National Library of Energy BETA

Sample records for newnan wtr sewer

  1. Newnan Wtr, Sewer & Light Comm | Open Energy Information

    Open Energy Info (EERE)

    Newnan Wtr, Sewer & Light Comm Jump to: navigation, search Name: Newnan Wtr, Sewer & Light Comm Place: Georgia Website: www.newnanutilities.org Outage Hotline: 770-683-5516...

  2. Fitzgerald Wtr Lgt & Bond Comm | Open Energy Information

    Open Energy Info (EERE)

    Fitzgerald Wtr Lgt & Bond Comm Jump to: navigation, search Name: Fitzgerald Wtr Lgt & Bond Comm Place: Georgia Phone Number: (229) 426-5400 Website: fitzutilities.com Outage...

  3. Health-hazard evaluation report HETA 86-469-2189, James River Corporation, Newnan, Georgia

    SciTech Connect (OSTI)

    Sinks, T.

    1992-03-01

    In response to a request from OSHA, a possible cancer cluster was investigated at the James River Corporation (SIC-2657), Newnan, Georgia. The paperboard packaging facility had been in operation for over 30 years. A retrospective cohort mortality study of 2050 workers employed at the facility between 1957 and 1988 was conducted. As of the study date, 141 workers were deceased, 1705 were alive, and 204 had been lost to follow-up. Overall mortality was similar to that expected as was mortality from diseases of the heart, accidents, and violence. The Standardized Mortality Ratios for all cancers was less than expected. Three workers with bladder cancer and six with kidney cancer were identified. No increased risk of bladder cancer was determined. The risk of kidney cancer was increased. The excess risk was associated with overall duration of employment but was not limited to any single department or work process. The author concludes that workers at the facility had an increased rate of kidney cancer. The author recommends measures to reduce exposures to inks containing pigments made from aromatic amines. Personal protective equipment should not be considered a substitute for adequate engineering controls. Follow-up on the cohort should continue.

  4. EM, County Install Sewer Line for Development | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM, County Install Sewer Line for Development EM, County Install Sewer Line for Development April 29, 2014 - 3:53pm Addthis The Pike County Commissioners recently toured the ...

  5. General Permit for Small Municipal Separate Storm Sewer Systems...

    Open Energy Info (EERE)

    Storm Sewer Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: General Permit for Small Municipal Separate Storm Sewer Systems Abstract Permit...

  6. Fermilab | Tritium at Fermilab | Tritium in Sanitary Sewers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tritium in Sanitary Sewers chart graphic As part of our environmental monitoring program, we routinely sample our sanitary sewer water that is discharged to wastewater treatment systems in the cities of Batavia and Warrenville. Samples taken from sanitary sewer water discharged to the Batavia Wastewater Treatment Facility show small but measurable levels of tritium. All tritium levels found on site are well below any federal health and environmental standards. No tritium has been detected in

  7. Santa Clara Water & Sewer- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under the Solar Water Heating Program, the Santa Clara Water & Sewer Utilities Department supplies,...

  8. Sandia National Laboratories, California sewer system management plan.

    SciTech Connect (OSTI)

    Holland, Robert C.

    2010-02-01

    A Sewer System Management Plan (SSMP) is required by the State Water Resources Control Board (SWRCB) Order No. 2006-0003-DWQ Statewide General Waste Discharge Requirements (WDR) for Sanitary Sewer Systems (General Permit). DOE, National Nuclear Security Administration (NNSA), Sandia Site Office has filed a Notice of Intent to be covered under this General Permit. The General Permit requires a proactive approach to reduce the number and frequency of sanitary sewer overflows (SSOs) within the State. SSMPs must include provisions to provide proper and efficient management, operation, and maintenance of sanitary sewer systems and must contain a spill response plan. Elements of this Plan are under development in accordance with the SWRCB's schedule.

  9. EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to upgrade the Sewer System at the U.S. Department of Energy's Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho.  The...

  10. Use of iron salts to control dissolved sulfide in trunk sewers

    SciTech Connect (OSTI)

    Padival, N.A.; Kimbell, W.A. [County Sanitation District of Los Angeles County, Whittier, CA (United States); Redner, J.A. [County Sanitation District of Los Angeles County, Compton, CA (United States)

    1995-11-01

    Sewer headspace H{sub 2}S reduction by precipitating dissolved sulfide in wastewater was investigated using iron salt (FeCl{sub 3} and FeCl{sub 2}). Full-scale experiments were conducted in a 40-km (25 mi) sewer with an average flow of 8.7 m{sup 3}/s (200 mgd). Results were sensitive to total Fe dosages and Fe(III)/Fe(II) blend ratios injected. A concentration of 16 mg/L total Fe and a blend ratio of 1.9:1 [Fe(III):Fe(II)] reduced dissolved sulfide levels by 97%. Total sulfide and headspace H{sub 2}S were reduced by 63% and 79%, respectively. Liquid and gas-phase sulfide reductions were largely due to the effective precipitation of sulfide with Fe(III) and Fe(II) and the limited volatilization of H{sub 2}S, respectively. Oxidation of sulfide in the presence of Fe(II) and minute amounts of O{sub 2} may have occurred. A combination of Fe(III) and Fe(II) proved more effective than either salt alone. By using excess Fe(III), dissolved sulfide can be reduced to undetectable levels. No specific relation between the concentration of Fe or Fe(III)/Fe(II) blend ratio and sewer crown pH was inferred. Iron salts may retard crown corrosion rates by precipitating free sulfide and reducing its release to the sewer headspace as H{sub 2}S. A mechanism to inhibit certain responsible bacteria was not established in the 40-km (25 mi) sewer.

  11. Storm and combined sewer overflow: An overview of EPA's Research Program. Book chapter

    SciTech Connect (OSTI)

    Field, R.

    1993-01-01

    The report represents an overview of the EPA's Storm and Combined Sewer Pollution Control Research Program performed over a 20-year period beginning with the mid-1960s. It covers Program involvements in the development of a diverse technology including pollution-problem assessment/solution methodology and associated instrumentation and stormwater management models, best management practices, erosion control, infiltration/inflow, control, control-treatment technology and the associated sludge and solids residuals handling and many others.

  12. Evaluation of exposure pathways to man from disposal of radioactive materials into sanitary sewer systems

    SciTech Connect (OSTI)

    Kennedy, W.E. Jr.; Parkhurst, M.A.; Aaberg, R.L.; Rhoads, K.C.; Hill, R.L.; Martin, J.B.

    1992-05-01

    In accordance with 10 CFR 20, the US Nuclear Regulatory Commission (NRC) regulates licensees` discharges of small quantities of radioactive materials into sanitary sewer systems. This generic study was initiated to examine the potential radiological hazard to the public resulting from exposure to radionuclides in sewage sludge during its treatment and disposal. Eleven scenarios were developed to characterize potential exposures to radioactive materials during sewer system operations and sewage sludge treatment and disposal activities and during the extended time frame following sewage sludge disposal. Two sets of deterministic dose calculations were performed; one to evaluate potential doses based on the radionuclides and quantities associated with documented case histories of sewer system contamination and a second, somewhat more conservative set, based on theoretical discharges at the maximum allowable levels for a more comprehensive list of 63 radionuclides. The results of the stochastic uncertainty and sensitivity analysis were also used to develop a collective dose estimate. The collective doses for the various radionuclides and scenarios range from 0.4 person-rem for {sup 137}Cs in Scenario No. 5 (sludge incinerator effluent) to 420 person-rem for {sup 137}Cs in Scenario No. 3 (sewage treatment plant liquid effluent). None of the 22 scenario/radionuclide combinations considered have collective doses greater than 1000 person-rem/yr. However, the total collective dose from these 22 combinations was found to be about 2100 person-rem.

  13. Post-rehabilitation flow monitoring and analysis of the sanitary sewer system at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Brandstetter, E.R.; Littlefield, D.C.; Villegas, M.

    1996-03-01

    Lawrence Livermore National Laboratory (LLNL) is operated by the University of California under contract with the U.S. Department of Energy (DOE). The Livermore site, approximately 50 miles southeast of San Francisco, occupies 819 acres. So far, there have been three phases in an assessment and rehabilitation of the LLNL sanitary sewer system. A 1989 study that used data collected from December 1, 1988, to January 6, 1989, to determine the adequacy of the LLNL sewer system to accommodate present and future peak flows. A Sanitary Sewer Rehabilitation (SSR) project, from October of 1991 to March of 1996, in which the system was assessed and rehabilitated. The third study is the post-rehabilitation assessment study that is reported in this document. In this report, the sanitary sewer system is described, and the goals and results of the 1989 study and the SSR project are summarized. The goals of the post-rehabilitation study are given and the analytical procedures and simulation model are described. Results, conclusions, and recommendations for further work or study are given. Field operations are summarized in Appendix A. References are provided in Appendix B.

  14. Development of a glass polymer composite sewer pipe from waste glass. Final report

    SciTech Connect (OSTI)

    Rayfiel, R.; Kukacka, L.E.

    1980-02-01

    A range of polymer-aggregate composites for applications in industry which appear to be economically attractive and contribute to energy conservation were developed at BNL. Waste glass is the aggregate in one such material, which is called glass-polymer-composite (GPC). This report assays the economics and durability of GPC in piping for storm drains and sewers. The properties of the pipe are compared statistically with the requirements of industrial specifications. These establish the raw materials requirements. The capital and operating costs for producing pipe are then estimated. Using published sales values for competing materials, the return on investment is calculated for two cases. The ultimate energy requirement of the raw materials in GPC is compared with the corresponding requirement for vitrified clay pipe. The strengths of GPC, reinforced concrete, vitrified clay and asbestos cement pipe are compared after extended exposure to various media. The status of process and product development is reviewed and recommendations are made for future work.

