Olsen International Development Studies Department in Uganda 2002-2006. The study finds that the politics of institutional change processes are largely ignored of Institutional Capacity The case of Capacity Development for the CDM in Uganda The 15th International Climate

302

Final Scientific and Technical Report State and Regional Biomass Partnerships  

SciTech Connect

The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

Handley, Rick; Stubbs, Anne D.

2008-12-29T23:59:59.000Z

303

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Regional Analysis Regional Analysis Alaska Alaska The State of Alaska had the third-largest processing capacity, trailing only Texas and Louisiana. While much of the natural gas processed in Alaska does not enter any transmission system and is instead re-injected into reservoirs, its processing capability is nonetheless significant. At 9.5 Bcf per day of processing capacity, the State of Alaska accounted for about 12 percent of total U.S. capacity. As of 2009, there were a total of 4 plants in the State, with the largest one reporting a capacity of 8.5 Bcf per day. Average plant size of 2.4 Bcf per day far exceeded any other State, with Illinois noting the next largest average plant size of 1.1 Bcf per day. In addition to the significant processing total capacity, plants in

304

Southwest Regional Partnership on Carbon Sequestration  

SciTech Connect

The Southwest Partnership on Carbon Sequestration completed several more tasks during the period of April 1, 2005-September 30, 2005. The main objective of the Southwest Partnership project is to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. While Phase 2 planning is well under way, the content of this report focuses exclusively on Phase 1 objectives completed during this reporting period. Progress during this period was focused in the three areas: geological carbon storage capacity in New Mexico, terrestrial sequestration capacity for the project area, and the Integrated Assessment Model efforts. The geologic storage capacity of New Mexico was analyzed and Blanco Mesaverde (which extends into Colorado) and Basin Dakota Pools were chosen as top two choices for the further analysis for CO{sub 2} sequestration in the system dynamics model preliminary analysis. Terrestrial sequestration capacity analysis showed that the four states analyzed thus far (Arizona, Colorado, New Mexico and Utah) have relatively limited potential to sequester carbon in terrestrial systems, mainly due to the aridity of these areas, but the large land area offered could make up for the limited capacity per hectare. Best opportunities were thought to be in eastern Colorado/New Mexico. The Integrated Assessment team expanded the initial test case model to include all New Mexico sinks and sources in a new, revised prototype model in 2005. The allocation mechanism, or ''String of Pearls'' concept, utilizes potential pipeline routes as the links between all combinations of the source to various sinks. This technique lays the groundwork for future, additional ''String of Pearls'' analyses throughout the SW Partnership and other regions as well.

Brian McPherson

2006-04-01T23:59:59.000Z

305

2014 REGIONAL ECONOMIC OUTLOOK  

E-Print Network (OSTI)

2014 REGIONAL ECONOMIC OUTLOOK #12;2014 REGIONAL ECONOMIC OUTLOOK 2014 Overview The Cincinnati USA Partnership for Economic Development and the Northern Kentucky Chamber of Commerce are pleased to present the 2014 Regional Economic Outlook. This report was prepared by the Cincinnati USA Partnership's Regional

Boyce, Richard L.

306

Regional Energy Deployment System (ReEDS) | Open Energy Information  

Open Energy Info (EERE)

Regional Energy Deployment System (ReEDS) Regional Energy Deployment System (ReEDS) (Redirected from Regional Energy Deployment System) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Regional Energy Deployment System Agency/Company /Organization: NREL Sector: Energy Topics: Pathways analysis, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.nrel.gov/analysis/reeds/ OpenEI Keyword(s): EERE tool, Regional Energy Deployment System, ReEDS References: Regional Energy Deployment System (ReEDS) Web site[1] Regional Energy Deployment System (ReEDS) is a multiregional, multitimeperiod, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. The model, developed by NREL's Strategic Energy Analysis

307

Investigation of the carbon dioxide sorption capacity and structural deformation of coal  

SciTech Connect

Due to increasing atmospheric CO2 concentrations causing the global energy and environmental crises, geological sequestration of carbon dioxide is now being actively considered as an attractive option to mitigate greenhouse gas emissions. One of the important strategies is to use deep unminable coal seams, for those generally contain significant quantities of coal bed methane that can be recovered by CO2 injection through enhanced coal bed natural gas production, as a method to safely store CO2. It has been well known that the adsorbing CO2 molecules introduce structural deformation, such as distortion, shrinkage, or swelling, of the adsorbent of coal organic matrix. The accurate investigations of CO2 sorption capacity as well as of adsorption behavior need to be performed under the conditions that coals deform. The U.S. Department of Energy-National Energy Technology Laboratory and Regional University Alliance are conducting carbon dioxide sorption isotherm experiments by using manometric analysis method for estimation of CO2 sorption capacity of various coal samples and are constructing a gravimetric apparatus which has a visual window cell. The gravimetric apparatus improves the accuracy of carbon dioxide sorption capacity and provides feasibility for the observation of structural deformation of coal sample while carbon dioxide molecules interact with coal organic matrix. The CO2 sorption isotherm measurements have been conducted for moist and dried samples of the Central Appalachian Basin (Russell County, VA) coal seam, received from the SECARB partnership, at the temperature of 55 C.

Hur, Tae-Bong; Fazio, James; Romanov, Vyacheslav; Harbert, William

2010-01-01T23:59:59.000Z

308

Renewable energy capacity and generation | OpenEI  

Open Energy Info (EERE)

21 21 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281521 Varnish cache server Renewable energy capacity and generation Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 16, and contains only the reference case. The dataset uses gigawatts. The data is broken down into electric power capacity and generation. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable energy capacity and generation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generating Capacity and Generation- Reference Case (xls, 118.9 KiB)

309

Guatemala-Enhancing Capacity for Low Emission Development Strategies  

Open Energy Info (EERE)

Guatemala-Enhancing Capacity for Low Emission Development Strategies Guatemala-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Guatemala-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Agency/Company /Organization United States Agency for International Development, United States Environmental Protection Agency, United States Department of Energy, United States Department of Agriculture, United States Department of State Sector Climate, Energy, Land Program Start 2010 Program End 2016 Country Guatemala Central America References EC-LEDS[1] Contents 1 Overview 2 Framework 3 Lessons Learned and Good Practices 4 Progress and Outcomes 5 Fact Sheet 6 References Overview "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a U.S. Government initiative to support developing countries' efforts to

310

Ukraine-Enhancing Capacity for Low Emission Development Strategies  

Open Energy Info (EERE)

Ukraine-Enhancing Capacity for Low Emission Development Strategies Ukraine-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Ukraine-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Agency/Company /Organization United States Agency for International Development, United States Environmental Protection Agency, United States Department of Energy, United States Department of Agriculture, United States Department of State Sector Climate, Energy, Land Topics Low emission development planning, -LEDS Program Start 2010 Program End 2016 Country Ukraine Eastern Europe References EC-LEDS[1] Contents 1 Overview 2 Framework 3 Lessons Learned and Good Practices 4 Progress and Outcomes 5 Fact Sheet 6 References Overview "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a

311

Property:Project Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Installed Capacity (MW) Installed Capacity (MW) Jump to: navigation, search Property Name Project Installed Capacity (MW) Property Type String Pages using the property "Project Installed Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 + MHK Projects/ADM 5 + 1 + MHK Projects/AWS II + 1 + MHK Projects/Admirality Inlet Tidal Energy Project + 22 + MHK Projects/Agucadoura + 2 + MHK Projects/Alaska 18 + 10 + MHK Projects/Alaska 36 + 10 + MHK Projects/Algiers Cutoff Project + 16 + MHK Projects/Algiers Light Project + 0 + MHK Projects/Anconia Point Project + 0 + MHK Projects/Ashley Point Project + 0 + MHK Projects/Astoria Tidal Energy + 300 + MHK Projects/Avondale Bend Project + 0 + MHK Projects/Bar Field Bend + 0 +

312

Property:EZFeed/ExpectedCapacity | Open Energy Information  

Open Energy Info (EERE)

ExpectedCapacity ExpectedCapacity Jump to: navigation, search Property Name EZFeed/ExpectedCapacity Property Type String Description EZFeed Expected Capacity property Subproperties This property has the following 6081 subproperties: 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) 3 30% Business Tax Credit for Solar (Vermont) 4 401 Certification (Vermont) A AEP (Central and North) - CitySmart Program (Texas) AEP (Central and North) - Residential Energy Efficiency Programs (Texas) AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) AEP Appalachian Power - Residential Home Retrofit Program (West Virginia)

313

Property:Technology Nameplate Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Nameplate Capacity (MW) Nameplate Capacity (MW) Jump to: navigation, search Property Name Technology Nameplate Capacity (MW) Property Type String Pages using the property "Technology Nameplate Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 100kW built and tested with 45kW 200kW and 1 4MW designs in development + MHK Technologies/AirWEC + 5kW + MHK Technologies/Aquantis + Proprietary + MHK Technologies/Atlantis AN 150 + 0 15 + MHK Technologies/Atlantis AR 1000 + 1 + MHK Technologies/Atlantis AS 400 + 0 4 + MHK Technologies/Bluetec + 1 + MHK Technologies/Current Power + from 10 kW and up + MHK Technologies/CurrentStar + 1 + MHK Technologies/Deep Green + 500 kW + MHK Technologies/Deep water capable hydrokinetic turbine + 30MW +

314

Costa Rica-Enhancing Capacity for Low Emission Development Strategies  

Open Energy Info (EERE)

Costa Rica-Enhancing Capacity for Low Emission Development Strategies Costa Rica-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Costa Rica-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Agency/Company /Organization United States Agency for International Development, United States Environmental Protection Agency, United States Department of Energy, United States Department of Agriculture, United States Department of State Sector Climate, Energy, Land Topics Low emission development planning, -LEDS Program Start 2010 Program End 2016 Country Costa Rica Central America References EC-LEDS[1] Contents 1 Overview 2 Framework 3 Lessons Learned and Good Practices 4 Progress and Outcomes 5 Fact Sheet 6 References Overview "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a

315

Cambodia-Enhancing Capacity for Low Emission Development Strategies  

Open Energy Info (EERE)

Cambodia-Enhancing Capacity for Low Emission Development Strategies Cambodia-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Cambodia-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Agency/Company /Organization United States Agency for International Development, United States Environmental Protection Agency, United States Department of Energy, United States Department of Agriculture, United States Department of State Sector Climate, Energy, Land Topics Low emission development planning, -LEDS Program Start 2010 Program End 2016 Country Cambodia South-Eastern Asia References EC-LEDS[1] Contents 1 Overview 2 Framework 3 Lessons Learned and Good Practices 4 Progress and Outcomes 5 Fact Sheet 6 References Overview "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a

316

Philippines-Strengthening Planning Capacity for Low Carbon Growth in  

Open Energy Info (EERE)

Philippines-Strengthening Planning Capacity for Low Carbon Growth in Philippines-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Jump to: navigation, search Name Philippines-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Agency/Company /Organization Asian Development Bank Partner Japan, United Kingdom Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, People and Policy, Transportation Topics Baseline projection, GHG inventory, Low emission development planning, Market analysis, Pathways analysis, Policies/deployment programs Program Start 2011 Program End 2013 Country Philippines South-Eastern Asia References Strengthening Planning Capacity for Low Carbon Growth in Developing Asia[1]

317

Philippines-Enhancing Capacity for Low Emission Development Strategies  

Open Energy Info (EERE)

Philippines-Enhancing Capacity for Low Emission Development Strategies Philippines-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Philippines-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Agency/Company /Organization United States Agency for International Development, United States Environmental Protection Agency, United States Department of Energy, United States Department of Agriculture, United States Department of State Sector Climate, Energy, Land Topics Low emission development planning, -LEDS Program Start 2010 Program End 2016 Country Philippines South-Eastern Asia References EC-LEDS[1] Contents 1 Overview 2 Framework 3 Lessons Learned and Good Practices 4 Progress and Outcomes 5 Fact Sheet 6 References Overview "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a

318

Property:EZFeed/InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name EZFeed/InstalledCapacity Property Type String Description EZFeed Installed Capacity property Subproperties This property has the following 6079 subproperties: 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) 3 30% Business Tax Credit for Solar (Vermont) 4 401 Certification (Vermont) A AEP (Central and North) - CitySmart Program (Texas) AEP (Central and North) - Residential Energy Efficiency Programs (Texas) AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) AEP Appalachian Power - Residential Home Retrofit Program (West Virginia)

319

Strengthening Planning Capacity for Low Carbon Growth in Developing Asia  

Open Energy Info (EERE)

Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Strengthening Planning Capacity for Low Carbon Growth in Developing Asia - Thailand Jump to: navigation, search Name Thailand-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Agency/Company /Organization Asian Development Bank Partner Japan, United Kingdom Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, People and Policy, Transportation Topics Baseline projection, GHG inventory, Low emission development planning, Market analysis, Pathways analysis, Policies/deployment programs Program Start 2011 Program End 2013 Country Thailand South-Eastern Asia References Strengthening Planning Capacity for Low Carbon Growth in Developing Asia[1]

320

Indonesia-Strengthening Planning Capacity for Low Carbon Growth in  

Open Energy Info (EERE)

Indonesia-Strengthening Planning Capacity for Low Carbon Growth in Indonesia-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Jump to: navigation, search Name Indonesia-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Agency/Company /Organization Asian Development Bank Partner Japan, United Kingdom Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, People and Policy, Transportation Topics Baseline projection, GHG inventory, Low emission development planning, Market analysis, Pathways analysis, Policies/deployment programs Program Start 2011 Program End 2013 Country Indonesia South-Eastern Asia References Strengthening Planning Capacity for Low Carbon Growth in Developing Asia[1]

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Indonesia-Enhancing Capacity for Low Emission Development Strategies  

Open Energy Info (EERE)

Indonesia-Enhancing Capacity for Low Emission Development Strategies Indonesia-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Indonesia-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Agency/Company /Organization United States Agency for International Development, United States Environmental Protection Agency, United States Department of Energy, United States Department of Agriculture, United States Department of State Sector Climate, Energy, Land Topics Low emission development planning, -LEDS Program Start 2010 Program End 2016 Country Indonesia South-Eastern Asia References EC-LEDS[1] Contents 1 Overview 2 Framework 3 Lessons Learned and Good Practices 4 Progress and Outcomes 5 Fact Sheet 6 References Overview "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a

322

Malaysia-Strengthening Planning Capacity for Low Carbon Growth in  

Open Energy Info (EERE)

Malaysia-Strengthening Planning Capacity for Low Carbon Growth in Malaysia-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Jump to: navigation, search Name Malaysia-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Agency/Company /Organization Asian Development Bank Partner Japan, United Kingdom Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, People and Policy, Transportation Topics Baseline projection, GHG inventory, Low emission development planning, Market analysis, Pathways analysis, Policies/deployment programs Program Start 2011 Program End 2013 Country Malaysia South-Eastern Asia References Strengthening Planning Capacity for Low Carbon Growth in Developing Asia[1]

323

Moldova-Enhancing Capacity for Low Emission Development Strategies  

Open Energy Info (EERE)

Moldova-Enhancing Capacity for Low Emission Development Strategies Moldova-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Moldova-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Agency/Company /Organization United States Agency for International Development, United States Environmental Protection Agency, United States Department of Energy, United States Department of Agriculture, United States Department of State Sector Climate, Energy, Land Topics Low emission development planning, -LEDS Program Start 2010 Program End 2016 Country Moldova Eastern Europe References EC-LEDS[1] Contents 1 Overview 2 Framework 3 Lessons Learned and Good Practices 4 Progress and Outcomes 5 Fact Sheet 6 References Overview "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a

324

Building REDD Capacity in Developing Countries | Open Energy Information  

Open Energy Info (EERE)

Building REDD Capacity in Developing Countries Building REDD Capacity in Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Building REDD Capacity in Developing Countries Agency/Company /Organization: International Institute for Sustainable Development (IISD) Sector: Land Focus Area: Forestry Topics: Policies/deployment programs Resource Type: Workshop, Lessons learned/best practices Website: www.iisd.org/climate/land_use/redd/ Country: Kenya, Vietnam Eastern Africa, South-Eastern Asia References: IISD Building REDD Capacity in Developing Countries[1] Background "To provide developing countries with this support, IISD has partnered with the Alternatives to Slash and Burn Partnership for the Tropical Forest Margins, World Agroforesty Centre (ASB-ICRAF), to deliver a series of

325

Structural Capacity of Light Gauge Steel Storage Rack Uprights.  

