National Library of Energy BETA

Sample records for next-generation high energy

  1. Next Generation Rooftop Unit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies Next Generation Rooftop Unit Next Generation Rooftop Unit The U.S. Department of Energy is currently conducting research in a next generation rooftop unit ...

  2. Next Generation Household Refrigerator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Household Refrigerator Next Generation Household Refrigerator Embraco's high efficiency, oil-free linear compressor.
    Credit: Whirlpool Embraco's high ...

  3. Next Generation Manufacturing Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Projects » Next Generation Manufacturing Processes Next Generation Manufacturing Processes New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high-quality products at competitive cost. Four process technology areas are expected to generate large energy, carbon, and economic benefits across the manufacturing sector. Click the areas

  4. Martin Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Martin Next Generation Solar Energy Center Solar Power Plant Facility Martin Next Generation...

  5. Next-Generation Thermionic Solar Energy Conversion

    Broader source: Energy.gov [DOE]

    This fact sheet describes a next-generation thermionic solar energy conversion project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Stanford University, seeks to demonstrate the feasibility of photon-enhanced, microfabricated thermionic energy converters as a high-efficiency topping cycle for CSP electricity generation. With the potential to double the electricity output efficiency of solar-thermal power stations, this topping cycle application can significantly reduce the cost of solar-thermal electricity below that of the lowest-cost, fossil-fuel generated electricity.

  6. Energy Department Announces $25 Million to Develop Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    25 Million to Develop Next Generation of Electric Machines for Industrial Energy Savings Energy Department Announces 25 Million to Develop Next Generation of Electric Machines for ...

  7. Silicon Nanostructure-based Technology for Next Generation Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Nanostructure-based Technology for Next Generation Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2013 DOE Hydrogen and Fuel Cells ...

  8. Space Coast Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Coast Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Space Coast Next Generation Solar Energy Center Solar Power Plant Facility Space Coast...

  9. Student Competition Prepares the Next Generation of Wind Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Competition Prepares the Next Generation of Wind Energy Entrepreneurs Student Competition Prepares the Next Generation of Wind Energy Entrepreneurs April 11, 2013 - 11:32am Addthis ...

  10. Next Generation Inverter | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ape040_smith_2012_o.pdf More Documents & Publications Next Generation Inverter Vehicle Technologies Office Merit Review 2014: Next Generation Inverter Vehicle Technologies Office Merit Review 2015: Next Generation Inverter

  11. Articles about Next-Generation Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next-Generation Technologies Articles about Next-Generation Technologies RSS Below are stories about next-generation technologies featured by the U.S. Department of Energy (DOE)...

  12. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This ...

  13. ULTRACOATINGS: Enabling Energy and Power Solutions in High Contact Stress Environments through Next-Generation Nanocoatings

    SciTech Connect (OSTI)

    Blau, P.; Qu, J.; Higdon, C. III

    2011-09-30

    This industry-driven project was the result of a successful response by Eaton Corporation to a DOE/ITP Program, Grand Challenge, industry call. It consisted of a one-year effort in which ORNL participated in the area of friction and wear testing. In addition to Eaton Corporation and ORNL (CRADA), the project team included: Ames Laboratory, who developed the underlying concept for titanium- zirconium-boron (TZB) based nanocomposite coatings; Borg-Warner Morse TEC, an automotive engine timing chain manufacturer in Ithaca, New York, with its own proprietary hard coating; and Pratt & Whitney Rocketdyne, Inc., a dry-solids pump manufacturer in San Fernando Valley, California. This report focuses only on the portion of work that was conducted by ORNL, in a CRADA with Eaton Corporation. A comprehensive final report for the entire effort, which ended in September 2010, has been prepared for DOE by the team. The term 'ultracoatings' derives from the ambitious technical target for the new generation of nanocoatings. As applications, Eaton was specifically considering a fuel pump and a gear application in which the product of the contact pressure and slip velocity during operation of mating surfaces, commonly called the 'PV value', was equal to or greater than 70,000 MPa-m/s. This ambitious target challenges the developers of coatings to produce material capable of strong bonding to the substrate, as well as high wear resistance and the ability to maintain sliding friction at low, energy-saving levels. The partners in this effort were responsible for the selection and preparation of such candidate ultracoatings, and ORNL used established tribology testing capabilities to help screen these candidates for performance. This final report summarizes ORNL's portion of the nanocomposite coatings development effort and presents both generated data and the analyses that were used in the course of this effort. Initial contact stress and speed calculations showed that laboratory tests with available geometries, applied forces, and speeds at ORNL could not reach 70,000 MPa-m/s for the project target, so test conditions were modified to enable screening of the new coating compositions under conditions used in a prior nano-coatings development project with Eaton Corporation and Ames Laboratory. Eaton Innovation Center was able to conduct screening tests at higher loads and speeds, thus providing complementary information on coating durability and friction reduction. Those results are presented in the full team's final report which is in preparation at this writing. Tests of two types were performed at ORNL during the course of this work: (1) simulations of timing chain wear and friction under reciprocating conditions, and (2) pin-on-disk screening tests for bearings undergoing unidirectional sliding. The four materials supplied for evaluation in a timing chain link simulation were hardened type 440B stainless steel, nitrided type 440B stainless steel, vanadium carbide (VC)-coated type 52100 bearing steel, and (ZrTi)B-coated type 52100 bearing steel. Reciprocating wear tests revealed that the VC coating was by far the most wear resistant. In friction, the nitrided stainless steel did slightly better than the other materials.

  14. Next Generation Photovoltaics 3 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Photovoltaics 3 Next Generation Photovoltaics 3 SunShot's next generation PV projects investigate transformational photovoltaic (PV) technologies with the potential to meet SunShot cost targets. The projects' goals are to: Increase efficiency Reduce costs Improve reliability Create more secure and sustainable supply chains. On October 22, 2014, SunShot awarded more than $14 million to 10 research institutions to meet or exceed SunShot targets by improving performance, efficiency,

  15. 24 Universities Receiving Funding to Train Next Generation of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Experts | Department of Energy 4 Universities Receiving Funding to Train Next Generation of Energy Efficiency Experts 24 Universities Receiving Funding to Train Next Generation of Energy Efficiency Experts September 12, 2011 - 2:54pm Addthis 24 Universities Receiving Funding to Train Next Generation of Energy Efficiency Experts DOE awards more than $30 million to the following universities to train the next generation of industrial energy efficiency experts. Recipient City, State

  16. Sandia Energy - Research and Development of Next Generation Scada...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Next Generation Scada Systems Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric...

  17. The Secretary of Energy Advisory Board (SEAB) Task Force on Next Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Computing | Department of Energy Next Generation High Performance Computing The Secretary of Energy Advisory Board (SEAB) Task Force on Next Generation High Performance Computing The Secretary of Energy Advisory Board (SEAB) Task Force on Next Generation High Performance Computing is composed of SEAB members and independent experts charged with reviewing the mission and national capabilities related to next generation high performance computing. The Task Force will examine

  18. Next-Generation Wind Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Next-Generation Wind Technology Next-Generation Wind Technology Next-Generation Wind Technology The Wind Program works with industry partners to increase the performance and reliability of next-generation wind technologies while lowering the cost of wind energy. The program's research efforts have helped to increase the average capacity factor (a measure of power plant productivity) from 22% for wind turbines installed before 1998 to an average of 33% today, up from

  19. Report of the Task Force on Next Generation High Performance Computing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Next Generation High Performance Computing Report of the Task Force on Next Generation High Performance Computing The SEAB Task Force on Next Generation High Performance Computing (TFHPC) was established by the Secretary of Energy on December 20, 2014 to review the mission and national capabilities related to next generation high performance computing. The Task Force's findings and recommendations are framed by three broad considerations including a "new"

  20. Bush Administration Moves Forward to Develop Next Generation Nuclear Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Moves Forward to Develop Next Generation Nuclear Energy Systems Bush Administration Moves Forward to Develop Next Generation Nuclear Energy Systems February 28, 2005 - 10:33am Addthis WASHINGTON, DC-The Bush Administration today took a major step in advancing international efforts to develop the next generation of clean, safe nuclear energy systems. Secretary of Energy Samuel W. Bodman joined representatives from Canada, France, Japan, and the United Kingdom to

  1. Energy Department Announces Funding to Develop Improved Next Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Systems | Department of Energy Improved Next Generation HVAC Systems Energy Department Announces Funding to Develop Improved Next Generation HVAC Systems October 10, 2014 - 9:07am Addthis The Energy Department today announced nearly $8 million to support research and development of the next generation of heating, ventilating, and air conditioning (HVAC) technologies. The R&D will focus on developing regionally appropriate HVAC solutions that would offer significant potential energy

  2. Energy Department Announces New Investment to Accelerate Next Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels | Department of Energy to Accelerate Next Generation Biofuels Energy Department Announces New Investment to Accelerate Next Generation Biofuels July 1, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- Building on President Obama's plan to cut carbon pollution and announced this week, the Energy Department today announced four research and development projects to bring next generation biofuels on line faster and drive down the cost of producing gasoline, diesel

  3. Energy Department Awards $22 Million to Support Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Electric Machines for Manufacturing Energy Department Awards 22 Million ... such as the transportation of fossil fuels and industrial-scale compression systems. ...

  4. Addressing Climate Change with Next Generation Energy Storage Technology -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Center for Energy Storage Research March 19, 2015, Videos Addressing Climate Change with Next Generation Energy Storage Technology George Crabtree gives keynote at Loyola University In March 2015, George Crabtree gave the keynote address, "Addressing Climate Change with Next Generation Energy Storage Technology" at the Institute of Environmental Sustainability Climate Change Conference at Loyola University

  5. Next Generation Photovoltaics Round 2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Photovoltaics Round 2 Next Generation Photovoltaics Round 2 Twenty-three solar projects are investigating transformational photovoltaic (PV) technologies with the potential to meet SunShot cost targets. The projects' goals are to: Increase efficiency Reduce costs Improve reliability Create more secure and sustainable supply chains. On Sept. 1, 2011, the U.S. Department of Energy (DOE) announced $24.5 million to fund the Next Generation Photovoltaics II projects over a performance

  6. Preparing the Next Generation of Bioenergy Leaders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preparing the Next Generation of Bioenergy Leaders Preparing the Next Generation of Bioenergy Leaders March 31, 2015 - 5:12pm Addthis Dr. Valerie Sarisky-Reed Dr. Valerie Sarisky-Reed Deputy Director, Bioenergy Technologies Office Engaging and supporting the next generation of renewable energy researchers and innovators is one of the important roles the Bioenergy Technologies Office (BETO) plays in advancing bioenergy and biofuels. BETO provides numerous resources from biomass basics to

  7. Energy Department Announces $25 Million to Develop Next Generation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Machines for Industrial Energy Savings | Department of Energy 25 Million to Develop Next Generation of Electric Machines for Industrial Energy Savings Energy Department Announces $25 Million to Develop Next Generation of Electric Machines for Industrial Energy Savings March 11, 2016 - 8:16am Addthis As part of the Obama Administration's Mission Innovation effort to double clean energy research and development (R&D) investments over the next five years, the Energy Department

  8. Meeting the Next Generation of Energy Entrepreneurs at MIT Showcase |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy the Next Generation of Energy Entrepreneurs at MIT Showcase Meeting the Next Generation of Energy Entrepreneurs at MIT Showcase May 6, 2011 - 12:50pm Addthis David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy Tuesday afternoon I had the honor of sharing the MIT Clean Energy Prize Showcase floor with 25 teams of America's most promising entrepreneurs. Representing the best in class from an initial field of 80, the finalists

  9. DOE Announces Webinars on Next Generation Electric Machines, Zero Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings, and More | Department of Energy Next Generation Electric Machines, Zero Energy Buildings, and More DOE Announces Webinars on Next Generation Electric Machines, Zero Energy Buildings, and More March 26, 2015 - 8:44am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can

  10. Inspiring and Building the Next Generation of Residential Energy Professionals

    Broader source: Energy.gov [DOE]

    Energy Department's Challenge Home Student Design Competition aims to inspire the next generation of architects, engineers, construction managers, and entrepreneurs to design homes that meet requirements for zero energy ready performance that are affordable and market-ready.

  11. Training the Next Generation of Nuclear Energy Leaders | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy the Next Generation of Nuclear Energy Leaders Training the Next Generation of Nuclear Energy Leaders May 8, 2012 - 3:06pm Addthis University of Idaho professor Supathorn Phongikaroon works with a graduate student in the radiochemistry lab at the Center for Advanced Energy Studies in Idaho Falls, Idaho. Phongikaroon has received $820,000 from DOE to study an applied technology to remotely analyze spent nuclear fuel. | Photo courtesy of the University of Idaho. University of Idaho

  12. Next-generation nuclear fuel withstands high-temperature accident

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions U.S. DEPARTMENT OF ENERGY IDAHO FALLS, IDAHO, 83403 For Immediate Release: Sept. 25, 2013 Media Contacts: Teri Ehresman, 208-526-7785 teri.ehresman@inl.gov Bill Cabage (ORNL), 865-574-4399, cabagewh@ornl.gov Next-generation nuclear fuel withstands high-temperature accident conditions IDAHO FALLS - A safer and more efficient nuclear fuel is on the horizon. A team of researchers at the U.S. Department of Energy's Idaho National Laboratory (INL) and Oak Ridge National Laboratory

  13. Celebrating The Next Generation of Energy Entrepreneurs

    Broader source: Energy.gov [DOE]

    Recognizing innovative, bold-thinking student entrepreneurs who are working to advance clean energy technologies.

  14. Articles about Next-Generation Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next-Generation Technologies Articles about Next-Generation Technologies RSS Below are stories about next-generation technologies featured by the U.S. Department of Energy (DOE) Wind Program. March 28, 2016 DOE's 1.5-MW wind turbine at the National Wind Technology Center is being used to demonstrate that wind farms can provide the frequency-responsive back-up or "ancillary services" currently supplied to the electrical grid by conventional power plants. (Photo by Dennis

  15. Energy Efficient Glass Melting - The Next Generation Melter

    SciTech Connect (OSTI)

    David Rue

    2008-03-01

    The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

  16. Simulating the Next Generation of Energy Technologies

    Broader source: Energy.gov [DOE]

    Computer simulations offer a huge potential for the auto industry to allow us to make modifications to engines faster and cheaper -- and come up with the most energy efficient solution.

  17. Next-Generation Wind Technology | Department of Energy

    Energy Savers [EERE]

    Research & Development Next-Generation Wind Technology Next-Generation Wind Technology Next-Generation Wind Technology The Wind Program works with industry partners to increase ...

  18. Advancing Next-Generation Energy in Indian Country (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01

    This fact sheet provides information on the Alaska Native governments selected to receive assistance from the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

  19. Advancing Next-Generation Energy in Indian Country (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01

    This fact provides information on the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

  20. Advancing Next-Generation Energy in Indian Country (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01

    This fact sheet provides information on Tribes in the lower 48 states selected to receive assistance from the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

  1. Nx-TEC: Next-Generation Thermionic Solar Energy Conversion | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy melosh.pdf More Documents & Publications Next-Generation Thermionic Solar Energy Conversion - FY13 Q2 Final Report - Technology Enabling Ultra High Concentration Multi-Junction Cells Download the SunShot Initiative 2014 Portfolio

  2. DeSoto Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name DeSoto Next Generation Solar Energy Center Solar Power Plant Facility DeSoto Next Generation...

  3. Silicon Nanowire Anodes for Next Generation Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Nanowire Anodes for Next Generation Energy Storage Ionel C. Stefan, Principal Investigator Yoni Cohen, Program Manager Amprius, Inc. June 16-20, 2014 ES126 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 * Start date: October 2011 * End date: September 2014 * Percent complete: 85% * Performance - Energy Density - Specific Energy - Power * Life - Cycle life - Shelf life * Total project funding: $8,215,077 - DOE share: $4,998,336 -

  4. Next Generation Luminaires: Recognizing Innovative, Energy-Efficient Commercial Lighting Luminaires

    SciTech Connect (OSTI)

    2013-04-01

    Fact sheet that describes the Next Generation Luminaires SSL lighting design competition, which recognizes excellence in technical innovation and design of high-quality, energy-efficient commercial lighting, both indoor and outdoor.

  5. Ultracoatings: Enabling Energy and Power Solutions in High Contact Stress Environments through next-generation Nanocoatings Final Technical Report

    SciTech Connect (OSTI)

    Clifton B. Higdon III

    2012-03-20

    A review of current commercially available, industrial-grade, low friction coatings will show that interfacial contact pressures nearing 1GPa ({approx}150ksi) inherently limit surface engineering solutions like WC, TiN, TiAlN, and so forth. Extremely hard coatings, then, are often pursued as the principle path, although they too are not without significant limitations. A majority of these compounds are inherently brittle in nature or may not pair well with their mating substrate. In either case, their durability in high contact stress environments is compromised. In parallel to thin film coatings, many conventional surface treatments do not yield an interface hard enough to withstand extreme stresses under load. New research into advanced, nanocomposite materials like (Ti, Zr)B2 shows great promise. Bulk compacts of this compound have demonstrated an order of magnitude better wear resistance than current offerings, notably materials like tungsten carbide. At a laboratory level, the (Ti,Zr)B2 nanocomposite material exhibited abrasive and erosive wear resistance nearly ten times better than existing mixed-phase boride systems. In ASTM abrasion and erosion testing, these new compositions exhibit wear resistance superior to other known advanced materials such as RocTec 500 and 'Borazon' cubic boron nitride. Many significant challenges exist for mass production of (Ti, Zr)B2, one of which is the necessary processing technology that is capable of minimizing deleterious impurity phases. Secondly, this material's performance is derived from a synergistic effect of the two materials existing as a single phase structure. While the individual constituents of TiB2 and ZrB2 do yield improvements to wear resistance, their singular effects are not as significant. Lastly, deposition of this material on a commercial level requires thorough knowledge of nanocomposite boride solids; the benefits associated with these innovative new materials are just being realized. Advancing this technology, called Ultracoatings, through initial development, scale up, and commercialization to a variety of markets would represent a transformative leap to surface engineering. Several application spaces were considered for immediate implementation of the Ultracoatings technology, including, but not limited to, a drive shaft for an aerospace fuel pump, engine timing components, and dry solids pump hardware for an innovative coal gasifier. The primary focus of the program was to evaluate and screen the performance of the selected (Ti, Zr)B2 Ultracoatings composition for future development. This process included synthesis of the material for physical vapor deposition, sputtering trials and coating characterization, friction and wear testing on sample coupons, and functional hardware testing. The main project deliverables used to gage the project's adherence to its original objective were: Development of a coating/substrate pairing that exhibits wear rate of 0.1 mg/hour or lower at a 1GPa contact pressure, while achieving a maximum coating cost of $0.10/cm2. Demonstrate the aforementioned wear rate in both lubricated and starved lubrication conditions. Although the (Ti, Zr) B2 coating was not tailored for low friction performance, friction and wear evaluations of the material demonstrated a coefficient of sliding friction as low as 0.09. This suggests that varying the percentage of TiB2 present in the composite could enhance the materials performance in water-based lubricants. In the aerospace drive shaft application, functional hardware coated with (Ti, Zr)B2 survived a variety of abuse and long-range durability tests, with contact pressures exceeding 2 GPa. For engine timing components, further work is planned to evaluate the Ultracoatings technology in direct injection and diesel engine conditions. In the final identified application space the dry solids pump hardware, discussions continue on the application of the Ultracoatings technology for those specific components. Full implementation of the technology into the targeted markets equates to a U.S.-based en

  6. Next Generation Attics and Roof Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attics and Roof Systems Next Generation Attics and Roof Systems Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech26_miller_040413.pdf More Documents & Publications New Cool Roof Coatings and Affordable Cool Color Asphalt Accelerated Aging of Roofing Materials - 2013 BTO Peer Review This graphic depicts all the modes of heat transfer that AtticSim evaluates. Modeling the Energy Efficiency of Residential Attic Assemblies

  7. Next-Generation Catalysts for Fuel Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Next-Generation Catalysts for Fuel Cells Materials-by-Design Approach Leads to High-Durability, High-Activity Catalysts Argonne National Laboratory Contact ANL About This Technology Nenad Markovic and Vojislav Stamenkovic, developers of electrocatalytic technology Nenad Markovic and Vojislav Stamenkovic, developers of electrocatalytic technology Technology Marketing Summary Argonne scientists have developed a

  8. Enabling the Next Generation of High Efficiency Engines | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Discusses challenges and opportunities for next generation internal combustion engines, and developments for further pushing the limits of engine efficiency and vehicle fuel economy PDF icon deer12_wagner.pdf More Documents & Publications Addressing the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder Engine Ignition Control for HCCI Comparison of Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine

  9. Project Profile: High-Temperature Thermal Array for Next-Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Array for Next-Generation Solar Thermal Power Production Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production Los Alamos ...

  10. Next Generation Battery Technology - Joint Center for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research April 6, 2015, Videos Next Generation Battery Technology Jeff Chamberlain spoke with Steve LeVine about the development of next generation lithium-ion battery technology, covered live on C-SPAN at the Atlantic Council in Washington D.C. Jeff Chamberlain spoke with Steve LeVine about the development of next generation lithium-ion battery technology, covered live on C-SPAN at the Atlantic Council in Washington D.C.

  11. Articles about Next-Generation Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    27, 2015 Articles about Next-Generation Technologies Innovative Study Helps Offshore Wind Developers Protect Wildlife The Biodiversity Research Institute's (BRI) new report on a...

  12. Energy Department Announces Outdoor Winners of Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The 2013 Next Generation LuminairesTM (NGL) Design Competition outdoor lighting category winners were announced Wednesday night at the Strategies in Light conference in Santa ...

  13. Next Generation Building Envelope Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Envelope Materials Next Generation Building Envelope Materials Addthis 1 of 3 Vacuum insulation panels (left); Modified atmosphere panels (right) Image: Oak Ridge National...

  14. SLAC Next-Generation High Availability Power Supply

    SciTech Connect (OSTI)

    Bellomo, P.; MacNair, D.; ,

    2010-06-11

    SLAC recently commissioned forty high availability (HA) magnet power supplies for Japan's ATF2 project. SLAC is now developing a next-generation N+1 modular power supply with even better availability and versatility. The goal is to have unipolar and bipolar output capability. It has novel topology and components to achieve very low output voltage to drive superconducting magnets. A redundant, embedded, digital controller in each module provides increased bandwidth for use in beam-based alignment, and orbit correction systems. The controllers have independent inputs for connection to two external control nodes. Under fault conditions, they sense failures and isolate the modules. Power supply speed mitigates the effects of fault transients and obviates subsequent magnet standardization. Hot swap capability promises higher availability and other exciting benefits for future, more complex, accelerators, and eventually the International Linear Collider project.

  15. Corrosion in Very High-Temperature Molten Salt for Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corrosion in Very High-Temperature Molten Salt for Next Generation CSP Systems Corrosion in Very High-Temperature Molten Salt for Next Generation CSP Systems This presentation was ...

  16. The Next Generation of Scientists | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Next Generation of Scientists The Next Generation of Scientists August 5, 2010 - 11:23am Addthis Director Brinkman Director Brinkman Director of the Office of Science The DOE Office of Science Graduate Fellowship program, a $22.7 million program to support outstanding students pursing graduate training in the sciences, received an infusion of $12.5 million from the American Recovery and Reinvestment Act. As a result, 150 graduate students will receive a three-year graduate fellowship, which

  17. Inspiring the Next Generation in Innovation | Department of Energy

    Energy Savers [EERE]

    Inspiring the Next Generation in Innovation Inspiring the Next Generation in Innovation April 29, 2014 - 12:00pm Addthis Benedict College student Faith Kibuye explains her researcher to SRNL Laboratory Director Dr. Terry Michalske Benedict College student Faith Kibuye explains her researcher to SRNL Laboratory Director Dr. Terry Michalske DOE Deputy Assistant Secretary Mark Gilbertson learns of research performed by South Carolina State student Andrew McCray DOE Deputy Assistant Secretary Mark

  18. NEXT GENERATION LUMINAIRES INDOOR JUDGING 2014 | Department of Energy

    Energy Savers [EERE]

    NEXT GENERATION LUMINAIRES INDOOR JUDGING 2014 NEXT GENERATION LUMINAIRES INDOOR JUDGING 2014 View this behind-the-scenes look at the 2014 NGL judging event where entries were evaluated by a panel of judges drawn from the architectural lighting community in an intensive three-step process that combined the judges' personal evaluations with objective measures of luminaire performance. View the text-alternative version Solid-State Lighting Home About the Solid-State Lighting Program Research &

  19. Department of Energy Awards $425 Million for Next Generation Supercomputing Technologies

    Broader source: Energy.gov [DOE]

    WASHINGTON — U.S. Secretary of Energy Ernest Moniz today announced two new High Performance Computing (HPC) awards to put the nation on a fast-track to next generation exascale computing, which will help to advance U.S. leadership in scientific research and promote America’s economic and national security.

  20. Department of Energy to Invest More than $21 Million for Next Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Energy Projects | Department of Energy More than $21 Million for Next Generation Solar Energy Projects Department of Energy to Invest More than $21 Million for Next Generation Solar Energy Projects November 8, 2007 - 4:31pm Addthis 25 Cutting Edge Projects Target Enhanced Solar Energy Efficiency WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that the Department will invest $21.7 million in next generation photovoltaic (PV) technology to help

  1. Paving the path for next-generation nuclear energy | Department of Energy

    Energy Savers [EERE]

    Paving the path for next-generation nuclear energy Paving the path for next-generation nuclear energy May 6, 2013 - 2:26pm Addthis Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Deputy Assistant Secretary Kelly Deputy Assistant Secretary Kelly Deputy

  2. Next Generation Materials:

    Energy Savers [EERE]

    Research & Development Projects » Next Generation Manufacturing Processes Next Generation Manufacturing Processes New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high-quality products at competitive cost. Four process technology areas are expected to generate large energy, carbon, and economic benefits across the manufacturing sector. Click the areas

  3. Energy Department Awards $10.5 Million for Next-Generation Marine Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy 0.5 Million for Next-Generation Marine Energy Systems Energy Department Awards $10.5 Million for Next-Generation Marine Energy Systems December 28, 2015 - 2:21pm Addthis The Energy Department today announced six organizations selected to receive up to $10.5 million to support the design and operation of innovative marine and hydrokinetic (MHK) systems through survivability and reliability-related improvements. As part of its MHK technology research and

  4. Saving Energy: The Next Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launched this year by both the Department of Energy and National Science Teachers ... Home Energy Education Challenge: Teaching Kids to Save Energy and Money The Solar ...

  5. Next Generation Nuclear Plant: A Report to Congress | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress The U.S. Department of Energy's (DOE's) Next Generation Nuclear Plant (NGNP) project helps address the President's goals for reducing greenhouse gas emissions and enhancing energy security. The NGNP project was formally established by the Energy Policy Act of 2005 (EPAct 2005), designated as Public Law 109-58, 42 USC 16021, to demonstrate the generation of electricity and/or hydrogen with a

  6. Energy Department Announces $4.4 Million to Support Next-Generation Advanced Hydropower Manufacturing

    Broader source: Energy.gov [DOE]

    The Energy Department today announced $4.4 million to support the application of advanced materials and manufacturing techniques to the development of next-generation hydropower technologies.

  7. U.S. Department of Energy awards $200 million for next-generation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CORAL) initiative, the U.S. Department of Energy (DOE) announced a 200 million investment to deliver a next-generation supercomputer, known as Aurora, to the Argonne...

  8. Corrosion in Very High-Temperature Molten Salt for Next Generation CSP

    Broader source: Energy.gov (indexed) [DOE]

    Systems | Department of Energy garciadiaz.pdf More Documents & Publications Fundamental Corrosion Studies in High-Temperature Molten Salt Systems for Next-Generation CSP Systems - FY13 Q2 Halide and Oxy-halide Eutectic Systems for High Performance High Temperature Heat Transfer Fluids Degradation Mechanisms and Development of Protective Coatings for TES and HTF Containment Materials - F13 Q1

  9. Energy Reductions Using Next-Generation Remanufacturing Techniques

    SciTech Connect (OSTI)

    Sordelet, Daniel; Racek, Ondrej

    2012-02-24

    The goal of this project was to develop a radically new surface coating approach that greatly enhances the performance of thermal spray coatings. Rather than relying on a roughened grit blasted substrate surface for developing a mechanical bond between the coating and substrate, which is the normal practice with conventional thermal spraying, a hybrid approach of combining a focused laser beam to thermally treat the substrate surface in the vicinity of the rapidly approaching thermally-sprayed powder particles was developed. This new surface coating process is targeted primarily at enabling remanufacturing of components used in engines, drive trains and undercarriage systems; thereby providing a substantial global opportunity for increasing the magnitude and breadth of parts that are remanufactured through their life cycle, as opposed to simply being replaced by new components. The projected benefits of a new remanufacturing process that increases the quantity of components that are salvaged and reused compared to being fabricated from raw materials will clearly vary based on the specific industry and range of candidate components that are considered. At the outset of this project two different metal processing routes were considered, castings and forgings, and the prototypical components for each process were liners and crankshafts, respectively. The quantities of parts used in the analysis are based on our internal production of approximately 158,000 diesel engines in 2007. This leads to roughly 1,000,000 liners (assuming a mixture of 6- and 8-cylinder engines) and 158,000 crankshafts. Using energy intensity factors for casting and forgings, respectively, of 4450 and 5970 Btu-hr/lb along with the energy-induced CO2 generation factor of 0.00038 lbs CO2/Btu, energy savings of over 17 trillion BTUs and CO2 reductions of over 6.5 million lbs could potentially be realized by remanufacturing the above mentioned quantities of crankshafts and liners. This project supported the Industrial Technologies Program's initiative titled 'Industrial Energy Efficiency Grand Challenge.' To contribute to this Grand Challenge, we. pursued an innovative processing approach for the next generation of thermal spray coatings to capture substantial energy savings and green house gas emission reductions through the remanufacturing of steel and aluminum-based components. The primary goal was to develop a new thermal spray coating process that yields significantly enhanced bond strength. To reach the goal of higher coating bond strength, a laser was coupled with a traditional twin-wire arc (TWA) spray gun to treat the component surface (i.e., heat or partially melt) during deposition. Both ferrous and aluminum-based substrates and coating alloys were examined to determine what materials are more suitable for the laser-assisted twin-wire arc coating technique. Coating adhesion was measured by static tensile and dynamic fatigue techniques, and the results helped to guide the identification of appropriate remanufacturing opportunities that will now be viable due to the increased bond strength of the laser-assisted twin-wire arc coatings. The feasibility of the laser-assisted TWA (LATWA) process was successfully demonstrated in this current effort. Critical processing parameters were identified, and when these were properly controlled, a strong, diffusion bond was developed between the substrate and the deposited coating. Consequently, bond strengths were nearly doubled over those typically obtained using conventional grit-blast TWA coatings. Note, however, that successful LATWA processing was limited to ferrous substrates coated with steel coatings (e.g., 1020 and 1080 steel). With Al-based substrates, it was not possible to avoid melting a thin layer of the substrate during spraying, and this layer re-solidified to form a band of intermetallic phases at the substrate/coating interface, which significantly diminished the coating adhesion. The capability to significantly increase the bond strength with ferrous substrates and coatings may open new reman

  10. Energy-Efficient Glass Melting - Next Generation Melter

    SciTech Connect (OSTI)

    2006-08-01

    This factsheet describes an R&D project focused on an oxy-gas-fired submerged combustion melter for glass industry that offers decreased operating and capital costs, decreased energy use, simple design, and high reliability.

  11. Next-Generation Power Electronics: Reducing Energy Waste and Powering the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future | Department of Energy Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future January 15, 2014 - 3:53pm Addthis Watch the video above to learn how wide bandgap semiconductors could impact clean energy technology and our daily lives. | Video by Sarah Gerrity and Matty Greene, Energy Department Marina Sofos Marina Sofos Sensors and Controls Technology Manager From your laptop

  12. Department of Energy Announces Funding to Support the Next Generation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Scientists and Engineers | Department of Energy to Support the Next Generation of American Scientists and Engineers Department of Energy Announces Funding to Support the Next Generation of American Scientists and Engineers March 10, 2011 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced the launch of two new fellowship programs designed to attract the country's best and brightest scientific minds to work on advanced clean energy

  13. Department of Energy Announces Funding to Support the Next Generation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Scientists and Engineers | Department of Energy Announces Funding to Support the Next Generation of American Scientists and Engineers Department of Energy Announces Funding to Support the Next Generation of American Scientists and Engineers March 10, 2011 - 3:22pm Addthis Fellowship Programs to Support Innovative Research and Ensure U.S. Leadership in Clean Energy WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced the launch of two new fellowship

  14. Investing in the next generation: The Office of Nuclear Energy Issues

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requests for Scholarship and Fellowship Applications. | Department of Energy Investing in the next generation: The Office of Nuclear Energy Issues Requests for Scholarship and Fellowship Applications. Investing in the next generation: The Office of Nuclear Energy Issues Requests for Scholarship and Fellowship Applications. As President Obama recognized in the State of the Union on January 28th, 2014, the best way to grow the economy and create jobs is to prepare students with the skills

  15. Energy Department Announces Winners of Next Generation Luminaires™ Solid-State Lighting Design Competition

    Broader source: Energy.gov [DOE]

    The Energy Department announced winners of its seventh annual Next Generation LuminairesTM (NGL) design competition for indoor and outdoor lighting during the LIGHTFAIR® International trade show in New York.

  16. Energy Department Invests $60 Million to Train Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Energy Department announced today more than 60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91...