  15. Remaining Sites Verification Package for the 100-F-26:10, 1607-F3 Sanitary Sewer Pipelines (182-F, 183-F, and 151-F Sanitary Sewer Lines), Waste Site Reclassification Form 2007-028

    SciTech Connect (OSTI)

    L. M. Dittmer

    2007-12-03

    The 100-F-26:10 waste site includes sanitary sewer lines that serviced the former 182-F, 183-F, and 151-F Buildings. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  16. Remaining Sites Verification Package for the 1607-F1 Sanitary Sewer System (124-F-1) and the 100-F-26:8 (1607-F1) Sanitary Sewer Pipelines Waste Sites, Waste Site Reclassification Form 2004-130

    SciTech Connect (OSTI)

    L. M. Dittmer

    2008-03-14

    The 1607-F1 Sanitary Sewer System (124-F-1), consisted of a septic tank, drain field, and associated pipelines that received sanitary waste water from the 1701-F Gatehouse, 1709-F Fire Station, and the 1720-F Administrative Office via the 100-F-26:8 pipelines. The septic tank required remedial action based on confirmatory sampling. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  17. Virgin Islands Wtr&Pwr Auth | Open Energy Information

    Open Energy Info (EERE)

    form View source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with...

  18. Remaining Sites Verification Package for the 100-C-9:2 Sanitary Sewer Pipelines, Waste Site Reclassification Form 2004-013

    SciTech Connect (OSTI)

    L. M. Dittmer

    2007-07-11

    The 100-C-9:2 sanitary sewer pipelines include the feeder pipelines associated with the 1607-B8, the 1607-B9, the 1607-B10 and the 1607-B11 septic systems. Contaminated soil and piping from the feeder lines to the septic systems were removed and disposed of. The remaining soil in the excavations has been shown to meet the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  19. Remaining Sites Verification Package for the 100-F-26:12, 1.8-m (72-in.) Main Process Sewer Pipeline, Waste Site Reclassification Form 2007-034

    SciTech Connect (OSTI)

    J. M. Capron

    2008-04-29

    The 100-F-26:12 waste site was an approximately 308-m-long, 1.8-m-diameter east-west-trending reinforced concrete pipe that joined the North Process Sewer Pipelines (100-F-26:1) and the South Process Pipelines (100-F-26:4) with the 1.8-m reactor cooling water effluent pipeline (100-F-19). In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  20. Evaluation of Confining Layer Integrity Beneath the South District Wastewater Treatment Plant, Miami-Dade Water and Sewer Department, Dade County, Florida

    SciTech Connect (OSTI)

    Starr, R.C.; Green, T.S.; Hull, L.C.

    2001-02-28

    A review has been performed of existing information that describes geology, hydrogeology, and geochemistry at the South District Wastewater Treatment Plant, which is operated by the Miami-Dade Water and Sewer Department, in Dade County, Florida. Treated sanitary wastewater is injected into a saline aquifer beneath the plant. Detection of contaminants commonly associated with treated sanitary wastewater in the freshwater aquifer that overlies the saline aquifer has indicated a need for a reevaluation of the ability of the confining layer above the saline aquifer to prevent fluid migration into the overlying freshwater aquifer. Review of the available data shows that the geologic data set is not sufficient to demonstrate that a competent confining layer is present between the saline and freshwater aquifers. The hydrogeologic data also do not indicate that a competent confining layer is present. The geochemical data show that the freshwater aquifer is contaminated with treated wastewater, and the spatial patterns of contamination are consistent with upward migration through localized conduits through the Middle Confining Unit, such as leaking wells or natural features. Recommendations for collection and interpretation of additional site characterization data are provided.

  1. Evaluation of Confining Layer Integrity Beneath the South District Wastewater Treatment Plant, Miami-Dade Water and Sewer Department, Dade County, Florida

    SciTech Connect (OSTI)

    Starr, Robert Charles; Green, Timothy Scott; Hull, Laurence Charles

    2001-02-01

    A review has been performed of existing information that describes geology, hydrogeology, and geochemistry at the South District Wastewater Treatment Plant, which is operated by the Miami-Dade Water and Sewer Department, in Dade County, Florida. Treated sanitary wastewater is injected into a saline aquifer beneath the plant. Detection of contaminants commonly associated with treated sanitary wastewater in the freshwater aquifer that overlies the saline aquifer has indicated a need for a reevaluation of the ability of the confining layer above the saline aquifer to prevent fluid migration into the overlying freshwater aquifer. Review of the available data shows that the geologic data set is not sufficient to demonstrate that a competent confining layer is present between the saline and freshwater aquifers. The hydrogeologic data also do not indicate that a competent confining layer is present. The geochemical data show that the freshwater aquifer is contaminated with treated wastewater, and the spatial patterns of contamination are consistent with upward migration through localized conduits through the Middle Confining Unit, such as leaking wells or natural features. Recommendations for collection and interpretation of additional site characterization data are provided.

  2. Atlanta Central UESC Pilot Project

    Office of Environmental Management (EM)

    Atlanta Central UESC Pilot Project Elbert P. Tuttle United States Court of Appeals - Atlanta, GA Lewis R. Morgan Federal Building and Courthouse - Newnan, GA Rome Federal Building ...

  3. MHK ISDB/Instruments/Nortek Signature55 | Open Energy Information

    Open Energy Info (EERE)

    and Current Meter Nortek Aquadopp Profiler MIDAS WTR Wave and Tide Recorder TRDI Sentinel V ... further results Directional Spectra (Wave) (6) Nortek Acoustic Wave and Current...

  4. Acceptance and operability test report for the 327 building retention process sewer diverter station

    SciTech Connect (OSTI)

    Olander, A.R.

    1996-09-04

    This test report includes the results of acceptance and operability testing of the 327 building diverter station. The test included steps for flushing, calibrating, and operating the system on backup power.

  5. Acceptance {ampersand} operability test report for the 324 building retention process sewer diverter station

    SciTech Connect (OSTI)

    Olander, A.R.

    1996-09-04

    This test report includes the results of acceptance and operability testing of the 324 building diverter station. The test included steps for flushing, calibrating, and operating the system on backup power.

  6. Energy Efficiency Upgrades for Sanitation Facilities Selawik...

    Office of Environmental Management (EM)

    system (sewer) 3. Upgrade hydronic heat-add system (water) 4. Replace interior lighting with LED lamps 5. Re-commission vacuum sewer pumps Vacuum Sewer Collection System ...

  7. http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid=0af428

    National Nuclear Security Administration (NNSA)

    ... drinking water supply systems; and stormwater systems, including combined sewer ... and distribute drinking water; and stormwater systems, including combined sewer ...

  8. Remaining Sites Verification Package for the 1607-F1 Sanitary Sewer System (124-F-1) and the 100-F-26:8 (1607-F1) Sanitary Sewer Pipelines Waste Sites, Waste Site Reclassification Form 2005-004

    SciTech Connect (OSTI)

    L. M. Dittmer

    2008-03-14

    The 100-F-26:8 waste site consisted of the underground pipelines that conveyed sanitary waste water from the 1701-F Gatehouse, 1709-F Fire Station, and the 1720-F Administrative Office to the 1607-F1 septic tank. The site has been remediated and presently exists as an open excavation. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  9. 2005 EIA-821 SURVEY: LINE-BY-LINE REFERENCE GUIDE

    Gasoline and Diesel Fuel Update (EIA)

    electricity (e.g., sewer, gas, and water) * Also INCLUDE: Military Use as defined ... (e.g., sewer, gas, and water) * EXCLUDE: Buses, trucks, and trucking companies. ...

  10. Microsoft PowerPoint - Forest County Potawatomi Project Greenfire

    Energy Savers [EERE]

    ... water and sewer lines Footing and Foundation Permit Erosion Control Plan Stormwater Management Plan Sewer Discharge Permit Plumbing Permit Building Permit ...

  11. City Of Milford Pump Optimization Project Yields $96,000 Net Present Value

    SciTech Connect (OSTI)

    2010-06-25

    Energy management led to the improvement of Mildford City's sewer stations, saving energy and resources.

  12. bectso-ct121 | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Demonstration of Innovative Applications of Technology for the CT-121 FGD Process - Project Brief [PDF-265KB] Southern Company Services, Newnan, GA PROGRAM PUBLICATIONS Final Reports Demonstration of Innovative Applications of Technology for the CT-121 FGD Process, Final Report (Jan 1997) Volume 1, Executive Summary [PDF-4.6MB] Volume 2, Operation [PDF-32.8MB] Volume 2 Appendices [PDF-6.3MB] Volume 3, Equipment Vol 3a, Materials and Maintenance [PDF-34.6MB] Vol 3b, Instrumentation and Control

  13. MS4 & IP Connection - PowerPoint Presentation

    SciTech Connect (OSTI)

    Lemke, Terrill W.

    2015-05-20

    An overview of Los Alamos National Lab’s (LANL) storm sewer system, the presentation includes information on the management storm sewer permit and environmental programs and projects of LANL institutions.

  14. Evaluation Project 4492

    National Nuclear Security Administration (NNSA)

    8-03-2011 CA-B-11-0046 SNL/CA proposes to add beneficial bacteria to the sanitary sewer to control production of hydrogen sulfide and concentration of metals that has lead to exceedances of the Site's wastewater discharge permit in the past. ✖ Sandia Site Office Addition of Beneficial Bacteria to the Sanitary Sewer for Control of Metals Sanitary Sewer LACY,SUSAN DOYLENE 08/03

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Santa Clara Water & Sewer- Solar Water Heating Program In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under the Solar Water Heating...

  16. "DOE IDIQ ESPC Awarded Projects Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...EMCS HVAC Lighting Improvements Water and Sewer Conservation Systems Building Envelope ... Federal Corrections Complex, Texas DO1","Texarkana Texarkana","TX ...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    first municipal solar utility. Under the Solar Water Heating Program, the Santa Clara Water & Sewer Utilities Department supplies,... Eligibility: Commercial, Local Government,...