E-Print Network (OSTI)

??Master of Engineering (Research)%%%This report investigates the down-aisle buckling load capacity of steel storage rack uprights. The effects of discrete torsional restraints provided by the (more)

Koen, Damien Joseph

2008-01-01T23:59:59.000Z

326

Genetic Regulation of Intrinsic Endurance Exercise Capacity in Mice  

E-Print Network (OSTI)

been reported across cross-section, twin, and family studies. This variation is evidence of a genetic component to the phenotype of endurance exercise capacity: however, the genetic factors responsible for explaining this variation are undefined...

Courtney, Sean M.

2013-07-26T23:59:59.000Z

327

SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS  

Energy.gov (U.S. Department of Energy (DOE))

Seismic Capacity of Threaded, Brazed and Grooved Pipe Joints Brent Gutierrez, PhD, PE George Antaki, PE, F.ASME DOE NPH Conference October 25-26, 2011

328

Nitrogen expander cycles for large capacity liquefaction of natural gas  

SciTech Connect

Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun [Hong Ik University, Department of Mechanical Engineering, Seoul, 121-791 (Korea, Republic of); Choe, Kun Hyung [Korea Gas Corporation, Incheon, 406-130 (Korea, Republic of)

2014-01-29T23:59:59.000Z

329

Why Are We Talking About Capacity Markets? (Presentation)  

SciTech Connect

Capacity markets represent a new and novel way to achieve greater economic use of variable generation assets such as wind and solar, and this concept is discussed in this presentation.

Milligan, M.

2011-06-01T23:59:59.000Z

330

Capacity planning and change management in an aerospace overhaul cell  

E-Print Network (OSTI)

Purpose - This thesis analyzes the transformation of the Small Components Cell in Pratt & Whitney's aftermarket division through lean manufacturing techniques. The thesis focuses on use of a labor capacity planning model, ...

Walker, David, M.B.A. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

331

Design and Evaluation of Novel High Capacity Cathode Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the reaction is, in turn, intercalated into the negative electrode (i.e. graphite, graphene composites, intermetallics, Si-C composites, high-capacity TiO 2 (B bronze), TiO 2...

332

State and National Wind Resource Potential at Various Capacity...  

Wind Powering America (EERE)

4 8 650 1 2 806 3 0 69% 75 5% 14 031 7 49 073 Estimates of Windy 1 Land Area and Wind Energy Potential, by State, for areas > 35% Capacity Factor at 80m These estimates show, for...

333

On the Capacity of Hybrid Wireless Networks with Opportunistic Routing  

Science Journals Connector (OSTI)

This paper studies the capacity of hybrid wireless networks with opportunistic routing (OR). ... algorithm to exploit high speed data transmissions in infrastructure network through base stations. We then develop...

Tan Le; Yong Liu

2009-01-01T23:59:59.000Z

334

MIMO capacity convergence in frequency-selective channels  

E-Print Network (OSTI)

The dependence of multi-antenna capacity on bandwidth is characterized empirically for narrowband, wideband and ultrawideband indoor channels using spatial and polar arrays. It is shown that both the mean and the outage ...

Malik, Wasim Q.

335

Creative agencies : a model for building community capacity  

E-Print Network (OSTI)

This research investigates how existing initiatives based in artistic and non-artistic disciplines build indigenous capacity for leadership in disenfranchised communities through the application of the creative process. ...

Ramaccia, Elizabeth M. (Elizabeth Marie)

2011-01-01T23:59:59.000Z

336

Spare Capacity (2003) and Peak Production in World Oil  

Science Journals Connector (OSTI)

Reliable estimates of minimum spare capacity for world oil production can be obtained by comparing production ... before and following the collapse of the Iraqi oil industry in March 2003. Spare production was .....

Alfred J. Cavallo

2004-03-01T23:59:59.000Z

337

Design and Evaluation of Novel High Capacity Cathode Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

17johnson2011p.pdf More Documents & Publications Design and Evaluation of Novel High Capacity Cathode Materials Lithium Source For High Performance Li-ion Cells Lithium Source...

338

Solid-state hydrogen storage: Storage capacity, thermodynamics, and kinetics  

Science Journals Connector (OSTI)

Solid-state reversible hydrogen storage systems hold great promise for onboard applications. ... key criteria for a successful solid-state reversible storage material are high storage capacity, suitable thermodyn...

William Osborn; Tippawan Markmaitree; Leon L. Shaw; Ruiming Ren; Jianzhi Hu

2009-04-01T23:59:59.000Z

339

Capacity planning and admission control policies for intensive care units  

E-Print Network (OSTI)

Poor management of the patient flow in intensive care units (ICUs) causes service rejections and presents significant challenges from the standpoint of capacity planning and management in ICUs. This thesis reports on the ...

Chaiwanon, Wongsakorn

2010-01-01T23:59:59.000Z

340

Limits to the representation capacity of imaging in random media  

Science Journals Connector (OSTI)

The information capacity of an image in the atmosphere, ocean, or biological media does not grow indefinitely with increasing light power but has well defined limits. Here, the exact...

Belmonte, Aniceto

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

,"New York Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:07:28 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NY2"...

342

,"New York Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:07:27 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NY2"...

343

High capacity stabilized complex hydrides for hydrogen storage  

DOE Patents (OSTI)

Complex hydrides based on Al(BH.sub.4).sub.3 are stabilized by the presence of one or more additional metal elements or organic adducts to provide high capacity hydrogen storage material.

Zidan, Ragaiy; Mohtadi, Rana F; Fewox, Christopher; Sivasubramanian, Premkumar

2014-11-11T23:59:59.000Z

344

Kazakhstan-Enhancing Capacity for Low Emission Development Strategies  

Open Energy Info (EERE)

Kazakhstan-Enhancing Capacity for Low Emission Development Strategies Kazakhstan-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Kazakhstan-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Agency/Company /Organization United States Agency for International Development, United States Environmental Protection Agency, United States Department of Energy, United States Department of Agriculture, United States Department of State Sector Climate, Energy, Land Topics Low emission development planning, -LEDS Program Start 2010 Program End 2016 Country Kazakhstan Central Asia References EC-LEDS[1] Contents 1 Overview 2 Framework 3 Lessons Learned and Good Practices 4 Progress and Outcomes 5 Fact Sheet 6 References Overview "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a

345

Enhancing Capacity for Low Emission Development Strategies (EC-LEDS):  

Open Energy Info (EERE)

Enhancing Capacity for Low Emission Development Strategies (EC-LEDS): Enhancing Capacity for Low Emission Development Strategies (EC-LEDS): Distributed Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Enhancing Capacity for Low Emission Development Strategies (EC-LEDS): Distributed Generation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Topics: Low emission development planning, -LEDS Resource Type: Webinar Website: eeredev.nrel.gov/_proofs/video/2013_EC-LEDS/ Cost: Free References: Enhancing Capacity for Low Emission Development Strategies (EC-LEDS): Distributed Generation[1] Overview A webinar on distributed generation, presented by the National Renewable Energy Laboratory, with funding from the U.S. Agency for International Development. This webinar covers the basics of distributed generation, with an emphasis

346

Capacity of a Nonlinear Optical Channel With Finite Memory  

Science Journals Connector (OSTI)

The channel capacity of a nonlinear, dispersive fiber-optic link is revisited. To this end, the popular Gaussian noise (GN) model is extended with a parameter to account for the finite...

Agrell, Erik; Alvarado, Alex; Durisi, Giuseppe; Karlsson, Magnus

2014-01-01T23:59:59.000Z

347

Creative capacity building in post-conflict Uganda  

E-Print Network (OSTI)

Creative Capacity Building (CCB) is a methodology that emphasizes the ability of people living in poverty to create livelihood technologies, i.e., machines and tools that increase income, improve health and safety, decrease ...

Taha, Kofi A. (Kofi Abdul Malik)

2011-01-01T23:59:59.000Z

348

Study on capacity optimization of PEM fuel cell and hydrogen mixing gas-engine compound generator  

Science Journals Connector (OSTI)

Development of a small-scale power source not dependent on commercial power may result in various effects. For example, it may eliminate the need for long distance power-transmission lines, and mean that the amount of green energy development is not restricted to the dynamic characteristics of a commercial power grid. Moreover, the distribution of the independent energy source can be optimized with regionality in mind. This paper examines the independent power supply system relating to hydrogen energy. Generally speaking, the power demand of a house tends to fluctuate considerably over the course of a day. Therefore, when introducing fuel cell cogeneration into an apartment house, etc., low-efficiency operations in a low-load region occur frequently in accordance with load fluctuation. Consequently, the hybrid cogeneration system (HCGS) that uses a solid polymer membrane-type fuel cell (PEM-FC) and a hydrogen mixture gas engine (NEG) together to improve power generation efficiency during partial load of fuel cell cogeneration is proposed. However, since facility costs increase, if the HCGS energy cost is not low compared with the conventional method, it is disadvantageous. Therefore, in this paper, HCGS is introduced into 10 household apartments in Tokyo, and the power generation efficiency, carbon dioxide emissions and optimal capacity of a boiler and heat storage tank are investigated through analysis. Moreover, the system characteristics change significantly based on the capacity of PEM-FC and NEG that compose HCGS. Therefore, in this study, the capacity of PEM-FC and that of NEG are investigated, as well as the power generation efficiency, carbon dioxide emissions and the optimal capacity of a boiler and heat storage tank. Analysis revealed that the annual average power generation efficiency when the capacity of PEM-FC and NEG is 5kW was 27.3%. Meanwhile, the annual average power generation efficiency of HCGS is 1.37 times that of the PEM-FC independent system, and 1.28 times that of the NEG independent system, respectively.

Shinya Obara; Itaru Tanno

2007-01-01T23:59:59.000Z

349

Coping with rivals absorptive capacity in innovation activities  

Science Journals Connector (OSTI)

Abstract Two factors jointly determine the likelihood of a firm?s competitors obtaining information on its intangible assets and using it to damage the firm?s innovation performance. Those factors are the absorptive capacity of the rival firm and the appropriability regime of the innovating firm. However, the precise roles of the two factors in affecting performance outcomes are not well documented. Furthermore, we lack knowledge of the interplay between an appropriability regime and absorptive capacity, although they clearly have the capacity to exert positive and negative effects both on each other and on innovativeness. This study presents findings derived from theoretical discussion and an empirical examination of 155 firms that suggest that while competitors absorptive capacity does not play a direct negative or positive role on the innovation performance of a firm, an appropriability regime exerts a strong positive influence. Nevertheless, high rival absorptive capacity is not without importance, since the significant interaction effects suggest that a strong appropriability regime has positive effects on innovation performance especially in the context of a rival having high absorptive capacity.

Pia Hurmelinna-Laukkanen; Heidi Olander

2014-01-01T23:59:59.000Z

350

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Regional Analysis Regional Analysis Rocky Mountain States and California Rocky Mountain States and California The Rocky Mountain States, which include all of the States west of the Great Plains and Texas and those east of California, have seen significant natural gas production increases over the last decade. With the development of new production basins, including the San Juan Basin, Powder River Basin, and Green River Basin, natural gas processing capacity in this region has expanded significantly. In 2009, California and Rocky Mountain States accounted for a total of 16.9 Bcf per day or about 22 percent of total U.S. capacity. Since 2004, only California and New Mexico noted a decrease in overall processing capacity, falling by 17 and 12 percent, respectively. Processing capacity in all of the remaining States (Colorado, Montana, New

351

ENERGYWORKS KC BUILDS CAPACITY IN KANSAS CITY | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

within the EnergyWorks KC program. The Mid-America Regional Council (MARC), the local planning agency and regional council of governments, was brought on to pursue regional...

352

Heritability and localization of genes regulating individual variation of apoptosis capacity  

Science Journals Connector (OSTI)

...Heritability of apoptosis capacity and linkage to chromosomal...individual variation of apoptosis capacity were estimated using a variance...Linkage Analysis Routines (SOLAR). Two key findings emerged...proportion of variation in apoptosis capacity among individuals is due to...

Bao-Li Chang; Sarah D. Isaacs; Matthew J. Loza; Kathy E. Wiley; Amy Tolin; Elizabeth M. Gillanders; Wennuan Liu; Tao Li; Jishan Sun; Tamara Adams; Siqun L. Zheng; Patrick C. Walsh; Jeffrey M. Trent; William B. Isaacs; and Jianfeng Xu

2005-05-01T23:59:59.000Z

353

U.S. Geothermal Energy Capacity Grew 6% in 2009 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Capacity Grew 6% in 2009 U.S. Geothermal Energy Capacity Grew 6% in 2009 February 10, 2010 - 3:02pm Addthis Photo of a Geothermal photo plant. Geothermal energy capacity...

354

Regional variations of days of autonomy for solar energy applications  

SciTech Connect

A problem faced by designers of stand-alone solar installations is the sizing of the collector area and storage capacity. From a curve of the minimum possible insolation over any period of days for a given site, a functional relationship between the collector-area and storage-capacity that provides a 0% probability of not meeting load (PNML) can be derived. This permits evaluating the regional variations in days-of-autonomy required to provide 100% reliability. Such variations are shown for Texas based on recent insolation data.

Grindle, E. II; Vliet, G.C.