  17. Silicon Nanostructure-based Technology for Next Generation Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Percent complete: 50% * Performance - Energy Density - Specific Energy - Power * Life - Cycle life - Shelf life * Total project funding: 8,215,068 - DOE share: 4,998,336 - ...

  18. Energy Department Announces Indoor Lighting Winners of Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The competition, sponsored by the Energy Department, the Illuminating Engineering Society of North America and the International Association of Lighting Designers, was launched in ...

  19. Fostering the Next Generation of Nuclear Energy Technology |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    this draft solicitation would support advanced nuclear energy technologies that will catalyze the deployment of future projects that replicate or extend a technological innovation. ...

  20. Energy Department Announces Winners of Next Generation Luminaires...

    Energy Savers [EERE]

    was launched in 2008 to promote technological innovation and excellence in the design of energy efficient light-emitting diode (LED) commercial lighting fixtures, or "luminaires." ...

  1. Department of Energy Announces Funding to Support the Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy. These programs will increase American economic competitiveness and support job growth by promoting science, technology, engineering, and math (STEM) education, an...

  2. Solar Decathlon 2015: The Next Generation of Clean Energy Leaders

    Broader source: Energy.gov [DOE]

    Meet some of the inspiring Solar Decathlon alumni who have gone on to pursue careers in clean energy and sustainable housing.

  3. Investing in the next generation: The Office of Nuclear Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to succeed in our new economy - particularly in science, technology, engineering and math or "STEM." The President also declared that, "the all-of-the-above energy strategy ...

  4. Energy Department Announces New Investments to Train Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nationwide, and promote education in the areas of science, technology, engineering and math, Secretary of Energy Steven Chu today announced more than 47 million in scholarships, ...

  5. Investing in the next generation: The Office of Nuclear Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    educational and research opportunities to prepare NS&E students for nuclear energy professions, in support of NE's mission. NE is seeking applicants for undergraduate...

  6. Next-Generation Power Electronics: Reducing Energy Waste and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    our daily lives. | Video by Sarah Gerrity and Matty Greene, Energy Department Marina Sofos Marina Sofos Sensors and Controls Technology Manager From your laptop computer to your ...

  7. Department of Energy Awards $300,000 to Albuquerque’s Next Generation Economy Community Reuse Organization

    Broader source: Energy.gov [DOE]

    Department of Energy Awards $300,000 to Albuquerque’s Next Generation Economy Community Reuse Organization

  8. Next Generation Power Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Product: NextGen is a full-service company that provides site analysis, maintenance, and installation services for small-scale wind turbines and PV systems....

  9. Project Profile: Next-Generation Thermionic Solar Energy Conversion

    Broader source: Energy.gov [DOE]

    -- This project is inactive -- Stanford University and the SLAC National Accelerator Laboratory, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), is designing and testing an innovative high-temperature power cycle for CSP systems that does not require any mechanical equipment, resulting in reduced maintenance costs. In addition, the system can be integrated with conventional CSP cycles to create ultra-efficient plants.

  10. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    SciTech Connect (OSTI)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  11. U.S. Department of Energy Partners with the Next Generation Lighting

    Energy Savers [EERE]

    Industry Alliance | Department of Energy Partners with the Next Generation Lighting Industry Alliance U.S. Department of Energy Partners with the Next Generation Lighting Industry Alliance Image containing the DOE logo and the NGLIA logo. The DOE logo is a green ring containing the words 'Department of Energy United States of America', and in the center of the ring is a shield containing images representing various energy sources, with the head of an eagle on top of the shield; to the right

  12. Energy Department Announces Indoor Lighting Winners of Next Generation Luminaires™ Solid-State Lighting Design Competition

    Broader source: Energy.gov [DOE]

    As part of the Obama Administration’s efforts to reduce energy waste in U.S. buildings and help save Americans money by saving energy, the Energy Department today announced the winners of the sixth annual Next Generation LuminairesTM (NGL) design competition for indoor lighting at the LED Show in Los Angeles.

  13. Department of Energy Announces $40 Million to Develop the Next Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Plant | Department of Energy 0 Million to Develop the Next Generation Nuclear Plant Department of Energy Announces $40 Million to Develop the Next Generation Nuclear Plant March 8, 2010 - 12:00am Addthis WASHINGTON, DC - U.S. Secretary of Energy Steven Chu today announced selections for the award of approximately $40 million in total to two teams led by Pittsburgh-based Westinghouse Electric Co. and San Diego-based General Atomics for conceptual design and planning work for the Next

  14. Department of Energy Announces $40 Million to Develop the Next Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Plant | Department of Energy Announces $40 Million to Develop the Next Generation Nuclear Plant Department of Energy Announces $40 Million to Develop the Next Generation Nuclear Plant March 9, 2010 - 12:47pm Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Steven Chu today announced selections for the award of approximately $40 million in total to two teams led by Pittsburgh-based Westinghouse Electric Co. and San Diego-based General Atomics for conceptual design and planning work

  15. Next-Generation Photon Sources for Grand Challenges in Science and Energy

    SciTech Connect (OSTI)

    2009-05-01

    The next generation of sustainable energy technologies will revolve around transformational new materials and chemical processes that convert energy efficiently among photons, electrons, and chemical bonds. New materials that tap sunlight, store electricity, or make fuel from splitting water or recycling carbon dioxide will need to be much smarter and more functional than today's commodity-based energy materials. To control and catalyze chemical reactions or to convert a solar photon to an electron requires coordination of multiple steps, each carried out by customized materials and interfaces with designed nanoscale structures. Such advanced materials are not found in nature the way we find fossil fuels; they must be designed and fabricated to exacting standards, using principles revealed by basic science. Success in this endeavor requires probing, and ultimately controlling, the interactions among photons, electrons, and chemical bonds on their natural length and time scales. Control science - the application of knowledge at the frontier of science to control phenomena and create new functionality - realized through the next generation of ultraviolet and X-ray photon sources, has the potential to be transformational for the life sciences and information technology, as well as for sustainable energy. Current synchrotron-based light sources have revolutionized macromolecular crystallography. The insights thus obtained are largely in the domain of static structure. The opportunity is for next generation light sources to extend these insights to the control of dynamic phenomena through ultrafast pump-probe experiments, time-resolved coherent imaging, and high-resolution spectroscopic imaging. Similarly, control of spin and charge degrees of freedom in complex functional materials has the potential not only to reveal the fundamental mechanisms of high-temperature superconductivity, but also to lay the foundation for future generations of information science. This report identifies two aspects of energy science in which next-generation ultraviolet and X-ray light sources will have the deepest and broadest impact: (1) The temporal evolution of electrons, spins, atoms, and chemical reactions, down to the femtosecond time scale. (2) Spectroscopic and structural imaging of nano objects (or nanoscale regions of inhomogeneous materials) with nanometer spatial resolution and ultimate spectral resolution. The dual advances of temporal and spatial resolution promised by fourth-generation light sources ideally match the challenges of control science. Femtosecond time resolution has opened completely new territory where atomic motion can be followed in real time and electronic excitations and decay processes can be followed over time. Coherent imaging with short-wavelength radiation will make it possible to access the nanometer length scale, where intrinsic quantum behavior becomes dominant. Performing spectroscopy on individual nanometer-scale objects rather than on conglomerates will eliminate the blurring of the energy levels induced by particle size and shape distributions and reveal the energetics of single functional units. Energy resolution limited only by the uncertainty relation is enabled by these advances. Current storage-ring-based light sources and their incremental enhancements cannot meet the need for femtosecond time resolution, nanometer spatial resolution, intrinsic energy resolution, full coherence over energy ranges up to hard X-rays, and peak brilliance required to enable the new science outlined in this report. In fact, the new, unexplored territory is so expansive that no single currently imagined light source technology can fulfill the whole potential. Both technological and economic challenges require resolution as we move forward. For example, femtosecond time resolution and high peak brilliance are required for following chemical reactions in real time, but lower peak brilliance and high repetition rate are needed to avoid radiation damage in high-resolution spatial imaging and to avoid space-charge broadenin

  16. Energy Department Invests Nearly $8 Million to Develop Next-Generation HVAC Systems for Buildings

    Broader source: Energy.gov [DOE]

    The Energy Department today announced nearly $8 million to advance research and development of next-generation heating, ventilating, and air conditioning (HVAC) technologies, supporting the Administration's goal of saving money by saving energy, and phasing down the use of chemicals that have a devastating effect on the global climate.

  17. Next-Generation Batteries: A New Report - Joint Center for Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 14, 2015, Videos Next-Generation Batteries: A New Report Next Generation Batteries: A New Report at AAAS Venkat Srinivasan, Lawrence Berkeley National Laboratory; Yi Cui, ...

  18. FACT SHEET U.S. Department of Energy Next Generation ARM to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation ARM to Improve Climate Modeling and Science For more than 20 years, the Atmospheric Radiation Measurement (ARM) Climate Research Facility has blazed the trail in providing the world's atmospheric scientists with continuous observations of cloud and aerosol properties and their impacts on Earth's energy balance. The result is an unprecedented data set that has proved invaluable for understanding the atmosphere and improving the predictive capabilities of earth system models. To

  19. Attend a Webinar on AMO's Next Generation Electric Machines Funding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity | Department of Energy a Webinar on AMO's Next Generation Electric Machines Funding Opportunity Attend a Webinar on AMO's Next Generation Electric Machines Funding Opportunity March 24, 2015 - 3:09pm Addthis AMO's Next Generation Electric Machines (NGEM) program recently released the Funding Opportunity Announcement (FOA): Next Generation Electric Machines: Megawatt Class Motors. $20 million will fund four to six projects that develop a new generation of energy efficient, high

  20. High Performance Silicon Monoxide (SiO) Electrode for Next Generation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Next Generation Lithium Ion Batteries Lawrence Berkeley National Laboratory ... Silicon Anodes in Lithium Ion Batteries," Journal of the American Chemical ...

  1. Energy Department Announces Outdoor Winners of Next Generation Luminaires™ Solid-State Lighting Design Competition

    Broader source: Energy.gov [DOE]

    The 2013 Next Generation LuminairesTM (NGL) Design Competition outdoor lighting category winners were announced Wednesday night at the Strategies in Light conference in Santa Clara, California. The...

  2. Final LDRD report : advanced materials for next generation high-efficiency thermochemistry.

    SciTech Connect (OSTI)

    Ambrosini, Andrea; Miller, James Edward; Allendorf, Mark D.; Coker, Eric Nicholas; Ermanoski, Ivan; Hogan, Roy E.,; McDaniel, Anthony H.

    2014-01-01

    Despite rapid progress, solar thermochemistry remains high risk; improvements in both active materials and reactor systems are needed. This claim is supported by studies conducted both prior to and as part of this project. Materials offer a particular large opportunity space as, until recently, very little effort apart from basic thermodynamic analysis was extended towards understanding this most fundamental component of a metal oxide thermochemical cycle. Without this knowledge, system design was hampered, but more importantly, advances in these crucial materials were rare and resulted more from intuition rather than detailed insight. As a result, only two basic families of potentially viable solid materials have been widely considered, each of which has significant challenges. Recent efforts towards applying an increased level of scientific rigor to the study of thermochemical materials have provided a much needed framework and insights toward developing the next generation of highly improved thermochemically active materials. The primary goal of this project was to apply this hard-won knowledge to rapidly advance the field of thermochemistry to produce a material within 2 years that is capable of yielding CO from CO2 at a 12.5 % reactor efficiency. Three principal approaches spanning a range of risk and potential rewards were pursued: modification of known materials, structuring known materials, and identifying/developing new materials for the application. A newly developed best-of-class material produces more fuel (9x more H2, 6x more CO) under milder conditions than the previous state of the art. Analyses of thermochemical reactor and system efficiencies and economics were performed and a new hybrid concept was reported. The larger case for solar fuels was also further refined and documented.

  3. Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology

    Broader source: Energy.gov [DOE]

    Building on President Obama’s Climate Action Plan to continue America’s leadership in clean energy innovation, the Energy Department announced more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure.

  4. Notice of Intent: Upcoming Funding Opportunity for Next Generation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Machines Projects | Department of Energy Intent: Upcoming Funding Opportunity for Next Generation of Electric Machines Projects Notice of Intent: Upcoming Funding Opportunity for Next Generation of Electric Machines Projects February 4, 2015 - 12:27pm Addthis The Advanced Manufacturing Office intends to issue a new funding opportunity for work to develop Next Generation of Electric Machines (NGEM). NGEMs combine high power density, high RPM motors with integrated power electronics.

  5. Energy Department Awards $22 Million to Support Next Generation Electric Machines for Manufacturing

    Broader source: Energy.gov [DOE]

    As part of the Administration’s effort to increase energy efficiency and double U.S. energy productivity by 2030, the Energy Department is awarding $22 million in funding for five projects aimed at merging wide-bandgap (WBG) technology with advancements for large-scale motors to increase energy efficiency in high-energy consuming industries, products and processes, such as the transportation of fossil fuels and industrial-scale compression systems.

  6. July 24, 2009, Visiting Speakers Program - The Next Generation of Regulation for High-Reliability Organizations by HON. John Bresland

    Energy Savers [EERE]

    Next Generation of Regulation for High-Reliability Organizations National Academy of Public Administration Washington, DC July 24, 2009 John Bresland Chairman United States Chemical Safety Board www.csb.gov What is a High Reliability Organization? * Management commitment * The right equipment * The right people * Standard procedures and training * Accountability * Employee feedback * Emergency response preparation * Leadership - must "walk the walk" www.csb.gov 2 * 3 www.csb.gov Are

  7. Energy Department Announces $10.5 Million for Next-Generation Marine Energy Systems

    Broader source: Energy.gov [DOE]

    The Energy Department today announced $10.5 million in available funding to support the design and operation of innovative marine and hydrokinetic (MHK) systems through survivability and reliability-related testing of these systems.

  8. Energy Department Announces $20 Million to Develop Advanced Components for Next Generation Electric Machines

    Broader source: Energy.gov [DOE]

    The Energy Department today announced up to $20 million in available funding to spur the development of high speed industrial motors and drives, using high power-density designs and integrated power electronics to increase efficiency. The industrial sector consumes over a quarter of the electricity produced in the United States and is projected to increase its use by approximately 30% by 2040.

  9. Driving R&D for the Next Generation Work Truck; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Melendez, M.

    2015-03-04

    Improvements in medium- and heavy-duty work truck energy efficiency can dramatically reduce the use of petroleum-based fuels and the emissions of greenhouse gases. The National Renewable Energy Laboratory (NREL) is working with industry partners to develop fuel-saving, high-performance vehicle technologies, while examining fleet operational practices that can simulateneously improve fuel economy, decrease emissions, and support bottom-line goals.

  10. An evaluation of possible next-generation high temperature molten-salt power towers.

    SciTech Connect (OSTI)

    Kolb, Gregory J.

    2011-12-01

    Since completion of the Solar Two molten-salt power tower demonstration in 1999, the solar industry has been developing initial commercial-scale projects that are 3 to 14 times larger. Like Solar Two, these initial plants will power subcritical steam-Rankine cycles using molten salt with a temperature of 565 C. The main question explored in this study is whether there is significant economic benefit to develop future molten-salt plants that operate at a higher receiver outlet temperature. Higher temperatures would allow the use of supercritical steam cycles that achieve an improved efficiency relative to today's subcritical cycle ({approx}50% versus {approx}42%). The levelized cost of electricity (LCOE) of a 565 C subcritical baseline plant was compared with possible future-generation plants that operate at 600 or 650 C. The analysis suggests that {approx}8% reduction in LCOE can be expected by raising salt temperature to 650 C. However, most of that benefit can be achieved by raising the temperature to only 600 C. Several other important insights regarding possible next-generation power towers were also drawn: (1) the evaluation of receiver-tube materials that are capable of higher fluxes and temperatures, (2) suggested plant reliability improvements based on a detailed evaluation of the Solar Two experience, and (3) a thorough evaluation of analysis uncertainties.

  11. U.S. Department of Energy awards $200 million for next-generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Program for United States | Department of Energy the MIT Energy Initiative Announce a Women in Clean Energy Program for United States U.S. Department of Energy and the MIT Energy Initiative Announce a Women in Clean Energy Program for United States April 26, 2012 - 10:00am Addthis LONDON -- At the Third Clean Energy Ministerial in London today, the U.S. Department of Energy announced a three-part plan to help implement the Clean Energy Education and Empowerment initiative or

  12. Secretary Chu Announces Nearly $15 Million for Next Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Lighting | Department of Energy 15 Million for Next Generation Energy-Efficient Lighting Secretary Chu Announces Nearly $15 Million for Next Generation Energy-Efficient Lighting June 7, 2011 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu today announced nearly $15 million to support eight new research and development projects that will accelerate the development and deployment of high-efficiency solid-state lighting technologies like LEDs and OLEDs.

  13. Investing in the Next Generation of U.S. Nuclear Energy Leaders

    Broader source: Energy.gov [DOE]

    As part of the Energy Department’s Nuclear Energy University Programs (NEUP) annual workshop, I met today with professors from across the country and announced awards of up to $39 million for...

  14. NETL Science & Engineering Ambassadors Guide Next Generation of Energy Decision-Makers

    Broader source: Energy.gov [DOE]

    A trio of scientists and engineers from the National Energy Technology Laboratory (NETL) are using their research skills and experience to prepare future decision-makers to tackle tomorrow’s energy challenges.

  15. Next Generation Hydrogen Station Composite Data Products: Data through Quarter 4 of 2014; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Ainscough, C.; Peters, M.

    2015-05-14

    This publication includes 43 composite data products (CDPs) produced for next generation hydrogen stations, with data through the fourth quarter of 2014.

  16. Energy Department Awards $10.5 Million for Next-Generation Marine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dehlsen Associates, LLC, of Santa Barbara, California, is developing a wave energy converter (WEC) comprised of multiple pods that use common components to achieve economies of ...

  17. Energy Department Announces $10.5 Million for Next-Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    costs and increasing their ability to function over time. ... development and deployment of energy efficiency and ... security, environmental quality, and economic vitality. ...

  18. Wind for Schools: Developing Education Programs to Train the Next Generation of the Wind Energy Workforce

    SciTech Connect (OSTI)

    Baring-Gould, I.; Flowers, L.; Kelly, M.; Barnett, L.; Miles, J.

    2009-08-01

    This paper provides an overview of the Wind for Schools project elements, including a description of host and collegiate school curricula developed for wind energy and the status of the current projects. The paper also provides focused information on how schools, regions, or countries can become involved or implement similar projects to expand the social acceptance and understanding of wind energy.

  19. EERE Day at MIT Inspires Next Generation of Clean Energy Leaders

    Broader source: Energy.gov [DOE]

    It’s easy to break down our research and development investments into the programs we support, the partnerships we’ve built, and the cutting edge clean energy technologies our partners deploy. But...

  20. Next-generation building energy management systems and implications for electricity markets.

    SciTech Connect (OSTI)

    Zavala, V. M.; Thomas, C.; Zimmerman, M.; Ott, A.

    2011-08-11

    The U.S. national electric grid is facing significant changes due to aggressive federal and state targets to decrease emissions while improving grid efficiency and reliability. Additional challenges include supply/demand imbalances, transmission constraints, and aging infrastructure. A significant number of technologies are emerging under this environment including renewable generation, distributed storage, and energy management systems. In this paper, we claim that predictive energy management systems can play a significant role in achieving federal and state targets. These systems can merge sensor data and predictive statistical models, thereby allowing for a more proactive modulation of building energy usage as external weather and market signals change. A key observation is that these predictive capabilities, coupled with the fast responsiveness of air handling units and storage devices, can enable participation in several markets such as the day-ahead and real-time pricing markets, demand and reserves markets, and ancillary services markets. Participation in these markets has implications for both market prices and reliability and can help balance the integration of intermittent renewable resources. In addition, these emerging predictive energy management systems are inexpensive and easy to deploy, allowing for broad building participation in utility centric programs.

  1. Next Generation Hole Injection/Transport Nano-Composites for High Efficiency OLED Development

    SciTech Connect (OSTI)

    King Wang

    2009-07-31

    The objective of this program is to use a novel nano-composite material system for the OLED anode coating/hole transport layer. The novel anode coating is intended to significantly increase not only hole injection/transport efficiency, but the device energy efficiency as well. Another goal of the Core Technologies Program is the optimization and scale-up of air-stable and cross-linkable novel HTL nano-composite materials synthesis and the development of low-cost, large-scale mist deposition processes for polymer OLED fabrication. This proposed technology holds the promise to substantially improve OLED energy efficiency and lifetime.

  2. Next Generation Solar Collectors for CSP - FY13 Q1 | Department of Energy

    Office of Environmental Management (EM)

    2 * January 2016 T he U.S. Department of Energy's Advanced Methods for Manufacturing (AMM) Program held its annual program review on September 29, 2015, at the Lock- heed Martin Global Vision Center to discuss the status of currently-funded AMM projects. The audience included personnel from academia, national laboratories, manu- facturing, design, and construction organizations, which provided an excellent platform for further collaborations. Seventeen presentations were made, encompassing

  3. Synergistic Computational and Microstructural Design of Next- Generation High-Temperature Austenitic Stainless Steels

    SciTech Connect (OSTI)

    Karaman, Ibrahim; Arroyave, Raymundo

    2015-07-31

    The purpose of this project was to: 1) study deformation twinning, its evolution, thermal stability, and the contribution on mechanical response of the new advanced stainless steels, especially at elevated temperatures; 2) study alumina-scale formation on the surface, as an alternative for conventional chromium oxide, that shows better oxidation resistance, through alloy design; and 3) design new generation of high temperature stainless steels that form alumina scale and have thermally stable nano-twins. The work involved few baseline alloys for investigating the twin formation under tensile loading, thermal stability of these twins, and the role of deformation twins on the mechanical response of the alloys. These baseline alloys included Hadfield Steel (Fe-13Mn-1C), 316, 316L and 316N stainless steels. Another baseline alloy was studied for alumina-scale formation investigations. Hadfield steel showed twinning but undesired second phases formed at higher temperatures. 316N stainless steel did not show signs of deformation twinning. Conventional 316 stainless steel demonstrated extensive deformation twinning at room temperature. Investigations on this alloy, both in single crystalline and polycrystalline forms, showed that deformation twins evolve in a hierarchical manner, consisting of micron–sized bundles of nano-twins. The width of nano-twins stays almost constant as the extent of strain increases, but the width and number of the bundles increase with increasing strain. A systematic thermomechanical cycling study showed that the twins were stable at temperatures as high as 900°C, after the dislocations are annealed out. Using such cycles, volume fraction of the thermally stable deformation twins were increased up to 40% in 316 stainless steel. Using computational thermodynamics and kinetics calculations, we designed two generations of advanced austenitic stainless steels. In the first generation, Alloy 1, which had been proposed as an alumina-forming austenitic stainless steel, is fully austenitic, but possesses carbides that were not dissolvable and could not be controlled. This alloy also did not show deformation twinning. Alloy 2 was designed based on alloy 1, but was not fully austenitic and had significant traces of uncontrollable precipitates as well. Alloy 3, also designed based on alloy 1, was mainly austenitic with evolution of a second phase along the grain boundaries, but also had precipitates that were not controllable. Based on the knowledge gained from the first generation of the designed steels, two more steels, called PGAA1 and PGAA2, were proposed using genetic algorithms that, based on the modelling, were supposed to exhibit alumina-scale formation. PGAA1, however, did not demonstrate a fully austenitic structure. PGAA2 could achieve a mostly austenitic structure through thermo-mechanical processing, and was then used for oxidation tests. The oxidation tests of PGAA2, with and without nitrogen impurities, along with alloy 1, suggested that PGAA2 can form alumina-scale similar to alloy 1, but N impurity will prevent formation of such a scale, probably through formation of aluminum nitrides. For the above mentioned genetic algorithm framework of alloy design, separate models were developed for specific design criteria. For prediction of alumina formation in stainless steels, a model was constructed based off of two criteria – effective valence and third element effect. These criteria capture the thermodynamics and kinetics of alumina formation in steels. To test the efficacy and robustness of this model, they were tested against alloys in the literature which had been experimentally verified to exhibit alumina formation and the predictions were in excellent agreement with the experiments. Another meta-model for prediction of twinning in unknown steel compositions was developed by an informatics based machine learning/data mining approach. Stacking Fault Energy data was captured from the literature for a large number of steel compositions and then this data was used to build a classifier to predict deformation mechanisms. Here a training set-test set based analysis was performed to test performance. The above genetic algorithm based optimization framework for alloy design was exhibited to be a successful methodology for accelerated materials discovery in the context of alloy design.

  4. Next Generation Extractants for Cesium Separation from High-Level Waste

    SciTech Connect (OSTI)

    Moyer, Bruce A; Bazelaire, Eve; Bonnesen, Peter V; Custelcean, Radu; Delmau, Laetitia Helene; Ditto, Mary E; Engle, Nancy L; Gorbunova, Maryna; Haverlock, Tamara; Levitskaia, Tatiana G.; Bartsch, Richard A.; Surowiec, Malgorzata A.; Marquez, Manuel; Zhou, Hui

    2006-01-01

    This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed bear upon cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit applied projects funded by the USDOE Office of Environmental Management to clean up sites such as the Savannah River Site (SRS), Hanford, and the Idaho National Environmental and Engineering Laboratory. The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high-level tank waste. Disposal of high-level waste is horrendously expensive, in large part because the actual radioactive matter in underground waste tanks at various USDOE sites has been diluted over 1000-fold by ordinary inorganic chemicals. To vitrify the entire mass of the high-level waste would be prohibitively expensive. Accordingly, an urgent need has arisen for technologies to remove radionuclides such as {sup 137}Cs from the high-level waste so that the bulk of it may be diverted to cheaper low-level waste forms and cheaper storage. To address this need in part, chemical research at Oak Ridge National Laboratory (ORNL) has focused on calixcrown extractants, molecules that combine a crown ether with a calixarene. This hybrid possesses a cavity that is highly complementary for the Cs{sup +} ion vs. the Na+ ion, making it possible to cleanly separate cesium from wastes that contain 10,000- to 1,000,000-fold higher concentrations of sodium. Previous EMSP results in Project 55087 elucidated the underlying extraction equilibria in cesium nitrate extraction by the calixcrown used in the CSSX process, calix[4]arene-bis(t-octylbenzo-crown-6), designated here as BOBCalixC6 (see structure). This understanding led to key improvements in the development of the CSSX process under the EM Efficient Separations and Crosscutting Program, entailing a method to back-extract or 'strip' cesium from the calixcrown subsequent to cesium extraction from waste. Having this stripping method allowed the cesium to be concentrated in a relatively pure aqueous stream and the extractant to be regenerated for recycle. Closing the cycle then made possible the design of a process flowsheet and successful demonstration through collaboration with Argonne National Laboratory and Savannah River Technology Center under funding from the USDOE Office of Project Completion and Tanks Focus Area. Despite these successes, the CSSX process represents young technology that can benefit substantially from further fundamental inquiry. First, reversibility of the process (stripping efficiency) still presents the greatest potential for problems and the greatest potential for improvement. Second, although the calixcrown extractants for cesium are two orders of magnitude stronger than the next best simple crown ether, a minor fraction of the extractant capacity is utilized. Third, potassium competes significantly with cesium for the calixcrown binding site, an important issue in dealing with Hanford wastes having potassium concentrations as high as 1 M. Fourth, the calixcrown solubility needs to be improved. And finally, the mechanism of extraction must be understood in detail to provide the base of knowledge from which further development of the technology can be rationally made.

  5. Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production

    Broader source: Energy.gov [DOE]

    The Los Alamos National Laboratory (ORNL), under the National Laboratory R&D competitive funding opportunity, is developing a megawatt-scale heat pipe–based technology designed to bridge the heliostat reflector field and the power cycle by replacing both the solar receiver and the heat transfer fluid (HTF) system used in concentrating solar power (CSP) systems. The technology, called the high-temperature thermal array, aims to achieve the SunShot Initiative's goals by addressing technical challenges, reducing capital and operating expenses, and increasing net photon-to-electricity conversion efficiency.

  6. Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation

    SciTech Connect (OSTI)

    Rue, David

    2013-09-30

    The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis found a number of modifications and adjustments that could provide higher efficiency and better use of available work. Conclusions from this analysis will help guide the analyses and CFD modeling in future process development. The MBB technology has the potential to be a disruptive technology that will enable coal combustion power plants to be built and operated in a cost effective way, cleanly with no carbon dioxide emissions. A large amount of work is needed to quantify and confirm the great promise of the MBB technology. A Phase 2 proposal was submitted to DOE and other sponsors to address the most critical MBB process technical gaps. The Phase 2 proposal was not accepted for current DOE support.

  7. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Institute | Department of Energy Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - 9:20am Addthis The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Supported by a $70 million Energy Department investment over five years as well as a

  8. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    SciTech Connect (OSTI)

    Zia, Jalal; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200�C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200�C and 40 bar was found to be acceptable after 399 hours of exposure?only 3% of the initial charge degraded into by products. The main degradation products being an isomer and a dimer. 3. In a comparative experiment between R245fa and the new fluid under subcritical conditions, it was found that the new fluid operated at 1 bar lower than R245fa for the same power output, which was also predicted in the Aspen HSYSY model. As a drop-in replacement fluid for R245fa, this new fluid was found to be at least as good as R245fa in terms of performance and stability. Further optimization of the subcritical cycle may lead to a significant improvement in performance for the new fluid. 4. For supercritical conditions, the experiment found a good match between the measured and model predicted state point property data and duties from the energy balance. The largest percent differences occurred with densities and evaporator duty (see Figure 78). It is therefore reasonable to conclude that the state point model was experimentally validated with a realistic ORC system. 5. The team also undertook a preliminary turbo-expander design study for a supercritical ORC cycle with the new working fluid. Variants of radial and axial turbo expander geometries went through preliminary design and rough costing. It was found that at 15MWe or higher power rating, a multi-stage axial turbine is most suitable providing the best performance and cost. However, at lower power ratings in the 5MWe range, the expander technology to be chosen depends on the application of the power block. For EGS power blocks, it is most optimal to use multi-stage axial machines. In conclusion, the predictions of the LCOE model that showed a supercritical cycle based on the new fluid to be most advantageous for geothermal power production at a resource temperature of ~ 200C have been experimentally validated. It was found that the cycle based on the new fluid is lower in LCOE and higher in net power output (for the same boundary conditions). The project, therefore has found a new optimal configuration for low temperature geothermal power production in the form of a supercritical ORC cycle based on a new vendor fluid.

  9. Funding Opportunity: Next Generation Electric Machines: Megawatt Class

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors | Department of Energy Funding Opportunity: Next Generation Electric Machines: Megawatt Class Motors Funding Opportunity: Next Generation Electric Machines: Megawatt Class Motors March 19, 2015 - 4:45pm Addthis This Funding Opportunity Announcement (FOA) is focused on developing MV integrated drive systems that leverage the benefits of state of the art power electronics (i.e., wide band gap devices) with energy efficient, high speed, direct drive, megawatt (MW) class electric motors

  10. AMO FOA Targets Advanced Components for Next-Generation Electric Machines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FOA Targets Advanced Components for Next-Generation Electric Machines AMO FOA Targets Advanced Components for Next-Generation Electric Machines March 19, 2015 - 10:21am Addthis AMO's Next Generation Electric Machines (NGEM) program announced up to $20 million is now available to develop a new generation of energy efficient, high power density, high speed integrated MV drive systems for a wide variety of critical energy applications. This Financial Opportunity

  11. Novel Approaches to High-Efficiency III-V Nitride Heterostructure Emitters for Next-Generation Lighting Applications

    SciTech Connect (OSTI)

    Russell D. Dupuis

    2004-09-30

    We report research activities and technical progress on the development of high-efficiency long wavelength ({lambda} {approx} 540nm) green light emitting diodes which covers the first year of the three-year program ''Novel approaches to high-efficiency III-V nitride heterostructure emitters for next-generation lighting applications''. The first year activities were focused on the installation, set-up, and use of advanced equipment for the metalorganic chemical vapor deposition growth of III-nitride films and the characterization of these materials (Task 1) and the design, fabrication, testing of nitride LEDs (Task 4). As a progress highlight, we obtained improved quality of {approx} 2 {micro}m-thick GaN layers (as measured by the full width at half maximum of the asymmetric (102) X-ray diffraction peak of less than 350 arc-s) and higher p-GaN:Mg doping level (free hole carrier higher than 1E18 cm{sup -3}). Also in this year, we have developed the growth of InGaN/GaN active layers for long-wavelength green light emitting diodes, specifically, for emission at {lambda} {approx} 540nm. The effect of the Column III precursor (for Ga) and the post-growth thermal annealing effect were also studied. Our LED device fabrication process was developed and initially optimized, especially for low-resistance ohmic contacts for p-GaN:Mg layers, and blue-green light emitting diode structures were processed and characterized.

  12. Next Generation Manufacturing Processes

    Broader source: Energy.gov [DOE]

    New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high...

  13. Novel Approaches to High-Efficiency III-V Nitride Heterostructure Emitters for Next-Generation Lighting Applications

    SciTech Connect (OSTI)

    Russell D. Dupuis

    2006-01-01

    We report research activities and technical progress on the development of high-efficiency long wavelength ({lambda} {approx} 540nm) green light emitting diodes which covers the second year of the three-year program ''Novel approaches to high-efficiency III-V nitride heterostructure emitters for next-generation lighting applications''. The second year activities were focused on the development of p-type layer that has less/no detrimental thermal annealing effect on green LED active region as well as excellent structural and electrical properties and the development of green LED active region that has superior luminescence quality for {lambda} {approx}540nm green LEDs. We have also studied the thermal annealing effect on blue and green LED active region during the p-type layer growth. As a progress highlight, we obtained green-LED-active-region-friendly In{sub 0.04}Ga{sub 0.96}N:Mg exhibiting low resistivity with higher hole concentration (p=2.0 x 10{sup 18} cm{sup -3} and a low resistivity of 0.5 {Omega}-cm) and improved optical quality green LED active region emitting at {lambda} {approx}540nm by electroluminescence. The active region of the green LEDs was found to be much more sensitive to the thermal annealing effect during the p-type layer growth than that of the blue LEDs. We have designed grown, fabricated green LED structures for both 520 nm and 540 nm for the evaluation of second year green LED development.

