Powered by Deep Web Technologies
Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Next Generation Radioisotope Generators | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

» Next Generation Radioisotope Generators » Next Generation Radioisotope Generators Next Generation Radioisotope Generators Advanced Stirling Radioisotope Generator (ASRG) - The ASRG is currently being developed as a high-efficiency RPS technology to support future space missions on the Martian surface or in the vacuum of space. This system uses Stirling convertors, which have moving parts to mechanically convert heat to electricity. This power conversion system, if successfully deployed, will reduce the weight of each RPS and the amount of Pu-238 needed per mission. A HISTORY OF MISSION SUCCESSES For over fifty years, the Department of Energy has enabled space exploration on 27 missions by providing safe reliable radioistope power systems and radioisotope heater units for NASA, Navy and Air Force.

2

Innovative Energy Technologies: The Next Generation  

E-Print Network [OSTI]

Innovative Energy Technologies: The Next Generation T E C H N O L O G Y G U I D E #12;Our lifestyle is sustained by energy. Technologies developed at Carnegie Mellon have the ability to enhance energy generation of entering, the marketplace. These next generation technologies have been developed by undergraduate

Andrews, Peter B.

3

Next-Generation Thermionic Solar Energy Conversion  

Broader source: Energy.gov [DOE]

This fact sheet describes a next-generation thermionic solar energy conversion project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Stanford University, seeks to demonstrate the feasibility of photon-enhanced, microfabricated thermionic energy converters as a high-efficiency topping cycle for CSP electricity generation. With the potential to double the electricity output efficiency of solar-thermal power stations, this topping cycle application can significantly reduce the cost of solar-thermal electricity below that of the lowest-cost, fossil-fuel generated electricity.

4

Next Generation Rooftop Unit | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Next Generation Rooftop Unit Next Generation Rooftop Unit Next Generation Rooftop Unit The U.S. Department of Energy is currently conducting research in a next generation rooftop unit (RTU). More than half of U.S. commercial building space is cooled by packaged heating, ventilation, and air conditioning (HVAC) equipment. Existing rooftop HVAC units consume more than 1.3% of the United States' annual energy usage annually. Project Description This project seeks to evaluate optimal design strategies for significantly improving the efficiency of rooftop units. The primary market for this project is commercial buildings, such as supermarkets and hotels. Project Partners Research is being undertaken through a cooperative research and development agreement (CRADA) between the Department of Energy and Oak Ridge National

5

Innovative EnergyTechnologies: The Next Generation  

E-Print Network [OSTI]

;ABOUT T H E C A R N EG IE MELLON UNIVERSITY Wilton E. Scott Institute for Energy Innovation OverInnovative EnergyTechnologies: The Next Generation T E C H N O L O G Y G U I D E #12;Our lifestyle is sustained by energy. Technologies developed at Carnegie Mellon have the ability to enhance energy generation

McGaughey, Alan

6

Energy Department Announces New Investments to Train Next Generation...  

Office of Environmental Management (EM)

to Train Next Generation of Nuclear Energy Leaders, Advance University-Led Nuclear Innovation Energy Department Announces New Investments to Train Next Generation of Nuclear Energy...

7

Energy Department Invests $60 Million to Train Next Generation...  

Office of Environmental Management (EM)

60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests 60 Million to Train Next Generation Nuclear Energy...

8

Silicon Nanostructure-based Technology for Next Generation Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Silicon Nanostructure-based Technology for Next Generation Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2013 DOE Hydrogen and Fuel Cells...

9

Fostering the Next Generation of Nuclear Energy Technology |...  

Office of Environmental Management (EM)

Fostering the Next Generation of Nuclear Energy Technology Fostering the Next Generation of Nuclear Energy Technology September 29, 2014 - 11:06am Addthis Fostering the Next...

10

Report of the Task Force on Next Generation High Performance...  

Broader source: Energy.gov (indexed) [DOE]

Report of the Task Force on Next Generation High Performance Computing Report of the Task Force on Next Generation High Performance Computing The SEAB Task Force on Next Generation...

11

Department of Energy Awards $425 Million for Next Generation...  

Energy Savers [EERE]

WASHINGTON - U.S. Secretary of Energy Ernest Moniz today announced two new High Performance Computing (HPC) awards to put the nation on a fast-track to next generation exascale...

12

NEXT GENERATION ENERGY EFFICIENT FLUORESCENT LIGHTING PRODUCT  

SciTech Connect (OSTI)

This is the Final Report of the Next-Generation Energy Efficient Fluorescent Lighting Products program, Department of Energy (DOE). The overall goal of this three-year program was to develop novel phosphors to improve the color rendition and efficiency of compact and linear fluorescent lamps. The prime technical approach was the development of quantum-splitting phosphor (QSP) to further increase the efficiency of conventional linear fluorescent lamps and the development of new high color rendering phosphor blends for compact fluorescent lamps (CFLs) as potential replacements for the energy-hungry and short-lived incandescent lamps in market segments that demand high color rendering light sources. We determined early in the project that the previously developed oxide QSP, SrAl{sub 12}O{sub 19}:Pr{sup 3+}, did not exhibit an quantum efficiency higher than unity under excitation by 185 nm radiation, and we therefore worked to determine the physical reasons for this observation. From our investigations we concluded that the achievement of quantum efficiency exceeding unity in SrAl{sub 12}O{sub 19}:Pr{sup 3+} was not possible due to interaction of the Pr{sup 3+} 5d level with the conduction band of the solid. The interaction which gives rise to an additional nonradiative decay path for the excitation energy is responsible for the low quantum efficiency of the phosphor. Our work has led to the development of a novel spectroscopic method for determining photoionzation threshold of luminescent centers in solids. This has resulted in further quantification of the requirements for host phosphor lattice materials to optimize quantum efficiency. Because of the low quantum efficiency of the QSP, we were unable to demonstrate a linear fluorescent lamp with overall performance exceeding that of existing mercury-based fluorescent lamps. Our work on the high color rendering CFLs has been very successful. We have demonstrated CFLs that satisfies the EnergyStar requirement with color rendering index (CRI) greater than 90; the CRI of current commercial CFLs are in the low 80s. In this report we summarize the technical work completed under the Program, summarize our findings about the performance limits of the various technologies we investigated, and outline promising paths for future work.

Alok Srivastava; Anant Setlur

2003-04-01T23:59:59.000Z

13

Workshops on Next Generation Energy Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Many building energy simulation programs Many building energy simulation programs developed around the world are reaching maturity. Many use simulation methods (and even code) that originated in the 1960s. Without substantial redesign and recoding, expanding their capabilities has become difficult, time-consuming, and expensive. However, recent advances in analysis and computational methods and power have increased the opportunity for significant improvements in these tools. To inform planning activities for next-generation simulation tools, the U.S. Department of Energy held workshops in August 1995 and June 1996. Energy simulation developers and expert users were invited to the first workshop (developers workshop), held following Building Simulation '95 in Madison, Wisconsin. Energy simulation users and other professionals attended the second workshop (users workshop), held in

14

Next Generation Inverter | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ape040smith2012o.pdf More Documents & Publications Next Generation Inverter Vehicle Technologies...

15

Silicon Nanostructure-based Technology for Next Generation Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual...

16

Bush Administration Moves Forward to Develop Next Generation Nuclear Energy  

Broader source: Energy.gov (indexed) [DOE]

Moves Forward to Develop Next Generation Moves Forward to Develop Next Generation Nuclear Energy Systems Bush Administration Moves Forward to Develop Next Generation Nuclear Energy Systems February 28, 2005 - 10:33am Addthis WASHINGTON, DC-The Bush Administration today took a major step in advancing international efforts to develop the next generation of clean, safe nuclear energy systems. Secretary of Energy Samuel W. Bodman joined representatives from Canada, France, Japan, and the United Kingdom to sign the first multilateral agreement in history aimed at the development of next generation nuclear energy systems. The work of the Generation IV International Forum (GIF) is essential to advancing an important component of the Bush Administration's comprehensive energy strategy in the development of next generation nuclear energy technologies.

17

Nx-TEC: Next-Generation Thermionic Solar Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

(MSE), ZX Shen (SIMES), Roger Howe (EE) Nx-TEC: Next-Generation Thermionic Solar Energy Conversion SLAC National Accelerator Laboratory Award Number:CPS 25659 Start date:...

18

Student Competition Prepares the Next Generation of Wind Energy  

Broader source: Energy.gov (indexed) [DOE]

Competition Prepares the Next Generation of Wind Energy Competition Prepares the Next Generation of Wind Energy Entrepreneurs Student Competition Prepares the Next Generation of Wind Energy Entrepreneurs April 11, 2013 - 11:32am Addthis The Collegiate Wind Competition is one of several Energy Department-supported programs aiming to inspire the next generation of clean energy leaders. Here, JMU student Greg Miller demonstrates how the blades of a wind turbine work as part the Wind for Schools project. | Photo courtesy of the Virginia Center for Wind Energy. The Collegiate Wind Competition is one of several Energy Department-supported programs aiming to inspire the next generation of clean energy leaders. Here, JMU student Greg Miller demonstrates how the

19

Student Competition Prepares the Next Generation of Wind Energy  

Broader source: Energy.gov (indexed) [DOE]

Student Competition Prepares the Next Generation of Wind Energy Student Competition Prepares the Next Generation of Wind Energy Entrepreneurs Student Competition Prepares the Next Generation of Wind Energy Entrepreneurs April 11, 2013 - 11:32am Addthis The Collegiate Wind Competition is one of several Energy Department-supported programs aiming to inspire the next generation of clean energy leaders. Here, JMU student Greg Miller demonstrates how the blades of a wind turbine work as part the Wind for Schools project. | Photo courtesy of the Virginia Center for Wind Energy. The Collegiate Wind Competition is one of several Energy Department-supported programs aiming to inspire the next generation of clean energy leaders. Here, JMU student Greg Miller demonstrates how the

20

Saving Energy: The Next Generation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Saving Energy: The Next Generation Saving Energy: The Next Generation Saving Energy: The Next Generation November 28, 2011 - 4:05pm Addthis Sarah Jane Maxted Special Assistant, Office of Energy Efficiency & Renewable Energy Have you heard of America's Home Energy Education Challenge? It's a challenge-designed to get students in grades 3-8 to help their families and communities embrace home energy efficiency. Launched this year by both the Department of Energy and National Science Teachers Association, the Home Energy Challenge is generating a great response-over 390 schools across the United States have registered. View this map to see which schools are participating in your area. The concept behind the contest is simple: participating teachers and students will compete to reduce energy use in their homes. Teams will

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Saving Energy: The Next Generation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Saving Energy: The Next Generation Saving Energy: The Next Generation Saving Energy: The Next Generation November 28, 2011 - 4:05pm Addthis Sarah Jane Maxted Special Assistant, Office of Energy Efficiency & Renewable Energy Have you heard of America's Home Energy Education Challenge? It's a challenge-designed to get students in grades 3-8 to help their families and communities embrace home energy efficiency. Launched this year by both the Department of Energy and National Science Teachers Association, the Home Energy Challenge is generating a great response-over 390 schools across the United States have registered. View this map to see which schools are participating in your area. The concept behind the contest is simple: participating teachers and students will compete to reduce energy use in their homes. Teams will

22

Energy Department Invests $60 Million to Train Next Generation Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Invests $60 Million to Train Next Generation Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology September 20, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department announced today more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91 awards announced today will help train and educate the next generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative

23

Inspiring and Building the Next Generation of Residential Energy Professionals  

Office of Energy Efficiency and Renewable Energy (EERE)

Energy Department's Challenge Home Student Design Competition aims to inspire the next generation of architects, engineers, construction managers, and entrepreneurs to design homes that meet requirements for zero energy ready performance that are affordable and market-ready.

24

Energy Department Invests $60 Million to Train Next Generation Nuclear  

Broader source: Energy.gov (indexed) [DOE]

60 Million to Train Next Generation 60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology September 20, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department announced today more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91 awards announced today will help train and educate the next generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative

25

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

26

Next-generation nuclear fuel withstands high-temperature accident...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

teri.ehresman@inl.gov Bill Cabage (ORNL), 865-574-4399, cabagewh@ornl.gov Next-generation nuclear fuel withstands high-temperature accident conditions IDAHO FALLS - A safer...

27

Energy Efficient Glass Melting - The Next Generation Melter  

SciTech Connect (OSTI)

The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

David Rue

2008-03-01T23:59:59.000Z

28

Next Generation Materials | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

energy productivity. The goal is to increase service life tenfold, decreasing the energy intensity of the materials and components. Alumina-Forming Austenitic Stainless...

29

Next-Generation Thermionic Solar Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

Thermionic Solar Energy Conversion SLAC National Accelerator Laboratory Award Number: CPS 25659 | April 15, 2013 | Melosh * Fabricate heterostructure semiconductor cathodes based...

30

Celebrating The Next Generation of Energy Entrepreneurs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Celebrating The Next Generation of Energy Entrepreneurs Celebrating The Next Generation of Energy Entrepreneurs Celebrating The Next Generation of Energy Entrepreneurs April 30, 2013 - 5:03pm Addthis Acting Energy Secretary Poneman (far left) stand with a team of young entrepreneurs from Brigham Young University -- the regional winners of the National Clean Energy Business Plan Competition. | Photo by Ilya Pupko, ILAsoft.net. Acting Energy Secretary Poneman (far left) stand with a team of young entrepreneurs from Brigham Young University -- the regional winners of the National Clean Energy Business Plan Competition. | Photo by Ilya Pupko, ILAsoft.net. Sean Sullivan Speechwriter, Office of Public Affairs. WANT MORE? Watch this video recap of the 2012 National Clean Energy Business Plan Competition finale. What makes America the world's leader in innovation and entrepreneurship?

31

Creating the Next Generation of Energy Efficient Technology | Department of  

Broader source: Energy.gov (indexed) [DOE]

Creating the Next Generation of Energy Efficient Technology Creating the Next Generation of Energy Efficient Technology Creating the Next Generation of Energy Efficient Technology Supporting Innovative Research to Help Reduce Energy Use and Advance Manufacturing Supporting Innovative Research to Help Reduce Energy Use and Advance Manufacturing The Emerging Technologies team partners with national laboratories, industry, and universities to advance research, development, and commercialization of energy efficient and cost effective building technologies. These partnerships help foster American ingenuity to develop cutting-edge technologies that have less than 5 years to market readiness, and contribute to the goal to reduce energy consumption by at least 50%. Research and Development Improve the energy efficiency of appliances, including

32

Meeting the Next Generation of Energy Entrepreneurs at MIT Showcase |  

Broader source: Energy.gov (indexed) [DOE]

Meeting the Next Generation of Energy Entrepreneurs at MIT Showcase Meeting the Next Generation of Energy Entrepreneurs at MIT Showcase Meeting the Next Generation of Energy Entrepreneurs at MIT Showcase May 6, 2011 - 12:50pm Addthis David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy Tuesday afternoon I had the honor of sharing the MIT Clean Energy Prize Showcase floor with 25 teams of America's most promising entrepreneurs. Representing the best in class from an initial field of 80, the finalists competing for this year's $200,000 grand prize exemplify the combination of technical prowess and passion for problem-solving that have consistently made the United States the world's innovation engine. Ever ready to rev that engine, the Department of Energy is a proud founding sponsor of this contest. A student-run, national business plan competition

33

Next-Generation Thermionic Solar Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

Microscale-enhanced thermionic emitters will enable high-efficiency, solar-to-electrical conversion by taking advantage of both heat and light. Image from Stanford University...

34

The Next Generation of Entrepreneurs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Next Generation of Entrepreneurs The Next Generation of Entrepreneurs The Next Generation of Entrepreneurs July 25, 2011 - 6:15pm Addthis Sarah Jane Maxted Special Assistant, Office of Energy Efficiency & Renewable Energy How can I participate? Students can apply or get more information on FedConnect (link to right in story) by looking up the reference number "DE-FOA-0000570." Applications are due on August 22, 2011. Entrepreneurs. Venture Capitalists. Clean energy. Competitions and funds. Separately, these words only say so much, but together they describe the Energy Department's efforts to support the best and brightest clean energy entrepreneurs as they work to push emerging, innovative clean energy technologies into the marketplace. Now, let's add two words -- universities and students. Throw that into the mix, and the result?

35

Developing a next generation community college curriculum for energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developing a next generation community college curriculum for energy Developing a next generation community college curriculum for energy efficiency high performance building operators Title Developing a next generation community college curriculum for energy efficiency high performance building operators Publication Type Conference Paper LBNL Report Number LBNL-56003 Year of Publication 2004 Authors Crabtree, Peter, Nick Kyriakopedi, Evan Mills, Philip Haves, Roland J. Otto, Mary Ann Piette, Peng Xu, Richard C. Diamond, Joseph J. Deringer, and Chuck Frost Conference Name 2004 Summer Study on Energy Efficiency in Buildings, American Council for an Energy Efficient Economy Date Published 08/2004 Conference Location Washington DC Abstract The challenges of increased technological demands in today's workplace require virtually all workers to develop higher-order cognitive skills including problem solving and systems thinking in order to be productive. Such "habits of mind" are viewed as particularly critical for success in the information-based workplace, which values reduced hierarchy, greater worker independence, teamwork, communications skills, non-routine problem solving, and understanding of complex systems. The need is particularly compelling in the buildings arena. To scope the problem, this paper presents the results of interviews and focus groups-conducted by Oakland California's Peralta Community College District and Lawrence Berkeley National Laboratory- in which approximately 50 industry stakeholders discussed contemporary needs for building operator education at the community college level. Numerous gaps were identified between the education today received by building operators and technicians and current workplace needs. The participants concurred that many of the problems seen today in achieving and maintaining energy savings in buildings can be traced to inadequacies in building operation and lack of awareness and knowledge about how existing systems are to be used, monitored, and maintained. Participants and others we interviewed affirmed that while these issues are addressed in various graduate-level and continuing education programs, they are virtually absent at the community college level. Based on that assessment of industry needs, we present a new curriculum and innovative simulation-based learning tool to provide technicians with skills necessary to commission and operate high-performance buildings, with particular emphasis on energy efficiency and indoor environmental quality in the context of HVAC&R equipment and control systems.

36

Training the Next Generation of Nuclear Energy Leaders | Department of  

Broader source: Energy.gov (indexed) [DOE]

Training the Next Generation of Nuclear Energy Leaders Training the Next Generation of Nuclear Energy Leaders Training the Next Generation of Nuclear Energy Leaders May 8, 2012 - 3:06pm Addthis University of Idaho professor Supathorn Phongikaroon works with a graduate student in the radiochemistry lab at the Center for Advanced Energy Studies in Idaho Falls, Idaho. Phongikaroon has received $820,000 from DOE to study an applied technology to remotely analyze spent nuclear fuel. | Photo courtesy of the University of Idaho. University of Idaho professor Supathorn Phongikaroon works with a graduate student in the radiochemistry lab at the Center for Advanced Energy Studies in Idaho Falls, Idaho. Phongikaroon has received $820,000 from DOE to study an applied technology to remotely analyze spent nuclear fuel. | Photo

37

Training the Next Generation of Nuclear Energy Leaders | Department of  

Broader source: Energy.gov (indexed) [DOE]

the Next Generation of Nuclear Energy Leaders the Next Generation of Nuclear Energy Leaders Training the Next Generation of Nuclear Energy Leaders May 8, 2012 - 3:06pm Addthis University of Idaho professor Supathorn Phongikaroon works with a graduate student in the radiochemistry lab at the Center for Advanced Energy Studies in Idaho Falls, Idaho. Phongikaroon has received $820,000 from DOE to study an applied technology to remotely analyze spent nuclear fuel. | Photo courtesy of the University of Idaho. University of Idaho professor Supathorn Phongikaroon works with a graduate student in the radiochemistry lab at the Center for Advanced Energy Studies in Idaho Falls, Idaho. Phongikaroon has received $820,000 from DOE to study an applied technology to remotely analyze spent nuclear fuel. | Photo

38

Energy Department Announces New Investment to Accelerate Next Generation  

Broader source: Energy.gov (indexed) [DOE]

to Accelerate Next to Accelerate Next Generation Biofuels Energy Department Announces New Investment to Accelerate Next Generation Biofuels July 1, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- Building on President Obama's plan to cut carbon pollution and announced this week, the Energy Department today announced four research and development projects to bring next generation biofuels on line faster and drive down the cost of producing gasoline, diesel and jet fuels from biomass. The projects - located in Oklahoma, Tennessee, Utah and Wisconsin - represent a $13 million Energy Department investment. "By partnering with private industry, universities and our national labs, we can increase America's energy security, bolster rural economic development and cut harmful carbon pollution from our cars, trucks and

39

Energy Department Announces Investment to Accelerate Next Generation  

Broader source: Energy.gov (indexed) [DOE]

Investment to Accelerate Next Investment to Accelerate Next Generation Biofuels Energy Department Announces Investment to Accelerate Next Generation Biofuels July 1, 2013 - 4:37pm Addthis Following last week's rollout of President Obama's plan to cut carbon pollution, the Energy Department today announced four research and development projects to bring next generation biofuels on line faster and drive down the cost of producing gasoline, diesel, and jet fuels from biomass. The projects-located in Oklahoma, Tennessee, Utah, and Wisconsin-represent a $13 million Energy Department investment. "By partnering with private industry, universities and our national labs, we can increase America's energy security, bolster rural economic development, and cut harmful carbon pollution from our cars, trucks and

40

Advancing Next-Generation Energy in Indian Country (Fact Sheet)  

SciTech Connect (OSTI)

This fact provides information on the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

Not Available

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Simulating the Next Generation of Energy Technologies | Department of  

Broader source: Energy.gov (indexed) [DOE]

Simulating the Next Generation of Energy Technologies Simulating the Next Generation of Energy Technologies Simulating the Next Generation of Energy Technologies September 22, 2010 - 6:40pm Addthis Former Under Secretary Koonin Former Under Secretary Koonin Director - NYU's Center for Urban Science & Progress and Former Under Secretary for Science When aerospace engineers design a new aircraft, they don't start with a prototype, they start with a computer. Computer simulations have revolutionized that industry, allowing engineers to make complex calculations and fine tune designs well before the first physical model is ever produced. All of this amounts to a production process that costs less and produces a commercial product much faster. It's an approach that has changed the way the aerospace industry operates, and it's one that we

42

Simulating the Next Generation of Energy Technologies | Department of  

Broader source: Energy.gov (indexed) [DOE]

Simulating the Next Generation of Energy Technologies Simulating the Next Generation of Energy Technologies Simulating the Next Generation of Energy Technologies September 22, 2010 - 6:40pm Addthis Former Under Secretary Koonin Former Under Secretary Koonin Director - NYU's Center for Urban Science & Progress and Former Under Secretary for Science When aerospace engineers design a new aircraft, they don't start with a prototype, they start with a computer. Computer simulations have revolutionized that industry, allowing engineers to make complex calculations and fine tune designs well before the first physical model is ever produced. All of this amounts to a production process that costs less and produces a commercial product much faster. It's an approach that has changed the way the aerospace industry operates, and it's one that we

43

Fueling the Next Generation of Vehicle Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fueling the Next Generation of Vehicle Technology Fueling the Next Generation of Vehicle Technology Fueling the Next Generation of Vehicle Technology February 6, 2013 - 11:20am Addthis Professor Jack Brouwer, Associate Director and Chief Technology Officer of the National Fuel Cell Research Center, points out the tri-generation facility that uses biogas from Orange County Sanitation District’s wastewater treatment plant to produce hydrogen, heat and power. | Photo courtesy of the Energy Department. Professor Jack Brouwer, Associate Director and Chief Technology Officer of the National Fuel Cell Research Center, points out the tri-generation facility that uses biogas from Orange County Sanitation District's wastewater treatment plant to produce hydrogen, heat and power. | Photo courtesy of the Energy Department.

44

Project Profile: High-Temperature Thermal Array for Next-Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Array for Next-Generation Solar Thermal Power Production Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production Los Alamos...

45

Next Generation Nuclear Plant: A Report to Congress | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress The U.S. Department of Energy's (DOE's) Next Generation Nuclear Plant (NGNP) project helps address the President's goals for reducing greenhouse gas emissions and enhancing energy security. The NGNP project was formally established by the Energy Policy Act of 2005 (EPAct 2005), designated as Public Law 109-58, 42 USC 16021, to demonstrate the generation of electricity and/or hydrogen with a high-temperature nuclear energy source. The project is being executed in collaboration with industry, DOE national laboratories, and U.S. universities. The U.S. Nuclear Regulatory Commission (NRC) is responsible for licensing and regulatory oversight of the demonstration nuclear reactor.

46

Next Generation Nuclear Plant: A Report to Congress | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress The U.S. Department of Energy's (DOE's) Next Generation Nuclear Plant (NGNP) project helps address the President's goals for reducing greenhouse gas emissions and enhancing energy security. The NGNP project was formally established by the Energy Policy Act of 2005 (EPAct 2005), designated as Public Law 109-58, 42 USC 16021, to demonstrate the generation of electricity and/or hydrogen with a high-temperature nuclear energy source. The project is being executed in collaboration with industry, DOE national laboratories, and U.S. universities. The U.S. Nuclear Regulatory Commission (NRC) is responsible for licensing and regulatory oversight of the demonstration nuclear reactor.

47

High-Efficiency Operation of High-Frequency DCDC Conversion for Next-Generation Microprocessors  

E-Print Network [OSTI]

High-Efficiency Operation of High-Frequency DCDC Conversion for Next-Generation Microprocessors current slew rate during load transients: all leading to faster energy transfer and better transient ZVS for majority-carrier power devices [3]. In this paper, the design of a ZVS quasi-square-wave (ZVS

Ng, Wai Tung

48

Next Generation Power Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Next Generation Power Systems Inc Next Generation Power Systems Inc Jump to: navigation, search Name Next Generation Power Systems Inc. Place Pipestone, Minnesota Zip 56164 Sector Services, Wind energy Product NextGen is a full-service company that provides site analysis, maintenance, and installation services for small-scale wind turbines and PV systems. Coordinates 43.99413°, -96.317104° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.99413,"lon":-96.317104,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

Enabling the Next Generation of High Efficiency Engines  

Broader source: Energy.gov [DOE]

Discusses challenges and opportunities for next generation internal combustion engines, and developments for further pushing the limits of engine efficiency and vehicle fuel economy

50

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...

51

SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-Generation Thermionic Solar Next-Generation Thermionic Solar Energy Conversion to someone by E-mail Share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Facebook Tweet about SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Twitter Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Google Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Delicious Rank SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Digg Find More places to share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload

52

Next Generation of Government Summit | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Next Generation of Government Summit Next Generation of Government Summit Next Generation of Government Summit July 25, 2013 9:15AM EDT to July 26, 2013 5:15PM EDT Washington DC GovLoop and Young Government Leaders will hold its 4th Annual Next Generation of Government Summit from July 25 to July 26, 2013, in Washington, DC. The theme for the conference is 2013 Next Generation of Government Training Summit: Developing the 21st Century Government Leader. Next Generation of Government Summit qualifies as training in compliance with 5 U.S.C. chapter 41. The training is open to all Federal employees and will provide training and workshops in such areas as Project Management, Innovation, Analytics and Decision-Making, and Career Development. Before participating, Federal employees and managers should review

53

Next Generation Building Envelope Materials | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Envelope Materials Next Generation Building Envelope Materials Addthis 1 of 3 Vacuum insulation panels (left); Modified atmosphere panels (right) Image: Oak Ridge National...

54

Next Generation Diesel Engine Control | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Control Next Generation Diesel Engine Control Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007,...

55

Department of Energy Announces $40 Million to Develop the Next Generation  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Announces $40 Million to Develop the Next Department of Energy Announces $40 Million to Develop the Next Generation Nuclear Plant Department of Energy Announces $40 Million to Develop the Next Generation Nuclear Plant March 8, 2010 - 12:00am Addthis WASHINGTON, DC - U.S. Secretary of Energy Steven Chu today announced selections for the award of approximately $40 million in total to two teams led by Pittsburgh-based Westinghouse Electric Co. and San Diego-based General Atomics for conceptual design and planning work for the Next Generation Nuclear Plant (NGNP). The results of this work will help the Administration determine whether to proceed with detailed efforts toward construction and demonstration of the NGNP. If successful, the NGNP Demonstration Project will demonstrate high-temperature gas-cooled reactor

56

SLAC Next-Generation High Availability Power Supply  

SciTech Connect (OSTI)

SLAC recently commissioned forty high availability (HA) magnet power supplies for Japan's ATF2 project. SLAC is now developing a next-generation N+1 modular power supply with even better availability and versatility. The goal is to have unipolar and bipolar output capability. It has novel topology and components to achieve very low output voltage to drive superconducting magnets. A redundant, embedded, digital controller in each module provides increased bandwidth for use in beam-based alignment, and orbit correction systems. The controllers have independent inputs for connection to two external control nodes. Under fault conditions, they sense failures and isolate the modules. Power supply speed mitigates the effects of fault transients and obviates subsequent magnet standardization. Hot swap capability promises higher availability and other exciting benefits for future, more complex, accelerators, and eventually the International Linear Collider project.

Bellomo, P.; MacNair, D.; /SLAC; ,

2010-06-11T23:59:59.000Z

57

Department of Energy Announces $40 Million to Develop the Next Generation  

Broader source: Energy.gov (indexed) [DOE]

0 Million to Develop the Next 0 Million to Develop the Next Generation Nuclear Plant Department of Energy Announces $40 Million to Develop the Next Generation Nuclear Plant March 8, 2010 - 12:00am Addthis WASHINGTON, DC - U.S. Secretary of Energy Steven Chu today announced selections for the award of approximately $40 million in total to two teams led by Pittsburgh-based Westinghouse Electric Co. and San Diego-based General Atomics for conceptual design and planning work for the Next Generation Nuclear Plant (NGNP). The results of this work will help the Administration determine whether to proceed with detailed efforts toward construction and demonstration of the NGNP. If successful, the NGNP Demonstration Project will demonstrate high-temperature gas-cooled reactor technology that will be capable of producing electricity as well as process

58

Department of Energy Announces $40 Million to Develop the Next Generation  

Broader source: Energy.gov (indexed) [DOE]

40 Million to Develop the Next 40 Million to Develop the Next Generation Nuclear Plant Department of Energy Announces $40 Million to Develop the Next Generation Nuclear Plant March 9, 2010 - 12:47pm Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Steven Chu today announced selections for the award of approximately $40 million in total to two teams led by Pittsburgh-based Westinghouse Electric Co. and San Diego-based General Atomics for conceptual design and planning work for the Next Generation Nuclear Plant (NGNP). The results of this work will help the Administration determine whether to proceed with detailed efforts toward construction and demonstration of the NGNP. If successful, the NGNP Demonstration Project will demonstrate high-temperature gas-cooled reactor technology that will be capable of producing electricity as well as process

59

Department of Energy Awards $425 Million for Next Generation Supercomputing Technologies  

Broader source: Energy.gov [DOE]

WASHINGTON U.S. Secretary of Energy Ernest Moniz today announced two new High Performance Computing (HPC) awards to put the nation on a fast-track to next generation exascale computing, which will help to advance U.S. leadership in scientific research and promote Americas economic and national security.

60

Control Speculation for Energy-Efficient Next-Generation Superscalar Processors  

E-Print Network [OSTI]

, and electro-migration diffusion [21]. To keep temperature under control, high performance processors requireControl Speculation for Energy-Efficient Next-Generation Superscalar Processors Juan L. Arago, or disabling the selection logic) depending on the branch prediction confidence level. Results show

Aragón Alcaraz, Juan Luis

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Graphene, Hydrogen and Next-Generation Electronics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Graphene, Hydrogen and Next-Generation Electronics Graphene, Hydrogen and Next-Generation Electronics Graphene, Hydrogen and Next-Generation Electronics July 22, 2011 - 5:32pm Addthis Graphene grains in several different shapes, controlled by hydrogen. | Courtesy of Oak Ridge National Laboratory Graphene grains in several different shapes, controlled by hydrogen. | Courtesy of Oak Ridge National Laboratory A team of Oak Ridge National Laboratory (ORNL) and New Mexico State University researchers have developed a new approach to growing graphene (one-atom thick carbon sheets) that can help advance next-generation electronics including batteries, transistors and computer chips. Growing graphene usually involves a process called chemical vapor deposition method that produces irregularly shaped grains. Little was known

62

Graphene, Hydrogen and Next-Generation Electronics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Graphene, Hydrogen and Next-Generation Electronics Graphene, Hydrogen and Next-Generation Electronics Graphene, Hydrogen and Next-Generation Electronics July 22, 2011 - 5:32pm Addthis Graphene grains in several different shapes, controlled by hydrogen. | Courtesy of Oak Ridge National Laboratory Graphene grains in several different shapes, controlled by hydrogen. | Courtesy of Oak Ridge National Laboratory A team of Oak Ridge National Laboratory (ORNL) and New Mexico State University researchers have developed a new approach to growing graphene (one-atom thick carbon sheets) that can help advance next-generation electronics including batteries, transistors and computer chips. Growing graphene usually involves a process called chemical vapor deposition method that produces irregularly shaped grains. Little was known

63

The Next Generation of Scientists | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Next Generation of Scientists The Next Generation of Scientists The Next Generation of Scientists August 5, 2010 - 11:23am Addthis Director Brinkman Director Brinkman Director of the Office of Science The DOE Office of Science Graduate Fellowship program, a $22.7 million program to support outstanding students pursing graduate training in the sciences, received an infusion of $12.5 million from the American Recovery and Reinvestment Act. As a result, 150 graduate students will receive a three-year graduate fellowship, which includes tuition, living expenses, and research support. The Graduate Fellowship program reflects the Office of Science's strong commitment to our nation and complements the President's mission to support math and science education, especially in areas of national need

64

Energy-Efficient Next-Generation Networks (E2 Pulak Chowdhury  

E-Print Network [OSTI]

Energy-Efficient Next-Generation Networks (E2 NGN) By Pulak Chowdhury B.S. (Bangladesh University Prototype . . . . . . . . . . . . . . . . 57 3.3.1 Resources Needed

California at Davis, University of

65

Energy Consumption of Next-Generation Optical-Wireless Converged Networks  

Science Journals Connector (OSTI)

We compare three different plausible architectures for next-generation optical-wireless convergence in energy conservation viewpoint. Our analysis provides insight into QoS rich...

Ranaweera, Chathurika; Lim, Christina; Wong, Elaine; Nirmalathas, Ampalavanapillai; Jayasundara, Chamil L

66

Energy Department Announces Funding to Develop Improved Next Generation HVAC Systems  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced nearly $8 million to support research and development of the next generation of heating, ventilating, and air conditioning technologies.

67

Energy Department Announces $4.4 Million to Support Next-Generation Advanced Hydropower Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $4.4 million to support the application of advanced materials and manufacturing techniques to the development of next-generation hydropower technologies.

68

Energy Reductions Using Next-Generation Remanufacturing Techniques  

SciTech Connect (OSTI)

The goal of this project was to develop a radically new surface coating approach that greatly enhances the performance of thermal spray coatings. Rather than relying on a roughened grit blasted substrate surface for developing a mechanical bond between the coating and substrate, which is the normal practice with conventional thermal spraying, a hybrid approach of combining a focused laser beam to thermally treat the substrate surface in the vicinity of the rapidly approaching thermally-sprayed powder particles was developed. This new surface coating process is targeted primarily at enabling remanufacturing of components used in engines, drive trains and undercarriage systems; thereby providing a substantial global opportunity for increasing the magnitude and breadth of parts that are remanufactured through their life cycle, as opposed to simply being replaced by new components. The projected benefits of a new remanufacturing process that increases the quantity of components that are salvaged and reused compared to being fabricated from raw materials will clearly vary based on the specific industry and range of candidate components that are considered. At the outset of this project two different metal processing routes were considered, castings and forgings, and the prototypical components for each process were liners and crankshafts, respectively. The quantities of parts used in the analysis are based on our internal production of approximately 158,000 diesel engines in 2007. This leads to roughly 1,000,000 liners (assuming a mixture of 6- and 8-cylinder engines) and 158,000 crankshafts. Using energy intensity factors for casting and forgings, respectively, of 4450 and 5970 Btu-hr/lb along with the energy-induced CO2 generation factor of 0.00038 lbs CO2/Btu, energy savings of over 17 trillion BTUs and CO2 reductions of over 6.5 million lbs could potentially be realized by remanufacturing the above mentioned quantities of crankshafts and liners. This project supported the Industrial Technologies Program's initiative titled 'Industrial Energy Efficiency Grand Challenge.' To contribute to this Grand Challenge, we. pursued an innovative processing approach for the next generation of thermal spray coatings to capture substantial energy savings and green house gas emission reductions through the remanufacturing of steel and aluminum-based components. The primary goal was to develop a new thermal spray coating process that yields significantly enhanced bond strength. To reach the goal of higher coating bond strength, a laser was coupled with a traditional twin-wire arc (TWA) spray gun to treat the component surface (i.e., heat or partially melt) during deposition. Both ferrous and aluminum-based substrates and coating alloys were examined to determine what materials are more suitable for the laser-assisted twin-wire arc coating technique. Coating adhesion was measured by static tensile and dynamic fatigue techniques, and the results helped to guide the identification of appropriate remanufacturing opportunities that will now be viable due to the increased bond strength of the laser-assisted twin-wire arc coatings. The feasibility of the laser-assisted TWA (LATWA) process was successfully demonstrated in this current effort. Critical processing parameters were identified, and when these were properly controlled, a strong, diffusion bond was developed between the substrate and the deposited coating. Consequently, bond strengths were nearly doubled over those typically obtained using conventional grit-blast TWA coatings. Note, however, that successful LATWA processing was limited to ferrous substrates coated with steel coatings (e.g., 1020 and 1080 steel). With Al-based substrates, it was not possible to avoid melting a thin layer of the substrate during spraying, and this layer re-solidified to form a band of intermetallic phases at the substrate/coating interface, which significantly diminished the coating adhesion. The capability to significantly increase the bond strength with ferrous substrates and coatings may open new reman

Sordelet, Daniel; Racek, Ondrej

2012-02-24T23:59:59.000Z

69

Energy Department Announces $45 Million to Advance Next-Generation Vehicle  

Broader source: Energy.gov (indexed) [DOE]

$45 Million to Advance Next-Generation $45 Million to Advance Next-Generation Vehicle Technologies Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies September 4, 2013 - 12:00pm Addthis Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies Thirty-eight projects will accelerate the research and development of technologies to improve vehicle fuel efficiency, lower transportation costs, and cut carbon pollution. Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies Thirty-eight projects will accelerate the research and development of technologies to improve vehicle fuel efficiency, lower transportation costs, and cut carbon pollution. Building on President Obama's Climate Action Plan to build a 21st century

70

Paving the path for next-generation nuclear energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Paving the path for next-generation nuclear energy Paving the path for next-generation nuclear energy Paving the path for next-generation nuclear energy May 6, 2013 - 2:26pm Addthis Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Deputy Assistant Secretary Kelly Deputy Assistant Secretary Kelly Deputy Assistant Secretary for Nuclear Reactor Technologies Nuclear power reactors currently under construction worldwide boast modern safety and operational enhancements that were designed by the global nuclear energy industry and enhanced through research and development (R&D)

71

Investing in the Next Generation of U.S. Nuclear Energy Leaders |  

Broader source: Energy.gov (indexed) [DOE]

the Next Generation of U.S. Nuclear Energy Leaders the Next Generation of U.S. Nuclear Energy Leaders Investing in the Next Generation of U.S. Nuclear Energy Leaders August 9, 2011 - 5:12pm Addthis Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy As part of the Energy Department's Nuclear Energy University Programs (NEUP) annual workshop, I met today with professors from across the country and announced awards of up to $39 million for research projects aimed at developing cutting-edge nuclear energy technologies. The awards will also help train and educate the next generation of nuclear industry leaders in the U.S. These projects, led by 31 universities in more than 20 states, will help to enable the safe, secure and sustainable expansion of nuclear energy in the United States.