1999-07-01T23:59:59.000Z

355

Regional Energy Deployment System (ReEDS) | Open Energy Information  

Open Energy Info (EERE)

Regional Energy Deployment System (ReEDS) Regional Energy Deployment System (ReEDS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Regional Energy Deployment System Agency/Company /Organization: NREL Sector: Energy Topics: Pathways analysis, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.nrel.gov/analysis/reeds/ OpenEI Keyword(s): EERE tool, Regional Energy Deployment System, ReEDS References: Regional Energy Deployment System (ReEDS) Web site[1] Regional Energy Deployment System (ReEDS) is a multiregional, multitimeperiod, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. The model, developed by NREL's Strategic Energy Analysis Center (SEAC), is designed to conduct analysis of the critical energy

356

Valley Of Ten Thousand Smokes Region Geothermal Area | Open Energy  

Open Energy Info (EERE)

Valley Of Ten Thousand Smokes Region Geothermal Area Valley Of Ten Thousand Smokes Region Geothermal Area (Redirected from Valley Of Ten Thousand Smokes Region Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valley Of Ten Thousand Smokes Region Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

357

A regional energy paradoxthe case of Central Norway  

Science Journals Connector (OSTI)

Central Norway is expected to have a gap of 8TWh in 2010 because of heavy investments in energy-intensive industries. The region has two landing sites for natural gas and a considerable potential for wind power to cover the gap. Small-scale hydropower and upgrading of existing hydropower plants also constitute a regional energy potential. Paradoxically, the most realistic investment prospect seems to be extensive investments in new transmission lines to cover the supply deficit. The aim of this paper is to present a problem of regional supply security and public intervention to illustrate and discuss the challenges of arriving at long-term capacity adequacy in deregulated electricity markets.

Maria Sandsmark

2009-01-01T23:59:59.000Z

358

Year/PAD District Cokers Catalytic Crackers Hydrocrackers Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Cokers Catalytic Crackers Hydrocrackers Capacity Inputs Capacity Inputs Capacity Inputs Table 8. Capacity and Fresh Feed Input to Selected Downstream Units at U.S. Refineries, 2011 - 2013 (Barrels per Calendar Day) Reformers Capacity Inputs 2011 2,396,787 5,794,214 1,687,745 2,093,849 4,952,455 1,466,627 2,570,970 3,346,457 93,700 673,300 41,500 37,932 490,729 18,030 PADD I 188,389 266,950 373,897 1,176,972 254,000 350,063 1,017,616 223,751 PADD II 664,852 812,244 1,318,440 2,933,842 841,285 1,183,318 2,570,348 744,638 PADD III 1,243,427 1,629,967 80,350 185,800 28,200 63,362 158,192 18,214 PADD IV 96,649 120,190 530,400 824,300 522,760 459,175 715,570 461,995 PADD V 377,652 517,106 2012 2,499,293 5,611,191 1,706,540 2,173,336 4,901,284 1,528,708 2,614,571 3,246,874 74,900 489,300 20,000

359

Nano-scale Composite Hetero-structures: Novel High Capacity Reversible...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nano-scale Composite Hetero-structures: Novel High Capacity Reversible Anodes for Lithium-ion Batteries Nano-scale Composite Hetero-structures: Novel High Capacity Reversible...

360

Non-Economic Obstacles to Wind Deployment: Issues and Regional Differences (Presentation)  

SciTech Connect

This presentation provides an overview of national obstacles to wind deployment, with regional assessments. A special mention of offshore projects and distributed wind projects is provided. Detailed maps examine baseline capacity, military and flight radar, golden and bald eagle habitat, bat habitat, whooping crane habitat, and public lands. Regional deployment challenges are also discussed.

Baring-Gould, I.

2014-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Western Regional Partnership Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Partnership Overview Regional Partnership Overview June 2013 Briefing Overview  WRP Background  Importance of Region  WRP Tribal Relations Committee  WRP Energy Committee WRP Region's Uniqueness  5 states stretching from the Great Plains to the Pacific Ocean  Diverse terrain ranging from desert valleys to forested mountains  Significant State Trust Landholdings  Approximately 188 Federally recognized Tribes  Significant amounts of Federally managed land  According to GSA 2004 study, WRP states range from 41.8% - 84.5% of total state land WRP Region's Importance to DoD  Extensive Training Ranges  Interconnected ground/air ranges provide unmatched warfighter training opportunities

362

Los Alamos Neutron Science Center gets capacity boost  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Science Center capacity boost Neutron Science Center capacity boost Los Alamos Neutron Science Center gets capacity boost The facility can simulate the effects of hundreds or thousands of years of cosmic-ray-induced neutrons in a single hour. December 2, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

363

Property:Geothermal/CapacityMwt | Open Energy Information  

Open Energy Info (EERE)

CapacityMwt CapacityMwt Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/CapacityMwt" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 0.2 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 3 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 1.5 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 0.3 + Americulture Aquaculture Low Temperature Geothermal Facility + 0.7 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 0.88 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 0.09 +

364

Bangladesh-Enhancing Capacity for Low Emission Development Strategies  

Open Energy Info (EERE)

Bangladesh-Enhancing Capacity for Low Emission Development Strategies Bangladesh-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Bangladesh-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Agency/Company /Organization United States Agency for International Development, United States Environmental Protection Agency, United States Department of Energy, United States Department of Agriculture, United States Department of State Sector Climate, Energy Focus Area Renewable Energy, Wind Topics Low emission development planning, -LEDS, Resource assessment, Technology characterizations Country Bangladesh Southern Asia References EC-LEDS[1] Contents 1 Overview 2 Framework 3 Lessons Learned and Good Practices 4 Progress and Outcomes 5 Fact Sheet 6 References Overview

365

Indonesia-ECN Capacity building for energy policy formulation and  

Open Energy Info (EERE)

ECN Capacity building for energy policy formulation and ECN Capacity building for energy policy formulation and implementation of sustainable energy projects Jump to: navigation, search Name CASINDO: Capacity development and strengthening for energy policy formulation and implementation of Sustainable energy projects in Indonesia Agency/Company /Organization Energy Research Centre of the Netherlands Sector Energy Focus Area Energy Efficiency Topics Policies/deployment programs Resource Type Software/modeling tools, Workshop, Publications, Guide/manual, Training materials Website http://www.ecn.nl/en/ Program Start 2009 Program End 2011 Country Indonesia South-Eastern Asia References ECN Policy Studies[1] CASINDO website[2] A key component of the political and economic reforms that are currently being implemented in Indonesia is the devolution of responsibilities for

366

Capacity and Energy Payments to Small Power Producers and Cogenerators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capacity and Energy Payments to Small Power Producers and Capacity and Energy Payments to Small Power Producers and Cogenerators Under PURPA Docket (Georgia) Capacity and Energy Payments to Small Power Producers and Cogenerators Under PURPA Docket (Georgia) < Back Eligibility Commercial Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Green Power Purchasing Renewables Portfolio Standards and Goals Docket No. 4822 was enacted by the Georgia Public Service Commission in accordance with The Public Utility Regulatory Policies Act of 1978 (PURPA)

367

Polymers with Tailored Electronic Structure for High Capacity Lithium  

NLE Websites -- All DOE Office Websites (Extended Search)

Polymers with Tailored Electronic Structure for High Capacity Lithium Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes Title Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes Publication Type Journal Article Year of Publication 2011 Authors Liu, Gao, Shidi Xun, Nenad Vukmirovic, Xiangyun Song, Paul Olalde-Velasco, Honghe Zheng, Vince S. Battaglia, Linwang Wang, and Wanli Yang Journal Advanced Materials Volume 23 Start Page 4679 Issue 40 Pagination 4679 - 4683 Date Published 10/2011 Keywords binders, conducting polymers, density funcational theory, lithium batteries, X-ray spectroscopy Abstract A conductive polymer is developed for solving the long-standing volume change issue in lithium battery electrodes. A combination of synthesis, spectroscopy and simulation techniques tailors the electronic structure of the polymer to enable in situ lithium doping. Composite anodes based on this polymer and commercial Si particles exhibit 2100 mAh g-1 in Si after 650 cycles without any conductive additive.

368

Republic of Macedonia-Enhancing Capacity for Low Emission Development  

Open Energy Info (EERE)

Republic of Macedonia-Enhancing Capacity for Low Emission Development Republic of Macedonia-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Republic of Macedonia-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Agency/Company /Organization United States Agency for International Development, United States Environmental Protection Agency, United States Department of Energy, United States Department of Agriculture, United States Department of State Sector Climate, Energy, Land Topics Low emission development planning, -LEDS Program Start 2010 Program End 2016 Country Republic of Macedonia Southern Europe References EC-LEDS[1] Contents 1 Overview 2 Framework 3 Lessons Learned and Good Practices 4 Framework 5 Lessons Learned and Good Practices 6 Progress and Outcomes

369

Uniform Capacity Tax and Exemption for Solar (Vermont) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uniform Capacity Tax and Exemption for Solar (Vermont) Uniform Capacity Tax and Exemption for Solar (Vermont) Uniform Capacity Tax and Exemption for Solar (Vermont) < Back Eligibility Agricultural Commercial Industrial Low-Income Residential Residential Savings Category Solar Buying & Making Electricity Program Info State Vermont Program Type Property Tax Incentive Rebate Amount 100% property tax exemption for systems 10 kilowatts or less Uniform $4/kilowatt property tax payment Provider Vermont Department of Taxes During the 2012 legislative session, Vermont passed a 100% property tax exemption for solar photovoltaic (PV) systems up to and including 10 kilowatts (kW). For systems greater than 10 kW, the state assesses a uniform $4 per kilowatt (kW). This applies to the equipment, not to the land. The 100% exemption for small PV systems expires January 1, 2023, although a

370

Oil Production Capacity Expansion Costs for the Persian Gulf  

Gasoline and Diesel Fuel Update (EIA)

TR/0606 TR/0606 Distribution Category UC-950 Oil Production Capacity Expansion Costs For The Persian Gulf January 1996 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration Oil Production Capacity Expansion Costs for the Persian Gulf iii Preface Oil Production Capacity Expansion Costs for the Persian Gulf provides estimates of development and operating costs for various size fields in countries surrounding the Persian

371

Plug and Process Loads Capacity and Power Requirements Analysis  

SciTech Connect

This report addresses gaps in actionable knowledge that would help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. Limited initial data, however, suggest that actual PPL densities in leased buildings are substantially lower. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems. Better guidance will enable improved sizing and design of these systems, decrease upfront capital costs, and allow systems to operate more energy efficiently. The main focus of this report is to provide industry with reliable, objective third-party guidance to address the information gap in typical PPL densities for commercial building tenants. This could drive changes in negotiations about PPL energy demands.

Sheppy, M.; Gentile-Polese, L.

2014-09-01T23:59:59.000Z

372

Hydrogen storage capacity in single-walled carbon nanotubes  

Science Journals Connector (OSTI)

Molecular-dynamics simulations were used to investigate the storage capacity of hydrogen in single-walled carbon nanotubes (SWNTs) and the strain of nanotube under the interactions between the stored hydrogen molecules and the SWNT. The storage capacities inside SWNTs increase with the increase of tube diameters. For a SWNT with diameter less than 20 , the storage capacity depends strongly on the helicity of a the SWNT. The maximal radial strain of SWNT is in the range of 11%18%, and depends on the helicity of the SWNT. The maximal strain of armchair SWNTs is less than that of zigzag SWNTs. The tensile strengths of SWNTs decrease with increasing diameters, and approach that of graphite (20 GPa) for larger-diameter tubes.

Yuchen Ma; Yueyuan Xia; Mingwen Zhao; Minju Ying

2002-04-11T23:59:59.000Z

373

Property:Geothermal/CapacityBtuHr | Open Energy Information  

Open Energy Info (EERE)

CapacityBtuHr CapacityBtuHr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/CapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 0.8 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 10.3 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 2 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 1 + Americulture Aquaculture Low Temperature Geothermal Facility + 2.4 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 3 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 0.3 +

374

Kenya-Enhancing Capacity for Low Emission Development Strategies | Open  

Open Energy Info (EERE)

Kenya-Enhancing Capacity for Low Emission Development Strategies Kenya-Enhancing Capacity for Low Emission Development Strategies Jump to: navigation, search Name Kenya-Enhancing Capacity for Low Emission Development Strategies Agency/Company /Organization United States Agency for International Development, United States Environmental Protection Agency, United States Department of Energy, United States Department of Agriculture, United States Department of State Sector Climate, Energy, Land Focus Area Renewable Energy, Buildings, Energy Efficiency Topics Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, Resource assessment Program Start 2010 Program End 2016 Country Kenya Eastern Africa References EC-LEDS[1] Contents 1 Overview 2 Framework 3 Lessons Learned and Good Practices 4 Progress and Outcomes

375

Southern Rockies Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Southern Rockies Geothermal Region Southern Rockies Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Southern Rockies Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Assessment of Moderate- and High-Temperature Geothermal Resources of the United States[1] References ↑ "Assessment of Moderate- and High-Temperature Geothermal Resources of the United States" Geothermal Region Data State(s) Colorado, New Mexico Area 128,454 km²128,454,000,000 m² 49,583.244 mi² 1,382,666,010,600 ft² 153,630,984,000 yd² 31,741,625.67 acres USGS Resource Estimate for this Region Identified Mean Potential 0 MW0 kW 0 W 0 mW 0 GW 0 TW Undiscovered Mean Potential 1,010 MW1,010,000 kW 1,010,000,000 W 1,010,000,000,000 mW 1.01 GW 0.00101 TW Planned Capacity

376

Regional Comparisons, Spatial Aggregation,  

Gasoline and Diesel Fuel Update (EIA)

Regional Regional Comparisons, Spatial Aggregation, and Asymmetry of Price Pass-Through in U.S. Gasoline Markets MICHAEL YE*, JOHN ZYREN**, JOANNE SHORE**, AND MICHAEL BURDETTE** Abstract Spot to retail price pass-through behavior of the U.S. gasoline market was investigated at the national and regional levels, using weekly wholesale and retail motor gasoline prices from January 2000 to the present. Asymmetric pass-through was found across all regions, with faster pass-through when prices are rising. Pass-through patterns, in terms of speed and time for completion, were found to vary from region to region. Spatial aggregation was investigated at the national level and the East Coast with the aggregated cumulative pass-through being greater than the volume-weighted regional pass-through when spot prices increase. These results are useful to the petroleum industry, consumers,

377

Colombia-Enhancing Capacity for Low Emission Development Strategies  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Colombia-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Colombia-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Agency/Company /Organization United States Agency for International Development, United States Environmental Protection Agency, United States Department of Energy, United States Department of Agriculture, United States Department of State Sector Climate, Energy, Land Focus Area Renewable Energy, Agriculture, Buildings, Energy Efficiency, Forestry, Transportation Topics Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, Market analysis, Pathways analysis, Policies/deployment programs, Technology characterizations

378

On the isobaric specific heat capacity of natural gas  

Science Journals Connector (OSTI)

Abstract A colorimeter equipped with a gas booster in conjunction with a PVT cell was used to measure the heat capacity of natural gas with different amounts of impurities. Based on new experimental and literature data, a general investigation of the isobaric specific heat capacity was carried out using the JarrahianHeidaryan equation of state (JH-EOS). A model was obtained that is valid in wide ranges of pressures (0.140MPa) and temperatures (250414K). The arithmetic average of the models absolute error is acceptable in engineering calculations and has superiority over other methods in its class.