  18. CX-013446: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Longview Substation Sanitary Sewer Upgrade CX(s) Applied: B4.9Date: 03/25/2015 Location(s): WashingtonOffices(s): Bonneville Power Administration

  19. CX-012809: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    LURR 20140313 City of Vancouver Sewer Lateral CX(s) Applied: B4.9Date: 41906 Location(s): WashingtonOffices(s): Bonneville Power Administration

  20. Feasibility Study for Biomass Electrical Generation on Tribal...

    Office of Environmental Management (EM)

    ... - Sharply higher natural gas prices, supply ... Siting Criteria * Land - Acreage required ... gas, water, sewer, wastewater, uses for waste heat. * Transportation -Highway requirements ...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    program... Eligibility: Commercial, Residential Savings Category: Solar Photovoltaics Santa Clara Water & Sewer- Solar Water Heating Program In 1975, the City of Santa Clara...

  2. Storm water modeling at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Veis, Christopher

    1996-05-01

    Storm water modeling is important to Lawrence Livermore National Laboratory (LLNL) for compliance with regulations that govern water discharge at large industrial facilities. Modeling is also done to study trend in contaminants and storm sewer infrastructure. The Storm Water Management Model (SWMM) was used to simulate rainfall events at LLNL. SWMM is a comprehensive computer model for simulation of urban runoff quantity and quality in storm and combined sewer systems. Due to time constraints and ongoing research, no modeling was completed at LLNL. With proper information about the storm sewers, a SWMM simulation of a rainfall event on site would be beneficial to storm sewer analyst.

  3. SBOT DIST OF COLUMBIA HEADQUARTERS PROCUREMENT POC Michael Raizen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction 236220 Water and Sewer Line and Related ... Other Heavy and Civil Engineering Construction 237990 ... Deep Sea Freight Transportation 483111 Inland Water Freight ...

  4. SBOT OHIO EM BUSINESS CENTER POC Karen Bahan Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction 236220 Water and Sewer Line and Related ... Other Heavy and Civil Engineering Construction 237990 ... Deep Sea Freight Transportation 483111 Inland Water Freight ...

  5. CX-012637: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    LURR 20140521 - David King - Sewer Line Installation CX(s) Applied: B4.9Date: 41876 Location(s): OregonOffices(s): Bonneville Power Administration

  6. SBOT GEORGIA SOUTHEASTERN POWER ADMIN POC Ann Craft Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    236220 Water and Sewer Line and Related Structures Construction 237110 Power and Communication Line and Related Structures Construction 237130 Other Heavy and Civil Engineering ...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric, Landfill Gas Santa Clara Water & Sewer- Solar Water Heating Program In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Category: Solar Photovoltaics Santa Clara Water & Sewer- Solar Water Heating Program In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under...

  9. Federal Energy and Water Management Awards 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration Kansas City Air Route Traffic Control Center Olathe, Kansas In FY 2013 ... amount of water being expelled from the cooling towers into the sewer discharge system. ...

  10. RCC Contract No. DE-AC06-05RL14655 TABLE B.2 SCHEDULE OF QUANTITIES...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Impact for Hanford Site Beryllium Work Permit Implementation (Defintized by Mod 466 ... RTD for 100-N-84:5 (100-N Sanitary Sewer Pipeline) from Contract (Definitized by Mod 484 ...

  11. Email Template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2010 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE MEETING October 13, 2010 Richland, WA Topics in this Meeting Summary Welcome and introductions ................................................................................................ 1 Reverse Wells Briefing ....................................................................................................... 1 Water and Sewer Infrastructure and Export Water Option Study

  12. CX-010722: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Soos Creek Water & Sewer District Land Use Review Request Case No. 20120040 CX(s) Applied: B4.9 Date: 08/20/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  13. CX-010145: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    City of Sherwood Sewer Line Replacement Land Use Review Request CX(s) Applied: B4.9 Date: 04/25/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  14. Alaska Housing Finance Corporation Energy Efficiency Programs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    + 89-91 5 Star 92-94 5 Star + 95-100 6 Star 7,000 rebate for 5 Star Plus Established 1981 to supplement HUD Indian Housing Development funds Funds are used for: *Water and sewer ...

  15. CX-013878: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Naval Reactors Facility (NRF) Storm Sewer West Main Replacement Project CX(s) Applied: B2.5Date: 07/06/2015 Location(s): None ProvidedOffices(s): Naval Nuclear Propulsion Program

  16. RECIPIENT:3M Company U.S. DEPAR.TlV.IENT OF ENERGY EERE PROJECT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    materials are disposed of properly at a licensed Treatment. Storage & Disposal facility Waste water effluent 1s released to the sewer consistent w1th ex1sting waste water permit....

  17. PROJECT REPORTS FOR Alaska Native Tribal Health Consortium- 2011 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The main objective of the proposed project is to improve the overall energy efficiency of the water treatment/distribution and sewer collection systems in Selawik by implementing the retrofit measures identified in a previously conducted utility energy audit.

  18. ATOMIC ENERGY CO&lbiISSION ms AlAMos. NEW MMICO

    Office of Legacy Management (LM)

    it was not eligible for FK4 mortgage insurance because of proximity of the building ... (owned by AEC); underground 4 inch natural gas pipeline and underground 4 inch sewer force ...

  19. Tribal Consultation and Stakeholder ...

    Office of Environmental Management (EM)

    ... water, and sewer) that a house uses on a daily basis. ... Energy, electricity and fuel are issues. Concern is biomass, ... Regional effort to pool skills. Going t o t he p eople w ho ...

  20. Microsoft Word - DOE-ID-INL-15-053.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prior to discharge to the city of Idaho Falls sewer system. Generating and Managing Waste Small amounts of industrial (non-hazardous, non-radioactive) waste (e.g., concrete,...

  1. Eastern Band of Cherokee - Strategic Energy Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 266 plants convert gas to power Current situation * Tribe operates 1.8 MGD waste water ... offset for sewer system - High efficiency street lighting Area Code Fund Division Program ...

  2. CX-009608: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Refurbish 607-53C Sanitary Sewer Lift Station CX(s) Applied: B1.3 Date: 11/29/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  3. CX-008626: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace 607-6A Sanitary Sewer Lift Station CX(s) Applied: B1.3 Date: 06/20/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  4. Categorical Exclusion Determinations: Naval Nuclear Propulsion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Reactors Facility (NRF) Storm Sewer West Main Replacement Project CX(s) Applied: ... Kesselring Site Gate 5 Project CX(s) Applied: B1.15 Date: 06052015 Location(s): None ...

  5. CX-007548: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Boone County Sewer District - Waste Water Treatment Plant Upgrades CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office

  6. CX-012625: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building Water Removal from 216-C To Sanitary Sewer Lift Station CX(s) Applied: B1.28Date: 41793 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  7. Better Buildings Residential Network Program Sustainability Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Distributed 7,000 kits to low-income families in Kansas City. Averted 15-20k ... Combined sewer overflow events create a strong motivator for the water utility to reduce ...

  8. Alaska Native Tribal Health Consortium- 2011 Project

    Broader source: Energy.gov [DOE]

    The main objective of the proposed project is to improve the overall energy efficiency of the water treatment/distribution and sewer collection systems in Selawik by implementing the retrofit measures identified in a previously conducted utility energy audit.

  9. NETL LINES OF DEMARCATION 09282012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    such a system is a dedicated stand alone system servicing a specific R&D project) g. Electricity. h. Potable water. i. Sanitary sewer. j. Process and chemical waste water...

  10. CX-009604: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    704-56H Sanitary Sewer Upgrade CX(s) Applied: B1.3 Date: 12/07/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  11. 300 area TEDF permit compliance monitoring plan

    SciTech Connect (OSTI)

    BERNESKI, L.D.

    1998-11-20

    This document presents the permit compliance monitoring plan for the 300 Area Treated Effluent Disposal Facility (TEDF). It addresses the compliance with the National Pollutant Discharge Elimination System (NPDES) permit and Department of Natural Resources Aquatic Lands Sewer Outfall Lease.

  12. Buildings.Energy.gov DOE Challenge Home Tech Training Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 130 for water and sewer combined How Big is Hot Water? Water heating is the 1 st or 2 nd largest residential energy end-use: 15 - 30% of a house's total energy pie. - What ...

  13. Project Reports for Alaska Native Tribal Health Consortium- 2011 Project

    Broader source: Energy.gov [DOE]

    The main objective of the proposed project is to improve the overall energy efficiency of the water treatment/distribution and sewer collection systems in Selawik by implementing the retrofit measures identified in a previously conducted utility energy audit.

  14. EECBG Success Story: Georgia County Turning Industrial and Farm Waste Into Big Energy Savings

    Broader source: Energy.gov [DOE]

    Gwinnett County, Georgia built a "Gas to Energy" system at the city water resources center that will reduce operational costs and sanitary sewer overflows, thanks to an Energy Efficiency and Conservation Block Grant (EECBG). Learn more.

  15. CX-006887: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Addition of Beneficial Bacteria to the Sanitary Sewer for Control of MetalsCX(s) Applied: B1.3Date: 08/03/2011Location(s): Albuquerque, New MexicoOffice(s): NNSA-Headquarters

  16. F A C T S H E E T

    Office of Legacy Management (LM)

    Limited amounts of tailings were used as fill for open lands; backfill around water, sewer, and electrical lines; and as sand mix in concrete, plaster, and mortar. Wind and water ...