  14. NEXT GENERATION TURBINE PROGRAM

    SciTech Connect (OSTI)

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

  15. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 4: High-Temperature Materials PIRTs

    SciTech Connect (OSTI)

    Corwin, William R; Ballinger, R.; Majumdar, S.; Weaver, K. D.

    2008-03-01

    The Phenomena Identification and Ranking Table (PIRT) technique was used to identify safety-relevant/safety-significant phenomena and assess the importance and related knowledge base of high-temperature structural materials issues for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled reactor (VHTR). The major aspects of materials degradation phenomena that may give rise to regulatory safety concern for the NGNP were evaluated for major structural components and the materials comprising them, including metallic and nonmetallic materials for control rods, other reactor internals, and primary circuit components; metallic alloys for very high-temperature service for heat exchangers and turbomachinery, metallic alloys for high-temperature service for the reactor pressure vessel (RPV), other pressure vessels and components in the primary and secondary circuits; and metallic alloys for secondary heat transfer circuits and the balance of plant. These materials phenomena were primarily evaluated with regard to their potential for contributing to fission product release at the site boundary under a variety of event scenarios covering normal operation, anticipated transients, and accidents. Of all the high-temperature metallic components, the one most likely to be heavily challenged in the NGNP will be the intermediate heat exchanger (IHX). Its thin, internal sections must be able to withstand the stresses associated with thermal loading and pressure drops between the primary and secondary loops under the environments and temperatures of interest. Several important materials-related phenomena related to the IHX were identified, including crack initiation and propagation; the lack of experience of primary boundary design methodology limitations for new IHX structures; and manufacturing phenomena for new designs. Specific issues were also identified for RPVs that will likely be too large for shop fabrication and transportation. Validated procedures for on-site welding, post-weld heat treatment (PWHT), and inspections will be required for the materials of construction. High-importance phenomena related to the RPV include crack initiation and subcritical crack growth; field fabrication process control; property control in heavy sections; and the maintenance of high emissivity of the RPV materials over their service lifetime to enable passive heat rejection from the reactor core. All identified phenomena related to the materials of construction for the IHX, RPV, and other components were evaluated and ranked for their potential impact on reactor safety.

  16. Next Generation Geothermal Power Plants

    SciTech Connect (OSTI)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given project.

  17. The Next Generation Photoinjector

    SciTech Connect (OSTI)

    Palmer, Dennis Thomas; /Stanford U., Appl. Phys. Dept.

    2005-09-12

    This dissertation will elucidate the design, construction, theory, and operation of the Next Generation Photoinjector (NGP). This photoinjector is comprised of the BNL/SLAC/UCLA 1.6 cell symmetrized S-band photocathode radio frequency (rf) electron gun and a single emittance-compensation solenoidal magnet. This photoinjector is a prototype for the Linear Coherent Light Source X-ray Free Electron Laser operating in the 1.5 {angstrom} range. Simulations indicate that this photoinjector is capable of producing a 1nC electron bunch with transverse normalized emittance less than 1 {pi} mm mrad were the cathode is illuminated with a 10 psec longitudinal flat top pulse. Using a Gaussian longitudinal laser profile with a full width half maximum (FWHM) of 10 psec, simulation indicates that the NGP is capable of producing a normalized rms emittance of 2.50 {pi} mm mrad at 1 nC. Using the removable cathode plate we have studied the quantum efficiency (QE) of both copper and magnesium photo-cathodes. The Cu QE was found to be 4.5 x 10{sup -5} with a 25% variation in the QE across the emitting surface of the cathode, while supporting a field gradient of 125 MV/m. At low charge, the transverse normalized rms emittance, {epsilon}{sub n,rms}, produced by the NGP is {epsilon}{sub n,rms} = 1.2 {pi} mm mrad for Q{sub T} = 0.3 nC. The 95% electron beam bunch length was measured to 10.9 psec. The emittance due to the finite magnetic field at the cathode has been studied. The scaling of this magnetic emittance term as a function of cathode magnetic field was found to be 0.01 {pi} mm mrad per Gauss. The 1.6 cell rf gun has been designed to reduce the dipole field asymmetry of the longitudinal accelerating field. Low level rf measurements show that this has in fact been accomplished, with an order of magnitude decrease in the dipole field. High power beam studies also show that the dipole field has been decreased. An upper limit of the intrinsic non-reducible thermal emittance of a photocathode under high field gradient was found to be {epsilon}{sub n,rms} = 0.8 {pi} mm mrad. Agreement is found between the theoretical calculation of the thermal emittance, {epsilon}{sub 0} = 0.62 {pi} mm mrad, and the experimental results, after taking into account all of the emittance contribution terms. The 1 nC emittance was found to be {epsilon}{sub n,rms} = 4.75 {pi} mm mrad with a 95% electron beam bunch length of 14.7 psec. Systematic bunch length measurements showed electron beam bunch lengthening due the electron beam charge. They will show that the discrepancy between measurement and simulation is due to three effects. The major effect is due to the variation of the QE in the photo-emitting area of the Cu cathode. Also, space charge emittance blowup in the transport line will be shown to be a significant effect because the electron beam is still in the space charge dominated regime. The last effect, which has been observed experimentally, is the electron bunch lengthening as a function of total electron bunch charge.

  18. Research & Development Roadmap: Next-Generation Appliances

    Broader source: Energy.gov [DOE]

    The Research and Development (R&D) Roadmap for Next-Generation Appliances provides recommendations to the Building Technologies Office (BTO) on R&D activities to pursue that will aid in achieving BTO’s energy savings goals.

  19. Next Generation Hydrogen Station Composite Data Products: Data through Quarter 4 of 2014 (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation Hydrogen Station Composite Data Products Data through Quarter 4 of 2014 Sam Sprik, Jennifer Kurtz, Chris Ainscough, Mike Peters May 2015 NREL/PR-5400-64317 2 CDP-INFR-01 Hydrogen Dispensed by Quarter 3 CDP-INFR-02 Histogram of Fueling Rates 4 CDP-INFR-03 Histogram of Fueling Times 5 CDP-INFR-04 Histogram of Fueling Amounts 6 CDP-INFR-05 Dispensed Hydrogen per Day of Week 7 CDP-INFR-06 Station Capacity Utilization 8 CDP-INFR-07 Station Usage 9 CDP-INFR-08 Time Between Fueling 10

  20. NEXT GENERATION TURBINE SYSTEM STUDY

    SciTech Connect (OSTI)

    Frank Macri

    2002-02-28

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  1. HIGS2: The Next Generation Compton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HIGS2: The Next Generation Compton γ-ray Source M.W Ahmed 1 , A.E. Champagne 2 , C.R. Howell 3 , W.M. Snow 4 , R.P. Springer 5 and Y. Wu 6 31 August 2012 This document provides a prospectus of research opportunities created by an intensity upgrade to the High Intensity Gamma-ray Source (HIGS) at the Triangle Universities Nuclear Laboratory (TUNL). The current maximum gamma-ray intensity on target at the HIGS is more than 10 8 γ/s in the energy range between 9 and 12 MeV. An increase of total

  2. Next-Generation Solar Collectors for CSP

    Broader source: Energy.gov [DOE]

    This fact sheet on Next-Generation Collectors for CSP highlights a solar energy program awarded through the 2012 SunShot Concentrating Solar Power R&D awards. The team is developing new solar collector base technologies for next-generation heliostats used in power tower systems. If successful, this project will result in a 50% reduction in solar field equipment cost and a 30% reduction in field installation cost compared to existing heliostat designs.

  3. NEXT GENERATION GAS TURBINE SYSTEMS STUDY

    SciTech Connect (OSTI)

    Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

    2003-03-01

    Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

  4. Next Generation Calibration Models with Dimensional Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calibration Models with Dimensional Modeling Next Generation Calibration Models with ... Calibration Optimization for Next Generation Diesel Engines An Accelerated Aging ...

  5. Next Generation Materials:

    Energy Savers [EERE]

    ... Low-cost laser processing; high accuracy non-planar surface treatments Ceramics for gas turbines; ultra- high temperature thermal barrier coatings for oxy- combustion turbines ...

  6. Development of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) Process for Cesium Removal from High-Level Tank Waste

    SciTech Connect (OSTI)

    Moyer, Bruce A; Bonnesen, Peter V; Delmau, Laetitia Helene; Sloop Jr, Frederick {Fred} V; Williams, Neil J; Birdwell Jr, Joseph F; Lee, Denise L; Leonard, Ralph; Fink, Samuel D; Peters, Thomas B.; Geeting, Mark W

    2011-01-01

    This paper describes the chemical performance of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) process in its current state of development for removal of cesium from the alkaline high-level tank wastes at the Savannah River Site (SRS) in the US Department of Energy (USDOE) complex. Overall, motivation for seeking a major enhancement in performance for the currently deployed CSSX process stems from needs for accelerating the cleanup schedule and reducing the cost of salt-waste disposition. The primary target of the NG-CSSX development campaign in the past year has been to formulate a solvent system and to design a corresponding flowsheet that boosts the performance of the SRS Modular CSSX Unit (MCU) from a current minimum decontamination factor of 12 to 40,000. The chemical approach entails use of a more soluble calixarene-crown ether, called MaxCalix, allowing the attainment of much higher cesium distribution ratios (DCs) on extraction. Concurrently decreasing the Cs-7SB modifier concentration is anticipated to promote better hydraulics. A new stripping chemistry has been devised using a vitrification-friendly aqueous boric acid strip solution and a guanidine suppressor in the solvent, resulting in sharply decreased DCs on stripping. Results are reported herein on solvent phase behavior and batch Cs distribution for waste simulants and real waste together with a preliminary flowsheet applicable for implementation in the MCU. The new solvent will enable MCU to process a much wider range of salt feeds and thereby extend its service lifetime beyond its design life of three years. Other potential benefits of NG-CSSX include increased throughput of the SRS Salt Waste Processing Facility (SWPF), currently under construction, and an alternative modular near-tank application at Hanford.

  7. Next Generation of Government Summit

    Broader source: Energy.gov [DOE]

    GovLoop and Young Government Leaders will hold its 4th Annual Next Generation of Government Summit from July 25 to July 26, 2013, in Washington, DC. The theme for the conference is 2013 Next...

  8. Next Generation Light Source Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the...

  9. Magnetic Processing A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P.; Magee, J.

    2010-09-10

    Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNLs unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNLs expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNLs Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.

  10. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bazelaire, Eve; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Ditto, Mary E.; Engle, Nancy L.; Gorbunova, Maryna G.; Haverlock, Tamara J.; Levitskaia, Taiana G.; Bartsch, Richard A.; Surowiec, Malgorzata A.; Hui Zhou

    2005-07-06

    This project unites expertise at Oak Ridge National Laboratory (ORNL) and Texas Tech University (TTU, Prof. Richard A. Bartsch) to answer fundamental questions addressing the problem of cesium removal from high-level tank waste. Efforts focus on novel solvent-extraction systems containing calixcrown extractants designed for enhanced cesium binding and release. Exciting results are being obtained in three areas: (1) a new lipophilic cesium extractant with a high solubility in the solvent; (2) new proton-ionizable calixcrowns that both strongly extract cesium and "switch off" when protonated; and (3) an improved solvent system that may be stripped with more than 100-fold greater efficiency. Scientific questions primarily concern how to more effectively reverse extraction, focusing on the use of amino groups and proton-ionizable groups to enable pH-switching. Synthesis is being performed at ORNL (amino calixcrowns) and TTU (proton-ionizable calixcrowns). At ORNL, the extraction behavior is being surveyed to assess the effectiveness of candidate solvent systems, and systematic distribution measurements are under way to obtain a thermodynamic understanding of partitioning and complexation equilibria. Crystal structures obtained at ORNL are revealing the structural details of cesium binding. The overall objective is a significant advance in the predictability and efficiency of cesium extraction from high-level waste in support of potential implementation at U. S. Department of Energy (USDOE) sites.

  11. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bazelaire, Eve; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Ditto, Mary E.; Engle, Nancy L.; Gorbunova, Maryna G.; Haverlock, Tamara J.; Levitskaia, Tatiana G.; Bartsch, Richard A.; Surowiec, Malgorzata A.; Zhou, Hui

    2005-07-06

    This project unites expertise at Oak Ridge National Laboratory (ORNL) and Texas Tech University (TTU, Prof. Richard A. Bartsch) to answer fundamental questions addressing the problem of cesium removal from high-level tank waste. Efforts focus on novel solvent-extraction systems containing calixcrown extractants designed for enhanced cesium binding and release. Exciting results are being obtained in three areas: (1) a new lipophilic cesium extractant with a high solubility in the solvent; (2) new proton-ionizable calixcrowns that both strongly extract cesium and ''switch off'' when protonated; and (3) an improved solvent system that may be stripped with more than 100-fold greater efficiency. Scientific questions primarily concern how to more effectively reverse extraction, focusing on the use of amino groups and proton-ionizable groups to enable pH-switching. Synthesis is being performed at ORNL (amino calixcrowns) and TTU (proton-ionizable calixcrowns). At ORNL, the extraction behavior is being surveyed to assess the effectiveness of candidate solvent systems, and systematic distribution measurements are under way to obtain a thermodynamic understanding of partitioning and complexation equilibria. Crystal structures obtained at ORNL are revealing the structural details of cesium binding. The overall objective is a significant advance in the predictability and efficiency of cesium extraction from high-level waste in support of potential implementation at U. S. Department of Energy (USDOE) sites.

  12. U.S. Department of Energy Awards $200 Million for Next- Generation Supercomputer at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Under Secretary for Science and Energy Orr Announces Next Steps in Pursuit of Exascale Supercomputing to Accelerate Major Scientific Discoveries and Engineering Breakthroughs.

  13. Development of low-cost technology for the next generation of high efficiency solar cells composed of earth abundant elements

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-09-28

    The development of renewable, affordable, and environmentally conscious means of generating energy on a global scale represents a grand challenge of our time. Due to the “permanence” of radiation from the sun, solar energy promises to remain a viable and sustainable power source far into the future. Established single-junction photovoltaic technologies achieve high power conversion efficiencies (pce) near 20% but require complicated manufacturing processes that prohibit the marriage of large-scale throughput (e.g. on the GW scale), profitability, and quality control. Our approach to this problem begins with the synthesis of nanocrystals of semiconductor materials comprising earth abundant elements and characterized by material and optoelectronic properties ideal for photovoltaic applications, namely Cu2ZnSn(S,Se)4 (CZTSSe). Once synthesized, such nanocrystals are formulated into an ink, coated onto substrates, and processed into completed solar cells in such a way that enables scale-up to high throughput, roll-to-roll manufacturing processes. This project aimed to address the major limitation to CZTSSe solar cell pce’s – the low open-circuit voltage (Voc) reported throughout literature for devices comprised of this material. Throughout the project significant advancements have been made in fundamental understanding of the CZTSSe material and device limitations associated with this material system. Additionally, notable improvements have been made to our nanocrystal based processing technique to alleviate performance limitations due to the identified device limitations. Notably, (1) significant improvements have been made in reducing intra- and inter-nanoparticle heterogeneity, (2) improvements in device performance have been realized with novel cation substitution in Ge-alloyed CZTGeSSe absorbers, (3) systematic analysis of absorber sintering has been conducted to optimize the selenization process for large grain CZTSSe absorbers, (4) novel electrical characterization analysis techniques have been developed to identify significant limitations to traditional electrical characterization of CZTSSe devices, and (5) the developed electrical analysis techniques have been used to identify the role that band gap and electrostatic potential fluctuations have in limiting device performance for this material system. The device modeling and characterization of CZTSSe undertaken with this project have significant implications for the CZTSSe research community, as the identified limitations due to potential fluctuations are expected to be a performance limitation to high-efficiency CZTSSe devices fabricated from all current processing techniques. Additionally, improvements realized through enhanced absorber processing conditions to minimize nanoparticle and large-grain absorber heterogeneity are suggested to be beneficial processing improvements which should be applied to CZTSSe devices fabricated from all processing techniques. Ultimately, our research has indicated that improved performance for CZTSSe will be achieved through novel absorber processing which minimizes defect formation, elemental losses, secondary phase formation, and compositional uniformity in CZTSSe absorbers; we believe this novel absorber processing can be achieved through nanocrystal based processing of CZTSSe which is an active area of research at the conclusion of this award. While significant fundamental understanding of CZTSSe and the performance limitations associated with this material system, as well as notable improvements in the processing of nanocrystal based CZTSSe absorbers, have been achieved under this project, the limitation of two years of research funding towards our goals prevents further significant advancements directly identified through pce. improvements relative to those reported herein. As the characterization and modeling subtask of this project has been the main driving force for understanding device limitations, the conclusions of this analysis have just recently been applied to the processing of nanocrystal based CZTSSe absorbers -- with notable success. We expect the notable fundamental understanding of device limitations and absorber sintering achieved under this project will lead to significant improvements in device performance for CZTSSe devices in the near future for devices fabricated from a variety of processing techniques

  14. Next Generation Drivetrain Development and Test Program

    SciTech Connect (OSTI)

    Keller, Jonathan; Erdman, Bill; Blodgett, Doug; Halse, Chris; Grider, Dave

    2015-11-03

    This presentation was given at the Wind Energy IQ conference in Bremen, Germany, November 30 through December 2, 2105. It focused on the next-generation drivetrain architecture and drivetrain technology development and testing (including gearbox and inverter software and medium-voltage inverter modules.

  15. Natural Oils - The Next Generation of Diesel Engine Lubricants...

    Energy Savers [EERE]

    Oils - The Next Generation of Diesel Engine Lubricants? JOE PEREZ 1 & SHAWN WHITACRE 2 1 The ... TEST PURPOSE COMMENT BOSCH INJECTOR HIGH TEMPERATURE - HIGH SHEAR BOSCH INJECTOR SHEAR ...

  16. Wind for Schools: Developing Educational Programs to Train a New Workforce and the Next Generation of Wind Energy Experts (Poster)

    SciTech Connect (OSTI)

    Flowers, L.; Baring-Gould, I.

    2010-04-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: Developing Wind Application Centers (WACs) at universities; installing small wind turbines at community "host" schools; and implementing teacher training with interactive curricula at each host school.

  17. Vehicle Technologies Office Merit Review 2015: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  18. Project Profile: Fundamental Corrosion Studies in High-Temperature Molten Salt Systems for Next-Generation CSP Systems

    Broader source: Energy.gov [DOE]

    -- This project is inactive -- The Savannah River National Laboratory (SRNL), under the National Laboratory R&D competitive funding opportunity, is working with United Technology Research Center and the University of Alabama to understand corrosion when operating concentrating solar power (CSP) systems at high temperatures with advanced power cycles and to develop corrosion mitigation strategies to lengthen system lifetimes. By improving high-temperature operation, CSP systems can achieve greater efficiencies and thereby reduce the overall system cost.

  19. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Bonnesen, Peter V.; Engle, Nancy L.; Gorbunova, Maryna G.; Haverlock, Tamara J.; Tomkins, Bruce A.; Bazelaire, Eve; Delamu, Laetitia H.; Moyer, Bruce A.

    2003-09-10

    The successful development of the Caustic-Side Solvent Extraction (CSSX) process at ORNL owes a great deal to basic scientific concepts uncovered and discoveries made through research programs funded both by the US DOE's Basic Energy Sciences and Environmental Management Science Programs. Under the EMSP, we have been designing, synthesizing and characterizing new calixarene-crown ethers for cesium extraction. Scientific issues we are addressing with the new extractants include increasing hydrocarbon solubility, and improving the efficiency of cesium ion binding and release. The fundamental chemistry and extraction behavior of these new calixarene crowns will be discussed.

  20. Next Generation Fast RF Interlock Module and ATCA Adapter for ILC High Availability RF Test Station Demonstration

    SciTech Connect (OSTI)

    Larsen, R

    2009-10-17

    High availability interlocks and controls are required for the ILC (International Linear Collider) L-Band high power RF stations. A new F3 (Fast Fault Finder) VME module has been developed to process both fast and slow interlocks using FPGA logic to detect the interlock trip excursions. This combination eliminates the need for separate PLC (Programmable Logic Controller) control of slow interlocks. Modules are chained together to accommodate as many inputs as needed. In the next phase of development the F3's will be ported to the new industry standard ATCA (Advanced Telecom Computing Architecture) crate (shelf) via a specially designed VME adapter module with IPMI (Intelligent Platform Management Interface). The goal is to demonstrate auto-failover and hot-swap for future partially redundant systems.

  1. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bonnesen, Peter V.; Bryan, Jeffrey C.; Engle, Nancy L.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Bartsch, Richard A.; Talanov, Vladimir S.; Gibson, Harry W.; Jones, Jason W.

    2001-08-20

    This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed bear upon cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit applied projects funded by the USDOE Office of Environmental Management to clean up sites such as the Savannah River Site (SRS), Hanford, and the Idaho National Environmental and Engineering Laboratory. The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high-level tank waste.

  2. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bonnesen, Peter V.; Bryan, Jeffrey C.; Engle, Nancy L.; Keever, Tamara J.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Bartsch, Richard A.; Talanov, Vladimir S.; Gibson, Harry W.; Jones, Jason W.; Hay, Benjamin P.

    2002-06-01

    This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed bear upon cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit applied projects funded by the USDOE Office of Environmental Management to clean up sites such as the Savannah River Site (SRS), Hanford, and the Idaho National Environmental and Engineering Laboratory. The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high-level tank waste.

  3. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bazelaire, Eve; Bonnesen, Peter V.; Bryan, Jeffrey C.; Delmau, Latitia H.; Engle, Nancy L.; Gorbunova, Maryna G.; Keever, Tamara J.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Tomkins, Bruce A.

    2004-06-30

    General project objectives. This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed pertain to cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit cleanup projects funded by the USDOE Office of Environmental Management to treat and dispose of high-level radioactive wastes currently stored in underground tanks at the Savannah River Site (SRS), the Hanford site, and the Idaho National Environmental and Engineering Laboratory.1 The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high level tank waste.2 This technology owes its development in part to fundamental results obtained in this program.

  4. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A; Bazelaire, Eve; Bonnesen, Peter V.; Bryan, Jeffrey C.; Delmau, Laetitia H.; Engle, Nancy L.; Gorbunova, Maryna G.; Keever, Tamara J.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Tomkins, Bruce A.; Bartsch, Richard A.; Talanov, Vladimir S.; Gibson, Harry W.; Jones, Jason W.; Hay, Benjamin P.

    2003-09-01

    This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed pertain to cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit cleanup projects funded by the USDOE Office of Environmental Management to treat and dispose of high-level radioactive wastes currently stored in underground tanks at the Savannah River Site (SRS), the Hanford site, and the Idaho National Environmental and Engineering Laboratory.1 The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high-level tank waste.2 This technology owes its development in part to fundamental results obtained in this program.

  5. Technology Advancements for Next Generation Falling Particle...

    Office of Scientific and Technical Information (OSTI)

    Technology Advancements for Next Generation Falling Particle Receivers. Citation Details In-Document Search Title: Technology Advancements for Next Generation Falling Particle ...

  6. Next generation safeguards initiative university outreach: the...

    Office of Scientific and Technical Information (OSTI)

    Next generation safeguards initiative university outreach: the unique Los Alamos and the ... Title: Next generation safeguards initiative university outreach: the unique Los Alamos ...

  7. Next Generation Luminaires Design Competition Announces 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Luminaires Design Competition Announces 2013 Outdoor Winners Next Generation Luminaires Design Competition Announces 2013 Outdoor Winners February 27, 2014 -...

  8. Funding Opportunity Coming Soon: Scaling up the Next Generation of Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Packages | Department of Energy Coming Soon: Scaling up the Next Generation of Building Efficiency Packages Funding Opportunity Coming Soon: Scaling up the Next Generation of Building Efficiency Packages May 10, 2016 - 12:34pm Addthis The Building Technologies Office (BTO), in collaboration with the General Services Administration's Green Proving Ground, intends to release a funding opportunity for innovative partnerships proposing real building demonstrations of high-impact,

  9. Mesaba next-generation IGCC plant

    SciTech Connect (OSTI)

    2006-01-01

    Through a US Department of Energy (DOE) cooperative agreement awarded in June 2006, MEP-I LLC plans to demonstrate a next generation integrated gasification-combined cycle (IGCC) electric power generating plant, the Mesaba Energy Project. The 606-MWe plant (the first of two similarly sized plants envisioned by project sponsors) will feature next-generation ConocoPhillips E-Gas{trademark} technology first tested on the DOE-funded Wabash River Coal Gasification Repowering project. Mesaba will benefit from recommendations of an industry panel applying the Value Improving Practices process to Wabash cost and performance results. The project will be twice the size of Wabash, while demonstrating better efficient, reliability and pollutant control. The $2.16 billion project ($36 million federal cost share) will be located in the Iron Range region north of Duluth, Minnesota. Mesaba is one of four projects selected under Round II of the Clean Coal Power Initiative. 1 fig.

  10. Next Generation Light Source Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the scientific needs into the technical performance requirements. Feedback from these workshops will provide important input for advancing the design of the facility. Workshops are planned in the following areas Fundamental Atomic, Molecular, Optical Physics & Combustion Dynamics Mon. Aug. 20 - Tues. Aug 21, 2012 Physical

  11. Next Generation Safeguards Initiative Summer Internship Program | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Next Generation Safeguards Initiative The Department of Energy's National Nuclear Security Administration (NNSA) launched the Next Generation Safeguards Initiative (NGSI) to develop policies, concepts, technologies, expertise, and infrastructure necessary to sustain the international safeguards system as its mission evolves over the next 25 years. Learn More Center for Strategic Security Argonne's Center for Strategic Security (CSS) develops and implements practical

  12. Next Generation Environmentally Friendly Driving Feedback Systems Research

    Broader source: Energy.gov (indexed) [DOE]

    and Development | Department of Energy vss086_barth_2012_o.pdf More Documents & Publications Next Generation Environmentally Friendly Driving Feedback Systems Research and Development Vehicle Technologies Office Merit Review 2014: Next Generation Environmentally Friendly Driving Feedback Systems Research and Development Legacy Fleet Improvements

  13. Next-Generation Subsea Technology |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future | Department of Energy Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future January 15, 2014 - 3:53pm Addthis Watch the video above to learn how wide bandgap semiconductors could impact clean energy technology and our daily lives. | Video by Sarah Gerrity and Matty Greene, Energy Department Marina Sofos Marina Sofos Sensors and Controls Technology Manager From your laptop

  14. Beamstrahlung spectra in next generation linear colliders

    SciTech Connect (OSTI)

    Barklow, T.; Chen, P. ); Kozanecki, W. )

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  15. Science on Tap - Next Generation Rocket Propellants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on Tap - Next Generation Rocket Propellants Science on Tap - Next Generation Rocket Propellants WHEN: Dec 17, 2015 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central...

  16. Science on Tap - Next Generation Rocket Propellants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on Tap - Next Generation Rocket Propellants Science on Tap - Next Generation Rocket Propellants WHEN: Dec 17, 2015 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central ...

  17. Next Generation Environmentally Friendly Driving Feedback Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmentally Friendly Driving Feedback Systems Research and Development Next Generation Environmentally Friendly Driving Feedback Systems Research and Development 2012 DOE ...

  18. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    SciTech Connect (OSTI)

    R. Doug Hamelin; G. O. Hayner

    2004-11-01

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  19. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  20. Energy Exchange: Recruiting, Developing, and Retaining the Next Generation of Employees to Support Energy Efficiency, Renewable Energy and Sustainability in the Public Sector

    Broader source: Energy.gov [DOE]

    Location: Phoenix Convention Center, Phoenix, ArizonaWebsite: http://energy.gov/eere/femp/energy-exchangeContact: Recruitment@doe.gov

  1. UCRL-ID-117240 CHEETAH: A Next Generation Thermochemical Code

    Office of Scientific and Technical Information (OSTI)

    17240 CHEETAH: A Next Generation Thermochemical Code L. Fried P. Suers November 1994 , L * Work performed under the auspices of the U . S . Department of Energy by the Lawrence ...

  2. EERE Success Story-California: Next-Generation Geothermal Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launched | Department of Energy Next-Generation Geothermal Demonstration Launched EERE Success Story-California: Next-Generation Geothermal Demonstration Launched August 21, 2013 - 12:00am Addthis At the outer edges of the largest operating geothermal field in the world, the Energy Department and project partner Calpine Corporation achieved the nation's first sustained enhanced geothermal system (EGS) demonstration success in 2012. The Geysers EGS Demonstration project successfully created a

  3. Next-Generation Wireless Instrumentation Integrated with Mathematical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling for Aluminum Production | Department of Energy Next-Generation Wireless Instrumentation Integrated with Mathematical Modeling for Aluminum Production Next-Generation Wireless Instrumentation Integrated with Mathematical Modeling for Aluminum Production Monitoring Electrolytic Cell Anode Current Increases Current and Energy Efficiency In 2011, five-and-a-half-million tons of aluminum were produced in the United States. Over two-million tons were produced in smelters, large

  4. NERSC, Cray, Intel to Collaborate on Next-Generation Supercomputer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC, Cray, Intel Announce Next-Generation Supercomputer NERSC, Cray, Intel to Collaborate on Next-Generation Supercomputer April 29, 2014 Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 GertyCori NERSC's next-generation supercomputer, a Cray XC, will be named after Gerty Cori, the first American woman to be honored with a Nobel Prize in science. She shared the 1947 Nobel Prize with her husband Carl (pictured) and Argentine physiologist Bernardo Houssay. The U.S. Department of Energy's (DOE)

  5. National Labs Collaborate to Shape Development of Next-Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputers National Labs Collaborate to Shape Development of Next-Generation Supercomputers National Labs Collaborate to Shape Development of Next-Generation Supercomputers November 10, 2015 Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 apex logo large Three of the Department of Energy's leading national laboratories are working together to solve some of the world's most challenging problems by ensuring that the nation's scientific community has access to leading edge computing

  6. Center for Next Generation of Materials by Design: Incorporating

    Office of Science (SC) Website

    Metastability (CNGMD) | U.S. DOE Office of Science (SC) Center for Next Generation of Materials by Design: Incorporating Metastability (CNGMD) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Next Generation of Materials by Design: Incorporating Metastability (CNGMD) Print Text Size: A A A FeedbackShare Page CNGMD Header Director William Tumas Lead

  7. Next Generation National Security Leaders

    SciTech Connect (OSTI)

    Mahy, Heidi A.; Fankhauser, Jana G.; Stein, Steven L.; Toomey, Christopher

    2012-07-19

    It is generally accepted that the international security community faces an impending challenge in its changing leadership demographics. The workforce that currently addresses nonproliferation, arms control, and verification is moving toward retirement and there is a perceived need for programs to train a new set of experts for both technical- and policy-related functions to replace the retiring generation. Despite the perceived need, there are also indicators that there are not sufficient jobs for individuals we are currently training. If we had right-sized the training programs, there would not be a shortage of jobs. The extent and scope of the human resource crisis is unclear, and information about training programs and how they meet existing needs is minimal. This paper seeks to achieve two objectives: 1) Clarify the major human resource problem and potential consequences; and 2) Propose how to characterize the requirement with sufficient granularity to enable key stakeholders to link programs aimed at developing the next generations of experts with employment needs. In order to accomplish both these goals, this paper recommends establishing a forum comprised of key stakeholders of this issue (including universities, public and private sectors), and conducting a study of the human resources and resource needs of the global security community. If there is indeed a human resource crisis in the global security field, we cannot address the problem if we are uninformed. The solution may lie in training more (or fewer) young professions to work in this community or it may lie in more effectively using our existing resources and training programs.

  8. Tailoring next-generation biofuels and their combustion in next-generation engines.

    SciTech Connect (OSTI)

    Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O'Bryan, Greg; Powell, Amy Jo; Gao, Connie W.

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  9. International Symposium For Next Generation Infrastructure

    Broader source: Energy.gov [DOE]

    The International Symposium for Next Generation Infrastructure is designed to support the rapidly expanding international research community seeking to understand the interactions between...

  10. DOE Project Taps HPC for Next-Generation Climate Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Project Taps HPC for Next-Generation Climate Modeling DOE Project Taps HPC for Next-Generation Climate Modeling Berkeley Lab, NERSC to help accelerate development of state-of-the-science Earth system models August 25, 2014 Contact: Dan Krotz 510-486-4019 billcollins.jpg Bill Collins, ACME's Chief Scientist and head of the Earth Sciences Division's Climate Sciences Department at Berkeley Lab. Image: Roy Kaltschmidt High performance computing (HPC) will be used to develop and apply the most

  11. Next-Generation Photovoltaic Technologies in the United States: Preprint

    SciTech Connect (OSTI)

    McConnell, R.; Matson, R.