Azad Jarrahian; Hamid Reza Karami; Ehsan Heidaryan

2014-01-01T23:59:59.000Z

379

World nuclear capacity and fuel cycle requirements, November 1993  

SciTech Connect

This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy`s activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration`s annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment.

Not Available

1993-11-30T23:59:59.000Z

380

Optimal Residential Solar Photovoltaic Capacity in Grid Connected Applications  

Science Journals Connector (OSTI)

Abstract Microgeneration using solar photovoltaic systems is becoming increasingly popular in residential households as such systems allow households to use a renewable energy source, while also reducing their reliance on the electricity grid, to fulfill their electricity demand. In this study, we explore the attractiveness of PV microgeneration systems of different capacities in the absence of incentives and net metering options and under both flat and variable tariff scenarious. Smaller systems that are below 1 kW in capacity are more attractive under such conditions, however, at current cost levels, they still remain economically unattractive. The cost levels which allow for these PV systems to be economically viable are also determined.

Shisheng Huang; Jingjie Xiao; Joseph F. Pekny; Gintaras V. Reklaitis

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Midwestern and Eastern States Midwestern and Eastern States Midwestern and Eastern States Midwestern and Eastern States combined accounted for about 13 percent of total U.S. processing capacity in 2009, accounting for the smallest portion of any region in the lower 48 States. The combined processing capacity in these States more than doubled, although a few of the States saw decreased capacity compared with 2004. Processing capacity in Illinois, Kansas, North Dakota, and Pennsylvania fell since 2004, with the highest decrease occurring in Kansas, which saw a 65 percent drop in processing capacity. At the same time, the number of plants in Kansas decreased by four. The decrease was likely the result of falling natural gas proved reserves, which decreased in this State between 1995 and 2005. While the proved reserves have

382

Installed Geothermal Capacity/Data | Open Energy Information  

Open Energy Info (EERE)

Installed Geothermal Capacity/Data Installed Geothermal Capacity/Data < Installed Geothermal Capacity Jump to: navigation, search Download a CSV file of the table below: CSV FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate HeatRate WindTurbineManufacturer FacilityStatus Aidlin Geothermal Facility Geothermal Steam Power Plant Calpine Geysers Geothermal Area 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW 2 1989 Amedee Geothermal Facility Binary Cycle Power Plant Amedee Geothermal Venture Honey Lake, California 1.6 MW1,600 kW 1,600,000 W 1,600,000,000 mW 0.0016 GW 1.6e-6 TW 2 1988 BLM Geothermal Facility Double Flash Coso Operating Co. Coso Junction, California, 90 MW90,000 kW 90,000,000 W

383

Stakeholder Engagement and Outreach: U.S. Installed Wind Capacity  

Wind Powering America (EERE)

Education Education Printable Version Bookmark and Share Learn About Wind About Wind Power Locating Wind Power Getting Wind Power Installed Wind Capacity Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Installed Wind Capacity This page has maps of the United States that show installed wind capacity by state and its progression. This map shows the installed wind capacity in megawatts. As of September 30, 2012, 51,630 MW have been installed. Alaska, 16 MW; Hawaii, 112 MW; Washington, 2,699 MW; Oregon, 3,153 MW; California, 4,570 MW; Nevada, 152; Idaho, 675 MW; Utah, 325 MW; Arizona, 238 MW; Montana, 395 MW; Wyoming, 1,410 MW; Colorado, 1,805 MW; New Mexico, 778 MW; North Dakota, 1,469 MW; South Dakota, 784 MW; Nebraska, 337 MW; Kansas, 1,877 MW; Oklahoma, 2,400 MW; Texas, 10,929 MW; Minnesota, 2,717 MW; Iowa, 4,536 MW; Missouri, 459 MW; Wisconsin, 636 MW; Illinois, 3,055 MW; Tennessee, 29 MW; Michigan, 515 MW; Indiana, 1,343 MW; Ohio, 420 MW; West Virginia, 583 MW; Pennsylvania, 1,029 MW; Maryland, 120 MW; Delaware, 2 MW; New Jersey, 9 MW; New York, 1,418 MW; Vermont, 46 MW; New Hampshire, 125 MW; Massachusetts, 64 MW; Rhode Island, 3 MW; Maine, 397 MW.

384

Cost Estimating and Cost Management Capacity Building Workshop  

E-Print Network (OSTI)

Cost Estimating and Cost Management Capacity Building Workshop August 11-13, 2010 Coffman Memorial 574 guidebook on cost estimating and cost management · To learn how states are moving forward with the implementation of the guidebook or other initiatives related to cost estimating and cost management · To share

Minnesota, University of

385

Service Capacity Design Problems for Mobility Allowance Shuttle Transit Systems  

E-Print Network (OSTI)

and utilizes a non-backtracking nearest-insertion algorithm, we derive closed-form approximate solutions for the service capacity design problem. We show that setting the length of the service area to half the travel service has a fixed base route that covers a specific geographic zone. Shuttles are allowed to deviate

Dessouky, Maged

386

An Improved Approximation Algorithm For Vertex Cover with Hard Capacities  

E-Print Network (OSTI)

of this problem is at least as hard as set cover; they have also developed a 3-approximation algorithm cover problem. Key Words and Phrases: Approximation algorithms, capacitated covering, set cover, vertexAn Improved Approximation Algorithm For Vertex Cover with Hard Capacities (Extended Abstract) Rajiv

Khuller, Samir

387

An Improved Approximation Algorithm For Vertex Cover with Hard Capacities  

E-Print Network (OSTI)

An Improved Approximation Algorithm For Vertex Cover with Hard Capacities #3; Rajiv Gandhi y Eran-hard as it generalizes the well-known vertex cover problem. Previously, approximation algorithms with an approximation version of this problem is at least as hard as set cover; in addition, they developed a 3-approximation

Srinivasan, Aravind

388

An Improved Approximation Algorithm For Vertex Cover with Hard Capacities  

E-Print Network (OSTI)

as hard as set cover; they have also developed a 3-approximation algorithm for the unweighted version. We Words and Phrases: Approximation algorithms, capacitated covering, set cover, vertex cover, linearAn Improved Approximation Algorithm For Vertex Cover with Hard Capacities (Extended Abstract) Rajiv

Srinivasan, Aravind

389

Efficiency enhancements for evolutionary capacity planning in distribution grids  

Science Journals Connector (OSTI)

In this paper, we tackle the distribution network expansion planning (DNEP) problem by employing two evolutionary algorithms (EAs): the classical Genetic Algorithm (GA) and a linkage-learning EA, specifically a Gene-pool Optimal Mixing Evolutionary Algorithm ... Keywords: capacity planning, distribution networks, electricity, linkage learning, optimal mixing

Ngoc Hoang Luong; Marinus O.W. Grond; Han La Poutr; Peter A.N. Bosman

2014-07-01T23:59:59.000Z

390

Assessing the Control Systems Capacity for Demand Response in  

E-Print Network (OSTI)

LBNL-5319E Assessing the Control Systems Capacity for Demand Response in California Industries in this report was coordinated by the Demand Response Research Center and funded by the California Energy of the Demand Response Research Center Industrial Controls Experts Working Group: · Jim Filanc, Southern

391

Abrasive capacity of ߒ-sialons synthesized by hot pressing  

Science Journals Connector (OSTI)

The abrasive capacity of ߒ-sialons synthesized by hot pressing of a mixture of powder Si3N4 AI2O3, and A1N is studied as a function of the microstructure and the chemical and phase compositions.

G. P. Shveikin; 1 Yu. A. Smolnikov

392

Predicting Operator Capacity for Supervisory Control of Multiple UAVs  

E-Print Network (OSTI)

Predicting Operator Capacity for Supervisory Control of Multiple UAVs M.L. Cummings, C. E. Nehme, J, uninhabited (also known as unmanned) ae- rial vehicles (UAVs) have become indispensable assets to militarized forces. UAVs require human guidance to varying degrees and often through several operators. However

Cummings, Mary "Missy"

393

Solar Photovoltaic Capacity F t P f d P li  

E-Print Network (OSTI)

6/19/2013 1 Solar Photovoltaic ­ Capacity F t P f d P li Generating Resources Advisory Committee Advisor Model (SAM), version 2013.1.15 Technology: Solar PV (PVWatts system model)Technology: Solar PV (MWh) (First year output, each year thereafter degrades 0.5%) 6 #12;6/19/2013 4 Shape of PNW Solar PV

394

CAPACITY DECISIONS WITH DEMAND FLUCTUATIONS AND CARBON LEAKAGE  

E-Print Network (OSTI)

Palaiseau, France April 2013 Abstract For carbon-intensive, internationally-traded industrial goods, a uni be partly oset by the increase of emissions in the rest of the world. The literature on carbon leakage hasCAPACITY DECISIONS WITH DEMAND FLUCTUATIONS AND CARBON LEAKAGE Guy MEUNIER Jean-Pierre PONSSARD

Paris-Sud XI, Université de

395

CAPACITY DECISIONS WITH DEMAND FLUCTUATIONS AND CARBON LEAKAGE  

E-Print Network (OSTI)

For carbon-intensive, internationally-traded industrial goods, a unilat- eral increase in the domestic CO2 be partly oset by the increase of emissions in the rest of the world. The literature on carbon leakage hasCAPACITY DECISIONS WITH DEMAND FLUCTUATIONS AND CARBON LEAKAGE Guy MEUNIER Jean-Pierre PONSSARD

Paris-Sud XI, Université de

396

COMMUNITY CAPACITY BUILDING FOR REVITALIZATION AND SUSTAINABLE REDEVELOPMENT  

SciTech Connect

Capacity building programs help poor and disadvantaged communities to improve their ability to participate in the environmental decision-making processes. They encourage citizen involvement, and provide the tools that enable them to do so. Capacity building enables communities that would otherwise be excluded to participate in the process, leading to better, and more just decisions. The Department of Energy (DOE) continues to be committed to promoting environmental justice and involving its stakeholders more directly in the planning and decision-making process for environmental cleanup. DOE's Environmental Management Program (EM) is in full support of this commitment. Through its environmental justice project, EM provides communities with the capacity to effectively contribute to a complex technical decision-making process by furnishing access to computers, the Internet, training and technical assistance. DOE's Dr. Samuel P. Massie Chairs of Excellence Program (Massie Chairs) function as technical advisors to many of these community projects. The Massie Chairs consist of nationally and internationally recognized engineers and scientists from nine Historically Black Colleges and Universities (HBCUs) and one Hispanic Serving Institution (HIS). This paper will discuss capacity building initiatives in various jurisdictions.

Downing, Melinda; Rosenthall, John; Hudson, Michelle

2003-02-27T23:59:59.000Z

397

Dynamic Energy-Aware Capacity Provisioning for Cloud Computing Environments  

E-Print Network (OSTI)

reduction in energy cost, while maintaining an acceptable average scheduling delay for individual tasks data center. It has been reported that energy consumption accounts for more than 12% of monthlyDynamic Energy-Aware Capacity Provisioning for Cloud Computing Environments Qi Zhang University

Boutaba, Raouf

398

POSITIVITY CASES, ESTIMATES AND ASYMPTOTIC EXPANSIONS FOR CONDENSER CAPACITIES.  

E-Print Network (OSTI)

POSITIVITY CASES, ESTIMATES AND ASYMPTOTIC EXPANSIONS FOR CONDENSER CAPACITIES. ALAIN BONNAF´E Abstract. We study positivity cases, estimates and asymptotic expansions of condenser p the internal part of the condenser has a non-empty interior. The study of the point and its approximation

Boyer, Edmond

399

RESEARCH ARTICLE Multi-cost routing for energy and capacity  

E-Print Network (OSTI)

RESEARCH ARTICLE Multi-cost routing for energy and capacity constrained wireless mesh networks, Patras, Greece ABSTRACT We propose a class of novel energy-efficient multi-cost routing algorithms path. We evaluate the performance of the proposed energy-aware multi-cost routing algorithms under two

Varvarigo, Emmanouel "Manos"

400

Lecture Ch. 2a Energy and heat capacity  

E-Print Network (OSTI)

1 Lecture Ch. 2a · Energy and heat capacity ­ State functions or exact differentials ­ Internal energy vs. enthalpy · 1st Law of thermodynamics ­ Relate heat, work, energy · Heat/work cycles (and path integrals) ­ Energy vs. heat/work? ­ Adiabatic processes ­ Reversible P-V work ! define entropy Curry

Russell, Lynn

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Lecture Ch. 2a Energy and heat capacity  

E-Print Network (OSTI)

1 Lecture Ch. 2a · Energy and heat capacity ­ State functions or exact differentials ­ Internal energy vs. enthalpy · 1st Law of thermodynamics ­ Relate heat, work, energy · Heat/work cycles (and path integrals) ­ Energy vs. heat/work? ­ Adiabatic processes ­ Reversible "P-V" work define entropy Curry

Russell, Lynn

402

About Rocky Mountain Region  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates About the Rocky Mountain Region RM Office The Platte River Power Authority in Colorado, Nebraska Public Power District, Kansas Electric Power Cooperative and Wyoming...