72

Department of Energy to Invest More than $21 Million for Next Generation  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy to Invest More than $21 Million for Next Department of Energy to Invest More than $21 Million for Next Generation Solar Energy Projects Department of Energy to Invest More than $21 Million for Next Generation Solar Energy Projects November 8, 2007 - 4:31pm Addthis 25 Cutting Edge Projects Target Enhanced Solar Energy Efficiency WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that the Department will invest $21.7 million in next generation photovoltaic (PV) technology to help accelerate the widespread use of advanced solar power. The 25 projects that DOE selected as part of this Funding Opportunity Announcement, Next Generation Photovoltaic Devices & Processes, are an integral part of the President's Solar America Initiative, which aims to make solar energy cost-competitive with

73

Next Generation Rooftop Unit  

Broader source: Energy.gov (indexed) [DOE]

Next Generation Rooftop Unit - Next Generation Rooftop Unit - CRADA Bo Shen Oak Ridge National Laboratory shenb@ornl.gov; 865-574-5745 April 3, 2013 ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030. CRADA project with Trane TOP US Commercial HVAC Equipment OEM 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: half of all US commercial floor space cooled by packaged AC units, consumes more than 1.0 Quad source energy/year; highly efficient systems needed

74

Next Generation Rooftop Unit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Rooftop Unit - Next Generation Rooftop Unit - CRADA Bo Shen Oak Ridge National Laboratory shenb@ornl.gov; 865-574-5745 April 3, 2013 ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030. CRADA project with Trane TOP US Commercial HVAC Equipment OEM 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: half of all US commercial floor space cooled by packaged AC units, consumes more than 1.0 Quad source energy/year; highly efficient systems needed

75

Department of Energy to Invest More than $21 Million for Next Generation  

Broader source: Energy.gov (indexed) [DOE]

More than $21 Million for Next More than $21 Million for Next Generation Solar Energy Projects Department of Energy to Invest More than $21 Million for Next Generation Solar Energy Projects November 8, 2007 - 4:31pm Addthis 25 Cutting Edge Projects Target Enhanced Solar Energy Efficiency WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that the Department will invest $21.7 million in next generation photovoltaic (PV) technology to help accelerate the widespread use of advanced solar power. The 25 projects that DOE selected as part of this Funding Opportunity Announcement, Next Generation Photovoltaic Devices & Processes, are an integral part of the President's Solar America Initiative, which aims to make solar energy cost-competitive with

76

NASA/FPL Renewable Project Case Study: Space Coast Next Generation Solar Energy Center  

Broader source: Energy.gov [DOE]

Presentation covers the NASA/FPL Renewable Project Case Study: Space Coast Next Generation Solar Energy Center given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting in...

77

U.S. Department of Energy Partners with the Next Generation Lighting Industry Alliance  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) and the Next Generation Lighting Industry Alliance (NGLIA) signed a Memorandum of Agreement (MOA) to support the development and commercialization of SSL...

78

Articles about Next-Generation Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

teamed with the Fraunhofer Institute for Wind Energy and Energy System Technology in Germany to lead an international effort under the International Energy Agency's Task 30 to...

79

Inspiring and Building the Next Generation of Residential Energy...  

Energy Savers [EERE]

initiatives and programs, such as the Guidelines for Home Energy Professionals, Solar Decathlon, and the Energy Department's recent Challenge Home Student Design...

80

DeSoto Next Generation Solar Energy Center Solar Power Plant | Open Energy  

Open Energy Info (EERE)

Next Generation Solar Energy Center Solar Power Plant Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name DeSoto Next Generation Solar Energy Center Solar Power Plant Facility DeSoto Next Generation Solar Energy Center Sector Solar Facility Type Photovoltaic Developer FPL Energy Location DeSoto County, Florida Coordinates 27.2142078°, -81.7787021° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.2142078,"lon":-81.7787021,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Enabling the Next Generation of High Efficiency Engines  

Broader source: Energy.gov (indexed) [DOE]

optimization methods, and reduced models for on-board controls 15 Leadership High Performance Computing* (HPC) has potential to accelerate design and development at an...

82

Next-Generation Power Electronics: Reducing Energy Waste and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Addthis Watch the video above to learn how wide bandgap semiconductors could impact clean energy technology and our daily lives. | Video by Sarah Gerrity and Matty Greene,...

83

ENERGY SAVING OPPORTUNITIES IN NEXT-GENERATION NETWORKS  

Science Journals Connector (OSTI)

Abstract (40-Word Limit): Network energy consumption involves aspects ranging from architecture and technology choices down to pure equipment design issues. Different opportunities for...

Skubic, Bjrn

84

proactive energy management for next-generation building systems  

E-Print Network [OSTI]

Mar 3, 2010 ... Abstract: We present a proactive energy management framework that ... capture net-metering interactions using agent-based market models.

Victor M Zavala

2010-03-03T23:59:59.000Z

85

Department of Energy Announces Funding to Support the Next Generation...  

Energy Savers [EERE]

efficiency, industrial efficiency, vehicles, fuel cells, biomass, geothermal, solar energy, and wind or water power. The Postdoctoral Fellowship Program will support research...

86

Intelligent Efficiency: the Next Generation of Energy Efficiency  

E-Print Network [OSTI]

studies to illustrate its impact. This paper will focus on the manufacturing sector, but examples include commercial building energy management, industrial automation, and transportation infrastructure. This paper will discuss how these technologies work...

Trombley,D.; Molina, M.; Elliot, R. N.

2012-01-01T23:59:59.000Z

87

Next Generation Photovoltaics Round 2 | Department of Energy  

Office of Environmental Management (EM)

(Zn,Mg)Cu oxysulfide solar absorber material with the potential to reach and exceed 20% energy conversion efficiency. The research team is substantially modifying the Cu2O base...

88

High Performance Fuel Desing for Next Generation Pressurized Water Reactors  

SciTech Connect (OSTI)

The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

Mujid S. Kazimi; Pavel Hejzlar

2006-01-31T23:59:59.000Z

89

Project Profile: Next-Generation Thermionic Solar Energy Conversion  

Broader source: Energy.gov [DOE]

Stanford University and the SLAC National Accelerator Laboratory, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), is designing and testing an innovative high-temperature power cycle for CSP systems that does not require any mechanical equipment, resulting in reduced maintenance costs. In addition, the system can be integrated with conventional CSP cycles to create ultra-efficient plants.

90

Miles Below the Earth: The Next-Generation of Geothermal Energy |  

Broader source: Energy.gov (indexed) [DOE]

Miles Below the Earth: The Next-Generation of Geothermal Energy Miles Below the Earth: The Next-Generation of Geothermal Energy Miles Below the Earth: The Next-Generation of Geothermal Energy February 7, 2011 - 12:34pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What will the project do? Enhanced geothermal systems (EGS) essentially create man-made reservoirs that mimic naturally occurring pockets of steam- with the potential for use as a reliable, 24/7 source of renewable energy. For more than a century, traditional geothermal power plants have been generating electricity by extracting pockets of steam found miles below the Earth's surface. Until recently though, those plants could only be constructed in locations where pockets of steam had formed naturally. Enhanced geothermal systems (EGS) have been crafted to solve that problem

91

Martin Next Generation Solar Energy Center Solar Power Plant | Open Energy  

Open Energy Info (EERE)

Center Solar Power Plant Center Solar Power Plant Jump to: navigation, search Name Martin Next Generation Solar Energy Center Solar Power Plant Facility Martin Next Generation Solar Energy Center Sector Solar Facility Type Concentrating Solar Power Facility Status In Service Developer FPL Energy Location Martin County, Florida Coordinates 27.051214°, -80.553389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.051214,"lon":-80.553389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

92

Energy Department Announces Indoor Lighting Winners of Next Generation Luminaires Solid-State Lighting Design Competition  

Broader source: Energy.gov [DOE]

As part of the Obama Administrations efforts to reduce energy waste in U.S. buildings and help save Americans money by saving energy, the Energy Department today announced the winners of the sixth annual Next Generation LuminairesTM (NGL) design competition for indoor lighting at the LED Show in Los Angeles.

93

Probing dark energy with the next generation X-ray surveys of galaxy clusters  

Science Journals Connector (OSTI)

......Papers Probing dark energy with the next generation X-ray surveys of galaxy clusters...optical [e.g. Dark Energy Survey (DES),3 EUCLID...X-ray cluster surveys for the class of...called early dark energy (EDE; Wetterich......

B. Sartoris; S. Borgani; P. Rosati; J. Weller

2012-07-01T23:59:59.000Z

94

Next-Generation Photon Sources for Grand Challenges in Science and Energy  

SciTech Connect (OSTI)

The next generation of sustainable energy technologies will revolve around transformational new materials and chemical processes that convert energy efficiently among photons, electrons, and chemical bonds. New materials that tap sunlight, store electricity, or make fuel from splitting water or recycling carbon dioxide will need to be much smarter and more functional than today's commodity-based energy materials. To control and catalyze chemical reactions or to convert a solar photon to an electron requires coordination of multiple steps, each carried out by customized materials and interfaces with designed nanoscale structures. Such advanced materials are not found in nature the way we find fossil fuels; they must be designed and fabricated to exacting standards, using principles revealed by basic science. Success in this endeavor requires probing, and ultimately controlling, the interactions among photons, electrons, and chemical bonds on their natural length and time scales. Control science - the application of knowledge at the frontier of science to control phenomena and create new functionality - realized through the next generation of ultraviolet and X-ray photon sources, has the potential to be transformational for the life sciences and information technology, as well as for sustainable energy. Current synchrotron-based light sources have revolutionized macromolecular crystallography. The insights thus obtained are largely in the domain of static structure. The opportunity is for next generation light sources to extend these insights to the control of dynamic phenomena through ultrafast pump-probe experiments, time-resolved coherent imaging, and high-resolution spectroscopic imaging. Similarly, control of spin and charge degrees of freedom in complex functional materials has the potential not only to reveal the fundamental mechanisms of high-temperature superconductivity, but also to lay the foundation for future generations of information science. This report identifies two aspects of energy science in which next-generation ultraviolet and X-ray light sources will have the deepest and broadest impact: (1) The temporal evolution of electrons, spins, atoms, and chemical reactions, down to the femtosecond time scale. (2) Spectroscopic and structural imaging of nano objects (or nanoscale regions of inhomogeneous materials) with nanometer spatial resolution and ultimate spectral resolution. The dual advances of temporal and spatial resolution promised by fourth-generation light sources ideally match the challenges of control science. Femtosecond time resolution has opened completely new territory where atomic motion can be followed in real time and electronic excitations and decay processes can be followed over time. Coherent imaging with short-wavelength radiation will make it possible to access the nanometer length scale, where intrinsic quantum behavior becomes dominant. Performing spectroscopy on individual nanometer-scale objects rather than on conglomerates will eliminate the blurring of the energy levels induced by particle size and shape distributions and reveal the energetics of single functional units. Energy resolution limited only by the uncertainty relation is enabled by these advances. Current storage-ring-based light sources and their incremental enhancements cannot meet the need for femtosecond time resolution, nanometer spatial resolution, intrinsic energy resolution, full coherence over energy ranges up to hard X-rays, and peak brilliance required to enable the new science outlined in this report. In fact, the new, unexplored territory is so expansive that no single currently imagined light source technology can fulfill the whole potential. Both technological and economic challenges require resolution as we move forward. For example, femtosecond time resolution and high peak brilliance are required for following chemical reactions in real time, but lower peak brilliance and high repetition rate are needed to avoid radiation damage in high-resolution spatial imaging and to avoid space-charge broadenin

None

2009-05-01T23:59:59.000Z

95

Space Coast Next Generation Solar Energy Center Solar Power Plant | Open  

Open Energy Info (EERE)

Space Coast Next Generation Solar Energy Center Solar Power Plant Space Coast Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Space Coast Next Generation Solar Energy Center Solar Power Plant Facility Space Coast Next Generation Solar Energy Center Sector Solar Facility Type Photovoltaic Developer FPL Energy Location Orlando, Florida Coordinates 28.5383355°, -81.3792365° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.5383355,"lon":-81.3792365,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

96

NASA/FPL Renewable Project Case Study: Space Coast Next Generation Solar Energy Center  

Broader source: Energy.gov (indexed) [DOE]

NASA/FPL Renewable Project: NASA/FPL Renewable Project: Space Coast Next Generation Solar Energy Center Biloxi, MS - FUPWG April 5-6. 2009 Gene Beck Corporate Manager, Governmental Accounts Mark Hillman Executive Account Manger With over $9 billion already invested, FPL Group is the world leader in renewable energy FPL Group's renewable energy portfolio With over $9 billion already invested, FPL Group is the world leader in renewable energy FPL Group's renewable energy portfolio With over $9 billion already invested, FPL Group is the world leader in renewable energy FPL Group's renewable energy portfolio FPL has started construction on the world's first hybrid energy center in Martin County Martin Next Generation Solar Energy Project Total Facility = approx 11,300 acres Solar Field = approx 500 acres

97

Laboratory Glass Columns "Next Generation" technology for high-performance preparative chromatography  

E-Print Network [OSTI]

SNAP ® Laboratory Glass Columns "Next Generation" technology for high-performance preparative lesiones graves o la muerte! WARNING Glass SNAP® columns are intended for use in a liquid environment disassembly or cleaning for scratches, chips or defects, particularly on the glass surfaces. DO NOT use column

Lebendiker, Mario

98

Department of Energy Announces Funding to Support the Next Generation of  

Broader source: Energy.gov (indexed) [DOE]

to Support the Next to Support the Next Generation of American Scientists and Engineers Department of Energy Announces Funding to Support the Next Generation of American Scientists and Engineers March 10, 2011 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced the launch of two new fellowship programs designed to attract the country's best and brightest scientific minds to work on advanced clean energy technologies. The two fellowship programs - the Postdoctoral Fellowships Program and the SunShot Initiative Fellowships Program - will prepare budding scientists and engineers for careers in clean energy. These programs will increase American economic competitiveness and support job growth by promoting science, technology, engineering, and math (STEM)

99

Next Generation CANDU Performance Assurance  

SciTech Connect (OSTI)

AECL is developing a next generation CANDU design to meet market requirements for low cost, reliable energy supplies. The primary product development objective is to achieve a capital cost substantially lower than the current nuclear plant costs, such that the next generation plant will be competitive with alternative options for large-scale base-load electricity supply. However, other customer requirements, including safety, low-operating costs and reliable performance, are being addressed as equally important design requirements. The main focus of this paper is to address the development directions that will provide performance assurance. The next generation CANDU is an evolutionary extension of the proven CANDU 6 design. There are eight CANDU 6 units in operation in four countries around the world and further three units are under construction. These units provide a sound basis for projecting highly reliable performance for the next generation CANDU. In addition, the next generation CANDU program includes development and qualification activities that will address the new features and design extensions in the advanced plant. To limit product development risk and to enhance performance assurance, the next generation CANDU design features and performance parameters have been carefully reviewed during the concept development phase and have been deliberately selected so as to be well founded on the existing CANDU knowledge base. Planned research and development activities are required only to provide confirmation of the projected performance within a modest extension of the established database. Necessary qualification tests will be carried out within the time frame of the development program, to establish a proven design prior to the start of a construction project. This development support work coupled with ongoing AECL programs to support and enhance the performance and reliability of the existing CANDU plants will provide sound assurance that the next generation CANDU plants will meet customer expectations. (authors)

Wren, David J.; Allsop, P.J.; Hopwood, J.M. [Atomic Energy of Canada Ltd., Ontario (Canada)

2002-07-01T23:59:59.000Z

100

The Next Generation Safeguards Initiative s High-Purity Uranium-233 Preservation Effort  

SciTech Connect (OSTI)

High-purity 233U serves as a crucial reference material for accurately quantifying and characterizing uranium. The most accurate analytical results which can be obtained only with high-purity 233U certified reference material (CRM) are required when used to confirm compliance with international safeguards obligations and international nonproliferation agreements. The U.S. supply of 233U CRM is almost depleted, and existing domestic stocks of this synthetic isotope are scheduled to be down-blended for disposition with depleted uranium beginning in 2015. Down blending batches of high-purity 233U will permanently eliminate the value of this material as a CRM. Furthermore, no replacement 233U stocks are expected to be produced in the future due to a lack of operating production capability and the high cost of replacing such capability. Therefore, preserving select batches of high-purity 233U is of great value and will assist in retaining current analytical capabilities for uranium-bearing samples. Any organization placing a priority on accurate results of uranium analyses, or on the confirmation of trace uranium in environmental samples, has a vested interest in preserving this material. This paper describes the need for high-purity 233U, the consequences organizations and agencies face if this material is not preserved, and the progress and future plans for preserving select batches of the purest 233U materials from disposition. This work is supported by the Next Generation Safeguards Initiative, Office of Nonproliferation and International Security, National Nuclear Security Administration.

Krichinsky, Alan M [ORNL] [ORNL; Bostick, Debra A [ORNL] [ORNL; Giaquinto, Joseph [ORNL] [ORNL; Bayne, Charles [Hazelwood Services and Manufacturing] [Hazelwood Services and Manufacturing; Goldberg, Dr. Steven A. [DOE SC - Chicago Office] [DOE SC - Chicago Office; Humphrey, Dr. Marc [U.S. Department of Energy, NNSA] [U.S. Department of Energy, NNSA; Hutcheon, Dr. Ian D. [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Sobolev, Taissa [U.S. Department of Energy, NNSA] [U.S. Department of Energy, NNSA

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Department Announces Outdoor Winners of Next Generation Luminaires Solid-State Lighting Design Competition  

Office of Energy Efficiency and Renewable Energy (EERE)

The 2013 Next Generation LuminairesTM (NGL) Design Competition outdoor lighting category winners were announced Wednesday night at the Strategies in Light conference in Santa Clara, California. The...

102

Next Generation Photovoltaics 3  

Broader source: Energy.gov [DOE]

SunShot's next generation PV projects investigate transformational photovoltaic (PV) technologies with the potential to meet SunShot cost targets. The projects' goals are to: Increase efficiency Reduce costs Improve reliability Create more secure and sustainable supply chains. On October 22, 2014, SunShot awarded more than $14 million to 10 research institutions to meet or exceed SunShot targets by improving performance, efficiency, and durability of solar PV devices. The R&D projects will explore a spectrum of leading-edge solutions, from new high-performance materials like perovskites to novel techniques for creating solar cells with high efficiency and lower manufacturing cost. Learn more about the second round of SunShot's Next Generations Photolvoltaics funding program, or find other PV competitive award programs.

103

Articles about Next-Generation Technologies  

Broader source: Energy.gov [DOE]

Stories about next-generation technologies featured by the U.S. Department of Energy (DOE) Wind Program.

104

July 24, 2009, Visiting Speakers Program - The Next Generation of Regulation for High-Reliability Organizations by HON. John Bresland  

Broader source: Energy.gov (indexed) [DOE]

Next Generation of Regulation for Next Generation of Regulation for High-Reliability Organizations National Academy of Public Administration Washington, DC July 24, 2009 John Bresland Chairman United States Chemical Safety Board www.csb.gov What is a High Reliability Organization? * Management commitment * The right equipment * The right people * Standard procedures and training * Accountability * Employee feedback * Emergency response preparation * Leadership - must "walk the walk" www.csb.gov 2 * 3 www.csb.gov Are these HROs? www.csb.gov WEST PHARMACEUTICAL INVESTIGATION - 1/29/2003 www.csb.gov www.csb.gov 7 www.csb.gov Imperial Sugar Company Refinery, Port Wentworth, Georgia February 7, 2008 www.csb.gov 8 T2 Laboratories Jacksonville, Florida December 19, 2007 www.csb.gov www.csb.gov

105

An evaluation of possible next-generation high temperature molten-salt power towers.  

SciTech Connect (OSTI)

Since completion of the Solar Two molten-salt power tower demonstration in 1999, the solar industry has been developing initial commercial-scale projects that are 3 to 14 times larger. Like Solar Two, these initial plants will power subcritical steam-Rankine cycles using molten salt with a temperature of 565 C. The main question explored in this study is whether there is significant economic benefit to develop future molten-salt plants that operate at a higher receiver outlet temperature. Higher temperatures would allow the use of supercritical steam cycles that achieve an improved efficiency relative to today's subcritical cycle ({approx}50% versus {approx}42%). The levelized cost of electricity (LCOE) of a 565 C subcritical baseline plant was compared with possible future-generation plants that operate at 600 or 650 C. The analysis suggests that {approx}8% reduction in LCOE can be expected by raising salt temperature to 650 C. However, most of that benefit can be achieved by raising the temperature to only 600 C. Several other important insights regarding possible next-generation power towers were also drawn: (1) the evaluation of receiver-tube materials that are capable of higher fluxes and temperatures, (2) suggested plant reliability improvements based on a detailed evaluation of the Solar Two experience, and (3) a thorough evaluation of analysis uncertainties.

Kolb, Gregory J.

2011-12-01T23:59:59.000Z

106

24 Universities Receiving Funding to Train Next Generation of...  

Broader source: Energy.gov (indexed) [DOE]

4 Universities Receiving Funding to Train Next Generation of Energy Efficiency Experts 24 Universities Receiving Funding to Train Next Generation of Energy Efficiency Experts...

107

Next-generation transcriptome assembly  

E-Print Network [OSTI]

technologies - the next generation. Nat Rev Genet 11, 31-algorithms for next-generation sequencing data. Genomicsassembly from next- generation sequencing data. Genome Res

Martin, Jeffrey A.

2012-01-01T23:59:59.000Z

108

Simulation of cardiac electrophysiology on next-generation high-performance computers  

Science Journals Connector (OSTI)

...issues, are described. cardiac simulation|high-performance computing|finite elements|spectral elements|adaptive...adaptivity, the FE method is preferred in the high-performance computing (HPC) strategy described in this work. On...

2009-01-01T23:59:59.000Z

109

An energy-aware dynamic RWA framework for next-generation wavelength-routed networks  

E-Print Network [OSTI]

of the underlying network infrastructure and make use of green energy sources wherever possible. This approach the development of ``green'' renewable energy sources (such as solar panels, wind turbines, and geothermal plants) for powering NEs. Green energy sources are preferable with respect to the tradi- tional ``dirty'' ones (e

Politècnica de Catalunya, Universitat

110

Next Generation Hole Injection/Transport Nano-Composites for High Efficiency OLED Development  

SciTech Connect (OSTI)

The objective of this program is to use a novel nano-composite material system for the OLED anode coating/hole transport layer. The novel anode coating is intended to significantly increase not only hole injection/transport efficiency, but the device energy efficiency as well. Another goal of the Core Technologies Program is the optimization and scale-up of air-stable and cross-linkable novel HTL nano-composite materials synthesis and the development of low-cost, large-scale mist deposition processes for polymer OLED fabrication. This proposed technology holds the promise to substantially improve OLED energy efficiency and lifetime.

King Wang

2009-07-31T23:59:59.000Z

111

Magnetic Pattern Fabrication and Characterization for Next Generation High Density Magnetic Recording System  

E-Print Network [OSTI]

bit patterned media (BPM), capable of achieving magneticfrom the transitions in the BPM film under study. Throughoutthe EBL-fabricated ultra-high-density BPM media. vi Table of

Lee, Beomseop

2011-01-01T23:59:59.000Z

112

Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future  

Office of Energy Efficiency and Renewable Energy (EERE)

From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future.

113

SEC.1213 next Generation Lighting Initiative; Energy Policy Act of 2002  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Calendar No. Calendar No. 107TH CONGRESS 1ST SESSION S. To provide for the energy security of the Nation, and for other purposes. IN THE SENATE OF THE UNITED STATES DECEMBER , 2001 Mr. DASCHLE (for himself and Mr. BINGAMAN) introduced the following bill; which was read the first time DECEMBER , 2001 Read the second time and placed on the calendar A BILL To provide for the energy security of the Nation, and for other purposes. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, 1 2 3 4 5 SECTION 1. SHORT TITLE. This Act may be cited as the "Energy Policy Act of 2002".

114

Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production  

Broader source: Energy.gov [DOE]

The Los Alamos National Laboratory (ORNL), under the National Laboratory R&D competitive funding opportunity, is developing a megawatt-scale heat pipebased technology designed to bridge the heliostat reflector field and the power cycle by replacing both the solar receiver and the heat transfer fluid (HTF) system used in concentrating solar power (CSP) systems. The technology, called the high-temperature thermal array, aims to achieve the SunShot Initiative's goals by addressing technical challenges, reducing capital and operating expenses, and increasing net photon-to-electricity conversion efficiency.

115

Next-generation building energy management systems and implications for electricity markets.  

SciTech Connect (OSTI)

The U.S. national electric grid is facing significant changes due to aggressive federal and state targets to decrease emissions while improving grid efficiency and reliability. Additional challenges include supply/demand imbalances, transmission constraints, and aging infrastructure. A significant number of technologies are emerging under this environment including renewable generation, distributed storage, and energy management systems. In this paper, we claim that predictive energy management systems can play a significant role in achieving federal and state targets. These systems can merge sensor data and predictive statistical models, thereby allowing for a more proactive modulation of building energy usage as external weather and market signals change. A key observation is that these predictive capabilities, coupled with the fast responsiveness of air handling units and storage devices, can enable participation in several markets such as the day-ahead and real-time pricing markets, demand and reserves markets, and ancillary services markets. Participation in these markets has implications for both market prices and reliability and can help balance the integration of intermittent renewable resources. In addition, these emerging predictive energy management systems are inexpensive and easy to deploy, allowing for broad building participation in utility centric programs.

Zavala, V. M.; Thomas, C.; Zimmerman, M.; Ott, A. (Mathematics and Computer Science); (Citizens Utility Board); (BuildingIQ Pty Ltd, Australia); (PJM Interconnection LLC)

2011-08-11T23:59:59.000Z

116

Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation  

SciTech Connect (OSTI)

The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTIs pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis found a number of modifications and adjustments that could provide higher efficiency and better use of available work. Conclusions from this analysis will help guide the analyses and CFD modeling in future process development. The MBB technology has the potential to be a disruptive technology that will enable coal combustion power plants to be built and operated in a cost effective way, cleanly with no carbon dioxide emissions. A large amount of work is needed to quantify and confirm the great promise of the MBB technology. A Phase 2 proposal was submitted to DOE and other sponsors to address the most critical MBB process technical gaps. The Phase 2 proposal was not accepted for current DOE support.

Rue, David

2013-09-30T23:59:59.000Z

117

High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants  

SciTech Connect (OSTI)

A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200?C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200?C and 40 bar was found to be acceptable after 399 hours of exposure?only 3% of the initial charge degraded into by products. The main degradation products being an isomer and a dimer. 3. In a comparative experiment between R245fa and the new fluid under subcritical conditions, it was found that the new fluid operated at 1 bar lower than R245fa for the same power output, which was also predicted in the Aspen HSYSY model. As a drop-in replacement fluid for R245fa, this new fluid was found to be at least as good as R245fa in terms of performance and stability. Further optimization of the subcritical cycle may lead to a significant improvement in performance for the new fluid. 4. For supercritical conditions, the experiment found a good match between the measured and model predicted state point property data and duties from the energy balance. The largest percent differences occurred with densities and evaporator duty (see Figure 78). It is therefore reasonable to conclude that the state point model was experimentally validated with a realistic ORC system. 5. The team also undertook a preliminary turbo-expander design study for a supercritical ORC cycle with the new working fluid. Variants of radial and axial turbo expander geometries went through preliminary design and rough costing. It was found that at 15MWe or higher power rating, a multi-stage axial turbine is most suitable providing the best performance and cost. However, at lower power ratings in the 5MWe range, the expander technology to be chosen depends on the application of the power block. For EGS power blocks, it is most optimal to use multi-stage axial machines. In conclusion, the predictions of the LCOE model that showed a supercritical cycle based on the new fluid to be most advantageous for geothermal power production at a resource temperature of ~ 200C have been experimentally validated. It was found that the cycle based on the new fluid is lower in LCOE and higher in net power output (for the same boundary conditions). The project, therefore has found a new optimal configuration for low temperature geothermal power production in the form of a su

Zia, Jalal [GE Global Research; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

2013-06-29T23:59:59.000Z

118

Wind for Schools: Developing Educational Programs to Train the Next Generation of Wind Energy Experts (Poster)  

SciTech Connect (OSTI)

As the world moves toward a vision of expanded wind energy, the industry is faced with the challenges of obtaining a skilled workforce and addressing local wind development concerns. Wind Powering America's Wind for Schools Program works to address these issues. The program installs small wind turbines at community "host" schools while developing wind application centers at higher education institutions. Teacher training with interactive and interschool curricula is implemented at each host school, while students at the universities assist in implementing the host school systems while participating in other wind course work. This poster provides an overview of the program's objectives, goals, approach, and results.

Baring-Gould, I.; Flowers, L.; Kelly, M.; Miles, J.

2009-05-01T23:59:59.000Z

119

Industry Participation Sought for Design of Next Generation Nuclear Plant |  

Broader source: Energy.gov (indexed) [DOE]

Industry Participation Sought for Design of Next Generation Nuclear Industry Participation Sought for Design of Next Generation Nuclear Plant Industry Participation Sought for Design of Next Generation Nuclear Plant June 29, 2006 - 2:41pm Addthis Gen IV Reactor Capable of Producing Electricity and/or Hydrogen WASHINGTON, DC - The U.S. Department of Energy (DOE) is seeking expressions of interest from prospective industry teams interested in participating in the development and conceptual design for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled nuclear reactor prototype with the capability to produce process heat, electricity and/or hydrogen. The very high temperature reactor is based on research and development activities supported by DOE's Generation IV nuclear energy systems initiative.

120

Energy and global warming impacts of next generation refrigeration and air conditioning technologies  

SciTech Connect (OSTI)

Significant developments have occurred in hydrofluorocarbon (HFC) and the application of ammonia and hydrocarbons as refrigerant working fluids since the original TEWI (Total Equivalent Warming Impact) report in 1991. System operating and performance data on alternative refrigerants and refrigeration technologies justify and updated evaluation of these new alternative refrigerants and competing technologies in well-characterized applications. Analytical and experimental results are used to show quantitative comparisons between HFCS, HFC blends, hydrocarbons, and ammonia, used as refrigerants. An objective evaluation is presented for commercial and near commercial non-CFC refrigerants/blowing agents and alternative refrigeration technologies. This information is needed for objective and quantitative decisions on policies addressing greenhouse gas emissions from refrigeration and air conditioning equipment. The evaluation assesses the energy use and global warming impacts of refrigeration and air conditioning technologies that could be commercialized during the phase out of HCFCS. Quantitative comparison TEWI for two application areas are presented. Opportunities for significant reductions in TEWI are seen with currently known refrigerants through improved maintenance and servicing practices and improved product designs.

Sand, J.R.; Fischer, S.K.; Baxter, V.D.

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Next generation solar bimodal systems  

SciTech Connect (OSTI)

One of the principal advantages of a solar thermal propulsion system as compared to a conventional chemical propulsion one is high specific impulse which is proportional to the square root of a propellant temperature. Obviously, next generation solar propulsion and bimodal systems must take advantage of high and ultra-high temperatures. This requires use of an appropriate energy conversion system capable to take advantage of high temperature potentially achievable in a solar receiver. High efficiency and power density of a high temperature thermionic converter open new perspectives in the development of advanced bimodal power systems having performance significantly higher than that achievable by the state-of-the-art technology. The paper presents an innovative concept of a cascaded solar bimodal power system with a high temperature Cs-Ba thermionic converter. The paper shows that the use of high temperature Knudsen cesium-barium thermionic converter in a solar bimodal system allows to eliminate thermal insulation sleeve, generate electrical power in the propulsion mode, and precise control thermal state of the solar receiver. In the Cs-Ba thermionic converter an electron instability and high amplitude current oscillations develop. These effects can be used to obtain alternate current power directly in the converter. Possibility and potential advantage of such a generator are discussed.

Babanin, V.I.; Ender, A.Y.; Kolyshkin, I.N.; Kuznetsov, V.I.; Sitnov, V.I. [Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation); Paramonov, D.V. [Westinghouse Science and Technology Center, Pittsburgh, PA (United States)

1997-12-31T23:59:59.000Z

122

Next-Generation Photovoltaic Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-Generation Photovoltaic Next-Generation Photovoltaic Technologies Next-Generation Photovoltaic Technologies Print Monday, 06 February 2012 15:48 Organic solar cells based on the polymer/fullerene bulk heterojunction (BHJ) model represent one of the most promising technologies for next-generation solar energy conversion due to their low cost and scalability. Traditional organic photovoltaics (OPVs) are thought to have interpenetrating networks of pure polymer and fullerene layers with discrete interfaces. Researchers at Argonne National Laboratory, working with collaborators from the University of Chicago, LBNL, and NIST, used ALS Beamline 11.0.1.2 to perform resonant soft x-ray scattering (RSoXS) on PTB7/fullerene BHJ solar cells to probe performance-related structures at different length scales. These solar cells set a historic record of conversion efficiency (7.4%). The RSoXS demonstrated that the superior performance of PTB7/fullerene solar cells is attributed to surprising hierarchical nanomorphologies ranging from several nanometers of crystallites to tens of nanometers of nanocrystallite aggregates in intermixed PTB7-rich and fullerene-rich domains, themselves hundreds of nanometers in size. This work will lead the research community to rethink ideal OPV morphologies, reconsider which structures should be targeted in OPVs, and enable the rational design of even higher-performance organic solar cells.

123

Building the Next Generation of Automotive Industry Leaders | Department of  

Broader source: Energy.gov (indexed) [DOE]

Building the Next Generation of Automotive Industry Leaders Building the Next Generation of Automotive Industry Leaders Building the Next Generation of Automotive Industry Leaders December 7, 2010 - 4:23pm Addthis Zach Heir , a recent hire in the electric vehicle field Zach Heir , a recent hire in the electric vehicle field Dennis A. Smith Director, National Clean Cities It's no secret that when it comes to advanced vehicle technologies, the Department of Energy is kicking into high gear. We're investing more than $12 billion in grants and loans for research, development and deployment of advanced technology vehicles. These investments are helping to create a clean energy workforce. If we want to continue a leadership role in the global automotive industry, it is crucial that we take the long view and invest heavily in the next generation of innovators and critical thinkers

124

Advancing Next-Generation Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- brid, plug-in hybrid, battery electric, and alternative fuel vehicles, Argonne provides transportation research critical to advancing the development of next-generation vehicles. Central to this effort is the Lab's Advanced Powertrain Research Facility (APRF), an integrated four-wheel drive chassis dynamometer and component test facility.

125

Proposed Next Generation GRB Mission: EXIST  

Science Journals Connector (OSTI)

A next generation Gamma Ray Burst (GRB) mission to follow the upcoming Swift mission is described. The proposed Energetic X?ray Imaging Survey Telescope EXIST would yield the limiting (practical) GRB trigger sensitivity broad?band spectral and temporal response and spatial resolution over a wide field. It would provide high resolution spectra and locations for GRBs detected at GeV energies with GLAST. Together with the next generation missions Constellation?X NGST and LISA and optical?survey (LSST) telescopes EXIST would enable GRBs to be used as probes of the early universe and the first generation of stars. EXIST alone would give ?1050? positions (long or short GRBs) approximate redshifts from lags and constrain physics of jets orphan afterglows neutrinos and SGRs.