    2004-06-01

    This paper describes highlights of exploratory research into next-generation photovoltaic (PV) technologies funded by the United States Department of Energy (DOE) through its National Renewable Energy Laboratory (NREL) for the purpose of finding disruptive or ''leap frog'' technologies that may leap ahead of conventional PV in energy markets. The most recent set of 14 next-generation PV projects, termed Beyond the Horizon PV, will complete their third year of research this year. The projects tend to take two notably different approaches: high-efficiency solar cells that are presently too expensive, or organic solar cells having potential for low cost although efficiencies are currently too low. We will describe accomplishments for several of these projects. As prime examples of what these last projects have accomplished, researchers at Princeton University recently reported an organic solar cell with 5% efficiency (not yet NREL-verified). And Ohio State University scientists recently demonstrated an 18% (NREL-verified) single-junction GaAs solar cell grown on a low-cost silicon substrate. We also completed an evaluation of proposals for the newest set of exploratory research projects, but we are unable to describe them in detail until funding becomes available to complete the award process.

  12. The Next Generation of Entrepreneurs

    Broader source: Energy.gov [DOE]

    A newly released National Clean Energy Business Competition Funding Opportunity Announcement of $2 million will be used to encourage collaboration among energy competitions and to broaden student outreach. This partnership can help increase the number and quality of clean energy start-up businesses -- and promote a new generation of energy entrepreneurs.

  13. Next Generation Diesel Engine Control

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  14. Come see the Next Generation of Vehicles on Sustainable Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Day-June 22, 2015 | Department of Energy Come see the Next Generation of Vehicles on Sustainable Transportation Day-June 22, 2015 Come see the Next Generation of Vehicles on Sustainable Transportation Day-June 22, 2015 June 18, 2015 - 1:05pm Addthis Drivers can learn about fuel efficiency in the Green Racing Simulator which models a hybrid race car. Photo: courtesy of Argonne National Laboratory Drivers can learn about fuel efficiency in the Green Racing Simulator which models a hybrid race

  15. Next Generation Natural Gas Vehicle (NGNGV) Program Brochure

    SciTech Connect (OSTI)

    Elling, J.

    2000-10-26

    The Department of Energy's Office of Transportation Technologies is initiating the Next Generation Natural Gas Vehicle (NGNGV) Program to develop commercially viable medium- and heavy-duty natural gas vehicles. These new vehicles will incorporate advanced alternative fuel vehicle technologies that were developed by DOE and others.

  16. EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries

    Broader source: Energy.gov (indexed) [DOE]

    Breakout Session Report | Department of Energy next-generation_li-ion_b.pdf More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report Overview and Progress of the Batteries for Advanced Transportation Technologies

  17. Arra: Tas::89 0227::Tas Recovery Act 100g Ftp: An Ultra-High Speed Data Transfer Service Over Next Generation 100 Gigabit Per Second Network

    SciTech Connect (OSTI)

    YU, DANTONG

    2014-03-01

    Data-intensive applications, including high energy and nuclear physics, astrophysics, climate modeling, nano-scale materials science, genomics, and financing, are expected to generate exabytes of data over the coming years, which must be transferred, visualized, and analyzed by geographically distributed teams of users. High-performance network capabilities must be available to these users at the application level in a transparent, virtualized manner. Moreover, the application users must have the capability to move large datasets from local and remote locations across network environments to their home institutions. To solve these challenges, the main goal of our project is to design and evaluate high-performance data transfer software to support various data-intensive applications. First, we have designed a middleware software that provides access to Remote Direct Memory Access (RDMA) functionalities. This middleware integrates network access, memory management and multitasking in its core design. We address a number of issues related to its efficient implementation, for instance, explicit buffer management and memory registration, and parallelization of RDMA operations, which are vital to delivering the benefit of RDMA to the applications. Built on top of this middleware, an implementation and experimental evaluation of the RDMA-based FTP software, RFTP, is described and evaluated. This application has been implemented by our team to exploit the full capabilities of advanced RDMA mechanisms for ultra-high speed bulk data transfer applications on Energy Sciences Network (ESnet). Second, we designed our data transfer software to optimize TCP/IP based data transfer performance such that RFTP can be fully compatible with today’s Internet. Our kernel optimization techniques with Linux system calls sendfile and splice, can reduce data copy cost. In this report, we summarize the technical challenges of our project, the primary software design methods, the major project milestones achieved, as well as the testbed evaluation work and demonstrations during our project life time.

  18. Letter to NEAC to Review the Next Generation Nuclear Plant Activities |

    Energy Savers [EERE]

    Department of Energy to NEAC to Review the Next Generation Nuclear Plant Activities Letter to NEAC to Review the Next Generation Nuclear Plant Activities The Next Generation Nuclear Plant (NGNP) project was established under the Energy Policy Act in August 2005 (EPACT-2005). EPACT-2005 defined an overall plan and timetable for NGNP research, design, licensing, construction and operation by the end of FY 2021. At the time that EPACT-2005 was passed, it was envisioned that key aspects of the

  19. Next Generation Lunch: Revealing the World's First 3D Printed Car (text

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    version) | Department of Energy Next Generation Lunch: Revealing the World's First 3D Printed Car (text version) Next Generation Lunch: Revealing the World's First 3D Printed Car (text version) Below is the text version for the Next Generation Lunch: Revealing the World's First 3D Printed Car Video. FILE NAME: AEMC_09172014_luncheonaddress_nextgeneration SPEAKER: Ladies and gentleman, welcome and good afternoon. Please give a warm welcome to Dr. Mark Johnson, U.S. Department of Energy.

  20. DOE Seeks Additional Input on Next Generation Nuclear Plant | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Additional Input on Next Generation Nuclear Plant DOE Seeks Additional Input on Next Generation Nuclear Plant April 17, 2008 - 10:49am Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today announced it is seeking public and industry input on how to best achieve the goals and meet the requirements for the Next Generation Nuclear Plant (NGNP) demonstration project work at DOE's Idaho National Laboratory. DOE today issued a Request for Information and Expressions of Interest

  1. DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant August 15, 2008 - 3:15pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) today delivered to Congress the Next Generation Nuclear Plant (NGNP) Licensing Strategy Report which describes the licensing approach, the analytical tools, the research and development activities and the

  2. Next Generation Nuclear Plant GAP Analysis Report

    SciTech Connect (OSTI)

    Ball, Sydney J; Burchell, Timothy D; Corwin, William R; Fisher, Stephen Eugene; Forsberg, Charles W.; Morris, Robert Noel; Moses, David Lewis

    2008-12-01

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  3. Next Generation Solar Collectors for CSP

    SciTech Connect (OSTI)

    Molnar, Attila; Charles, Ruth

    2014-07-31

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  4. Upholding Dr. King's Dream and Inspiring the Next Generation Through STEM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education | Department of Energy Upholding Dr. King's Dream and Inspiring the Next Generation Through STEM Education Upholding Dr. King's Dream and Inspiring the Next Generation Through STEM Education January 27, 2015 - 12:56pm Addthis Upholding Dr. King’s Dream and Inspiring the Next Generation Through STEM Education Joshua Sneideman Joshua Sneideman Albert Einstein Distinguished Educator Fellow According to the Reverend Dr. Martin Luther King, Jr., "The function of education is

  5. DOE Funds Advanced Magnet Lab and NREL to Develop Next-Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drivetrains | Department of Energy Funds Advanced Magnet Lab and NREL to Develop Next-Generation Drivetrains DOE Funds Advanced Magnet Lab and NREL to Develop Next-Generation Drivetrains October 1, 2012 - 11:43am Addthis This is an excerpt from the Third Quarter 2012 edition of the Wind Program R&D Newsletter. Investing in next generation drivetrains can help lower the cost and improve the reliability of wind turbines, particularly in larger offshore applications. This includes both

  6. NASA Expert Discusses NextGen - the Next Generation Air Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System on Nov. 18 | Jefferson Lab Expert Discusses NextGen - the Next Generation Air Transportation System on Nov. 18 NASA Expert Discusses NextGen - the Next Generation Air Transportation System on Nov. 18 NEWPORT NEWS, Va., Nov. 7, 2008 -- The U.S. Department of Energy's Jefferson Lab invites the public to an evening lecture about the nation's Next Generation Air Transportation System on Tuesday, Nov. 18. Although today's National Airspace System offers one of the safest means of

  7. Proceedings of the April 2011 Computational Needs for the Next Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Grid Workshop Available | Department of Energy Proceedings of the April 2011 Computational Needs for the Next Generation Electric Grid Workshop Available Proceedings of the April 2011 Computational Needs for the Next Generation Electric Grid Workshop Available January 9, 2012 - 5:34pm Addthis The proceedings from the DOE's April 2011 workshop, "Computational Needs for the Next Generation Electric Grid," are now available. The workshop brought together some of the Nation's

  8. Next Generation Rooftop Unit - 2013 Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop Unit - 2013 Peer Review Next Generation Rooftop Unit - 2013 Peer Review Emerging ... Credit: Oak Ridge National Lab Next Generation Rooftop Unit Rooftop Unit Suite: RTU ...

  9. The Next Generation Air Particle Detectors for the United States...

    Office of Scientific and Technical Information (OSTI)

    The Next Generation Air Particle Detectors for the United States Navy Citation Details In-Document Search Title: The Next Generation Air Particle Detectors for the United States ...

  10. Nanomaterials: Organic and Inorganic for Next-Generation Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanomaterials: Organic and Inorganic for Next-Generation Diesel Technologies Nanomaterials: Organic and Inorganic for Next-Generation Diesel Technologies 2007 Diesel ...

  11. Yahoo! Compute Coop Next Generation Passive Cooling Design for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compute Coop Next Generation Passive Cooling Design for Data Centers Yahoo Compute Coop Next Generation Passive Cooling Design for Data Centers PDF icon yahoopassivecooling.pdf ...

  12. Demonstration of Next Generation PEM CHP Systems for Global Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI ...

  13. Industry Participation Sought for Design of Next Generation Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Participation Sought for Design of Next Generation Nuclear Plant Industry Participation Sought for Design of Next Generation Nuclear Plant June 29, 2006 - 2:41pm Addthis ...

  14. Building a next-generation community ice sheet model: meeting...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Building a next-generation community ice sheet model: meeting summary Citation Details In-Document Search Title: Building a next-generation community ice sheet ...

  15. Model-Based Transient Calibration Optimization for Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Based Transient Calibration Optimization for Next Generation Diesel Engines Model-Based Transient Calibration Optimization for Next Generation Diesel Engines 2005 Diesel Engine...

  16. Research & Development Roadmap: Next-Generation Low Global Warming...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Global Warming Potential Refrigerants Research & Development Roadmap: Next-Generation ... This research and development (R&D) roadmap for next-generation low-GWP refrigerants ...

  17. Secretary Chu Announces $45 Million to Support Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Chu Announces 45 Million to Support Next Generation of Wind Turbine Designs Secretary Chu Announces 45 Million to Support Next Generation of Wind Turbine Designs...

  18. Engaging the Next Generation of Automotive Engineers through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition Engaging the Next Generation of Automotive Engineers through Advanced Vehicle ...

  19. Construction of Blaze at the University of Illinois at Chicago: A Shared, High-Performance, Visual Computer for Next-Generation Cyberinfrastructure-Accelerated Scientific, Engineering, Medical and Public Policy Research

    SciTech Connect (OSTI)

    Brown, Maxine D.; Leigh, Jason

    2014-02-17

    The Blaze high-performance visual computing system serves the high-performance computing research and education needs of University of Illinois at Chicago (UIC). Blaze consists of a state-of-the-art, networked, computer cluster and ultra-high-resolution visualization system called CAVE2(TM) that is currently not available anywhere in Illinois. This system is connected via a high-speed 100-Gigabit network to the State of Illinois' I-WIRE optical network, as well as to national and international high speed networks, such as the Internet2, and the Global Lambda Integrated Facility. This enables Blaze to serve as an on-ramp to national cyberinfrastructure, such as the National Science Foundation’s Blue Waters petascale computer at the National Center for Supercomputing Applications at the University of Illinois at Chicago and the Department of Energy’s Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory. DOE award # DE-SC005067, leveraged with NSF award #CNS-0959053 for “Development of the Next-Generation CAVE Virtual Environment (NG-CAVE),” enabled us to create a first-of-its-kind high-performance visual computing system. The UIC Electronic Visualization Laboratory (EVL) worked with two U.S. companies to advance their commercial products and maintain U.S. leadership in the global information technology economy. New applications are being enabled with the CAVE2/Blaze visual computing system that is advancing scientific research and education in the U.S. and globally, and help train the next-generation workforce.

  20. NREL Next Generation Drivetrain: Mechanical Design and Test Plan (Poster)

    SciTech Connect (OSTI)

    Keller, J.; Halse, C.

    2014-05-01

    The Department of Energy and industry partners are sponsoring a $3m project for design and testing of a 'Next Generation' wind turbine drivetrain at the National Renewable Energy Laboratory (NREL). This poster focuses on innovative aspects of the gearbox design, completed as part of an end-to-end systems engineering approach incorporating innovations that increase drivetrain reliability, efficiency, torque density and minimize capital cost.

  1. Vehicle Technologies Office Merit Review 2014: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines 2012 FOA 648 Topic 3a

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  2. New ALS Technique Guides IBM in Next-Generation Semiconductor Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Guides IBM in Next-Generation Semiconductor Development New ALS Technique Guides IBM in Next-Generation Semiconductor Development Print Wednesday, 21 January 2015 09:37 A new measurement technique developed at the ALS is helping guide the semiconductor industry in next-generation nanopatterning techniques. Directed self assembly (DSA) of block copolymers is an extremely promising strategy for high-volume, cost-effective semiconductor manufacturing at the nanoscale. Materials

  3. Neutronics activities for next generation devices

    SciTech Connect (OSTI)

    Gohar, Y.

    1985-01-01

    Neutronic activities for the next generation devices are the subject of this paper. The main activities include TFCX and FPD blanket/shield studies, neutronic aspects of ETR/INTOR critical issues, and neutronics computational modules for the tokamak system code and tandem mirror reactor system code. Trade-off analyses, optimization studies, design problem investigations and computational models development for reactor parametric studies carried out for these activities are summarized.

  4. Research & Development Roadmap: Next-Generation Low Global Warming

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Refrigerants | Department of Energy Low Global Warming Potential Refrigerants Research & Development Roadmap: Next-Generation Low Global Warming Potential Refrigerants Refrigerants are used in a wide variety of heating, ventilation, air conditioning, and refrigeration (HVAC&R) equipment. The current generation of refrigerants, hydrofluorocarbons (HFCs), have significant global warming potential (GWP) when released to the atmosphere. This research and development (R&D)

  5. Next Generation Luminaire (NGL) Downlight Demonstration Project, Hilton Columbus Downtown

    SciTech Connect (OSTI)

    Davis, R. G.; Perrin, T. E.

    2014-09-30

    At the Hilton Columbus Downtown hotel in Ohio, DOE's Better Buildings Alliance conducted a demonstration of Next Generation Luminaires-winning downlights installed in all guest rooms and suites prior to the hotel's 2012 opening. After a post-occupancy assessment, the LED downlights not only provided the aesthetic appearance and dimming functionality desired, but also provided 50% energy savings relative to a comparable CFL downlight and enabled the lighting power to be more than 20% below that allowed by code.

  6. Yahoo! Compute Coop Next Generation Passive Cooling Design for Data Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Yahoo! Compute Coop Next Generation Passive Cooling Design for Data Centers Yahoo! Compute Coop Next Generation Passive Cooling Design for Data Centers PDF icon yahoo_passive_cooling.pdf More Documents & Publications Award Selections for Industrial Technologies Program Recovery Act Funding ITP_Data_Centers.xls SeaMicro Volume Server Power Reduction

  7. Next Generation Electric Machines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a step-change that enables more efficient use of electricity, as well as reduced drive system size and weight, ... NGEM: MEGAWATT CLASS MOTORS Five projects were selected in ...

  8. Next Generation Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakthroughs in materials science and engineering are needed to enable these new ... Particle Technology for Biorefinery of Non-Food Source Feedstocks Nanostructured ...

  9. Planning the Next Generation of Arctic Ecosystem Experiments

    SciTech Connect (OSTI)

    Hinzman, Larry D [International Arctic Research Center; Wilson, Cathy [Los Alamos National Laboratory (LANL)

    2011-01-01

    Climate Change Experiments in High-Latitude Ecosystems; Fairbanks, Alaska, 13-14 October 2010; A 2-day climate change workshop was held at the International Arctic Research Center, University of Alaska Fairbanks. The workshop, sponsored by Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE), was attended by 45 subject matter experts from universities, DOE national laboratories, and other federal and nongovernmental organizations. The workshop sought to engage the Arctic science community in planning for a proposed Next-Generation Ecosystem Experiments (NGEE-Arctic) project in Alaska (http:// ngee.ornl.gov/). The goal of this activity is to provide data, theory, and models to improve representations of high-latitude terrestrial processes in Earth system models. In particular, there is a need to better understand the processes by which warming may drive increased plant productivity and atmospheric carbon uptake and storage in biomass and soils, as well as those processes that may drive an increase in the release of methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) through microbial decomposition of soil carbon stored in thawing permafrost. This understanding is required to quantify the important feedback mechanisms that define the role of terrestrial processes in regional and global climate.

  10. Synchronization System for Next Generation Light Sources

    SciTech Connect (OSTI)

    Zavriyev, Anton

    2014-03-27

    An alternative synchronization technique one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  11. Beamstrahlung spectra in next generation linear colliders. Revision

    SciTech Connect (OSTI)

    Barklow, T.; Chen, P.; Kozanecki, W.

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  12. Leveraging Utility Resources to Boost Efficiency for the Next Generation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Space Travel: An Energy Efficiency Case Study of ATK Launch Systems | Department of Energy Leveraging Utility Resources to Boost Efficiency for the Next Generation of Space Travel: An Energy Efficiency Case Study of ATK Launch Systems Leveraging Utility Resources to Boost Efficiency for the Next Generation of Space Travel: An Energy Efficiency Case Study of ATK Launch Systems This case study describes how Alliant Techsystems, Incorporated (ATK) leveraged utility incentives from Rocky

  13. Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors

    SciTech Connect (OSTI)

    Simos, N.

    2011-05-01

    In the nuclear energy renaissance, driven by fission reactor concepts utilizing very high temperatures and fast neutron spectra, materials with enhanced performance that exceeds are expected to play a central role. With the operating temperatures of the Generation III reactors bringing the classical reactor materials close to their performance limits there is an urgent need to develop and qualify new alloys and composites. Efforts have been focused on the intricate relations and the high demands placed on materials at the anticipated extreme states within the next generation fusion and fission reactors which combine high radiation fluxes, elevated temperatures and aggressive environments. While nuclear reactors have been in operation for several decades, the structural materials associated with the next generation options need to endure much higher temperatures (1200 C), higher neutron doses (tens of displacements per atom, dpa), and extremely corrosive environments, which are beyond the experience on materials accumulated to-date. The most important consideration is the performance and reliability of structural materials for both in-core and out-of-core functions. While there exists a great body of nuclear materials research and operating experience/performance from fission reactors where epithermal and thermal neutrons interact with materials and alter their physio-mechanical properties, a process that is well understood by now, there are no operating or even experimental facilities that will facilitate the extreme conditions of flux and temperature anticipated and thus provide insights into the behaviour of these well understood materials. Materials, however, still need to be developed and their interaction and damage potential or lifetime to be quantified for the next generation nuclear energy. Based on material development advances, composites, and in particular ceramic composites, seem to inherently possess properties suitable for key functions within the operating envelope of both fission and fusion reactors. In advanced fission reactors composite materials are being designed in an effort to extend the life and improve the reliability of fuel rod cladding as well as structural materials. Composites are being considered for use as core internals in the next generation of gas-cooled reactors. Further, next-generation plasma-fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER) will rely on the capabilities of advanced composites to safely withstand extremely high neutron fluxes while providing superior thermal shock resistance.

  14. Next Generation Bipolar Plates for Automotive PEM Fuel Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Bipolar Plates for Automotive PEM Fuel Cells Next Generation Bipolar Plates for Automotive PEM Fuel Cells Part of a 100 million fuel cell award announced by DOE ...

  15. Secretary Chu Announces $45 Million to Support Next Generation of Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine Designs | Department of Energy 5 Million to Support Next Generation of Wind Turbine Designs Secretary Chu Announces $45 Million to Support Next Generation of Wind Turbine Designs November 23, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced the selection of Clemson University to receive up to $45 million under the American Recovery and Reinvestment Act for a wind energy test facility that will enhance the performance, durability,

  16. DOE Launches First Segment of its Next-Generation Nationwide Network to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Support Scientific Research Efforts | Department of Energy First Segment of its Next-Generation Nationwide Network to Support Scientific Research Efforts DOE Launches First Segment of its Next-Generation Nationwide Network to Support Scientific Research Efforts May 30, 2007 - 1:24pm Addthis WASHINGTON, DC- The U.S. Department of Energy's (DOE) Office of Science and Internet2 announced today that the first segment of a next-generation, nationwide network has gone live, marking a key step in

  17. Social Intelligence: Next Generation Business Intelligence

    SciTech Connect (OSTI)

    Troy Hiltbrand

    2010-09-01

    In order for Business Intelligence to truly move beyond where it is today, a shift in approach must occur. Currently, much of what is accomplished in the realm of Business Intelligence relies on reports and dashboards to summarize and deliver information to end users. As we move into the future, we need to get beyond these reports and dashboards to a point where we break out the individual metrics that are embedded in these reports and interact with these components independently. Breaking these pieces of information out of the confines of reports and dashboards will allow them to be dynamically assembled for delivery in the way that makes most sense to each consumer. With this change in ideology, Business Intelligence will move from the concept of collections of objects, or reports and dashboards, to individual objects, or information components. The Next Generation Business Intelligence suite will translate concepts popularized in Facebook, Flickr, and Digg into enterprise worthy communication vehicles.

  18. Integrated control of next generation power system

    SciTech Connect (OSTI)

    None, None

    2010-02-28

    The multi-agent system (MAS) approach has been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future as developed by Southern California Edison. These next generation power system results include better ability to reconfigure the circuit as well as the increased capability to improve the protection and enhance the reliability of the circuit. There were four main tasks in this project. The specific results for each of these four tasks and their related topics are presented in main sections of this report. Also, there were seven deliverables for this project. The main conclusions for these deliverables are summarized in the identified subtask section of this report. The specific details for each of these deliverables are included in the “Project Deliverables” section at the end of this Final Report.

  19. Aeras: A next generation global atmosphere model

    SciTech Connect (OSTI)

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not components of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.

  20. Aeras: A next generation global atmosphere model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not componentsmore » of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.« less

  1. Next-Generation LED Package Architectures Enabled by Thermally...

    Energy Savers [EERE]

    LED Package Architectures Enabled by Thermally Conductive Transparent Encapsulants Next-Generation LED Package Architectures Enabled by Thermally Conductive Transparent ...

  2. JCESR and NASA team up to conduct research for next generation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and NASA team up to conduct research for next generation batteries to be used in space News Release Media Contacts Ben Schiltz Joint Center for Energy Storage Research Argonne...

  3. Next Generation * Natural Gas (NG)2 Information Requirements--Executive Summary

    Reports and Publications (EIA)

    2000-01-01

    The Energy Information Administration (EIA) has initiated the Next Generation * Natural Gas (NG)2 project to design and implement a new and comprehensive information program for natural gas to meet customer requirements in the post-2000 time frame.

  4. Funding Opportunity: Next Generation Electric Machines: Megawatt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that leverage the benefits of state of the art power electronics (i.e., wide band gap devices) with energy efficient, high speed, direct drive, megawatt (MW) class electric ...

  5. Inspiring the Next Generation of Computational Thinkers | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Illinois Math and Science Academy senior Tavis Reed delivered a keynote to students on his research and path to STEM. Illinois Math and Science Academy senior Tavis Reed delivered a keynote to students on his research and path to STEM. Inspiring the Next Generation of Computational Thinkers By Justin H.S. Breaux * January 13, 2016 Tweet EmailPrint The City of Chicago and the U.S. Department of Energy's (DOE's) Argonne National Laboratory came together this winter for a My

  6. Design studies for the next generation electron ion colliders

    SciTech Connect (OSTI)

    Sayed, Hisham Kamal; Bogacz, Slawomir A.; Krafft, Geoffrey A.

    2014-04-01

    The next generation Electron Ion Collider (EIC) at Thomas Jefferson National Accelerator Facility (JLAB) utilizes a figure-8 shaped ion and electron rings. EIC has the ability to preserve the ion polarization during acceleration, where the electron ring matches in footprint with a figure-8 ion ring. The electron ring is designed to deliver a highly polarized high luminous electron beam at interaction point (IP). The main challenges of the electron ring design are the chromaticity compensation and maintaining high beam polarization of 70% at all energies 311 GeV without introducing transverse orbital coupling before the IP. The very demanding detector design limits the minimum distance between the final focus quadrupole and the interaction point to 3.5 m which results in a large ? function inside the final focus quadrupoles leading to increased beam chromaticity. In this paper, we present a novel chromaticity compensation scheme that mitigates IP chromaticity by a compact chromaticity compensation section with multipole magnet components. In addition, a set of spin rotators are utilized to manipulate the polarization vector of the electron beam in order to preserve the beam polarization. The spin rotator solenoids introduce undesired coupling between the horizontal and vertical betatron motion of the beam. We introduce a compact and modular orbit decoupling insert that can fit in the limited space of the straight section in the figure-8 ring. We show a numerical study of the figure-8 ring design with the compact straight section, which includes the interaction region, chromaticity compensation section, and the spin rotators, the figure-8 design performance is evaluated with particle tracking.

  7. DOE Announces Up to $5 Million to Support the Next Generation of Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Designers and Engineers | Department of Energy Up to $5 Million to Support the Next Generation of Advanced Automotive Designers and Engineers DOE Announces Up to $5 Million to Support the Next Generation of Advanced Automotive Designers and Engineers February 16, 2011 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu today announced up to $5 million in funding to support Graduate Automotive Technology Education (GATE) Centers of Excellence. The GATE Centers will focus

  8. EERE Success Story-DOE Supports PG&E Development of Next Generation

    Energy Savers [EERE]

    Plug-in Hybrid Electric Trucks | Department of Energy Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks EERE Success Story-DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks February 25, 2015 - 1:04pm Addthis EERE Success Story—DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks With support from EERE's Vehicle Technologies Office (VTO), Pacific Gas and Electric (PG&E) is demonstrating

  9. DOE to host workshop to explore use of WIPP as 'next generation' underground laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshop to Explore Use of WIPP As 'Next Generation' Underground Laboratory CARLSBAD, N.M., June 9, 2000 - The U.S. Department of Energy's (DOE) Carlsbad Area Office is sponsoring the "Workshop on the Next Generation U.S. Underground Science Facility" June 12-14 at the Pecos River Village Conference Center, 711 Muscatel, in Carlsbad. The purpose of the workshop is to explore the potential use of the DOE's Waste Isolation Pilot Plant (WIPP) underground as a next generation laboratory

  10. EERE Success Story-DOE Supports PG&E Development of Next Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Hybrid Electric Trucks | Department of Energy DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks EERE Success Story-DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks February 25, 2015 - 1:04pm Addthis EERE Success Story—DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks With support from EERE's Vehicle Technologies Office (VTO), Pacific Gas and Electric (PG&E) is demonstrating

  11. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Discusses plan, baselining, and modeling, for new light truck 4-cylinder turbocharged diesel meeting Tier 2, Bin 2 emissions and 40 percent better fuel economy than the V-8 gasoline engine it will replace PDF icon deer11_ruth.pdf More Documents & Publications Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine

  12. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect (OSTI)

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

  13. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect (OSTI)

    P. E. MacDonald

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

  14. Next Generation Bipolar Plates for Automotive PEM Fuel Cells

    SciTech Connect (OSTI)

    Orest Adrianowycz; Julian Norley; David J. Stuart; David Flaherty; Ryan Wayne; Warren Williams; Roger Tietze; Yen-Loan H. Nguyen; Tom Zawodzinski; Patrick Pietrasz

    2010-04-15

    The results of a successful U.S. Department of Energy (DoE) funded two-year $2.9 MM program lead by GrafTech International Inc. (GrafTech) are reported and summarized. The program goal was to develop the next generation of high temperature proton exchange membrane (PEM) fuel cell bipolar plates for use in transportation fuel cell applications operating at temperatures up to 120 °C. The bipolar plate composite developed during the program is based on GrafTech’s GRAFCELL resin impregnated flexible graphite technology and makes use of a high temperature Huntsman Advanced Materials resin system which extends the upper use temperature of the composite to the DoE target. High temperature performance of the new composite is achieved with the added benefit of improvements in strength, modulus, and dimensional stability over the incumbent resin systems. Other physical properties, including thermal and electrical conductivity of the new composite are identical to or not adversely affected by the new resin system. Using the new bipolar plate composite system, machined plates were fabricated and tested in high temperature single-cell fuel cells operating at 120 °C for over 1100 hours by Case Western Reserve University. Final verification of performance was done on embossed full-size plates which were fabricated and glued into bipolar plates by GrafTech. Stack testing was done on a 10-cell full-sized stack under a simulated drive cycle protocol by Ballard Power Systems. Freeze-thaw performance was conducted by Ballard on a separate 5-cell stack and shown to be within specification. A third stack was assembled and shipped to Argonne National Laboratory for independent performance verification. Manufacturing cost estimate for the production of the new bipolar plate composite at current and high volume production scenarios was performed by Directed Technologies Inc. (DTI). The production cost estimates were consistent with previous DoE cost estimates performed by DTI for the DoE on metal plates. The final result of DTI’s analysis for the high volume manufacturing scenario ($6.85 /kW) came in slightly above the DoE target of $3 to $5/kW. This estimate was derived using a “Best Case Scenario” for many of the production process steps and raw material costs with projections to high volumes. Some of the process improvements assumed in this “Best Case Scenario” including high speed high impact forming and solvent-less resins, have not yet been implemented, but have a high probability of potential success.

  15. Race to Zero Student Design Competition: Inspiring the Next Generation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Scientists | Department of Energy Race to Zero Student Design Competition: Inspiring the Next Generation of Building Scientists Race to Zero Student Design Competition: Inspiring the Next Generation of Building Scientists April 23, 2015 - 3:15pm Addthis Race to Zero Student Design Competition 1 of 6 Race to Zero Student Design Competition Sam Rashkin (right), Chief Architect for the Building Technologies Office, talks to team members from Georgia Institute of Technology during the

  16. Demonstration of Next Generation PEM CHP Systems for Global Markets Using

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PBI Membrane Technology | Department of Energy Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 7a_plugpwr.pdf More Documents & Publications International Stationary Fuel Cell Demonstration Intergovernmental Stationary Fuel Cell System

  17. NEXT GENERATION MELTER OPTIONEERING STUDY - INTERIM REPORT

    SciTech Connect (OSTI)

    GRAY MF; CALMUS RB; RAMSEY G; LOMAX J; ALLEN H

    2010-10-19

    The next generation melter (NOM) development program includes a down selection process to aid in determining the recommended vitrification technology to implement into the WTP at the first melter change-out which is scheduled for 2025. This optioneering study presents a structured value engineering process to establish and assess evaluation criteria that will be incorporated into the down selection process. This process establishes an evaluation framework that will be used progressively throughout the NGM program, and as such this interim report will be updated on a regular basis. The workshop objectives were achieved. In particular: (1) Consensus was reached with stakeholders and technology providers represented at the workshop regarding the need for a decision making process and the application of the D{sub 2}0 process to NGM option evaluation. (2) A framework was established for applying the decision making process to technology development and evaluation between 2010 and 2013. (3) The criteria for the initial evaluation in 2011 were refined and agreed with stakeholders and technology providers. (4) The technology providers have the guidance required to produce data/information to support the next phase of the evaluation process. In some cases it may be necessary to reflect the data/information requirements and overall approach to the evaluation of technology options against specific criteria within updated Statements of Work for 2010-2011. Access to the WTP engineering data has been identified as being very important for option development and evaluation due to the interface issues for the NGM and surrounding plant. WRPS efforts are ongoing to establish precisely data that is required and how to resolve this Issue. It is intended to apply a similarly structured decision making process to the development and evaluation of LAW NGM options.

  18. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  19. Mutation Detection with Next-Generation Resequencing through a Mediator

    Office of Scientific and Technical Information (OSTI)

    Genome (Journal Article) | SciTech Connect Mutation Detection with Next-Generation Resequencing through a Mediator Genome Citation Details In-Document Search Title: Mutation Detection with Next-Generation Resequencing through a Mediator Genome The affordability of next generation sequencing (NGS) is transforming the field of mutation analysis in bacteria. The genetic basis for phenotype alteration can be identified directly by sequencing the entire genome of the mutant and comparing it to

  20. Next Generation Sequencing at the University of Chicago Genomics Core

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Next Generation Sequencing at the University of Chicago Genomics Core Citation Details In-Document Search Title: Next Generation Sequencing at the University of Chicago Genomics Core The University of Chicago Genomics Core provides University of Chicago investigators (and external clients) access to State-of-the-Art genomics capabilities: next generation sequencing, Sanger sequencing / genotyping and micro-arrays (gene expression, genotyping, and methylation).

  1. Presented at the Second International Meeting on Next Generation Safeguards

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Second International Meeting on Next Generation Safeguards October 26, 2009 Presented at the Second International Meeting on Next Generation SafeguardsPresented by Thomas D'Agostino, Administrator, NNSA Good morning and welcome to the Second International Meeting on Next Generation Safeguards. Let me start by thanking Deputy Minister Moriguchi for his opening remarks and expressing our great appreciation to the Japan Ministry of Education, Culture,

  2. Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar

    Broader source: Energy.gov [DOE]

    The Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar will discuss standard procedures regarding the EERE Office and FOA process.