403

Examining Repository Loading Options to Expand Yucca Mountain Repository Capacity  

SciTech Connect

Siting a high level nuclear waste repository entails high economic, social, and political costs. Given the difficulty in siting the Yucca Mountain repository and the already identified need for additional capacity, the concept of expanding the capacity of the Yucca Mountain repository is of significant interest to the nuclear industry and the Department of Energy (DOE). As the capacity of the repository is limited by the decay heat inventory of the spent nuclear fuel in relation to the thermal design limits, expanding the capacity requires appropriate schemes for decay heat and spent fuel loading management. The current Yucca Mountain repository is based on a single level, fixed drift spacing design for a fixed area or footprint. Studies performed to date investigating the capacity of Yucca Mountain often assume that the loading of spent fuel is uniform throughout the repository and use the concept of a linear loading or areal power density (APD). However, use of linear loading or APD can be problematic with the various cooling times involved. The temperature within the repository at any point in time is controlled by the integral of the heat deposited in the repository. The integral of the decay heat varies as a function of pre-loading cooling periods even for a fixed linear loading. A meaningful repository capacity analysis requires the use of a computer model that describes the time-dependent temperature distributions of the rock from the dissipation of the heat through the repository system. If variations from the current Yucca Mountain repository design were to be considered, expanding the capacity of the repository would be pursued in several ways including: (1) increase the footprint size; (2) implement multiple-levels in the repository for the given footprint; (3) allow the drift distance to vary within thermal limits; and, (4) allow non-uniform loading of wastes into the drifts within thermal limits. Options (1) and (2) have been investigated by other researchers. This paper investigates options (3) and (4) for possible expansion of the Yucca Mountain repository capacity. To support the work, a thermal analysis model was needed to describe the temperature changes in the rock around the waste packages against the thermal design limits as a function of spent fuel characteristics and composition. Under the high temperature operating mode (HTOM), the relevant thermal design limits are: (1) the rock temperature midway between adjacent drifts must remain below the local boiling point (96 deg. C); and (2) the rock temperature at drift walls must remain below 200 deg. C. As the work involves a large number of calculations, examining the compliance within thermal design limits, the capability to perform efficient mountain-scale heat-transfer analyses was necessary. A related topic of importance in this investigation was also the effect of uncertainty. As the modeling exercise relies on the use of computational models, uncertainties are unavoidable and understanding the uncertainty in the interpretation of the results is important. The concept of variable drift spacing and variable drift thermal loading was investigated with respect to possible capacity expansion of the Yucca Mountain repository. Also, a computer model was developed for efficient repository heat transfer calculations and sensitivity and uncertainty analyses were performed to identify key parameters and to estimate the uncertainty in the results and understand how the repository capacity estimation would be affected by the uncertainty. (authors)

Li, Jun; Nicholson, Mark; Proctor, W. Cyrus; Yim, Man-Sung; McNelis, David [Department of Nuclear Engineering, North Carolina State University (United States)

2007-07-01T23:59:59.000Z

404

Sixth Northwest Conservation and Electric Power Plan Appendix J: The Regional Portfolio Model  

E-Print Network (OSTI)

............................................................................................................ 10 Capacity and Costs Related to Capacity ............................................................................................... 15 Variable Capacity ............................................................................................... 38 Exposure to Wholesale Power Markets

405

Valley Of Ten Thousand Smokes Region Geothermal Area | Open Energy  

Open Energy Info (EERE)

Valley Of Ten Thousand Smokes Region Geothermal Area Valley Of Ten Thousand Smokes Region Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valley Of Ten Thousand Smokes Region Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

406

Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades  

Energy.gov (U.S. Department of Energy (DOE))

Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades

407

HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage  

Energy.gov (U.S. Department of Energy (DOE))

Presentation for the high temperature combinatorial screening for high capacity hydrogen storage meeting

408

Heat Capacity and Latent Heat The objective of this laboratory is for you to explore the heat capacity of materials due to atomic  

E-Print Network (OSTI)

Heat Capacity and Latent Heat Objective The objective of this laboratory is for you to explore the heat capacity of materials due to atomic vibrations and the latent heat of phase, dataacquisition software, plotting and analysis software Introduction Knowledge of the heat capacity

Braun, Paul

409

Southeast Regional Clean Energy Policy Analysis (Revised)  

SciTech Connect

More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

McLaren, J.

2011-04-01T23:59:59.000Z

410

HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM  

E-Print Network (OSTI)

to serve as "go-to" organization to catalyze PA Hydrogen and Fuel Cell Economy development #12;FundingHYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA Melissa Klingenberg, PhDMelissa Klingenberg, PhD #12;Hydrogen ProgramHydrogen Program Air Products

411

Regional Analysis Briefs  

Reports and Publications (EIA)

Regional Analysis Briefs (RABs) provide an overview of specific regions that play an important role in world energy markets, either directly or indirectly. These briefs cover areas that are currently major producers (Caspian Sea), have geopolitical importance (South China Sea), or may have future potential as producers or transit areas (East Africa, Eastern Mediterranean).

2028-01-01T23:59:59.000Z

412

Regional Competitions - EERE Commercialization Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Competitions Six Regional Clean Energy Business Plan Competitions are taking place across the country- representing all of the United States' distinct regions. The...

413

UNDP-Capacity Building for Low Carbon Growth in Ukraine | Open Energy  

Open Energy Info (EERE)

Low Carbon Growth in Ukraine Low Carbon Growth in Ukraine Jump to: navigation, search Name UNDP-Capacity Building for Low Carbon Growth in Ukraine Agency/Company /Organization United Nations Development Programme Sector Energy, Land, Climate Focus Area Economic Development Topics Low emission development planning, Pathways analysis, Background analysis Website http://www.undp.org Country Ukraine UN Region Eastern Europe References UNDP[1] "Due to economic decline following the break-up of the Soviet Union, Ukraine's greenhouse gas emissions are currently 54% lower than in 1990. At the same time, the Ukrainian economy remains among the most carbon intensive globally. Therefore the project aims to assist Ukraine in developing a long-term low carbon development strategy, focusing on

414

Georgia-Enhancing Capacity for Low Emission Development Strategies  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Georgia-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Georgia-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Agency/Company /Organization United States Agency for International Development, United States Environmental Protection Agency, United States Department of Energy, United States Department of Agriculture, United States Department of State Sector Climate, Energy, Land Topics Low emission development planning, -LEDS Program Start 2010 Program End 2016 Country Georgia References EC-LEDS[1] Contents 1 Overview 2 Framework 3 Lessons Learned and Good Practices 4 Progress and Outcomes 5 Fact Sheet 6 References Overview

415

Event:Low Emission Capacity Building Workshop | Open Energy Information  

Open Energy Info (EERE)

Event Event Edit with form History Facebook icon Twitter icon » Event:Low Emission Capacity Building Workshop Jump to: navigation, search Calendar.png Low Emission Capacity Building Workshop: on 2012/10/01 The workshop sets out to discuss technical and policy relevant issues related to GHG inventory systems, NAMAs, LEDS, MRV, and industrial mitigation actions. It will take place in Marrakech, Morocco from October, 1-4, 2012. The main objectives of the workshop are: Facilitate an exchange among participating Phase 2 countries on the context assessments and the ultimate scope-of-work of Programme projects Identify follow-up actions to assist countries with the implementation of their projects Identify technical assistance needs and training priorities. Event Details

416

Seismic Capacity of Threaded, Brazed, and Grooved Pipe Joints  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SEISMIC CAPACITY OF THREADED, SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS Brent Gutierrez, PhD, PE George Antaki, PE, F.ASME DOE NPH Conference October 25-26, 2011 Motivation * Understand the behavior and failure mode of common joints under extreme lateral loads * Static and shake table tests conducted of pressurized - Threaded, - Brazed, - Mechanical joints Static Testing o Pressurized spool to 150 psi o Steady downward force applied while recording deflections o Grooved clamped mech. joints * 16 tests performed o Threaded joints * 4 tests o Brazed (copper) * 4 tests Grooved Couplings o Catalog items o ASTM A106 Grade B piping o ASTM A 536 couplings o Lateral deflections imposed well above manufacturer's angular installation tolerance

417

Thailand-Enhancing Capacity for Low Emission Development Strategies  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Thailand-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Thailand-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Agency/Company /Organization United States Agency for International Development, United States Environmental Protection Agency, United States Department of Energy, United States Department of Agriculture, United States Department of State Sector Climate, Energy, Land Topics Low emission development planning, -LEDS Program Start 2010 Program End 2016 Country Thailand

418

Betting on Chinese electric cars? analysing BYD's capacity for innovation  

Science Journals Connector (OSTI)

This article will examine some of the reasons why the automobile industry in China has become the subject of so much interest in recent years. In particular, it will focus on its capacity for innovation through an in-depth study of one company: the BYD group. The article will examine the growth of the group and trace the development of the innovative strategies that have helped it to become a significant player in the electric car market. It will highlight three particular levels at which innovation has taken place, the organisational, human resource management and technological levels, and will analyse how these innovations interrelate to the overall breakthrough strategy of BYD. The article concludes with some observations about the capacity of BYD to continue to innovate, prosper and grow using its existing strategy.

Hua Wang; Chris Kimble

2010-01-01T23:59:59.000Z

419

Planning substation capacity under the single-contingency scenario  

SciTech Connect

Florida Power and Light (FPL) adopts the single contingency emergency policy for its planning of substation capacity. This paper provides an approach to determine the maximum load which a substation can take on under such a policy. The approach consists of two LP models which determine: (1) the maximum substation load capacity, and (2) the reallocation of load when a substation`s demand cannot be met. Both models are formulated under the single-contingency scenario, an issue which had received little attention in the literature. Not only does the explicit treatment of the scenario provide an exact measure of a substation`s load limit, it also raises several important issues which previous works omit. These two models have been applied to the substation network of the Fort Myers District of the State of Florida.

Leung, L.C. [Chinese Univ. of Hong Kong, Shatin (Hong Kong). Decision Sciences and Managerial Economics] [Chinese Univ. of Hong Kong, Shatin (Hong Kong). Decision Sciences and Managerial Economics; Khator, S.K. [Univ. of South Florida, Tampa, FL (United States). Industrial and Management Systems Engineering] [Univ. of South Florida, Tampa, FL (United States). Industrial and Management Systems Engineering; Schnepp, J.C. [Crest Ultrasonics, Trenton, NJ (United States)] [Crest Ultrasonics, Trenton, NJ (United States)

1995-08-01T23:59:59.000Z

420

Low-temperature heat capacity of solid HD  

Science Journals Connector (OSTI)

The heat capacity at the saturated vapor pressure Cs has been measured for a single sample of solid HD over the temperature range 0.4 to 8 K for various concentrations of J=1 impurities of H2 and D2. The variation in J=1 concentration in the sample was due to conversion to the J=0 rotational ground state over a period of time of approximately one month. In the limit of zero J=1 concentration, Cs fitted a T3 dependence characterized by a Debye temperature of 101 K. An analysis is given of the contribution to the heat capacity from electric quadrupole-quadrupole pair interactions of the J=1 impurities in the solid.

J. H. Constable; A. Q. McGee; J. R. Gaines

1975-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Endogenous production capacity investment in natural gas market equilibrium models  

Science Journals Connector (OSTI)

Abstract The large-scale natural gas equilibrium model applied in Egging, 2013 combines long-term market equilibria and investments in infrastructure while accounting for market power by certain suppliers. Such models are widely used to simulate market outcomes given different scenarios of demand and supply development, environmental regulations and investment options in natural gas and other resource markets. However, no model has so far combined the logarithmic production cost function commonly used in natural gas models with endogenous investment decisions in production capacity. Given the importance of capacity constraints in the determination of the natural gas supply, this is a serious shortcoming of the current literature. This short note provides a proof that combining endogenous investment decisions and a logarithmic cost function yields a convex minimization problem, paving the way for an important extension of current state-of-the-art equilibrium models.

Daniel Huppmann

2013-01-01T23:59:59.000Z

422

Regional Planning | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Planning Regional Planning Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov » Communities » Ocean Regional Planning Efforts Alias (field_alias) Apply California, Oregon, Washington Regional Ocean Partnership West Coast Governors' Alliance Regional Data Portal In Development U.S. Virgin Islands, Puerto Rico Regional Ocean Partnership U.S. Caribbean Regional Ocean Partnership-currently being formally established Regional Data Portal To be developed Georgia, Florida, North Carolina, South Carolina Regional Ocean Partnership Governors' South Atlantic Alliance Regional Data Portal Currently in development American Samoa, Commonwealth of the Northern Mariana Islands (CNMI), Federated States of Micronesia, Guam, Hawaii, Marshall Islands, Palau

423

the Regional Development Corporation  

NLE Websites -- All DOE Office Websites (Extended Search)

carry out this work, CPO partners carry out this work, CPO partners with the Los Alamos National Laboratory Foundation for education, the Regional Development Corporation for economic development, and the regional United Way organizations for community giving. Education Los Alamos National Security (LANS) invests more than $1 million each year to enhance regional educational opportunities in science, technology, engineering, and math (STEM) education. Education Focus Areas Our education commitments address four focus areas: * Workforce Development * Student Internships * Teacher and Faculty Professional Development * Public Understanding of Science In 2011, more than 1,100 students

424

Rational Capacities and the Practice of Blame: A Skeptical Argument  

E-Print Network (OSTI)

of Committee, Hugh McCann Committee Members, Linda Radzik Brandon Schmeichel Head of Department, Daniel Conway May 2011 Major Subject: Philosophy iii ABSTRACT Rational Capacities and the Practice of Blame: A Skeptical Argument. (May 2011... have they ever tried to discourage me from pursing my desire to be an academic philosopher. This is hardly the norm, and I thank them for that. Thanks are also due to my committee members: Dr. Hugh McCann, Dr. Linda Radzik, and Dr. Brandon...

Bachman, Zachary

2011-08-08T23:59:59.000Z

425

Honeywell triples capacity for low GWP blowing agent  

Science Journals Connector (OSTI)

Honeywell reports that it has tripled production capacity for its low global-warming-potential (GWP) product HFO-1234ze to meet the growing need for the material, which is used in multiple foam and aerosol applications. The production expansion was made at Honeywell's small-scale HFO-1234ze manufacturing facility at its Buffalo Research Lab in Buffalo, NY, USA, and was achieved through equipment upgrades and overall productivity improvements during the past 18 months.

2011-01-01T23:59:59.000Z

426

Psychrometric Testing Facility Restoration and Cooling Capacity Testing  

E-Print Network (OSTI)

of MASTER OF SCIENCE Approved by: Chair of Committee, Michael B. Pate Committee Members, Angie Hill Price Terry S. Creasy Head of Department, Dennis O?Neal August 2010 Major Subject: Mechanical Engineering iii iii ABSTRACT... Psychrometric Testing Facility Restoration and Cooling Capacity Testing. (August 2010) Vincent Edward Cline, B.S., Texas A&M University Chair of Advisory Committee: Dr. Michael B. Pate The Psychrometric Testing Facility at the Riverside Energy Efficiency...

Cline, Vincent E.

2010-10-12T23:59:59.000Z

427

The capacity of transmitting atomic qubit with light  

E-Print Network (OSTI)

The quantum information transfer between a single photon and a two-level atom is considered as a part of a quantum channel. The channel is a degradable channel even when there are decays of the atomic excited state and the single photon state, as far as the total excitation of the combined initial state does not exceed 1. The single letter formula for quantum capacity is obtained.

Xiao-yu Chen

2008-02-16T23:59:59.000Z

428

High Capacity Pouch-Type Li-air Batteries  

SciTech Connect

The pouch-type Li-air batteries operated in ambient condition are reported in this work. The battery used a heat sealable plastic membrane as package material, O2 diffusion membrane and moisture barrier. The large variation in internal resistance of the batteries is minimized by a modified separator which can bind the cell stack together. The cells using the modified separators show improved and repeatable discharge performances. It is also found that addition of about 20% of 1,2-dimethoxyethane (DME) in PC:EC (1:1) based electrolyte solvent improves can improve the wetability of carbon electrode and the discharge capacities of Li-air batteries, but further increase in DME amount lead to a decreased capacity due to increase electrolyte loss during discharge process. The pouch-type Li-air batteries with the modified separator and optimized electrolyte has demonstrated a specific capacity of 2711 mAh g-1 based on carbon and a specific energy of 344 Wh kg-1 based on the complete batteries including package.