J. Grindlay; N. Gehrels; F. Harrison; R. Blandford; G. Fishman; C. Kouveliotou; D. H. Hartmann; S. Woosley; W. Craig; J. Hong

2003-01-01T23:59:59.000Z

126

Novel Approaches to High-Efficiency III-V Nitride Heterostructure Emitters for Next-Generation Lighting Applications  

SciTech Connect (OSTI)

We report research activities and technical progress on the development of high-efficiency long wavelength ({lambda} {approx} 540nm) green light emitting diodes which covers whole years of the three-year program 'Novel approaches to high-efficiency III-V nitride heterostructure emitters for next-generation lighting applications'. The research activities were focused on the development of p-type layer that has less/no detrimental thermal annealing effect on as well as excellent structural and electrical properties and the development of green LED active region that has superior luminescence quality for {lambda}{approx}540nm green LEDs. We have also studied (1) the thermal annealing effect on blue and green LED active region during the p-type layer growth; (2) the effect of growth parameters and structural factors for LED active region on electroluminescence properties; (3) the effect of substrates and orientation on electrical and electro-optical properties of green LEDs. As a progress highlight, we obtained green-LED-active-region-friendly In{sub 0.04}Ga{sub 0.96}N:Mg exhibiting low resistivity with higher hole concentration (p=2.0 x 10{sup 18} cm{sup -3} and a low resistivity of 0.5 {omega}-cm) and improved optical quality green LED active region emitting at {approx}540nm by electroluminescence. The LEDs with p-InGaN layer can act as a quantum-confined Stark effect mitigation layer by reducing strain in the QW. We also have achieved (projected) peak IQE of {approx}25% at {lambda}{approx}530 nm and of {approx}13% at {lambda}{approx}545 nm. Visible LEDs on a non-polar substrate using (11-20) {alpha}-plane bulk substrates. The absence of quantum-confined Stark effect was confirmed but further improvement in electrical and optical properties is required.

Russell Dupuis

2007-06-30T23:59:59.000Z

127

Secretary Chu Announces Nearly $15 Million for Next Generation  

Broader source: Energy.gov (indexed) [DOE]

Nearly $15 Million for Next Generation Nearly $15 Million for Next Generation Energy-Efficient Lighting Secretary Chu Announces Nearly $15 Million for Next Generation Energy-Efficient Lighting June 7, 2011 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu today announced nearly $15 million to support eight new research and development projects that will accelerate the development and deployment of high-efficiency solid-state lighting technologies like LEDs and OLEDs. Light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) have the potential to be ten times more energy-efficient than conventional incandescent lighting and can last up to 25 times as long. The projects selected today are located in four states across the country and are focused on advancing core R&D goals,

128

Research & Development Roadmap: Next-Generation Appliances  

Broader source: Energy.gov [DOE]

The Research and Development (R&D) Roadmap for Next-Generation Appliances provides recommendations to the Building Technologies Office (BTO) on R&D activities to pursue that will aid in achieving BTOs energy savings goals.

129

Next-Generation Solar Collectors for CSP  

Broader source: Energy.gov [DOE]

This fact sheet on Next-Generation Collectors for CSP highlights a solar energy program awarded through the 2012 SunShot Concentrating Solar Power R&D awards. The team is developing new solar collector base technologies for next-generation heliostats used in power tower systems. If successful, this project will result in a 50% reduction in solar field equipment cost and a 30% reduction in field installation cost compared to existing heliostat designs.

130

FACTSHEET: Next Generation Power Electronics Manufacturing Innovation  

Broader source: Energy.gov (indexed) [DOE]

FACTSHEET: Next Generation Power Electronics Manufacturing FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - 9:20am Addthis The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Supported by a $70 million Energy Department investment over five years as well as a matching $70 million in non-federal cost-share, the institute will bring together over 25 companies, universities and state and federal organizations to invent and manufacture wide bandgap (WBG) semiconductor-based power electronics that are cost-competitive and 10 times more powerful than current

131

NASA/FPL Renewable Project Case Study: Space Coast Next Generation...  

Broader source: Energy.gov (indexed) [DOE]

NASAFPL Renewable Project Case Study: Space Coast Next Generation Solar Energy Center NASAFPL Renewable Project Case Study: Space Coast Next Generation Solar Energy Center...

132

Next Generation Nuclear Plant Phenomena  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 ORNLTM-2007147, Vol. 5 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs Office of Nuclear Regulatory Research...

133

NEXT GENERATION GAS TURBINE SYSTEMS STUDY  

SciTech Connect (OSTI)

Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

2003-03-01T23:59:59.000Z

134

Next Generation Environmentally Friendly Driving Feedback Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Next Generation Environmentally Friendly Driving Feedback Systems Research and Development Next Generation Environmentally Friendly Driving Feedback Systems Research and...

135

Next Generation Attics and Roof Systems  

Broader source: Energy.gov (indexed) [DOE]

Next Generation Attics Next Generation Attics and Roof Systems William (Bill) Miller, Ph.D. ORNL WML@ORNL.GOV____ (865) 574-2013 April 4, 2013 Goals: Develop New Roof and Attic Designs  Reduce Space Conditioning Due to Attic  Convince Industry to Adopt Designs Building Envelope Program  Dr. William Miller  Dr. Som Shrestha  Kaushik Biswas, Ken Childs, Jerald Atchley, Phil Childs Andre Desjarlais (Group Leader) 32% Primary Energy 28% Primary Energy 2 | Building Technologies Office eere.energy.gov Purpose & Objectives

136

Next Generation Light Source Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the...

137

Secretary Chu Announces Nearly $15 Million for Next Generation...  

Broader source: Energy.gov (indexed) [DOE]

Secretary Chu. "These next-generation lighting technologies have the potential to transform the way we light our homes and businesses and generate enormous energy and cost...

138

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

generation equipment, substations, distribution lines,energyresources(DER), substationanddistribution. thenextgenerationofsubstationautomationsolutions. It

Birman, Kenneth

2012-01-01T23:59:59.000Z

139

Investing in the next generation: The Office of Nuclear Energy Issues Requests for Scholarship and Fellowship Applications.  

Broader source: Energy.gov [DOE]

Today, the Department of Energy's (DOE) Office of Nuclear Energy (NE) announced two new Requests for Applications (RFAs) for the Integrated University Program (IUP).

140

Magnetic Processing A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets  

SciTech Connect (OSTI)

Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNLs unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNLs expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNLs Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.

Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P. (Carpenter Technologies, Inc.); Magee, J. (Carpenter Technologies, Inc.)

2010-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Graduate Education at UNH Next Generation Leadership  

E-Print Network [OSTI]

.gradschool.unh.edu #12;Graduate education at the University of New Hampshire prepares the next generation of leaders doctoral degrees, graduate study at UNH is the catalyst for maintaining the state of New Hampshire's highly Graduate education forges vital partnerships in many public health and human services initiatives statewide

New Hampshire, University of

142

Power conversion unit studies for the next generation nuclear plant coupled to a high-temperature steam electrolysis facility  

E-Print Network [OSTI]

turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. A high temperature steam electrolysis hydrogen production plant was coupled to the reactor...

Barner, Robert Buckner

2007-04-25T23:59:59.000Z

143

Next Generation Fast RF Interlock Module and ATCA Adapter for ILC High Availability RF Test Station Demonstration  

SciTech Connect (OSTI)

High availability interlocks and controls are required for the ILC (International Linear Collider) L-Band high power RF stations. A new F3 (Fast Fault Finder) VME module has been developed to process both fast and slow interlocks using FPGA logic to detect the interlock trip excursions. This combination eliminates the need for separate PLC (Programmable Logic Controller) control of slow interlocks. Modules are chained together to accommodate as many inputs as needed. In the next phase of development the F3's will be ported to the new industry standard ATCA (Advanced Telecom Computing Architecture) crate (shelf) via a specially designed VME adapter module with IPMI (Intelligent Platform Management Interface). The goal is to demonstrate auto-failover and hot-swap for future partially redundant systems.

Larsen, R

2009-10-17T23:59:59.000Z

144

DOE Seeks Additional Input on Next Generation Nuclear Plant | Department of  

Broader source: Energy.gov (indexed) [DOE]

Seeks Additional Input on Next Generation Nuclear Plant Seeks Additional Input on Next Generation Nuclear Plant DOE Seeks Additional Input on Next Generation Nuclear Plant April 17, 2008 - 10:49am Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today announced it is seeking public and industry input on how to best achieve the goals and meet the requirements for the Next Generation Nuclear Plant (NGNP) demonstration project work at DOE's Idaho National Laboratory. DOE today issued a Request for Information and Expressions of Interest from prospective participants and interested parties on utilizing cutting-edge high temperature gas reactor technology in the effort to reduce greenhouse gas emissions by enabling nuclear energy to replace fossil fuels used by industry for process heat. "This is an opportunity to advance the development of safe, reliable, and

145

Mesaba next-generation IGCC plant  

SciTech Connect (OSTI)

Through a US Department of Energy (DOE) cooperative agreement awarded in June 2006, MEP-I LLC plans to demonstrate a next generation integrated gasification-combined cycle (IGCC) electric power generating plant, the Mesaba Energy Project. The 606-MWe plant (the first of two similarly sized plants envisioned by project sponsors) will feature next-generation ConocoPhillips E-Gas{trademark} technology first tested on the DOE-funded Wabash River Coal Gasification Repowering project. Mesaba will benefit from recommendations of an industry panel applying the Value Improving Practices process to Wabash cost and performance results. The project will be twice the size of Wabash, while demonstrating better efficient, reliability and pollutant control. The $2.16 billion project ($36 million federal cost share) will be located in the Iron Range region north of Duluth, Minnesota. Mesaba is one of four projects selected under Round II of the Clean Coal Power Initiative. 1 fig.

NONE

2006-01-01T23:59:59.000Z

146

Next Generation Light Source Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Light Source Workshops Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the scientific needs into the technical performance requirements. Feedback from these workshops will provide important input for advancing the design of the facility. Workshops are planned in the following areas Fundamental Atomic, Molecular, Optical Physics & Combustion Dynamics Mon. Aug. 20 - Tues. Aug 21, 2012 Physical Chemistry, Catalysis, & Photosynthesis Thurs. Aug. 23 - Fri. Aug 24, 2012 Quantum Materials, Magnetism & Spin Dynamics Mon. Aug. 27 - Tues. Aug 28, 2012 Materials & Bio-imaging at the Nanoscale Thurs. Aug. 30 - Fri. Aug 31, 2012 Further information is available on the workshop website:

147

Next Generation Nuclear Plant Materials Selection and Qualification Program Plan  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

R. Doug Hamelin; G. O. Hayner

2004-11-01T23:59:59.000Z

148

National Lab Helping to Train Operators for Next Generation of Power Plants  

Broader source: Energy.gov (indexed) [DOE]

National Lab Helping to Train Operators for Next Generation of National Lab Helping to Train Operators for Next Generation of Power Plants National Lab Helping to Train Operators for Next Generation of Power Plants January 25, 2013 - 11:10am Addthis AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. Gayland Barksdale Technical Writer, Office of Fossil Energy What Does AVESTAR Provide? Advanced dynamic simulation, control and virtual plant technologies

149

National Lab Helping to Train Operators for Next Generation of Power Plants  

Broader source: Energy.gov (indexed) [DOE]

Lab Helping to Train Operators for Next Generation of Lab Helping to Train Operators for Next Generation of Power Plants National Lab Helping to Train Operators for Next Generation of Power Plants January 25, 2013 - 11:10am Addthis AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. Gayland Barksdale Technical Writer, Office of Fossil Energy What Does AVESTAR Provide? Advanced dynamic simulation, control and virtual plant technologies

150

New Investments to Accelerate Next Generation Biofuels | Department of  

Broader source: Energy.gov (indexed) [DOE]

Investments to Accelerate Next Generation Biofuels Investments to Accelerate Next Generation Biofuels New Investments to Accelerate Next Generation Biofuels July 1, 2013 - 12:00pm Addthis Image of a scientist studying one of three containers of biomass materials. Following last week's rollout of President Obama's plan to cut carbon pollution, the Energy Department today announced four research and development projects to bring next generation biofuels on line faster and drive down the cost of producing gasoline, diesel, and jet fuels from biomass. The projects-located in Oklahoma, Tennessee, Utah, and Wisconsin-represent a $13 million Energy Department investment. "By partnering with private industry, universities and our national labs, we can increase America's energy security, bolster rural economic

151

A Next Generation Light Source Facility at LBNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Next Generation Light Source Facility at LBNL A Next Generation Light Source Facility at LBNL Author: Corlett, J.N. Publication Date: 04-12-2011 Publication Info: Lawrence Berkeley National Laboratory Permalink: http://escholarship.org/uc/item/81t3h97w Keywords: NGLS, FEL, 2 GeV superconducting linear accelerator, high-brightness, highrepetition- rate, high- repetition-rate (1 MHz) Local Identifier: LBNL Paper LBNL-4391E Preferred Citation:

152

Secretary Chu Announces More than $37 Million for Next Generation Lighting  

Broader source: Energy.gov (indexed) [DOE]

than $37 Million for Next Generation than $37 Million for Next Generation Lighting Secretary Chu Announces More than $37 Million for Next Generation Lighting January 15, 2010 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu today announced more than $37 million in funding from the American Recovery and Reinvestment Act to support high-efficiency solid-state lighting projects. Solid-state lighting, which uses light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) instead of incandescent bulbs, has the potential to be ten times more energy-efficient than traditional incandescent lighting. Lighting accounts for approximately 24 percent of the total electricity generated in the United States today - by 2030, the development and widespread deployment of cost-effective solid-state

153

Next Generation National Security Leaders  

SciTech Connect (OSTI)

It is generally accepted that the international security community faces an impending challenge in its changing leadership demographics. The workforce that currently addresses nonproliferation, arms control, and verification is moving toward retirement and there is a perceived need for programs to train a new set of experts for both technical- and policy-related functions to replace the retiring generation. Despite the perceived need, there are also indicators that there are not sufficient jobs for individuals we are currently training. If we had right-sized the training programs, there would not be a shortage of jobs. The extent and scope of the human resource crisis is unclear, and information about training programs and how they meet existing needs is minimal. This paper seeks to achieve two objectives: 1) Clarify the major human resource problem and potential consequences; and 2) Propose how to characterize the requirement with sufficient granularity to enable key stakeholders to link programs aimed at developing the next generations of experts with employment needs. In order to accomplish both these goals, this paper recommends establishing a forum comprised of key stakeholders of this issue (including universities, public and private sectors), and conducting a study of the human resources and resource needs of the global security community. If there is indeed a human resource crisis in the global security field, we cannot address the problem if we are uninformed. The solution may lie in training more (or fewer) young professions to work in this community or it may lie in more effectively using our existing resources and training programs.

Mahy, Heidi A.; Fankhauser, Jana G.; Stein, Steven L.; Toomey, Christopher

2012-07-19T23:59:59.000Z

154

SunShot Initiative: Next-Generation Solar Collectors for CSP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-Generation Solar Collectors Next-Generation Solar Collectors for CSP to someone by E-mail Share SunShot Initiative: Next-Generation Solar Collectors for CSP on Facebook Tweet about SunShot Initiative: Next-Generation Solar Collectors for CSP on Twitter Bookmark SunShot Initiative: Next-Generation Solar Collectors for CSP on Google Bookmark SunShot Initiative: Next-Generation Solar Collectors for CSP on Delicious Rank SunShot Initiative: Next-Generation Solar Collectors for CSP on Digg Find More places to share SunShot Initiative: Next-Generation Solar Collectors for CSP on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

155

SunShot Initiative: Next-Generation Low-Cost Reflector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-Generation Low-Cost Next-Generation Low-Cost Reflector to someone by E-mail Share SunShot Initiative: Next-Generation Low-Cost Reflector on Facebook Tweet about SunShot Initiative: Next-Generation Low-Cost Reflector on Twitter Bookmark SunShot Initiative: Next-Generation Low-Cost Reflector on Google Bookmark SunShot Initiative: Next-Generation Low-Cost Reflector on Delicious Rank SunShot Initiative: Next-Generation Low-Cost Reflector on Digg Find More places to share SunShot Initiative: Next-Generation Low-Cost Reflector on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

156

Sandia National Laboratories: economically competitive next generation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

economically competitive next generation biofuels JBEI Updates Techno-Economic Modeling Tools for Biofuels On September 18, 2013, in Biofuels, Biomass, Computational Modeling &...

157

Next Generation Calibration Models with Dimensional Modeling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Reduction of Transient Particulate Matter Spikes with Decision Tree Based Control Model-Based Transient Calibration Optimization for Next Generation Diesel...

158

NETL: Oil & Natural Gas Projects: Next Generation Surfactants for Improved  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Surfactants for Improved Chemical Flooding Technology Last Reviewed 12/15/2012 Next Generation Surfactants for Improved Chemical Flooding Technology Last Reviewed 12/15/2012 DE-FE0003537 Goal The principle objective of the project is to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focusing on reservoirs in Pennsylvanian age (Penn) sands. Performer Oklahoma University Enhanced Oil Recovery Design Center, Norman, OK Background Primary and secondary methods have produced approximately one-third of the 401 billion barrels of original-oil-in-place in the United States. Enhanced oil recovery (EOR) methods have shown potential to recover a fraction of the remaining oil. Surfactant EOR has seen an increase in activity in recent years due to increased energy demand and higher oil prices. In

159

Virtually simulating the next generation of clean energy technologies: NETL's AVESTAR Center is dedicated to the safe, reliable and efficient operation of advanced energy plants with carbon capture  

SciTech Connect (OSTI)

Imagine using a real-time virtual simulator to learn to fly a space shuttle or rebuild your car's transmission without touching a piece of equipment or getting your hands dirty. Now, apply this concept to learning how to operate and control a state-of-the-art, electricity-producing power plant capable of carbon dioxide (CO{sub 2}) capture. That's what the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center (www.netl.doe.gov/avestar) is designed to do. Established as part of the Department of Energy's (DOE) initiative to advance new clean energy technology for power generation, the AVESTAR Center focuses primarily on providing simulation-based training for process engineers and energy plant operators, starting with the deployment of a first-of-a-kind operator training simulator for an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Based on Invensys Operations Management's SimSci-Esscor DYNSIM software, the high-fidelity dynamic simulator provides realistic training on IGCC plant operations, including normal and faulted operations, as well as plant start-up, shutdown and power demand load changes. The highly flexible simulator also allows for testing of different types of fuel sources, such as petcoke and biomass, as well as co-firing fuel mixtures. The IGCC dynamic simulator is available at AVESTAR's two locations, NETL (Figure 1) and West Virginia University's National Research Center for Coal and Energy (www.nrcce.wvu.edu), both in Morgantown, W.Va. By offering a comprehensive IGCC training program, AVESTAR aims to develop a workforce well prepared to operate, control and manage commercial-scale gasification-based power plants with CO{sub 2} capture. The facility and simulator at West Virginia University promotes NETL's outreach mission by offering hands-on simulator training and education to researchers and university students.

Zitney, S.

2012-01-01T23:59:59.000Z

160

The Next Generation of Hydropower Engineers and Scientists | Department of  

Broader source: Energy.gov (indexed) [DOE]

The Next Generation of Hydropower Engineers and Scientists The Next Generation of Hydropower Engineers and Scientists The Next Generation of Hydropower Engineers and Scientists August 11, 2011 - 12:31pm Addthis Hydro Research Foundation Fellows. | Image courtesy of the Hydro Research Foundation Fellowship Program. Hydro Research Foundation Fellows. | Image courtesy of the Hydro Research Foundation Fellowship Program. Mike Reed Water Power Program Manager, Water Power Program As the nation continues to rely on hydropower to help meet its energy needs, a new generation of engineers and scientists is finding ways to make hydropower technologies more efficient, environmentally friendly and cost effective. The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE), in cooperation with the Hydro Research

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nicole Lambiase: Aspiring Astronaut Turned Next-generation Car Designer |  

Broader source: Energy.gov (indexed) [DOE]

Nicole Lambiase: Aspiring Astronaut Turned Next-generation Car Nicole Lambiase: Aspiring Astronaut Turned Next-generation Car Designer Nicole Lambiase: Aspiring Astronaut Turned Next-generation Car Designer January 7, 2010 - 4:05pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Nicole Lambiase grew up near Cape Canaveral and the Kennedy Space Center where she attended space shuttle launches, dreamed of the stars and had hopes of becoming an astronaut. In 2004, Nicole's dreams advanced as she began the aeronautical engineering program at Embry-Riddle Aeronautical University in Daytona Beach, Florida. Even though Nicole thrived in the program, she quickly discovered this path would more likely lead her to driving a computer rather than a space module. So Nicole made a leap of faith and switched to the newly-formed mechanical

162

Next Generation Safeguards Initiative Inaugural Conference | Department of  

Broader source: Energy.gov (indexed) [DOE]

Next Generation Safeguards Initiative Inaugural Conference Next Generation Safeguards Initiative Inaugural Conference Next Generation Safeguards Initiative Inaugural Conference September 12, 2008 - 3:20pm Addthis Remarks as Prepared for Energy Secretary Samuel Bodman Thank you, Ken, and all of you for that generous welcome. It is good to see so many of you here today for this discussion of a topic I consider to be among the most important in the Energy Department's portfolio. The U.S. Department of Energy has the responsibility for maintaining the safety and security of the U.S. nuclear stockpile. It is a responsibility I want you to know I take very personally. Thanks to the good work of Sen. Richard Lugar and others, we have the responsibility, through our National Nuclear Security Administration, to help other nations - especially the independent states that were once part

163

Building a Diverse Workforce From the Next Generation of Leaders |  

Broader source: Energy.gov (indexed) [DOE]

Diverse Workforce From the Next Generation of Leaders Diverse Workforce From the Next Generation of Leaders Building a Diverse Workforce From the Next Generation of Leaders March 8, 2011 - 2:17pm Addthis Bill Valdez Bill Valdez Principal Deputy Director Tasked with advancing groundbreaking science, cleaning up our Cold War legacy and building a clean and efficient energy future for our Nation, each day at the Department of Energy is an exciting one - filled with new challenges and unique opportunities. Rising to these challenges not only requires hard work but a diverse range of experience and talents throughout our staff from the leadership team to the interns. One of the ways we're seeking to promote that diversity is through our Minority Educational Institutions Student Partnership Program, commonly known by its acronym, MEISSP. MEISPP offers talented undergraduate and

164

Next-Generation Distributed Power Management for Photovoltaic Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-Generation Distributed Power Management for Photovoltaic Systems Next-Generation Distributed Power Management for Photovoltaic Systems Speaker(s): Jason Stauth Date: July 29, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Steven Lanzisera In recent years, the balance of systems (BOS) side of photovoltaic (PV) energy has become a major focus in the effort to drive solar energy towards grid parity. The power management architecture has expanded to include a range of distributed solutions, including microinverters and 'micro' DC-DC converters to solve problems with mismatch (shading), expand networking and control, and solve critical BOS issues such as fire safety. This talk will introduce traditional and distributed approaches for PV systems, and will propose a next-generation architecture based on a new

165

2011 DoD High Performance Computing Modernization Program Users Group Conference A Web-based High-Throughput Tool for Next-Generation Sequence Annotation  

E-Print Network [OSTI]

320 2011 DoD High Performance Computing Modernization Program Users Group Conference A Web deployed on the Mana Linux cluster at the Maui High Performance Computing Center. The two components

166

Next Generation Insulation Materials: Challenges and Opportunities...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-Generation Insulation Materials: Challenges and Opportunities Nov 14 2014 03:00 PM - 04:00 PM Kaushik Biswas, Building Technologies Research and Integration Center, Oak Ridge...

167

Next-generation information systems for genomics  

E-Print Network [OSTI]

The advent of next-generation sequencing technologies is transforming biology by enabling individual researchers to sequence the genomes of individual organisms or cells on a massive scale. In order to realize the ...

Mungall, Christopher

2011-06-27T23:59:59.000Z

168

Next Generation Nuclear Plant Phenomena  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High- importance phenomena related to the RPV include crack initiation and subcritical crack growth; field fabrication process control; property control in heavy...

169

EMSL: Capabilities: Mass Spectrometry: Next-Generation Mass Spectrometry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-Generation Mass Spectrometry Next-Generation Mass Spectrometry Additional Information Meet the Mass Spectrometry Experts Related EMSL User Projects Mass Spectrometry Tools are Applied to all Science Themes Next-Generation Mass Spectrometry Proteomics Research Resource for Integrative Biology Biological and Environmental Research - PNNL Proteomics PNNL's Biological MS Data and Software Distribution Center Mass Spectrometry brochure EMSL is committed to offering state-of-the-art instruments to its users. At a workshop in January of 2008, EMSL mass spectrometry experts joined experts from many universities, private companies, and government institutions and laboratories at a conference held at the National High Magnetic Field Laboratory in Tallahassee Florida. Workshop participants reviewed the state of the art of high-performance mass spectrometers,

170

Next Generation (NextGen) Geospatial Information System (GIS) | Department  

Broader source: Energy.gov (indexed) [DOE]

Next Generation (NextGen) Geospatial Information System (GIS) Next Generation (NextGen) Geospatial Information System (GIS) Next Generation (NextGen) Geospatial Information System (GIS) July 12, 2013 - 12:17pm Addthis The U.S. Department of Energy Office of Legacy Management (LM) manages environmental records from Cold War legacy sites spanning nearly 40 years. These records are a key LM asset and must be managed and maintained efficiently and effectively. There are over 16 different applications that support the databases containing environmental and geospatial information. The current applications, respective systems, and processes require upgrades to effectively operate in the future. A multi-disciplined LM team collaborated to develop functional requirements and implement NextGen GIS; this system will replace the Geospatial

171

NGLS: Next Generation Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lab masthead Berkeley Lab A-Z Index Phone Book Careers Search DOE logo Lab masthead Berkeley Lab A-Z Index Phone Book Careers Search DOE logo NGLS logo NGLS Science NGLS Technology Seminars Workshop/Reports Related Links Further Info NGLS Facility Combustion Photosynthesis Photosynthesis Photosynthesis Today is a golden age for light sources. Storage ring-based synchrotrons routinely provide X-ray beams exploited by thousands of scientists annually to answer fundamental questions in diverse fields including human health, energy, and electronics and information processing. MORE > NGLS Science Science section chart NGLS CD-0 Proposal NGLS Technology Technology section chart Seminars Science section chart Workshops Science section chart Last updated 06/21/2013 Top A U.S. Department of Energy National Laboratory Operated by the University

172

Crafting the next generation | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crafting the next generation Crafting the next generation Crafting the next generation Posted: July 16, 2012 - 3:52pm | Y-12 Report | Volume 9, Issue 1 | 2012 I truly enjoyed the opportunity to work with such great people every day," said Brandy Ward, an ironworker/rigger graduate of Y-12's Apprentice Program. "It was a lot of work, but I'd do it again in a heartbeat." The Y-12 Apprentice Program is about a lot of things, including second chances. The program that offers workers an opportunity to become highly skilled craftspeople was given a second chance just four years ago. The program was reinstated in 2008 after a 26-year hiatus and recently celebrated its first graduation in 30 years. Beth Green, director for Resource Management, said each apprentice is trained to union

173

DOE Selects Projects to Develop Sensors and Controls for Next-Generation  

Broader source: Energy.gov (indexed) [DOE]

Selects Projects to Develop Sensors and Controls for Selects Projects to Develop Sensors and Controls for Next-Generation Power Plants DOE Selects Projects to Develop Sensors and Controls for Next-Generation Power Plants August 25, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy has selected seven projects to develop sensors and controls to support the full-scale implementation and operation of highly efficient power generation technologies with near-zero emissions. The total award value of the projects is nearly $7 million, which includes $1.4 million in cost-sharing from the recipients. The projects will be managed by the Office of Fossil Energy's National Energy Technology Laboratory. Future power generation facilities are expected to be very complex, requiring a high level of system integration for efficient operation. To

174

The next-generation BLASTPol experiment  

E-Print Network [OSTI]

The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) is a suborbital mapping experiment designed to study the role magnetic fields play in star formation. BLASTPol has had two science flights from McMurdo Station, Antarctica in 2010 and 2012. These flights have produced thousands of polarization vectors at 250, 350 and 500 microns in several molecular cloud targets. We present the design, specifications, and progress towards the next-generation BLASTPol experiment (BLAST-TNG). BLAST-TNG will fly a 40% larger diameter primary mirror, with almost 8 times the number of polarization-sensitive detectors resulting in a factor of 16 increase in mapping speed. With a spatial resolution of 22 arcseconds and four times the field of view of BLASTPol, BLAST-TNG will bridge the angular scales between Planck's low resolution all-sky maps and ALMA's ultra-high resolution narrow fields. The new receiver has a larger cryogenics volume, allowing for a 28 day hold time. BLAST-TNG employs three arr...

Dober, Bradley; Ashton, Peter; Angil, Francesco E; Beall, James A; Becker, Dan; Bradford, Kristi J; Che, George; Cho, Hsiao-Mei; Devlin, Mark J; Fissel, Laura M; Fukui, Yasuo; Galitzki, Nicholas; Gao, Jiansong; Groppi, Christopher E; Hillbrand, Seth; Hilton, Gene C; Hubmayr, Johannes; Irwin, Kent D; Klein, Jeffrey; Van Lanen, Jeff; Li, Dale; Li, Zhi-Yun; Lourie, Nathan P; Mani, Hamdi; Martin, Peter G; Mauskopf, Philip; Nakamura, Fumitaka; Novak, Giles; Pappas, David P; Pascale, Enzo; Santos, Fabio P; Savini, Giorgio; Scott, Douglas; Stanchfield, Sara; Ullom, Joel N; Underhill, Matthew; Vissers, Michael R; Ward-Thompson, Derek

2014-01-01T23:59:59.000Z

175

Michigan: Universities Train Next Generation of Automotive Engineers...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Michigan: Universities Train Next Generation of Automotive Engineers Michigan: Universities Train Next Generation of Automotive Engineers November 6, 2013 - 12:00am Addthis...

176

Proceedings of the Computational Needs for the Next Generation...  

Office of Environmental Management (EM)

Proceedings of the Computational Needs for the Next Generation Electric Grid Workshop, April 19-20, 2011 Proceedings of the Computational Needs for the Next Generation Electric...

177

Engaging the Next Generation of Automotive Engineers through...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition Engaging the Next Generation of Automotive Engineers through Advanced Vehicle...

178

NERSC Leads Next-Generation Code Optimization Effort  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leads Next-Generation Code Optimization Effort NERSC Launches Next-Generation Code Optimization Effort NERSC, Intel, Cray team up to prepare users for transition to exascale...

179

Next Generation Advanced Framing - Building America Top Innovation...  

Energy Savers [EERE]

Next Generation Advanced Framing - Building America Top Innovation Next Generation Advanced Framing - Building America Top Innovation This photo shows advanced framing on a rim...

180

Demonstrating and Validating a Next Generation Model-Based Controller...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Validating a Next Generation Model-Based Controller for Fuel Efficient, Low Emissions Diesel Engines Demonstrating and Validating a Next Generation Model-Based Controller for...

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NERSC, Cray, Intel Announce Next-Generation Supercomputer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NERSC, Cray, Intel Announce Next-Generation Supercomputer NERSC, Cray, Intel to Collaborate on Next-Generation Supercomputer April 29, 2014 | Tags: NERSC Contact: Jon Bashor,...

182

NREL Next Generation Drivetrain: Mechanical Design and Test Plan (Poster)  

SciTech Connect (OSTI)

The Department of Energy and industry partners are sponsoring a $3m project for design and testing of a 'Next Generation' wind turbine drivetrain at the National Renewable Energy Laboratory (NREL). This poster focuses on innovative aspects of the gearbox design, completed as part of an end-to-end systems engineering approach incorporating innovations that increase drivetrain reliability, efficiency, torque density and minimize capital cost.

Keller, J.; Halse, C.

2014-05-01T23:59:59.000Z

183

Vehicle Technologies Office Merit Review 2014: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines 2012 FOA 648 Topic 3a  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

184

Abstract 3173: High-throughput, systematic analysis of paired-end next-generation sequencing data to characterize the gene fusion landscape in cancer.  

Science Journals Connector (OSTI)

...TopHat) for further method development. An analysis pipeline was developed and executed in parallel on a high-performance computing cluster. Filtering and annotation was conducted on the aggregated data as a post-processing step, to enable...

Seth E. Sadis; Nickolay A. Khazanov; Armand R. Bankhead; Dinesh Cyanam; Paul D. Williams; Sean F. Eddy; Peter J. Wyngaard; Daniel R. Rhodes

2013-08-14T23:59:59.000Z

185

Computational Needs for the Next Generation Electric Grid Proceedings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 19-20, 2011 April 19-20, 2011 Editors: Joseph H. Eto Lawrence Berkeley National Laboratory Robert J. Thomas Cornell University Proceedings Computational Needs for the Next Generation Electric Grid LBNL-5105E Computational Needs for the Next Generation Electric Grid Proceedings April 19-20, 2011 Editors: Joseph H. Eto, Lawrence Berkeley National Laboratory Robert J. Thomas, Cornell University The work described in this report was funded by the Office of Electricity Delivery and Energy Reliability of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the

186

Next-generation tools for evolutionary invasion analyses  

E-Print Network [OSTI]

REVIEW Next-generation tools for evolutionary invasion analyses Amy Hurford1,*, Daniel Cownden1 on so-called `next-generation' matrices. Although this next-generation matrix approach has sometimes to a wider evolutionary audience in two ways. First, we review the next-generation matrix approach

Day, Troy

187

Evaluation Metrics for Intermediate Heat Exchangers for Next Generation Nuclear Reactors  

SciTech Connect (OSTI)

The Department of Energy (DOE) is working with industry to develop a next generation, high-temperature gas-cooled reactor (HTGR) as a part of the effort to supply the United States with abundant, clean, and secure energy as initiated by the Energy Policy Act of 2005 (EPAct; Public Law 109-58,2005). The NGNP Project, led by the Idaho National Laboratory (INL), will demonstrate the ability of the HTGR to generate hydrogen, electricity, and/or high-quality process heat for a wide range of industrial applications.

Piyush Sabharwall; Eung Soo Kim; Nolan Anderson

2011-06-01T23:59:59.000Z

188

The next generation of power reactors - safety characteristics  

SciTech Connect (OSTI)

The next generation of commercial nuclear power reactors is characterized by a new approach to achieving reliability of their safety systems. In contrast to current generation reactors, these designs apply passive safety features that rely on gravity-driven transfer processes or stored energy, such as gas-pressurized accumulators or electric batteries. This paper discusses the passive safety system of the AP600 and Simplified Boiling Water Reactor (SBWR) designs.

Modro, S.M.

1995-01-01T23:59:59.000Z

189

Planning the Next Generation of Arctic Ecosystem Experiments  

SciTech Connect (OSTI)

Climate Change Experiments in High-Latitude Ecosystems; Fairbanks, Alaska, 13-14 October 2010; A 2-day climate change workshop was held at the International Arctic Research Center, University of Alaska Fairbanks. The workshop, sponsored by Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE), was attended by 45 subject matter experts from universities, DOE national laboratories, and other federal and nongovernmental organizations. The workshop sought to engage the Arctic science community in planning for a proposed Next-Generation Ecosystem Experiments (NGEE-Arctic) project in Alaska (http:// ngee.ornl.gov/). The goal of this activity is to provide data, theory, and models to improve representations of high-latitude terrestrial processes in Earth system models. In particular, there is a need to better understand the processes by which warming may drive increased plant productivity and atmospheric carbon uptake and storage in biomass and soils, as well as those processes that may drive an increase in the release of methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) through microbial decomposition of soil carbon stored in thawing permafrost. This understanding is required to quantify the important feedback mechanisms that define the role of terrestrial processes in regional and global climate.

Hinzman, Larry D [International Arctic Research Center; Wilson, Cathy [Los Alamos National Laboratory (LANL)

2011-01-01T23:59:59.000Z

190

Batteries - Next-generation Li-ion batteries Breakout session  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-generation Li-ion batteries Next-generation Li-ion batteries EV Everywhere Workshop July 26, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * Overall, everything is achievable, but, clearly, the cost targets are dramatic, particularly for AEV 300. (I have discussed this with Yet-Ming Chiang, who has a good feel for cost reductions, both their importance and interesting approaches.) * AEV 100 achievable with a good silicon/graphite composite anode and LMRNMC (unsure timeline) * AEV 300 would require cycleable Li-metal anode and UHVHC cathode (can't get there with Li-ion intercalation on both electrodes) (unsure timeline) Barriers Interfering with Reaching the Targets * Pack - too high a fraction of inactive materials/inefficient engineering designs.

191

Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors  

SciTech Connect (OSTI)

In the nuclear energy renaissance, driven by fission reactor concepts utilizing very high temperatures and fast neutron spectra, materials with enhanced performance that exceeds are expected to play a central role. With the operating temperatures of the Generation III reactors bringing the classical reactor materials close to their performance limits there is an urgent need to develop and qualify new alloys and composites. Efforts have been focused on the intricate relations and the high demands placed on materials at the anticipated extreme states within the next generation fusion and fission reactors which combine high radiation fluxes, elevated temperatures and aggressive environments. While nuclear reactors have been in operation for several decades, the structural materials associated with the next generation options need to endure much higher temperatures (1200 C), higher neutron doses (tens of displacements per atom, dpa), and extremely corrosive environments, which are beyond the experience on materials accumulated to-date. The most important consideration is the performance and reliability of structural materials for both in-core and out-of-core functions. While there exists a great body of nuclear materials research and operating experience/performance from fission reactors where epithermal and thermal neutrons interact with materials and alter their physio-mechanical properties, a process that is well understood by now, there are no operating or even experimental facilities that will facilitate the extreme conditions of flux and temperature anticipated and thus provide insights into the behaviour of these well understood materials. Materials, however, still need to be developed and their interaction and damage potential or lifetime to be quantified for the next generation nuclear energy. Based on material development advances, composites, and in particular ceramic composites, seem to inherently possess properties suitable for key functions within the operating envelope of both fission and fusion reactors. In advanced fission reactors composite materials are being designed in an effort to extend the life and improve the reliability of fuel rod cladding as well as structural materials. Composites are being considered for use as core internals in the next generation of gas-cooled reactors. Further, next-generation plasma-fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER) will rely on the capabilities of advanced composites to safely withstand extremely high neutron fluxes while providing superior thermal shock resistance.

Simos, N.