  17. CX-013785: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chenoweth Substation Water and Sewer Connection CX(s) Applied: B1.3Date: 07/02/2015 Location(s): CaliforniaOffices(s): Bonneville Power Administration

  18. APPLICATION OF A CATEGORICAL EXCLUSION

    Energy Savers [EERE]

    an easement to the Pike County Board of Commissioner for the installation, operation and maintenance of a four inch pressurized sanitary sewer line on PORTS land along the existing roadway right-of-way to the existing X-6619 waste water treatment facility and executing an agreement to treat the sewage transported by this four inch pressurized sewer line at a permitted waste water treatment facility Number and Title of the Categorical Exclusions Applied: 10 CFR 1021, Appendix A & B to Subpart

  19. Effective Feb15 JLab Entrance at Lawrence Drive to Close | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effective Feb15 JLab Entrance at Lawrence Drive to Close Effective Feb. 15: Jefferson Lab Entrance at Lawrence Drive to Close for Sewer Main Installation Hampton Roads Sanitation District is installing a 30-inch sewer main on Department of Energy property adjacent to Jefferson Avenue. One section of the line is being installed just outside the accelerator site fence and along Jefferson Avenue. Installation will now proceed under Lawrence Drive from the intersection of Lawrence and Jefferson

  20. Fermilab | Tritium at Fermilab | Steps taken to reduce the amount of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tritium Steps taken to reduce the amount of tritium Actions taken in response to the detection of low levels of tritium in surface and sewer water in November 2005 What did we detect in November 2005? In November 2005, for the first time in the then-35-year history of our environmental monitoring program at Fermilab, we detected low levels of tritium in a stream leaving the Fermilab site, and in the sanitary sewers that pump water to the Batavia Wastewater Treatment Plant. The levels

  1. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 SECTION A. Project Title: TRA-609 Compressed Air System Drain Line Modification and Valve Replacement SECTION B. Project Description: Due to periods of insufficient water flow to the sewer ponds, the clay liners in the ponds can dry out and crack. This proposed action is to add an additional drain line, which will allow clean well water that has been used to cool compressors to then be drained into the sewer system ponds during low flow periods in order to maintain a higher, more consistent

  2. PGI Accelerator Compilers - Aug 2009

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GDP Transition » PGDP Deactivation Project PGDP Deactivation Project PGDP Deactivation Project scope major activities: Site Optimization Studies include: - Steam, Air, Nitrogen and Chilled Water Optimization Study - Water Treatment Facility Optimization Study - C-100 Optimization Study - Sewer Evaluation Study Facility Stabilization Preparation and/or removal of nuclear materials and contaminants from facilities. Stabilization activities are performed during early stages of facility

  3. CX-012384: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eleven Soil Bores Along the M-Area Abandoned Process Sewer Line for Vadose Zone Characterization CX(s) Applied: B3.1 Date: 05/19/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  4. CX-007673: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Edible Oil Deployment for Enhanced Chlorinated Volatile Organic Compounds Attenuation at the M Area Abandoned Process Sewer Line CX(s) Applied: B3.1 Date: 10/25/2011 Location(s): South Carolina Offices(s): Savannah River Operations Office

  5. CX-000529: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sanitary Sewer Manhole Drain Line Isolation for Building 261-H Consolidated Incineration FacilityCX(s) Applied: B1.27Date: 09/09/2009Location(s): Aiken, South CarolinaOffice(s): Environmental Management, Savannah River Operations Office

  6. PGDP Deactivation Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GDP Transition » PGDP Deactivation Project PGDP Deactivation Project PGDP Deactivation Project scope major activities: Site Optimization Studies include: - Steam, Air, Nitrogen and Chilled Water Optimization Study - Water Treatment Facility Optimization Study - C-100 Optimization Study - Sewer Evaluation Study Facility Stabilization Preparation and/or removal of nuclear materials and contaminants from facilities. Stabilization activities are performed during early stages of facility

  7. Office of Wastewater Management catalog of publications

    SciTech Connect (OSTI)

    1998-09-01

    The contents include: Introduction; Categories of Documents (Biosolids; Construction Grants; Environmental Impact Statements; Federal Registers; Finance; Needs and Assessments; Operation and Maintenance; Permitting Issues; Pollution Prevention and Control; Pretreatment; Small Communities; Storm Water/Combined Sewer Overflows; Treatment; Water Conservation and Efficiency; Water Quality and Standards; and Miscellaneous); and Document Title Index.

  8. CX-004215: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Modifications to the Sanitary Sewer Line 920 PlateauCX(s) Applied: B1.3, B1.32, B2.1, B2.5Date: 09/24/2010Location(s): Pittsburgh, PennsylvaniaOffice(s): Fossil Energy, National Energy Technology Laboratory

  9. CX-013306: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Approval of Land Use Review Request for Sewer Installation and Park Construction in a BPA Right-of-Way in Clark County CX(s) Applied: B4.9Date: 01/26/2015 Location(s): WashingtonOffices(s): Bonneville Power Administration

  10. Management of Biological Materials in Wastewater from Research & Development Facilities

    SciTech Connect (OSTI)

    Raney, Elizabeth A.; Moon, Thomas W.; Ballinger, Marcel Y.

    2011-04-01

    PNNL has developed and instituted a systematic approach to managing work with biological material that begins in the project planning phase and carries through implementation to waste disposal. This paper describes two major processes used at PNNL to analyze and mitigate the hazards associated with working with biological materials and evaluate them for disposal to the sewer, ground, or surface water in a manner that protects human health and the environment. The first of these processes is the Biological Work Permit which is used to identify requirements for handling, storing, and working with biological materials and the second is the Sewer Approval process which is used to evaluate discharges of wastewaters containing biological materials to assure they meet industrial wastewater permits and other environmental regulations and requirements.

  11. Buildings Energy Data Book: 2.5 Residential Construction and Housing Market

    Buildings Energy Data Book [EERE]

    8 2009 Sales Price and Construction Cost Breakdown of an Average New Single-Family Home ($2010) (1) Function Finished Lot 20% Construction Cost 59% Financing 2% Overhead & General Expenses 5% Marketing 1% Sales Commission 3% Profit 9% Total 100% Function Building Permit Fees 2% Impact Fees 1% Water and Sewer Inspection 2% Excavation, Foundation, & Backfill 7% Steel 1% Framing and Trusses 16% Sheathing 2% Windows 3% Exterior Doors 1% Interior Doors & Hardware 2% Stairs 1% Roof

  12. Water Energy Conservation Measures | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Products & Technologies » Technology Deployment » Efficient Technologies & Products » Water Energy Conservation Measures Water Energy Conservation Measures Water and Sewer Conservation Systems Water conservation efforts are increasingly important in many regions and simple installations can make big impacts. Install Low-Flow Aerators on Faucets Install low-flow aerators on all of the existing standard faucets. Standard water faucets have an average rated flow rate of 2.0 gpm as

  13. Microsoft PowerPoint - 300 Area Perspective.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area Perspective 300 Area Perspective River and Plateau Committee February 15, 2012 February 15, 2012 John B. Price Business/Research Park in N Richland h d l h High Density Residential is the norm MSA Bldg and Townhouses "Smartpark" includes Townhouses High Density Residential Infiltration from Impervious Areas & Irrigation Townhouses Grass Townhouse Townhouses Grass Bare Ground from Construction Storm Sewer Asphalt Grass Grate p Remediated 1100 Area -Industrial Area f h l ff

  14. Hanford Advisory Board Draft Advice Topic: Transportation Infrastructure Updates Safety Consideration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Infrastructure Updates Safety Consideration Authors: Bloom, Korenko & Holland Originating Committee: Health, Safety & Environmental Protection Version #1 Color: __pink_X_yellow__green__salmon__purple__blue Background The Hanford Advisory Board (Board) understands that the U.S. Department of Energy (DOE) is currently focusing on updates to the Hanford Site infrastructure, including water, sewer, data, utilities, roads, and traffic safety. The Board is aware of the effort

  15. Buildings Energy Data Book: 2.9 Low-Income Housing

    Buildings Energy Data Book [EERE]

    5 Weatherization Program Facts - PY 2010 weatherization funding breakdown: DOE 18.3%, LIHEAP 59.6%, others 22.1%.(1) - The Federal Government's outlay for fuel subsidies runs from $4.0 to 4.4 billion per year. The major two agencies dispensing fuel subsidies are HUD and HHS (through LIHEAP). - In 2006, HUD spent over $1.43 billion annually to pay all or part of the total utility bills (including water/sewer) for 1.2 million low-income units. Utilities (including water) made up approximately 23%

  16. Buildings Energy Data Book: 3.8 Hospitals and Medical Facilities

    Buildings Energy Data Book [EERE]

    1 Medical Offices, Utilities Cost Per Square Foot ($2010) Expense All HVAC Electricity 2.39 1.81 1.84 Non-HVAC Electricity N/A 1.51 1.53 Natural Gas 0.52 0.41 0.41 Water/Sewer 0.15 0.22 0.21 Overall Utilities (1) 2.53 2.59 2.57 Note(s): Source(s): Downtown Suburban 1) Does not equal sum of the other categories. Can also include purchased steam, purchased chilled water, and fuel oil. BOMA International, The Experience Exchange Report 2010, 2010

  17. Project T100 -- Hazardous Materials Management and Emergency Response Training Center (HAMMER)

    SciTech Connect (OSTI)

    Norton, C.E.

    1994-11-09

    The scope of this Quality Assurance Program Plan (QAPP) is to provide a system of Quality Assurance reviews and verifications on the design and construction of the Hazardous Materials Management and Emergency Response (HAMMER) Training Center, project 95L-EWT-100 at Hanford. The reviews and verifications will be on activities associated with design, procurement, and construction of the HAMMER project which includes, but is not limited to earthwork, placement of concrete, laying of rail, drilling of wells, water and sewer line fabrication and installation, communications systems, fire protection/detection systems, line tie-ins, building and mock-up (prop) construction, electrical, instrumentation, pump and valves and special coatings.

  18. Environmental monitoring at the Lawrence Livermore National Laboratory. 1982 annual report

    SciTech Connect (OSTI)

    Griggs, K.S.; Gonzalez, M.A.; Buddemeier, R.W.