  3. Breakout Session: Open Innovation: SunShot Catalyst & Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Open Innovation: SunShot Catalyst & Next Generation Government Prizes Breakout Session: ... and entrepreneurs who rapidly create transformative economic change and social impact. ...

  4. Project Profile: Next-Generation Parabolic Trough Collectors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the next generation of lower-cost parabolic trough technologies that can compete on an equal footing with conventional power generation. Innovation Abengoa is focusing on ...

  5. Vehicle Technologies Office Merit Review 2015: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  6. Vehicle Technologies Office Merit Review 2014: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  7. Next Generation Safeguards Initiative at Los Alamos National...

    Office of Scientific and Technical Information (OSTI)

    Initiative at Los Alamos National Laboratory - student perspective Citation Details In-Document Search Title: Next Generation Safeguards Initiative at Los Alamos National ...

  8. Building the Next Generation of Parallel Applications: Co-Design...

    Office of Scientific and Technical Information (OSTI)

    Applications: Co-Design Opportunities and Challenges. Citation Details In-Document Search Title: Building the Next Generation of Parallel Applications: Co-Design Opportunities and ...

  9. Next Generation Bio-Based & Sustainable Chemicals Summit

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 6th Annual Next Generation Bio-Based & Sustainable Chemicals Summit will be hosted in New Orleans, Louisiana, from February 3–5.

  10. The Next Generation of Hydropower Engineers and Scientists |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Next Generation of Hydropower Engineers and Scientists August 11, 2011 - 12:31pm Addthis Hydro Research Foundation Fellows. | Image courtesy of the Hydro Research Foundation ...

  11. Funding Opportunity Coming Soon: Scaling up the Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coming Soon: Scaling up the Next Generation of Building Efficiency Packages AMO's Blake Marshall Joins Industry Leaders for Discussion About 3D Printing and the Environment

  12. Next Generation Sequencing at the University of Chicago Genomics...

    Office of Scientific and Technical Information (OSTI)

    University of Chicago Genomics Core Citation Details In-Document Search Title: Next Generation Sequencing at the University of Chicago Genomics Core You are accessing a ...

  13. Graphene, Hydrogen and Next-Generation Electronics | Department...

    Office of Environmental Management (EM)

    developed a new approach to growing graphene (one-atom thick carbon sheets) that can help advance next-generation electronics including batteries, transistors and computer chips. ...

  14. Next Generation Batteries with Metal Anodes - Joint Center for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 3, 2015, Accomplishments Next Generation Batteries with Metal Anodes Promising electrolytes for the magnesium battery consist of salts dissolved in liquid solvents. Recent ...

  15. New ALS Technique Guides IBM in Next-Generation Semiconductor Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Guides IBM in Next-Generation Semiconductor Development Print A new measurement technique developed at the ALS is helping guide the semiconductor industry in next-generation nanopatterning techniques. Directed self assembly (DSA) of block copolymers is an extremely promising strategy for high-volume, cost-effective semiconductor manufacturing at the nanoscale. Materials that self-assemble spontaneously form nanostructures down to the molecular scale, which would revolutionize

  16. GaInNAs Junctions for Next-Generation Concentrators: Progress and Prospects

    SciTech Connect (OSTI)

    Friedman, D. J.; Ptak, A. J.; Kurtz, S. R.; Geisz, J. F.; Kiehl, J.

    2005-08-01

    We discuss progress in the development of GaInNAs junctions for application in next-generation multijunction concentrator cells. A significant development is the demonstration of near-100% internal quantum efficiencies in junctions grown by molecular-beam epitaxy. Testing at high currents validates the compatibility of these devices with concentrator operation. The efficiencies of several next-generation multijunction structures incorporating these state-of-the-art GaInNAs junctions are projected.

  17. Next Generation Attics and Roof Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Som Shrestha Kaushik Biswas, Ken Childs, Jerald Atchley, Phil Childs Andre Desjarlais (Group Leader) 32% Primary Energy 28% Primary Energy 2 | Building Technologies Office ...

  18. Reducing Risk for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare; Kyle B. Oswald

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  19. Next Generations Safeguards Initiative: The Life of a Cylinder

    SciTech Connect (OSTI)

    Morgan, James B; White-Horton, Jessica L

    2012-01-01

    The U.S. Department of Energy/National Nuclear Security Administration Office of Nonproliferation and International Security's Next Generation Safeguards Initiative (NGSI) has begun a program based on a five-year plan to investigate the concept of a global monitoring scheme that uniquely identifies uranium hexafluoride (UF6) cylinders and their locations throughout the life cycle. A key initial activity in the NGSI program is to understand and document the 'life of a UF6 cylinder' from cradle to grave. This document describes the life of a UF6 cylinder and includes cylinder manufacture and procurement processes as well as cylinder-handling and operational practices at conversion, enrichment, fuel fabrication, and depleted UF6 conversion facilities. The NGSI multiple-laboratory team is using this document as a building block for subsequent tasks in the five-year plan, including development of the functional requirements for cylinder-tagging and tracking devices.

  20. NEXT GENERATION NUCLEAR PLANT LICENSING BASIS EVENT SELECTION WHITE PAPER

    SciTech Connect (OSTI)

    Mark Holbrook

    2010-09-01

    The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) plant capable of producing the electricity and high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) application process, as recommended in the Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy. NRC licensing of the NGNP plant utilizing this process will demonstrate the efficacy of licensing future HTGRs for commercial industrial applications. This white paper is one in a series of submittals that will address key generic issues of the COL priority licensing topics as part of the process for establishing HTGR regulatory requirements.

  1. Next Generation Muon g-2 Experiments

    SciTech Connect (OSTI)

    Hertzog, David W.

    2015-12-02

    I report on the progress of two new muon anomalous magnetic moment experiments, which are in advanced design and construction phases. The goal of Fermilab E989 is to reduce the experimental uncertainty of $a_\\mu$ from Brookhaven E821 by a factor of 4; that is, $\\delta a_\\mu \\sim 16 \\times 10^{-11}$, a relative uncertainty of 140~ppb. The method follows the same magic-momentum storage ring concept used at BNL, and pioneered previously at CERN, but muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or upgraded significantly. In contrast, J-PARC E34 will employ a novel approach based on injection of an ultra-cold, low-energy, muon beam injected into a small, but highly uniform magnet. Only a small magnetic focusing field is needed to maintain storage, which distinguishes it from CERN, BNL and Fermilab. E34 aims to roughly match the previous BNL precision in their Phase~1 installation.

  2. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    SciTech Connect (OSTI)

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  3. NETL Science & Engineering Ambassadors Guide Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    experts for the 2016 spring semester course, "Energy: Science, Society and Communication," co-taught by Carnegie Mellon University (CMU) and the University of Pittsburgh (Pitt). ...

  4. Next Generation Safeguards Initiative Inaugural Conference |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    And they will continue to change. And our efforts to combat ... international safeguards system, cannot do the job alone. ... at our network of world class Department of Energy ...

  5. Next Generation Luminaires Design Competition Announces 2015...

    Energy Savers [EERE]

    Society, and the International Association of Lighting Designers, NGL promotes excellence in the design of energy-efficient LED products for commercial lighting applications. ...

  6. NNSA Next Generation Safeguards Initiative | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Administered by the International Atomic Energy Agency (IAEA), international safeguards serve to monitor nuclear activities under the Non-Proliferation Treaty (NPT) and are the ...

  7. Next Generation Luminaire (NGL) Downlight Demonstration Project...

    Energy Savers [EERE]

    The U.S. DOE conducts demonstration projects documenting the performance of LED luminaires relative to conventional technologies to increase market adoption of energy-efficient LED ...

  8. The Next Generation Nuclear Plant Graphite Creep Experiment Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2010-10-01

    The United States Department of Energys Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energys lead laboratory for nuclear energy development. The ATR is one of the worlds premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will have differing compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of the experiment. The first experiment was inserted in the ATR in August 2009 and started its irradiation in September 2009. It is anticipated to complete its irradiation in early calendar 2011. This paper will discuss the design of the experiment including the test train and the temperature and compressive load monitoring, control, and the irradiation experience to date.

  9. California: Next-Generation Geothermal Demonstration Launched...

    Energy Savers [EERE]

    Launched August 21, 2013 - 12:00am Addthis At the outer edges of the largest operating geothermal field in the world, the Energy Department and project partner Calpine...

  10. NERSC Launches Next-Generation Code Optimization Effort

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leads Next-Generation Code Optimization Effort NERSC Launches Next-Generation Code Optimization Effort NERSC, Intel, Cray team up to prepare users for transition to exascale computing August 11, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov GertyCori3 NERSC's next-generation supercomputer, a Cray XC, will be named after Gerty Cori, the first American woman to be honored with a Nobel Prize in science. She shared the 1947 Nobel Prize with her husband Carl (pictured) and Argentine

  11. DOE Makes Available $8 Million for Pre-Conceptual Design of Next Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Plants | Department of Energy Available $8 Million for Pre-Conceptual Design of Next Generation Nuclear Plants DOE Makes Available $8 Million for Pre-Conceptual Design of Next Generation Nuclear Plants September 28, 2006 - 9:01am Addthis WASHINGTON, D.C. - The U.S. Department of Energy (DOE) today announced that DOE's Idaho National Laboratory (INL) will make awards valued at about $8 million to three companies to perform engineering studies and develop a pre-conceptual design to

  12. Empowering the Next Generation: Connecting the U.S. and African Nations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    through Technical Exchanges | Department of Energy Empowering the Next Generation: Connecting the U.S. and African Nations through Technical Exchanges Empowering the Next Generation: Connecting the U.S. and African Nations through Technical Exchanges July 31, 2014 - 2:55pm Addthis Director Dot Harris meets with Subramania I. Sritharan PhD, P.E., Central State University, and John J. Qu, Ph.D., George Mason University, fellow participants at the May 2014 U.S.-Africa Energy Ministerial in

  13. Next Generation Natural Gas Vehicle (NGNGV) Program Fact Sheet

    SciTech Connect (OSTI)

    Walkowicz, K.

    2002-05-01

    Fact sheet describing U. S. DOE and NREL's development of next generation natural gas vehicles (NGVs) as a key element in its strategy to reduce oil import and vehicle pollutants.

  14. Next Generation Natural Gas Vehicle Program Phase I: Clean Air...

    Office of Scientific and Technical Information (OSTI)

    0.5 ghp-h NOx Engine Concept; Final Report Citation Details In-Document Search Title: Next Generation Natural Gas Vehicle Program Phase I: Clean Air Partners 0.5 ghp-h NOx ...

  15. TEXT-ALTERNATIVE VERSION: NEXT GENERATION LUMINAIRES INDOOR JUDGING 2014

    Broader source: Energy.gov [DOE]

    Dan Blitzer, NGL Steering Committee, The Practical Lighting Workshop: Products that have been evaluated by the Next Generation Luminaires Design Competition have been vetted to a degree that no...

  16. Next Generation Luminaires Design Competition Announces 2013 Outdoor Winners

    Broader source: Energy.gov [DOE]

    The 2013 winners in the outdoor category of the Next Generation Luminaires Solid-State Lighting Design Competition were announced at the Strategies in Light conference in Santa Clara, CA.

  17. Next Generation Luminaires Design Competition Announces 2014 Indoor Winners

    Broader source: Energy.gov [DOE]

    Winners in the Indoor category of the sixth annual Next Generation LuminairesTM Design Competition were announced today at The LED Show in Los Angeles. Sponsored by DOE, the Illuminating...

  18. Next Generation Natural Gas Vehicle Program Phase I: Clean Air...

    Office of Scientific and Technical Information (OSTI)

    I: Clean Air Partners 0.5 ghp-h NOx Engine Concept; Final Report Citation Details In-Document Search Title: Next Generation Natural Gas Vehicle Program Phase I: Clean Air Partners ...

  19. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for managing the R&D program elements; (2) Developing a specific work package for the R&D activities to be performed during each government fiscal year; (3) Reporting the status and progress of the work based on committed deliverables and milestones; (4) Developing collaboration in areas of materials R&D of benefit to the NGNP with countries that are a part of the Generation IV International Forum; and (5) Ensuring that the R&D work performed in support of the materials program is in conformance with established Quality Assurance and procurement requirements. The objective of the NGNP Materials R&D Program is to provide the essential materials R&D needed to support the design and licensing of the reactor and balance of plant, excluding the hydrogen plant. The materials R&D program is being initiated prior to the design effort to ensure that materials R&D activities are initiated early enough to support the design process and support the Project Integrator. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge; thus, new materials and approaches may be required.

  20. National labs collaborate to shape development of next-generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supercomputers Development of next-generation supercomputers National labs collaborate to shape development of next-generation supercomputers Three national laboratories are working together to solve some of the world's most challenging problems by ensuring that the nation's scientific community has access to leading edge computing systems to carry out their research. November 10, 2015 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez

  1. LANL, Sandia, Cray Set to Build Next Generation NNSA Supercomputer |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Library / Press Releases LANL, Sandia, Cray Set to Build Next Generation NNSA Supercomputer July 10, 2014 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) and Cray, Inc., have entered into a contract agreement for a next generation supercomputer, called Trinity, to advance the mission for the Stockpile Stewardship Program. Managed by NNSA, Trinity is a joint effort of the New Mexico Alliance for Computing at Extreme Scale (ACES)

  2. Next Generation Safeguards Initiative at Los Alamos National Laboratory -

    Office of Scientific and Technical Information (OSTI)

    student perspective (Conference) | SciTech Connect Next Generation Safeguards Initiative at Los Alamos National Laboratory - student perspective Citation Details In-Document Search Title: Next Generation Safeguards Initiative at Los Alamos National Laboratory - student perspective Authors: Murphy, Chantell L [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2011-06-10 OSTI Identifier: 1072336 Report Number(s): LA-UR-11-03370; LA-UR-11-3370 DOE Contract Number:

  3. Next Generation Safeguards Initiative at Los Alamos National Laboratory -

    Office of Scientific and Technical Information (OSTI)

    student perspective (Conference) | SciTech Connect Next Generation Safeguards Initiative at Los Alamos National Laboratory - student perspective Citation Details In-Document Search Title: Next Generation Safeguards Initiative at Los Alamos National Laboratory - student perspective Authors: Murphy, Chantell L [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2011-07-18 OSTI Identifier: 1083124 Report Number(s): LA-UR-11-04128; LA-UR-11-4128 DOE Contract Number:

  4. Next generation safeguards initiative university outreach: the unique Los

    Office of Scientific and Technical Information (OSTI)

    Alamos and the Pennsylvania state university nuclear fuel cycle and safeguards graduate course (Conference) | SciTech Connect Next generation safeguards initiative university outreach: the unique Los Alamos and the Pennsylvania state university nuclear fuel cycle and safeguards graduate course Citation Details In-Document Search Title: Next generation safeguards initiative university outreach: the unique Los Alamos and the Pennsylvania state university nuclear fuel cycle and safeguards

  5. Next generation safeguards initiative university outreach: the unique Los

    Office of Scientific and Technical Information (OSTI)

    Alamos and the Pennsylvania state university nuclear fuel cycle and safeguards graduate course (Conference) | SciTech Connect Next generation safeguards initiative university outreach: the unique Los Alamos and the Pennsylvania state university nuclear fuel cycle and safeguards graduate course Citation Details In-Document Search Title: Next generation safeguards initiative university outreach: the unique Los Alamos and the Pennsylvania state university nuclear fuel cycle and safeguards

  6. Building the Next Generation of Parallel Applications: Co-Design

    Office of Scientific and Technical Information (OSTI)

    Opportunities and Challenges. (Conference) | SciTech Connect Building the Next Generation of Parallel Applications: Co-Design Opportunities and Challenges. Citation Details In-Document Search Title: Building the Next Generation of Parallel Applications: Co-Design Opportunities and Challenges. Abstract not provided. Authors: Heroux, Michael Allen Publication Date: 2011-04-01 OSTI Identifier: 1108313 Report Number(s): SAND2011-2822C 470544 DOE Contract Number: AC04-94AL85000 Resource Type:

  7. Next Generation Safeguards Initiatives at Los Alamos National Laboratory

    National Nuclear Security Administration (NNSA)

    Next Generation Safeguards Initiatives at Los Alamos National Laboratory Strengthening Human Capital for International Safeguards - 2009 * In October 2007, NNSA's Office of Nonproliferation and International Security (NA-24) urged the national laboratories to create projects devoted to improving human capital and training for nuclear safeguards as part of the Next Generation Safeguards Initiative (NGSI). * To meet this need, Los Alamos National Laboratory (LANL), Lawrence Livermore National

  8. Computational Needs for the Next Generation Electric Grid Proceedings

    SciTech Connect (OSTI)

    Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian; Sztipanovits, Janos; Hemingway, Graham; University, Vanderbilt; Bose, Anjan; Stivastava, Anurag; Grijalva, Santiago; Grijalva, Santiago; Ryan, Sarah M.; McCalley, James D.; Woodruff, David L.; Xiong, Jinjun; Acar, Emrah; Agrawal, Bhavna; Conn, Andrew R.; Ditlow, Gary; Feldmann, Peter; Finkler, Ulrich; Gaucher, Brian; Gupta, Anshul; Heng, Fook-Luen; Kalagnanam, Jayant R; Koc, Ali; Kung, David; Phan, Dung; Singhee, Amith; Smith, Basil

    2011-10-05

    The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power system software tool performance, i.e. speed to solution, and enhance applicability for new and existing real-time operation and control approaches, as well as large-scale planning analysis. Finally, models are becoming increasingly essential for improved decision-making across the electric system, from resource forecasting to adaptive real-time controls to online dynamics analysis. The importance of data is thus reinforced by their inescapable role in validating, high-fidelity models that lead to deeper system understanding. Traditional boundaries (reflecting geographic, institutional, and market differences) are becoming blurred, and thus, it is increasingly important to address these seams in model formulation and utilization to ensure accuracy in the results and achieve predictability necessary for reliable operations. Each paper also embodies the philosophy that our energy challenges require interdisciplinary solutions - drawing on the latest developments in fields such as mathematics, computation, economics, as well as power systems. In this vein, the workshop should be viewed not as the end product, but the beginning of what DOE seeks to establish as a vibrant, on-going dialogue among these various communities. Bridging communication gaps among these communities will yield opportunities for innovation and advancement. The papers and workshop discussion provide the opportunity to learn from experts on the current state-of-the-art on computational approaches for electric power systems, and where one may focus to accelerate progress. It has been extremely valuable to me as I better understand this space, and consider future programmatic activities. I am confident that you too will enjoy the discussion, and certainly learn from the many experts. I would like to thank the authors of the papers for sharing their perspectives, as well as the paper discussants, session recorders, and participants. The meeting would not have been as successful without your commitment and engagement. I also would like to thank Joe Eto and Bob Thomas for their vision and leadership in bringing together such a well-structured and productive forum.

  9. EERE Success Story-Next-Generation Sensor Fish to Provide Data That Will

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Help Protect Real, Live Fish | Department of Energy Next-Generation Sensor Fish to Provide Data That Will Help Protect Real, Live Fish EERE Success Story-Next-Generation Sensor Fish to Provide Data That Will Help Protect Real, Live Fish June 4, 2014 - 1:12pm Addthis Pacific Northwest National Laboratory has redesigned the Sensor Fish, a small device deployed to study the conditions faced by fish swimming through hydropower installations. Danger to fish is a major concern when building or

  10. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 2

    ScienceCinema (OSTI)

    Thomas D'Agostino

    2010-09-01

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  11. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 1

    ScienceCinema (OSTI)

    Thomas D'Agostino

    2010-09-01

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  12. Demonstrating and Validating a Next Generation Model-Based Controller for

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Efficient, Low Emissions Diesel Engines | Department of Energy Fully model-based, practically-mapless engine control concept is viable PDF icon deer09_allain.pdf More Documents & Publications Increased Engine Efficiency via Advancements in Engine Combustion Systems Integration of Control System Components for Optimum Engine Response Model-Based Transient Calibration Optimization for Next Generation Diesel Engines

  13. Alternative multimedia regulatory programs for next-generation refineries

    SciTech Connect (OSTI)

    Elcock, D.; Gasper, J.; Arguerro, R.; Emerson, D.

    2000-06-22

    The 25-year-old command-and-control environmental regulatory structure in the US has resulted in significant environmental improvements. Recently, however, its limitations (e.g., rigid application regardless of site-specific conditions, disregard of cross-media and multimedia impacts, limited incentives for new technology development and use) have become increasingly apparent. New regulatory approaches that recognize current and anticipated economic constraints, new knowledge of environmental processes and impacts, and the benefits of new technologies are needed. Such approaches could be especially important for the US petroleum refining industry. This industry operates under thin profit margins, releases chemicals that can produce adverse health and environmental impacts, and must meet the technological challenges of producing more highly refined fuels from poorer quality feedstocks. Under a grant from the Environmental Technology Initiative (ETI), Argonne National Laboratory and its subcontractor, Analytical Services, Inc. developed two alternative environmental regulatory programs for next-generation petroleum refineries. (In this report, next-generation refineries refers to the refineries of today as they operate in the next 20 or more years rather than to fully reengineered future refineries.) The objective of the ETI refinery project was to develop future-oriented regulatory programs for next-generation refineries that will expand the use of innovative technologies, encourage pollution prevention, demonstrate environmental responsibility, and maintain refinery economic performance. Rather than suggesting targeted, short-term modifications to existing media-specific command-and-control regulations, the ETI project suggests the use of new approaches that are broader and more flexible. It recognizes that giving refineries flexibility in meeting environmental protection goals can stimulate new technology development and use. Unlike most US Environmental Protection Agency (EPA) reinvention efforts, which seek results in 12 to 18 months, this ETI effort assumes a time frame of 20 years or more. It also assumes that existing laws and regulations can be changed. An iterative and interactive process was used by the project team to develop the alternative approaches. Information and stakeholder input were integrated to provide for constant revision and improvement. First, guidelines and principles were established to bound the study and set parameters for developing the approaches. Next, existing and projected environmental laws and regulations affecting petroleum refineries were examined to identify areas needing change. Then, to understand future challenges and opportunities, the projected refinery operating environment was described in terms of feedstock, product, technology, and economics. Finally several goals and indicators for assessing and comparing the alternatives were identified. On the basis of this background information, more than 60 options that could efficiently and effectively protect human health and the environment were identified. These options ranged from fundamental changes in program philosophy to procedural improvements. After the options were evaluated against the goals and indicators, many of them were integrated into two separate thematic paradigms: a risk-based paradigm and a goal-based paradigm. Elements common to both approaches include the following: (1) Establish the baseline--In establishing the baseline, the refinery and the regulator jointly identify residuals for which release limits must be established; (2) Set residual release limits--The refinery and the regulator jointly specify release limits on a facility-wide rather than a source-specific basis. A facility-wide permit documents the release limits; and (3) Assure compliance--Incentives provide the basis for assuring compliance, and flexibility in the compliance method is encouraged. Penalties apply if releases exceed the limits, and reporting requirements are streamlined relative to current practices.

  14. NERSC, Cray Move Forward With Next-Generation Scientific Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC, Cray Move Forward With Next-Generation Scientific Computing NERSC, Cray Move Forward With Next-Generation Scientific Computing New Cray XC40 will be first supercomputer in Berkeley Lab's new Computational Research and Theory facility April 22, 2015 Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 NewCRT.jpg The Cori Phase 1 system will be the first supercomputer installed in the new Computational Research and Theory Facility now in the final stages of construction at Lawrence Berkeley

  15. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  16. Next Generation Integrated Environment for Collaborative Work Across Internets

    SciTech Connect (OSTI)

    Harvey B. Newman

    2009-02-24

    We are now well-advanced in our development, prototyping and deployment of a high performance next generation Integrated Environment for Collaborative Work. The system, aimed at using the capability of ESnet and Internet2 for rapid data exchange, is based on the Virtual Room Videoconferencing System (VRVS) developed by Caltech. The VRVS system has been chosen by the Internet2 Digital Video (I2-DV) Initiative as a preferred foundation for the development of advanced video, audio and multimedia collaborative applications by the Internet2 community. Today, the system supports high-end, broadcast-quality interactivity, while enabling a wide variety of clients (Mbone, H.323) to participate in the same conference by running different standard protocols in different contexts with different bandwidth connection limitations, has a fully Web-integrated user interface, developers and administrative APIs, a widely scalable video network topology based on both multicast domains and unicast tunnels, and demonstrated multiplatform support. This has led to its rapidly expanding production use for national and international scientific collaborations in more than 60 countries. We are also in the process of creating a 'testbed video network' and developing the necessary middleware to support a set of new and essential requirements for rapid data exchange, and a high level of interactivity in large-scale scientific collaborations. These include a set of tunable, scalable differentiated network services adapted to each of the data streams associated with a large number of collaborative sessions, policy-based and network state-based resource scheduling, authentication, and optional encryption to maintain confidentiality of inter-personal communications. High performance testbed video networks will be established in ESnet and Internet2 to test and tune the implementation, using a few target application-sets.

  17. Minnesota's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    1st congressional district Agra Resources Cooperative EXOL Agri Energy LLC Corn Plus High Country Energy Juhl Wind Inc MinnErgy LLC Minwind Energy LLC Next Generation...

  18. Next Generation Nuclear Plant Methods Technical Program Plan

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2007-01-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the highly ranked phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  19. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the highly ranked phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  20. Next Generation Nuclear Plant Methods Technical Program Plan

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the highly ranked phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  1. Attend a Webinar on AMO's Next Generation Electric Machines Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that develop a new generation of energy efficient, high power density, high speed, integrated medium voltage drive systems for a wide variety of critical energy applications. ...

  2. Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest i.e., within the next 10-15 years.

  3. Next Generation Surfactants for Improved Chemical Flooding Technology

    SciTech Connect (OSTI)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies the effects of such things as temperature, electrolyte concentration and the effect of different types of electrolytes were taken into consideration.

  4. Advanced Combustion Systems for Next Generation Gas Turbines

    SciTech Connect (OSTI)

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program. Emissions measurements were obtained over a variety of operating conditions. A kinetics model is formulated to describe the emissions performance. The model is a tool for determining the conditions for low emission performance. The flow field was also modeled using CFD. A first prototype was developed for low emission performance on natural gas. The design utilized the tools anchored to the atmospheric prototype performance. The 1/6 scale combustor was designed for low emission performance in GE's FA+e gas turbine. A second prototype was developed to evaluate changes in the design approach. The prototype was developed at a 1/10 scale for low emission performance in GE's FA+e gas turbine. The performance of the first two prototypes gave a strong indication of the best design approach. Review of the emission results led to the development of a 3rd prototype to further reduce the combustor emissions. The original plan to produce a scaled-up prototype was pushed out beyond the scope of the current program. The 3rd prototype was designed at 1/10 scale and targeted further reductions in the full-speed full-load emissions.

  5. The next generation of oxy-fuel boiler systems

    SciTech Connect (OSTI)

    Ochs, Thomas L.; Gross, Alex; Patrick, Brian; Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

    2005-01-01

    Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

  6. Discovery of Next Generation RAF Inhibitors that Dissociate Paradoxical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activation from Inhibition of the MAPK Pathway | Stanford Synchrotron Radiation Lightsource Discovery of Next Generation RAF Inhibitors that Dissociate Paradoxical Activation from Inhibition of the MAPK Pathway Monday, February 29, 2016 Genes encoding members of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway are frequently mutated in human cancer. RAS (a small GTPase) and RAF (a serine/Threonine kinase) are two major nodes on this important

  7. NNSA Program Develops the Next Generation of Nuclear Security Experts

    SciTech Connect (OSTI)

    Brim, Cornelia P.; Disney, Maren V.

    2015-09-02

    NNSA is fostering the next generation of nuclear security experts is through its successful NNSA Graduate Fellowship Program (NGFP). NGFP offers its Fellows an exceptional career development opportunity through hands-on experience supporting NNSA mission areas across policy and technology disciplines. The one-year assignments give tomorrow’s leaders in global nuclear security and nonproliferation unparalleled exposure through assignments to Program Offices across NNSA.

  8. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Development of a new light truck, in-line 4-cylinder turbocharged diesel engine that will meet Tier 2, Bin 2 emissions and at least a 40% fuel economy benefit over the V-8 gasoline engine it could replace PDF icon deer12_ruth.pdf More Documents & Publications Advanced Technology Light Duty Diesel Aftertreatment System Passive Catalytic Approach to Low Temperature NOx Emission Abatement Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine

  9. EAC Recommendations for DOE Action on the Development of the Next Generation Grid Operating System - October 17, 2012

    Energy Savers [EERE]

    Patricia Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, U.S. Department of Energy FROM: Electricity Advisory Committee (EAC) Richard Cowart, Chair DATE: October 17, 2012 RE: Recommendations on Development of the Next Generation Grid Operating System (Energy Management System). _________________________________________________________________________ The purpose of this memorandum is to respectfully recommend to the U.S. Department of Energy (DOE) a roadmap for the

  10. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    SciTech Connect (OSTI)

    GE Wind Energy, LLC

    2006-05-01

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  11. Next generation geothermal power plants. Draft final report

    SciTech Connect (OSTI)

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  12. GeMini: The Next Generation Mechanically-Cooled Germanium Spectrometer

    SciTech Connect (OSTI)

    Burks, M

    2008-06-13

    The next-generation mechanically-cooled germanium spectrometer has been developed. GeMini (GErmanium MINIature spectrometer) has been designed to bring high-resolution gamma-ray spectroscopy to a range of demanding field environments. Intended applications include short-notice and surprise inspections where positive nuclide identification of radioactive materials is required. GeMini weighs 2.75 kg (6 lbs) total including the detector, cryostat, cryocooler, batteries, electronics and readout. It is very low power allowing it to operate for 10 hours on a single set of rechargeable batteries. This instrument employs technology adapted from the gamma-ray spectrometer currently flying on NASA's Mercury MESSENGER spacecraft. Specifically, infrared shielding techniques allow for a vast reduction of thermal load. This in turn allows for a smaller, lighter-weight design, well-suited for a hand-held instrument. Two working prototypes have been built and tested in the lab. The target energy resolution is 3 keV fwhm or better for 1332 keV gamma-rays. The detectors currently achieve around 4.5 keV resolution, which is slightly higher than our goal due to microphonic noise. Our present work focuses on improving the resolution through mechanical and electronic means of reducing the microphonic noise. This paper will focus on the performance of the instrument and its applicability for inspectors in the field.

  13. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  14. NNSA invests in next generation for national security needs ...

    National Nuclear Security Administration (NNSA)

    Academic Alliances Program, the High Energy Density Laboratory Plasmas Program, the ... The annual event is free to all participants and presenters. Learn more about the ...

  15. Silicon Nanostructure-based Technology for Next Generation Energy Storage

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Next-Generation Thermionic Solar Energy Conversion (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Stanford University and the SLAC National Accelerator Laboratory are 2012 SunShot CSP R&D awardees for their advanced power cycles. This fact sheet explains the motivation, description, and impact of the project.

  17. Department of Energy Announces Funding to Support the Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    education, an essential part of President Obama's plan to win the future by out-educating and out-innovating the rest of the world. "These investments in American ingenuity ...

  18. Silicon Nanostructure-based Technology for Next Generation Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... material efforts: * Size, structure, surface and composition of the silicon nanowires ...Cathode matching Cathode development * Coating formulation development and validation * ...

  19. SOLID ELECTROLYTES FOR NEXT GENERATION BATTERIES | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es158_goodenough_2012_p.pdf More Documents & Publications Solid Electrolyte Batteries SOLID ELECTROLYTE BATTERIES Composite Electrolytes to Stabilize Metallic Linium Anodes

  20. Designer Catalysts for Next Generation Fuel Synthesis - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industry's "workhorse" catalysts for upgrading heavy petroleum feed stocks and removing ... Bio-fuel production Hydrogen generation Direct coal liquefaction Oil refining ...

  1. Department of Energy Announces Funding to Support the Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These programs will increase American economic competitiveness and support job growth by promoting science, technology, engineering, and math (STEM) education, an essential part of ...

  2. Department of Energy Awards $425 Million for Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Both CORAL awards leverage the IBM Power Architecture, NVIDIA's Volta GPU and Mellanox's ... New Brain-Inspired Supercomputer: Chip-architecture breakthrough accelerates path to ...

  3. Inspiring and Building the Next Generation of Residential Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    President of Engineering and Research Thomas Kenney. (Photo by Dennis Schroeder ... Innovation Research Laboratory Vice President of Engineering and Research Thomas Kenney. ...

  4. EcoCAR the Next Generation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ti013_delarosa_2011_o.pdf More Documents & Publications EcoCAR the Next Challenge EcoCAR 2 Plugging into the Future PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR

  5. AMO FOA Targets Advanced Components for Next-Generation Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that leverage the benefits of state-of-the-art power electronics (i.e., wide band gap devices) with high RPM, high power density and energy efficient megawatt (MW) class ...

  6. Report from the Next Generation High Performance Computing Task...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... the national laboratory system, and in some premiere ... the vector processing change at the pre-teraflop generation. ... 1. Investable needs exist for an exaX class machine. a. ...

  7. The Next Generation Safeguards Initiative s High-Purity Uranium...

    Office of Scientific and Technical Information (OSTI)

    Authors: Krichinsky, Alan M 1 ; Bostick, Debra A 1 ; Giaquinto, Joseph 1 ; Bayne, Charles 2 ; Goldberg, Dr. Steven A. 3 ; Humphrey, Dr. Marc 4 ; Hutcheon, Dr. Ian D. ...

  8. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Tier 2, Bin 2 Light Truck Diesel engine Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine Discusses plan, baselining, and modeling, for new light ...