2011-05-01T23:59:59.000Z

192

Synchronization System for Next Generation Light Sources  

SciTech Connect (OSTI)

An alternative synchronization technique one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

Zavriyev, Anton

2014-03-27T23:59:59.000Z

193

The Next Generation Nuclear Plant (NGNP) Project  

SciTech Connect (OSTI)

The Next Generation Nuclear Power (NGNP) Project will demonstrate emissions-free nuclearassisted electricity and hydrogen production by 2015. The NGNP reactor will be a helium-cooled, graphite moderated, thermal neutron spectrum reactor with a design goal outlet temperature of 1000 C or higher. The reactor thermal power and core configuration will be designed to assure passive decay heat removal without fuel damage during hypothetical accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. This paper provides a description of the project to build the NGNP at the Idaho National Engineering and Environmental Laboratory (INEEL). The NGNP Project includes an overall reactor design activity and four major supporting activities: materials selection and qualification, NRC licensing and regulatory support, fuel development and qualification, and the hydrogen production plant. Each of these activities is discussed in the paper. All the reactor design and construction activities will be managed under the DOEs project management system as outlined in DOE Order 413.3. The key elements of the overall project management system discussed in this paper include the client and project management organization relationship, critical decisions (CDs), acquisition strategy, and the project logic and timeline. The major activities associated with the materials program include development of a plan for managing the selection and qualification of all component materials required for the NGNP; identification of specific materials alternatives for each system component; evaluation of the needed testing, code work, and analysis required to qualify each identified material; preliminary selection of component materials; irradiation of needed sample materials; physical, mechanical, and chemical testing of unirradiated and irradiated materials; and documentation of final materials selections. The NGNP will be licensed by the NRC under 10 CFR 50 or 10 CFR 52, for the purpose of demonstrating the suitability of high-temperature gas-cooled reactors for commercial electric power and hydrogen production. Products that will support the licensing of the NGNP include the environmental impact statement, the preliminary safety analysis report, the NRC construction permit, the final safety analysis report, and the NRC operating license. The fuel development and qualification program consists of five elements: development of improved fuel manufacturing technologies, fuel and materials irradiations, safety testing and post-irradiation examinations, fuel performance modeling, and fission product transport and source term modeling. Two basic approaches will be explored for using the heat from the high-temperature helium coolant to produce hydrogen. The first technology of interest is the thermochemical splitting of water into hydrogen and oxygen. The most promising processes for thermochemical splitting of water are sulfur-based and include the sulfur-iodine, hybrid sulfur-electrolysis, and sulfur-bromine processes. The second technology of interest is thermally assisted electrolysis of water. The efficiency of this process can be substantially improved by heating the water to high-temperature steam before applying electrolysis.

F. H. Southworth; P. E. MacDonald

2003-11-01T23:59:59.000Z

194

Next Generation Rooftop Unit | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Generation Rooftop Unit A typical commercial rooftop air-conditioning unit (RTU) Credit: Oak Ridge National Lab A typical commercial rooftop air-conditioning unit (RTU) Credit:...

195

Next Generation Radioisotope Generators | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transit 5-BN-2 1963 Navy Earth - Navigation Satelitte Nimbus III 1969 NASA Earth - Weather Satelitte Apollo 11 1969 NASA Moon Surface Apollo 12 1969 NASA Moon Surface Apollo...

196

Next Generation Manufacturing Processes | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Process Intensification with Integrated Water-Gas-Shift Membrane Reactor Real-Time Remote Detection of HR-VOC Content in Flares - SBIR Phase II Recovery Act...

197

Concepts and performance for a next-generation storage ring hard x-ray source  

SciTech Connect (OSTI)

Among the possibilities for a next-generation hard x-ray source is a so-called 'ultimate storage ring'. This refers to a large, high-energy storage ring with very low emittance and high current. Such a ring has the potential to deliver significantly higher spectral brightness and transverse coherence than present third-generation rings. At the same time, it promises the stability and reliability that users have come to expect in a light source. In this paper, we present a design for a 7-GeV, 40-sector storage ring with a circumference of 3.1 km and an emittance of 15 pm in both planes.

Borland, M. [Argonne National Laboratory, Argonne, IL, 60439 (United States)

2010-06-23T23:59:59.000Z

198

A New Cleanroom for a Next-Generation Semiconductor Research...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A New Cleanroom for a Next-Generation Semiconductor Research Tool A New Cleanroom for a Next-Generation Semiconductor Research Tool Print The new Sector 12 cleanroom under...

199

Breakout Session: Open Innovation: SunShot Catalyst & Next Generation...  

Broader source: Energy.gov (indexed) [DOE]

Open Innovation: SunShot Catalyst & Next Generation Government Prizes Breakout Session: Open Innovation: SunShot Catalyst & Next Generation Government Prizes May 21, 2014 2:45PM to...

200

Next Generation Bipolar Plates for Automotive PEM Fuel Cells...  

Broader source: Energy.gov (indexed) [DOE]

Next Generation Bipolar Plates for Automotive PEM Fuel Cells Next Generation Bipolar Plates for Automotive PEM Fuel Cells Part of a 100 million fuel cell award announced by DOE...

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Notice of Intent: Upcoming Funding Opportunity for Next Generation of Electric Machines Projects  

Broader source: Energy.gov [DOE]

The Advanced Manufacturing Office intends to issue a new funding opportunity for work to develop Next Generation of Electric Machines (NGEM). NGEMs combine high power density, high RPM motors with integrated power electronics.

202

NASA Expert Discusses NextGen - the Next Generation Air Transportation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NASA Expert Discusses NextGen - the Next Generation Air Transportation System on Nov. 18 NEWPORT NEWS, Va., Nov. 7, 2008 -- The U.S. Department of Energy's Jefferson Lab invites...

203

Microstructural Characterization of Next Generation Nuclear Graphites  

SciTech Connect (OSTI)

This article reports the microstructural characteristics of various petroleum and pitch based nuclear graphites (IG-110, NBG-18, and PCEA) that are of interest to the next generation nuclear plant program. Bright-field transmission electron microscopy imaging was used to identify and understand the different features constituting the microstructure of nuclear graphite such as the filler particles, microcracks, binder phase, rosette-shaped quinoline insoluble (QI) particles, chaotic structures, and turbostratic graphite phase. The dimensions of microcracks were found to vary from a few nanometers to tens of microns. Furthermore, the microcracks were found to be filled with amorphous carbon of unknown origin. The pitch coke based graphite (NBG-18) was found to contain higher concentration of binder phase constituting QI particles as well as chaotic structures. The turbostratic graphite, present in all of the grades, was identified through their elliptical diffraction patterns. The difference in the microstructure has been analyzed in view of their processing conditions.

Karthik Chinnathambi; Joshua Kane; Darryl P. Butt; William E. Windes; Rick Ubic

2012-04-01T23:59:59.000Z

204

Next Generation CANDU Core Physics Innovations  

SciTech Connect (OSTI)

NG CANDU is the 'Next Generation' CANDU{sup R} reactor, aimed at producing electrical power at a capital cost significantly less than that of the current reactor designs. A key element of cost reduction is the use of H{sub 2}O as coolant and Slightly Enriched Uranium fuel in a tight D{sub 2}O-moderated lattice. The innovations in the CANDU core physics result in substantial improvements in economics as well as significant enhancements in reactor licensability, controllability, and waste reduction. The full-core coolant-void reactivity in NG CANDU is about -3 mk. Power coefficient is substantially negative. Fuel burnup is about three times the current natural-uranium burnup. (authors)

Chan, P.S.W.; Hopwood, J.M.; Love, J.W. [Atomic Energy of Canada Ltd., Ontario (Canada)

2002-07-01T23:59:59.000Z

205

Next-generation dialyser design using sustainable design methods  

Science Journals Connector (OSTI)

Life-Cycle Analysis (LCA) is used to understand the holistic flow of energy and materials throughout a product's life. As part of a comprehensive approach to design next-generation dialysers, we performed a LCA of an Optiflux F180NR dialyser. Combining LCA insights with a functional analysis of each product component, we analysed which components could be improved most effectively. Determining that the polycarbonate housing was the optimal area of focus, we used SolidWorks and COSMOSWorks to test, in-silico, the strength of various reduced-weight housing designs. The final design weighed 17% less than the original without a significant loss in strength.

Jacob Hanson; Robert Hitchcock

2009-01-01T23:59:59.000Z

206

Next Generation Power Electronics National Manufacturing Innovation Institute  

Broader source: Energy.gov [DOE]

The Next Generation Power Electronics National Manufacturing Innovation Institute will focus on wide bandgap (WBG) semiconductors - the same materials used in LED light fixtures and many flat screen TVs. The Institute will use $70 million provided by the U.S. Department of Energy's Advanced Manufacturing Office to support and manage its programs over the next five years. This Institute is one of three new innovation hubs announced by President Obama in his 2013 State of the Union address and part of the National Network for Manufacturing Innovation (NNMI).

207

Next Generation Networking | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Next Generation Networking Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking 2012 Scientific Collaborations at Extreme-Scale Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » Research Next Generation Networking Print Text Size: A A A

208

Secretary Chu Announces $45 Million to Support Next Generation of Wind  

Broader source: Energy.gov (indexed) [DOE]

Secretary Chu Announces $45 Million to Support Next Generation of Secretary Chu Announces $45 Million to Support Next Generation of Wind Turbine Designs Secretary Chu Announces $45 Million to Support Next Generation of Wind Turbine Designs November 23, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced the selection of Clemson University to receive up to $45 million under the American Recovery and Reinvestment Act for a wind energy test facility that will enhance the performance, durability, and reliability of utility-scale wind turbines. This investment will support jobs and strengthen American leadership in wind energy technology by supporting the testing of next-generation wind turbine designs. "Wind power holds tremendous potential to help create new jobs and reduce

209

Secretary Chu Announces $45 Million to Support Next Generation of Wind  

Broader source: Energy.gov (indexed) [DOE]

Announces $45 Million to Support Next Generation of Announces $45 Million to Support Next Generation of Wind Turbine Designs Secretary Chu Announces $45 Million to Support Next Generation of Wind Turbine Designs November 23, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced the selection of Clemson University to receive up to $45 million under the American Recovery and Reinvestment Act for a wind energy test facility that will enhance the performance, durability, and reliability of utility-scale wind turbines. This investment will support jobs and strengthen American leadership in wind energy technology by supporting the testing of next-generation wind turbine designs. "Wind power holds tremendous potential to help create new jobs and reduce carbon pollution," said Secretary Chu. "We are at the beginning of a new

210

THE NEXT GENERATION SAFEGUARDS PROFESSIONAL NETWORK: PROGRESS AND NEXT STEPS  

SciTech Connect (OSTI)

President Obama has repeatedly stated that the United States must ensure that the international safeguards regime, as embodied by the International Atomic Energy Agency (IAEA), has 'the authority, information, people, and technology it needs to do its job.' The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA) works to implement the President's vision through the Next Generation Safeguards Initiative (NGSI), a program to revitalize the U.S. DOE national laboratories safeguards technology and human capital base so that the United States can more effectively support the IAEA and ensure that it meets current and emerging challenges to the international safeguards system. In 2009, in response to the human capital development goals of NGSI, young safeguards professionals within the Global Nuclear Security Technology Division at Oak Ridge National Laboratory launched the Next Generation Safeguards Professional Network (NGSPN). The purpose of this initiative is to establish working relationships and to foster collaboration and communication among the next generation of safeguards leaders. The NGSPN is an organization for, and of, young professionals pursuing careers in nuclear safeguards and nonproliferation - as well as mid-career professionals new to the field - whether working within the U.S. DOE national laboratory complex, U.S. government agencies, academia, or industry or at the IAEA. The NGSPN is actively supported by the NNSA, boasts more than 70 members, maintains a website and newsletter, and has held two national meetings as well as an NGSPN session and panel at the July 2010 Institute of Nuclear Material Management Annual Meeting. This paper discusses the network; its significance, goals and objectives; developments and progress to date; and future plans.

Zhernosek, Alena V [ORNL] [ORNL; Lynch, Patrick D [ORNL] [ORNL; Scholz, Melissa A [ORNL] [ORNL

2011-01-01T23:59:59.000Z

211

NNSA Launches Next Generation Safeguards Initiative | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Safeguards Initiative | National Nuclear Next Generation Safeguards Initiative | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > NNSA Launches Next Generation Safeguards Initiative NNSA Launches Next Generation Safeguards Initiative September 09, 2008 Washington, DC NNSA Launches Next Generation Safeguards Initiative

212

DOE Launches First Segment of its Next-Generation Nationwide Network to  

Broader source: Energy.gov (indexed) [DOE]

First Segment of its Next-Generation Nationwide First Segment of its Next-Generation Nationwide Network to Support Scientific Research Efforts DOE Launches First Segment of its Next-Generation Nationwide Network to Support Scientific Research Efforts May 30, 2007 - 1:24pm Addthis WASHINGTON, DC- The U.S. Department of Energy's (DOE) Office of Science and Internet2 announced today that the first segment of a next-generation, nationwide network has gone live, marking a key step in significantly upgrading networking services to thousands of scientific researchers across the country and around the world. The first complete national ring of DOE's Energy Sciences Network (ESnet4) will be rolled out segment by segment from the east coast to the west coast and is expected to be fully operational by September, 2007.

213

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant |  

Broader source: Energy.gov (indexed) [DOE]

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant August 15, 2008 - 3:15pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) today delivered to Congress the Next Generation Nuclear Plant (NGNP) Licensing Strategy Report which describes the licensing approach, the analytical tools, the research and development activities and the estimated resources required to license an advanced reactor design by 2017 and begin operation by 2021. The NGNP represents a new concept for nuclear energy utilization, in which a gas-cooled reactor provides process heat for any number of industrial applications including electricity production, hydrogen production, coal-to-liquids, shale oil

214

Letter to NEAC to Review the Next Generation Nuclear Plant Activities |  

Broader source: Energy.gov (indexed) [DOE]

to NEAC to Review the Next Generation Nuclear Plant to NEAC to Review the Next Generation Nuclear Plant Activities Letter to NEAC to Review the Next Generation Nuclear Plant Activities The Next Generation Nuclear Plant (NGNP) project was established under the Energy Policy Act in August 2005 (EPACT-2005). EPACT-2005 defined an overall plan and timetable for NGNP research, design, licensing, construction and operation by the end of FY 2021. At the time that EPACT-2005 was passed, it was envisioned that key aspects of the project included: NGNP is based on R&D activities supported by the Gen-IV Nuclear Energy initiative;  NGNP is to be used to generate electricity, to produce hydrogen or (to do) both;  The Idaho National Laboratory (INL) will be the lead national lab for the project;  NGNP will be sited at the INL in

215

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant |  

Broader source: Energy.gov (indexed) [DOE]

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant August 15, 2008 - 3:15pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) today delivered to Congress the Next Generation Nuclear Plant (NGNP) Licensing Strategy Report which describes the licensing approach, the analytical tools, the research and development activities and the estimated resources required to license an advanced reactor design by 2017 and begin operation by 2021. The NGNP represents a new concept for nuclear energy utilization, in which a gas-cooled reactor provides process heat for any number of industrial applications including electricity production, hydrogen production, coal-to-liquids, shale oil

216

Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

2009-03-01T23:59:59.000Z

217

NEXT GENERATION MELTER OPTIONEERING STUDY - INTERIM REPORT  

SciTech Connect (OSTI)

The next generation melter (NOM) development program includes a down selection process to aid in determining the recommended vitrification technology to implement into the WTP at the first melter change-out which is scheduled for 2025. This optioneering study presents a structured value engineering process to establish and assess evaluation criteria that will be incorporated into the down selection process. This process establishes an evaluation framework that will be used progressively throughout the NGM program, and as such this interim report will be updated on a regular basis. The workshop objectives were achieved. In particular: (1) Consensus was reached with stakeholders and technology providers represented at the workshop regarding the need for a decision making process and the application of the D{sub 2}0 process to NGM option evaluation. (2) A framework was established for applying the decision making process to technology development and evaluation between 2010 and 2013. (3) The criteria for the initial evaluation in 2011 were refined and agreed with stakeholders and technology providers. (4) The technology providers have the guidance required to produce data/information to support the next phase of the evaluation process. In some cases it may be necessary to reflect the data/information requirements and overall approach to the evaluation of technology options against specific criteria within updated Statements of Work for 2010-2011. Access to the WTP engineering data has been identified as being very important for option development and evaluation due to the interface issues for the NGM and surrounding plant. WRPS efforts are ongoing to establish precisely data that is required and how to resolve this Issue. It is intended to apply a similarly structured decision making process to the development and evaluation of LAW NGM options.

GRAY MF; CALMUS RB; RAMSEY G; LOMAX J; ALLEN H

2010-10-19T23:59:59.000Z

218

NNSA Administrator Addresses Next Generation of Computational Scientists |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Addresses Next Generation of Computational Scientists | Addresses Next Generation of Computational Scientists | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > NNSA Administrator Addresses Next Generation of Computational ... Speech NNSA Administrator Addresses Next Generation of Computational Scientists Jun 22, 2010

219

Oak Ridge to acquire next generation supercomputer | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(865) 574-7308 Oak Ridge to acquire next generation supercomputer Supercomputer simulations enable researchers to address the most challenging problems in diverse scientific...

220

Next Generation Rooftop Unit - 2013 Peer Review | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

emrgtech11shen040313.pdf More Documents & Publications A typical commercial rooftop air-conditioning unit (RTU) Credit: Oak Ridge National Lab Next Generation Rooftop Unit...

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Next Generation Bio-Based & Sustainable Chemicals Summit  

Broader source: Energy.gov [DOE]

The 6th Annual Next Generation Bio-Based & Sustainable Chemicals Summit will be hosted in New Orleans, Louisiana, from February 35.

222

Vehicle Technologies Office Merit Review 2014: Next Generation Inverter  

Broader source: Energy.gov [DOE]

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

223

Project Profile: Next-Generation Parabolic Trough Collectors...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Trough Collectors and Components for CSP Applications Project Profile: Next-Generation Parabolic Trough Collectors and Components for CSP Applications Abengoa logo Abengoa...

224

Hydrogen Production from the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) is a high temperature gas-cooled reactor that will be capable of producing hydrogen, electricity and/or high temperature process heat for industrial use. The project has initiated the conceptual design phase and when completed will demonstrate the viability of hydrogen generation using nuclear produced process heat. This paper explains how industry and the U.S. Government are cooperating to advance nuclear hydrogen technology. It also describes the issues being explored and the results of recent R&D including materials development and testing, thermal-fluids research, and systems analysis. The paper also describes the hydrogen production technologies being considered (including various thermochemical processes and high-temperature electrolysis).

M. Patterson; C. Park

2008-03-01T23:59:59.000Z

225

HAWC: A Next Generation All-Sky VHE Gamma-Ray Telescope  

E-Print Network [OSTI]

The study of the universe at energies above 100 GeV is a relatively new and exciting field. The current generation of pointed instruments have detected TeV gamma rays from at least 10 sources and the next generation of detectors promises a large increase in sensitivity. We have also seen the development of a new type of all-sky monitor in this energy regime based on water Cherenkov technology (Milagro). To fully understand the universe at these extreme energies requires a highly sensitive detector capable of continuously monitoring the entire overhead sky. Such an instrument could observe prompt emission from gamma-ray bursts and probe the limits of Lorentz invariance at high energies. With sufficient sensitivity it could detect short transients ($\\sim$15 minutes) from active galaxies and study the time structure of flares at energies unattainable to space-based instruments. Unlike pointed instruments a wide-field instrument can make an unbiased study of all active galaxies and enable many multi-wavelength campaigns to study these objects. This paper describes the design and performance of a next generation water Cherenkov detector. To attain a low energy threshold and have high sensitivity the detector should be located at high altitude ($>$ 4km) and have a large area ($\\sim$40,000 m$^2$). Such an instrument could detect gamma ray bursts out to a redshift of 1, observe flares from active galaxies as short as 15 minutes in duration, and survey the overhead sky at a level of 50 mCrab in one year.

G. Sinnis; A. Smith; J. E. McEnery

2004-03-03T23:59:59.000Z

226

NEXT GENERATION NUCLEAR PLANT LICENSING BASIS EVENT SELECTION WHITE PAPER  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) plant capable of producing the electricity and high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) application process, as recommended in the Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy. NRC licensing of the NGNP plant utilizing this process will demonstrate the efficacy of licensing future HTGRs for commercial industrial applications. This white paper is one in a series of submittals that will address key generic issues of the COL priority licensing topics as part of the process for establishing HTGR regulatory requirements.

Mark Holbrook

2010-09-01T23:59:59.000Z

227

Metrology/viewing system for next generation fusion reactors  

SciTech Connect (OSTI)

Next generation fusion reactors require accurate measuring systems to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system is being integrated with a remotely operated deployment system to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of the harsh environment. The deployment mechanism is a telescopic-mast positioning system. This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision ranging and surface mapping system.

Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M. [Oak Ridge National Lab., TN (United States); Dagher, M.A. [Boeing Rocketdyne Div., Canoga Park, CA (United States)

1997-02-01T23:59:59.000Z

228

Next Generations Safeguards Initiative: The Life of a Cylinder  

SciTech Connect (OSTI)

The U.S. Department of Energy/National Nuclear Security Administration Office of Nonproliferation and International Security's Next Generation Safeguards Initiative (NGSI) has begun a program based on a five-year plan to investigate the concept of a global monitoring scheme that uniquely identifies uranium hexafluoride (UF6) cylinders and their locations throughout the life cycle. A key initial activity in the NGSI program is to understand and document the 'life of a UF6 cylinder' from cradle to grave. This document describes the life of a UF6 cylinder and includes cylinder manufacture and procurement processes as well as cylinder-handling and operational practices at conversion, enrichment, fuel fabrication, and depleted UF6 conversion facilities. The NGSI multiple-laboratory team is using this document as a building block for subsequent tasks in the five-year plan, including development of the functional requirements for cylinder-tagging and tracking devices.

Morgan, James B [ORNL; White-Horton, Jessica L [ORNL

2012-01-01T23:59:59.000Z

229

Next Generation Strong Lensing Time Delay Estimation with Gaussian Processes  

E-Print Network [OSTI]

Strong gravitational lensing forms multiple, time delayed images of cosmological sources, with the "focal length" of the lens serving as a cosmological distance probe. Robust estimation of the time delay distance can tightly constrain the Hubble constant as well as the matter density and dark energy. Current and next generation surveys will find hundreds to thousands of lensed systems but accurate time delay estimation from noisy, gappy lightcurves is potentially a limiting systematic. Using a large sample of blinded lightcurves from the Strong Lens Time Delay Challenge we develop and demonstrate a Gaussian Process crosscorrelation technique that delivers an average bias within 0.1% depending on the sampling, necessary for subpercent Hubble constant determination. The fits are accurate (80% of them within 1 day) for delays from 5-100 days and robust against cadence variations shorter than 6 days. We study the effects of survey characteristics such as cadence, season, and campaign length, and derive requiremen...

Hojjati, Alireza

2014-01-01T23:59:59.000Z

230

107th Congress 1st session S.1166, Next generation Lighting Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

II II 107TH CONGRESS 1ST SESSION S. 1166 To establish the Next Generation Lighting Initiative at the Department of Energy, and for other purposes. IN THE SENATE OF THE UNITED STATES JULY 11, 2001 Mr. BINGAMAN (for himself and Mr. DEWINE) introduced the following bill; which was read twice and referred to the Committee on Energy and Nat- ural Resources A BILL To establish the Next Generation Lighting Initiative at the Department of Energy, and for other purposes. Be it enacted by the Senate and House of Representa- 1 tives of the United States of America in Congress assembled, 2 SECTION 1. SHORT TITLE. 3 This Act may be cited as ''Next Generation Lighting 4 Initiative Act''. 5 SEC. 2. FINDING. 6 Congress finds that it is in the economic and energy 7 security interests of the United States to encourage the

231

Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU)  

E-Print Network [OSTI]

The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill extension to the IceCube Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will feature the world's largest effective volume for neutrinos at an energy threshold of a few GeV, enabling it to reach its chief goal of determining the neutrino mass hierarchy (NMH) quickly and at modest cost. PINGU will be able to distinguish between the normal and inverted NMH at $3\\sigma$ significance with an estimated 3.5 years of data. With its unprecedented statistical sample of low energy atmospheric neutrinos, PINGU will also have highly competitive sensitivity to $\

,

2014-01-01T23:59:59.000Z

232

Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU)  

E-Print Network [OSTI]

The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill extension to the IceCube Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will feature the world's largest effective volume for neutrinos at an energy threshold of a few GeV, enabling it to reach its chief goal of determining the neutrino mass hierarchy (NMH) quickly and at modest cost. PINGU will be able to distinguish between the normal and inverted NMH at $3\\sigma$ significance with an estimated 3.5 years of data. With its unprecedented statistical sample of low energy atmospheric neutrinos, PINGU will also have highly competitive sensitivity to $\

The IceCube-PINGU Collaboration

2014-01-09T23:59:59.000Z

233

Technology Assessment for Next Generation PMU Mark A. Buckner  

Broader source: Energy.gov (indexed) [DOE]

Assessment for Next Assessment for Next Generation PMU Mark A. Buckner Oak Ridge National Laboratory bucknerma@ornl.gov 27/28 June 2013 Washington, DC DOE/OE Transmission Reliability Program 2 Project objective  Identify PMU technology migration paths  Develop an understanding of possible next- generation phasor-measurement devices  Develop a plan for designing and building a prototype next-generation PMU 3 Major Technical Accomplishments  Requirements Assessment Phase - Review current PMU functionality during normal and off-normal system operating conditions. - Identify limitations and deficiencies of current technologies. - Identify requirements for next generation PMUs ("If we could make things better, what would we improve?"). - Brainstorm options for next generation PMU. Identify top three

234

Next Generation Nuclear Plant Resilient Control System Functional Analysis  

SciTech Connect (OSTI)

Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

Lynne M. Stevens

2010-07-01T23:59:59.000Z

235

Ideas about tomorrow from our next generation.  

E-Print Network [OSTI]

TRANSIT RIGHT. BUT WE HAVE HYBRID CARS AND ARE MAKING ALTERNATIVE ENERGY A GOAL WE KNOW WE CAN REACH. OLD

Sokolowski, Marla

236

Next Generation Power Electronics National Manufacturing Innovation...  

Energy Savers [EERE]

components of modern data center systems. WBG chips will eliminate up to 90% of the energy losses in today's rectifiers that perform these conversions. WBG-based power...

237

IMPLEMENTING THE NOAA NEXT GENERATION STRATEGIC PLAN  

E-Print Network [OSTI]

climate modeling using NOAA's high performance computing abilities; · Expand the Climate Portal through

238

Next Generation Appliances R&D Roadmap  

Broader source: Energy.gov [DOE]

Appliances present an attractive opportunity for near-term energy savings in existing building, because they are less expensive and replaced more regularly than heating, ventilation, and air-conditioning (HVAC) systems or building envelope components.

239

California: Next-Generation Geothermal Demonstration Launched...  

Office of Environmental Management (EM)

Launched August 21, 2013 - 12:00am Addthis At the outer edges of the largest operating geothermal field in the world, the Energy Department and project partner Calpine...

240

Next Generation Natural Gas Vehicle (NGNGV) Program Fact Sheet  

SciTech Connect (OSTI)

Fact sheet describing U. S. DOE and NREL's development of next generation natural gas vehicles (NGVs) as a key element in its strategy to reduce oil import and vehicle pollutants.

Walkowicz, K.

2002-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Research & Development Roadmap for Next-Generation Low Global...  

Office of Environmental Management (EM)

on the key R&D needs that have the potential to reduce barriers to greater market penetration of next-generation low- GWP refrigerants. The output was a list of potential...

242

Risk Framework for the Next Generation Nuclear Power Plant Construction  

E-Print Network [OSTI]

sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

Yeon, Jaeheum 1981-

2012-12-11T23:59:59.000Z

243

Next Generation Luminaires Design Competition Announces 2013 Outdoor Winners  

Broader source: Energy.gov [DOE]

The 2013 winners in the outdoor category of the Next Generation Luminaires Solid-State Lighting Design Competition were announced at the Strategies in Light conference in Santa Clara, CA.

244

HIGS2: The Next Generation Compton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of research opportunities created by an intensity upgrade to the High Intensity Gamma-ray Source (HIGS) at the Triangle Universities Nuclear Laboratory (TUNL). The current...

245

The pervasive trust foundation for security in next generation networks  

Science Journals Connector (OSTI)

We propose a new paradigm---named the Pervasive Trust Foundation (PTF) ---for computer security in Next Generation Networks, including the Future Internet. We start with a review of basic trust-related terms and concepts. We present motivation ... Keywords: future internet, iso 7498-2, next generation networks, pervasive trust foundation, privacy, security, security mechanisms, security services, trust, trust in the large, trust in the small

Leszek Lilien; Adawia Al-Alawneh; Lotfi Ben Othmane

2010-09-01T23:59:59.000Z

246

DOE Announces Up to $5 Million to Support the Next Generation of Advanced  

Broader source: Energy.gov (indexed) [DOE]

Up to $5 Million to Support the Next Generation of Up to $5 Million to Support the Next Generation of Advanced Automotive Designers and Engineers DOE Announces Up to $5 Million to Support the Next Generation of Advanced Automotive Designers and Engineers February 16, 2011 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu today announced up to $5 million in funding to support Graduate Automotive Technology Education (GATE) Centers of Excellence. The GATE Centers will focus on educating a future workforce of automotive engineering professionals who will gain experience in developing and commercializing advanced automotive technologies. Today's announcement supports the Administration's goal of increasing American economic competitiveness by focusing on science, technology, engineering, and math (STEM) education to support job growth

247

DOE Makes Available $8 Million for Pre-Conceptual Design of Next Generation  

Broader source: Energy.gov (indexed) [DOE]

Makes Available $8 Million for Pre-Conceptual Design of Next Makes Available $8 Million for Pre-Conceptual Design of Next Generation Nuclear Plants DOE Makes Available $8 Million for Pre-Conceptual Design of Next Generation Nuclear Plants September 28, 2006 - 9:01am Addthis WASHINGTON, D.C. - The U.S. Department of Energy (DOE) today announced that DOE's Idaho National Laboratory (INL) will make awards valued at about $8 million to three companies to perform engineering studies and develop a pre-conceptual design to guide research on the Next Generation Nuclear Plant (NGNP). The INL will issue a contract later this week to Westinghouse Electric Company for the pre-conceptual design of the NGNP, and will later issue contracts to AREVA NP and General Atomics to perform complimentary engineering studies in the areas of technology and design

248

DOE to host workshop to explore use of WIPP as 'next generation' underground laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Workshop to Explore Use of WIPP Workshop to Explore Use of WIPP As 'Next Generation' Underground Laboratory CARLSBAD, N.M., June 9, 2000 - The U.S. Department of Energy's (DOE) Carlsbad Area Office is sponsoring the "Workshop on the Next Generation U.S. Underground Science Facility" June 12-14 at the Pecos River Village Conference Center, 711 Muscatel, in Carlsbad. The purpose of the workshop is to explore the potential use of the DOE's Waste Isolation Pilot Plant (WIPP) underground as a next generation laboratory for conducting nuclear and particle astrophysics and other basic science research, and how that might be accomplished. "WIPP's underground environment represents one of only a few choices open to the research community for siting experiments that require shielding from cosmic rays," said Dr.

249

Computational Needs for the Next Generation Electric Grid Proceedings  

SciTech Connect (OSTI)

The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power system software tool performance, i.e. speed to solution, and enhance applicability for new and existing real-time operation and control approaches, as well as large-scale planning analysis. Finally, models are becoming increasingly essential for improved decision-making across the electric system, from resource forecasting to adaptive real-time controls to online dynamics analysis. The importance of data is thus reinforced by their inescapable role in validating, high-fidelity models that lead to deeper system understanding. Traditional boundaries (reflecting geographic, institutional, and market differences) are becoming blurred, and thus, it is increasingly important to address these seams in model formulation and utilization to ensure accuracy in the results and achieve predictability necessary for reliable operations. Each paper also embodies the philosophy that our energy challenges require interdisciplinary solutions - drawing on the latest developments in fields such as mathematics, computation, economics, as well as power systems. In this vein, the workshop should be viewed not as the end product, but the beginning of what DOE seeks to establish as a vibrant, on-going dialogue among these various communities. Bridging communication gaps among these communities will yield opportunities for innovation and advancement. The papers and workshop discussion provide the opportunity to learn from experts on the current state-of-the-art on computational approaches for electric power systems, and where one may focus to accelerate progress. It has been extremely valuable to me as I better understand this space, and consider future programmatic activities. I am confident that you too will enjoy the discussion, and certainly learn from the many experts. I would like to thank the authors of the papers for sharing their perspectives, as well as the paper discussants, session recorders, and participants. The meeting would not have been as successful without your commitment and engagement. I also would like to thank Joe Eto and Bob Thomas for their vision and leadership in bringing together su

Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian; Sztipanovits, Janos; Hemingway, Graham; University, Vanderbilt; Bose, Anjan; Stivastava, Anurag; Grijalva, Santiago; Grijalva, Santiago; Ryan, Sarah M.; McCalley, James D.; Woodruff, David L.; Xiong, Jinjun; Acar, Emrah; Agrawal, Bhavna; Conn, Andrew R.; Ditlow, Gary; Feldmann, Peter; Finkler, Ulrich; Gaucher, Brian; Gupta, Anshul; Heng, Fook-Luen; Kalagnanam, Jayant R; Koc, Ali; Kung, David; Phan, Dung; Singhee, Amith; Smith, Basil

2011-10-05T23:59:59.000Z

250

NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 1  

ScienceCinema (OSTI)

Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

Thomas D'Agostino

2010-09-01T23:59:59.000Z

251

Next Generation Roofs and Attics for Homes  

SciTech Connect (OSTI)

Prototype residential roof and attic assemblies were constructed and field tested in a mixed-humid U.S. climate. Summer field data showed that at peak day irradiance the heat transfer penetrating the roof deck dropped almost 90% compared with heat transfer for a conventional roof and attic assembly. The prototype assemblies use a combination of strategies: infrared reflective cool roofs, radiant barriers, above-sheathing ventilation, low-emittance surfaces, insulation, and thermal mass to reduce the attic air temperature and thus the heat transfer into the home. The prototype assemblies exhibited attic air temperatures that did not exceed the peak day outdoor air temperature. Field results were benchmarked against an attic computer tool and simulations made for the densely populated, hot and dry southeastern and central-basin regions of California. New construction in the central basin could realize a 12% drop in ceiling and air-conditioning annual load compared with a code-compliant roof and attic having solar reflectance of 0.25 and thermal emittance of 0.75. In the hot, dry southeastern region of California, the combined ceiling and duct annual load drops by 23% of that computed for a code-compliant roof and attic assembly. Eliminating air leakage from ducts placed in unconditioned attics yielded savings comparable to the best simulated roof and attic systems. Retrofitting an infrared reflective clay tile roof with 1 -in (0.032-m) of EPS foam above the sheathing and improving existing ductwork by reducing air leakage and wrapping ducts with insulation can yield annual savings of about $200 compared with energy costs for pre-1980 construction.

Miller, William A [ORNL] [ORNL; Kosny, Jan [ORNL] [ORNL

2008-01-01T23:59:59.000Z

252

GenomeView: a next-generation genome browser Thomas Abeel1,2,3,  

E-Print Network [OSTI]

GenomeView: a next-generation genome browser Thomas Abeel1,2,3, *, Thomas Van Parys1,2 , Yvan Saeys GenomeView, a stand-alone genome browser specifically designed to visualize and manipulate a multitude of genomics data. GenomeView enables users to dynamically browse high volumes of aligned short-read data

Gent, Universiteit

253

Red Hat Enterprise Linux 3 The Next Generation Of Enterprise Class Linux  

E-Print Network [OSTI]

Page 1 Red Hat Enterprise Linux 3 The Next Generation Of Enterprise Class Linux Ken Crandall Engineer, Red Hat Version: 3.7ICCAD #12;Page 2 Agenda Why Red Hat Enterprise Linux Workstations High Performance Computing Summary Q & A #12;Page 3 Why Red Hat Enterprise Linux? Version: 3.7ICCAD #12;Page 4

254

Opening Remarks At The Third International Meeting On Next Generation  

National Nuclear Security Administration (NNSA)

Remarks At The Third International Meeting On Next Generation Remarks At The Third International Meeting On Next Generation Safeguards | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Opening Remarks At The Third International Meeting ... Speech Opening Remarks At The Third International Meeting On Next Generation

255

Next Generation CANDU Technology: Competitive Design for the Nuclear Renaissance  

SciTech Connect (OSTI)

AECL has developed the design for a next generation of CANDU{sup R} plants by marrying a set of enabling technologies to well-established successful CANDU features. The basis for the design is to replicate or adapt existing CANDU components for a new core design. By adopting slightly enriched uranium fuel, a core design with light water coolant, heavy water moderator and reflector has been defined, based on the existing CANDU fuel channel module. This paper summarizes the main features and characteristics of the reference next-generation CANDU design. The progress of the next generation of CANDU design program in meeting challenging cost, schedule and performance targets is described. AECL's cost reduction methodology is summarized as an integral part of the design optimization process. Examples are given of cost reduction features together with enhancement of design margins. (authors)

Hopwood, J.M.; Hedges, K.R.; Pakan, M. [Atomic Energy of Canada Ltd., Ontario (Canada)

2002-07-01T23:59:59.000Z

256

Oak Ridge National Laboratory Next Generation Safeguards Initiative  

SciTech Connect (OSTI)

In 2007, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) Office of Nonproliferation and International Security (NA-24) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. The review examined trends and events impacting the mission of international safeguards and the implications of expanding and evolving mission requirements on the legal authorities and institutions that serve as the foundation of the international safeguards system, as well as the technological, financial, and human resources required for effective safeguards implementation. The review's findings and recommendations were summarized in the report, 'International Safeguards: Challenges and Opportunities for the 21st Century (October 2007)'. One of the report's key recommendations was for DOE/NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency's General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: (1) Policy development and outreach; (2) Concepts and approaches; (3) Technology and analytical methodologies; (4) Human resource development; and (5) Infrastructure development. The ensuing report addresses the 'Human Resource Development (HRD)' component of NGSI. The goal of the HRD as defined in the NNSA Program Plan (November 2008) is 'to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.' One of the major objectives listed in the HRD goal includes education and training, outreach to universities, professional societies, postdoctoral appointments, and summer internships at national laboratories. ORNL is a participant in the NGSI program, together with several DOE laboratories such as Pacific Northwest National Laboratory (PNNL), Lawrence Livermore National Laboratory (LLNL), Brookhaven National Laboratory (BNL), and Los Alamos National Laboratory (LANL). In particular, ORNL's participation encompasses student internships, postdoctoral appointments, collaboration with universities in safeguards curriculum development, workshops, and outreach to professional societies through career fairs.