    1983-03-14

    Environmental monitoring efforts spanned air, water, vegetation and foodstuffs, and radiation doses. Monitoring data collection, analysis, and evaluation are presented for air, soils, sewage, water, vegetation and foodstuffs, milk, and general environmental radioactivity. Non-radioactive monitoring addresses beryllium, chemical effluents in sewage, noise pollution, and storm runoff and liquid discharge site pollutants. Quality assurance efforts are addressed. Five appendices present tabulated data; environmental activity concentration; dose calculation method; discharge limits to sanitary sewer systems of Livermore; and sampling and analytical procedures for environmental monitoring. (PSB)

  19. U.S. Department of Energy Portsmouth/Paducah Project Office

    Energy Savers [EERE]

    proposed action involves the U.S. Department of Energy (DOE) granting a ±10 foot-wide easement to the Pike County Board of Commissioners to allow the county to construct, operate and maintain a six (6)-inch sanitary sewer line to be installed on the northern portion of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. Number and Title of the Categorical Exclusions Applied: 10 CFR 1021, Appendix B to Subpart D: B1.24 Property transfers The regulatory requirements from 10 CFR Part

  20. pH Meter probe assembly

    DOE Patents [OSTI]

    Hale, C.J.

    1983-11-15

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe. 1 fig.

  1. pH Meter probe assembly

    DOE Patents [OSTI]

    Hale, Charles J.

    1983-01-01

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe.

  2. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  3. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  4. Superfund explanation of significant difference for the record of decision (EPA region 2): Love Canal, Niagara Falls, NY, September 5, 1996

    SciTech Connect (OSTI)

    1997-11-01

    The United States Environmental Protection Agency (EPA) and the New York State Department of Environmental Conservation (NYSDEC) announce this Explanation of Significant Differences (ESD) to explain modifications to the selected remedy for the final destruction and disposal of Love Canal dioxin-contaminated sewer and creek sediments. These modifications are embodied in proposed changes to a partial consent decree between the United States and the State of New York and the Occidental Chemical Corporation (OCC) in the United States District Court for the Western District of New York.

  5. Economic consequences of land surface subsidence

    SciTech Connect (OSTI)

    Fowler, L.C.

    1981-06-01

    Overdraft in the Santa Clara Valley, Calif., groundwater basin caused land surface subsidence over an area of 63,000 ha with a maximum depression of 3.6 m from 1912-67. Since cessation of overdraft and replenishment of groundwater levels in 1969, there has been no significant land surface subsidence. During the period of active subsidence, water well casings buckled, sewers lost capacity as a result of changes in slope, and roads and railroads had to be raised. These damages are estimated at over $130 million. (1 graph, 1 map, 6 photos, 2 references, 1 table)

  6. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NO. 2011-XXXXP Overview of U.S. EPA Municipal Separate Storm Sewer System (MS4) NPDES Permit No. NMR04A000 2015-8386 PE What is the MS4 Permit?  An MS4 is any system of stormwater conveyances (channels, storm drains, roads with drainage systems, curbs, gutters, ditches...) that discharge to a water of the U.S.  The Permit establishes requirements to reduce pollution carried by stormwater run-off and restore portions of the Middle Rio Grande.  MS4 Permit applies to the Albuquerque

  7. Lawrence Berkeley National Laboratory 1997 Site Environmental Report Vol. II

    SciTech Connect (OSTI)

    Thorson, Patrick

    1998-09-30

    Volume II of the Site Environmental Report for 1997 is published by Ernest Orlando Lawrence Berkeley National Laboratory as a supplemental appendix to the report printed in volume I. Volume II contains the environmental monitoring and sampling data used to generate summary results in the main report for routine and nonroutine activities at the Laboratory (except for groundwater sampling data). Data presented in volume II are given in Systeme International (SI) units. The list below categorizes the volume II data sections with corresponding summary result tables in volume I: Stack Air, Ambient Air, Rainwater, Creeks, Creek Baseline Study, Hydraugers, Lakes, Stormwater, Sewer, Fixed Treatment Units, Soil, Sediment, Vegetation.

  8. Supplement Analysis for the Transmission System Vegetation Management Program FEIS

    SciTech Connect (OSTI)

    N /A

    2001-03-27

    BPA proposes to clear unwanted vegetation from a section of BPA's Ponderosa--Pilot Butte Transmission Line Right-of-way to facilitate relocation of structure 18/3. Work would begin in mid-March and end in April, 2001. (1) Description of right-of-way and vegetation management needed--The project involves cutting all tall growing trees and brush within BPA's 100-foot wide transmission line right-of-way. An encroachment by the City of Bend Sewer Treatment facility, and future expansion plans, compelled the relocation of this portion of the right-of-way. Structures 18/2 and 18/4 will be modified in place to accommodate the new angle of the right-of-way. Structure 18/3 will be moved approximately 300 feet westerly to allow for the expansion of the sewer treatment facility. Only vegetation within the new portion of the right-of-way, totaling approximately 3.5 acres, will be controlled. No herbicides will be used on this project. Vegetation to be controlled: Juniper trees are the only tall growing tree species within this portion of the right-of-way requiring treatment. The density of vegetation within the new right-of-way is light to medium. The right-of-way boundaries will be examined for danger trees and if found, danger trees will be marked and cut according to danger tree policy.

  9. Radiological assessment report for the University of Rochester Annex, 400 Elmwood Avenue, Rochester, New York, April-May 1984

    SciTech Connect (OSTI)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Flynn, K.F.

    1984-12-01

    In light of the results of the comprehensive radiological assessment of the annex and auxiliary facilities, the following conclusions can be made: There is no immediate hazard from the elevated levels of radioactivity detected; however, some of these levels are above criteria. The radon, thoron, actinon, long-lived particulates, and tritium in the air are all below criteria for unrestricted use. Some ductwork has been identified as being contaminated. All ductwork must, therefore, be considered potentially contaminated. Since several floor drains were found to exhibit elevated readings, and the samples had elevated concentrations of radionuclides, it must be concluded that the drain and sewer systems of the Annex are contaminated with radioactive material. Since the samples collected from the storm and sewer systems outside the building also had elevated concentrations of radionuclides, these systems are also considered contaminated with radioactive material. The grounds around the Annex have exhibited background concentrations of radionuclides. Two rooms, B-330 and B-332, were inaccessible for survey due to the presence of stored furniture and equipment. Therefore, no comment about their radiological status can be made. At the common baseboard for Room C-12 and C-16 and on the floor below the tile in Room C-40, contamination appeared to be masked by construction modifications. Other areas of the Annex must also be considered potentially contaminated where modifications may have masked the contamination.

  10. Technical Basis for Radiological Emergency Plan Annex for WTD Emergency Response Plan: West Point Treatment Plant

    SciTech Connect (OSTI)

    Hickey, Eva E.; Strom, Daniel J.

    2005-08-01

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document, Volume 3 of PNNL-15163 is the technical basis for the Annex to the West Point Treatment Plant (WPTP) Emergency Response Plan related to responding to a radiological emergency at the WPTP. The plan primarily considers response to radioactive material that has been introduced in the other combined sanitary and storm sewer system from a radiological dispersion device, but is applicable to any accidental or deliberate introduction of materials into the system.

  11. Superfund record of decision (EPA Region 2): Love Canal, Niagara Falls, New York, October 1987. Second remedial action

    SciTech Connect (OSTI)

    Not Available

    1987-10-26

    The Love Canal site is located in the southeast corner of the city of Niagara Falls and is approximately one-quarter mile north of the Niagara River. The canal was one of two initial excavations designed to provide inexpensive hydroelectric power for industrial development around the turn of the 20th century. Hooker Chemicals and Plastics Corporation (Hooker), now Occidental Chemical Corporation, disposed of over 21,000 tons of chemical wastes, including dioxin-tainted trichlorophenols, into Love Canal between 1942 and 1953. In the mid to late 1970s, continued periods of high precipitation contributed to water accumulation in the disposal area causing chemically-contaminated leachate to be carried to the surface and into contact with residential-basement foundations. Also, dioxin and other contaminants migrated from Love Canal to the sewers which have outfalls to nearby creeks. The remedial program at Love Canal has been extensive and has occurred in two phases. Approximately 30,400 cu yd - 40,900 cu yd of creek and sewer sediments are contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin, commonly referred to as dioxin.

  12. ENERGY EFFICIENCY UPGRADES FOR SANITATION FACILITIES IN SELAWIK, AK FINAL REPORT

    SciTech Connect (OSTI)

    POLLIS, REBECCA

    2014-10-17

    The Native Village of Selawik is a federally recognized Alaskan tribe, located at the mouth of the Selawik River, about 90 miles east of Kotzebue in northwest Alaska. Due to the communitys rural location and cold climate, it is common for electric rates to be four times higher than the cost urban residents pay. These high energy costs were the driving factor for Selawik pursuing funding from the Department of Energy in order to achieve significant energy cost savings. The main objective of the project was to improve the overall energy efficiency of the water treatment/distribution and sewer collection systems in Selawik by implementing the retrofit measures identified in a previously conducted utility energy audit. One purpose for the proposed improvements was to enable the community to realize significant savings associated with the cost of energy. Another purpose of the upgrades was to repair the vacuum sewer system on the west side of Selawik to prevent future freeze-up problems during winter months.

  13. Co-combustion feasibility study. Final report

    SciTech Connect (OSTI)

    Handcock, D.J.

    1995-01-01

    This report investigates the technical and economic feasibility of co-combusting municipal sewage sludge produced by the Saratoga County Sewer District No. 1 with paper mill sludge produced by the Cottrell Paper Company, Encore Paper Company, International Paper Company, Mohawk Paper Mills, and TAGSONS Papers at the Saratoga County Sewer District No. 1`s secondary wastewater treatment plant and recovering any available energy products. The co-combustion facility would consist of sludge and wood chip storage and conveying systems, belt filter presses, screw presses, fluidized-bed incinerators, venturi scrubbers and tray cooling systems, ash dewatering facilities, heat recovery steam generators, gas-fired steam superheaters, and a back-pressure steam turbine system. Clean waste wood chips would be used as an auxiliary fuel in the fluidized-bed incinerators. It is recommended that the ash produced by the proposed facility be beneficially used, potentially as a raw material in the manufacture of cement and/or as an interim barrier layer in landfills.

  14. Radiological Risk Assessment for King County Wastewater Treatment Division

    SciTech Connect (OSTI)

    Strom, Daniel J.