  9. EERE Success Story-Next-Generation Sensor Fish to Provide Data...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next-Generation Sensor Fish to Provide Data That Will Help Protect Real, Live Fish EERE Success Story-Next-Generation Sensor Fish to Provide Data That Will Help Protect Real, Live ...

  10. Next-Generation Sensor Fish to Provide Data That Will Help Protect...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next-Generation Sensor Fish to Provide Data That Will Help Protect Real, Live Fish Next-Generation Sensor Fish to Provide Data That Will Help Protect Real, Live Fish June 4, 2014 - ...

  11. Model-Experimental Studies on Next-generation Li-ion Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experimental Studies on Next-generation Li-ion Materials Model-Experimental Studies on Next-generation Li-ion Materials 2009 DOE Hydrogen Program and Vehicle Technologies Program ...

  12. NASA Expert Discusses NextGen - the Next Generation Air Transportation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expert Discusses NextGen - the Next Generation Air Transportation System on Nov. 18 NASA Expert Discusses NextGen - the Next Generation Air Transportation System on Nov. 18 NEWPORT ...

  13. Jefferson Lab injector development for next generation parity violation experiments

    SciTech Connect (OSTI)

    J. Grames, J. Hansknect, M. Poelker, R. Suleiman

    2011-05-01

    To meet the challenging requirements of next generation parity violation experiments at Jefferson Lab, the Center for Injectors and Sources is working on improving the parity-quality of the electron beam. These improvements include new electron photogun design and fast helicity reversal of the Pockels Cell. We proposed and designed a new scheme for slow helicity reversal using a Wien Filter and two Solenoids. This slow reversal complements the insertable half-wave plate reversal of the laser-light polarization by reversing the electron beam polarization at the injector while maintaining a constant accelerator configuration. For position feedback, fast air-core magnets located in the injector were commissioned and a new scheme for charge feedback is planned.

  14. Final Report for "Analyzing and visualizing next generation climate data"

    SciTech Connect (OSTI)

    Pletzer, Alexander

    2012-11-13

    The project "Analyzing and visualizing next generation climate data" adds block-structured (mosaic) grid support, parallel processing, and 2D/3D curvilinear interpolation to the open-source UV-CDAT climate data analysis tool. Block structured grid support complies to the Gridspec extension submitted to the Climate and Forecast metadata conventions. It contains two parts: aggregation of data spread over multiple mosaic tiles (M-SPEC) and aggregation of temporal data stored in different files (F-SPEC). Together, M-SPEC and F-SPEC allow users to interact with data stored in multiple files as if the data were in a single file. For computational expensive tasks, a flexible, multi-dimensional, multi-type distributed array class allows users to process data in parallel using remote memory access. Both nodal and cell based interpolation is supported; users can choose between different interpolation libraries including ESMF and LibCF depending on the their particular needs.

  15. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2010-07-01

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  16. Analysis Tools for Next-Generation Hadron Spectroscopy Experiments

    SciTech Connect (OSTI)

    Battaglieri, Marco; Briscoe, William; Celentano, Andrea; Chung, Suh-Urk; D'Angelo, Annalisa; De Vita, Rafaella; Döring, Michael; Dudek, Jozef; Eidelman, S.; Fegan, Stuart; Ferretti, J.; Filippi, A.; Fox, G.; Galata, G.; García-Tecocoatzi, H.; Glazier, Derek; Grube, B.; Hanhart, C.; Hoferichter, M.; Hughes, S. M.; Ireland, David G.; Ketzer, B.; Klein, Franz J.; Kubis, B.; Liu, B.; Masjuan, P.; Mathieu, Vincent; McKinnon, Brian; Mitchel, R.; Nerling, F.; Paul, S.; Peláez, J. R.; Rademacker, J.; Rizzo, Alessandro; Salgado, Carlos; Santopinto, E.; Sarantsev, Andrey V.; Sato, Toru; Schlüter, T.; da Silva, M. L.L.; Stankovic, I.; Strakovsky, Igor; Szczepaniak, Adam; Vassallo, A.; Walford, Natalie K.; Watts, Daniel P.

    2015-01-01

    The series of workshops on New Partial-Wave Analysis Tools for Next-Generation Hadron Spectroscopy Experiments was initiated with the ATHOS 2012 meeting, which took place in Camogli, Italy, June 20-22, 2012. It was followed by ATHOS 2013 in Kloster Seeon near Munich, Germany, May 21-24, 2013. The third, ATHOS3, meeting is planned for April 13-17, 2015 at The George Washington University Virginia Science and Technology Campus, USA. The workshops focus on the development of amplitude analysis tools for meson and baryon spectroscopy, and complement other programs in hadron spectroscopy organized in the recent past including the INT-JLab Workshop on Hadron Spectroscopy in Seattle in 2009, the International Workshop on Amplitude Analysis in Hadron Spectroscopy at the ECT*-Trento in 2011, the School on Amplitude Analysis in Modern Physics in Bad Honnef in 2011, the Jefferson Lab Advanced Study Institute Summer School in 2012, and the School on Concepts of Modern Amplitude Analysis Techniques in Flecken-Zechlin near Berlin in September 2013. The aim of this document is to summarize the discussions that took place at the ATHOS 2012 and ATHOS 2013 meetings. We do not attempt a comprehensive review of the field of amplitude analysis, but offer a collection of thoughts that we hope may lay the ground for such a document.

  17. Analysis Tools for Next-Generation Hadron Spectroscopy Experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Battaglieri, Marco; Briscoe, William; Celentano, Andrea; Chung, Suh-Urk; D'Angelo, Annalisa; De Vita, Rafaella; Döring, Michael; Dudek, Jozef; Eidelman, S.; Fegan, Stuart; et al

    2015-01-01

    The series of workshops on New Partial-Wave Analysis Tools for Next-Generation Hadron Spectroscopy Experiments was initiated with the ATHOS 2012 meeting, which took place in Camogli, Italy, June 20-22, 2012. It was followed by ATHOS 2013 in Kloster Seeon near Munich, Germany, May 21-24, 2013. The third, ATHOS3, meeting is planned for April 13-17, 2015 at The George Washington University Virginia Science and Technology Campus, USA. The workshops focus on the development of amplitude analysis tools for meson and baryon spectroscopy, and complement other programs in hadron spectroscopy organized in the recent past including the INT-JLab Workshop on Hadron Spectroscopymore » in Seattle in 2009, the International Workshop on Amplitude Analysis in Hadron Spectroscopy at the ECT*-Trento in 2011, the School on Amplitude Analysis in Modern Physics in Bad Honnef in 2011, the Jefferson Lab Advanced Study Institute Summer School in 2012, and the School on Concepts of Modern Amplitude Analysis Techniques in Flecken-Zechlin near Berlin in September 2013. The aim of this document is to summarize the discussions that took place at the ATHOS 2012 and ATHOS 2013 meetings. We do not attempt a comprehensive review of the field of amplitude analysis, but offer a collection of thoughts that we hope may lay the ground for such a document.« less

  18. Next generation processes for NGL/LPG recovery

    SciTech Connect (OSTI)

    Pitman, R.N.; Hudson, H.M.; Wilkinson, J.D.; Cuellar, K.T.

    1998-12-31

    Up to now, Ortloff`s Gas Subcooled Process (GSP) and OverHead Recycle Process (OHR) have been the state-of-the-art for efficient NGL/LPG recovery from natural gas, particularly for those gases containing significant concentrations of carbon dioxide (CO{sub 2}). Ortloff has recently developed new NGL recovery processes that advance the start-of-the-art by offering higher recovery levels, improved efficiency, and even better CO{sub 2} tolerance. The simplicity of the new process designs and the significantly lower gas compression requirements of the new processes reduce the investment and operating costs for gas processing plants. For gas streams containing significant amounts of carbon dioxide, the CO{sub 2} removal equipment upstream of the NGL recovery plant can be smaller or eliminated entirely, reducing both the investment cost and the operating cost for gas processing companies. In addition, the new liquids extraction processes can be designed to efficiently recover or reject ethane, allowing the gas processor to respond quickly to changing market conditions. This next generation of NGL/LPG recovery processes is now being applied to natural gas processing here in the US and abroad. Two of the new plants currently under construction provide practical examples of the benefits of the new processes.

  19. Research & Development Roadmap for Next-Generation Appliances

    SciTech Connect (OSTI)

    Goetzler, William; Sutherland, Timothy; Foley, Kevin

    2012-03-01

    Appliances present an attractive opportunity for near-term energy savings in existing building, because they are less expensive and replaced more regularly than heating, ventilation, and air-conditioning (HVAC) systems or building envelope components. This roadmap targets high-priority research and development (R&D), demonstration and commercialization activities that could significantly reduce residential appliance energy consumption. The main objective of the roadmap is to seek activities that accelerate the commercialization of high-efficiency appliance technologies while maintaining the competitiveness of American industry. The roadmap identified and evaluated potential technical innovations, defined research needs, created preliminary research and development roadmaps, and obtained stakeholder feedback on the proposed initiatives.

  20. Next Generation Safeguards Initiative: Overview and Policy Context of UF6 Cylinder Tracking Program

    SciTech Connect (OSTI)

    Boyer, Brian D; Whitaker, J. Michael; White-Horton, Jessica L.; Durbin, Karyn R.

    2012-07-12

    Thousands of cylinders containing uranium hexafluoride (UF{sub 6}) move around the world from conversion plants to enrichment plants to fuel fabrication plants, and their contents could be very useful to a country intent on diverting uranium for clandestine use. Each of these large cylinders can contain close to a significant quantity of natural uranium (48Y cylinder) or low-enriched uranium (LEU) (30B cylinder) defined as 75 kg {sup 235}U which can be further clandestinely enriched to produce 1.5 to 2 significant quantities of high enriched uranium (HEU) within weeks or months depending on the scale of the clandestine facility. The National Nuclear Security Administration (NNSA) Next Generation Safeguards Initiative (NGSI) kicked off a 5-year plan in April 2011 to investigate the concept of a unique identification system for UF{sub 6} cylinders and potentially to develop a cylinder tracking system that could be used by facility operators and the International Atomic Energy Agency (IAEA). The goal is to design an integrated solution beneficial to both industry and inspectorates that would improve cylinder operations at the facilities and provide enhanced capabilities to deter and detect both diversion of low-enriched uranium and undeclared enriched uranium production. The 5-year plan consists of six separate incremental tasks: (1) define the problem and establish the requirements for a unique identification (UID) and monitoring system; (2) develop a concept of operations for the identification and monitoring system; (3) determine cylinder monitoring devices and technology; (4) develop a registry database to support proof-of-concept demonstration; (5) integrate that system for the demonstration; and (6) demonstrate proof-of-concept. Throughout NNSA's performance of the tasks outlined in this program, the multi-laboratory team emphasizes that extensive engagement with industry stakeholders, regulatory authorities and inspectorates is essential to its success.

  1. NEXT GENERATION MELTER(S) FOR VITRIFICATION OF HANFORD WASTE STATUS AND DIRECTION

    SciTech Connect (OSTI)

    RAMSEY WG; GRAY MF; CALMUS RB; EDGE JA; GARRETT BG

    2011-01-13

    Vitrification technology has been selected to treat high-level waste (HLW) at the Hanford Site, the West Valley Demonstration Project and the Savannah River Site (SRS), and low activity waste (LAW) at Hanford. In addition, it may potentially be applied to other defense waste streams such as sodium bearing tank waste or calcine. Joule-heated melters (already in service at SRS) will initially be used at the Hanford Site's Waste Treatment and Immobilization Plant (WTP) to vitrify tank waste fractions. The glass waste content and melt/production rates at WTP are limited by the current melter technology. Significant reductions in glass volumes and mission life are only possible with advancements in melter technology coupled with new glass formulations. The Next Generation Melter (NGM) program has been established by the U.S. Department of Energy's (DOE's), Environmental Management Office of Waste Processing (EM-31) to develop melters with greater production capacity (absolute glass throughput rate) and the ability to process melts with higher waste fractions. Advanced systems based on Joule-Heated Ceramic Melter (JHCM) and Cold Crucible Induction Melter (CCIM) technologies will be evaluated for HLW and LAW processing. Washington River Protection Solutions (WRPS), DOE's tank waste contractor, is developing and evaluating these systems in cooperation with EM-31, national and university laboratories, and corporate partners. A primary NGM program goal is to develop the systems (and associated flowsheets) to Technology Readiness Level 6 by 2016. Design and testing are being performed to optimize waste glass process envelopes with melter and balance of plant requirements. A structured decision analysis program will be utilized to assess the performance of the competing melter technologies. Criteria selected for the decision analysis program will include physical process operations, melter performance, system compatibility and other parameters.

  2. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    SciTech Connect (OSTI)

    Marra, J.

    2010-09-29

    Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) for construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management, and proliferation), the worldwide community is working to develop and deploy new nuclear energy systems and advanced fuel cycles. These new nuclear systems address the key challenges and include: (1) extracting the full energy value of the nuclear fuel; (2) creating waste solutions with improved long term safety; (3) minimizing the potential for the misuse of the technology and materials for weapons; (4) continually improving the safety of nuclear energy systems; and (5) keeping the cost of energy affordable.

  3. Single Stage Contactor Testing Of The Next Generation Solvent Blend

    SciTech Connect (OSTI)

    Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.

    2014-01-06

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

  4. Beyond Human Capital Development: Balanced Safeguards Workforce Metrics and the Next Generation Safeguards Workforce

    SciTech Connect (OSTI)

    Burbank, Roberta L.; Frazar, Sarah L.; Gitau, Ernest TN; Shergur, Jason M.; Scholz, Melissa A.; Undem, Halvor A.

    2014-03-28

    Since its establishment in 2008, the Next Generation Safeguards Initiative (NGSI) has achieved a number of objectives under its five pillars: concepts and approaches, policy development and outreach, international nuclear safeguards engagement, technology development, and human capital development (HCD). As a result of these efforts, safeguards has become much more visible as a critical U.S. national security interest across the U.S. Department of Energy (DOE) complex. However, limited budgets have since created challenges in a number of areas. Arguably, one of the more serious challenges involves NGSIs ability to integrate entry-level staff into safeguards projects. Laissez fair management of this issue across the complex can lead to wasteful project implementation and endanger NGSIs long-term sustainability. The authors provide a quantitative analysis of this problem, focusing on the demographics of the current safeguards workforce and compounding pressures to operate cost-effectively, transfer knowledge to the next generation of safeguards professionals, and sustain NGSI safeguards investments.

  5. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.

    SciTech Connect (OSTI)

    Natesan, K.; Majumdar, S.; Shankar, P. S.; Shah, V. N.; Nuclear Engineering Division

    2007-03-21

    In the coming decades, the United States and the entire world will need energy supplies to meet the growing demands due to population increase and increase in consumption due to global industrialization. One of the reactor system concepts, the Very High Temperature Reactor (VHTR), with helium as the coolant, has been identified as uniquely suited for producing hydrogen without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002]. The U.S. Department of Energy (DOE) has selected this system for the Next Generation Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and hydrogen production within the next 15 years. The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum reactors with a design goal outlet helium temperature of {approx}1000 C [MacDonald et al. 2004]. The reactor core could be either a prismatic graphite block type core or a pebble bed core. The use of molten salt coolant, especially for the transfer of heat to hydrogen production, is also being considered. The NGNP is expected to produce both electricity and hydrogen. The process heat for hydrogen production will be transferred to the hydrogen plant through an intermediate heat exchanger (IHX). The basic technology for the NGNP has been established in the former high temperature gas reactor (HTGR) and demonstration plants (DRAGON, Peach Bottom, AVR, Fort St. Vrain, and THTR). In addition, the technologies for the NGNP are being advanced in the Gas Turbine-Modular Helium Reactor (GT-MHR) project, and the South African state utility ESKOM-sponsored project to develop the Pebble Bed Modular Reactor (PBMR). Furthermore, the Japanese HTTR and Chinese HTR-10 test reactors are demonstrating the feasibility of some of the planned components and materials. The proposed high operating temperatures in the VHTR place significant constraints on the choice of material selected for the reactor pressure vessel for both the PBMR and prismatic design. The main focus of this report is the RPV for both design concepts with emphasis on material selection.

  6. NNSA and MEXT to Co-host Second International Meeting on Next Generation

    National Nuclear Security Administration (NNSA)

    Safeguards | National Nuclear Security Administration and MEXT to Co-host Second International Meeting on Next Generation Safeguards October 20, 2009 NNSA and MEXT to Co-host Second International Meeting on Next Generation Safeguards WASHINGTON - The National Nuclear Security Administration (NNSA) and the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) will co-host the second international meeting on Next Generation Safeguards from Oct. 26 - 28, 2009 at the

  7. External priors for the next generation of CMB experiments

    SciTech Connect (OSTI)

    Manzotti, Alessandro; Dodelson, Scott; Park, Youngsoo

    2015-12-08

    Planned cosmic microwave background (CMB) experiments can dramatically improve what we know about neutrino physics, inflation, and dark energy. The low level of noise, together with improved angular resolution, will increase the signal to noise of the CMB polarized signal as well as the reconstructed lensing potential of high redshift large scale structure. Projected constraints on cosmological parameters are extremely tight, but these can be improved even further with information from external experiments. Here, we examine quantitatively the extent to which external priors can lead to improvement in projected constraints from a CMB-Stage IV (S4) experiment on neutrino and dark energy properties. We find that CMB S4 constraints on neutrino mass could be strongly enhanced by external constraints on the cold dark matter density $\\Omega_{c}h^{2}$ and the Hubble constant $H_{0}$. If polarization on the largest scales ($\\ell<50$) will not be measured, an external prior on the primordial amplitude $A_{s}$ or the optical depth $\\tau$ will also be important. A CMB constraint on the number of relativistic degrees of freedom, $N_{\\rm eff}$, will benefit from an external prior on the spectral index $n_{s}$ and the baryon energy density $\\Omega_{b}h^{2}$. Finally, an external prior on $H_{0}$ will help constrain the dark energy equation of state ($w$).

  8. CHEMICAL STABILITY OF POLYPHENYLENE SULFIDE IN THE NEXT GENERATION SOLVENT FOR CAUSTIC-SIDE SOLVENT EXTRACTION

    SciTech Connect (OSTI)

    Fondeur, F.; Fink, S.

    2011-12-08

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. For simplicity, this solvent is referred to as the Next Generation Solvent (NGS). The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The initial deployment target envisioned for the technology was within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with polyphenylene sulfide (PPS), the polymer used in the coalescers within MCU. This report provides the data from exposing PPS polymer to NGS. The test was conducted over a three month period. PPS is remarkably stable in the presence of the next generation solvent. Testing showed no indication of swelling or significant leaching. Preferential sorption of the Modifier on PPS was observed but the same behavior occurs with the baseline solvent. Therefore, PPS coalescers exposed to the NGS are expected to perform comparably to those in contact with the baseline solvent.

  9. Research and Development Roadmap For Next-Generation Low-GWP...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Development Roadmap For Next-Generation Low-Global Warming Potential Refrigerants July ... Available electronically at http:www.osti.govhome ii Research and Development Roadmap ...

  10. Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal...

    Open Energy Info (EERE)

    expensive to develop, there will be increased incentive to use more efficient power plants. Because of increasing demand on finite supplies of water, this next generation of...

  11. Next Generation Natural Gas Vehicle Activity: Natural Gas Engine and Vehicle Research & Development (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2003-09-01

    This fact sheet describes the status of the Next Generation Natural Gas Vehicle (NGNGV) activity, including goals, R&D progress, NGV implementation, and the transition to hydrogen.

  12. Next Generation Hydrogen Station Composite Data Products: Data through Quarter 4 of 2013

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Peters, M.

    2014-05-01

    This report includes 25 composite data products (CDPs) produced for next generation hydrogen stations, with data through quarter 4 of 2013.

  13. Next Generation Hydrogen Station Composite Data Products: Data through Quarter 2 of 2013

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Ainscough, C.; Post, M.; Saur, G.; Peters, M.

    2013-11-01

    This report includes 18 composite data products (CDPs) produced for next generation hydrogen stations, with data through quarter 2 of 2013.

  14. Materials Innovation for Next-Generation T&D Grid Components. Workshop Summary Report

    SciTech Connect (OSTI)

    Taylor, Emmanuel; Kramer, Caroline; Marchionini, Brian; Sabouni, Ridah; Cheung, Kerry; Lee, Dominic F

    2015-10-01

    The Materials Innovations for Next-Generation T&D Grid Components Workshop was co-sponsored by the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability and the Oak Ridge National Laboratory (ORNL) and held on August 26 27, 2015, at the ORNL campus in Oak Ridge, Tennessee. The workshop was planned and executed under the direction of workshop co-chair Dr. Kerry Cheung (DOE) and co-chair Dr. Dominic Lee (ORNL). The information contained herein is based on the results of the workshop, which was attended by nearly 50 experts from government, industry, and academia. The research needs and pathways described in this report reflect the expert opinions of workshop participants, but they are not intended to represent the views of the entire electric power community.

  15. Summary for the Next Generation Nuclear Plant Project in Review

    SciTech Connect (OSTI)

    L.E. Demick

    2010-08-01

    This paper reports on the major progress that the NGNP Project has made toward developing and commercializing the HTGR technology. Significant R&D progress has been made in addressing key technical issues for qualification of the HTGR fuel and graphite, codification of high temperature materials and verification and validation of design codes. Work is also progressing in heat transfer/transport design and testing and in development of the high temperature steam electrolysis hydrogen production process. A viable licensing strategy has been formulated in coordination with the NRC and DOE. White papers covering key licensing issues have been and will continue to be submitted and necessary discussions of these key issues have begun with the NRC. Continued government support is needed to complete the Project objectives as established in the 2005 Energy Policy Act.

  16. Summary for the Next Generation Nuclear Plant Project in Review

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    This paper reports on the major progress that the NGNP Project has made toward developing and commercializing the HTGR technology. Significant R&D progress has been made in addressing key technical issues for qualification of the HTGR fuel and graphite, codification of high temperature materials and verification and validation of design codes. Work is also progressing in heat transfer/transport design and testing and in development of the high temperature steam electrolysis hydrogen production process. A viable licensing strategy has been formulated in coordination with the NRC and DOE. White papers covering key licensing issues have been and will continue to be submitted and necessary discussions of these key issues have begun with the NRC. Continued government support is needed to complete the Project objectives as established in the 2005 Energy Policy Act.

  17. NERSC, Cray, Intel to Collaborate on Next-Generation Supercomputer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1947 Nobel Prize with her husband Carl (pictured) and Argentine physiologist Bernardo Houssay. The U.S. Department of Energy's (DOE) National Energy Research Scientific Computing...

  18. Yahoo! Compute Coop: Next Generation Passive Cooling Design for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC and Reduces Energy Consumption In 2011, the ... <0.5% global penetration in 1995. This increase in demand ... The YCC design significantly reduces cooling energy costs, ...

  19. Energy News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary of Energy Ernest Moniz today announced two new High Performance Computing (HPC) awards to put the nation on a fast-track to next generation exascale computing, which...

  20. Next Generation Networking | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation Networking Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking 2012 Scientific Collaborations at Extreme-Scale Scientific Discovery through Advanced Computing (SciDAC) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S.

  1. Simulations for a next-generation UHECR observatory

    SciTech Connect (OSTI)

    Oikonomou, Foteini; Abdalla, Filipe B.; Kotera, Kumiko E-mail: kotera@iap.fr

    2015-01-01

    We explore the potential of a future, ultra-high energy cosmic ray (UHECR) experiment, that is able to overcome the limitation of low statistics, to detect anisotropy in the arrival directions of UHECRs. We concentrate on the lower energy range of future instruments (E∼> 50 EeV), where, if the UHECR source number density is not too low, the sources should be numerous enough to imprint a clustering pattern in the sky, and thus possibly in the UHECR arrival directions. Under these limits, the anisotropy signal should be dominated by the clustering of astrophysical sources per se in the large-scale structures, and not the clustering of events around individual sources. We study the potential for a statistical discrimination between different astrophysical models which we parametrise by the number density of UHECR sources, the possible bias of the UHECR accelerators with respect to the galaxy distribution, and the unknown fraction of UHECRs that have been deflected by large angles. We demonstrate that an order-of-magnitude increase in statistics would allow to discriminate between a variety of astrophysical models, provided that a sub-sample of light elements can be extracted, and that it represents a fraction ∼> 70% of the overall flux, sensitive to the UHECR source number density. Discrimination should be possible even without knowledge of the composition of the UHECRs, as long as the data are proton-dominated. We find that an anisotropy at the 99.7% level should be detectable when the number of detected events exceeds 2000 beyond 50 EeV, as long as the composition is proton dominated, and the number density of UHECR sources is relatively high, n-bar  ≥ 10{sup −3} Mpc{sup −3}. If the UHECR sources are strongly biased relative to the galaxy distribution, as are for example galaxy clusters, in which the sources might be embedded, an anisotropy at the 99.7% level should be detectable once the number of detected events exceeds 1000, if the fraction of protons at the highest energies is ∼> 60%.

  2. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 1: Main Report

    SciTech Connect (OSTI)

    Ball, Sydney J

    2008-03-01

    A phenomena identification and ranking table (PIRT) process was conducted for the Next Generation Nuclear Plant (NGNP) design. This design (in the conceptual stage) is a modular high-temperature gas-cooled reactor (HTGR) that generates both electricity and process heat for hydrogen production. Expert panels identified safety-relevant phenomena, ranked their importance, and assessed the knowledge levels in the areas of accidents and thermal fluids, fission-product transport and dose, high-temperature materials, graphite, and process heat for hydrogen production. This main report summarizes and documents the process and scope of the reviews, noting the major activities and conclusions. The identified phenomena, analyses, rationales, and associated ratings of the phenomena, plus a summary of each panel's findings, are presented. Individual panel reports for these areas are provided as attached volumes to this main report and provide considerably more detail about each panel's deliberations as well as a more complete listing of the phenomena that were evaluated.

  3. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2008-04-01

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have concluded, however, that with adequate engineered cooling of the vessel, the A508/533 steels are also acceptable.

  4. Multiscale Toxicology - Building the Next Generation Tools for Toxicology

    SciTech Connect (OSTI)

    Thrall, Brian D.; Minard, Kevin R.; Teeguarden, Justin G.; Waters, Katrina M.

    2012-09-01

    A Cooperative Research and Development Agreement (CRADA) was sponsored by Battelle Memorial Institute (Battelle, Columbus), to initiate a collaborative research program across multiple Department of Energy (DOE) National Laboratories aimed at developing a suite of new capabilities for predictive toxicology. Predicting the potential toxicity of emerging classes of engineered nanomaterials was chosen as one of two focusing problems for this program. PNNLs focus toward this broader goal was to refine and apply experimental and computational tools needed to provide quantitative understanding of nanoparticle dosimetry for in vitro cell culture systems, which is necessary for comparative risk estimates for different nanomaterials or biological systems. Research conducted using lung epithelial and macrophage cell models successfully adapted magnetic particle detection and fluorescent microscopy technologies to quantify uptake of various forms of engineered nanoparticles, and provided experimental constraints and test datasets for benchmark comparison against results obtained using an in vitro computational dosimetry model, termed the ISSD model. The experimental and computational approaches developed were used to demonstrate how cell dosimetry is applied to aid in interpretation of genomic studies of nanoparticle-mediated biological responses in model cell culture systems. The combined experimental and theoretical approach provides a highly quantitative framework for evaluating relationships between biocompatibility of nanoparticles and their physical form in a controlled manner.

  5. BESTIA - the next generation ultra-fast CO2 laser for advanced accelerator research

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; Skaritka, John; Polyanskiy, Mikhail N.

    2015-12-02

    Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimes in the particlemore » acceleration of ions and electrons.« less

  6. Next Generation Solvent (NGS): Development for Caustic-Side Solvent Extraction of Cesium

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Birdwell, Jr, Joseph F.; Bonnesen, Peter V.; Bruffey, Stephanie H.; Delmau, Laetitia Helene; Duncan, Nathan C.; Ensor, Dale; Hill, Talon G.; Lee, Denise L.; Rajbanshi, Arbin; Roach, Benjamin D.; Szczygiel, Patricia L.; Frederick V. Sloop, Jr.; Stoner, Erica L.; Williams, Neil J.

    2014-03-01

    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modular Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Interlaboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.

  7. Secretary Chu Announces $45 Million to Support Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    under the American Recovery and Reinvestment Act for a wind energy test facility that will enhance the performance, durability, and reliability of utility-scale wind turbines. ...

  8. Next Generation Advanced Framing - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Framing Strategies DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model, Omaha, NE Top Innovation Categories Advanced Technologies House as a System ...

  9. NERSC Launches Next-Generation Code Optimization Effort

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    With the promise of exascale supercomputers looming on the horizon, much of the roadmap is dotted with questions about hardware design and how to make these systems energy...

  10. Air-Cooled Condensers for Next Generation Power Plants | Department...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Hybrid and Advanced Air Cooling Advanced HeatMass Exchanger Technology for Geothermal and solar Renewable Energy Systems Air-cooled Condensers in ...

  11. Engaging the Next Generation of Automotive Engineers through Advanced

    Broader source: Energy.gov (indexed) [DOE]

    Energy EnergyPlus and OpenStudio sites allow for easy user feedback through recently launched new portals. EnergyPlus and OpenStudio sites allow for easy user feedback through recently launched new portals. Amir Roth, Ph.D. Amir Roth, Ph.D. Building Energy Modeling Technology Manager Several months ago, energyplus.gov and openstudio.nrel.gov moved to energyplus.net and openstudio.net, respectively. The new sites have a simpler uniform look and feel and the .net domains imply that both

  12. Notice of Intent: Upcoming Funding Opportunity for Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NGEMs combine high power density, high RPM motors with integrated power electronics. Specifically, this upcoming FOA will facilitate efforts to integrate Medium Voltage (MV) class ...

  13. Plasma Processing of SRF Cavities for the next Generation Of Particle Accelerators

    SciTech Connect (OSTI)

    Vuskovic, Leposava

    2015-11-23

    The cost-effective production of high frequency accelerating fields are the foundation for the next generation of particle accelerators. The Ar/Cl2 plasma etching technology holds the promise to yield a major reduction in cavity preparation costs. Plasma-based dry niobium surface treatment provides an excellent opportunity to remove bulk niobium, eliminate surface imperfections, increase cavity quality factor, and bring accelerating fields to higher levels. At the same time, the developed technology will be more environmentally friendly than the hydrogen fluoride-based wet etching technology. Plasma etching of inner surfaces of standard multi-cell SRF cavities is the main goal of this research in order to eliminate contaminants, including niobium oxides, in the penetration depth region. Successful plasma processing of multi-cell cavities will establish this method as a viable technique in the quest for more efficient components of next generation particle accelerators. In this project the single-cell pill box cavity plasma etching system is developed and etching conditions are determined. An actual single cell SRF cavity (1497 MHz) is plasma etched based on the pill box cavity results. The first RF test of this plasma etched cavity at cryogenic temperature is obtained. The system can also be used for other surface modifications, including tailoring niobium surface properties, surface passivation or nitriding for better performance of SRF cavities. The results of this plasma processing technology may be applied to most of the current SRF cavity fabrication projects. In the course of this project it has been demonstrated that a capacitively coupled radio-frequency discharge can be successfully used for etching curved niobium surfaces, in particular the inner walls of SRF cavities. The results could also be applicable to the inner or concave surfaces of any 3D structure other than an SRF cavity.

  14. Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

    2011-01-01

    Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

  15. Nanomaterials: Organic and Inorganic for Next-Generation Diesel Technologies

    Broader source: Energy.gov [DOE]

    2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  16. LANL, Sandia, Cray Set to Build Next Generation NNSA Supercomputer...

    National Nuclear Security Administration (NNSA)

    Peter Ungaro, president and CEO of Cray. "We have a long history with the Department of Energy, the NNSA and its associated laboratories, and we are pleased that the partnership...

  17. Next Generation (NextGen) Geospatial Information System (GIS)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Legacy Management (LM) manages environmental records from Cold War legacy sites spanning nearly 40 years. These records are a key LM asset and must be...

  18. Next-Generation Wireless Instrumentation Integrated with Mathematical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Converting aluminum oxide to metal in large electrolytic cells requires hundreds of thousands of amps, and the cells typically operate with an energy efficiency of only 45%-50%, ...

  19. Model-Based Transient Calibration Optimization for Next Generation Diesel

    Broader source: Energy.gov (indexed) [DOE]

    of Energy These Model Repair Specifications are intended to cover routine repair and rewind of low-voltage random-wound three-phase AC squirrel cage induction motors. PDF icon Model Repair Specifications for Low Voltage Induction Motors (November 1999) More Documents & Publications DOE Navigant Master Presentation Improving Motor and Drive System Performance - A Sourcebook for Industry Novel Flux Coupling Machine without Permanent Magnets Innovation | Department of Energy

    Image of

  20. Next Generation Lighting Technologies (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Siminovittch, Micheal

    2014-05-06

    For the past several years, Michael Siminovittch, a researcher in the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory, has worked to package efficient lighting in an easy-to-use and good-looking lamp. His immensely popular "Berkeley Lamp" has redefined how America lights its offices.

  1. New Superconducting Magnet Will Lead to Next Generation of Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for a superconducting generator for large-scale, high-efficiency offshore wind turbines. ... require a gearbox, which may lead to improved reliability and reduced maintenance costs. ...

  2. LLNL to deliver next-generation supercomputer | National Nuclear...

    National Nuclear Security Administration (NNSA)

    national labs (CORAL) to accelerate the development of high performance computing. ... to deploy systems of about 150 petaflops to advance science and ensure national security. ...