Kirk, Bernadette Lugue [ORNL; Eipeldauer, Mary D [ORNL; Whitaker, J Michael [ORNL

2011-12-01T23:59:59.000Z

257

Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine...  

Broader source: Energy.gov (indexed) [DOE]

& Publications Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation...

258

Presentation to the EAC - Next Generation EMS - Eugene Litvinov  

Broader source: Energy.gov (indexed) [DOE]

Eugene Litvinov Eugene Litvinov C H I E F T E C H N O L O G I S T DOE Electricity Advisory Committee Washington, DC, Oct 15-16, 2012 Next Generation EMS Next Generation EMS * Current architecture limits competition for efficient applications from smaller vendors * Future Power System requires different look at reliability and control - Centralized vs. decentralized control - Corrective vs. preventive - System survivability and resilience vs. reliability: early detection + fast recovery - New definition of contingency * Wide area situational awareness * Decision support system * New Applications 2 Architecture * Integration friendly * Platform Independence * Decentralized, distributed processing * Commercial DBMS vs. proprietary products * Seamless integration of PMU data

259

High Voltage Electrolyte for Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

battery using high voltage high energy cathode materials to enable large-scale, cost competitive production of the next generation of electric-drive vehicles. To...

260

ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine |...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Vehicle Technologies Office Merit Review 2014: ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation...

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project  

SciTech Connect (OSTI)

At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest i.e., within the next 10-15 years.

L.E. Demick

2010-09-01T23:59:59.000Z

262

Name of Module: Next Generation Network Project 2  

E-Print Network [OSTI]

) 30 Total 270 8. Module Examination and Grading Procedures The project will be examined at the beginning of the module. 11. Enrolment Procedures To participate to the lectures/seminars/projectsName of Module: Next Generation Network ­ Project 2 CP (ECTS): 9 Short Name: MINF-KS-AV/PJ2.W12

Wichmann, Felix

263

Name of Module: Next Generation Network Project 1  

E-Print Network [OSTI]

) 30 Total 270 8. Module Examination and Grading Procedures The project will be examined at the beginning of the module. 11. Enrolment Procedures To participate to the lectures/seminars/projectsName of Module: Next Generation Network ­ Project 1 CP (ECTS): 9 Short Name: MINF-KS-AV/PJ1.W12

Wichmann, Felix

264

IP: The Next Generation Written by Scott Phillips.  

E-Print Network [OSTI]

providers i.e. trusted providers. q Scalable multicast. Multicast in IP is only possible in subnetsIP: The Next Generation Written by Scott Phillips. This page is a general overview of the IPng, B, C and D (a fifth class, class E, is only for research purposes). These classes differ

Jain, Raj

265

Distributed Medium Access Control for Next Generation CDMA Wireless Networks  

E-Print Network [OSTI]

Distributed Medium Access Control for Next Generation CDMA Wireless Networks Hai Jiang, Princeton wireless networks are expected to have a simple infrastructure with distributed control. In this article, we consider a generic distributed network model for future wireless multi- media communications

Zhuang, Weihua

266

Icon Scanning: Towards Next Generation QR Codes Itamar Friedman  

E-Print Network [OSTI]

Icon Scanning: Towards Next Generation QR Codes Itamar Friedman Technion Haifa, Israel itamarf-friendly way to obtain this particular applica- tion could be by taking a snapshot of its corresponding icon be thought of as icons with a binary pattern. In this paper we extend this to App-icons and propose

Zelnik-Manor, Lihi - Zelnik-Manor, Lihi

267

Strategies for Next Generation Neutrinoless Double-Beta Decay Experiments  

E-Print Network [OSTI]

Strategies for Next Generation Neutrinoless Double-Beta Decay Experiments F. T. Avignone III A brief discussion of the connection between neutrino oscillation data and predictions of neutrinoless the necessary tools for comparative evaluation. 1. INTRODUCTION Neutrinoless double-beta (0)-decay has been

268

Next Generation CANDU: Conceptual Design for a Short Construction Schedule  

SciTech Connect (OSTI)

Atomic Energy of Canada Ltd. (AECL) has very successful experience in implementing new construction methods at the Qinshan (Phase III) twin unit CANDU 6 plant in China. This paper examines the construction method that must be implemented during the conceptual design phase of a project if short construction schedules are to be met. A project schedule of 48 months has been developed for the nth unit of NG (Next Generation) CANDU with a 42 month construction period from 1. Concrete to In-Service. An overall construction strategy has been developed involving paralleling project activities that are normally conducted in series. Many parts of the plant will be fabricated as modules and be installed using heavy lift cranes. The Reactor Building (RB), being on the critical path, has been the focus of considerable assessment, looking at alternative ways of applying the construction strategy to this building. A construction method has been chosen which will result in excess of 80% of internal work being completed as modules or as very streamlined traditional construction. This method is being further evaluated as the detailed layout proceeds. Other areas of the plant have been integrated into the schedule and new construction methods are being applied to these so that further modularization and even greater paralleling of activities will be achieved. It is concluded that the optimized construction method is a requirement, which must be implemented through all phases of design to make a 42 month construction schedule a reality. If the construction methods are appropriately chosen, the schedule reductions achieved will make nuclear more competitive. (authors)

Hopwood, Jerry M.; Love, Ian J.W.; Elgohary, Medhat; Fairclough, Neville [Atomic Energy of Canada Ltd., Ontario (Canada)

2002-07-01T23:59:59.000Z

269

NEXT GENERATION SURFACTANTS FOR IMPROVED CHEMICAL FLOODING TECHNOLOGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NEXT GENERATION SURFACTANTS NEXT GENERATION SURFACTANTS FOR IMPROVED CHEMICAL FLOODING TECHNOLOGY FINAL REPORT June 1, 2010 - May 31, 2012 Laura L Wesson, Prapas Lohateeraparp, Jeffrey H. Harwell, and Bor-Jier Shiau October 2012 DE-FE0003537 University of Oklahoma Norman, OK 73019-0430 ii DISCLAIMER This report is prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,

270

Supercomputers help unravel twists in next-generation smart polymers |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supercomputers help unravel twists in next-generation smart polymers Supercomputers help unravel twists in next-generation smart polymers November 20, 2013 Printer-friendly version Chemists have been looking at polymers and gels for decades to see how these large chains of molecules respond to external stimuli such as heat, pH, temperature, electric fields, light and chemical influences. The scientists seek ways to control the polymers' actions and behaviors for a wide range of applications: drug delivery, medical diagnostics, tissue engineering, electrophoresis and enhanced oil recovery. Certain smart polymers, for instance, rely on heat, water and timing to execute their missions in controlled drug delivery systems. The key to employing a polymer is controlling its lower critical solution temperature (LCST). When reached, the LCST triggers a dramatic

271

The next generation of oxy-fuel boiler systems  

SciTech Connect (OSTI)

Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

Ochs, Thomas L.; Gross, Alex (Jupiter Oxygen Corp.); Patrick, Brian (Jupiter Oxygen Corp.); Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

2005-01-01T23:59:59.000Z

272

RESULTS OF ANALYSES OF THE NEXT GENERATION SOLVENT FOR PARSONS  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) prepared a nominal 150 gallon batch of Next Generation Solvent (NGS) for Parsons. This material was then analyzed and tested for cesium mass transfer efficiency. The bulk of the results indicate that the solvent is qualified as acceptable for use in the upcoming pilot-scale testing at Parsons Technology Center. This report describes the analysis and testing of a batch of Next Generation Solvent (NGS) prepared in support of pilot-scale testing in the Parsons Technology Center. A total of {approx}150 gallons of NGS solvent was prepared in late November of 2011. Details for the work are contained in a controlled laboratory notebook. Analysis of the Parsons NGS solvent indicates that the material is acceptable for use. SRNL is continuing to improve the analytical method for the guanidine.

Peters, T.; Washington, A.; Fink, S.

2012-03-12T23:59:59.000Z

273

Predictive energy Optimization: The Next Generation of Energy Management  

E-Print Network [OSTI]

: Learning System Architecture Most importantly, this framework allows for further detail and complexity to be added over time. Scope for improvement that has been lacking in the humble PID loop since it?s invention over 100 years ago...: Learning System Architecture Most importantly, this framework allows for further detail and complexity to be added over time. Scope for improvement that has been lacking in the humble PID loop since it?s invention over 100 years ago...

Dickinson, P.

2013-01-01T23:59:59.000Z

274

A National Demonstration Project Building the Next Generation  

SciTech Connect (OSTI)

The U.S., and the world to a greater extent, needs more electrical power generating plants. In the U.S. alone some estimates say that over the next 20 years more than 400,000 MWe of new generation will be needed. This in a period when domestic oil and gas production decreases while consumption increases. Consequently, the U.S. grows more and more dependent on foreign energy sources today importing approximately 60% of our needs. Consider also that the U.S., once the world leader in all nuclear technology, no long leads the world in this technology and each day that goes by the U.S. nuclear infrastructure becomes less and less robust. Due to its improved safety, reliability/economics and emission free generation nuclear power is once more seen as an important energy source in many countries. In 2000, the number of operating nuclear power plants worldwide increased to 438, with 36 new plants under construction. Unfortunately, no new reactor orders have been placed in the US since 1979. When one considers national issues such as reducing environmental emissions, reallocation and conservation of limited natural resources and domestic energy security, the need for new nuclear generation is essential. While the hurdles facing the deployment of new nuclear generation in the U.S. are certainly formidable, the consequences of inaction in this regard are intolerable. In partnership with industry, the Department of Energy should move forward with an aggressive effort in support of deployment of an advanced nuclear power reactor incorporating state-of-the-art safety and proliferation resistant systems. This effort should be structured so as to significantly advance the timetable by which the systems would be available for commercial deployment by taking advantage of ongoing efforts currently underway at DOE and industry. The effort should be sequenced, to the extent possible, so that it can best reflect, both with respect to schedule and capability, the evolving national energy situation, and in a way which supports U.S. environmental objectives. A key element of this effort will be the reestablishment and maintenance of an industrial base, which can be accessed in response to changing national energy needs. Right now, in a cooperative program through the U.S. Department of Energy, U.S. and Russian dollars are paying for over 700 Russian nuclear scientists and engineers to complete design work on the Gas Turbine - Modular Helium Reactor (GT-MHR), a next generation nuclear power plant that is melt-down proof, substantially more efficient that the existing generation of reactors, creates substantially less waste and is extremely proliferation resistant. To date, the Russians are providing world class engineering design work, resulting in the program being on track to begin construction of this first of a kind reactor by the end of 2005. Just as important in parallel with this effort, a number of key U.S. utilities are speaking with Congress and the Administration to 'piggy back' off this U.S./Russian effort to promote a joint private-public partnership to construct in parallel a similar first of a kind reactor in the U.S. (authors)

Keuter, Dan; Hughey, Kenneth; Melancon, Steve [Entergy Nuclear (United States); Quinn, Edward 'Ted' [Past President, American Nuclear Society, General Atomics, 3550 General Atomics Court, San Diego, CA 92186 (United States)

2002-07-01T23:59:59.000Z

275

Researchers tackle new challenge in pursuit of the next generation of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Did you know? Did you know? More than 10,000 publications are based on research at the Advanced Photon Source. The brightness and energy of X-ray beams are critical properties for research. The APS Upgrade will make our X-ray beams brighter, meaning more X-rays can be focused onto a smaller, laser-like spot, allowing researchers to gather more data in greater detail in less time. Researchers tackle new challenge in pursuit of the next generation of lithium batteries By Jared Sagoff * September 27, 2013 Tweet EmailPrint ARGONNE, Ill. - The creation of the next generation of batteries depends on finding materials that provide greater storage capacity. One variety, known as lithium-air (Li-air) batteries, is particularly appealing to researchers because they have a significantly higher theoretical capacity

276

RESULTS OF CESIUM MASS TRANSFER TESTING FOR NEXT GENERATION SOLVENT WITH HANFORD WASTE SIMULANT AP-101  

SciTech Connect (OSTI)

SRNL has performed an Extraction, Scrub, Strip (ESS) test using the next generation solvent and AP-101 Hanford Waste simulant. The results indicate that the next generation solvent (MG solvent) has adequate extraction behavior even in the face of a massive excess of potassium. The stripping results indicate poorer behavior, but this may be due to inadequate method detection limits. SRNL recommends further testing using hot tank waste or spiked simulant to provide for better detection limits. Furthermore, strong consideration should be given to performing an actual waste, or spiked waste demonstration using the 2cm contactor bank. The Savannah River Site currently utilizes a solvent extraction technology to selectively remove cesium from tank waste at the Multi-Component Solvent Extraction unit (MCU). This solvent consists of four components: the extractant - BoBCalixC6, a modifier - Cs-7B, a suppressor - trioctylamine, and a diluent, Isopar L{trademark}. This solvent has been used to successfully decontaminate over 2 million gallons of tank waste. However, recent work at Oak Ridge National Laboratory (ORNL), Argonne National Laboratory (ANL), and Savannah River National Laboratory (SRNL) has provided a basis to implement an improved solvent blend. This new solvent blend - referred to as Next Generation Solvent (NGS) - is similar to the current solvent, and also contains four components: the extractant - MAXCalix, a modifier - Cs-7B, a suppressor - LIX-79{trademark} guanidine, and a diluent, Isopar L{trademark}. Testing to date has shown that this 'Next Generation' solvent promises to provide far superior cesium removal efficiencies, and furthermore, is theorized to perform adequately even in waste with high potassium concentrations such that it could be used for processing Hanford wastes. SRNL has performed a cesium mass transfer test in to confirm this behavior, using a simulant designed to simulate Hanford AP-101 waste.

Peters, T.; Washington, A.; Fink, S.

2011-09-27T23:59:59.000Z

277

Next-Generation Sensor Fish to Provide Data That Will Help Protect...  

Energy Savers [EERE]

Next-Generation Sensor Fish to Provide Data That Will Help Protect Real, Live Fish Next-Generation Sensor Fish to Provide Data That Will Help Protect Real, Live Fish June 4, 2014 -...

278

ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine |...  

Broader source: Energy.gov (indexed) [DOE]

ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

279

ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine |...  

Broader source: Energy.gov (indexed) [DOE]

Merit Review and Peer Evaluation ace061ruth2011o.pdf More Documents & Publications ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation...

280

Next Generation Solar Collectors for CSP - FY13 Q1 | Department...  

Office of Environmental Management (EM)

Next Generation Solar Collectors for CSP - FY13 Q1 Next Generation Solar Collectors for CSP - FY13 Q1 This document summarizes the progress of this 3M project, funded by SunShot,...

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

High Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

A 10% increase in shaft work is directly attributable to modified thermal heat capacity Engineering HTF Specific heat yields modified power output. 27 127 227 327 427 527...

282

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

outstanding technical challenges focused on applicability to heat pipes to Concentrated Solar Power production. These include * Counter gravity physics * Counter gravity...

283

Report from the Next Generation High Performance Computing Task...  

Broader source: Energy.gov (indexed) [DOE]

and video) with the information being mined from unstructured resources, social media, etc. is an emergent area for exploitation. Experiments already are being conducted...

284

Towards Truly Ubiquitous and Opportunistic Trust Infrastructures: Position for Next Generation Cybersecurity Infrastructure Workshop  

E-Print Network [OSTI]

: Position for Next Generation Cybersecurity Infrastructure Workshop Stephen Nightingale Generation Cybersecurity Infrastructure workshop, we note that Federated Identities [1

Tennessee, University of

285

Cost and schedule reduction for next-generation Candu  

SciTech Connect (OSTI)

AECL has developed a suite of technologies for Candu{sup R} reactors that enable the next step in the evolution of the Candu family of heavy-water-moderated fuel-channel reactors. These technologies have been combined in the design for the Advanced Candu Reactor TM1 (ACRTM), AECL's next generation Candu power plant. The ACR design builds extensively on the existing Candu experience base, but includes innovations, in design and in delivery technology, that provide very substantial reductions in capital cost and in project schedules. In this paper, main features of next generation design and delivery are summarized, to provide the background basis for the cost and schedule reductions that have been achieved. In particular the paper outlines the impact of the innovative design steps for ACR: - Selection of slightly enriched fuel bundle design; - Use of light water coolant in place of traditional Candu heavy water coolant; - Compact core design with unique reactor physics benefits; - Optimized coolant and turbine system conditions. In addition to the direct cost benefits arising from efficiency improvement, and from the reduction in heavy water, the next generation Candu configuration results in numerous additional indirect cost benefits, including: - Reduction in number and complexity of reactivity mechanisms; - Reduction in number of heavy water auxiliary systems; - Simplification in heat transport and its support systems; - Simplified human-machine interface. The paper also describes the ACR approach to design for constructability. The application of module assembly and open-top construction techniques, based on Candu and other worldwide experience, has been proven to generate savings in both schedule durations and overall project cost, by reducing premium on-site activities, and by improving efficiency of system and subsystem assembly. AECL's up-to-date experience in the use of 3-D CADDS and related engineering tools has also been proven to reduce both engineering and construction costs through more efficient work planning and use of materials, through reduced re-work and through more precise configuration management. Full-scale exploitation of AECL's electronic engineering and project management tools enables further reductions in cost. The Candu fuel-channel reactor type offers inherent manufacturing and construction advantages through the application of a simple, low-pressure low-temperature reactor vessel along with modular fuel channel technology. This leads to cost benefits and total project schedule benefits. As a result, the targets which AECL has set for replication units - overnight capital cost of $1000 US/kW and total project schedule (engineering/manufacturing/construction/commissioning) of 48 months, have been shown to be achievable for the reference NG Candu design. (authors)

Hopwood, J.M.; Yu, S.; Pakan, M.; Soulard, M. [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

2002-07-01T23:59:59.000Z

286

Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters  

E-Print Network [OSTI]

1 Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters Sriram power distribution system of a next generation transport aircraft is addressed. Detailed analysis with the analysis of subsystem integration in power distribution systems of next generation transport aircraft

Lindner, Douglas K.

287

Sulfur Lamps-The Next Generation of Efficient Light?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Sulfur Lamps-The Next Generation of Efficient Light? The figure above is a schematic of the system installed at the National Air and Space Museum and the DOE headquarters in Washington, D.C., Light from the sulfur lamp is focused by a parabolic reflector so that it enters the light pipe within a small angular cone. Light travels down the pipe, reflecting off the prismatic film (A) that lines the outer acrylic tube. The prismatic film reflects the light through total internal reflection (C), an intrinsically efficient process. Some of the light striking the film (at A) is not reflected and "leaks out" of the pipe walls (B), giving the pipe a glowing appearance. A light ray that travels all the way down the pipe will strike the mirror at the end (D) and return back up the pipe.

288

Final Report for "Analyzing and visualizing next generation climate data"  

SciTech Connect (OSTI)

The project "Analyzing and visualizing next generation climate data" adds block-structured (mosaic) grid support, parallel processing, and 2D/3D curvilinear interpolation to the open-source UV-CDAT climate data analysis tool. Block structured grid support complies to the Gridspec extension submitted to the Climate and Forecast metadata conventions. It contains two parts: aggregation of data spread over multiple mosaic tiles (M-SPEC) and aggregation of temporal data stored in different files (F-SPEC). Together, M-SPEC and F-SPEC allow users to interact with data stored in multiple files as if the data were in a single file. For computational expensive tasks, a flexible, multi-dimensional, multi-type distributed array class allows users to process data in parallel using remote memory access. Both nodal and cell based interpolation is supported; users can choose between different interpolation libraries including ESMF and LibCF depending on the their particular needs.

Pletzer, Alexander

2012-11-13T23:59:59.000Z

289

cades is their size: A three-input sorter im-plemented in next-generation (CMOS 9S)  

E-Print Network [OSTI]

cades is their size: A three-input sorter im- plemented in next-generation (CMOS 9S) technology to the height and width of the energy barrier provides opportunities for probing the interactions between. References and Notes 1. B. G. Briner, M. Doering, H.-P. Rust, A. M. Bradshaw, Science 278, 257 (1997). 2. R

Yin, Y. Whitney

290

Next-Generation Wind Technology | Department of Energy  

Energy Savers [EERE]

improved understanding of the complex physics governing wind flow into and through wind farms. Turbines at the National Wind Technology Center in Boulder, Colorado Text Version...

291

Silicon Nanostructure-based Technology for Next Generation Energy Storage  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

292

Silicon Nanostructure-based Technology for Next Generation Energy Storage  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

293

Next-Generation Thermionic Solar Energy Conversion (Fact Sheet)  

SciTech Connect (OSTI)

Stanford University and the SLAC National Accelerator Laboratory are 2012 SunShot CSP R&D awardees for their advanced power cycles. This fact sheet explains the motivation, description, and impact of the project.

Not Available

2012-09-01T23:59:59.000Z

294

Nx-TEC: Next-Generation Thermionic Solar Energy Conversion  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

295

Silicon Nanostructure-based Technology for Next Generation Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

* Milestone: Baseline cell design and materials validated. Oct-12 * Milestone: Baseline cells delivered Dec-12 * Milestone: Anode material downselect (1,000 cycle, 1,000 mAhcc)....

296

Silicon Nanowire Anodes for Next Generation Energy Storage  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

MonthYear Milestone or GoNo-Go Decision Mar-13 * Designed 2.3Ah SiLCO interim cells (Completed) May-13 * Identified and documented process conditions and metrology...

297

Silicon Nanostructure-based Technology for Next Generation Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

complete. * Baseline cell design and materials validated. Oct-12 * Baseline cells delivered. Mar-13 * Complete design of 2Ah cell. May-13 * Identified and documented...

298

Next Generation Safeguards Initiative: Overview and Policy Context of UF6 Cylinder Tracking Program  

SciTech Connect (OSTI)

Thousands of cylinders containing uranium hexafluoride (UF{sub 6}) move around the world from conversion plants to enrichment plants to fuel fabrication plants, and their contents could be very useful to a country intent on diverting uranium for clandestine use. Each of these large cylinders can contain close to a significant quantity of natural uranium (48Y cylinder) or low-enriched uranium (LEU) (30B cylinder) defined as 75 kg {sup 235}U which can be further clandestinely enriched to produce 1.5 to 2 significant quantities of high enriched uranium (HEU) within weeks or months depending on the scale of the clandestine facility. The National Nuclear Security Administration (NNSA) Next Generation Safeguards Initiative (NGSI) kicked off a 5-year plan in April 2011 to investigate the concept of a unique identification system for UF{sub 6} cylinders and potentially to develop a cylinder tracking system that could be used by facility operators and the International Atomic Energy Agency (IAEA). The goal is to design an integrated solution beneficial to both industry and inspectorates that would improve cylinder operations at the facilities and provide enhanced capabilities to deter and detect both diversion of low-enriched uranium and undeclared enriched uranium production. The 5-year plan consists of six separate incremental tasks: (1) define the problem and establish the requirements for a unique identification (UID) and monitoring system; (2) develop a concept of operations for the identification and monitoring system; (3) determine cylinder monitoring devices and technology; (4) develop a registry database to support proof-of-concept demonstration; (5) integrate that system for the demonstration; and (6) demonstrate proof-of-concept. Throughout NNSA's performance of the tasks outlined in this program, the multi-laboratory team emphasizes that extensive engagement with industry stakeholders, regulatory authorities and inspectorates is essential to its success.

Boyer, Brian D [Los Alamos National Laboratory; Whitaker, J. Michael [ORNL; White-Horton, Jessica L. [ORNL; Durbin, Karyn R. [NNSA

2012-07-12T23:59:59.000Z

299

Next Generation Nuclear Plant Project 2009 Status Report  

SciTech Connect (OSTI)

The mission of the NGNP Project is to broaden the environmental and economic benefits of nuclear energy technology to the United States and other economies by demonstrating its applicability to market sectors not served by light water reactors (LWRs). Those markets typically use fossil fuels to fulfill their energy needs, and high temperature gas-cooled reactors (HTGRs) like the NGNP can reduce this dependence and the resulting carbon footprint.

Larry Demick; Jim Kinsey; Keith Perry; Dave Petti

2010-05-01T23:59:59.000Z

300

Rucio, the next-generation Data Management system in ATLAS  

E-Print Network [OSTI]

Rucio is the next-generation of Distributed Data Management (DDM) system benefiting from recent advances in cloud and "Big Data" computing to address HEP experiments scaling requirements. Rucio is an evolution of the ATLAS DDM system Don Quijote 2 (DQ2), which has demonstrated very large scale data management capabilities with more than 160 petabytes spread worldwide across 130 sites, and accesses from 1,000 active users. However, DQ2 is reaching its limits in terms of scalability, requiring a large number of support staff to operate and being hard to extend with new technologies. Rucio addresses these issues by relying on new technologies to ensure system scalability, cover new user requirements and employ new automation framework to reduce operational overheads. This paper shows the key concepts of Rucio, details the Rucio design, and the technology it employs, the tests that were conducted to validate it and finally describes the migration steps that were conducted to move from DQ2 to Rucio.

Serfon, C; The ATLAS collaboration; Beermann, T; Garonne, V; Goossens, L; Lassnig, M; Nairz, A; Vigne, R

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Analysis Tools for Next-Generation Hadron Spectroscopy Experiments  

E-Print Network [OSTI]

The series of workshops on New Partial-Wave Analysis Tools for Next-Generation Hadron Spectroscopy Experiments was initiated with the ATHOS 2012 meeting, which took place in Camogli, Italy, June 20-22, 2012. It was followed by ATHOS 2013 in Kloster Seeon near Munich, Germany, May 21-24, 2013. The third, ATHOS3, meeting is planned for April 13-17, 2015 at The George Washington University Virginia Science and Technology Campus, USA. The workshops focus on the development of amplitude analysis tools for meson and baryon spectroscopy, and complement other programs in hadron spectroscopy organized in the recent past including the INT-JLab Workshop on Hadron Spectroscopy in Seattle in 2009, the International Workshop on Amplitude Analysis in Hadron Spectroscopy at the ECT*-Trento in 2011, the School on Amplitude Analysis in Modern Physics in Bad Honnef in 2011, the Jefferson Lab Advanced Study Institute Summer School in 2012, and the School on Concepts of Modern Amplitude Analysis Techniques in Flecken-Zechlin near...

Battaglieri, M; Celentano, A; Chung, S -U; D'Angelo, A; De Vita, R; Dring, M; Dudek, J; Eidelman, S; Fegan, S; Ferretti, J; Fox, G; Galata, G; Garcia-Tecocoatzi, H; Glazier, D I; Grube, B; Hanhart, C; Hoferichter, M; Hughes, S M; Ireland, D G; Ketzer, B; Klein, F J; Kubis, B; Liu, B; Masjuan, P; Mathieu, V; McKinnon, B; Mitchell, R; Nerling, F; Paul, S; Pelaez, J R; Rademacker, J; Rizzo, A; Salgado, C; Santopinto, E; Sarantsev, A V; Sato, T; Schlter, T; da Silva, M L L; Stankovic, I; Strakovsky, I; Szczepaniak, A; Vassallo, A; Walford, N K; Watts, D P; Zana, L

2014-01-01T23:59:59.000Z

302

Recent results from DIII-D and their implications for next generation tokamaks  

Science Journals Connector (OSTI)

Recent results from the DIII-D tokamak have provided significant contributions to the understanding of many of the elements of tokamak physics and the application of this understanding to the design of next generation devices including ITER and CIT. The limitations of magnetohydrodynamic stability on the values of plasma beta (the ratio of kinetic pressure to the containing pressure of the magnetic field) that can be attained has been experimentally demonstrated and found to be described by existing theory. Values of beta (10.7%) well in excess of those required for proposed devices (ITER and CIT) have been demonstrated. Regimes of confinement (H-mode) have been established that scale favorably to proposed next generation devices, and experiments demonstrating the dependence of the energy confinement on plasma size have been completed. Understanding of confinement is rapidly developing especially in the areas of bulk transport and the role of turbulence in the plasma edge. Key experimental results in areas of plasma transport and edge plasma phenomena are in agreement with theories based on short wavelength turbulence. Control of the divertor heat loads and impurity influx has been demonstrated, and new progress has been made in the understanding of plasma edge phenomena. Experiments with ion Bernstein wave heating have not found regimes in which these waves can produce effective central ion heating. Electron cyclotron current drive experiments have demonstrated 70 kA of driven current in 400 kA discharges.

J L Luxon; G Bramson; K H Burrell; N H Brooks; D Buchenauer; R W Callis; T N Carlstrom; C Challis; M S Chu; S Coda; A P Colleraine; J C DeBoo; B De Gentile; J De Haas; E J Doyle; J R Ferron; R Freeman; T Fukuda; A Futch; A Fyaretdinov; G Giruzzi; P Gohil; Yu Gorelov; C M Greenfield; R J Groebner; W Heidbrink; D N Hill; R Hong; W Howl; C L Hsieh; G L Jackson; R A James; S Janz; T Jensen; R Jong; Y Kamada; A G Kellman; J Kim; H Kubo; T Kurki-Suonio; L L Lao; R La Haye; E A Lazarus; T Lehecka; S I Lippmann; B Lloyd; J Lohr; T C Luce; N C Luhmann Jr; M A Mahdavi; H Matsumoto; G Matthews; M Mayberry; B Mills; C P Moeller; T H Osborne; D O Overskei; W A Peebles; P I Petersen; T W Petrie; C Petty; R Philipona; J Phillips; R Pinsker; P A Politzer; M Porkolab; G D Porter; R Prater; M E Rensink; J Rodriguez; G Sager; M J Schaffer; D P Schissel; J T Scoville; R P Seraydarian; T C Simonen; R T Snider; B W Stallard; R D Stambaugh; H St John; R E Stockdale; E J Strait; P L Taylor; T S Taylor; P K Trost; V Trukhin; J Wight; J Winter; D Wroblewski

1990-01-01T23:59:59.000Z

303

Recent results from DIII-D and their implications for next generation tokamaks  

SciTech Connect (OSTI)

Recent results from the DIII-D tokamak have provided significant contributions to the understanding of many of the elements of tokamak physics and the application of this understanding to the design of next generation devices including ITER and CIT. The limitations of magnetohydrodynamics stability on the values of plasma beta (the ratio of kinetic pressure to the containing pressure of the magnetic field) that can be attained has been experimentally demonstrated and found to be described by existing theory. Values of beta (10.7%) well in excess of those required for proposed devices (ITER and CIT) have been demonstrated. Regimes of confinement (H-mode) have been established that scale favorably to proposed next generation devices, and experiments demonstrating the dependence of the energy confinement on plasma size have been completed. Understanding of confinement is rapidly developing especially in the areas of bulk transport and the role of turbulence in the plasma edge. Key experimental results in areas of plasma transport and edge plasma phenomena are found to be in agreement with theories based on short wavelength turbulence. Control of the divertor heat loads and impurity influx has been demonstrated, and new progress has been made in the understanding of plasma edge phenomena. Experiments with ion Bernstein wave heating have not found regimes in which these waves can produce effective central ion heating. Electron cyclotron current drive experiments have demonstrated 70 kA of driven current in 400 kA discharges.

Luxon, J.L.; Bramson, G.; Burrell, K.H.; Brooks, N.H.; Callis, R.W.; Carlstrom, T.N.; Chu, M.S.; Colleraine, A.P.; DeBoo, J.C.; Ferron, J.R.; Freeman, R.; Gohil, P.; Greenfield, C.M.; Groebner, R.J.; Hong, R.; Howl, W.; Hsieh, C.L.; Jackson, G.L.; Jensen, T.; Kellman, A.G.; Kim, J.; Lao, L.L.; La Haye, R.; Leikind, B.; Lippmann, S.I.; Lohr, J.; Luce, T.C.; Mahdavi, M.A.; Mayberry, M.; Moeller, C.P.; Osborne, T.H.; Overskei, D.O

1990-07-01T23:59:59.000Z

304

Next generation Higgs bosons: Theory, constraints, and discovery prospects at the Large Hadron Collider  

Science Journals Connector (OSTI)

Particle physics model building within the context of string theory suggests that further copies of the Higgs boson sector may be expected. Concerns regarding tree-level flavor-changing neutral currents are easiest to allay if little or no couplings of next generation Higgs bosons to standard model fermions are allowed. We detail the resulting general Higgs potential and mass spectroscopy in both a standard model extension and a supersymmetric extension. We present the important experimental constraints from meson-meson mixing, loop-induced b?s? decays, and LEP2 direct production limits. We investigate the energy range of the valid perturbation theory of these ideas. In the supersymmetric context we present a class of examples that marginally aids the fine-tuning problem for parameter space where the lightest Higgs boson mass is greater than the standard model limit of 114GeV. Finally, we study collider physics signatures generic to next generation Higgs bosons, with special emphasis on Ah?hhZ?4b+2l signal events, and describe the capability of discovery at the Large Hadron Collider.

Rick S. Gupta and James D. Wells

2010-03-30T23:59:59.000Z

305

Single Stage Contactor Testing Of The Next Generation Solvent Blend  

SciTech Connect (OSTI)

The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.

2014-01-06T23:59:59.000Z

306

CHEMICAL STABILITY OF POLYPHENYLENE SULFIDE IN THE NEXT GENERATION SOLVENT FOR CAUSTIC-SIDE SOLVENT EXTRACTION  

SciTech Connect (OSTI)

The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. For simplicity, this solvent is referred to as the Next Generation Solvent (NGS). The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The initial deployment target envisioned for the technology was within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with polyphenylene sulfide (PPS), the polymer used in the coalescers within MCU. This report provides the data from exposing PPS polymer to NGS. The test was conducted over a three month period. PPS is remarkably stable in the presence of the next generation solvent. Testing showed no indication of swelling or significant leaching. Preferential sorption of the Modifier on PPS was observed but the same behavior occurs with the baseline solvent. Therefore, PPS coalescers exposed to the NGS are expected to perform comparably to those in contact with the baseline solvent.

Fondeur, F.; Fink, S.

2011-12-08T23:59:59.000Z

307

Next Generation Natural Gas Vehicle Activity: Natural Gas Engine and Vehicle Research & Development (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the status of the Next Generation Natural Gas Vehicle (NGNGV) activity, including goals, R&D progress, NGV implementation, and the transition to hydrogen.

Not Available

2003-09-01T23:59:59.000Z

308

Demonstrating Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control  

Broader source: Energy.gov [DOE]

Presents a next generation model-based engine controller that incorporates real-time fuel efficiency optimization and tested under fully transient engine and vehicle operating conditions.

309

Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...  

Broader source: Energy.gov (indexed) [DOE]

Technology Light Duty Diesel Aftertreatment System Passive Catalytic Approach to Low Temperature NOx Emission Abatement ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

310

Next Generation Hydrogen Station Composite Data Products: Data through Quarter 4 of 2013  

SciTech Connect (OSTI)

This report includes 25 composite data products (CDPs) produced for next generation hydrogen stations, with data through quarter 4 of 2013.

Sprik, S.; Kurtz, J.; Peters, M.

2014-05-01T23:59:59.000Z

311

Next Generation Lunch: Revealing the Worlds First 3D Printed Car (text version)  

Broader source: Energy.gov [DOE]

Below is the text version for the Next Generation Lunch: Revealing the Worlds First 3D Printed CarVideo.

312

The next generation of $? -> e ?$ and $? -> 3e$ CLFV search experiments  

E-Print Network [OSTI]

We explore the possibilities for extending the sensitivity of current searches for the charged lepton flavor violating decays $\\mu\\ -> e \\gamma$ and $\\mu\\ -> eee$. A future facility such as Project X at Fermilab could provide a much more intense stopping $\\mu^+$ beam, facilitating more sensitive searches, but improved detectors will be required as well. Current searches are limited by accidental and physics backgrounds, as well as by the total number of stopped muons. One of the limiting factors in current detectors for $\\mu\\ -> e \\gamma$ searches is the photon energy resolution of the calorimeter. We present a new fast Monte Carlo simulation of a conceptual design of a new experimental concept that detects converted $e^+e^-$ pairs from signal photons, taking advantage of the improved energy resolution of a pair spectrometer based on a silicon charged particle tracker. We also study a related detector design for a next generation $\\mu\\to eee$ search experiment.

Chih-hsiang. Cheng; Bertrand Echenard; David G. Hitlin

2013-09-30T23:59:59.000Z

313

The next generation of $\\mu\\ -> e \\gamma$ and $\\mu\\ -> 3e$ CLFV search experiments  

E-Print Network [OSTI]

We explore the possibilities for extending the sensitivity of current searches for the charged lepton flavor violating decays $\\mu\\ -> e \\gamma$ and $\\mu\\ -> eee$. A future facility such as Project X at Fermilab could provide a much more intense stopping $\\mu^+$ beam, facilitating more sensitive searches, but improved detectors will be required as well. Current searches are limited by accidental and physics backgrounds, as well as by the total number of stopped muons. One of the limiting factors in current detectors for $\\mu\\ -> e \\gamma$ searches is the photon energy resolution of the calorimeter. We present a new fast Monte Carlo simulation of a conceptual design of a new experimental concept that detects converted $e^+e^-$ pairs from signal photons, taking advantage of the improved energy resolution of a pair spectrometer based on a silicon charged particle tracker. We also study a related detector design for a next generation $\\mu\\to eee$ search experiment.

Cheng, Chih-hsiang; Hitlin, David G

2013-01-01T23:59:59.000Z

314

System Modeling and Design Optimization for a Next-Generation Unattended Sensor  

SciTech Connect (OSTI)

We are developing a next-generation unattendedsensor that can detect and identify radiation sources while operating on battery power for several weeks. The system achieves smaller size and weight over systems that use NaI:Tl and 3He detectors by using a relatively new scintillator, Cs2LiYCl6:Ce:Ce (CLYC). This material can detect both gamma rays and thermal neutrons, has energy resolution of ~4% full width at half maximum at 662 keV, and allows for particle discrimination by pulse amplitude as well as pulse shape. The overall design features an array of sixteen CLYC detectors, each read out by a photomultiplier tube and custom pulse processing electronics. A field-programmable gate array analyzes the energy spectra using computationally efficient algorithms for anomaly detection.