    2005-08-05

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or moisture density gages may get into wastewater and be carried to a treatment plant. Other scenarios might include a terrorist deliberately putting a dispersible radioactive material into wastewater. Alternatively, a botched terrorism preparation of an RDD may result in radioactive material entering wastewater without anyone's knowledge. Drinking water supplies may also be contaminated, with the result that some or most of the radioactivity ends up in wastewater.

  15. Environmental monitoring at the Lawrence Livermore National Laboratory. 1984 annual report

    SciTech Connect (OSTI)

    Griggs, K.S.; Myers, D.S.; Buddemeier, R.W.

    1985-02-01

    A strict effluent-control program that emphasizes controlling effluents at the source has been in effect since LLNL began operation. The Environmental Monitoring program evaluates the effectiveness of these measures, documents whether effluents from LLNL and Site 300 operations are within applicable standards, and estimates the impact of these operations on the environment. Sensitive monitoring equipment is used that can detect radioactive and nonradioactive pollutants at environmental background levels. The program includes the collection and analysis of air, soil, water, sewer effluent, vegetation, foodstuffs, and milk samples. Also, environmental background radiation is measured at numerous locations in the vicinity of LLNL using gamma and neutron dosimeters. This report summarizes the results of the 1984 program. 28 refs, 25 figs., 40 tabs.

  16. Finding of no significant impact proposed corrective action for the Northeast Site at the Pinellas Plant in Largo, Florida

    SciTech Connect (OSTI)

    1995-06-01

    The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA) (DOE/EA-0976) of the proposed corrective action for the Northeast Site at the Pinellas Plant in Largo, Florida. The Northeast Site contains contaminated groundwater that would be removed, treated, and discharged to the Pinellas County Sewer System. Based on the analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA), 42 U.S.C.4321 et.seq. Therefore, the preparation of an environmental impact statement is not required and the DOE is issuing this Finding of No Significant Impact (FONSI).

  17. Manufacturing company faces $8 million penalty for alleged RCRA violations

    SciTech Connect (OSTI)

    1995-03-01

    On October 7, 1994, EPA filed a complaint against Eastman Kodak Company for alleged RCRA violations at Kodak`s manufacturing and hazardous waste treatment, storage, and disposal facilities located in Rochester, New York. A proposed consent decree accompanied the complaint filed in the US District Court for the Western District of New York (United States v. Eastman Kodak Company, Dockett Number: 94-CV-6503T). According to the terms of the proposed consent decree, Kodak is to pay an $8 million civil penalty by implementing six environmental projects. The company must also upgrade its industrial sewer system and bring all operations into compliance with RCRA regulations. This action indicates EPA`s intent to promote waste reduction and pollution prevention in addition to requiring compliance at large, aging manufacturing facilities.

  18. Local drainage analyses of the Paducah and Portsmouth Gaseous Diffusion Plants during an extreme storm

    SciTech Connect (OSTI)

    Johnson, R.O.; Wang, J.C.; Lee, D.W.

    1993-11-01

    Local drainage analyses have been performed for the Paducah and Portsmouth Gaseous Diffusion Plants during an extreme storm having an approximate 10,000-yr recurrence interval. This review discusses the methods utilized to accomplish the analyses in accordance with US Department of Energy (DOE) design and evaluation guidelines, and summarizes trends, results, generalizations, and uncertainties applicable to other DOE facilities. Results indicate that some culverts may be undersized, and that the storm sewer system cannot drain the influx of precipitation from the base of buildings. Roofs have not been designed to sustain ponding when the primary drainage system is clogged. Some underground tunnels, building entrances, and ground level air intakes may require waterproofing.

  19. Guidance manual for the identification of hazardous wastes delivered to publicly owned treatment works by truck, rail, or dedicated pipe

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    The manual is directed towards two types of facilities: First, guidance is to POTWs that wish to preclude the entry of hazardous wastes into their facilities and avoid regulation and liability under RCRA. Administrative/technical recommendations for control of such wastes is provided, many of which are already in use by POTWs. Second, the responsibilities of POTWs that choose to accept hazardous wastes from truck, rail, or dedicated pipeline are discussed, including relevant regulatory provisions, strict liability and corrective action requirements for releases, and recommended procedures for waste acceptance/management. The manual describes the RCRA regulatory status of wastes that POTW operators typically may encounter. The manual includes a Waste Monitoring Plan. Appendices give the following: RCRA lists; RCRA listed hazardous wastes; examples of POTW sewer use ordinance language, waste hauler permit; waste tracking form, notification of hazardous waste activity; uniform hazardous waste manifest; biennial hazardous waste report; and state hazardous waste contacts.

  20. Elevated tritium levels at the World Trade Center

    SciTech Connect (OSTI)

    Semkow, Thomas M.; Hafner, Ronald S.; Parekh, Pravin P.; Wozniak, Gordon J.; Haines, Douglas K.; Husain, Liaquat; Rabun, Robert L.; Williams, Philip G.

    2002-05-14

    Traces of tritiated water (HTO) were detected at [the]World Trade Center (WTC) ground zero after the 9/11/01 terrorist attack. A method of ultralow-background liquid scintillation counting was used after distilling HTO from the samples. A water sample from the WTC sewer, collected on 9/13/01, contained 0.174 plus or minus 0.074 (2s) nCi/L of HTO. A split water sample, collected on 9/21/01 from the basement of WTC Building 6, contained 3.53 plus or minus 0.17 and 2.83 plus or minus 0.15 nCi/L, respectively. Several water and vegetation samples were analyzed from areas outside the ground zero, located in Manhattan, Brooklyn, Queens, and Kensico Reservoir. No HTO above the background was found in those samples. All these results are well below the levels of concern to human exposure.

  1. A Systems Framework for Assessing Plumbing Products-Related Water Conservation

    SciTech Connect (OSTI)

    Williams, Alison; Dunham Whitehead, Camilla; Lutz, James

    2011-12-02

    Reducing the water use of plumbing productstoilets, urinals, faucets, and showerheads has been a popular conservation measure. Improved technologies have created opportunities for additional conservation in this area. However, plumbing products do not operate in a vacuum. This paper reviews the literature related to plumbing products to determine a systems framework for evaluating future conservation measures using these products. The main framework comprises the following categories: water use efficiency, product components, product performance, source water, energy, and plumbing/sewer infrastructure. This framework for analysis provides a starting point for professionals considering future water conservation measures to evaluate the need for additional research, collaboration with other standards or codes committees, and attachment of additional metrics to water use efficiency (such as performance).

  2. Superfund Record of Decision (EPA Region 2): Hooker-102nd Street Landfill, Niagara Falls, NY. (First remedial action), September 1990. Final report

    SciTech Connect (OSTI)

    Not Available

    1990-09-26

    The 22-acre Hooker-102nd Street site is a former industrial landfill in the city of Niagara Falls, Niagara County, New York. The site is adjacent to, and partially within the Niagara River's 100-year floodplain. These studies and the Remedial Investigation (RI) initiated in 1984, identified contamination in ground water, onsite and offsite soil, rivershore sediment, and within a storm sewer. Additionally, the presence of a leachate plume of non-aqueous phase liquids (NAPLs) was discovered emanating from the landfill area. The Record of Decision (ROD) is the final remedy which addresses all of the contaminated media. The primary contaminants of concern affecting the soil, sediment, and ground water are VOCs including benzene, TCE, and toluene; other organics including PCBs and phenols; and metals including arsenic.

  3. 340 waste handling complex: Deactivation project management plan

    SciTech Connect (OSTI)

    Stordeur, R.T.

    1998-06-25

    This document provides an overview of the strategy for deactivating the 340 Waste Handling Complex within Hanford`s 300 Area. The plan covers the period from the pending September 30, 1998 cessation of voluntary radioactive liquid waste (RLW) transfers to the 340 Complex, until such time that those portions of the 340 Complex that remain active beyond September 30, 1998, specifically, the Retention Process Sewer (RPS), can also be shut down and deactivated. Specific activities are detailed and divided into two phases. Phase 1 ends in 2001 after the core RLW systems have been deactivated. Phase 2 covers the subsequent interim surveillance of deactivated and stand-by components during the period of continued RPS operation, through the final transfer of the entire 340 Complex to the Environmental Restoration Contractor. One of several possible scenarios was postulated and developed as a budget and schedule planning case.

  4. Remaining Sites Verification Package for the 100-F-44:2, Discovery Pipeline Near 108-F Building, Waste Site Reclassification Form 2007-006

    SciTech Connect (OSTI)

    J. M. Capron

    2008-05-30

    The 100-F-44:2 waste site is a steel pipeline that was discovered in a junction box during confirmatory sampling of the 100-F-26:4 pipeline from December 2004 through January 2005. The 100-F-44:2 pipeline feeds into the 100-F-26:4 subsite vitrified clay pipe (VCP) process sewer pipeline from the 108-F Biology Laboratory at the junction box. In accordance with this evaluation, the confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  5. Confusion reigns over industrial stormwater regulations

    SciTech Connect (OSTI)

    Bishop, J.

    1993-01-01

    More than five years after Congress mandated controls for industrial and municipal stormwater discharges, many in the regulated community remain unclear about how the rules apply to them. The regulations' progress since the 1987 CWA amendments opened the door for their development often has been shaky and marked by setbacks. According to a federal appeals court decision issued last summer, that struggle is likely to continue. Although the original stormwater rules issued by EPA in November 1990 appeared to focus on heavy manufacturing facilities, as well as municipalities, the appellate court cleared a path that could draw light industrial plants and small construction sites within the regulations' domain. The rules in dispute bring under their umbrella any stormwater discharges associated with industrial activity to surface waters or municipal storm sewer systems. However, the regulations distinguish between facilities engaged in heavy industry and light, or enclosed industrial facilities, based on the probability that stormwater discharges will be contaminated and require regulation.

  6. Reclamation of urban stormwater. Book chapter

    SciTech Connect (OSTI)

    Field, R.