  3. Next Generation Sequencing at the University of Chicago Genomics...

    Office of Scientific and Technical Information (OSTI)

    The current presentation will highlight our capabilities in the area of ultra-high throughput sequencing analysis. Authors: Faber, Pieter 1 + Show Author Affiliations University ...

  4. Project Profile: Next-Generation Solar Collectors for CSP

    Broader source: Energy.gov [DOE]

    3M Company, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is developing high-reflectivity films and high-rigidity structures that can replace current solar collectors that use heavy glass mirrors. Solar collectors represent the most expensive component of a CSP system.

  5. Sample Prep, Workflow Automation and Nucleic Acid Fractionation for Next Generation Sequencing

    SciTech Connect (OSTI)

    Roskey, Mark

    2010-06-03

    Mark Roskey of Caliper LifeSciences discusses how the company's technologies fit into the next generation sequencing workflow on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  6. Geek-Up[7.8.2011]: Cyanobacteria, Biofuels and Next-Generation Batteries

    Broader source: Energy.gov [DOE]

    This edition of the Geek-Up highlights the potential boost that cyanobacteria could deliver to biofuels and examines how computer design tools are advancing the next generation of electric drive vehicle batteries.

  7. Improvements in Next Generation Sequencing ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Fiske, Haley [Illumina

    2013-03-22

    Haley Fiske on "Improvements in Next-Generation Sequencing" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  8. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect (OSTI)

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  9. EIS-0362: Colorado Springs Utilities' Next Generation CFB Coal Generating Unit, CO

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve Colorado Springs Utilities design, construction, and operation of their Next- Generation Circulating Fluidized Bed (CFB) Coal Generating Unit demonstration plant near Fountain, El Paso County, Colorado.

  10. Vehicle Technologies Office Merit Review 2015: Next-generation Ultra-Lean Burn Powertrain

    Broader source: Energy.gov [DOE]

    Presentation given by MAHLE Powertrain LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next-generation ultra...

  11. Vehicle Technologies Office Merit Review 2014: Next-Generation Ultra Lean Burn Powertrain

    Broader source: Energy.gov [DOE]

    Presentation given by MAHLE Powertrain, LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next-generation ultra...

  12. Forensic DNA Standards for Next Generation Sequencing Platforms ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Vallone, Peter [NIST

    2013-03-22

    Peter Vallone on "Forensic DNA Standards for Next Generation Sequencing Platforms" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  13. Five Years of Building the Next Generation of Reactors | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... CASL's focus on high-precision predictions of the onset and evolution of fuel damage directly supports the analysis of accidents like the one that took place at Japan's Fukushima ...

  14. The Next Generation of Heavy Ion Sources (447th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Okamura, Masahiro

    2009-03-04

    Imagine if, by staying in your lane when driving on the expressway, you could help fight cancer or provide a new, clean energy source. You would clench the steering wheel with both hands and stay in your lane, right? Unlike driving on the expressway where you intentionally avoid hitting other cars, scientists sometimes work to steer particle beams into head-on collisions with other oncoming particle beams. However, the particles must be kept "in their lanes" for cleaner, more frequent collisions. Some scientists propose starting the whole process by using lasers to heat a fixed target as a way to get particles with higher charge, which are more steerable. These scientists believe the new methods could be used to develop particle beams for killing cancer cells or creating usable energy from fusion. Join Masahiro Okamura of Brookhaven's Collider-Accelerator Department for the 447th Brookhaven Lecture, titled "The Next Generation of Heavy Ion Sources." Okamura will explain how lasers can be used to create plasma, neutral mixtures of positive ions and negative electrons, from different materials, and how using this plasma leads to beams with higher charge states and currents. He will also discuss how this efficient, simpler method of producing particle beams might be used for cancer therapy, to develop new energy sources, or in synchrotrons.

  15. Third International Meeting on Next Generation Safeguards:Safeguards-by-Design at Enrichment Facilities

    SciTech Connect (OSTI)

    Long, Jon D.; McGinnis, Brent R; Morgan, James B; Whitaker, Michael; Lockwood, Mr. Dunbar; Shipwash, Jacqueline L

    2011-01-01

    The Third International Meeting on Next Generation Safeguards (NGS3) was hosted by the U.S. Department of Energy (DOE)/National Nuclear Security Administration's (NNSA) Office of Nonproliferation and International Security (NIS) in Washington, D.C. on 14-15 December 2010; this meeting focused on the Safeguards-by-Design (SBD) concept. There were approximately 100 participants from 13 countries, comprised of safeguards policy and technical experts from government and industry. Representatives also were present from the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), the European Atomic Energy Agency (Euratom), and the International Atomic Energy Agency (IAEA). The primary objective of this meeting was to exchange views and provide recommendations on implementation of the SBD concept for four specific nuclear fuel cycle facility types: gas centrifuge enrichment plants (GCEPs), GEN III and GEN IV reactors, aqueous reprocessing plants, and mixed oxide fuel fabrication facilities. The general and facility-specific SBD documents generated from the four working groups, which were circulated for comment among working group participants, are intended to provide a substantive contribution to the IAEA's efforts to publish SBD guidance for these specific types of nuclear facilities in the near future. The IAEA has described the SBD concept as an approach in which 'international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and decommissioning.' As part of the Next Generation Safeguards Initiative (NGSI), the DOE is working to establish SBD as a global norm through DOE laboratory studies, international workshops, engagement with industry and the IAEA, and setting an example through its use in new nuclear facilities in the United States. This paper describes the discussion topics and final recommendations of the Enrichment Facilities Working Group. The working group participants were tasked with providing recommendations for facility operators and designers, while promoting the IAEA's objectives of: (1) avoiding costly and time-consuming redesign work or retrofits of new nuclear facilities and (2) providing for more effective and efficient implementation of international safeguards.

  16. Materials Innovation for Next Generation Transmission and Distribution Grid Components Workshop

    Broader source: Energy.gov [DOE]

    Applied R&D in advanced materials has the potential to improve the fundamental properties and capabilities of hardware for grid applications. The Materials Innovation for Next-Generation Transmission and Distribution Grid Components Workshop, held August 26-27, 2015 at Oak Ridge National Laboratory (ORNL), investigated various advanced materials and their potential application to next-generation transmission and distribution (T&D) components. The workshop materials are available below for downloading.

  17. Fiscal Year 2014 Annual Report on BNLs Next Generation Safeguards Initiative Human Capital Development Activities

    SciTech Connect (OSTI)

    Pepper S. E.

    2014-10-10

    Brookhaven National Laboratory’s (BNL’s) Nonproliferation and National Security Department contributes to the National Nuclear Security Administration Office of Nonproliferation and International Security Next Generation Safeguards Initiative (NGSI) through university engagement, safeguards internships, safeguards courses, professional development, recruitment, and other activities aimed at ensuring the next generation of international safeguards professionals is adequately prepared to support the U.S. safeguards mission. This report is a summary of BNL s work under the NGSI program in Fiscal Year 2014.

  18. Building a next-generation community ice sheet model: meeting summary

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Building a next-generation community ice sheet model: meeting summary Citation Details In-Document Search Title: Building a next-generation community ice sheet model: meeting summary No abstract prepared. Authors: Lipscomb, William [1] ; Price, Stephen [1] ; Bueler, Ed [2] ; Holland, David [3] ; Johnson, Jesse [4] + Show Author Affiliations Los Alamos National Laboratory UNIV OF ALASKA NEW YORK UNIV UNIV OF MONTANA Publication Date:

  19. Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking

    SciTech Connect (OSTI)

    2007-09-01

    This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metallized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metallized iron nodules at low cost.

  20. Phoebus: Network Middleware for Next-Generation Network Computing

    SciTech Connect (OSTI)

    Martin Swany

    2012-06-16

    The Phoebus project investigated algorithms, protocols, and middleware infrastructure to improve end-to-end performance in high speed, dynamic networks. The Phoebus system essentially serves as an adaptation point for networks with disparate capabilities or provisioning. This adaptation can take a variety of forms including acting as a provisioning agent across multiple signaling domains, providing transport protocol adaptation points, and mapping between distributed resource reservation paradigms and the optical network control plane. We have successfully developed the system and demonstrated benefits. The Phoebus system was deployed in Internet2 and in ESnet, as well as in GEANT2, RNP in Brazil and over international links to Korea and Japan. Phoebus is a system that implements a new protocol and associated forwarding infrastructure for improving throughput in high-speed dynamic networks. It was developed to serve the needs of large DOE applications on high-performance networks. The idea underlying the Phoebus model is to embed Phoebus Gateways (PGs) in the network as on-ramps to dynamic circuit networks. The gateways act as protocol translators that allow legacy applications to use dedicated paths with high performance.

  1. Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metalized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metalized iron nodules at low cost.

  2. Next Generation Luminaire (NGL) Downlight Demonstration Project: St. Anthony's Hospital

    Broader source: Energy.gov [DOE]

    The U.S. DOE conducts demonstration projects documenting the performance of LED luminaires relative to conventional technologies to increase market adoption of energy-efficient LED systems and to stimulate ongoing product development. These demonstration projects evaluate various aspects of lighting design, purchase, installation, and operation, and they assess the impacts LED technology might have on building owners and users.The prior reports featured NGL-recognized LED downlight luminaires in projects that were either new construction (Hilton Columbus Downtown) or a major renovation (Alston & Bird, LLC). But purchasing and installing new luminaires is not always feasible for existing buildings. For this report, the DOE evaluated the use of LED replacement lamps in the existing CFL downlights at St. Anthony Hospital in Gig Harbor, WA.

  3. Site Selection & Characterization Status Report for Next Generation Nuclear Plant (NGNP)

    SciTech Connect (OSTI)

    Mark Holbrook

    2007-09-01

    In the near future, the US Department of Energy (DOE) will need to make important decisions regarding design and construction of the Next Generation Nuclear Plant (NGNP). One part of making these decisions is considering the potential environmental impacts that this facility may have, if constructed here at the Idaho National Laboratory (INL). The National Environmental Policy Act (NEPA) of 1969 provides DOE decision makers with a process to systematically consider potential environmental consequences of agency decisions. In addition, the Energy Policy Act of 2005 (Title VI, Subtitel C, Section 644) states that the 'Nuclear Regulatory Commission (NRC) shall have licensing and regulatory authority for any reactor authorized under this subtitle.' This stipulates that the NRC will license the NGNP for operation. The NRC NEPA Regulations (10 CFR Part 51) require tha thte NRC prepare an Environmental Impact Statement (EIS) for a permit to construct a nuclear power plant. The applicant is required to submit an Environmental report (ER) to aid the NRC in complying with NEPA.

  4. Upcoming Webinars to Focus on Topics Addressed in the National Academies of Sciences’ "Analytical Foundations for the Next Generation Electric Grid" Report

    Broader source: Energy.gov [DOE]

    The National Academies of Sciences’ Board of Mathematical Sciences and Their Application will conduct two webinars in April, 2016 in conjunction with the recent release of its report entitled Analytical Foundations for the Next Generation Electric Grid. The focus of the study, which was funded in part by the Office of Electricity Delivery and Energy Reliability, was to identify the critical areas of mathematical and computational research that must be addressed for the next-generation electric transmission and distribution system. The report also includes a series of recommendations.

  5. Multiscale Toxicology- Building the Next Generation Tools for Toxicology

    SciTech Connect (OSTI)

    Retterer, S. T.; Holsapple, M. P.

    2013-10-31

    A Cooperative Research and Development Agreement (CRADA) was established between Battelle Memorial Institute (BMI), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Brookhaven National Laboratory (BNL), Lawrence Livermore National Laboratory (LLNL) with the goal of combining the analytical and synthetic strengths of the National Laboratories with BMI's expertise in basic and translational medical research to develop a collaborative pipeline and suite of high throughput and imaging technologies that could be used to provide a more comprehensive understanding of material and drug toxicology in humans. The Multi-Scale Toxicity Initiative (MSTI), consisting of the team members above, was established to coordinate cellular scale, high-throughput in vitro testing, computational modeling and whole animal in vivo toxicology studies between MSTI team members. Development of a common, well-characterized set of materials for testing was identified as a crucial need for the initiative. Two research tracks were established by BMI during the course of the CRADA. The first research track focused on the development of tools and techniques for understanding the toxicity of nanomaterials, specifically inorganic nanoparticles (NPs). ORNL"s work focused primarily on the synthesis, functionalization and characterization of a common set of NPs for dissemination to the participating laboratories. These particles were synthesized to retain the same surface characteristics and size, but to allow visualization using the variety of imaging technologies present across the team. Characterization included the quantitative analysis of physical and chemical properties of the materials as well as the preliminary assessment of NP toxicity using commercially available toxicity screens and emerging optical imaging strategies. Additional efforts examined the development of high-throughput microfluidic and imaging assays for measuring NP uptake, localization, and toxicity in vitro. The second research track within the MSTI CRADA focused on the development of ex vivo animal models for examining druginduced cardiotoxicity. ORNL's role in the second track was limited initially, but was later expanded to include the development of microfluidic platforms that might facilitate the translation of Cardiac 'Microwire' technologies developed at the University of Toronto into a functional platform for drug screening and predictive assessment of cardiotoxicity via highthroughput measurements of contractility. This work was coordinated by BMI with the Centre for the Commercialization of Regenerative Medicine (CCRM) and the University of Toronto (U Toronto). This partnership was expanded and culminated in the submission of proposal to Work for Others (WFO) agencies to explore the development of a broader set of microphysiological systems, a so call human-on-a-chip, that could be used for toxicity screening and the evaluation of bio-threat countermeasures.

  6. Next-Generation Search Engines for Information Retrieval

    SciTech Connect (OSTI)

    Devarakonda, Ranjeet; Hook, Leslie A; Palanisamy, Giri; Green, James M

    2011-01-01

    In the recent years, there have been significant advancements in the areas of scientific data management and retrieval techniques, particularly in terms of standards and protocols for archiving data and metadata. Scientific data is rich, and spread across different places. In order to integrate these pieces together, a data archive and associated metadata should be generated. Data should be stored in a format that can be retrievable and more importantly it should be in a format that will continue to be accessible as technology changes, such as XML. While general-purpose search engines (such as Google or Bing) are useful for finding many things on the Internet, they are often of limited usefulness for locating Earth Science data relevant (for example) to a specific spatiotemporal extent. By contrast, tools that search repositories of structured metadata can locate relevant datasets with fairly high precision, but the search is limited to that particular repository. Federated searches (such as Z39.50) have been used, but can be slow and the comprehensiveness can be limited by downtime in any search partner. An alternative approach to improve comprehensiveness is for a repository to harvest metadata from other repositories, possibly with limits based on subject matter or access permissions. Searches through harvested metadata can be extremely responsive, and the search tool can be customized with semantic augmentation appropriate to the community of practice being served. One such system, Mercury, a metadata harvesting, data discovery, and access system, built for researchers to search to, share and obtain spatiotemporal data used across a range of climate and ecological sciences. Mercury is open-source toolset, backend built on Java and search capability is supported by the some popular open source search libraries such as SOLR and LUCENE. Mercury harvests the structured metadata and key data from several data providing servers around the world and builds a centralized index. The harvested files are indexed against SOLR search API consistently, so that it can render search capabilities such as simple, fielded, spatial and temporal searches across a span of projects ranging from land, atmosphere, and ocean ecology. Mercury also provides data sharing capabilities using Open Archive Initiatives Protocol for Metadata Handling (OAI-PMH). In this paper we will discuss about the best practices for archiving data and metadata, new searching techniques, efficient ways of data retrieval and information display.

  7. Next Generation of Renewable Electricity Policy: How Rapid Change is Breaking Down Conventional Policy Categories

    SciTech Connect (OSTI)

    Couture, T. D.; Jacobs, D.; Rickerson, W.; Healey, V.

    2015-02-01

    A number of policies have been used historically in order to stimulate the growth of the renewable electricity sector. This paper examines four of these policy instruments: competitive tendering, sometimes called renewable electricity auctions, feed-in tariffs, net metering and net billing, and tradable renewable energy certificates. In recent years, however, a number of changes to both market circumstances and to policy priorities have resulted in numerous policy innovations, including the emergence of policy hybrids. With no common language for these evolving policy mechanisms, policymakers have generally continued to use the same traditional policy labels, occasionally generating confusion as many of these new policies no longer look, or act, like their traditional predecessors. In reviewing these changes, this paper makes two separate but related claims: first, policy labels themselves are breaking down and evolving. As a result, policy comparisons that rely on the conventional labels may no longer be appropriate, or advisable. Second, as policymakers continue to adapt, we are in effect witnessing the emergence of the next generation of renewable electricity policies, a change that could have significant impacts on investment, as well as on market growth in both developed and developing countries.

  8. Technical Cross-Cutting Issues for the Next Generation Safeguards Initiative's Spent Fuel Nondestructive Assay Project

    SciTech Connect (OSTI)

    Tobin, S. J.; Menlove, H. O.; Swinhoe, Martyn T.; Blanc, P.; Burr, T.; Evans, L. G.; Favalli, A.; Fensin, M. L.; Freeman, C. R.; Galloway, J.; Gerhart, J.; Rajasingam, A.; Rauch, E.; Sandoval, N. P.; Trellue, H.; Ulrich, T. J.; Conlin, J. L.; Croft, S.; Hendricks, John; Henzl, V.; Henzlova, D.; Eigenbrodt, J. M.; Koehler, W. E.; Lee, D. W.; Lee, T. H.; Lafleur, A. M.; Schear, M. A.; Humphrey, M. A.; Smith, Leon E.; Anderson, Kevin K.; Campbell, Luke W.; Casella, Andrew M.; Gesh, Christopher J.; Shaver, Mark W.; Misner, Alex C.; Amber, S. D.; Ludewigt, Bernhard A.; Quiter, B.; Solodov, Alexander; Charlton, W.; Stafford, A.; Romano, C.; Cheatham, J.; Ehinger, Michael; Thompson, S. J.; Chichester, David; Sterbentz, James; Hu, Jianwei; Hunt, A.; Mozin, Vladimir V.; Richard, J. G.

    2012-03-01

    Ever since there has been spent fuel (SF), researchers have made nondestructive assay (NDA) measurements of that fuel to learn about its content. In general these measurements have focused on the simplest signatures (passive photon and total neutron emission) and the analysis has often focused on diversion detection and on determining properties such as burnup (BU) and cooling time (CT). Because of shortcomings in current analysis methods, inspectorates and policy makers are interested in improving the state-of-the-art in SF NDA. For this reason the U.S. Department of Energy, through the Next Generation Safeguards Initiative (NGSI), targeted the determination of elemental Pu mass in SF as a technical goal. As part of this research effort, 14 nondestructive assay techniques were studied . This wide range of techniques was selected to allow flexibility for the various needs of the safeguards inspectorates and to prepare for the likely integration of one or more techniques having complementary features. In the course of researching this broad range of NDA techniques, several cross-cutting issues were. This paper will describe some common issues and insights. In particular we will describe the following: (1) the role of neutron absorbers with emphasis on how these absorbers vary in SF as a function of initial enrichment, BU and CT; (2) the need to partition the measured signal among different isotopic sources; and (3) the importance of the “first generation” concept which indicates the spatial location from which the signal originates as well as the isotopic origins.

  9. INVESTIGATION OF PLUTONIUM AND URANIUM UPTAKE INTO MCU SOLVENT AND NEXT GENERATION SOLVENT

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2012-01-06

    At the request of the Savannah River Remediation (SRR) customer, the Savannah River National Laboratory (SRNL) examined the plutonium (Pu) and uranium (U) uptake into the Next Generation Solvent (NGS) that will be used at the Salt Waste Processing Facility (SWPF). SRNL examined archived samples of solvent used in Extraction-Scrub-Strip (ESS) tests, as well as samples from new tests designed explicitly to examine the Pu and U uptake. Direct radiocounting for Pu and U provided the best results. Using the radiocounting results, we found that in all cases there were <3.41E-12 g Pu/g of NGS and <1.17E-05 g U/g of NGS in multiple samples, even after extended contact times and high aqueous:organic volume phase ratios. These values are conservative as they do not allow for release or removal of the actinides by scrub, strip, or solvent wash processes. The values do not account for extended use or any increase that may occur due to radiolytic damage of the solvent.

  10. Next Generation Climate Change Experiments Needed to Advance Knowledge and for Assessment of CMIP6

    SciTech Connect (OSTI)

    Katzenberger, John; Arnott, James; Wright, Alyson

    2014-10-30

    The Aspen Global Change Institute hosted a technical science workshop entitled, Next generation climate change experiments needed to advance knowledge and for assessment of CMIP6, on August 4-9, 2013 in Aspen, CO. Jerry Meehl (NCAR), Richard Moss (PNNL), and Karl Taylor (LLNL) served as co-chairs for the workshop which included the participation of 32 scientists representing most of the major climate modeling centers for a total of 160 participant days. In August 2013, AGCI gathered a high level meeting of representatives from major climate modeling centers around the world to assess achievements and lessons learned from the most recent generation of coordinated modeling experiments known as the Coupled Model Intercomparison Project 5 (CMIP5) as well as to scope out the science questions and coordination structure desired for the next anticipated phase of modeling experiments called CMIP6. The workshop allowed for reflection on the coordination of the CMIP5 process as well as intercomparison of model results, such as were assessed in the most recent IPCC 5th Assessment Report, Working Group 1. For example, this slide from Masahiro Watanabe examines performance on a range of models capturing Atlantic Meridional Overturning Circulation (AMOC).

  11. Compaction Scale Up and Optimization of Cylindrical Fuel Compacts for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Jeffrey J. Einerson; Jeffrey A. Phillips; Eric L. Shaber; Scott E. Niedzialek; W. Clay Richardson; Scott G. Nagley

    2012-10-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of designed experiments have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel. Results from these experiments are included. The scale-up effort is nearing completion with the process installed and operational using nuclear fuel materials. The process is being certified for manufacture of qualification test fuel compacts for the AGR-5/6/7 experiment at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL).

  12. Status of the PRISM FFAG Design for the Next Generation Muon-to-electron

    Office of Scientific and Technical Information (OSTI)

    Conversion Experiment (Conference) | SciTech Connect Conference: Status of the PRISM FFAG Design for the Next Generation Muon-to-electron Conversion Experiment Citation Details In-Document Search Title: Status of the PRISM FFAG Design for the Next Generation Muon-to-electron Conversion Experiment Authors: Pasternak J. ; Witte H. ; Jenner, L.J. ; Kurup, A. ; Alekou, A. ; Aslaninejad, M. ; Chudzinski, R. ; Shi, Y. ; Uchida, Y. ; Muratori, B. ; Smith, S.L. ; Hock, K.M. ; Appleby, R. ; Owen, H.

  13. Next Generation Natural Gas Vehicle Program Phase I: Clean Air Partners 0.5

    Office of Scientific and Technical Information (OSTI)

    g/hp-h NOx Engine Concept; Final Report (Technical Report) | SciTech Connect Technical Report: Next Generation Natural Gas Vehicle Program Phase I: Clean Air Partners 0.5 g/hp-h NOx Engine Concept; Final Report Citation Details In-Document Search Title: Next Generation Natural Gas Vehicle Program Phase I: Clean Air Partners 0.5 g/hp-h NOx Engine Concept; Final Report Subcontractor report details work done by Clean Air Partners to develop 0.5 g/hp-h NOx natural gas engine exhaust gas

  14. Study of an HHG-Seeded Free-Electron Laser for the LBNL Next Generation Light Source

    SciTech Connect (OSTI)

    Thompson, Neil

    2010-10-20

    The Next Generation Light Source (NGLS) is a high repetition rate free-electron laser facility proposed by Lawrence Berkeley National Laboratory (LBNL). The proposed facility will provide multiple FEL lines with varying spectral characteristics to satisfy a broad soft X-ray physics programme. At this stage of the project a number of FEL technologies and concepts are being investigated for possible implementation on the facility. In this report we consider a free-electron laser seeded by a Higher Harmonic Generation (HHG) source in which a high power (and consequently relatively low repetition rate) laser pulse is injected into a chamber of inert gas. Through a process of ionisation and recombination coherent higher harmonics of the laser are emitted from the gas and can be injected into an FEL system as a seed field. Further harmonic upconversion can be done within the FEL system to enable temporally coherent FEL output at wavelengths much shorter than, and pulse energies orders of magnitude higher than, the HHG source emission. The harmonic conversion within the FEL works in the following way. The seed field induces an energy modulation within the electron bunch at the start of the modulator. This energy modulation grows within the modulator due to the FEL interaction and starts to convert into a density modulation, or bunching, at the seed wavelength. However, this bunching also has components at higher harmonics which retain the longitudinal coherence of the initial seed. The beam passes through a magnetic chicane, which shears the longitudinal phase space to maximise the bunching at the required harmonic, then a further undulator which is tuned to this harmonic. If this second undulator is short it acts as a further modulator, and because the beam is pre-bunched at the modulator resonance there is a strong coherent burst of radiation which acts to modulate the electron beam energy in much the same way the input laser seed field acted in the first modulator. This second modulator is followed by a second bunching chicane and then a final long radiator tuned to a yet higher harmonic of the laser seed - the final output wavelength. Alternatively, the second undulator can be the radiator itself, in which case only one harmonic conversion from seed wavelength to final output is necessary. We initially consider the case of a 400kW peak power HHG seed source at wavelength 12nm (currently considered the cutoff wavelength for sufficient seed power to dominate shot noise in the electron beam) which is converted in either one or two stages or harmonic conversion to FEL emission at 1nm. We then consider the implications of a factor of ten reduction in seed power to 40kW.

  15. high renewable energy penetration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high renewable energy penetration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...

  16. Unlocking the brain's mysteries: Meet the bioengineers behind next-generation neural devices

    ScienceCinema (OSTI)

    Pannu, Sat; Shah, Kedar; Tolosa, Vanessa; Tooker, Angela

    2015-02-20

    Bioengineers in the Neural Technologies Group at Lawrence Livermore are creating the next generation of clinical- and research-quality neural interfaces. The goal is to gain a fundamental understanding of neuroscience, treat a variety of debilitating neurological disorders (such as Parkinson's, depression, and epilepsy), and restore lost neural functions such as sight, hearing, and mobility.

  17. Unlocking the brain's mysteries: Meet the bioengineers behind next-generation neural devices

    SciTech Connect (OSTI)

    Pannu, Sat; Shah, Kedar; Tolosa, Vanessa; Tooker, Angela

    2014-10-02

    Bioengineers in the Neural Technologies Group at Lawrence Livermore are creating the next generation of clinical- and research-quality neural interfaces. The goal is to gain a fundamental understanding of neuroscience, treat a variety of debilitating neurological disorders (such as Parkinson's, depression, and epilepsy), and restore lost neural functions such as sight, hearing, and mobility.

  18. Next Generation Nuclear Plant Structures, Systems, and Components Safety Classification White Paper

    SciTech Connect (OSTI)

    Pete Jordan

    2010-09-01

    This white paper outlines the relevant regulatory policy and guidance for a risk-informed approach for establishing the safety classification of Structures, Systems, and Components (SSCs) for the Next Generation Nuclear Plant and sets forth certain facts for review and discussion in order facilitate an effective submittal leading to an NGNP Combined Operating License application under 10 CFR 52.

  19. Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydroccarbon Biorefineries

    SciTech Connect (OSTI)

    none,

    2008-03-01

    This roadmap to “Next Generation Hydrocarbon Biorefineries” outlines a number of novel process pathways for biofuels production based on sound scientific and engineering proofs of concept demonstrated in laboratories around the world. This report was based on the workshop of the same name held June 25-26, 2007 in Washington, DC.

  20. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    SciTech Connect (OSTI)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  1. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Energy Physics science-innovationassetsimagesicon-science.jpg High Energy Physics Investigating the field of high energy physics through experiments that strengthen our ...

  2. Next Generation Nuclear Plant Methods Research and Development Technical Program Plan -- PLN-2498

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2008-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  3. Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Michael W. Patterson

    2008-05-01

    The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible. For integration purposes, an analysis comparing the design, cost and schedule impact of maintaining a technology neutral approach through conceptual design or making an early hydrogen process technology selection was performed. Early selection does not specifically eliminate a technology, but rather selects the first hydrogen technology for demonstration. A systems-engineering approach was taken to define decision-making criteria for selecting a hydrogen technology. The relative technical, cost and schedule risks of each approach were analyzed and risk mitigation strategies were recommended, including provisions to maintain close collaboration with the NHI. The results of these analyses are presented here.

  4. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    SciTech Connect (OSTI)

    Pepper,S.; Rosenthal, M.; Fishbone, L.; Occhiogrosso, D.; Carroll, C.; Dreicer, M.; Wallace, R.; Rankhauser, J.

    2008-10-22

    In 2007, the National Nuclear Security Administration's Office of Nonproliferation and International Security (NA-24) completed a yearlong review of the challenges facing the international safeguards system today and over the next 25 years. The study found that without new investment in international safeguards, the U.S. safeguards technology base, and our ability to support International Atomic Energy Agency (IAEA) safeguards, will continue to erode and soon may be at risk. To reverse this trend, the then U.S. Secretary of Energy, Samuel Bodman, announced at the 2007 IAEA General Conference that the Department of Energy (DOE) would launch the Next Generation Safeguards Initiative (NGSI). He stated 'IAEA safeguards must be robust and capable of addressing proliferation threats. Full confidence in IAEA safeguards is essential for nuclear power to grow safely and securely. To this end, the U.S. Department of Energy will seek to ensure that modern technology, the best scientific expertise, and adequate resources are available to keep pace with expanding IAEA responsibilities.' To meet this goal, the NGSI objectives include the recruitment of international safeguards experts to work at the U.S. national laboratories and to serve at the IAEA's headquarters. Part of the latter effort will involve enhancing our existing efforts to place well-qualified Americans in a sufficient number of key safeguards positions within the IAEA's Department of Safeguards. Accordingly, the International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards (ERIS) on October 22 and 23, 2008. The ISPO used a workshop format developed earlier with Sonalysts, Inc., that was followed at the U.S. Support Program's (USSP's) technology road-mapping sessions. ISPO invited participants from the U.S. DOE, the IAEA, the U.S. national laboratories, private industry, academia, and professional societies who either are experts in international safeguards, or understand the challenges of recruiting for technical positions. The 44 participants represented eight national laboratories, four universities, three government organizations, two international organizations, two professional organizations, and three small companies. The goal of the ERIS workshop was to improve efforts to engage U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. At the workshop's conclusion, participants presented their findings to the NNSA Office of International Regimes and Agreements (NA-243). The report's major findings are summarized.

  5. Interface and Electrode Engineering for Next-Generation Organic Photovoltaic Cells: Final Technical Report, March 2005 - August 2008

    SciTech Connect (OSTI)

    Mason, T. O.; Chang, R. P. H.; Freeman, A. J.; Marks, T. J.; Poeppelmeier, K. R.

    2008-11-01

    The objective of this project was to enable next-generation, efficient, easily manufacturable, and durable organic photovoltaics through interface and electrode engineering.

  6. EERE Success Story—Zero-order Reaction Kinetics (Zero-RK) Coding Is Designing the Next-Generation Engines

    Broader source: Energy.gov [DOE]

    A computer code developed by a trio of Lawrence Livermore National Laboratory (LLNL) researchers has significantly advanced predictive computer science for designing next-generation car and truck...

  7. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs

    SciTech Connect (OSTI)

    Burchell, Timothy D; Bratton, Rob; Marsden, Barry; Srinivasan, Makuteswara; Penfield, Scott; Mitchell, Mark; Windes, Will

    2008-03-01

    Here we report the outcome of the application of the Nuclear Regulatory Commission (NRC) Phenomena Identification and Ranking Table (PIRT) process to the issue of nuclear-grade graphite for the moderator and structural components of a next generation nuclear plant (NGNP), considering both routine (normal operation) and postulated accident conditions for the NGNP. The NGNP is assumed to be a modular high-temperature gas-cooled reactor (HTGR), either a gas-turbine modular helium reactor (GTMHR) version [a prismatic-core modular reactor (PMR)] or a pebble-bed modular reactor (PBMR) version [a pebble bed reactor (PBR)] design, with either a direct- or indirect-cycle gas turbine (Brayton cycle) system for electric power production, and an indirect-cycle component for hydrogen production. NGNP design options with a high-pressure steam generator (Rankine cycle) in the primary loop are not considered in this PIRT. This graphite PIRT was conducted in parallel with four other NRC PIRT activities, taking advantage of the relationships and overlaps in subject matter. The graphite PIRT panel identified numerous phenomena, five of which were ranked high importance-low knowledge. A further nine were ranked with high importance and medium knowledge rank. Two phenomena were ranked with medium importance and low knowledge, and a further 14 were ranked medium importance and medium knowledge rank. The last 12 phenomena were ranked with low importance and high knowledge rank (or similar combinations suggesting they have low priority). The ranking/scoring rationale for the reported graphite phenomena is discussed. Much has been learned about the behavior of graphite in reactor environments in the 60-plus years since the first graphite rectors went into service. The extensive list of references in the Bibliography is plainly testament to this fact. Our current knowledge base is well developed. Although data are lacking for the specific grades being considered for Generation IV (Gen IV) concepts, such as the NGNP, it is fully expected that the behavior of these graphites will conform to the recognized trends for near isotropic nuclear graphite. Thus, much of the data needed is confirmatory in nature. Theories that can explain graphite behavior have been postulated and, in many cases, shown to represent experimental data well. However, these theories need to be tested against data for the new graphites and extended to higher neutron doses and temperatures pertinent to the new Gen IV reactor concepts. It is anticipated that current and planned future graphite irradiation experiments will provide the data needed to validate many of the currently accepted models, as well as providing the needed data for design confirmation.