McDonald, Benjamin S.; Myjak, Mitchell J.; Hensley, Walter K.; Smart, John E.

2013-04-01T23:59:59.000Z

315

Advanced ceramic materials for next-generation nuclear applications  

Science Journals Connector (OSTI)

The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high-temperature plasma systems. Fusion reactors will likely depend on lithium-based ceramics to produce tritium that fuels the fusion plasma, while high-temperature alloys or ceramics will contain and control the hot plasma. All the while, alloys, ceramics, and ceramic-related processes continue to find applications in the management of wastes and byproducts produced by these processes.

John Marra

2011-01-01T23:59:59.000Z

316

Novel Carbon Films for Next Generation Rotating Equipment Applications  

SciTech Connect (OSTI)

This report describes the results of research performed on a new generation of low friction, wear resistant carbon coatings for seals and bearings in high speed rotating equipment. The low friction coatings, Near Frictionless Carbon (NFC), a high hydrogen content diamondlike carbon, and Carbide Derived Carbon (CDC), a conversion coating produced on the surfaces of metal carbides by halogenation, can be applied together or separately to improve the performance of seals and bearings, with benefits to energy efficiency and environmental protection. Because hard carbide ceramics, such as silicon carbide, are widely used in the seals industry, this coating is particularly attractive as a low cost method to improve performance. The technology of CDC has been licensed to an Illinois company, Carbide Derivative Technologies, Inc. (CDTI) to implement the commercialization of this material.

Michael McNallan; Ali Erdemir; Yury Gogotsi

2006-02-20T23:59:59.000Z

317

Next Generation Geothermal Power Plants (NGGPP) process data for binary cycle plants  

SciTech Connect (OSTI)

The Next Generation Geothermal Power Plants (NGGPP) study provides the firm estimates - in the public domain - of the cost and performance of U.S. geothermal systems and their main components in the early 1990s. The study was funded by the U.S. Department of Energy Geothermal Research Program, managed for DOE by Evan Hughes of the Electric Power Research Institute, Palo Alto, CA, and conducted by John Brugman and others of the CE Holt Consulting Firm, Pasadena, CA. The printed NGGPP reports contain detailed data on the cost and performance for the flash steam cycles that were characterized, but not for the binary cycles. The nine Tables in this document are the detailed data sheets on cost and performance for the air cooled binary systems that were studied in the NGGPP.

Not Available

1996-10-02T23:59:59.000Z

318

Promoting next generation vehicles in Japan: the smart communities and their experimentations  

Science Journals Connector (OSTI)

The development of smart grids opens up interesting perspectives in order to make better use of local renewable energy production, reduce CO2 emissions, giving therefore more emphasis on electrical vehicles. After having briefly described mobility characteristics in Japan and introduced the Japanese context that led to the wide range of new policies implementation aiming at building a low carbon society and at promoting next generation vehicles, the paper concentrates on an extensive programme launched by the Japanese Ministry of Economy, Trade and Industry (METI) in 2010 to promote the development of 'smart communities'. Taking the case of Toyota city Smart Melit experimentation as a concrete illustration, it discusses the main actions undertaken before examining some preliminary results in terms of users' behaviour and the consequences that present and expected future changes might have on the mobility ecosystem and on car maker business model.

Bruno Faivre d'Arcier; Yveline Lecler

2014-01-01T23:59:59.000Z

319

The next generation in rocket enginesthe RD-180  

Science Journals Connector (OSTI)

The key to any launch vehicle is the booster propulsion system. It provides the energy to reach orbit and is generally the most expensive launch vehicle subsystem. As Lockheed Martin began to develop the Atlas IIAR and EELV launch system it examined several engines for booster propulsionan upgrade of the Rocketdyne MA-5 a new high-performance LO2/kerosene booster engine using a staged combustion cycle RD-180 and NK-33. The intent was to incorporate a modern lower cost high-performance propulsion system that would enable Atlas IIAR and EELV to reduce recurring cost while meeting increased customer performance requirements. After detailed analyses the clear winner was the RD-180 a derivative of the successful flight-proven RD-170the worlds only high-performance staged combustion LO2/kerosene engine in production. This paper describes the effort undertaken to develop the RD-180 engine for the exclusive use of Lockheed Martin launch systems. It also summarizes the plan to transition RD-180 production to the United States to enable use on the Evolved Expendable Launch Vehicle (EELV) program to support the National Space Policy. Results presented highlight the activity undertaken by Astronautics and our team member RD AMROSS LLCa joint venture between NPO Energomash and United Technologies Pratt & Whitney.

Robert N. Ford; William E. Pipes III; Jerome F. Josef

1998-01-01T23:59:59.000Z

320

Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)  

SciTech Connect (OSTI)

The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have concluded, however, that with adequate engineered cooling of the vessel, the A508/533 steels are also acceptable.

J. K. Wright; R. N. Wright

2008-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology  

SciTech Connect (OSTI)

We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good agreement for simulations of highly enriched uranium assemblies is preserved; (d) The underprediction of fast criticality of {sup 233,235}U and {sup 239}Pu assemblies is removed; and (e) The intermediate spectrum critical assemblies are predicted more accurately. We anticipate that the new library will play an important role in nuclear technology applications, including transport simulations supporting national security, nonproliferation, advanced reactor and fuel cycle concepts, criticality safety, medicine, space applications, nuclear astrophysics, and nuclear physics facility design. The ENDF/B-VII.0 library is archived at the National Nuclear Data Center, BNL. The complete library, or any part of it, may be retrieved from www.nndc.bnl.gov.

Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

2006-10-02T23:59:59.000Z

322

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

theenergy outputofwindturbinesandsolar panelsisenergy management systems of customers equipped with a solar panel

Birman, Kenneth

2012-01-01T23:59:59.000Z

323

The next generation Cherenkov Telescope Array observatory: CTA  

Science Journals Connector (OSTI)

Abstract The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the very high-energy gamma-ray astrophysics in the energy range 30GeV100TeV, which will improve by about one order of magnitude the sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). In order to achieve such improved performance, for both the northern and southern CTA sites, four units of 23m diameter Large Size Telescopes (LSTs) will be deployed close to the centre of the array with telescopes separated by about 100m. A larger number (about 25 units) of 12m Medium Size Telescopes (MSTs, separated by about 150m), will cover a larger area. The southern site will also include up to 24 SchwarzschildCouder dual-mirror medium-size Telescopes (SCTs) with the primary mirror diameter of 9.5m. Above a few TeV, the Cherenkov light intensity is such that showers can be detected even well outside the light pool by telescopes significantly smaller than the MSTs. To achieve the required sensitivity at high energies, a huge area on the ground needs to be covered by Small Size Telescopes (SSTs) with a field of view of about 10 and an angular resolution of about 0.2, making the dual-mirror configuration very effective. The SST sub-array will be composed of 5070 telescopes with a mirror area of about 510m2 and about 300m spacing, distributed across an area of about 10km2. In this presentation we will focus on the innovative solution for the optical design of the medium and small size telescopes based on a dual-mirror configuration. This layout will allow us to reduce the dimension and the weight of the camera at the focal plane of the telescope, to adopt Silicon-based photo-multipliers as light detectors thanks to the reduced plate-scale, and to have an optimal imaging resolution on a wide field of view.

S. Vercellone

2014-01-01T23:59:59.000Z

324

Development of a thyristor valve for next generation 500kV HVDC transmission systems  

SciTech Connect (OSTI)

A high voltage thyristor valve is the basic component of an HVDC transmission system. Development of a 500kV valve for next generation HVDC transmission systems is described. First, the power loss of the valve is analyzed to decide a reasonable wafer size for the light triggered thyristor. From these results, a six inch diameter wafer size is selected. The light triggered thyristor, with ratings of 8kV and 3.5kA, is developed using the six inch wafer. The designing of the valve employing the thyristor and test results with the prototype valve prove that a 500kV valve can be realized by the design method.

Hasegawa, T. [Kansai Electric Power Co., Inc., Osaka (Japan)] [Kansai Electric Power Co., Inc., Osaka (Japan); Yamaji, K. [Shikoku Electric Power Co., Inc., Takamatsu (Japan)] [Shikoku Electric Power Co., Inc., Takamatsu (Japan); Irokawa, H. [Electric Power Development Co., Ltd., Tokyo (Japan)] [Electric Power Development Co., Ltd., Tokyo (Japan); Shirahama, H.; Tanaka, C.; Akabane, K.

1996-10-01T23:59:59.000Z

325

Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities  

E-Print Network [OSTI]

This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

2006-01-01T23:59:59.000Z

326

Microsoft Word - Research and Development Roadmap for Next-Generation...  

Energy Savers [EERE]

energy savings and does not account for any technical or market factors that might limit penetration. Un-staged Maximum Adoption Potential (TBtu): The portion of the technical...

327

Bush Administration Moves Forward to Develop Next Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Forum Signs Agreement to Collaborate on Sodium Cooled Fast Reactors China and Russia to Join the Generation IV International Forum Renewed energy and enhanced coordination...

328

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

S. GrijalvaRealizingSmartGridBenefitsRequiresEnergysmart grid activities are targeted to enable demand response. Demand response should provide significant benefits,

Birman, Kenneth

2012-01-01T23:59:59.000Z

329

Design and Control of Next Generation Distribution Frames  

E-Print Network [OSTI]

-peak hours, adopted by network operators to reduce the energy consumption in the access network (and for the number of required ports (sometimes very large, exceeding 100,000), and rearrangeable multistage networks and current needs to reduce the energy con- sumption require now to move from slow human operations to almost

Giaccone, Paolo

330

Cognition as a Tool for Green Next Generation Networks  

Science Journals Connector (OSTI)

The chapter discusses issues related to the implementation of the different steps of the cognitive cycle, especially focusing on reasoning, and applies this to energy saving for green networking. The application ...

Fabrizio Granelli; Oliver Holland

2014-01-01T23:59:59.000Z

331

Sandia National Laboratories: next-generation exascale architectures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to address the most challenging and demanding climate-change issues. Accelerated Climate Modeling for Energy (ACME) is designed to accel-erate the development and applica-tion of...

332

Nanomaterials: Organic and Inorganic for Next-Generation Diesel Technologies  

Broader source: Energy.gov [DOE]

2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

333

Upholding Dr. King's Dream and Inspiring the Next Generation...  

Energy Savers [EERE]

uphold their strength of character-all values at the center of Dr. King's dream. Chris Smith, the Department's Assistant Secretary for the Office of Fossil Energy, also encouraged...

334

Vehicle Technologies Office Merit Review 2014: Next-Generation Ultra Lean Burn Powertrain  

Broader source: Energy.gov [DOE]

Presentation given by MAHLE Powertrain, LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next-generation ultra...

335

JCESR and NASA team up to conduct research for next generation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

JCESR and NASA team up to conduct research for next generation batteries to be used in space adipex for sale News Release buy xanax online no prescription Media Contacts buy...

336

EIS-0362: Colorado Springs Utilities' Next Generation CFB Coal Generating Unit, CO  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to approve Colorado Springs Utilities design, construction, and operation of their Next- Generation Circulating Fluidized Bed (CFB) Coal Generating Unit demonstration plant near Fountain, El Paso County, Colorado.

337

POSTDOCTORAL POSITION IN BIOINFORMATICS AND EVOLUTIONARY GENOMICS: Next generation sequencing and analysis of complex polyploid genomes  

E-Print Network [OSTI]

POSTDOCTORAL POSITION IN BIOINFORMATICS AND EVOLUTIONARY GENOMICS: Next generation sequencing and analysis of complex polyploid genomes The research group Genome Evolution and Speciation (Team) to work on the analysis of genome and transcriptome sequence data (generated using 454 Roche

Rennes, Université de

338

Pulse Capacitors for Next Generation Linear Colliders. Final Report  

SciTech Connect (OSTI)

During this Phase I SBIR research program, Nanomaterials Research Corporation (NRC) successfully demonstrated high-voltage multilayer capacitors produced from sub-100 nm ceramic powders. The devices produced by NRC exhibited properties that make them particularly useful for pulse power applications. These properties include (1) high capacitance (2) low loss (3) high breakdown voltage (4) high insulation resistance and (5) rapid discharge characteristics. Furthermore, the properties of the nanostructured capacitors were consistently found to exceed those of components that represent the state of the art within the industry. Encouraged by these results, NRC is planning to submit a Phase II proposal with the objective of securing seed capital to continue this development effort.

Hooker, M.W.

2000-03-03T23:59:59.000Z

339

LLNL to deliver next-generation supercomputer | National Nuclear...  

National Nuclear Security Administration (NNSA)

Lawrence Livermore national labs (CORAL) to accelerate the development of high performance computing. CORAL will result in delivery to each laboratory of a supercomputer...

340

Natural Oils - The Next Generation of Diesel Engine Lubricants...  

Broader source: Energy.gov (indexed) [DOE]

Aftertreatment with a Oil Conditioning Filter Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on Wear Development of High Performance Heavy Duty Engine Oils...

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

New Catalyst Opens Way to Next-Generation Fuel Cells  

DOE R&D Accomplishments [OSTI]

A new highly stable catalyst developed at Brookhaven Lab lowers barriers to commercial use of fuel cells in vehicles and stationary applications.

Snyder, Kendra

2011-03-28T23:59:59.000Z

342

Next Generation Lighting Technologies (LBNL Summer Lecture Series)  

ScienceCinema (OSTI)

For the past several years, Michael Siminovittch, a researcher in the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory, has worked to package efficient lighting in an easy-to-use and good-looking lamp. His immensely popular "Berkeley Lamp" has redefined how America lights its offices.

Siminovittch, Micheal

2014-05-06T23:59:59.000Z

343

Application of Next-Generation Sensor Systems in HTRs  

E-Print Network [OSTI]

. This thesis develops neutron flux reconstruction methods for in-core sensors placed in HTRs. Sensor systems developed for current generation reactors cannot be used in HTRs. The high temperatures inside HTRs preclude the use of existing in-core sensors...

Johnson, Matthew Paul

2013-04-30T23:59:59.000Z

344

Phoebus: Network Middleware for Next-Generation Network Computing  

SciTech Connect (OSTI)

The Phoebus project investigated algorithms, protocols, and middleware infrastructure to improve end-to-end performance in high speed, dynamic networks. The Phoebus system essentially serves as an adaptation point for networks with disparate capabilities or provisioning. This adaptation can take a variety of forms including acting as a provisioning agent across multiple signaling domains, providing transport protocol adaptation points, and mapping between distributed resource reservation paradigms and the optical network control plane. We have successfully developed the system and demonstrated benefits. The Phoebus system was deployed in Internet2 and in ESnet, as well as in GEANT2, RNP in Brazil and over international links to Korea and Japan. Phoebus is a system that implements a new protocol and associated forwarding infrastructure for improving throughput in high-speed dynamic networks. It was developed to serve the needs of large DOE applications on high-performance networks. The idea underlying the Phoebus model is to embed Phoebus Gateways (PGs) in the network as on-ramps to dynamic circuit networks. The gateways act as protocol translators that allow legacy applications to use dedicated paths with high performance.

Martin Swany

2012-06-16T23:59:59.000Z

345

Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking  

Broader source: Energy.gov [DOE]

This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metalized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metalized iron nodules at low cost.

346

Next-generation communication protocol concepts for future nanosatellite constellations  

Science Journals Connector (OSTI)

Nanosatellite constellations at low Earth orbits represent a cost-efficient way for the accomplishment of Earth and space observation tasks. With the growing complexity of the exploration tasks, the amount of science data is expected to increase. For data download purposes efficient communication strategies must be adopted. The available power of a single nanosatellite spacecraft is limited by the small area of solar arrays. The communications equipment consumes a substantial amount of power. A constellation of nanosatellites allows to share resources efficiently, assigning major tasks to different spacecrafts. Within the constellation, a dedicated spacecraft which acts as data relay, monitoring and controlling inter-satellite communications is advantageous. This allows all other satellites to reuse the energy saved by implementing low-energy consuming communications links between the satellites. With this approach, taking advantage of scheduled communication contacts, the overall system performance can be maximized. For the envisaged data relay scenario, the adoption of advanced communication protocol concepts is required. This paper presents innovative solutions for the fulfilment of the described communications tasks. After an investigation of the system requirements, strategies for the interconnection of the spacecrafts for the creation of a small constellation network are provided. Suitable transport protocol implementations are investigated and efficient store-and-forward concepts are proposed. A communication architecture for the usage of a data relay satellite within the constellation is presented, describing the role of the different nodes in the network.

Patrick Romano; Manuela Unterberger; Otto Koudelka

2010-01-01T23:59:59.000Z

347

The next generation Cherenkov Telescope Array observatory: CTA  

E-Print Network [OSTI]

The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the VHE gamma-ray astrophysics in the energy range 30 GeV-100 TeV, which will improve by about one order of magnitude the sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). In order to achieve such improved performance, for both the northern and southern CTA sites, four units of 23m diameter Large Size Telescopes (LSTs) will be deployed close to the centre of the array with telescopes separated by about 100m. A larger number (about 25 units) of 12m Medium Size Telescopes (MSTs, separated by about 150m), will cover a larger area. The southern site will also include up to 24 Schwarzschild-Couder dual-mirror medium-size Telescopes (SCTs) with the primary mirror diameter of 9.5m. Above a few TeV, the Cherenkov light intensity is such that showers can be detected even well outside the light pool by telescopes significantly smaller than the MSTs. To a...

Vercellone, Stefano

2014-01-01T23:59:59.000Z

348

Next Generation Nuclear Plant Defense-in-Depth Approach  

SciTech Connect (OSTI)

The purpose of this paper is to (1) document the definition of defense-in-depth and the pproach that will be used to assure that its principles are satisfied for the NGNP project and (2) identify the specific questions proposed for preapplication discussions with the NRC. Defense-in-depth is a safety philosophy in which multiple lines of defense and conservative design and evaluation methods are applied to assure the safety of the public. The philosophy is also intended to deliver a design that is tolerant to uncertainties in knowledge of plant behavior, component reliability or operator performance that might compromise safety. This paper includes a review of the regulatory foundation for defense-in-depth, a definition of defense-in-depth that is appropriate for advanced reactor designs based on High Temperature Gas-cooled Reactor (HTGR) technology, and an explanation of how this safety philosophy is achieved in the NGNP.

Edward G. Wallace; Karl N. Fleming; Edward M. Burns

2009-12-01T23:59:59.000Z

349

The Global Atmospheric Environment for the Next Generation  

SciTech Connect (OSTI)

Air quality, ecosystem exposure to nitrogen deposition, and climate change are intimately coupled problems: we assess changes in the global atmospheric environment between 2000 and 2030 using twenty-five state-of-the-art global atmospheric chemistry models and three different emissions scenarios. The first (CLE) scenario reflects implementation of current air quality legislation around the world, whilst the second (MFR) represents a more optimistic case in which all currently feasible technologies are applied to achieve maximum emission reductions. We contrast these scenarios with the more pessimistic IPCC SRES A2 scenario. Ensemble simulations for the year 2000 are consistent among models, and show a reasonable agreement with surface ozone, wet deposition and NO{sub 2} satellite observations. Large parts of the world are currently exposed to high ozone concentrations, and high depositions of nitrogen to ecosystems. By 2030, global surface ozone is calculated to increase globally by 1.5 {+-} 1.2 ppbv (CLE), and 4.3 {+-} 2.2 ppbv (A2). Only the progressive MFR scenario will reduce ozone by -2.3 {+-} 1.1 ppbv. The CLE and A2 scenarios project further increases in nitrogen critical loads, with particularly large impacts in Asia where nitrogen emissions and deposition are forecast to increase by a factor of 1.4 (CLE) to 2 (A2). Climate change may modify surface ozone by -0.8 {+-} 0.6 ppbv, with larger decreases over sea than over land. This study shows the importance of enforcing current worldwide air quality legislation, and the major benefits of going further. Non-attainment of these air quality policy objectives, such as expressed by the SRES-A2 scenario, would further degrade the global atmospheric environment.

Dentener, F; Stevenson, D; Ellingsen, K; van Joije, T; Schultz, M; Amann, M; Atherton, C; Bell, N; Bergmann, D; Bey, I; Bouwman, L; Butler, T; Cofala, J; Collins, B; Drevet, J; Doherty, R; Eickhout, B; Eskes, H; Fiore, A; Gauss, M; Hauglustaine, D; Horowitz, L; Isaksen, I A; Josse, B; Lawrence, M; Krol, M; Lamarque, J F; Montanaro, V; Muller, J F; Peuch, V H; Pitari, G; Pyle, J; Rast, S; Rodriguez, J; Sanderson, M; Savage, N H; Shindell, D; Strahan, S; Szopa, S; Sudo, K; Van Dingenen, R; Wild, O; Zeng, G

2005-12-07T23:59:59.000Z

350

Commercial Readiness of eSolar Next Generation Heliostat  

Science Journals Connector (OSTI)

Abstract eSolar has been designing small heliostats since the company's founding in 2007. One of the cornerstones of our approach to heliostat design is to deploy many factory-built small heliostats in high density fields. The fields are replicated and thus aggregated into solar plants supporting steam and molten salt electric power, integrated solar combined cycle (ISCC), and process heat applications, such as enhanced oil recovery and desalination. The small heliostat approach has been used in several pilot projects and was previously evolved into a commercially available product presented in 2011 at SolarPACES. In this paper we discuss the ground up redesign of our small heliostat hardware, with a focus of leveraging the proven approach into a higher reliability, globally applicable, more industrial, simple to source and most importantly total installed cost reduced solar collector product. During the redesign we discovered methods to simplify the design and confirmed that small, factory-built, affordable heliostats provide a compelling concentrated solar thermal technology. We discuss details on system optimization, concept selection and prototype development, including some results from design validation testing. Finally, we discuss how this new solar collector system (SCS5) performs and meets economic requirements. eSolar's SCS5 product will be commercially released early in 2014, and is currently available to quote for CSP projects.

P. Ricklin; M. Slack; D. Rogers; R. Huibregtse

2014-01-01T23:59:59.000Z

351

Next-Generation Search Engines for Information Retrieval  

SciTech Connect (OSTI)

In the recent years, there have been significant advancements in the areas of scientific data management and retrieval techniques, particularly in terms of standards and protocols for archiving data and metadata. Scientific data is rich, and spread across different places. In order to integrate these pieces together, a data archive and associated metadata should be generated. Data should be stored in a format that can be retrievable and more importantly it should be in a format that will continue to be accessible as technology changes, such as XML. While general-purpose search engines (such as Google or Bing) are useful for finding many things on the Internet, they are often of limited usefulness for locating Earth Science data relevant (for example) to a specific spatiotemporal extent. By contrast, tools that search repositories of structured metadata can locate relevant datasets with fairly high precision, but the search is limited to that particular repository. Federated searches (such as Z39.50) have been used, but can be slow and the comprehensiveness can be limited by downtime in any search partner. An alternative approach to improve comprehensiveness is for a repository to harvest metadata from other repositories, possibly with limits based on subject matter or access permissions. Searches through harvested metadata can be extremely responsive, and the search tool can be customized with semantic augmentation appropriate to the community of practice being served. One such system, Mercury, a metadata harvesting, data discovery, and access system, built for researchers to search to, share and obtain spatiotemporal data used across a range of climate and ecological sciences. Mercury is open-source toolset, backend built on Java and search capability is supported by the some popular open source search libraries such as SOLR and LUCENE. Mercury harvests the structured metadata and key data from several data providing servers around the world and builds a centralized index. The harvested files are indexed against SOLR search API consistently, so that it can render search capabilities such as simple, fielded, spatial and temporal searches across a span of projects ranging from land, atmosphere, and ocean ecology. Mercury also provides data sharing capabilities using Open Archive Initiatives Protocol for Metadata Handling (OAI-PMH). In this paper we will discuss about the best practices for archiving data and metadata, new searching techniques, efficient ways of data retrieval and information display.

Devarakonda, Ranjeet [ORNL; Hook, Leslie A [ORNL; Palanisamy, Giri [ORNL; Green, James M [ORNL

2011-01-01T23:59:59.000Z

352

Technical Cross-Cutting Issues for the Next Generation Safeguards Initiative's Spent Fuel Nondestructive Assay Project  

SciTech Connect (OSTI)

Ever since there has been spent fuel (SF), researchers have made nondestructive assay (NDA) measurements of that fuel to learn about its content. In general these measurements have focused on the simplest signatures (passive photon and total neutron emission) and the analysis has often focused on diversion detection and on determining properties such as burnup (BU) and cooling time (CT). Because of shortcomings in current analysis methods, inspectorates and policy makers are interested in improving the state-of-the-art in SF NDA. For this reason the U.S. Department of Energy, through the Next Generation Safeguards Initiative (NGSI), targeted the determination of elemental Pu mass in SF as a technical goal. As part of this research effort, 14 nondestructive assay techniques were studied . This wide range of techniques was selected to allow flexibility for the various needs of the safeguards inspectorates and to prepare for the likely integration of one or more techniques having complementary features. In the course of researching this broad range of NDA techniques, several cross-cutting issues were. This paper will describe some common issues and insights. In particular we will describe the following: (1) the role of neutron absorbers with emphasis on how these absorbers vary in SF as a function of initial enrichment, BU and CT; (2) the need to partition the measured signal among different isotopic sources; and (3) the importance of the first generation concept which indicates the spatial location from which the signal originates as well as the isotopic origins.

Tobin, S. J.; Menlove, H. O.; Swinhoe, Martyn T.; Blanc, P.; Burr, T.; Evans, L. G.; Favalli, A.; Fensin, M. L.; Freeman, C. R.; Galloway, J.; Gerhart, J.; Rajasingam, A.; Rauch, E.; Sandoval, N. P.; Trellue, H.; Ulrich, T. J.; Conlin, J. L.; Croft, S.; Hendricks, John; Henzl, V.; Henzlova, D.; Eigenbrodt, J. M.; Koehler, W. E.; Lee, D. W.; Lee, T. H.; Lafleur, A. M.; Schear, M. A.; Humphrey, M. A.; Smith, Leon E.; Anderson, Kevin K.; Campbell, Luke W.; Casella, Andrew M.; Gesh, Christopher J.; Shaver, Mark W.; Misner, Alex C.; Amber, S. D.; Ludewigt, Bernhard A.; Quiter, B.; Solodov, Alexander; Charlton, W.; Stafford, A.; Romano, C.; Cheatham, J.; Ehinger, Michael; Thompson, S. J.; Chichester, David; Sterbentz, James; Hu, Jianwei; Hunt, A.; Mozin, Vladimir V.; Richard, J. G.

2012-03-01T23:59:59.000Z

353

INVESTIGATION OF PLUTONIUM AND URANIUM UPTAKE INTO MCU SOLVENT AND NEXT GENERATION SOLVENT  

SciTech Connect (OSTI)

At the request of the Savannah River Remediation (SRR) customer, the Savannah River National Laboratory (SRNL) examined the plutonium (Pu) and uranium (U) uptake into the Next Generation Solvent (NGS) that will be used at the Salt Waste Processing Facility (SWPF). SRNL examined archived samples of solvent used in Extraction-Scrub-Strip (ESS) tests, as well as samples from new tests designed explicitly to examine the Pu and U uptake. Direct radiocounting for Pu and U provided the best results. Using the radiocounting results, we found that in all cases there were <3.41E-12 g Pu/g of NGS and <1.17E-05 g U/g of NGS in multiple samples, even after extended contact times and high aqueous:organic volume phase ratios. These values are conservative as they do not allow for release or removal of the actinides by scrub, strip, or solvent wash processes. The values do not account for extended use or any increase that may occur due to radiolytic damage of the solvent.

Peters, T.; Fink, S.

2012-01-06T23:59:59.000Z

354

Next Generation Climate Change Experiments Needed to Advance Knowledge and for Assessment of CMIP6  

SciTech Connect (OSTI)

The Aspen Global Change Institute hosted a technical science workshop entitled, Next generation climate change experiments needed to advance knowledge and for assessment of CMIP6, on August 4-9, 2013 in Aspen, CO. Jerry Meehl (NCAR), Richard Moss (PNNL), and Karl Taylor (LLNL) served as co-chairs for the workshop which included the participation of 32 scientists representing most of the major climate modeling centers for a total of 160 participant days. In August 2013, AGCI gathered a high level meeting of representatives from major climate modeling centers around the world to assess achievements and lessons learned from the most recent generation of coordinated modeling experiments known as the Coupled Model Intercomparison Project 5 (CMIP5) as well as to scope out the science questions and coordination structure desired for the next anticipated phase of modeling experiments called CMIP6. The workshop allowed for reflection on the coordination of the CMIP5 process as well as intercomparison of model results, such as were assessed in the most recent IPCC 5th Assessment Report, Working Group 1. For example, this slide from Masahiro Watanabe examines performance on a range of models capturing Atlantic Meridional Overturning Circulation (AMOC).

Katzenberger, John [AGCI; Arnott, James [AGCI; Wright, Alyson [AGCI

2014-10-30T23:59:59.000Z

355

Geek-Up[7.8.2011]: Cyanobacteria, Biofuels and Next-Generation Batteries |  

Broader source: Energy.gov (indexed) [DOE]

7.8.2011]: Cyanobacteria, Biofuels and Next-Generation 7.8.2011]: Cyanobacteria, Biofuels and Next-Generation Batteries Geek-Up[7.8.2011]: Cyanobacteria, Biofuels and Next-Generation Batteries July 8, 2011 - 5:02pm Addthis Chains of cyanobacteria, also known as blue-green algae | Photo Courtesy of Argonne National Laboratory Chains of cyanobacteria, also known as blue-green algae | Photo Courtesy of Argonne National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs At Argonne National Laboratory's Structural Biology Center (SBC) scientists are investigating cyanobacteria in hopes of advancing alternative transportation fuels. For some background, cyanobacteria cells group themselves into long filaments that can contain dozens and even hundreds of cells -- and, like in humans, not all cyanobacteria cells are born the same. While most

356

Geek-Up[7.8.2011]: Cyanobacteria, Biofuels and Next-Generation Batteries |  

Broader source: Energy.gov (indexed) [DOE]

Geek-Up[7.8.2011]: Cyanobacteria, Biofuels and Next-Generation Geek-Up[7.8.2011]: Cyanobacteria, Biofuels and Next-Generation Batteries Geek-Up[7.8.2011]: Cyanobacteria, Biofuels and Next-Generation Batteries July 8, 2011 - 5:02pm Addthis Chains of cyanobacteria, also known as blue-green algae | Photo Courtesy of Argonne National Laboratory Chains of cyanobacteria, also known as blue-green algae | Photo Courtesy of Argonne National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs At Argonne National Laboratory's Structural Biology Center (SBC) scientists are investigating cyanobacteria in hopes of advancing alternative transportation fuels. For some background, cyanobacteria cells group themselves into long filaments that can contain dozens and even hundreds of cells -- and, like

357

Using Experience to Train the Next Generation of Workers | Department of  

Broader source: Energy.gov (indexed) [DOE]

Using Experience to Train the Next Generation of Workers Using Experience to Train the Next Generation of Workers Using Experience to Train the Next Generation of Workers July 5, 2011 - 1:46pm Addthis Bob Wilds working at a winding machine. | Photo Courtesy of Waukesha Electric Systems Bob Wilds working at a winding machine. | Photo Courtesy of Waukesha Electric Systems Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs Bob Wilds has worked at Waukesha Electric Systems for the last 12 years as a coil winder. Waukesha Electric Systems makes transformers -- an essential part of the electric grid, transferring electrical current from one circuit to another. The coils that Bob works with are one of the most important components that make transformers work. The component involves winding insulated copper wire, but workers involved in transformer

358

Five Years of Building the Next Generation of Reactors | Department of  

Broader source: Energy.gov (indexed) [DOE]

Five Years of Building the Next Generation of Reactors Five Years of Building the Next Generation of Reactors Five Years of Building the Next Generation of Reactors August 15, 2012 - 5:17pm Addthis Simulated three-dimensional fission power distribution of a single 17x17 rod PWR fuel assembly. | Photo courtesy of the Consortium for Advanced Simulation of Light Water Reactors (CASL). Simulated three-dimensional fission power distribution of a single 17x17 rod PWR fuel assembly. | Photo courtesy of the Consortium for Advanced Simulation of Light Water Reactors (CASL). Doug Kothe Director, Consortium for Advanced Simulation of Light Water Reactors What are the key facts? CASL has the virtual capability to look closely at reactor core models. These models operate with 193 fuel assemblies, nearly 51,000 fuel rods, and about 18 million fuel pellets.

359

Proceedings of the April 2011 Computational Needs for the Next Generation  

Broader source: Energy.gov (indexed) [DOE]

Proceedings of the April 2011 Computational Needs for the Next Proceedings of the April 2011 Computational Needs for the Next Generation Electric Grid Workshop Available Proceedings of the April 2011 Computational Needs for the Next Generation Electric Grid Workshop Available January 9, 2012 - 5:34pm Addthis The proceedings from the DOE's April 2011 workshop, "Computational Needs for the Next Generation Electric Grid," are now available. The workshop brought together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The proceedings include seven white papers and their related responses and summaries, as well as the workshop agenda and comments collected after the workshop. Addthis Related Articles

360

Potential application of LIBS to NNSA next generation safeguards initiative (NGSI)  

SciTech Connect (OSTI)

In a climate in which states and nations have been and perhaps currently are involved in the prol iferation of nuclear materials and technologies, advanced methodologies and improvements in current measurement techniques are needed to combat new threats and increased levels of sophistication. The Department of Energy through the National Nuclear Security Administration (NNSA) has undertaken a broad review of International Safeguards. The conclusion from that review was that a comprehensive initiative to revitalize international safeguards technology and the human resource base was urgently needed to keep pace with demands and increasingly sophisticated emerging safeguards challenges. To address these challenges, NNSA launched the Next Generation Safeguards Initiative (NGSI) to develop policies, concepts, technologies, expertise, and infrastructure necessary to sustain the international safeguards system as its mission evolves for the next 25 years. NGSI is designed to revitalize and strengthen the U.S. safeguards technical base, recognizing that without a robust program the United States of America will not be in a position to exercise leadership or provide the necessary support to the IAEA (International Atomic Energy Agency). International safeguards as administrated by the IAEA are the primary vehicle for verifying compliance with the peaceful use and nonproliferation of nuclear materials and technologies. Laser Induced Breakdown Spectroscopy or LIBS has the potential to support the goals of NGSI as follows: by providing (1) automated analysis in complex nuclear processing or reprocessing facilities in real-time or near real-time without sample preparation or removal, (2) isotopic and important elemental ratio (Cm/Pu, Cm/U, ... etc) analysis, and (3) centralized remote control, process monitoring, and analysis of nuclear materials in nuclear facilities at multiple locations within the facility. Potential application of LIBS to international safeguards as outlined in the NGSI will be discussed.

Barefield Ii, James E [Los Alamos National Laboratory; Clegg, Samuel M [Los Alamos National Laboratory; Veirs, Douglas K [Los Alamos National Laboratory; Browne, Mike [Los Alamos National Laboratory; Lopez, Leon [Los Alamos National Laboratory; Martinez, Ron [Los Alamos National Laboratory; Le, Loan [Los Alamos National Laboratory; Lamontagne, Stephen A [DOE/NNSA/NA241; Veal, Kevin [NN/ADTR

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards  

SciTech Connect (OSTI)

Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards October 22 and 23, 2008. The workshop was sponsored by DOE/NA-243 under the Next Generation Safeguards Initiative (NGSI). Placing well-qualified Americans in sufficient number and in key safeguards positions within the International Atomic Energy Agencys (IAEAs) Department of Safeguards is an important U.S. non-proliferation objective. The goal of the NGSI Workshop on Enhanced Recruiting for International Safeguards was to improve U.S. efforts to recruit U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. BNLs International Safeguards Project Office invited participants from the U.S. Department of Energy, the IAEA, U.S. national laboratories, private industry, academia, and professional societies who are either experts in international safeguards or who understand the challenges of recruiting for technical positions. A final report for the workshop will be finalized and distributed in early 2009. The main finding of the workshop was the need for an integrated recruitment plan to take into account pools of potential candidates, various government and private agency stakeholders, the needs of the IAEA, and the NGSI human capital development plan. There were numerous findings related to and recommendations for maximizing the placement of U.S. experts in IAEA Safeguards positions. The workshop participants offered many ideas for increasing the pool of candidates and increasing the placement rate. This paper will provide details on these findings and recommendations

Pepper,S.E.; Rosenthal, M.D.; Fishbone, L.G.; Occhogrosso, D.M.; Lockwood, D.; Carroll, C.J.; Dreicer, M.; Wallace, R.; Fankhauser, J.

2009-07-12T23:59:59.000Z

362

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab  

Open Energy Info (EERE)

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Air-Cooled Condensers in Next-Generation Conversion Systems Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Air-Cooling Project Description As the geothermal industry moves to use geothermal resources that are more expensive to develop, there will be increased incentive to use more efficient power plants. Because of increasing demand on finite supplies of water, this next generation of more efficient plants will likely need to reject heat sensibly to the ambient (air-cooling). This will be especially true in western states having higher grade Enhanced Geothermal Systems (EGS) resources, as well as most hydrothermal resources. If one had a choice, an evaporative heat rejection system would be selected because it would provide both cost and performance advantages. The evaporative system, however, consumes a significant amount of water during heat rejection that would require makeup. Though they use no water, air-cooling systems have higher capital costs, reduced power output (heat is rejected at a higher temperature), lower power sales due to higher parasitics (fan power), and greater variability in power output (because of large variation in the dry-bulb temperature).

363

Next Generation Short-Term Forecasting of Wind Power Overview of the ANEMOS Project.  