    1993-01-01

    Rainfall runoff becomes contaminated as it passes over urban land. Billions of gallons of water can be recovered for beneficial uses if urban stormwater is properly controlled and treated. The Storm and Combined Sewer Program of the United States Environmental Protection Agency Office of Research and Development has continuously supported the development and demonstration of stormwater control systems and treatment processes. Water quality of the treated storm runoff can meet the required standards for subpotable usage. Current urban stormwater control and treatment technology are discussed, leading to the feasibility of urban stormwater reuse for various purposes in industry, irrigation and recreation. A hypothetical case study illustrating the cost effectiveness of reclaiming urban stormwater for complete industrial supply is presented.

  7. Lawrence Livermore National Laboratory environmental report for 1990

    SciTech Connect (OSTI)

    Sims, J.M.; Surano, K.A.; Lamson, K.C.; Balke, B.K.; Steenhoven, J.C.; Schwoegler, D.R.

    1990-01-01

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore National Laboratory (LLNL) and presents summary information about environmental compliance for 1990. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent surface water, groundwater, vegetation, and foodstuff were made at both the Livermore site and at Site 300 nearly. LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment was evaluated. Aside from an August 13 observation of silver concentrations slightly above guidelines for discharges to the sanitary sewer, all the monitoring data demonstrated LLNL compliance with environmental laws and regulations governing emission and discharge of materials to the environment. In addition, the monitoring data demonstrated that the environmental impacts of LLNL are minimal and pose no threat to the public to or to the environment. 114 refs., 46 figs., 79 tabs.

  8. Remaining Sites Verification Package for the 100-F-26:13, 108-F Drain Pipelines, Waste Site Reclassification Form 2005-011

    SciTech Connect (OSTI)

    L. M. Dittmer

    2008-03-03

    The 100-F-26:13 waste site is the network of process sewer pipelines that received effluent from the 108-F Biological Laboratory and discharged it to the 188-F Ash Disposal Area (126-F-1 waste site). The pipelines included one 0.15-m (6-in.)-, two 0.2-m (8-in.)-, and one 0.31-m (12-in.)-diameter vitrified clay pipe segments encased in concrete. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  9. Evaluation of contaminant flux rates from sediments of Sinclair Inlet, WA, using a benthic flux sampling device. Final report

    SciTech Connect (OSTI)

    Chadwick, D.B.; Lieberman, S.H.; Reimers, C.E.; Young, D.

    1993-02-01

    A Benthic Flux Sampling Device (BFSD) was demonstrated on site to determine the mobility of contaminants in sediments off the Puget Sound Naval Shipyard (PSNS) in Sinclair Inlet, WA. Quantification of toxicant flux from the sediments will support ongoing assessment studies and facilitate the design of appropriate remediation strategies, if required. In general, where release of contaminants was found, the measured rates do not represent a significant source relative to other major inputs such as sewer discharges, nonpoint source runoff, and marinas. They may, however, represent an exposure pathway for benthic biota with a subsequent potential for toxicological effects and/or bioaccumulation. Environmental assessment, CIVAPP:Toxicity, CIVAPP:Marine chemistry, Hazardous waste.

  10. Interim progress report addendun - environmental geophysics: Building E5032 decommissioning, Aberdeen Proving Ground, January 1994 resurvey

    SciTech Connect (OSTI)

    Thompson, M.D.; McGinnis, L.D.; Benson, M.A.; Borden, H.M.; Padar, C.A.

    1994-12-01

    Geophysical surveying around Building E5032 using three new continuously recording geophysical instruments - two types of electromagnetic induction instruments and a cesium vapor magnetometer that were unavailable at the time of the original survey - has provided additional information for defining the location of buried debris, vaults, tanks, and the drainage/sump system near the building. The dominant geophysical signature around Building E5032 consists of a complex pattern of linear magnetic, electrical-conductivity, and electromagnetic field anomalies that appear to be associated with drainage/sewer systems, ditches, past railway activity, the location for Building T5033 (old number 99A), and the probable location of Building 91. Integrated analysis of data acquired using the three techniques, plus a review of the existing ground-penetrating-radar data, allow a more thorough definition of the sources for the observed anomalies.

  11. Stormwater Pollution Prevention Plan (SWPPP) for Coal Storage Area Stabilization Project

    SciTech Connect (OSTI)

    Project and Design Engineering

    2011-03-01

    The scope of this project is to stabilize the abandoned coal storage area and redirect the storm water runoff from sanitary sewer system to the storm drain system. Currently, the existing storm water runoff is directed to a perimeter concrete drainage swale and collected in a containment basin. The collected water is then pumped to a treatment facility and after treatment, is discharged to the Y-12 sanitary sewer system. The existing drainage swale and collection basin along with silt fencing will be used during aggregate placement and grading to provide erosion and sediment control. Inlet protection will also be installed around existing structures during the storm water diversion construction. This project scope will include the installation of a non-woven geotextile fabric and compacted mineral aggregate base (paving optional) to stabilize the site. The geotextile specifications are provided on the vendor cut sheets in Appendix B. The installation of a storm water collection/retention area will also be installed on the southern side of the site in accordance with EPA Technical Guidance on Implementing the Stormwater Runoff Requirements for federal Projects under Section 438 of the Energy Independence and Security Act. The total area to be disturbed is approximately 2.5 acres. The order of activities for this Stormwater Pollution Prevention Plan (SWPPP) will be: (1) post notice of coverage (NOC) in a prominent display near entrance of the site; (2) install rain gauge on site or contact Y-12 Plant Shift Superintendent daily for Met tower rain gauge readings; (3) install stabilized construction exit on site; (4) install silt fencing along perimeter as indicated on the attached site plan; (5) regrade site; (6) install geotextile fabric and compacted mineral aggregate base; (7) install catch basin inlet protection where required; (8) excavate and lower existing catch basin tops, re-grade and asphalt to drain; and (9) when all disturbed areas are re-stabilized, remove silt fencing and any other temporary erosion control.

  12. Anaerobic Digestion and Combined Heat and Power Study

    SciTech Connect (OSTI)

    Frank J. Hartz; Rob Taylor; Grant Davies

    2011-12-30

    One of the underlying objectives of this study is to recover the untapped energy in wastewater biomass. Some national statistics worth considering include: (1) 5% of the electrical energy demand in the US is used to treat municipal wastewater; (2) This carbon rich wastewater is an untapped energy resource; (3) Only 10% of wastewater treatment plants (>5mgd) recover energy; (4) Wastewater treatment plants have the potential to produce > 575 MW of energy nationwide; and (5) Wastewater treatment plants have the potential to capture an additional 175 MW of energy from waste Fats, Oils and Grease. The WSSC conducted this study to determine the feasibility of utilizing anaerobic digestion and combined heat and power (AD/CHP) and/or biosolids gasification and drying facilities to produce and utilize renewable digester biogas. Digester gas is considered a renewable energy source and can be used in place of fossil fuels to reduce greenhouse gas emissions. The project focus includes: (1) Converting wastewater Biomass to Electricity; (2) Using innovative technologies to Maximize Energy Recovery; and (3) Enhancing the Environment by reducing nutrient load to waterways (Chesapeake Bay), Sanitary Sewer Overflows (by reducing FOG in sewers) and Greenhouse Gas Emissions. The study consisted of these four tasks: (1) Technology screening and alternative shortlisting, answering the question 'what are the most viable and cost effective technical approaches by which to recover and reuse energy from biosolids while reducing disposal volume?'; (2) Energy recovery and disposal reduction potential verification, answering the question 'how much energy can be recovered from biosolids?'; (3) Economic environmental and community benefit analysis, answering the question 'what are the potential economic, environmental and community benefits/impacts of each approach?'; and (4) Recommend the best plan and develop a concept design.

  13. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Gervais, Todd L.

    2004-11-15

    The Pacific Northwest National Laboratory (PNNL) operates a number of Research & Development (R&D) facilities for the U.S. Department of Energy (DOE) on the Hanford Site. Facility effluent monitoring plans (FEMPs) have been developed to document the facility effluent monitoring portion of the Environmental Monitoring Plan (DOE 2000) for the Hanford Site. Three of PNNLs R&D facilities, the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling, and individual FEMPs were developed for these facilities in the past. In addition, a balance-of-plant (BOP) FEMP was developed for all other DOE-owned, PNNL-operated facilities at the Hanford Site. Recent changes, including shutdown of buildings and transition of PNNL facilities to the Office of Science, have resulted in retiring the 3720 FEMP and combining the 331 FEMP into the BOP FEMP. This version of the BOP FEMP addresses all DOE-owned, PNNL-operated facilities at the Hanford Site, excepting the Radiochemical Processing Laboratory, which has its own FEMP because of the unique nature of the building and operations. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R&D. R&D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in Appendix A. Potential radioactive airborne emissions in the BOP facilities are estimated annually using a building inventory-based approach provided in federal regulations. Sampling at individual BOP facilities is based on a potential-to-emit assessment. Some of these facilities are considered minor emission points and thus are sampled routinely, but not continuously, to confirm the low emission potential. One facility, the 331 Life Sciences Laboratory, has a major emission point and is sampled continuously. Sampling systems are located downstream of control technologies and just before discharge to the atmosphere. The need for monitoring airborne emissions of hazardous chemicals is established in the Hanford Site Air Operating Permit and in notices of construction. Based on the current potential-to-emit, the Hanford Site Air Operating Permit does not contain general monitoring requirements for BOP facilities. However, the permit identifies monitoring requirements for specific projects and buildings. Needs for future monitoring will be established by future permits issued pursuant to the applicable state and federal regulations. A number of liquid-effluent discharge systems serve the BOP facilities: sanitary sewer, process sewer, retention process sewer, and aquaculture system. Only the latter system discharges to the environment; the rest either discharge to treatment plants or to long-term storage. Routine compliance sampling of liquid effluents is only required at the Environmental Molecular Sciences Laboratory. Liquid effluents from other BOP facilities may be sampled or monitored to characterize facility effluents or to investigate discharges of concern. Effluent sampling and monitoring for the BOP facilities depends on the inventories, activities, and environmental permits in place for each facility. A description of routine compliance monitoring for BOP facilities is described in the BOP FEMP.