Wang, Deyu; Xiao, Jie; Xu, Wu; Zhang, Jiguang

2010-05-05T23:59:59.000Z

429

Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications  

SciTech Connect

Industrial-scale injection of CO{sub 2} into saline sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration reservoirs. In this paper, we discuss how such basin-scale hydrologic impacts can (1) affect regulation of CO{sub 2} storage projects and (2) may reduce current storage capacity estimates. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO{sub 2} storage projects in a core injection area suitable for long-term storage. Each project is assumed to inject five million tonnes of CO{sub 2} per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO{sub 2}-brine flow processes and the large-scale groundwater flow patterns in response to CO{sub 2} storage. The far-field pressure buildup predicted for this selected sequestration scenario suggests that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrologic response may be affected by interference between individual sites. Our results also support recent studies in that environmental concerns related to near-field and far-field pressure buildup may be a limiting factor on CO{sub 2} storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO{sub 2}, may have to be revised based on assessments of pressure perturbations and their potential impact on caprock integrity and groundwater resources, respectively. We finally discuss some of the challenges in making reliable predictions of large-scale hydrologic impacts related to CO{sub 2} sequestration projects.

Birkholzer, J.T.; Zhou, Q.

2009-04-02T23:59:59.000Z

430

U.S. Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View

431

Regional and Global Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Products > Regional/Global Products > Regional/Global Regional and Global Data Biogeochemical Dynamics Data Regional and global biogeochemical dynamics data can be used to improve our understanding of the structure and function of various ecosystems; to enable prediction across spatial and temporal scales; and to parameterize and validate terrestrial ecosystem models. The ORNL DAAC compiles, archives, and distributes more than 150 products from the following projects: Climate Collections Hydroclimatology Collections ISLSCP II Project Net Primary Productivity (NPP) River Discharge (RIVDIS) Russian Land Cover (RLC) Soil Collections Vegetation Collections Vegetation-Ecosystem Modeling (VEMAP) Climate Collections Climate collections include measured and modeled values for variables such as temperature, precipitation, humidity, radiation, wind velocity, and

432

Regional Districts (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

Adjacent Water Control and Improvement Districts and Municipal Utility Districts can opt to form a Regional District to oversee water issues. Such districts may be created:(1) to purchase, own,...

433

Data Acquisition-Manipulation At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Data Acquisition-Manipulation At Central Nevada Seismic Zone Region Data Acquisition-Manipulation At Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown Notes Determining heat loss is one more tool to use in geothermal exploration. It is relatively easy to calculate if the thermal aureole has been mapped with thermal gradient well measurements. With the heat loss information, predicted production capacity can be used to help review the system being explored.

434

Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ELECTRICITY ADVISORY COMMITTEE MISSION The mission of the Electricity Advisory Committee is to provide advice to the U.S. Department of Energy in implementing the Energy Policy Act of 2005, executing the Energy Independence and Security Act of 2007, and modernizing the nation's electricity delivery infrastructure. ELECTRICITY ADVISORY COMMITTEE GOALS The goals of the Electricity Advisory Committee are to provide advice on: * Electricity policy issues pertaining to the U.S. Department of Energy * Recommendations concerning U.S. Department of Energy electricity programs and initiatives * Issues related to current and future capacity of the electricity delivery system (generation, transmission, and distribution, regionally and nationally)

435

Southwest Regional Partnership on Carbon Sequestration  

SciTech Connect

The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, five major electric utility companies, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs, and the Western Governors Association. This group is continuing its work in the Phase II Validation Program, slated to conclude in 2009.

Brian McPherson

2006-03-31T23:59:59.000Z

436

California Power Markets Implications for Regional Trading & Planningp cat o s o eg o a ad g & a g  

E-Print Network (OSTI)

California Power Markets Implications for Regional Trading & Planningp cat o s o eg o a ad g & a g Wind generation is highly variable 25% of Load Supplied from Renewables 3 Solar follows a more of ancillary services 4 #12;Trading and Resource Planning Implications ·Regional Excess Energy and Capacity

437

Regional Retail Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Retail gasoline prices, like those for distillate fuels, have hit record prices nationally and in several regions this year. The national average regular gasoline price peaked at $1.68 per gallon in mid-June, but quickly declined, and now stands at $1.45, 17 cents higher than a year ago. Two regions, in particular, experienced sharp gasoline price runups this year. California, which often has some of the highest prices in the nation, saw prices peak near $1.85 in mid-September, while the Midwest had average prices over $1.87 in mid-June. Local prices at some stations in both areas hit levels well over $2.00 per gallon. The reasons for the regional price runups differed significantly. In the Midwest, the introduction of Phase 2 RFG was hampered by low stocks,

438

regional | OpenEI  

Open Energy Info (EERE)

regional regional Dataset Summary Description The UK Department of Energy and Climate Change (DECC) releases annual statistics on domestic and industrial/commercial electricity and gas consumption (and number of meters) at the Middle Layer Super Output Authority (MLSOA) and Intermediate Geography Zone (IGZ) level (there are over 950 of these subregions throughout England, Scotland and Wales). Both MLSOAs (England and Wales) and IGZs (Scotland) include a minimum of approximately 2,000 households. Source UK Department of Energy and Climate Change (DECC) Date Released March 01st, 2008 (6 years ago) Date Updated Unknown Keywords Electricity Consumption gas regional UK Data application/zip icon Guidance document for interpreting data (zip, 1.2 MiB) application/vnd.ms-excel icon Excel file: 2005 MLSOA and IGZ gas and electricity (xls, 10 MiB)

439

Establishing Regional Resource Centers  

Wind Powering America (EERE)

Establishing Regional Resource Centers Establishing Regional Resource Centers July 25, 2013 Coordinator: Welcome and thank you for standing by. At this time all participants are in a listen only mode. To ask a question later during the question and answer session please press star then 1 on your touchtone phone. Today's conference is being recorded. If you have any objections you may disconnect. And I would like to turn it over to Mr. Jonathan Bartlett. Sir, you may begin. Jonathan Bartlett: Thank you very much. This is Jonathan Bartlett from the Department of Energy's Wind and Water Power Technologies Office. Today's WPA Webinar will be on the subject of establishing regional resource centers. I will be joined by Ian Baring-Gould at the National Renewable Energy Laboratory and the

440

Strengthening Planning Capacity for Low Carbon Growth in Developing Asia |  

Open Energy Info (EERE)

for Low Carbon Growth in Developing Asia for Low Carbon Growth in Developing Asia Jump to: navigation, search Name Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Agency/Company /Organization Asian Development Bank Partner Japan, United Kingdom Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, People and Policy, Transportation Topics Baseline projection, GHG inventory, Low emission development planning, Market analysis, Pathways analysis, Policies/deployment programs Program Start 2011 Program End 2013 Country Indonesia, Malaysia, Philippines, Thailand, Vietnam South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Assessing the Control Systems Capacity for Demand Response in California  

NLE Websites -- All DOE Office Websites (Extended Search)

the Control Systems Capacity for Demand Response in California the Control Systems Capacity for Demand Response in California Industries Title Assessing the Control Systems Capacity for Demand Response in California Industries Publication Type Report LBNL Report Number LBNL-5319E Year of Publication 2012 Authors Ghatikar, Girish, Aimee T. McKane, Sasank Goli, Peter L. Therkelsen, and Daniel Olsen Date Published 01/2012 Publisher CEC/LBNL Keywords automated dr, controls and automation, demand response, dynamic pricing, industrial controls, market sectors, openadr Abstract California's electricity markets are moving toward dynamic pricing models, such as real-time pricing, within the next few years, which could have a significant impact on an industrial facility's cost of energy use during the times of peak use. Adequate controls and automated systems that provide industrial facility managers real-time energy use and cost information are necessary for successful implementation of a comprehensive electricity strategy; however, little is known about the current control capacity of California industries. To address this gap, Lawrence Berkeley National Laboratory, in close collaboration with California industrial trade associations, conducted a survey to determine the current state of controls technologies in California industries. This study identifies sectors that have the technical capability to implement Demand Response (DR) and Automated Demand Response (Auto-DR). In an effort to assist policy makers and industry in meeting the challenges of real-time pricing, facility operational and organizational factors were taken into consideration to generate recommendations on which sectors Demand Response efforts should be focused. Analysis of the survey responses showed that while the vast majority of industrial facilities have semi- or fully automated control systems, participation in Demand Response programs is still low due to perceived barriers. The results also showed that the facilities that use continuous processes are good Demand Response candidates. When comparing facilities participating in Demand Response to those not participating, several similarities and differences emerged. Demand Response-participating facilities and non-participating facilities had similar timings of peak energy use, production processes, and participation in energy audits. Though the survey sample was smaller than anticipated, the results seemed to support our preliminary assumptions. Demonstrations of Auto-Demand Response in industrial facilities with good control capabilities are needed to dispel perceived barriers to participation and to investigate industrial subsectors suggested of having inherent Demand Response potential.

442

Building Capacity for Innovative Policy NAMAs | Open Energy Information  

Open Energy Info (EERE)

Policy NAMAs Policy NAMAs Jump to: navigation, search Name Building Capacity for Innovative Policy NAMAs Agency/Company /Organization International Institute for Sustainable Development (IISD) Partner Norwegian Agency for Development Cooperation (NORAD) Sector Climate, Energy, Land Focus Area Non-renewable Energy, Agriculture, Buildings, Energy Efficiency, Forestry, Greenhouse Gas, Industry, Land Use, Transportation Topics Adaptation, Background analysis, Baseline projection, GHG inventory, Low emission development planning, Pathways analysis Program Start 2010 Program End 2013 Country Trinidad and Tobago Caribbean References International Institute for Sustainable Development (IISD)[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "International Institute for Sustainable Development (IISD)"

443

Storage capacity of hydrogen in tetrahydrothiophene and furan clathrate hydrates  

Science Journals Connector (OSTI)

The storage capacity of hydrogen in the tetrahydrothiophene and furan hydrates was investigated by means of pressurevolumetemperature measurement. The hydrogenabsorption rate of tetrahydrothiophene and furan hydrates is much larger than that of tetrahydrofuran hydrate in spite of same crystal structure (structure-II). The storage amount of hydrogen at 275.1K is about 1.2mol (hydrogen)/mol (tetrahydrothiophene or furan hydrate) (?0.6mass%) at 41.5MPa, which is coincident with that of tetrahydrofuran hydrate.

Takaaki Tsuda; Kyohei Ogata; Shunsuke Hashimoto; Takeshi Sugahara; Masato Moritoki; Kazunari Ohgaki

2009-01-01T23:59:59.000Z

444

Flooding Capacity in Packed Towers:? Database, Correlations, and Analysis  

Science Journals Connector (OSTI)

To provide more insight into the exact influence of operating variables on flooding, several ANN simulations were performed by attributing different values for one studied variable while all of the others were held constant. ... The gas superficial velocity at flooding for the CMR simulation is greater by 1 m/s across the whole liquid velocity range. ... Because of the broadness and diversity of the databases, the proposed correlation has the capability of simulating the flooding capacity in randomly dumped packed beds for any purposes such as absorption and distillation. ...

Simon Pich; Faal Larachi; Bernard P. A. Grandjean

2000-11-30T23:59:59.000Z

445

Working and Net Available Shell Storage Capacity as of March 31, 2011  

Gasoline and Diesel Fuel Update (EIA)

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity Archives With Data for March 2011 | Release Date: May 31, 2011 Working and Net Available Shell Storage Capacity is the U.S. Energy Information Administration's (EIA) report containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an important crude oil market center. Data

446

Behavioral/Systems/Cognitive How the Optic Nerve Allocates Space, Energy Capacity,  

E-Print Network (OSTI)

Behavioral/Systems/Cognitive How the Optic Nerve Allocates Space, Energy Capacity, and Information twice the space and energy capacity. We conclude that the optic nerve conserves space space and energy efficiently, because both resources constrain neural computation. We found

Pennsylvania, University of

447

The State Energy Program: Building Energy Efficiency and Renewable Energy Capacity in the States  

Energy.gov (U.S. Department of Energy (DOE))

This study documents the capacity-building effects that the federal State Energy Program (SEP) has had on the states' capacity to design, manage and implement energy efficiency and renewable energy programs.

448

Safety and Line Capacity in Railways An Approach in Timed CSP  

Science Journals Connector (OSTI)

Railways need to be safe and, at the same time, should offer high capacity. While the notion of safety is well understood in the railway domain, the meaning of capacity is understood only on an intuitive and i...

Yoshinao Isobe; Faron Moller; Hoang Nga Nguyen

2012-01-01T23:59:59.000Z

449

E-Print Network 3.0 - added transportation capacity Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Capacity and Spectral Efficiency of Large Wireless CDMA Ad Hoc Networks Yi Sun Department... As node density D , transport capacity converges to zero at rate O(1D)...

450

Tax Man Cometh: Income Taxation as a Measure of State Capacity  

E-Print Network (OSTI)

of state capacity. GDP per energy unit: Economic activityvalue) Indicator GDP per energy unit Average Correlation (p-

Weller, Nick; Ziegler, Melissa

2008-01-01T23:59:59.000Z

451

Northeast Region Standardized Bycatch  

E-Print Network (OSTI)

Flexibility Act Assessment, and a Regulatory Impact Review June 2007 Prepared by the New England Fishery Management Plans of the Mid-Atlantic and New England Regional Fishery Management Councils June 2007 #12;This Management Plan (FMP); Amendment 2 to the Atlantic Herring FMP; Amendment 2 to the Atlantic Salmon FMP

452

architecture architecture urban & regional  

E-Print Network (OSTI)

in architectural design, history, building construction, structures, and environmental technology from ourlandscape architecture architecture urban & regional planning environment + design college of fine-disciplinary studies. 18-to-1 Student-Teacher Ratio You'll enjoy individual, one-on-one attention in your architecture

Hwu, Wen-mei W.

453

Could Tourism Carrying Capacity Be A Useful Tool For Adapting To Climate Change?  