E-Print Network [OSTI]

1 Next Generation Short-Term Forecasting of Wind Power ­ Overview of the ANEMOS Project. G outperform current state-of-the-art methods, for onshore and offshore wind power forecasting. Advanced forecasts for the power system management and market integration of wind power. Keywords: Wind power, short

Boyer, Edmond

364

Developing Next-Generation Multimodal Chemical Imaging Capability by Combining STEM/APT/STXM/HIM  

E-Print Network [OSTI]

Developing Next-Generation Multimodal Chemical Imaging Capability by Combining STEM battery cathode materials at sub-nanometer spatial and chemical resolution and ppm-level mass sensitivity Develop a common analysis platform for integrating aberration-corrected transmission electron microscopy

365

Fraud Detection for Voice over IP Services on Next-Generation Networks  

E-Print Network [OSTI]

Fraud Detection for Voice over IP Services on Next-Generation Networks Igor Ruiz-Agundez, Yoseba K the security requirements of NGN and introduce a fraud management system based on misuse detection for Voice over IP services. Specifically, we address a fraud detection framework consisting of a rule engine

Boyer, Edmond

366

Research & Development Roadmap: Next-Generation Low Global Warming Potential Refrigerants  

Broader source: Energy.gov [DOE]

This research and development (R&D) roadmap for next-generation low-GWP refrigerants provides recommendations to the Building Technologies Office (BTO) on R&D activities that will help accelerate the transition to low-GWP refrigerants across the entire HVAC&R industry.

367

SPARTA: Stable and Efficient Spectrum Access in Next Generation Dynamic Spectrum Networks  

E-Print Network [OSTI]

and development require easy and reliable access to radio spectrum. However, exist- ing regulations allocateSPARTA: Stable and Efficient Spectrum Access in Next Generation Dynamic Spectrum Networks Lili Cao.S.A Abstract--Future wireless infrastructure networks will dynam- ically access spectrum for maximum

Almeroth, Kevin C.

368

SCIENCE HIGHLIGHTS 2008 ANNUAL REPORT ORNL NEUTRON SCIENCES The Next Generation of Materials Research  

E-Print Network [OSTI]

and colleagues.They initially reported that an iron-based material can conduct electricity without resistance close to conducting electric- ity with zero resistance at room temperature. Such materials wouldSCIENCE HIGHLIGHTS 2008 ANNUAL REPORT ORNL NEUTRON SCIENCES The Next Generation of Materials

369

Internet 3.0: Ten Problems with Current Internet Architecture and Solutions for the Next Generation  

E-Print Network [OSTI]

Internet 3.0: Ten Problems with Current Internet Architecture and Solutions for the Next Generation Louis Saint Louis, MO 63130 jain@cse.wustl.edu Abstract-- The basic ideas of the Internet architecture switching. Is this the way we would design the Internet if we were to start it now? This paper is an attempt

Jain, Raj

370

Deploying QoS for Cisco IP and Next Generation Networks: The Definitive Guide  

Science Journals Connector (OSTI)

Deploying QoS for IP Next Generation Networks: The Definitive Guide provides network architects and planners with insight into the various aspects that drive QoS deployment for the various network types. It serves as a single source of reference ... Keywords: Networking

Vinod Joseph; Brett Chapman

2009-04-01T23:59:59.000Z

371

Abstract 4445: Defining a pipeline to use next generation sequencing for genetic testing in hereditary cancer  

Science Journals Connector (OSTI)

...Chicago, IL Abstract 4445: Defining a pipeline to use next generation sequencing for...analysis combined the Variant Identification Pipeline software (VIP, De Shrijver, JM et...improvement of the kit and the analysis pipeline, the validation set of 14 samples demonstrated...

Conxi Lazaro; Adriana Lopez-Doriga; Ester Castellsague; Jesus del Valle; Eva Tornero; Victor Moreno; Marta Pineda; Sara Gonzalez; Lidia Feliubadalo; Gabriel Capella

2012-06-04T23:59:59.000Z

372

SIMBORGS AND SIMULATED TASK ENVIRONMENTS FOR ENGINEERING NEXT GENERATION WORKSTATIONS FOR INTELLIGENCE ANALYSTS  

E-Print Network [OSTI]

SIMBORGS AND SIMULATED TASK ENVIRONMENTS FOR ENGINEERING NEXT GENERATION WORKSTATIONS an approach to the cognitive engineering of integrated task environments by the use of simulated cyborgs (sim to cognitively engineering task environments are discussed in sections two and three. Section two introduces

Gray, Wayne

373

Chip in a lab: Microfluidics for next generation life science Aaron M. Streets1,2  

E-Print Network [OSTI]

Chip in a lab: Microfluidics for next generation life science research Aaron M. Streets1 January 2013; published online 31 January 2013) Microfluidic circuits are characterized by fluidic measurements. Microfluidic technology has thus become a powerful tool in the life science research laboratory

Huang, Yanyi

374

Extreme-Wind Observation Capability for the Next Generation Satellite Wind  

E-Print Network [OSTI]

Extreme-Wind Observation Capability for the Next Generation Satellite Wind Scatterometer Instrument ­ 6 June 2013 RadarSAT-2 observation of extreme-winds VH HH Gradual saturation at higher wind Better ­ Matera, Italy, 3 ­ 6 June 2013 VH-GMF for extreme-winds (1) RadarSAT-2 dual-polarisation images of 12

Haak, Hein

375

Next generation sequencing improves detection of drug resistance mutations in infants after PMTCT failure  

Science Journals Connector (OSTI)

AbstractBackground Next generation sequencing (NGS) allows the detection of minor variant HIV drug resistance mutations (DRMs). However data from new NGS platforms after Prevention-of-Mother-to-Child-Transmission (PMTCT) regimen failure are limited. Objective To compare major and minor variant HIV \\{DRMs\\} with Illumina MiSeq and Life Technologies Ion Personal Genome Machine (PGM) in infants infected despite a PMTCT regimen. Study design We conducted a cross-sectional study of NGS for detecting \\{DRMs\\} in infants infected despite a zidovudine (AZT) and Nevirapine (NVP) regimen, before initiation of combination antiretroviral therapy. Sequencing was performed on PCR products from plasma samples on PGM and MiSeq platforms. Bioinformatic analyses were undertaken using a codon-aware version of the SmithWaterman mapping algorithm and a mixture multinomial error filtering statistical model. Results Of 15 infants, tested at a median age of 3.4 months after birth, 2 (13%) had non-nucleoside reverse transcriptase inhibitor (NNRTI) \\{DRMs\\} (K103N and Y181C) by bulk sequencing, whereas PGM detected 4 (26%) and MiSeq 5 (30%). NGS enabled the detection of additional minor variant \\{DRMs\\} in the infant with K103N. Coverage and instrument quality scores were higher with MiSeq, increasing the confidence of minor variant calls. Conclusions NGS followed by bioinformatic analyses detected multiple minor variant \\{DRMs\\} in HIV-1 RT among infants where PMTCT failed. The high coverage of MiSeq and high read quality improved the confidence of identified \\{DRMs\\} and may make this platform ideal for minor variant detection.

Randall G. Fisher; Davey M. Smith; Ben Murrell; Ruhan Slabbert; Bronwyn M. Kirby; Clair Edson; Mark F. Cotton; Richard H. Haubrich; Sergei L. Kosakovsky Pond; Gert U. Van Zyl

2015-01-01T23:59:59.000Z

376

Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible. For integration purposes, an analysis comparing the design, cost and schedule impact of maintaining a technology neutral approach through conceptual design or making an early hydrogen process technology selection was performed. Early selection does not specifically eliminate a technology, but rather selects the first hydrogen technology for demonstration. A systems-engineering approach was taken to define decision-making criteria for selecting a hydrogen technology. The relative technical, cost and schedule risks of each approach were analyzed and risk mitigation strategies were recommended, including provisions to maintain close collaboration with the NHI. The results of these analyses are presented here.

Michael W. Patterson

2008-05-01T23:59:59.000Z

377

Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards  

SciTech Connect (OSTI)

In 2007, the National Nuclear Security Administration's Office of Nonproliferation and International Security (NA-24) completed a yearlong review of the challenges facing the international safeguards system today and over the next 25 years. The study found that without new investment in international safeguards, the U.S. safeguards technology base, and our ability to support International Atomic Energy Agency (IAEA) safeguards, will continue to erode and soon may be at risk. To reverse this trend, the then U.S. Secretary of Energy, Samuel Bodman, announced at the 2007 IAEA General Conference that the Department of Energy (DOE) would launch the Next Generation Safeguards Initiative (NGSI). He stated 'IAEA safeguards must be robust and capable of addressing proliferation threats. Full confidence in IAEA safeguards is essential for nuclear power to grow safely and securely. To this end, the U.S. Department of Energy will seek to ensure that modern technology, the best scientific expertise, and adequate resources are available to keep pace with expanding IAEA responsibilities.' To meet this goal, the NGSI objectives include the recruitment of international safeguards experts to work at the U.S. national laboratories and to serve at the IAEA's headquarters. Part of the latter effort will involve enhancing our existing efforts to place well-qualified Americans in a sufficient number of key safeguards positions within the IAEA's Department of Safeguards. Accordingly, the International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards (ERIS) on October 22 and 23, 2008. The ISPO used a workshop format developed earlier with Sonalysts, Inc., that was followed at the U.S. Support Program's (USSP's) technology road-mapping sessions. ISPO invited participants from the U.S. DOE, the IAEA, the U.S. national laboratories, private industry, academia, and professional societies who either are experts in international safeguards, or understand the challenges of recruiting for technical positions. The 44 participants represented eight national laboratories, four universities, three government organizations, two international organizations, two professional organizations, and three small companies. The goal of the ERIS workshop was to improve efforts to engage U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. At the workshop's conclusion, participants presented their findings to the NNSA Office of International Regimes and Agreements (NA-243). The report's major findings are summarized.

Pepper,S.; Rosenthal, M.; Fishbone, L.; Occhiogrosso, D.; Carroll, C.; Dreicer, M.; Wallace, R.; Rankhauser, J.

2008-10-22T23:59:59.000Z

378

Interface and Electrode Engineering for Next-Generation Organic Photovoltaic Cells: Final Technical Report, March 2005 - August 2008  

SciTech Connect (OSTI)

The objective of this project was to enable next-generation, efficient, easily manufacturable, and durable organic photovoltaics through interface and electrode engineering.

Mason, T. O.; Chang, R. P. H.; Freeman, A. J.; Marks, T. J.; Poeppelmeier, K. R.

2008-11-01T23:59:59.000Z

379

Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs  

SciTech Connect (OSTI)

Here we report the outcome of the application of the Nuclear Regulatory Commission (NRC) Phenomena Identification and Ranking Table (PIRT) process to the issue of nuclear-grade graphite for the moderator and structural components of a next generation nuclear plant (NGNP), considering both routine (normal operation) and postulated accident conditions for the NGNP. The NGNP is assumed to be a modular high-temperature gas-cooled reactor (HTGR), either a gas-turbine modular helium reactor (GTMHR) version [a prismatic-core modular reactor (PMR)] or a pebble-bed modular reactor (PBMR) version [a pebble bed reactor (PBR)] design, with either a direct- or indirect-cycle gas turbine (Brayton cycle) system for electric power production, and an indirect-cycle component for hydrogen production. NGNP design options with a high-pressure steam generator (Rankine cycle) in the primary loop are not considered in this PIRT. This graphite PIRT was conducted in parallel with four other NRC PIRT activities, taking advantage of the relationships and overlaps in subject matter. The graphite PIRT panel identified numerous phenomena, five of which were ranked high importance-low knowledge. A further nine were ranked with high importance and medium knowledge rank. Two phenomena were ranked with medium importance and low knowledge, and a further 14 were ranked medium importance and medium knowledge rank. The last 12 phenomena were ranked with low importance and high knowledge rank (or similar combinations suggesting they have low priority). The ranking/scoring rationale for the reported graphite phenomena is discussed. Much has been learned about the behavior of graphite in reactor environments in the 60-plus years since the first graphite rectors went into service. The extensive list of references in the Bibliography is plainly testament to this fact. Our current knowledge base is well developed. Although data are lacking for the specific grades being considered for Generation IV (Gen IV) concepts, such as the NGNP, it is fully expected that the behavior of these graphites will conform to the recognized trends for near isotropic nuclear graphite. Thus, much of the data needed is confirmatory in nature. Theories that can explain graphite behavior have been postulated and, in many cases, shown to represent experimental data well. However, these theories need to be tested against data for the new graphites and extended to higher neutron doses and temperatures pertinent to the new Gen IV reactor concepts. It is anticipated that current and planned future graphite irradiation experiments will provide the data needed to validate many of the currently accepted models, as well as providing the needed data for design confirmation.

Burchell, Timothy D [ORNL; Bratton, Rob [Idaho National Laboratory (INL); Marsden, Barry [University of Manchester, UK; Srinivasan, Makuteswara [U.S. Nuclear Regulatory Commission; Penfield, Scott [Technology Insights; Mitchell, Mark [PBMR (Pty) Ltd.; Windes, Will [Idaho National Laboratory (INL)

2008-03-01T23:59:59.000Z

380

Microsoft PowerPoint - 6- 02 final - Next generation melter deploymet at WTP - Nov10.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ron Calmus, WRPS Ron Calmus, WRPS Ron Calmus, WRPS Terry Sams, WRPS Terry Sams, WRPS Deployment Plan Overview for Next Deployment Plan Overview for Next Generation Melter at WTP Generation Melter at WTP November 17, 2010 November 17, 2010 Print Close Tank Operations Contract 2 Presentation Outline  Introduction and Background  Project Goals and Objectives  Key Programmatic Decisions  New Generation Melters (NGM) Development and Deployment Planning (AJHCM & CCIM)  NGM Development and Deployment Activities and Interfaces  Near-Term NGM Development Costs  Summary - Focus Areas Next Generation Melters 2 Print Close Tank Operations Contract 3 Introduction and Background  National Academy of Sciences (NAS) Recommendations - In 2009 the NAS stated in it's report that:

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A next generation emerging technologies roadmap for enabling collective computational intelligence in disaster management  

Science Journals Connector (OSTI)

Much work is underway within the broad next generation emerging technologies community on issues associated with the development of services to foster synergies and collaboration via the integration of distributed and heterogeneous resources, systems and technologies. In previous works, we have discussed how these could help coin and prompt future direction of their fit-to-purpose use in various real-world scenarios including but not limited to disaster management, healthcare, vehicular networking and knowledge cities. In this exploratory paper, we brief and then build upon our previous works and specifically, we present a roadmap highlighting the possible use of next generation emerging technologies for enabling collective computational intelligence in managing disaster situations. A relevant scenario is used to illustrate the model architecture, as well as to detail the proposed roadmap.

Nik Bessis; Eleana Asimakopoulou; Fatos Xhafa

2011-01-01T23:59:59.000Z

382

High Energy Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basic Energy Science Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Advanced Scientific Computing Research Pioneering...

383

Beyond scientific research: tracing the contributions Ernest Rutherford made to the next generation of scientists  

E-Print Network [OSTI]

BEYOND SCIENTIFIC RESEARCH: TRACING THE CONTRIBUTIONS ERNEST RUTHERFORD MADE TO THE NEXT GENERATION OF SCIENTISTS A Thesis by ANDREW A. ARMSTRONG Submitted to the Office of Graduate Studies of Texas A&M University in partial... GENERATION OF SCIENTISTS A Thesis by ANDREW A. ARMSTRONG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair...

Armstrong, Andrew A.

2006-08-16T23:59:59.000Z

384

Integration of Advanced Emissions Controls to Produce Next-Generation Circulating Fluid Bed Coal Generating Unit (withdrawn prior to award)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

contacts contacts Brad tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov PaRtIcIPant Colorado Springs Utilities Colorado Springs, CO aDDItIonaL tEaM MEMBERs Foster Wheeler Power Group, Inc. Clinton, NJ IntegratIon of advanced emIssIons controls to Produce next-generatIon cIrculatIng fluId Bed coal generatIng unIt (wIthdrawn PrIor to award) Project Description Colorado Springs Utilities (Springs Utilities) and Foster Wheeler are planning a joint demonstration of an advanced coal-fired electric power plant using advanced, low-cost emission control systems to produce exceedingly low emissions. Multi- layered emission controls will be

385

Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368  

SciTech Connect (OSTI)

The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficial engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)

Guevara, K.C. [DOE Savannah River Operations Office, Aiken, South Carolina 29808 (United States)] [DOE Savannah River Operations Office, Aiken, South Carolina 29808 (United States); Fellinger, A.P.; Aylward, R.S.; Griffin, J.C.; Hyatt, J.E.; Bush, S.R. [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)] [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)

2013-07-01T23:59:59.000Z

386

NEXT GENERATION SOLVENT MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT  

SciTech Connect (OSTI)

The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil{reg_sign}, Tefzel{reg_sign} and Isolast{reg_sign}) in the modified NGS (where the concentration of the guanidine suppressor and MaxCalix was varied systematically) showed that guanidine (LIX{reg_sign}79) selectively affected Tefzel{reg_sign} (by an increase in size and lowering its density). The copolymer structure of Tefzel{reg_sign} and possibly its porosity allows for the easier diffusion of guanidine. Tefzel{reg_sign} is used as the seat material in some of the valves at MCU. Long term exposure to guanidine, may make the valves hard to operate over time due to the seat material (Tefzel{reg_sign}) increasing in size. However, since the physical changes of Tefzel{reg_sign} in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel{reg_sign} seating material. PEEK, Grafoil{reg_sign} and Isolast{reg_sign} were not affected by guanidine and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and limited uptake of Isopar{reg_sign} L/Modifier by the polymers probably due to the polymers porosity and rough surfaces. Spectroscopic data on the organic liquid and the polymer surfaces showed no preferential adsorption of any component in the NGS to the polymers and no leachate was observed in the NGS from any of the polymers studied.

Fondeur, F.; Peters, T.; Fink, S.

2011-09-29T23:59:59.000Z

387

Sample Results From The Next Generation Solvent Program Real Waste Extraction-Scrub-Strip Testing  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) performed multiple Extraction-Scrub-Strip (ESS) testing using real waste solutions, and three Next Generation Solvent (NGS) variations, which included radiologically clean pure NGS, a blend of radiologically clean NGS and radiologically clean BOBCalixC6 (NGS-MCU), and a blend of radiologically clean NGS and radiologically contaminated BOBCalixC6 from the MCU Solvent system. The results from the tests indicate that both the NGS and the NGS-MCU blend exhibit adequate extraction, scrub and strip behavior.

Peters, T. B.; Washington, A. L. II

2013-08-08T23:59:59.000Z

388

SAMPLE RESULTS FROM THE NEXT GENERATION SOLVENT PROGRAM REAL WASTE EXTRACTION-SCRUB-STRIP TESTING  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) performed multiple Extraction-Scrub-Strip (ESS) testing using real waste solutions, and three Next Generation Solvent (NGS) variations, which included radiologically clean pure NGS, a blend of radiologically clean NGS and radiologically clean BOBCalixC6 (NGS-MCU), and a blend of radiologically clean NGS and radiologically contaminated BOBCalixC6 from the MCU Solvent system. The results from the tests indicate that both the NGS and the NGS-MCU blend exhibit adequate extraction, scrub and strip behavior.

Peters, T.; Washington, A.

2013-06-03T23:59:59.000Z

389

RESULTS OF ANALYSIS OF NGS CONCENTRATE DRUM SAMPLES [Next Generation Solvent  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) prepared two drums (50 gallons each in ?Drum#2? and ?Drum#4?) of NGS-MCU (Next Generation Solvent-Modular CSSX Unit) concentrate for future use at MCU in downblending the BOBCalixC6 based solvent to produce NGS-MCU solvent. Samples of each drum were sent for analysis. The results of all the analyses indicate that the blend concentrate is of the correct composition and should produce a blended solvent at MCU of the desired formulation.

Peters, T.; Williams, M.

2013-09-13T23:59:59.000Z

390

July 24, 2009, Visiting Speakers Program - The Next Generation of (Safety) Regulation for HRO's by Christopher Hart  

Broader source: Energy.gov (indexed) [DOE]

Regulating Regulating HRO's: Next Generation July 24, 2009 Federal Aviation Administration 1 Federal Aviation Administration The Next Generation of (Safety) Regulation for HRO's Presentation to: HSS Visiting Speakers Program Name: Christopher A. Hart Date: July 24, 2009 Aviation Safety Experience - Conventional Wisdom: More vigorous regulation and enforcement will result in improved safety - Lesson Learned from Experience: There is a mishap rate plateau beyond which further improvement necessitates a more collaborative approach 2 Regulating HRO's: Next Generation July 24, 2009 Federal Aviation Administration The Context: Increasing Complexity * More System Interdependencies - Large, complex, interactive system - Often tightly coupled - Hi-tech components - Continuous innovation AIRLINES

391

High Energy Nuclear Events  

Science Journals Connector (OSTI)

......research-article Articles High Energy Nuclear Events Enrico Fermi Institute...Distribution of Pions produced in High Energy Nuclear Collisions Yoshihiro Yamamoto...Possible Interpretation of High Energy Nuclear Events Nobuo Yajima, Shuji Takagi......

Enrico Fermi

1950-07-01T23:59:59.000Z

392

PERFORMANCE TESTING OF THE NEXT-GENERATION CSSX SOLVENT WITH ACTUAL SRS TANK WASTE  

SciTech Connect (OSTI)

Efforts are underway to qualify the Next-Generation Solvent for the Caustic Side Solvent Extraction (CSSX) process. Researchers at multiple national laboratories have been involved in this effort. As part of the effort to qualify the solvent extraction system at the Savannah River Site (SRS), SRNL performed a number of tests at various scales. First, SRNL completed a series of batch equilibrium, or Extraction-Scrub-Strip (ESS), tests. These tests used {approx}30 mL of Next-Generation Solvent and either actual SRS tank waste, or waste simulant solutions. The results from these cesium mass transfer tests were used to predict solvent behavior under a number of conditions. At a larger scale, SRNL assembled 12 stages of 2-cm (diameter) centrifugal contactors. This rack of contactors is structurally similar to one tested in 2001 during the demonstration of the baseline CSSX process. Assembly and mechanical testing found no issues. SRNL performed a nonradiological test using 35 L of cesium-spiked caustic waste simulant and 39 L of actual tank waste. Test results are discussed; particularly those related to the effectiveness of extraction.

Pierce, R.; Peters, T.; Crowder, M.; Fink, S.

2011-11-01T23:59:59.000Z

393

Vehicle Technologies Office Merit Review 2014: ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine  

Broader source: Energy.gov [DOE]

Presentation given by Cummins Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ATP-LD; Cummins next generation...

394

Next-Generation Algorithms for Navigation, Geodesy and~Earth Sciences Under Modernized Global Navigation Satellite Systems (GNSS)  

Science Journals Connector (OSTI)

The project on Next-generation algorithms for navigation, geodesy and earth sciences under modernized Global Navigation Satellite Systems (GNSS) has been under development within the scope of the Geomatics f...

Marcelo C Santos; Richard B Langley; Rodrigo F Leandro

2009-01-01T23:59:59.000Z

395

Proceedings of the Computational Needs for the Next Generation Electric Grid Workshop, April 19-20, 2011  

Broader source: Energy.gov [DOE]

The April 2011 DOE workshop, Computational Needs for the Next Generation Electric Grid, brought together some of the Nations leading researchers and experts to identify computational challenges...

396

Scenario Analysis on the Impact of Diffusion of Next Generation Vehicles on Material Consumption and GHG Emissions  

Science Journals Connector (OSTI)

In this study, we developed an automobile cohort model to evaluate the effect of the diffusion of next generation vehicles such as hybrid electric vehicles and electric vehicles on material consumption and GHG em...

Yuta Higuchi; Naoki Wada; Toyohiko Nakakubo

2012-01-01T23:59:59.000Z

397

The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data  

E-Print Network [OSTI]

Next-generation DNA sequencing (NGS) projects, such as the 1000 Genomes Project, are already revolutionizing our understanding of genetic variation among individuals. However, the massive data sets generated by NGSthe ...

McKenna, Aaron

398

Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system  

Science Journals Connector (OSTI)

A pulsed, diode-laser-pumped Nd:YAG master oscillator power amplifier (MOPA) in rod geometry, frequency stabilized with a modified PoundDreverHall scheme is presented. The apparatus...

Ostermeyer, Martin; Kappe, Philip; Menzel, Ralf; Wulfmeyer, Volker

2005-01-01T23:59:59.000Z

399

Abstract 1892: Development of a clinical targeted next generation sequencing test for challenging formalin-fixed paraffin-embedded (FFPE) cancer samples  

Science Journals Connector (OSTI)

...Development of a clinical targeted next generation sequencing test for challenging formalin-fixed paraffin-embedded (FFPE...Development of a clinical targeted next generation sequencing test for challenging formalin-fixed paraffin-embedded (FFPE...

Wenge Shi; Christine Chin; Tingdong Tang; Loretta Hipolito; Preethi Srinivasan; Derek Chiang; David Peng; Emmanuelle D. Tomaso; Shabnam Tangri; Jelveh Lameh; Reinhold Pollner

2014-10-01T23:59:59.000Z

400

Thin Film Materials and Processing Techniques for a Next Generation Photovoltaic Device: Cooperative Research and Development Final Report, CRADA Number CRD-12-470  

SciTech Connect (OSTI)

This research extends thin film materials and processes relevant to the development and production of a next generation photovoltaic device.

van Hest, M.

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

High Energy Cost Grants | Department of Energy  

Energy Savers [EERE]

High Energy Cost Grants High Energy Cost Grants The High Energy Cost Grant Program provides financial assistance for the improvement of energy generation, transmission, and...

402

Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report  

SciTech Connect (OSTI)

This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

John Saurwein

2011-07-15T23:59:59.000Z

403

BioPig: Developing Cloud Computing Applications for Next-Generation Sequence Analysis  

SciTech Connect (OSTI)

Next Generation sequencing is producing ever larger data sizes with a growth rate outpacing Moore's Law. The data deluge has made many of the current sequenceanalysis tools obsolete because they do not scale with data. Here we present BioPig, a collection of cloud computing tools to scale data analysis and management. Pig is aflexible data scripting language that uses Apache's Hadoop data structure and map reduce framework to process very large data files in parallel and combine the results.BioPig extends Pig with capability with sequence analysis. We will show the performance of BioPig on a variety of bioinformatics tasks, including screeningsequence contaminants, Illumina QA/QC, and gene discovery from metagenome data sets using the Rumen metagenome as an example.

Bhatia, Karan; Wang, Zhong

2011-03-22T23:59:59.000Z

404

Department of Energy Announces up to $40 Million in Available Funding for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department of Energy Announces up to $40 Million in Available Funding for Next Generation Nuclear Plants Department of Energy Announces up to $40 Million in Available Funding for Next Generation Nuclear Plants WASHINGTON, DC � U.S. Energy Secretary Steven Chu announced today that up to $40 million in funding will be available from the Department of Energy to support design and planning work for the Next Generation Nuclear Plant (NGNP). Next Generation Nuclear Plants will use new, high temperature, gas-cooled reactor technologies to integrate multiple industrial applications in one plant or facility, such as generating electricity while refining petroleum. NGNP will extend the application of nuclear energy into the broader industrial and transportation sectors, reducing fuel use and pollution and improving on the inherent safety of existing commercial light water reactor technology.

405

The High Energy Telescope on EXIST  

E-Print Network [OSTI]

The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed next generation multi-wavelength survey mission. The primary instrument is a High Energy telescope (HET) that conducts the deepest survey for Gamma-ray Bursts (GRBs), obscured-accreting and dormant Supermassive Black Holes and Transients of all varieties for immediate followup studies by the two secondary instruments: a Soft X-ray Imager (SXI) and an Optical/Infrared Telescope (IRT). EXIST will explore the early Universe using high redshift GRBs as cosmic probes and survey black holes on all scales. The HET is a coded aperture telescope employing a large array of imaging CZT detectors (4.5 m^2, 0.6 mm pixel) and a hybrid Tungsten mask. We review the current HET concept which follows an intensive design revision by the HET imaging working group and the recent engineering studies in the Instrument and Mission Design Lab at the Goddard Space Flight Center. The HET will locate GRBs and transients quickly (<10-30 sec) and accurately (< 20") f...

Hong, J; Allen, B; Barthelmy, S D; Skinner, G K; Gehrels, N

2009-01-01T23:59:59.000Z

406

Next generation sequencing to determine HLA class II genotypes in a cohort of hematopoietic cell transplant patients and donors  

Science Journals Connector (OSTI)

Abstract Current high-resolution HLA typing technologies frequently produce ambiguous results that mandate extended testing prior to reporting. Through multiplex sequencing of individual amplicons from many individuals at multiple loci, next generation sequencing (NGS) promises to eliminate heterozygote ambiguities and extend the breadth of genetic data acquired with little additional effort. We report here on assessment of a novel NGS HLA genotyping system for resequencing exons 2 and 3 of DRB1/B3/B4/B5, DQA1 and DQB1 and exon 2 of DPA1 and DPB1 on the MiSeq platform. In a cohort of 2605 hematopoietic cell transplant recipients and donors, NGS achieved 99.6% accuracy for DRB1 allele assignments and 99.5% for DQB1, compared to legacy genotypes generated pretransplant. NGS provided at least single 4-digit allele resolution for 97% of genotypes at DRB1 and 100% at DQB1. Overall, NGS typing identified 166 class II alleles, including 9 novel sequences with greater than 99% accuracy for DRB1 and DQB1 genotypes and elimination of diploid ambiguities through in-phase sequencing demonstrated the robust reliability of the NGS HLA genotyping reagents and analysis software employed in this study.

Anajane G. Smith; Chul-Woo Pyo; Wyatt Nelson; Edward Gow; Ruihan Wang; Shu Shen; Maggie Sprague; Shalini E. Pereira; Daniel E. Geraghty; John A. Hansen

2014-01-01T23:59:59.000Z

407

DISCOVERY OF A NEW MEMBER OF THE INNER OORT CLOUD FROM THE NEXT GENERATION VIRGO CLUSTER SURVEY  

SciTech Connect (OSTI)

We report the discovery of 2010 GB{sub 174}, a likely new member of the Inner Oort Cloud (IOC). 2010 GB{sub 174} is 1 of 91 trans-Neptunian objects and Centaurs discovered in a 76 deg{sup 2} contiguous region imaged as part of the Next Generation Virgo Cluster Survey (NGVS)a moderate ecliptic latitude survey reaching a mean limiting magnitude of g' ? 25.5using MegaPrime on the 3.6 m Canada-France-Hawaii Telescope. 2010 GB{sub 174} is found to have an orbit with a semi-major axis of a ? 350.8 AU, an inclination of i ? 21.6, and a pericenter of q ? 48.5 AU. This is the second largest perihelion distance among known solar system objects. Based on the sky coverage and depth of the NGVS, we estimate the number of IOC members with sizes larger than 300 km (H{sub V} ? 6.2 mag) to be ? 11, 000. A comparison of the detection rate from the NGVS and the PDSSS (a characterized survey that 'rediscovered' the IOC object Sedna) gives, for an assumed a power-law luminosity function for IOC objects, a slope of ? ? 0.7 0.2. With only two detections in this region this slope estimate is highly uncertain.

Chen, Ying-Tung; Ip, Wing-Huen [Institute of Astronomy, National Central University, No. 300, Jhongda Road, Jhongli City, Taoyuan County 32001, Taiwan (China)] [Institute of Astronomy, National Central University, No. 300, Jhongda Road, Jhongli City, Taoyuan County 32001, Taiwan (China); Kavelaars, J. J.; Gwyn, Stephen; Ferrarese, Laura; Ct, Patrick [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7 (Canada)] [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7 (Canada); Jordn, Andrs; Suc, Vincent [Instituto de Astrofsica, Pontificia Universidad Catlica de Chile, Av. Vicua Mackenna 4860, Macul 7820436, Santiago (Chile)] [Instituto de Astrofsica, Pontificia Universidad Catlica de Chile, Av. Vicua Mackenna 4860, Macul 7820436, Santiago (Chile); Cuillandre, Jean-Charles, E-mail: charles@astro.ncu.edu.tw [Canada-France-Hawaii Telescope Corporation, 65-1238 Mamalahoa Hwy., Kamuela, HI 96743 (United States)] [Canada-France-Hawaii Telescope Corporation, 65-1238 Mamalahoa Hwy., Kamuela, HI 96743 (United States)

2013-09-20T23:59:59.000Z

408

High energy and high excitement  

Science Journals Connector (OSTI)

......definite, stream of energy. Most previous optical...If there is a slower car in front on a highway...result, which are akin to car collisions. These gigantic clouds of high-energy electrons, now seen...outcrops. However, an alternative possibility is that the......

Peter Bond

2001-02-01T23:59:59.000Z

409

Department of Energy Announces up to $40 Million in Available Funding for  

Broader source: Energy.gov (indexed) [DOE]

up to $40 Million in Available up to $40 Million in Available Funding for Next Generation Nuclear Plants Department of Energy Announces up to $40 Million in Available Funding for Next Generation Nuclear Plants September 18, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu announced today that up to $40 million in funding will be available from the Department of Energy to support design and planning work for the Next Generation Nuclear Plant (NGNP). Next Generation Nuclear Plants will use new, high temperature, gas-cooled reactor technologies to integrate multiple industrial applications in one plant or facility, such as generating electricity while refining petroleum. NGNP will extend the application of nuclear energy into the broader industrial and transportation sectors, reducing fuel use

410

Department of Energy Announces up to $40 Million in Available Funding for  

Broader source: Energy.gov (indexed) [DOE]

Announces up to $40 Million in Available Announces up to $40 Million in Available Funding for Next Generation Nuclear Plants Department of Energy Announces up to $40 Million in Available Funding for Next Generation Nuclear Plants September 18, 2009 - 1:26pm Addthis U.S. Energy Secretary Steven Chu announced today that up to $40 million in funding will be available from the Department of Energy to support design and planning work for the Next Generation Nuclear Plant (NGNP). Next Generation Nuclear Plants will use new, high temperature, gas-cooled reactor technologies to integrate multiple industrial applications in one plant or facility, such as generating electricity while refining petroleum. NGNP will extend the application of nuclear energy into the broader industrial and transportation sectors, reducing fuel use and pollution and

411

Energy Storage Testing and Analysis High Power and High Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle...

412

DEVELOPMENT OF AN ADVANCED APPROACH FOR NEXT GENERATION, HIGH RESOLUTION, INTEGRATED RESERVOIR CHARACTERIZATION  

SciTech Connect (OSTI)

During this reporting period all preliminary tasks were completed (such as the creation of a flexible project database) and construction of the actual broadband transform function was begun. Analysis of intermediate results performed during the reporting period has proven that the neural networks being used can accurately predict data elements using surface seismic or crosswell seismic data and attributes as input.

Scott R. Reeves; Jack W. Steen

2003-11-01T23:59:59.000Z

413

High-Temperature Thermal Array for Next Generation Solar Thermal Power Production- FY12 Q2  

Broader source: Energy.gov [DOE]

This document summarizes the progress of this LANL project, funded by SunShot, for the second quarter of fiscal year 2013.

414

Magnetic Pattern Fabrication and Characterization for Next Generation High Density Magnetic Recording System  

E-Print Network [OSTI]

3] The International Technology Roadmap for Semiconductors (1.1: International Technology Roadmap for Semiconductors (1.1: International Technology Roadmap for Semiconductors (

Lee, Beomseop

2011-01-01T23:59:59.000Z

415

High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objective: Find optimized working fluid/advanced cycle combination for EGS applications.

416

High Temperature Thermal Array for Next Generation Solar Thermal Power Production  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

417

Magnetic Pattern Fabrication and Characterization for Next Generation High Density Magnetic Recording System  

E-Print Network [OSTI]

processing conditions are MIBK: IPA=9:1 in sub 10 ambient1 minute and rinsing in MIBK: IPA=1:1 for 15 seconds in roomsubstrate. Soaking MIBK:IPA=1:9 for 60 seconds and rinsing

Lee, Beomseop

2011-01-01T23:59:59.000Z

418

High Temperature Gas-Cooled Reactors Lessons Learned Applicable to the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The purpose of this report is to identify possible issues highlighted by these lessons learned that could apply to the NGNP in reducing technical risks commensurate with the current phase of design. Some of the lessons learned have been applied to the NGNP and documented in the Preconceptual Design Report. These are addressed in the background section of this document and include, for example, the decision to use TRISO fuel rather than BISO fuel used in the Peach Bottom reactor; the use of a reactor pressure vessel rather than prestressed concrete found in Fort St. Vrain; and the use of helium as a primary coolant rather than CO2. Other lessons learned, 68 in total, are documented in Sections 2 through 6 and will be applied, as appropriate, in advancing phases of design. The lessons learned are derived from both negative and positive outcomes from prior HTGR experiences. Lessons learned are grouped according to the plant, areas, systems, subsystems, and components defined in the NGNP Preconceptual Design Report, and subsequent NGNP project documents.

J. M. Beck; L. F. Pincock

2011-04-01T23:59:59.000Z

419

Corrosion in Very High-Temperature Molten Salt for Next Generation CSP Systems  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

420

Corrosion in Very High-Temperature Molten Salt for Next Generation...  

Broader source: Energy.gov (indexed) [DOE]

until addition is exhausted - Add a metal to scavenge F - ions (Zr, Mg) - Add Rare earth salts (Tm(IIIII), Sm(IIIII), Yb(IIIII), V(IIIII) and Eu(IIIII) 1 * Change...

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

High-Temperature Thermal Array for Next Generation Solar Thermal Power Production- FY13 Q1  

Broader source: Energy.gov [DOE]

This document summarizes the progress of this Los Alamos National Laboratory project, funded by SunShot, for the first quarter of fiscal year 2013.