  8. The Next Generation Nuclear Plant - Insights Gained from the INEEL Point Design Studies

    SciTech Connect (OSTI)

    Philip E. MacDonald; A. M. Baxter; P. D. Bayless; J. M. Bolin; H. D. Gougar; R. L. Moore; A. M. Ougouag; M. B. Richards; R. L. Sant; J. W. Sterbentz; W. K. Terry

    2004-08-01

    This paper provides the results of an assessment of two possible versions of the Next Generation Nuclear Plant (NGNP), a prismatic fuel type helium gas-cooled reactor and a pebble-bed fuel helium gas reactor. Insights gained regarding the strengths and weaknesses of the two designs are also discussed. Both designs will meet the three basic requirements that have been set for the NGNP: a coolant outlet temperature of 1000 C, passive safety, and a total power output consistent with that expected for commercial high-temperature gas-cooled reactors. Two major modifications of the current Gas Turbine- Modular Helium Reactor (GT-MHR) design were needed to obtain a prismatic block design with a 1000 C outlet temperature: reducing the bypass flow and better controlling the inlet coolant flow distribution to the core. The total power that could be obtained for different core heights without exceeding a peak transient fuel temperature of 1600 C during a high or low-pressure conduction cooldown event was calculated. With a coolant inlet temperature of 490 C and 10% nominal core bypass flow, it is estimated that the peak power for a 10-block high core is 686 MWt, for a 12-block high core is 786 MWt, and for a 14-block core is about 889 MWt. The core neutronics calculations showed that the NGNP will exhibit strongly negative Doppler and isothermal temperature coefficients of reactivity over the burnup cycle. In the event of rapid loss of the helium gas, there is negligible core reactivity change. However, water or steam ingress into the core coolant channels can produce a relatively large reactivity effect. Two versions of an annular pebble-bed NGNP have also been developed, a 300 and a 600 MWt module. From this work we learned how to design passively safe pebble bed reactors that produce more than 600 MWt. We also found a way to improve both the fuel utilization and safety by modifying the pebble design (by adjusting the fuel zone radius in the pebble to optimize the fuel-to-moderator ratio). We also learned how to perform design optimization calculations by using a genetic algorithm that automatically selects a sequence of design parameter sets to meet specified fitness criteria increasingly well. In the pebble-bed NGNP design work, we use the genetic algorithm to direct the INEELs PEBBED code to perform hundreds of code runs in less than a day to find optimized design configurations. And finally, we learned how to calculate cross sections more accurately for pebble bed reactors, and we identified research needs for the further refinement of the cross section calculations.

  9. Report on the September 2011 Meeting of the Next Generation Safegaurds Professional Network

    SciTech Connect (OSTI)

    Gitau, Ernest TN; Benz, Jacob M.

    2011-12-19

    The Next Generation Safeguards Professional Network (NGSPN) was established in 2009 by Oak Ridge National Laboratory targeted towards the engagement of young professionals employed in safeguards across the many national laboratories. NGSPN focuses on providing a mechanism for young safeguards professionals to connect and foster professional relationships, facilitating knowledge transfer between current safeguards experts and the next generation of experts, and acting as an entity to represent the interests of the international community of young and mid-career safeguards professionals. This is accomplished in part with a yearly meeting held at a national laboratory site. In 2011, this meeting was held at Pacific Northwest National Laboratory. This report documents the events and results of that meeting.

  10. Microsoft Word - Research and Development Roadmap for Next-Generation Appliances

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Roadmap for Next-Generation Appliances W. Goetzler, T. Sutherland, K. Foley October 2014 Prepared by Navigant Consulting, Inc. (This page intentionally left blank) NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or

  11. Research & Development Roadmap for Next-Generation Low Global Warming Potential Refrigerants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next-Generation Low Global Warming Potential Refrigerants W. Goetzler, T. Sutherland, M. Rassi, J. Burgos November 2014 Prepared by Navigant Consulting, Inc. (This page intentionally left blank) NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied,

  12. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    SciTech Connect (OSTI)

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell; Mehl, Marco; Killingsworth, Nick J.; Westbrook, Charles K.

    2015-12-17

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  13. High energy-density physics: From nuclear testing to the superlasers

    SciTech Connect (OSTI)

    Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.; Teller, E.

    1995-10-20

    We describe the role for the next-generation ``superlasers`` in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, we focus on three important areas of physics that have unresolved issues which must be addressed by experiment: Equations of state, hydrodynamic mixing, and the transport of radiation. We will describe the advantages the large lasers will have in a comprehensive experimental program.

  14. Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368

    SciTech Connect (OSTI)

    Guevara, K.C.; Fellinger, A.P.; Aylward, R.S.; Griffin, J.C.; Hyatt, J.E.; Bush, S.R.

    2013-07-01

    The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficial engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)

  15. Critical view to ''IGEX {sup 76}Ge neutrinoless double-beta decay experiment: Prospects for next generation experiments''

    SciTech Connect (OSTI)

    Klapdor-Kleingrothaus, H.V.; Dietz, A. [Max-Planck-Institut fuer Kernphysik, Postfach 10 39 80, D-69029 Heidelberg (Germany); Krivosheina, I. V. [Max-Planck-Institut fuer Kernphysik, Postfach 10 39 80, D-69029 Heidelberg (Germany); Radiophysical-Research Institute, Nishnii-Novgorod (Russian Federation)

    2004-10-01

    Recently, a paper entitled 'The IGEX {sup 76}Ge neutrinoless double-beta decay experiment: Prospects for next generation experiments' has been published [Phys. Rev. D 65, 092007 (2002)]. In view of the recently reported evidence for neutrinoless double-beta decay [Mod. Phys. Lett. A 16, 2409 (2001).; Found. Phys. 31, 1181 (2002); Phys. Lett. B 586, 198 (2004).], it is particularly unfortunate that the IGEX paper is rather incomplete in its presentation. We would like to point out in this Comment that and why it would be highly desirable to make more details about the experimental conditions and the analysis of IGEX available. We list some of the main points, which require further explanation. We also point to an arithmetic mistake in the analysis of the IGEX data, the consequence of which are too high half-life limits given in that paper.

  16. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect (OSTI)

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of recuperation, the use of turbine reheat, and the non-consumptive use of EGS make-up water to supplement heat rejection

  17. FEMTOSECOND TIMING DISTRIBUTION AND CONTROL FOR NEXT GENERATION ACCELERATORS AND LIGHT SOURCES

    SciTech Connect (OSTI)

    Chen, Li-Jin

    2014-03-31

    Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even at-tosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. An increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objec-tive of the work described in this proposal is to set up an optical timing distribution sys-tem based on modelocked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the technology to market.

  18. Department of Energy Announces $17 Million to Bolster University...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy technologies, and training and educating the next generation of leaders in the ... investments we are also training and educating the next generation of leaders in the ...

  19. BESTIA - the next generation ultra-fast CO2 laser for advanced accelerator research

    SciTech Connect (OSTI)

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; Skaritka, John; Polyanskiy, Mikhail N.

    2015-12-02

    Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimes in the particle acceleration of ions and electrons.

  20. Next-generation purex flowsheets with acetohydroxamic acid as complexant for FBR and thermal-fuel reprocessing

    SciTech Connect (OSTI)

    Kumar, Shekhar; Koganti, S.B.

    2008-07-01

    Acetohydroxamic acid (AHA) is a novel complexant for recycle of nuclear-fuel materials. It can be used in ordinary centrifugal extractors, eliminating the need for electro-redox equipment or complex maintenance requirements in a remotely maintained hot cell. In this work, the effect of AHA on Pu(IV) distribution ratios in 30% TBP system was quantified, modeled, and integrated in SIMPSEX code. Two sets of batch experiments involving macro Pu concentrations (conducted at IGCAR) and one high-Pu flowsheet (literature) were simulated for AHA based U-Pu separation. Based on the simulation and validation results, AHA based next-generation reprocessing flowsheets are proposed for co-processing based FBR and thermal-fuel reprocessing as well as evaporator-less macro-level Pu concentration process required for MOX fuel fabrication. Utilization of AHA results in significant simplification in plant design and simpler technology implementations with significant cost savings. (authors)

  1. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  2. Reinventing the Accelerator for the High Energy Frontier

    ScienceCinema (OSTI)

    Rosenzweig, James [UCLA, Los Angeles, California, United States

    2009-09-01

    The history of discovery in high-energy physics has been intimately connected with progress in methods of accelerating particles for the past 75 years. This remains true today, as the post-LHC era in particle physics will require significant innovation and investment in a superconducting linear collider. The choice of the linear collider as the next-generation discovery machine, and the selection of superconducting technology has rather suddenly thrown promising competing techniques -- such as very large hadron colliders, muon colliders, and high-field, high frequency linear colliders -- into the background. We discuss the state of such conventional options, and the likelihood of their eventual success. We then follow with a much longer view: a survey of a new, burgeoning frontier in high energy accelerators, where intense lasers, charged particle beams, and plasmas are all combined in a cross-disciplinary effort to reinvent the accelerator from its fundamental principles on up.

  3. RESULTS OF ANALYSIS OF NGS CONCENTRATE DRUM SAMPLES [Next Generation Solvent

    SciTech Connect (OSTI)

    Peters, T.; Williams, M.

    2013-09-13

    Savannah River National Laboratory (SRNL) prepared two drums (50 gallons each in ?Drum#2? and ?Drum#4?) of NGS-MCU (Next Generation Solvent-Modular CSSX Unit) concentrate for future use at MCU in downblending the BOBCalixC6 based solvent to produce NGS-MCU solvent. Samples of each drum were sent for analysis. The results of all the analyses indicate that the blend concentrate is of the correct composition and should produce a blended solvent at MCU of the desired formulation.

  4. Next-Generation Germanium Spectrometer Background Reduction Techniques at 2 MeV

    SciTech Connect (OSTI)

    Brodzinski, Ronald L.

    2005-04-01

    The Majorana project, a next-generation 76Ge neutrinoless double-beta decay experiment being undertaken by a large international collaboration, has the goal of measuring the neutrinoless double-beta decay rate by observing monochromatic events at 2039 keV in 500 kg of isotopically enriched 76Ge gamma-ray spectrometers. In order to achieve the desired sensitivity limit, the background in the 2037-2041 keV region must be reduced to <1 event per year in the entire germanium array. The effects of various background reduction techniques, and the combination thereof, to produce a huge 76Ge spectrometer array with virtually zero background are discussed.

  5. SAMPLE RESULTS FROM THE NEXT GENERATION SOLVENT PROGRAM REAL WASTE EXTRACTION-SCRUB-STRIP TESTING

    SciTech Connect (OSTI)

    Peters, T.; Washington, A.

    2013-06-03

    Savannah River National Laboratory (SRNL) performed multiple Extraction-Scrub-Strip (ESS) testing using real waste solutions, and three Next Generation Solvent (NGS) variations, which included radiologically clean pure NGS, a blend of radiologically clean NGS and radiologically clean BOBCalixC6 (NGS-MCU), and a blend of radiologically clean NGS and radiologically contaminated BOBCalixC6 from the MCU Solvent system. The results from the tests indicate that both the NGS and the NGS-MCU blend exhibit adequate extraction, scrub and strip behavior.

  6. Sample Results From The Next Generation Solvent Program Real Waste Extraction-Scrub-Strip Testing

    SciTech Connect (OSTI)

    Peters, T. B.; Washington, A. L. II

    2013-08-08

    Savannah River National Laboratory (SRNL) performed multiple Extraction-Scrub-Strip (ESS) testing using real waste solutions, and three Next Generation Solvent (NGS) variations, which included radiologically clean pure NGS, a blend of radiologically clean NGS and radiologically clean BOBCalixC6 (NGS-MCU), and a blend of radiologically clean NGS and radiologically contaminated BOBCalixC6 from the MCU Solvent system. The results from the tests indicate that both the NGS and the NGS-MCU blend exhibit adequate extraction, scrub and strip behavior.

  7. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    SciTech Connect (OSTI)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

  8. Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)

    SciTech Connect (OSTI)

    J. K. Wright

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

  9. PERFORMANCE TESTING OF THE NEXT-GENERATION CSSX SOLVENT WITH ACTUAL SRS TANK WASTE

    SciTech Connect (OSTI)

    Pierce, R.; Peters, T.; Crowder, M.; Fink, S.

    2011-11-01

    Efforts are underway to qualify the Next-Generation Solvent for the Caustic Side Solvent Extraction (CSSX) process. Researchers at multiple national laboratories have been involved in this effort. As part of the effort to qualify the solvent extraction system at the Savannah River Site (SRS), SRNL performed a number of tests at various scales. First, SRNL completed a series of batch equilibrium, or Extraction-Scrub-Strip (ESS), tests. These tests used {approx}30 mL of Next-Generation Solvent and either actual SRS tank waste, or waste simulant solutions. The results from these cesium mass transfer tests were used to predict solvent behavior under a number of conditions. At a larger scale, SRNL assembled 12 stages of 2-cm (diameter) centrifugal contactors. This rack of contactors is structurally similar to one tested in 2001 during the demonstration of the baseline CSSX process. Assembly and mechanical testing found no issues. SRNL performed a nonradiological test using 35 L of cesium-spiked caustic waste simulant and 39 L of actual tank waste. Test results are discussed; particularly those related to the effectiveness of extraction.

  10. Vehicle Technologies Office Merit Review 2015: ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine

    Broader source: Energy.gov [DOE]

    Presentation given by Cummins at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ATP-LD; Cummins next generation tier...

  11. Next-Generation Genetics in Plants: Evolutionary Trade-off, Immunity and Speciation (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Wiegel, Detlef

    2011-04-25

    Detlef Wiegel from the Max Planck Institute for Developmental Biology on "Next-generation genetics in plants: Evolutionary tradeoffs, immunity and speciation" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  12. Proceedings of the Computational Needs for the Next Generation Electric Grid Workshop, April 19-20, 2011

    Broader source: Energy.gov [DOE]

    The April 2011 DOE workshop, “Computational Needs for the Next Generation Electric Grid,” brought together some of the Nation’s leading researchers and experts to identify computational challenges...

  13. Next Generation Environmentally-Friendly Driving Feedback Systems Research and Development

    SciTech Connect (OSTI)

    Barth, Matthew; Boriboonsomsin, Kanok

    2014-12-31

    The objective of this project is to design, develop, and demonstrate a next-generation, federal safety- and emission-complaint driving feedback system that can be deployed across the existing vehicle fleet and improve fleet average fuel efficiency by at least 2%. The project objective was achieved with the driving feedback system that encourages fuel-efficient vehicle travel and operation through: 1) Eco-Routing Navigation module that suggests the most fuel-efficient route from one stop to the next, 2) Eco-Driving Feedback module that provides sensible information, recommendation, and warning regarding fuel-efficient vehicle operation, and 3) Eco-Score and Eco-Rank module that provides a means for driving performance tracking, self-evaluation, and peer comparison. The system also collects and stores vehicle travel and operation data, which are used by Algorithm Updating module to customize the other modules for specific vehicles and adapts them to specific drivers over time. The driving feedback system was designed and developed as an aftermarket technology that can be retrofitted to vehicles in the existing fleet. It consists of a mobile application for smart devices running Android operating system, a vehicle on-board diagnostics connector, and a data server. While the system receives and utilizes real-time vehicle and engine data from the vehicle’s controller area network bus through the vehicle’s on-board diagnostic connector, it does not modify or interfere with the vehicle’s controller area network bus, and thus, is in compliance with federal safety and emission regulations. The driving feedback system was demonstrated and then installed on 45 vehicles from three different fleets for field operational test. These include 15 private vehicles of the general public, 15 pickup trucks of the California Department of Transportation that are assigned to individual employees for business use, and 15 shuttle buses of the Riverside Transit Agency that are used for paratransit service. Detailed vehicle travel and operation data including route taken, driving speed, acceleration, braking, and the corresponding fuel consumption, were collected both before and during the test period. The data analysis results show that the fleet average fuel efficiency improvements for the three fleets with the use of the driving feedback system are in the range of 2% to 9%. The economic viability of the driving feedback system is high. A fully deployed system would require capital investment in smart device ($150-$350) and on-board diagnostics connector ($50-$100) as well as paying operating costs for wireless data plan and subscription fees ($20-$30 per month) for connecting to the data server and receiving various system services. For individual consumers who already own a smart device (such as smartphone) and commercial fleets that already use some kind of telematics services, the costs for deploying this driving feedback system would be much lower.

  14. Project Profile: Fundamental Corrosion Studies in High-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Next-Generation CSP Systems Project Profile: Fundamental Corrosion Studies in High-Temperature Molten Salt Systems for Next-Generation CSP Systems Savannah River ...

  15. DEMONSTRATION OF THE NEXT-GENERATION TCAP HYDROGEN ISOTOPE SEPARATION PROCESS

    SciTech Connect (OSTI)

    Heung, L; Henry Sessions, H; Steve Xiao, S; Heather Mentzer, H

    2009-01-09

    The first generation of TCAP hydrogen isotope separation process has been in service for tritium separation at the Savannah River Site since 1994. To prepare for replacement, a next-generation TCAP process has been developed. This new process simplifies the column design and reduces the equipment requirements of the thermal cycling system. An experimental twelve-meter column was fabricated and installed in the laboratory to demonstrate its performance. This new design and its initial test results were presented at the 8th International Conference on Tritium Science and Technology and published in the proceedings. We have since completed the startup and demonstration the separation of protium and deuterium in the experimental unit. The unit has been operated for more than 200 cycles. A feed of 25% deuterium in protium was separated into two streams each better than 99.7% purity.

  16. Regulatory Concerns on the In-Containment Water Storage System of the Korean Next Generation Reactor

    SciTech Connect (OSTI)

    Ahn, Hyung-Joon; Lee, Jae-Hun; Bang, Young-Seok; Kim, Hho-Jung

    2002-07-15

    The in-containment water storage system (IWSS) is a newly adopted system in the design of the Korean Next Generation Reactor (KNGR). It consists of the in-containment refueling water storage tank, holdup volume tank, and cavity flooding system (CFS). The IWSS has the function of steam condensation and heat sink for the steam release from the pressurizer and provides cooling water to the safety injection system and containment spray system in an accident condition and to the CFS in a severe accident condition. With the progress of the KNGR design, the Korea Institute of Nuclear Safety has been developing Safety and Regulatory Requirements and Guidances for safety review of the KNGR. In this paper, regarding the IWSS of the KNGR, the major contents of the General Safety Criteria, Specific Safety Requirements, Safety Regulatory Guides, and Safety Review Procedures were introduced, and the safety review items that have to be reviewed in-depth from the regulatory viewpoint were also identified.

  17. Thin Film Materials and Processing Techniques for a Next Generation Photovoltaic Device: Cooperative Research and Development Final Report, CRADA Number CRD-12-470

    SciTech Connect (OSTI)

    van Hest, M.

    2013-08-01

    This research extends thin film materials and processes relevant to the development and production of a next generation photovoltaic device.

  18. DOE Selects Projects to Develop Sensors and Controls for Next-Generation Power Plants

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has selected seven projects to develop sensors and controls to support the full-scale implementation and operation of highly efficient power generation technologies with near-zero emissions.

  19. Energy Department Announces New Investments to Drive Cost-Competitive Next Generation Efficient Lighting

    Broader source: Energy.gov [DOE]

    American Innovation in New, More Efficient Lighting will Boost National Competitiveness in Manufacturing

  20. Energy Department Announces $4.4 Million to Support Next-Generation...

    Broader source: Energy.gov (indexed) [DOE]

    the efficiency of existing hydropower equipment and add new generating capabilities at "low-head" sites - those with a change in elevation between 2 and 20 meters - ideal for...

  1. Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure-based Technology for Next Generation Energy Storage

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Energy Department Invests Nearly $8 Million to Develop Next-Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mechanical Solutions, Inc. (MSI) (Whippany, New Jersey) and Lennox Industries, Inc. (Lennox) (Richardson, Texas) will receive 1 million to develop an HVAC system featuring a small ...

  3. Next-Generation Thermionic Solar Energy Conversion- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Stanford/SLAC project, funded by SunShot, for the second quarter of fiscal year 2013.

  4. Energy Department Announces $4.4 Million to Support Next-Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    existing transmission lines, roads, and infrastructure, reducing economic and permitting barriers and environmental impacts from the expansion of these hydro-ready water resources. ...

  5. U.S. Department of Energy Awards $200 Million for Next- Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    When commissioned in 2018, this supercomputer will be open to all scientific users - drawing America's top researchers to Argonne National Laboratory. Additionally, Under Secretary ...

  6. Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques

    SciTech Connect (OSTI)

    Stanford University; Department of Energy Resources Engineering Green Earth Sciences

    2007-09-30

    This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the crude oil. A significant number of laboratory-scale tests were made to evaluate the solution gas drive potential of West Sak (AK) viscous oil. The West Sak sample has a low acid number, low asphaltene content, and does not appear foamy under laboratory conditions. Tests show primary recovery of about 22% of the original oil in place under a variety of conditions. The acid number of other Alaskan North Slope samples tests is greater, indicating a greater potential for recovery by heavy-oil solution gas drive. Effective cold production leads to reservoir pressure depletion that eases the implementation of thermal recovery processes. When viewed from a reservoir perspective, thermal recovery is the enhanced recovery method of choice for viscous and heavy oils because of the significant viscosity reduction that accompanies the heating of oil. One significant issue accompanying thermal recovery in cold environments is wellbore heat losses. Initial work on thermal recovery found that a technology base for delivering steam, other hot fluids, and electrical heat through cold subsurface environments, such as permafrost, was in place. No commercially available technologies are available, however. Nevertheless, the enabling technology of superinsulated wells appears to be realized. Thermal subtasks focused on a suite of enhanced recovery options tailored to various reservoir conditions. Generally, electrothermal, conventional steam-based, and thermal gravity drainage enhanced oil recovery techniques appear to be applicable to 'prime' Ugnu reservoir conditions to the extent that reservoir architecture and fluid conditions are modeled faithfully here. The extent of reservoir layering, vertical communication, and subsurface steam distribution are important factors affecting recovery. Distribution of steam throughout reservoir volume is a significant issue facing thermal recovery. Various activities addressed aspects of steam emplacement. Notably, hydraulic fracturing of horizontal steam injection wells and implementation of steam trap control that limits steam entry into horizontal production wells overcomes many of the problems associated with implementation of thermal gravity drainage processes in heterogeneous sands. In a steam-assisted gravity drainage (SAGD) well pattern, hydraulically fractured injectors were able to achieve significantly improved reservoir heating and improvements to oil-steam ratio. On the opposite side of the steam injection spectrum, steam often channels through high-permeability zones. Foamed steam stabilized by aqueous surfactants is promising to alter steam flow, but has yet to be tested and simulated under SAGD conditions. The mechanistic population balance method for describing foam flow was extended to a local equilibrium framework that reduces computational costs and is promising for simulation of the effects of foamed steam in 3D.

  7. High Temperature Thermal Array for Next Generation Solar Thermal Power Production

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  8. Next generation aerosol-cloud microphysics for advanced high-resolution climate predictions

    SciTech Connect (OSTI)

    Bennartz, Ralf; Hamilton, Kevin P; Phillips, Vaughan T.J.; Wang, Yuqing; Brenguier, Jean-Louis

    2013-01-14

    The three top-level project goals are: -We proposed to develop, test, and run a new, physically based, scale-independent microphysical scheme for those cloud processes that most strongly affect greenhouse gas scenarios, i.e. warm cloud microphysics. In particular, we propsed to address cloud droplet activation, autoconversion, and accretion. -The new, unified scheme was proposed to be derived and tested using the University of Hawaii's IPRC Regional Atmospheric Model (iRAM). -The impact of the new parameterizations on climate change scenarios will be studied. In particular, the sensitivity of cloud response to climate forcing from increased greenhouse gas concentrations will be assessed.

  9. Next generation extractants for separation of cesium from high-level waste

    SciTech Connect (OSTI)

    Bartsch, R.A.; Zhou, H.; Delmau, L.H.; Moyer, B.A.

    2008-07-01

    Using calix[4]arene as a scaffold, lipophilic, proton-ionizable ligands for cesium ion extraction have been synthesized. In the 1,3-alternate conformation, lipophilic octyl groups are attached to distal oxygens on one side of the calix[4]arene molecule, and an alkylated benzo-crown-6 unit is connected to distal oxygens on the other side. One phenyl octyl ether unit bears an acidic group in the para-position which orients it directly over the polyether ring. Solvent extractions of trace cesium ion from aqueous solutions into toluene have been performed. The efficiency of cesium ion extraction as a function of the aqueous phase pH and the identity of the acidic group have been assessed. Promising results are obtained for this new series of cesium ion extractants. (authors)

  10. High-Temperature Thermal Array for Next Generation Solar Thermal Power Production- FY12 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this LANL project, funded by SunShot, for the second quarter of fiscal year 2013.

  11. High-Temperature Thermal Array for Next Generation Solar Thermal Power Production- FY13 Q1

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Los Alamos National Laboratory project, funded by SunShot, for the first quarter of fiscal year 2013.

  12. High Temperature Gas-Cooled Reactors Lessons Learned Applicable to the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    J. M. Beck; L. F. Pincock

    2011-04-01

    The purpose of this report is to identify possible issues highlighted by these lessons learned that could apply to the NGNP in reducing technical risks commensurate with the current phase of design. Some of the lessons learned have been applied to the NGNP and documented in the Preconceptual Design Report. These are addressed in the background section of this document and include, for example, the decision to use TRISO fuel rather than BISO fuel used in the Peach Bottom reactor; the use of a reactor pressure vessel rather than prestressed concrete found in Fort St. Vrain; and the use of helium as a primary coolant rather than CO2. Other lessons learned, 68 in total, are documented in Sections 2 through 6 and will be applied, as appropriate, in advancing phases of design. The lessons learned are derived from both negative and positive outcomes from prior HTGR experiences. Lessons learned are grouped according to the plant, areas, systems, subsystems, and components defined in the NGNP Preconceptual Design Report, and subsequent NGNP project documents.

  13. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: Find optimized working fluid/advanced cycle combination for EGS applications.

  14. DEVELOPMENT OF AN ADVANCED APPROACH FOR NEXT GENERATION, HIGH RESOLUTION, INTEGRATED RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Scott R. Reeves

    2002-10-01

    During the third quarter a suitable test site was obtained, data acquired, and the process of data loading and data QC/QA begun. Preliminary data analysis was done in log clustering, seismic interpretation, and engineering model construction. These analysis tasks were continuing at the conclusion of the quarter.

  15. DISCOVERY OF A NEW MEMBER OF THE INNER OORT CLOUD FROM THE NEXT GENERATION VIRGO CLUSTER SURVEY

    SciTech Connect (OSTI)

    Chen, Ying-Tung; Ip, Wing-Huen; Kavelaars, J. J.; Gwyn, Stephen; Ferrarese, Laura; Ct, Patrick; Jordn, Andrs; Suc, Vincent; Cuillandre, Jean-Charles

    2013-09-20

    We report the discovery of 2010 GB{sub 174}, a likely new member of the Inner Oort Cloud (IOC). 2010 GB{sub 174} is 1 of 91 trans-Neptunian objects and Centaurs discovered in a 76 deg{sup 2} contiguous region imaged as part of the Next Generation Virgo Cluster Survey (NGVS)a moderate ecliptic latitude survey reaching a mean limiting magnitude of g' ? 25.5using MegaPrime on the 3.6 m Canada-France-Hawaii Telescope. 2010 GB{sub 174} is found to have an orbit with a semi-major axis of a ? 350.8 AU, an inclination of i ? 21.6, and a pericenter of q ? 48.5 AU. This is the second largest perihelion distance among known solar system objects. Based on the sky coverage and depth of the NGVS, we estimate the number of IOC members with sizes larger than 300 km (H{sub V} ? 6.2 mag) to be ? 11, 000. A comparison of the detection rate from the NGVS and the PDSSS (a characterized survey that 'rediscovered' the IOC object Sedna) gives, for an assumed a power-law luminosity function for IOC objects, a slope of ? ? 0.7 0.2. With only two detections in this region this slope estimate is highly uncertain.

  16. Recommended Guanidine Suppressor for the Next-Generation Caustic-Side Solvent Extraction Process

    SciTech Connect (OSTI)

    Moyer, Bruce A; Delmau, Laetitia Helene; Duncan, Nathan C; Ensor, Dale; Hill, Talon G; Lee, Denise L; Roach, Benjamin D; Sloop Jr, Frederick {Fred} V; Williams, Neil J

    2013-01-01

    The guanidine recommended for the Next-Generation Caustic-Side is N,N ,N -tris(3,7-dimethyloctyl)guanidine (TiDG). Systematic testing has shown that it is significantly more lipophilic than the previously recommended guanidine DCiTG, the active extractant in the commercial guanidine product LIX -79, while not otherwise changing the solvent performance. Previous testing indicated that the extent of partitioning of the DCiTG suppressor to the aqueous strip solution is significantly greater than expected, potentially leading to rapid depletion of the suppressor from the solvent and unwanted organic concentrations in process effluents. Five candidate guanidines were tested as potential replacements for DCiTG. The tests included batch extraction with simulated waste and flowsheet solutions, third-phase formation, emulsion formation, and partition ratios of the guanidine between the solvent and aqueous strip solution. Preliminary results of a thermal stability test of the TiDG solvent at one month duration indicated performance approximately equivalent to DCiTG. Two of the guanidines proved adequate in all respects, and the choice of TiDG was deemed slightly preferable vs the next best guanidine BiTABG.

  17. ADEPT, a dynamic next generation sequencing data error-detection program with trimming

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Shihai; Lo, Chien-Chi; Li, Po-E; Chain, Patrick S. G.

    2016-02-29

    Illumina is the most widely used next generation sequencing technology and produces millions of short reads that contain errors. These sequencing errors constitute a major problem in applications such as de novo genome assembly, metagenomics analysis and single nucleotide polymorphism discovery. In this study, we present ADEPT, a dynamic error detection method, based on the quality scores of each nucleotide and its neighboring nucleotides, together with their positions within the read and compares this to the position-specific quality score distribution of all bases within the sequencing run. This method greatly improves upon other available methods in terms of the truemore » positive rate of error discovery without affecting the false positive rate, particularly within the middle of reads. We conclude that ADEPT is the only tool to date that dynamically assesses errors within reads by comparing position-specific and neighboring base quality scores with the distribution of quality scores for the dataset being analyzed. The result is a method that is less prone to position-dependent under-prediction, which is one of the most prominent issues in error prediction. The outcome is that ADEPT improves upon prior efforts in identifying true errors, primarily within the middle of reads, while reducing the false positive rate.« less

  18. Next Generation Electromagnetic Pump Analysis Tools (PLM DOC-0005-2188). Final Report

    SciTech Connect (OSTI)

    Stregy, Seth; Dasilva, Ana; Yilmaz, Serkan; Saha, Pradip; Loewen, Eric

    2015-10-29

    This report provides the broad historical review of EM Pump development and details of MATRIX development under this project. This report summarizes the efforts made to modernize the legacy performance models used in previous EM Pump designs and the improvements made to the analysis tools. This report provides information on Tasks 1, 3, and 4 of the entire project. The research for Task 4 builds upon Task 1: Update EM Pump Databank and Task 3: Modernize the Existing EM Pump Analysis Model, which are summarized within this report. Where research for Task 2: Insulation Materials Development and Evaluation identified parameters applicable to the analysis model with Task 4, the analysis code was updated, and analyses were made for additional materials. The important design variables for the manufacture and operation of an EM Pump that the model improvement can evaluate are: space constraints; voltage capability of insulation system; maximum flux density through iron; flow rate and outlet pressure; efficiency and manufacturability. The development of the next-generation EM Pump analysis tools during this two-year program provides information in three broad areas: Status of analysis model development; Improvements made to older simulations; and Comparison to experimental data.

  19. The Coming Nuclear Renaissance for Next Generation Safeguards Specialists--Maximizing Potential and Minimizing the Risks

    SciTech Connect (OSTI)

    Eipeldauer, Mary D

    2009-01-01

    This document is intended to provide an overview of the workshop entitled 'The Coming Nuclear Renaissance for the Next Generation Safeguards Experts-Maximizing Benefits While Minimizing Proliferation Risks', conducted at Oak Ridge National Laboratory (ORNL) in partnership with the Y-12 National Security Complex (Y-12) and the Savannah River National Laboratory (SRNL). This document presents workshop objectives; lists the numerous participant universities and individuals, the nuclear nonproliferation lecture topics covered, and the facilities tours taken as part of the workshop; and discusses the university partnership sessions and proposed areas for collaboration between the universities and ORNL for 2009. Appendix A contains the agenda for the workshop; Appendix B lists the workshop attendees and presenters with contact information; Appendix C contains graphics of the evaluation form results and survey areas; and Appendix D summarizes the responses to the workshop evaluation form. The workshop was an opportunity for ORNL, Y-12, and SRNL staff with more than 30 years combined experience in nuclear nonproliferation to provide a comprehensive overview of their expertise for the university professors and their students. The overall goal of the workshop was to emphasize nonproliferation aspects of the nuclear fuel cycle and to identify specific areas where the universities and experts from operations and national laboratories could collaborate.

  20. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration High Energy Density Laboratory Plasmas Program Steady advances in increasing the energy, power, and brightness of lasers and particle beams and advances in pulsed power systems have made possible the exploration of matter at extremely high energy density in the laboratory. Exciting new experimental regimes are being realized by exploiting the scientific capabilities of existing ICF Office facilities, as well as the relevant Department of Defense (DoD) and university