E-Print Network (OSTI)

Could Tourism Carrying Capacity Be A Useful Tool For Adapting To Climate Change? Alexandre MAGNAN reflection on the potential role of the tourism carrying capacity approach (TCC) in the context of adaptation implementing ACC? Keywords: tourism carrying capacity, adaptation to climate change. 1. Introduction Adaptation

Boyer, Edmond

454

Energy Efficiency Analysis of MISO-OFDM Communication Systems Considering Power and Capacity Constraints  

E-Print Network (OSTI)

Energy Efficiency Analysis of MISO-OFDM Communication Systems Considering Power and Capacity subchannel capacity threshold. Moreover, the energy efficiency of MISO-OFDM communication systems starts-input single-output (MISO) . orthogonal frequency division multiplexing (OFDM) . energy efficiency. capacity

Wang, Cheng-Xiang

455

Multicast Capacity in Mobile Wireless Ad Hoc Network with Infrastructure Support  

E-Print Network (OSTI)

. Index Terms--Wireless ad hoc network; multicast capacity; mobility; infrastructure; hybrid network that infrastructure can offer a linear capacity increase in hybrid network, when the number of base stations increases the multicast capacity in a static hybrid network with infrastructure support. Establishing the multicast tree with the

Wang, Xinbing

456

CAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY: THE ROLE OF IMPORTS IN THE U.S. CEMENT INDUSTRY  

E-Print Network (OSTI)

varies across markets. In the presence of uncertain demand, capacity choices are shown theoreticallyCAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY: THE ROLE OF IMPORTS IN THE U.S. CEMENT INDUSTRY Guy://www.economie.polytechnique.edu/ mailto:chantal.poujouly@polytechnique.edu #12;Capacity Investment under Demand Uncertainty: The Role

Paris-Sud XI, Université de

457

PJM's Capacity Market in a Price-Spike World Steven Stoft  

E-Print Network (OSTI)

PWP-077 PJM's Capacity Market in a Price-Spike World Steven Stoft May, 2000 This paper is part, California 94720-5180 www.ucei.org #12;PJM's Capacity Market in a Price-Spike World Steven Stoft 1 May 7, 2000 Abstract PJM's market was designed to rely on a capacity market instead of price-spikes to induce

California at Berkeley. University of

458

Capacity Constrained Supply Function Equilibrium Models of Electricity Markets: Stability, Non-  

E-Print Network (OSTI)

PWP-089 Capacity Constrained Supply Function Equilibrium Models of Electricity Markets: Stability of an electricity market where strategic firms have capacity constraints. We show that if firms have heterogeneous of California Energy Institute 2539 Channing Way Berkeley, California 94720-5180 www.ucei.org #12;Capacity

California at Berkeley. University of

459

Newsvendor Model Of Capacity Sharing R. Berry, M. Honig, T. Nguyen, V.  

E-Print Network (OSTI)

are faced with unknown demands in each of their markets. They each procure capacityNewsvendor Model Of Capacity Sharing R. Berry, M. Honig, T. Nguyen, V. Subramanian, H. Zhou EECS-vohra@kellogg.northwestern.edu 1. INTRODUCTION Capacity sharing in the form of roaming agreements have long been a fixture

Kuzmanovic, Aleksandar

460

Designing Rules for the Capacity Market Hlne Le Cadre Michal Soubra  

E-Print Network (OSTI)

Designing Rules for the Capacity Market Hélène Le Cadre Michaël Soubra MINES ParisTech, Centre per unit of demand. Finally, coupling the energy and the capacity markets, we design rules for the ca moral hazard and abuse of dominant positions. 1 Introduction Capacity markets have proven to be one

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Bi-level Optimization for Capacity Planning in Industrial Gas Markets  

E-Print Network (OSTI)

Bi-level Optimization for Capacity Planning in Industrial Gas Markets P. Garcia-Herreros, L. Zhang markets are dynamic: · Suppliers must anticipate demand growth · Most markets are served locally Capacity is incremental( t T, i I ) Demand satisfaction is constraint by capacities( t T, i I ) All markets

Grossmann, Ignacio E.

462

Bi-level Optimization for Capacity Planning in Industrial Gas Markets  

E-Print Network (OSTI)

Bi-level Optimization for Capacity Planning in Industrial Gas Markets P. Garcia-Herreros, E. Arslan are dynamic: · Suppliers must anticipate demand growth · Most markets are served locally Capacity expansion supplier · Set of plants from independent suppliers with limited capacity · Rational markets that select

Grossmann, Ignacio E.

463

Application and Development of the Ecological Environment Carrying Capacity Evaluation Information System on Coal Mining  

Science Journals Connector (OSTI)

Some proper indexes, AHP method and GIS model are adopted for quantitative analysis and comprehensive evaluation of the ecological environment carrying capacity on coal mining. The ecological environment carrying capacity evaluation information system ... Keywords: coal mining, evaluation information system, ecological environment carrying capacity, GIS second development

Ying-chun Wei; Dai-yong Cao; Jian Wu; Chao Yu

2010-12-01T23:59:59.000Z

464

Estimation of Molar Heat Capacities in Solution from Gas Chromatographic Data  

Science Journals Connector (OSTI)

......the solutions of hydrocarbons--the general...and the molar heat capacity Abstract...Chromatographic Data K roly H berger...measure- ments of heat capacities and...Chem. Eng. Data 20: 24346 (1975...R. Fuchs. Heat capacities of...Enthalpies of combustion of some aliphatic......

Kroly Hberger; Mikls Grgnyi

2001-03-01T23:59:59.000Z

465

Capacity Constraints Across Nests in Assortment Optimization Under the Nested Logit Model  

E-Print Network (OSTI)

Capacity Constraints Across Nests in Assortment Optimization Under the Nested Logit Model Jacob B Abstract We consider assortment optimization problems when customers choose according to the nested logit in all nests. When each product consumes one unit of capacity, our capacity constraint limits

Topaloglu, Huseyin

466

Transportation analysis for the concept of regional repositories  

SciTech Connect

Over the past several years, planning associated with the National Waste Terminal Storage (NWTS) program assumed the use of one or two large, centrally located repository facilities. Recently, an alternative approach has been proposed which consists of the use of multiple, smaller regional repositories. In this report, several regional concepts were studied and the transportation requirements for the shipment of spent fuel to the regional repositories were estimated. In general, the transportation requirements decrease as the number of repositories increase. However, as far as transportation is concerned, the point of diminishing returns is reached at approximately one repository in each of three to four regions. Additional savings beyond this point are small. A series of sensitivity studies is also included to demonstrate the impact on the total transportation requirements of varying cask capacity, rail speed, or truck speed. Since most of the projected fuel shipments are to be made by rail, varying the capacity of the rail cask or varying average rail transport speed will have a major effect on overall transportation requirements.

Joy, D.S.; Hudson, B.J.

1980-06-01T23:59:59.000Z

467

Geothermal Regions | Open Energy Information  

Open Energy Info (EERE)

Regions Regions Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Regions RegionsMap2012.jpg Geothermal regions were outlined for the western United States (including Alaska and Hawaii) to identify geothermal areas, projects, and exploration trends for each region. These regions were developed based on the USGS physiographic regions (U.S. Geological Survey), and then adjusted to fit geothermal exploration parameters such as differences in geologic regime, structure, heat source, surface effects (weather, vegetation patterns, groundwater flow), and other relevant factors. The 21 regions can be seen outlined in red and overlain on the 2008 USGS Geothermal Favorability Map in Figure 1.[1] Add a new Geothermal Region List of Regions Area (km2) Mean MW

468

Interaction Region Papers  

NLE Websites -- All DOE Office Websites (Extended Search)

IR (Interaction Region) Magnets with Ramesh Gupta IR (Interaction Region) Magnets with Ramesh Gupta as the major author (unless noted): R. Gupta, et. al, "React & Wind Nb3Sn Common Coil Dipole", ASC 2006, August 27- September 1, 2006 in Seattle, WA, USA . *** Click Here for Talk ***. R. Gupta, "Modular Design and Modular Program for High Gradient Quadrupoles", ASC 2006, August 27- September 1, 2006 in Seattle, WA, USA. *** Click Here for Poster ***. Racetrack Magnet Designs and Technologies, WAMDO@CERN, April 2-6, 2006 (Click here for the oral presentation). R. Gupta, et. al, "Optimization of Open Midplane Dipole Design for LHC IR Upgrade," Presented at the 2005 Particle Accelerator Conference, Knoxville, TN, USA (2005). *** Click Here for Poster *** R. Gupta, et al., “Open Midplane Dipole Design for LHC IR

469

Regional University Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Alliance Alliance Developed by the National Energy Technology Laboratory in collaboration with NETL-Regional University Alliance WVU National Research Center for Coal and Energy Fossil Consulting Services, Inc. The AVESTAR(tm) Center provides a state-of- the-art, highly realistic, dynamic simulator for a coal-fired power plant using Integrated Gasification Combined Cycle (IGCC) technology with CO 2 capture. The system is based on Invensys' DYNSIM ® software

470

Northwest Regional Meeting  

Science Journals Connector (OSTI)

Northwest Regional Meeting ... Organizers are planning symposia on instrumental experiments in the general chemistry laboratory, active learning in chemical education, bio-based products, environmental molecular sciences laboratory user research, green chemistry, Hanford site analytical chemistry, management of the chemical enterprise, noninvasive diagnostics, radioisotopes and radiopharmaceuticals, semiconductor materials, the chemistry of advanced nuclear systems, thermodynamic models in geochemistry, sensors and sensor technology, women in chemistry, agricultural and public health protection chemistry, and public response to chemical exposure emergencies. ...

2007-02-12T23:59:59.000Z

471

Summary of Time Period-Based and Other Approximation Methods for Determining the Capacity Value of Wind and Solar in the United States: September 2010 - February 2012  

SciTech Connect

This paper updates previous work that describes time period-based and other approximation methods for estimating the capacity value of wind power and extends it to include solar power. The paper summarizes various methods presented in utility integrated resource plans, regional transmission organization methodologies, regional stakeholder initiatives, regulatory proceedings, and academic and industry studies. Time period-based approximation methods typically measure the contribution of a wind or solar plant at the time of system peak - sometimes over a period of months or the average of multiple years.

Rogers, J.; Porter, K.

2012-03-01T23:59:59.000Z

472

AEO2011: Renewable Energy Generation by Fuel - Texas Regional Entity |  

Open Energy Info (EERE)

Texas Regional Entity Texas Regional Entity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 98, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Fuel Texas Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Texas Regional Entity- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

473

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

U.S. Energy Information Administration (EIA) Indexed Site

Overview and Links Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the transportation of natural gas from one location to another within the United States has become a relatively seamless operation. While intrastate pipeline systems often transports natural gas from production areas directly to consumers in local markets, it is the interstate pipeline system's long-distance, high-capacity trunklines that supply most of the major natural gas markets in the United States. Of the six geographic regions defined in this analysis, the Southwest Region contains the largest number of individual natural gas pipeline systems (more than 90) and the highest level of pipeline mileage (over 106,000).

474

CCAP-Data and Capacity Needs for Transportation NAMAs | Open Energy  

Open Energy Info (EERE)

CCAP-Data and Capacity Needs for Transportation NAMAs CCAP-Data and Capacity Needs for Transportation NAMAs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CCAP-Data and Capacity Needs for Transportation NAMAs Agency/Company /Organization: Center for Clean Air Policy Sector: Climate, Energy Focus Area: Transportation Topics: Low emission development planning, -NAMA Website: www.ccap.org/docs/resources/973/Transport_NAMA_Capacity-Building.pdf Cost: Free Language: English CCAP-Data and Capacity Needs for Transportation NAMAs Screenshot References: CCAP-Data and Capacity Needs for Transportation NAMAs[1] Report 1: Data Availability "The current report is the first in a series exploring the issue of data and capacity needs to support effective implementation and evaluation of transportation NAMAs. The purpose of this research is to support the

475

Occurrence of UV-Absorbing, Mycosporine-Like Compounds among Cyanobacterial Isolates and an Estimate of Their Screening Capacity  

Science Journals Connector (OSTI)

...Estimate of Their Screening Capacity FERRAN GARCIA-PICHELt...fraction. The sunscreen capacities of MAA and scytonemin and their combined capacity were estimated for each strain...environments subject to intense solar radiation. They are often...

Ferran Garcia-Pichel; Richard W. Castenholz

1993-01-01T23:59:59.000Z

476

Temporary Losses of Highway Capacity and Impacts on Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Temporary Losses of Highway Capacity and Impacts on Performance May 2002 Prepared by S. M. Chin O. Franzese D. L. Greene H. L. Hwang Oak Ridge National Laboratory Oak Ridge, Tennessee R. C. Gibson The University of Tennessee Knoxville, Tennessee DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: info@ntis.fedworld.gov

477

U.S. Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 8,402,216 8,498,535 8,655,740 8,763,798 8,849,125 8,991,335

478

Revamp of Ukraine VCM plant will boost capacity, reduce emissions  

SciTech Connect

Oriana Concern (formerly P.O. Chlorvinyl) is revamping its 250,000 metric ton/year (mty) vinyl chloride monomer (VCM) plant at Kalusch, Ukraine. At the core of the project area new ethylene dichloride (EDC) cracking furnace and direct chlorination unit, and revamp of an oxychlorination unit to use oxygen rather than air. The plant expansion and modernization will boost capacity to 370,000 mty. New facilities for by-product recycling and recovery, waste water treatment, and emissions reduction will improve the plant`s environmental performance. This paper shows expected feedstock and utility consumption for VCM production. Techmashimport and P.O. Chlorvinyl commissioned the Kalusch plant in 1975. The plant was built by Uhde GmbH, Dortmund, Germany. The paper also provides a schematic of the Hoechst/Uhde VCM process being used for the plant revamp. The diagram is divided into processing sections.

NONE

1996-05-13T23:59:59.000Z

479

Pennsylvania Regional Infrastructure Project  

NLE Websites -- All DOE Office Websites (Extended Search)

CTC Team CTC Team 1 Pennsylvania Regional Infrastructure Project Presentation by: The Concurrent Technologies Corporation (CTC) Team January 6, 2004 The CTC Team 2 Presentation Outline Introduction of CTC Team CTC Background Technical Approach - CTC Team Member Presentations Conclusions The CTC Team 3 The CTC Project Team Concurrent Technologies Corporation Program Management and Coordination Hydrogen Delivery and Storage Material Development Hydrogen Sensors Concurrent Technologies Corporation Program Management and Coordination Hydrogen Delivery and Storage Material Development Hydrogen Sensors Air Products and Chemicals, Inc. Hydrogen Separation Hydrogen Sensors Air Products and Chemicals, Inc. Hydrogen Separation Hydrogen Sensors Resource Dynamics Corp. Tradeoff Analyses of Hydrogen

480

Regional Energy Baseline  

E-Print Network (OSTI)

ESL-TR-11-09-02 REGIONAL ENERGY BASELINE (1960 ~ 2009) 0 100 200 300 400 500 600 700 800 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 To tal En erg y U se pe r C ap ita (M MB tu) Year Total Energy... Use per Capita (1960-2009) US SEEC 12-States TX Hyojin Kim Juan-Carlos Baltazar, Ph.D. Jeff S. Haberl, Ph.D., P.E. September 2011 ENERGY SYSTEMS LABORATORY Texas Engineering Experiment Station Texas A&M University...

Kim, H.; Baltazar, J.C.; Haberl, J.