422

Magnetic Pattern Fabrication and Characterization for Next Generation High Density Magnetic Recording System  

E-Print Network [OSTI]

cture of Bit Patterned P Me edia (BPM)[2 21] T described Thein Co/P Pd m multilayer me edia. A After acquiri ing the coeealizing Bit patterned p me edia. Moreov ver, I conclu uded

Lee, Beomseop

2011-01-01T23:59:59.000Z

423

Next generation aerosol-cloud microphysics for advanced high-resolution climate predictions  

SciTech Connect (OSTI)

The three top-level project goals are: -We proposed to develop, test, and run a new, physically based, scale-independent microphysical scheme for those cloud processes that most strongly affect greenhouse gas scenarios, i.e. warm cloud microphysics. In particular, we propsed to address cloud droplet activation, autoconversion, and accretion. -The new, unified scheme was proposed to be derived and tested using the University of Hawaii's IPRC Regional Atmospheric Model (iRAM). -The impact of the new parameterizations on climate change scenarios will be studied. In particular, the sensitivity of cloud response to climate forcing from increased greenhouse gas concentrations will be assessed.

Bennartz, Ralf; Hamilton, Kevin P; Phillips, Vaughan T.J.; Wang, Yuqing; Brenguier, Jean-Louis

2013-01-14T23:59:59.000Z

424

Recommended Guanidine Suppressor for the Next-Generation Caustic-Side Solvent Extraction Process  

SciTech Connect (OSTI)

The guanidine recommended for the Next-Generation Caustic-Side is N,N ,N -tris(3,7-dimethyloctyl)guanidine (TiDG). Systematic testing has shown that it is significantly more lipophilic than the previously recommended guanidine DCiTG, the active extractant in the commercial guanidine product LIX -79, while not otherwise changing the solvent performance. Previous testing indicated that the extent of partitioning of the DCiTG suppressor to the aqueous strip solution is significantly greater than expected, potentially leading to rapid depletion of the suppressor from the solvent and unwanted organic concentrations in process effluents. Five candidate guanidines were tested as potential replacements for DCiTG. The tests included batch extraction with simulated waste and flowsheet solutions, third-phase formation, emulsion formation, and partition ratios of the guanidine between the solvent and aqueous strip solution. Preliminary results of a thermal stability test of the TiDG solvent at one month duration indicated performance approximately equivalent to DCiTG. Two of the guanidines proved adequate in all respects, and the choice of TiDG was deemed slightly preferable vs the next best guanidine BiTABG.

Moyer, Bruce A [ORNL; Delmau, Laetitia Helene [ORNL; Duncan, Nathan C [ORNL; Ensor, Dale [Tennessee Technological University; Hill, Talon G [ORNL; Lee, Denise L [ORNL; Roach, Benjamin D [ORNL; Sloop Jr, Frederick {Fred} V [ORNL; Williams, Neil J [ORNL

2013-01-01T23:59:59.000Z

425

Next-Generation Thermionic Solar Energy Conversion- FY13 Q2  

Broader source: Energy.gov [DOE]

This document summarizes the progress of this Stanford/SLAC project, funded by SunShot, for the second quarter of fiscal year 2013.

426

Energy Department Announces New Investments to Drive Cost-Competitive Next Generation Efficient Lighting  

Office of Energy Efficiency and Renewable Energy (EERE)

American Innovation in New, More Efficient Lighting will Boost National Competitiveness in Manufacturing

427

ESS 2012 Peer Review - Next Generation Composite Materials for Flywheel Development - Timothy Lambert, SNL  

Broader source: Energy.gov (indexed) [DOE]

Sandia! Sandia! National! Laboratories! Acknowledgments We gratefully acknowledge support from Dr. Imre Gyuk and the Office of Electricity, Delivery and Energy Reliability. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy s National Nuclear Security Administration under contract DE-AC04-94AL85000. Abstract Flywheels are "mechanical battery" storage systems that have fast response times, long lifetimes and lower maintenance costs; when coupled with high-temperature superconducting (HTS) bearings, flywheels can exhibit extremely low rotational losses resulting in high efficiency. For energy storage purposes, materials with higher strengths, and lower densities that would allow the flywheel to spin

428

Brookhaven High Energy Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-Energy Physics High-Energy Physics High-energy physicists probe the properties and behavior of the most elementary particles in the universe. At the Alternating Gradient Synchrotron (AGS), they perform experiments of unique sensitivity using high-intensity, intermediate-energy beams. The AGS currently provides the world's most intense high-energy proton beam. It is also the world's most versatile accelerator, accelerating protons, polarized protons, and heavy ions to near the speed of light. Magnet system at Brookhaven used to measure the magnetic moment of the muon. Important discoveries in high-energy physics were made at the AGS within the last decade. An international collaboration, including key physicists from Brookhaven, performed a very high-precision measurement of a property

429

Foreword to the Handbook of Research on "Mobile Peer-to-Peer Computing for Next Generation Distributed Environments: Advancing  

E-Print Network [OSTI]

Foreword to the Handbook of Research on "Mobile Peer-to-Peer Computing for Next Generation, namely mobile P2P systems, are in their infancy. This does not mean that research on the subject has physically. Thus, serious security and privacy concerns arise. Additionally, many mobile P2P systems cannot

Wolfson, Ouri E.

430

Building Airport Systems for the Next Generation Dealing with the uncertainties of airport development will require new strategies.  

E-Print Network [OSTI]

at Atlanta, Boston, Dallas/Fort Worth, Las Vegas, Miami International, New York/Kennedy, Orlando International, Philadelphia, Washington/Dulles, and elsewhere. Brand-new or thoroughly reworked airportsBuilding Airport Systems for the Next Generation Dealing with the uncertainties of airport

431

A collaboration opportunity for next step tokamaks: ITER and DEMO (specifically a next generation diagnostic: the pulsed polarimetry technique)  

E-Print Network [OSTI]

A collaboration opportunity for next step tokamaks: ITER and DEMO (specifically a next generation and developing diagnostic technique and propose it to the FESAC International Collaboration Panel as a topic for collaborative international research. The diagnostic is a remote sensing technique with potential for measuring

432

Assessment of the impact of the next generation solvent on DWPF melter off-gas flammability  

SciTech Connect (OSTI)

An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of replacing the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process with the Next Generation Solvent (NGS-MCU) and blended solvent. The results of this study showed that the concentrations of nonvolatile carbon and hydrogen of the current solvent in the Slurry Mix Evaporator (SME) product would both be about 29% higher than their counterparts of the NGS-MCU and blended solvent in the absence of guanidine partitioning. When 6 ppm of guanidine (TiDG) was added to the effluent transfer to DWPF to simulate partitioning for the NGS-MCU and blended solvent cases and the concentration of Isopar{reg_sign} L in the effluent transfer was controlled below 87 ppm, the concentrations of nonvolatile carbon and hydrogen of the NGS-MCU and blended solvent were still about 12% and 4% lower, respectively, than those of the current solvent. It is, therefore, concluded that as long as the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle and the concentration of Isopar{reg_sign} L in the effluent transfer is controlled below 87 ppm, using the current solvent assumption of 105 ppm Isopar{reg_sign} L or 150 ppm solvent in lieu of NGS-MCU or blended solvent in the DWPF melter off-gas flammability assessment is conservative for up to an additional 6 ppm of TiDG in the effluent due to guanidine partitioning. This report documents the calculations performed to reach this conclusion.

Daniel, W. E.

2013-02-13T23:59:59.000Z

433

STARLIB: A NEXT-GENERATION REACTION-RATE LIBRARY FOR NUCLEAR ASTROPHYSICS  

SciTech Connect (OSTI)

STARLIB is a next-generation, all-purpose nuclear reaction-rate library. For the first time, this library provides the rate probability density at all temperature grid points for convenient implementation in models of stellar phenomena. The recommended rate and its associated uncertainties are also included. Currently, uncertainties are absent from all other rate libraries, and, although estimates have been attempted in previous evaluations and compilations, these are generally not based on rigorous statistical definitions. A common standard for deriving uncertainties is clearly warranted. STARLIB represents a first step in addressing this deficiency by providing a tabular, up-to-date database that supplies not only the rate and its uncertainty but also its distribution. Because a majority of rates are lognormally distributed, this allows the construction of rate probability densities from the columns of STARLIB. This structure is based on a recently suggested Monte Carlo method to calculate reaction rates, where uncertainties are rigorously defined. In STARLIB, experimental rates are supplemented with: (1) theoretical TALYS rates for reactions for which no experimental input is available, and (2) laboratory and theoretical weak rates. STARLIB includes all types of reactions of astrophysical interest to Z = 83, such as (p, {gamma}), (p, {alpha}), ({alpha}, n), and corresponding reverse rates. Strong rates account for thermal target excitations. Here, we summarize our Monte Carlo formalism, introduce the library, compare methods of correcting rates for stellar environments, and discuss how to implement our library in Monte Carlo nucleosynthesis studies. We also present a method for accessing STARLIB on the Internet and outline updated Monte Carlo-based rates.

Sallaska, A. L. [National Institute of Standards and Technology, Gaithersburg, MD 20899-8462 (United States); Iliadis, C.; Champange, A. E. [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Goriely, S. [Institut d'Astronomie et d'Astrophysique, Universite Libre de Bruxelles, C.P. 226, B-1050 Brussels (Belgium); Starrfield, S.; Timmes, F. X., E-mail: anne.sallaska@nist.gov [Arizona State University, Tempe, AZ 85287-1504 (United States)

2013-07-15T23:59:59.000Z

434

High Energy Solar Particles  

Science Journals Connector (OSTI)

6 May 1976 research-article High Energy Solar Particles J. J. Quenby Protons, heavy nuclei and electrons are seen to be emitted from solar flares with energies extending up to the relativistic region. Three different...

1976-01-01T23:59:59.000Z

435

High Energy Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Scale Production Computing and Storage Requirements for High Energy Physics: Target 2017 HEPlogo.jpg The NERSC Program Requirements Review "Large Scale Computing and Storage...

436

Legislative Directive: EPACT 2005, Subtitle A: Energy Efficiency  

Broader source: Energy.gov [DOE]

Legislative Directive: EPACT 2005, Subtitle A: Energy Efficiency, Sec. 911: Energy Efficiency, Sec. 912: Next Generation Lighting Initiative

437

Results From The Salt Disposition Project Next Generation Solvent Demonstration Plan  

SciTech Connect (OSTI)

Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Solvent Hold Tank (SHT) samples were taken throughout the Next Generation Solvent (NGS) Demonstration Plan. These samples were analyzed and the results are reported. SHT: The solvent behaved as expected, with no bulk changes in the composition over time, with the exception of the TOA and TiDG. The TiDG depletion is higher than expected, and consideration must be taken on the required rate of replenishment. Monthly sampling of the SHT is warranted. If possible, additional SHT samples for TiDG analysis (only) would help SRNL refine the TiDG degradation model. CWT: The CWT samples show the expected behavior in terms of bulk chemistry. The 137Cs deposited into the CWT varies somewhat, but generally appears to be lower than during operations with the BOBCalix solvent. While a few minor organic components were noted to be present in the Preliminary sample, at this time these are thought to be artifacts of the sample preparation or may be due to the preceding solvent superwash. DSSHT: The DSSHT samples show the predicted bulk chemistry, although they point towards significant dilution at the front end of the Demonstration. The 137Cs levels in the DSSHT are much lower than during the BOBCalix operations, which is the expected observation. SEHT: The SEHT samples represent the most different output of all four of the outputs from MCU. While the bulk chemistry is as expected, something is causing the pH of the SEHT to be higher than what would be predicted from a pure stream of 0.01 M boric acid. There are several possible different reasons for this, and SRNL is in the process of investigating. Other than the pH issue, the SEHT is as predicted. In summary, the NGS Demonstration Plan samples indicate that the MCU system, with the Blend Solvent, is operating as expected. The only issue of concern regards the pH of the SEHT, and SRNL is in the process of investigating this. SRNL results support the transition to routine operations.

Peters, T. B.; Fondeur, F. F.; Taylor-Pashow, K. M.L.

2014-04-02T23:59:59.000Z

438

Research and development of novel advanced materials for next-generation collimators  

E-Print Network [OSTI]

The study of innovative collimators is essential to handle the high energy particle beams required to explore unknown territory in basic research. This calls for the development of novel advanced materials, as no existing metal-based or carbon-based material possesses the combination of physical, thermal, electrical and mechanical properties, imposed by collimator extreme working conditions. A new family of materials, with promising features, has been identified: metal-diamond composites. These materials are to combine the outstanding thermal and physical properties of diamond with the electrical and mechanical properties of metals. The best candidates are Copper-Diamond (Cu-CD) and Molybdenum-Diamond (Mo-CD). In particular, Mo-CD may provide interesting properties as to mechanical strength, melting temperature, thermal shock resistance and, thanks to its balanced material density, energy absorption. The research program carried out on these materials at CERN and collaborating partners is presented, mainly fo...

Bertarelli, A; Carra, F; Dallocchio, A; Gil Costa, M; Mariani, N

2011-01-01T23:59:59.000Z

439

ESS 2012 Peer Review - Next Generation Processes for Carbonate Electrolytes for Battery Applications - Kris Rangan, Materials Modification  

Broader source: Energy.gov (indexed) [DOE]

Next Generation Processes for Carbonate Electrolytes for Battery Applications Next Generation Processes for Carbonate Electrolytes for Battery Applications Dr. Kausik Mukhopadhyay & Dr. Krishnaswamy K. Rangan Materials Modification, Inc. 2809-K Merrilee Drive, Fairfax. VA 22031 ABSTRACT  Dimethyl Carbonate (DMC) is a promising electrolyte solvent for lithium battery applications due to its inherent safety and robustness. Despite the enormous promise of its industrial use, this chemical is currently entirely imported from China. The global battery market is about US$ 50 billion, of which approximately $ 5.5 billion is captured by the rechargeable batteries for use in electric vehicles, laptops, consumer electronics, rechargeable batteries etc.  Indigenous manufacture of DMC will enormously benefit not only the American lithium battery industry

440

LANL | Physics | High Energy Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

high energy physics frontiers as defined by the Department of Energy's Office of High Energy Physics. Exploring the intensity frontier On the trail of one of the greatest...

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NEXT GENERATION COMMERCIAL HEAT PUMPWATER HEATER USING CARBON DIOXIDE USING DIFFERENT IMPROVEMENT APPROACHES  

SciTech Connect (OSTI)

Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82?ºC, as required by sanitary codes in the U.S. (Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35 kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20 %.

Chad Bowers; Michael Petersen; Stefan Elbel; Pega Hrnjak

2012-04-01T23:59:59.000Z

442

OASIS4: A Coupling Software for Next Generation Earth System Modelling Ren Redler (1), Sophie Valcke (2) and Hubert Ritzdorf (3)  

E-Print Network [OSTI]

OASIS4: A Coupling Software for Next Generation Earth System Modelling René Redler (1), Sophie system modelling, Geosci. Model. Dev., 3, 87 ­ 104 Link ­ https://oasistrac.cerfacs.fr Financial support ­ R. Redler, S. Valcke and H. Ritzdorf, 2010: OASIS4 ­ a coupling software for next generation earth

443

Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques  

SciTech Connect (OSTI)

This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the crude oil. A significant number of laboratory-scale tests were made to evaluate the solution gas drive potential of West Sak (AK) viscous oil. The West Sak sample has a low acid number, low asphaltene content, and does not appear foamy under laboratory conditions. Tests show primary recovery of about 22% of the original oil in place under a variety of conditions. The acid number of other Alaskan North Slope samples tests is greater, indicating a greater potential for recovery by heavy-oil solution gas drive. Effective cold production leads to reservoir pressure depletion that eases the implementation of thermal recovery processes. When viewed from a reservoir perspective, thermal recovery is the enhanced recovery method of choice for viscous and heavy oils because of the significant viscosity reduction that accompanies the heating of oil. One significant issue accompanying thermal recovery in cold environments is wellbore heat losses. Initial work on thermal recovery found that a technology base for delivering steam, other hot fluids, and electrical heat through cold subsurface environments, such as permafrost, was in place. No commercially available technologies are available, however. Nevertheless, the enabling technology of superinsulated wells appears to be realized. Thermal subtasks focused on a suite of enhanced recovery options tailored to various reservoir conditions. Generally, electrothermal, conventional steam-based, and thermal gravity drainage enhanced oil recovery techniques appear to be applicable to 'prime' Ugnu reservoir conditions to the extent that reservoir architecture and fluid conditions are modeled faithfully here. The extent of reservoir layering, vertical communication, and subsurface steam distribution are important factors affecting recovery. Distribution of steam throughout reservoir volume is a significant issue facing thermal recovery. Various activities addressed aspects of steam emplacement. Notably, hydraulic fracturing of horizontal steam injection wells and implementation of steam trap control that limits steam entry into hor

Stanford University; Department of Energy Resources Engineering Green Earth Sciences

2007-09-30T23:59:59.000Z

444

FY 2008 Next Generation Safeguards Initiative International Safeguards Education and Training Pilot Progerams Summary Report  

SciTech Connect (OSTI)

Key component of the Next Generation Safeguards Initiative (NGSI) launched by the National Nuclear Security Administration is the development of human capital to meet present and future challenges to the safeguards regime. An effective university-level education in safeguards and related disciplines is an essential element in a layered strategy to rebuild the safeguards human resource capacity. Two pilot programs at university level, involving 44 students, were initiated and implemented in spring-summer 2008 and linked to hands-on internships at LANL or LLNL. During the internships, students worked on specific safeguards-related projects with a designated Laboratory Mentor to provide broader exposure to nuclear materials management and information analytical techniques. The Safeguards and Nuclear Material Management pilot program was a collaboration between the Texas A&M University (TAMU), Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). It included a 16-lecture course held during a summer internship program. The instructors for the course were from LANL together with TAMU faculty and LLNL experts. The LANL-based course was shared with the students spending their internship at LLNL via video conference. A week-long table-top (or hands-on) exercise on was also conducted at LANL. The student population was a mix of 28 students from a 12 universities participating in a variety of summer internship programs held at LANL and LLNL. A large portion of the students were TAMU students participating in the NGSI pilot. The International Nuclear Safeguards Policy and Information Analysis pilot program was implemented at the Monterey Institute for International Studies (MIIS) in cooperation with LLNL. It included a two-week intensive course consisting of 20 lectures and two exercises. MIIS, LLNL, and speakers from other U.S. national laboratories (LANL, BNL) delivered lectures for the audience of 16 students. The majority of students were senior classmen or new master's degree graduates from MIIS specializing in nonproliferation policy studies. Other university/organizations represented: University of California in LA, Stanford University, and the IAEA. Four of the students that completed this intensive course participated in a 2-month internship at LLNL. The conclusions of the two pilot courses and internships was a NGSI Summer Student Symposium, held at LLNL, where 20 students participated in LLNL facility tours and poster sessions. The Poster sessions were designed to provide a forum for sharing the results of their summer projects and providing experience in presenting their work to a varied audience of students, faculty and laboratory staff. The success of bringing together the students from the technical and policy pilots was notable and will factor into the planning for the continued refinement of their two pilot efforts in the coming years.

Dreicer, M; Anzelon, G; Essner, J; Dougan, A; Doyle, J; Boyer, B; Hypes, P; Sokova, E; Wehling, F

2008-10-17T23:59:59.000Z

445

Next generation input-output data format for HEP using Google's protocol buffers  

E-Print Network [OSTI]

We propose a data format for Monte Carlo (MC) events, or any structural data, including experimental data, in a compact binary form using variable-size integer encoding as implemented in the Google's Protocol Buffers package. This approach is implemented in the so-called ProMC library which produces smaller file sizes for MC records compared to the existing input-output libraries used in high-energy physics (HEP). Other important features are a separation of abstract data layouts from concrete programming implementations, self-description and random access. Data stored in ProMC files can be written, read and manipulated in a number of programming languages, such C++, Java and Python.

Chekanov, S V

2013-01-01T23:59:59.000Z

446

Next generation input-output data format for HEP using Google's protocol buffers  

E-Print Network [OSTI]

We propose a data format for Monte Carlo (MC) events, or any structural data, including experimental data, in a compact binary form using variable-size integer encoding as implemented in the Google's Protocol Buffers package. This approach is implemented in the so-called ProMC library which produces smaller file sizes for MC records compared to the existing input-output libraries used in high-energy physics (HEP). Other important features are a separation of abstract data layouts from concrete programming implementations, self-description and random access. Data stored in ProMC files can be written, read and manipulated in a number of programming languages, such C++, Java and Python.

S. V. Chekanov

2013-06-27T23:59:59.000Z

447

Reactor Physics Parametric and Depletion Studies in Support of TRISO Particle Fuel Specification for the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

Reactor physics calculations were initiated to answer several major questions related to the proposed TRISO-coated particle fuel that is to be used in the prismatic Very High Temperature Reactor (VHTR) or the Next Generation Nuclear Plant (NGNP). These preliminary design evaluation calculations help ensure that the upcoming fuel irradiation tests will test appropriate size and type of fuel particles for a future NGNP reactor design. Conclusions from these calculations are expected to confirm and suggest possible modifications to the current particle fuel parameters specified in the evolving Fuel Specification. Calculated results dispel the need for a binary fuel particle system, which is proposed in the General Atomics GT-MHR concept. The GT-MHR binary system is composed of both a fissile and fertile particle with 350- and 500- micron kernel diameters, respectively. For the NGNP reactor, a single fissile particle system (single UCO kernel size) can meet the reactivity and power cycle length requirements demanded of the NGNP. At the same time, it will provide substantial programmatic cost savings by eliminating the need for dual particle fabrication process lines and dual fuel particle irradiation tests required of a binary system. Use of a larger 425-micron kernel diameter single fissile particle (proposed here), as opposed to the 350-micron GT-MHR fissile particle size, helps alleviate current compact particle packing fractions fabrication limitations (<35%), improves fuel block loading for higher n-batch reload options, and tracks the historical correlation between particle size and enrichment (10 and 14 wt% U-235 particle enrichments are proposed for the NGNP). Overall, the use of the slightly larger kernel significantly broadens the NGNP reactor core design envelope and provides increased design margin to accommodate the (as yet) unknown final NGNP reactor design. Maximum power-peaking factors are calculated for both the initial and equilibrium NGNP cores. Radial power-peaking can be fully controlled with particle packing fraction zoning (no enrichment zoning required) and discrete burnable poison rods. Optimally loaded NGNP cores can expect radial powerpeaking factors as low as 1.14 at beginning of cycle (BOC), increasing slowly to a value of 1.25 by end of cycle (EOC), an axial power-peaking value of 1.30 (BOC), and for individual fuel particles in the maximum compact <1.05 (BOC) and an approximate value of 1.20 (EOC) due to Pu-239 buildup in particles on the compact periphery. The NGNP peak particle powers, using a conservative total power-peaking factor (~2.1 factor), are expected to be <150 mW/particle (well below the 250 mW/particle limit, even with the larger 425-micron kernel size).

James W. Sterbentz; Bren Phillips; Robert L. Sant; Gray S. Chang; Paul D. Bayless

2003-09-01T23:59:59.000Z

448

Next-generation multijunction solar cells: The promise of II-VI materials  

Science Journals Connector (OSTI)

High concentration photovoltaic (HCPV) systems offer the highest photovoltaic(PV) conversion efficiencies. Also as production is beginning to ramp up HCPV is becoming cost competitive with thin-film poly-CdTe and crystalline Si systems in high solar insolation regions. High solar concentrations X???500 are used to increase cell efficiencies and greatly reduce the cell area per unit of incident solar radiation thereby greatly reducing the cell cost per watt. The monolithic three-junction (3J) solar cells presently used in HCPV systems typically consist of two epitaxialIII-V homojunctions such as GaInP and GaInAs grown on an active Ge substrate by metal-organic chemical vapor deposition (MOCVD). The III-Vbandgaps are chosen to match the currents generated in each junction and minimize the energy lost to thermalization of the electron-hole pairs generated subject to the constraint of approximate lattice matching. We propose using cells consisting of one or more CdTe-based II-VI homojunctions grown on large-area active Si substrates by high-throughput MBE or a less expensive high-vacuum deposition technique as an alternative to III-V based multijunction cells grown by MOCVD. The bandgap of Si is more optimal than that of Ge for two-junction (2J) or 3J cells and lattice mismatches affect the efficiencies of such cells only slightly which allows greater freedom in the choice of bandgaps and thus the potential for higher efficiencies. Also such cells could be manufactured at a much lower cost due to the larger area much lower cost and superior mechanical properties of Si substrates as compared to Ge substrates. The much lower cell cost also would enable medium concentration PV systems that would require more cell area but with simplified less expensive tracking and optics resulting in lower overall system costs. Promising initial results from material-property measurements and single-junction and 2J CdZnTe/Si cell characterization results are given. Both the promise of the proposed technology and the challenges it faces are discussed.

J. W. Garland; T. Biegala; M. Carmody; C. Gilmore; S. Sivananthan

2011-01-01T23:59:59.000Z

449

High Energy Neutrino Telescopes  

E-Print Network [OSTI]

This paper presents a review of the history, motivation and current status of high energy neutrino telescopes. Many years after these detectors were first conceived, the operation of kilometer-cubed scale detectors is finally on the horizon at both the South Pole and in the Mediterranean Sea. These new detectors will perhaps provide us the first view of high energy astrophysical objects with a new messenger particle and provide us with our first real glimpse of the distant universe at energies above those accessible by gamma-ray instruments. Some of the topics that can be addressed by these new instruments include the origin of cosmic rays, the nature of dark matter, and the mechanisms at work in high energy astrophysical objects such as gamma-ray bursts, active galactic nuclei, pulsar wind nebula and supernova remnants.

Hoffman, K D

2008-01-01T23:59:59.000Z

450

High Energy Neutrino Telescopes  

E-Print Network [OSTI]

This paper presents a review of the history, motivation and current status of high energy neutrino telescopes. Many years after these detectors were first conceived, the operation of kilometer-cubed scale detectors is finally on the horizon at both the South Pole and in the Mediterranean Sea. These new detectors will perhaps provide us the first view of high energy astrophysical objects with a new messenger particle and provide us with our first real glimpse of the distant universe at energies above those accessible by gamma-ray instruments. Some of the topics that can be addressed by these new instruments include the origin of cosmic rays, the nature of dark matter, and the mechanisms at work in high energy astrophysical objects such as gamma-ray bursts, active galactic nuclei, pulsar wind nebula and supernova remnants.

K. D. Hoffman

2008-12-18T23:59:59.000Z

451

An extensive analysis of modified nanotube surfaces for next-generation orthopedic implants  

E-Print Network [OSTI]

nanotubes for improved dye-sensitized solar cells. Journal of Renewable and Sustainable Energy.energy of the Ti-O bond (323 kJ/mol) to the fact that TiO 2 nanotubes

Frandsen, Christine Jeanette

2012-01-01T23:59:59.000Z

452

Upholding Dr. Kings Dream and Inspiring the Next Generation Through STEM Education  

Broader source: Energy.gov [DOE]

Dr. Kings words served as a special theme for the Minorities in energy STEM (science, technology, engineering, and math) and Energy Literacy kick-off event during the Martin Luther King, Jr. day.

453

Empowering the Next Generation: Connecting the U.S. and African Nations through Technical Exchanges  

Broader source: Energy.gov [DOE]

At the May 2014 U.S.-Africa Energy Ministerial in Ethiopia Director Dot Harris moderated a panel focused on creating innovative partnerships and technical exchanges between American and African universities and businesses to address energy and development challenges.

454

Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells  

E-Print Network [OSTI]

Solar energy has emerged as one of the most rapidly growing renewable sources of electricity due to several advantages: (

Mariani, Giacomo

2013-01-01T23:59:59.000Z

455

Two Novel ALK Mutations Mediate Acquired Resistance to the Next-Generation ALK Inhibitor Alectinib  

Science Journals Connector (OSTI)

...estimated interaction energies of the indicated complexes...alectinib with WT ALK (green), ALK I1171T (cyan...MP-CAFEE methods, the free energy value (deltaG) is estimated...Waals (vdw) potential energies. D, shown are the complex...simulation for WT ALK (green), ALK I1171T (cyan...

Ryohei Katayama; Luc Friboulet; Sumie Koike; Elizabeth L. Lockerman; Tahsin M. Khan; Justin F. Gainor; A. John Iafrate; Kengo Takeuchi; Makoto Taiji; Yasushi Okuno; Naoya Fujita; Jeffrey A. Engelman; and Alice T. Shaw

2014-11-15T23:59:59.000Z

456

Two Novel ALK Mutations Mediate Acquired Resistance to the Next-Generation ALK Inhibitor Alectinib  

Science Journals Connector (OSTI)

...dynamics simulation and estimated the free energies of each complex using MP-CAFEE method...experimental IC50 values and calculated free energy values. A linear correlation between...molecular dynamic simulation and free energy estimation by MP-CAFEE could correctly...

Ryohei Katayama; Luc Friboulet; Sumie Koike; Elizabeth L. Lockerman; Tahsin M. Khan; Justin F. Gainor; A. John Iafrate; Kengo Takeuchi; Makoto Taiji; Yasushi Okuno; Naoya Fujita; Jeffrey A. Engelman; Alice T. Shaw

2014-11-15T23:59:59.000Z

457

DOE Announces Up to $5 Million to Support the Next Generation...  

Energy Savers [EERE]

to Support Excellence in Automotive Technology Education Energy Department Awards Will Promote Electric Vehicles in 24 States and Train a Workforce for Advanced Vehicle Development...

458

ASTRO-F: the next generation of mid-infrared surveys  

Science Journals Connector (OSTI)

......to obtain source spectral energy distributions (SEDs), and...radiation field to the local solar neighborhood. The starburst...these models, as long as the energy contained within the peaks...would provide a faster, more economical alternative, albeit with obvious......

C.P. Pearson; H. Matsuhara; T. Onaka; H. Watarai; T. Matsumoto

2001-07-01T23:59:59.000Z

459

Request for Proposals for John Hendricks Energy Research Fellowships managed by the University of Maryland Energy Research Center  

E-Print Network [OSTI]

, · renewable wind energy, · next-generation nuclear reactors and fusion processes, · small-scale power systems

Rubloff, Gary W.

460

A principle based system architecture framework applied for defining, modeling & designing next generation smart grid systems  

E-Print Network [OSTI]

A strong and growing desire exists, throughout society, to consume electricity from clean and renewable energy sources, such as solar, wind, biomass, geothermal, and others. Due to the intermittent and variable nature of ...

Sachs, Gregory (Gregory Dennis)

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "next-generation high energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Getting It Right: Accurate Testing and Assessments Critical to Deploying the Next Generation of Auto Fuels  

Office of Energy Efficiency and Renewable Energy (EERE)

Today, the Coordinating Research Council released a report on the effects of E15 and E20 on vehicle engines. We, at the Energy Department, believe the study is significantly flawed.

462

Empowering the Next Generation: Connecting the U.S. and African...  

Broader source: Energy.gov (indexed) [DOE]

John J. Qu, Ph.D., George Mason University, fellow participants at the May 2014 U.S.-Africa Energy Ministerial in Ethiopia. Director Dot Harris meets with Subramania I. Sritharan...

463

Finishing and Special Motifs: Lessons Learned from CRISPR Analysis Using Next-Generation Draft Sequences ( 7th Annual SFAF Meeting, 2012)  

ScienceCinema (OSTI)

Catherine Campbell on "Finishing and Special Motifs: Lessons learned from CRISPR analysis using next-generation draft sequences" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

Campbell, Catherine [Noblis

2013-03-22T23:59:59.000Z

464

Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells  

E-Print Network [OSTI]

into flexible, 15 low-cost photovoltaic devices. To analyzediminish the cost of the active photovoltaic cell byphotovoltaic market. However, mainly due to high manufacturing costs,

Mariani, Giacomo

2013-01-01T23:59:59.000Z

465

Providing fast and safe access to next-generation, non- volatile memories  

E-Print Network [OSTI]

symposium on Computer architecture, pages 213, New York,In High Performance Computer Architecture (HPCA), 2011 IEEEsymposium on Computer architecture, pages 1423, New York,

Coburn, Joel Dylan

2012-01-01T23:59:59.000Z

466

Theoretical High Energy Physics  

SciTech Connect (OSTI)

we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

Christ, Norman H.; Weinberg, Erick J.

2014-07-14T23:59:59.000Z

467

An Electron Beam Method for Creating Combina-torial Libraries: Application to Next Generation  

E-Print Network [OSTI]

resistance to high temperature and long time exposures in corrosive environments. New materi- als having erosion resistance, high thermal expansion coefficient and good thermochemical stability with alumina [3 Thermal Barrier Coatings Systems D.D. Hass, K. Dharmasena, and H.N.G. Wadley Department of Materials

Wadley, Haydn

468

NEXT GENERATION SOLVENT-MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT (FINAL REPORT)  

SciTech Connect (OSTI)

The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil, Tefzel and Isolast) in the modified NGS (where the concentration of LIX{reg_sign}79 and MaxCalix was varied systematically) showed that LIX{reg_sign}79 selectively affected Tefzel and its different grades (by an increase in size and lowering its density). The copolymer structure of Tefzel and possibly its porosity allows for the easier diffusion of LIX{reg_sign}79. Tefzel is used as the seat material in some of the valves at MCU. Long term exposure to LIX{reg_sign}79, may make the valves hard to operate over time due to the seat material (Tefzel) increasing in size. However, since the physical changes of Tefzel in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel seating material. PEEK, Grafoil and Isolast were not affected by LIX{reg_sign}79 and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and limited uptake of Isopar{reg_sign} L/Modifier by the polymers probably due to the polymers porosity and rough surfaces. Spectroscopic data on the organic liquid and the polymer surfaces showed no preferential adsorption of any component in the NGS to the polymers and with the exception of CPVC, no leachate was observed in the NGS from any of the polymers studied. The testing shows no major concerns for compatibility over the short duration of these tests but does indicate that longer duration exposure studies are warranted, especially for Tefzel. However, the physical changes experienced by Tefzel in the improved solvent were comparable to the physical changes obtained when Tefzel is placed in CSSX baseline solvent. Therefore, there is no effect of the improved solvent beyond those observed in CSSX baseline solvent.

Fondeur, F.; Peters, T.; Fink, S.

2012-01-17T23:59:59.000Z

469

Modeling and Optimization of Next Generation Feedstock Development for Chemical Process  

E-Print Network [OSTI]

Metals Other 13% Petroleum 8% 13% Feedstock 55% · natural gas · liquefiedand Coal Products 33% Energy 45% Chemicals 24% liquefied petroleum gas · natural gas liquids Food 6%Paper 11% NMP 5% NMP Chemical Manufacturing #12;Motivation ­ Why Biomass? Possible Alternative Feedstocks for CPI Coal

Grossmann, Ignacio E.

470

Next Generation of Push-to-Talk Page 1 of 10  

E-Print Network [OSTI]

, gas, wind, solar energy utilities Natural resource exploration companies Shipping, delivery with an individual or a group with the push of a button on a handset. The quick and efficient nature of PTT calls has made the technology a core communication tool for the public safety sector and dozens of industry

Fisher, Kathleen

471

High Energy Density Ultracapacitors | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. esp22smith.pdf More Documents & Publications High Energy Density Ultracapacitors High Energy...

472

Energy  

Science Journals Connector (OSTI)

Energy ... Scientific Challenges in Sustainable Energy Technology, by Nathan S. Lewis of the California Institute of Technology, summarizes data on energy resources and analyses the implications for human society. ... ConfChem Conference on Educating the Next Generation: Green and Sustainable ChemistrySolar Energy: A Chemistry Course on Sustainability for General Science Education and Quantitative Reasoning ...

John W. Moore

2008-07-01T23:59:59.000Z

473

High Energy Density Ultracapacitors | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es038smith2011p.pdf More Documents & Publications High Energy Density Ultracapacitors High...

474

Modeling of dimmable High Power LED illumination distribution using ANFIS on the isolated area  

Science Journals Connector (OSTI)

High power light emitting diodes (HP-LEDs) are more suitable for energy saving applications and have becoming replacing traditional fluorescent and incandescent bulbs for its energy efficient. Therefore, HP-LED lighting has been regarded in the next-generation ... Keywords: ANFIS, High Power LED, Illumination distribution

?smail Kiyak; Vedat Topuz; Blent Oral

2011-09-01T23:59:59.000Z

475

HighEnergy International  

E-Print Network [OSTI]

Jet Production at HERA Sascha Caron, I. Phys. Institut, RWTH Aachen High­Energy Physics r ) and d?? # e,i = # # n=1 # n s (µ r )C n (µ r ) # extract # s , pdfs? QCD Montpellier 2002, Sascha­jets above E T treshhold. DIS: find jets in ``Breit frame'': 2xP + q = 0 p r q g # maximal separation between

476

Oak Ridge National Laboratory Next-Generation Safeguards Initiative: Human Capital Development  

SciTech Connect (OSTI)

In 2007, the US Department of Energy National Nuclear Security Administration (DOE/NNSA) Office of Nonproliferation and International Security (NA-24) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. The review examined trends and events that have an effect on the mission of international safeguards; the implications of expanding and evolving mission requirements of the legal authorities and institutions that serve as the foundation of the international safeguards system; and the technological, financial, and human resources required for effective safeguards implementation. The reviews findings and recommendations were summarized in the report International Safeguards: Challenges and Opportunities for the 21st Century (October 2007).1 The executive summary is available at the following link: http://nnsa.energy.gov/sites/default/files/nnsa/inlinefiles/NGSI_Report.pdf.

Gilligan, Kimberly [ORNL] [ORNL

2014-01-01T23:59:59.000Z

477

Next-Generation Liquid-Scintillator-Based Detectors: Quantums Dots and Picosecond Timing  

E-Print Network [OSTI]

Liquid-scintillator-based detectors are a robust technology that scales well to large volumes. For this reason, they are attractive for experiments searching for neutrinoless double-beta decay. A combination of improved photo-detection technology and novel liquid scintillators may allow for the extraction of particle direction in addition to the total energy of the particle. Such an advance would find applications beyond searches for neutrinoless double-beta decay.

Lindley Winslow

2013-07-10T23:59:59.000Z

478

Design Considerations for the Next Generation of Atmospheric Imaging Cherenkov Telescopes  

E-Print Network [OSTI]

We estimate the limiting angular resolution and detection area for an array of 3 large-aperture Imaging Atmospheric Cherenkov Telescopes. We consider an idealized IACT system in order to understand the limitations imposed by the intrinsic nature of the atmospheric showers and geometry of the detector configuration. The idealization includes the assumptions of a