Note: This page contains sample records for the topic "ngtdm regions capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Sierra Nevada Region  

NLE Websites -- All DOE Office Websites (Extended Search)

Sierra Nevada Region Sierra Nevada Region Power Revenue Requirement Forecast FY 2014 - FY 2017 Expenses Revenues Expenses Revenues Expenses Revenues Expenses Revenues Expenses Revenues O&M Expense: /1 Reclamation $41,172,013 $43,590,771 $45,797,325 $47,108,786 $49,408,075 Western $56,601,261 $58,299,299 $60,048,278 $61,849,726 $63,705,218 Total O&M Expense $97,773,274 $101,890,070 $105,845,603 $108,958,512 $113,113,292 Purchase Power Expense: Custom Product & Suppl. Power /2 $211,016,136 $211,016,136 $215,236,459 $215,236,459 $219,541,188 $219,541,188 $223,932,012 $223,932,012 $228,410,652 $228,410,652 HBA Costs /3 $2,310,408 $2,379,720 $2,451,112 $2,524,645 $2,600,385 Purchases for Project Use /4 $1,025,800 $0 $0 $0 $0 Washoe Cost for BR $471,500 $471,500 $471,500 $194,000 $194,000 Total Purchase Power

482

EVALUATION OF REQUIREMENTS FOR THE DWPF HIGHER CAPACITY CANISTER  

SciTech Connect

The Defense Waste Processing Facility (DWPF) is considering the option to increase canister glass capacity by reducing the wall thickness of the current production canister. This design has been designated as the DWPF Higher Capacity Canister (HCC). A significant decrease in the number of canisters processed during the life of the facility would be achieved if the HCC were implemented leading to a reduced overall reduction in life cycle costs. Prior to implementation of the change, Savannah River National Laboratory (SRNL) was requested to conduct an evaluation of the potential impacts. The specific areas of interest included loading and deformation of the canister during the filling process. Additionally, the effect of the reduced wall thickness on corrosion and material compatibility needed to be addressed. Finally the integrity of the canister during decontamination and other handling steps needed to be determined. The initial request regarding canister fabrication was later addressed in an alternate study. A preliminary review of canister requirements and previous testing was conducted prior to determining the testing approach. Thermal and stress models were developed to predict the forces on the canister during the pouring and cooling process. The thermal model shows the HCC increasing and decreasing in temperature at a slightly faster rate than the original. The HCC is shown to have a 3F ?T between the internal and outer surfaces versus a 5F ?T for the original design. The stress model indicates strain values ranging from 1.9% to 2.9% for the standard canister and 2.5% to 3.1% for the HCC. These values are dependent on the glass level relative to the thickness transition between the top head and the canister wall. This information, along with field readings, was used to set up environmental test conditions for corrosion studies. Small 304-L canisters were filled with glass and subjected to accelerated environmental testing for 3 months. No evidence of stress corrosion cracking was indicated on either the canisters or U-bend coupons. Calculations and finite element modeling were used to determine forces over a range of handling conditions along with possible forces during decontamination. While expected reductions in some physical characteristics were found in the HCC, none were found to be significant when compared to the required values necessary to perform its intended function. Based on this study and a review of successful testing of thinner canisters at West Valley Demonstration Project (WVDP), the mechanical properties obtained with the thinner wall do not significantly undermine the ability of the canister to perform its intended function.

Miller, D.; Estochen, E.; Jordan, J.; Kesterson, M.; Mckeel, C.

2014-08-05T23:59:59.000Z

483

Working and Net Available Shell Storage Capacity as of September 30, 2010 -  

Gasoline and Diesel Fuel Update (EIA)

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2010 | Release Date: July 28, 2011 Working and Net Available Shell Storage Capacity as of September 30, 2010 is the Energy Information Administration's (EIA) first report containing semi-annual storage capacity data. It includes three tables detailing working and net available shell storage capacity by facility type, product, and PAD District as of September 30, 2010. EIA has reported weekly and monthly inventory levels of crude oil and petroleum products for decades. New storage capacity data can help analysts place petroleum inventory levels in context and better understand petroleum market activity and price movements, especially at key market centers such as Cushing, Oklahoma.

484

Vehicle Technologies Office: Fact #30: May 12, 1997 Towing Capacity for  

NLE Websites -- All DOE Office Websites (Extended Search)

0: May 12, 1997 0: May 12, 1997 Towing Capacity for Selected 1996 Model Cars and Trucks to someone by E-mail Share Vehicle Technologies Office: Fact #30: May 12, 1997 Towing Capacity for Selected 1996 Model Cars and Trucks on Facebook Tweet about Vehicle Technologies Office: Fact #30: May 12, 1997 Towing Capacity for Selected 1996 Model Cars and Trucks on Twitter Bookmark Vehicle Technologies Office: Fact #30: May 12, 1997 Towing Capacity for Selected 1996 Model Cars and Trucks on Google Bookmark Vehicle Technologies Office: Fact #30: May 12, 1997 Towing Capacity for Selected 1996 Model Cars and Trucks on Delicious Rank Vehicle Technologies Office: Fact #30: May 12, 1997 Towing Capacity for Selected 1996 Model Cars and Trucks on Digg Find More places to share Vehicle Technologies Office: Fact #30: May

485

Vehicle Technologies Office: Fact #530: August 4, 2008 Towing Capacity for  

NLE Websites -- All DOE Office Websites (Extended Search)

0: August 4, 0: August 4, 2008 Towing Capacity for Selected 2008 Model Cars and Trucks to someone by E-mail Share Vehicle Technologies Office: Fact #530: August 4, 2008 Towing Capacity for Selected 2008 Model Cars and Trucks on Facebook Tweet about Vehicle Technologies Office: Fact #530: August 4, 2008 Towing Capacity for Selected 2008 Model Cars and Trucks on Twitter Bookmark Vehicle Technologies Office: Fact #530: August 4, 2008 Towing Capacity for Selected 2008 Model Cars and Trucks on Google Bookmark Vehicle Technologies Office: Fact #530: August 4, 2008 Towing Capacity for Selected 2008 Model Cars and Trucks on Delicious Rank Vehicle Technologies Office: Fact #530: August 4, 2008 Towing Capacity for Selected 2008 Model Cars and Trucks on Digg Find More places to share Vehicle Technologies Office: Fact #530:

486

LG to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes  

NLE Websites -- All DOE Office Websites (Extended Search)

to DOE General Counsel; Re:Request for Comment on Large Capacity to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes Washers LG to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes Washers LG response to DOE's request for information regarding alternative test procedures for large-capacity clothes washer models, December 7, 2010. After DOE requested the views of interested parties concerning implementation of an alternative test procedure for large-capacity clothes washer models, i.e., those in excess of 3.8 cu ft, LG Vice President of Government Relations and Communications, John I. Taylor, submits this letter outlining LG's views on the set of "unique circumstances." LG response to DOE's request for information regarding alternative test procedures for large-capacity clothes washer models, December 7, 2010.

487

Alliance network heterogeneity, absorptive capacity and innovation performance: a framework for mediation and moderation effects  

Science Journals Connector (OSTI)

The purpose of this paper is to present a perspective of alliance network heterogeneity, absorptive capacity and their effect on innovation performance. Although extant research recognises alliance network, network heterogeneity and absorptive capacity as predictor to innovation performance; mediation effect of network heterogeneity between innovation performance and its antecedents has been neglected. On the other hand, interaction effect of absorptive capacity has been widely researched, but these studies have not sufficiently analysed the influence of absorptive capacity on innovation performance due to conflicting results, especially regarding the multidimensional character of absorptive capacity. Present study intends to posit and set the stage for future research, whether relationship between innovation and its antecedents is mediated by firm's alliance network heterogeneity. Furthermore, we posit whether absorptive capacity acts as mediator or moderator between alliance network heterogeneity and innovation performance.

Sanjay Dhir; Aniruddha; Amita Mital

2014-01-01T23:59:59.000Z

488

Regional GHG Emissions Stat s Greenhouse Gas and the Regional  

E-Print Network (OSTI)

6/5/2013 1 Regional GHG Emissions Stat s Greenhouse Gas and the Regional Power System Symposium Regional GHG Emissions ­ Status June 4, 2013 Gillian Charles A few clarifications This presentation and ½ Valmy coal plants) 2 #12;6/5/2013 2 GHG Emissions by Economic Sector in the Pacific Northwest (2010

489

Regional GHG Emissions O tlook Greenhouse Gas and the Regional  

E-Print Network (OSTI)

6/5/2013 1 Regional GHG Emissions O tlook Greenhouse Gas and the Regional Power System Symposium Regional GHG Emissions ­ Outlook June 4, 2013 Steven Simmons CO2 Emission Outlook for the Pacific NW (ID MW Centralia 1 Centralia WA 1972 2020 730 MW Centralia 2 Centralia WA 1973 2025 730 MW 5 GHG Emission

490

Appendix K: Regional Definitions  

Gasoline and Diesel Fuel Update (EIA)

K K Regional Definitions The six basic country groupings used in this report (Figure K1) are defined as follows: *OECD (18 percent of the 2008 world population): North America-United States, Canada, and Mexico; OECD Europe-Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Luxem- bourg, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland, Turkey, and the United Kingdom. OECD Asia-Japan, South Korea, Australia, and New Zealand. *Non-OECD (82 percent of the 2008 world popula- tion): - Non-OECD Europe and Eurasia (5 percent of the 2008 world population)-Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, Croatia, Estonia, Georgia, Kazakhstan, Kyrgyzstan, Latvia, Lithuania, Macedonia, Malta, Moldova, Montenegro, Romania, Russia, Serbia, Slovenia,

491

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Former Corporation/Refiner Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2012 Antelope Refining LLC Garco Energy LLC 3/12 Douglas, WY 3,800 Delta Air Lines/Monroe Energy LLC ConocoPhillips Company 4/12 Trainer, PA 185,000 Phillips 66 Company ConocoPhillips Company 5/12 Belle Chasse, LA 252,000 Billings, MT 59,000 Ferndale, WA 101,000 Linden, NJ 238,000 Ponca City, OK 198,400 Rodeo, CA 120,200 Sweeny, TX 247,000 Westlake, LA 239,400 Wilmington, CA 139,000 Nustar Asphalt LLC (50% Nustar Energy LP and 50% Lindsay Goldberg LLC) Nustar Energy LP/Nustar Asphalt Refining LLC 9/12 Paulsboro, NJ 70,000 Savannah, GA 28,000 Carlyle Group/Philadelphia Energy Solutions Refining and Marketing LLC Sunoco Inc./Sunoco Inc. R&M

492

CO2 adsorption capacity of argonne premium coals  

Science Journals Connector (OSTI)

Adsorption and desorption isotherms of CO2 on dried Argonne Premium coal samples were investigated. A small hysteresis was detected between the adsorption and desorption isotherms. The hysteresis was small or negligible for high rank coals but discernable for low rank coals. The isotherms were found to be rectilinear and to fit the conventional adsorption equations poorly. The rectilinear shape of the adsorption isotherms was related to the solubility of the CO2 in the coal and to coal swelling. Using an adsorption model that accounted for volumetric effects provided good agreement between the surface areas calculated from the high-pressure isotherms and the literature values obtained under traditional low-pressure conditions. Ignoring the volumetric effects resulted in estimated surface areas that were 40% larger for the higher-ranked coals and 60100% larger for the lower-ranked coals. The heat of adsorption, after correcting for volumetric effects, was fairly constant (261 kJ/mol) regardless of rank. The adsorption capacity, average pore size, and volume effect for each of the Argonne coals were also estimated employing the same model. The model equation explicitly accounts for volumetric effects, attributable to the solubility of CO2 in the organic matrix and the coal swelling, and estimates the actual adsorbed amount.

Ekrem Ozdemir; Badie I Morsi; Karl Schroeder

2004-01-01T23:59:59.000Z

493

Computer simulation and capacity evaluation of Panama Canal alternatives  

SciTech Connect

The Operating Characteristics and Capacity Evaluation (OCCE) Study was one of the components of a group of studies of future alternatives to the Panama Canal, sponsored by a study commission formed by the governments of Panama, the US and Japan. The basic tool in the conduct of the study was the Waterway Analysis Model (WAM), developed originally by the US Army Corps of Engineers for use on the US inland waterway system and adapted under OCCE for study of Panama Canal alternatives. The study synthesized the many alternative plans for the Canal proposed historically into four basic groups: High-Rise Lock Canal, Low-Rise Lock Canal, Sea-Level Canal and Status Quo Canal. For economy, the sea-level cases were based on, essentially, a single-lane canal, in conjunction with the status quo canal. Hydraulic and navigation studies indicted that to achieve safe navigation, tide gates or locks would be required to control currents that would otherwise be generated by the differences in tides between the two oceans. The alternatives studied in detail are illustrated in the body of the paper.

Rosselli, A.T. [TAMS Consultants, Inc., New York, NY (United States); Bronzini, M.S. [Oak Ridge National Lab., TN (United States). Center for Transportation Analysis; Weekly, D.A. [Army Corps of Engineers, Huntington, WV (United States). Navigation Planning Center

1994-12-31T23:59:59.000Z

494

NETL: News Release - DOE Regional Partnerships Find Up To 3.5 Billion Tons  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2007 7, 2007 DOE Regional Partnerships Find More Than 3,500 Billion Tons of Possible CO2 Storage Capacity Atlas Details Stationary Sources and Geologic Reservoirs in U.S. and Canada WASHINGTON, DC - The Department of Energy's Regional Carbon Sequestration Partnerships have identified the powerplant and other stationary sources of more than 3.8 billion tons a year of the greenhouse gas CO2 in the United States and Canada and companion candidate storage capacity for more than 3,500 billion tons. The results are detailed in the new Carbon Sequestration Atlas of the United States and Canada which became available online today. MORE INFO Link to NETL's Carbon Sequestration Atlas web page Link to the Interactive Carbon Sequestration Atlas Learn more about DOE's Regional Carbon Sequestration Partnership program

495

Americas Region Partnerships and Projects  

Office of Energy Efficiency and Renewable Energy (EERE)

The Office of Energy Efficiency and Renewable Energy (EERE) engages in the Americas through regional partnerships, as well as bilaterally with individual countries. In addition to the regional and...

496

California: Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Working with Nextval, Inc., Lawrence Berkeley National Laboratory (LBNL) developed a Conducting Polymer Binder for high-capacity lithium-ion batteries.

497

Energy efficiency as a resource in the ISO New England Forward Capacity Market  

Science Journals Connector (OSTI)

Resources associated with the Efficiency Vermont portfolio have successfully cleared all three auctions, ... 2012. The largest cleared capacity commitment in Vermont comes from the Vermont Yankee nuclear generati...

Cheryl Jenkins; Chris Neme; Shawn Enterline

2011-02-01T23:59:59.000Z

498

Exploring Opportunities for Energy Efficiency as a Revenue Stream in the Forward Capacity Markets  

Energy.gov (U.S. Department of Energy (DOE))

Provides information for energy efficiency programs on the opportunities and challenges associated with participating in forward capacity markets and reliability pricing models as potential revenue streams.

499

Capacity analysis, cycle time optimization, and supply chain strategy in multi-product biopharmaceutical manufacturing operations  

E-Print Network (OSTI)

Application of system optimization theory, supply chain principles, and capacity modeling are increasingly valuable tools for use in pharmaceutical manufacturing facilities. The dynamics of the pharmaceutical industry - ...

Fetcho-Phillips, Kacey L. (Kacey Lynn)

2011-01-01T23:59:59.000Z

500

E-Print Network 3.0 - achievable network capacity Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

data transmission rate that a network can support. The throughput capacity... of pure ad hoc network models. It is not ... Source: Massachusetts at Amherst, University of -...