  14. Natural Phenomena Hazards Modeling Project: Flood hazard models for Department of Energy sites

    SciTech Connect (OSTI)

    Savy, J.B.; Murray, R.C.

    1988-05-01

    For eight sites, the evaluation of flood hazards was considered in two steps. First, a screening assessment was performed to determine whether flood hazards may impact DOE operations. The screening analysis consisted of a preliminary flood hazard assessment that provides an initial estimate of the site design basis. The second step involves a review of the vulnerability of on-site facilities by the site manager; based on the results of the preliminary flood hazard assessment and a review of site operations, the manager can decide whether flood hazards should be considered a part of the design basis. The scope of the preliminary flood hazard analysis was restricted to evaluating the flood hazards that may exist in proximity to a site. The analysis does not involve an assessment of the potential of encroachment of flooding at specific on-site locations. Furthermore, the screening analysis does not consider localized flooding at a site due to precipitation (i.e., local run-off, storm sewer capacity, roof drainage). These issues were reserved for consideration by the DOE site manager. 9 refs., 18 figs.

  15. Natural Phenomena Hazards Modeling Project: Preliminary flood hazards estimates for screening Department of Energy sites, Albuquerque Operations Office

    SciTech Connect (OSTI)

    McCann, M.W. Jr.; Boissonnade, A.C.

    1988-05-01

    As part of an ongoing program, Lawrence Livermore National Laboratory (LLNL) is directing the Natural Phenomena Hazards Modeling Project (NPHMP) on behalf of the Department of Energy (DOE). A major part of this effort is the development of probabilistic definitions of natural phenomena hazards; seismic, wind, and flood. In this report the first phase of the evaluation of flood hazards at DOE sites is described. Unlike seismic and wind events, floods may not present a significant threat to the operations of all DOE sites. For example, at some sites physical circumstances may exist that effectively preclude the occurrence of flooding. As a result, consideration of flood hazards may not be required as part of the site design basis. In this case it is not necessary to perform a detailed flood hazard study at all DOE sites, such as those conducted for other natural phenomena hazards, seismic and wind. The scope of the preliminary flood hazard analysis is restricted to evaluating the flood hazards that may exist in proximity to a site. The analysis does involve an assessment of the potential encroachment of flooding on-site at individual facility locations. However, the preliminary flood hazard assessment does not consider localized flooding at a site due to precipitation (i.e., local run-off, storm sewer capacity, roof drainage). These issues are reserved for consideration by the DOE site manager. 11 refs., 84 figs., 61 tabs.

  16. Demonstration of anaerobic biogas digesters in developing countries. Part III. The Philippines

    SciTech Connect (OSTI)

    Simpson, M.H.; Morales, E.C.

    1980-03-01

    The main theme of this series of articles is that ours is now a world-wide society, short on meeting needs for energy yet long on waste from our industrial, agricultural and human consumption processes. This is a study report about developments in the Philippines where waste management has been recognized and considered as an important practical source of energy. This is revealed by several reports of the number of biogas plants in operation in this country. According to the July 31, 1977 survey made by the Philippines Bureau of Animal Industries, 200 biogas plants were then installed and in operation of which 46 were government-owned and 154 privately-owned. More have been installed since then. This report presents some of the operating observations and developments from the joint engineering analyses project of the Philippines Bureau of Animal Industry, Man and the Biosphere Inter-Agency Committee on Ecological Studies, Bureau of Fisheries and Aquatic Resources and the National Institute of Science and Technology. The project's main objective was to show that establishing a biogas plant involves not only the production of a methane gas mixture but the integration of its other products as part of a system (i.e., using effluent water from the biogas digester for production of algae chlorell sp. for livestock and poultry feed, production of fish and fertilizing-irrigating of pasture and vegetable plots.). Housing development sewer systems with added biogas generators are also discussed.

  17. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 1: Title II design report

    SciTech Connect (OSTI)

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 1 provides a comprehensive narrative description of the proposed facility and systems, the basis for each of the systems design, and the engineering assessments that were performed to support the technical basis of the Title II design. The intent of the system description presented is to provide WHC an understanding of the facilities and equipment provided and the A/E`s perspective on how these systems will operate.

  18. Analysis of fecal coliform levels at selected storm water monitoring points at the Oak Ridge Y-12 Plant

    SciTech Connect (OSTI)

    Skaggs, B.E.

    1995-07-01

    The Environmental Protection Agency staff published the final storm water regulation on November 16, 1990. The storm water regulation is included in the National Pollutant Discharge Elimination System (NPDES) regulations. It specifies the permit application requirements for certain storm water discharges such as industrial activity or municipal separate storm sewers serving populations of 100,000 or greater. Storm water discharge associated with industrial activity is discharge from any conveyance used for collecting and conveying storm water that is directly related to manufacturing, processing, or raw material storage areas at an industrial plant. Quantitative testing data is required for these discharges. An individual storm water permit application was completed and submitted to Tennessee Department of Environment and Conservation (TDEC) personnel in October 1992. After reviewing this data in the permit application, TDEC personnel expressed concern with the fecal coliform levels at many of the outfalls. The 1995 NPDES Permit (Part 111-N, page 44) requires that an investigation be conducted to determine the validity of this data. If the fecal coliform data is valid, the permit requires that a report be submitted indicating possible causes and proposed corrective actions.

  19. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 4: Project cost estimate

    SciTech Connect (OSTI)

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. This volume represents the total estimated costs for the W113 facility. Operating Contractor Management costs have been incorporated as received from WHC. The W113 Facility TEC is $19.7 million. This includes an overall project contingency of 14.4% and escalation of 17.4%. A January 2001 construction contract procurement start date is assumed.

  20. Common trenching reduces damage to buried utilities

    SciTech Connect (OSTI)

    Alfiere, E.P.

    1982-09-01

    Since 1972 Niagara Mohawk Power Co. has established a utility corridor, installing 503 miles of buried gas mains and electric cables in a common trench. Their guidelines for common trenching included (1) the developer's responsibility for providing a subdivision map showing the location of each sidewalk, lot, and roadway, (2) an easement strip paralleling the front lot (street) line that is to be cleared and graded by the developer before construction is started, (3) an electric planning department to prepare detailed construction drawings, coordinate plans with other utilities, determine the responsibility for trenching and backfilling, and determine that all the necessary easements have been secured, and (4) construction specifications varying the width and depth of the trench with the number and type of utilties occupying the joint trench. Advantages of the common trench program comprise reduced exposure to digups, communication and concern for each utility's facility, water and sewer construction installed before the common trench, and cost sharing that would reduce each facility's construction and restoration costs.

  1. Role and development of soil parameters for seismic responses of buried lifelines

    SciTech Connect (OSTI)

    Wang, L.R.L.

    1983-01-01

    Buried lifelines, e.g. oil, gas, water and sewer pipelines have been damaged heavily in recent earthquakes such as 1971 San Fernando Earthquake, in U.S.A., 1976 Tangshan Earthquake, in China, and 1978 MiyagiKen-Oki Earthquake, in Japan, among others. Researchers on the seismic performance of these buried lifelines have been initiated in the United States and many other countries. Various analytical models have been proposed. However, only limited experimental investigations are available. The sources of earthquake damage to buried lifelines include landslide, tectonic uplift-subsidence, soil liquefaction, fault displacement and ground shaking (effects of wave propagation). This paper is concerned with the behavior of buried lifeline systems subjected to surface faulting and ground shaking. The role and development of soil parameters that significantly influence the seismic responses are discussed. The scope of this paper is to examine analytically the influence of various soil and soilstructure interaction parameters to the seismic responses of buried pipelines, to report the currently available physical data of these and related parameters for immediate applications, and to describe the experiments to obtain additional information on soil resistant characteristics to longitudinal pipe motions.

  2. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 3: Specifications

    SciTech Connect (OSTI)

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 3 is a compilation of the construction specifications that will constitute the Title II materials and performance specifications. This volume contains CSI specifications for non-equipment related construction material type items, performance type items, and facility mechanical equipment items. Data sheets are provided, as necessary, which specify the equipment overall design parameters.

  3. Preliminary Scoping and Assessment Study of the Potential Impacts of Community-wide Radiological Events and Subsequent Decontamination Activities on Drinking Water and Wastewater Systems

    SciTech Connect (OSTI)

    Monette, F.A.; Biwer, B.M.; Tomasko, D.; Chen, S.Y.; Hais, A.; MacKinney, J.; Janke, R.

    2006-07-01

    Since the terrorist attacks of September 11, 2001, there has been a great deal of concern about further attacks within the United States, particularly attacks using weapons of mass destruction (WMD) or other unconventional weapons, such as a radiological dispersal device (RDD) or 'dirty bomb', which is a type of RDD. During all phases of an RDD event, secondary impacts on drinking water and wastewater systems would be possible. Secondary impacts refer to those impacts that would occur when the water systems were not the direct or intended target of the specific event. Secondary impacts would include (1) fallout from an event occurring elsewhere on water supply reservoirs and (2) runoff into storm water and sewer systems during precipitation events or as a result of cleanup and decontamination activities. To help address potential secondary impacts, a scoping and assessment study was conducted for the U.S. Environmental Protection Agency's National Homeland Security Research Center to support its water security program. The study addresses the potential impacts on water resources and infrastructure that could result from the use of an RDD, including potential impacts from the initial attack as well as from subsequent cleanup efforts. Eight radionuclides are considered in the assessment: Am-241, Cf-252, Cs-137, Co-60, Ir-192, Pu-238, Ra-226, and Sr-90. (authors)

  4. Corrective Action Investigation Plan for Corrective Action Unit 219: Septic Systems and Injection Wells, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    David A. Strand

    2005-01-01

    The Corrective Action Investigation Plan for Corrective Action Unit 219, Septic Systems and Injection Wells, has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective actions. Corrective Action Unit 219 is located in Areas 3, 16, and 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 219 is comprised of the six Corrective Action Sites (CASs) listed below: (1) 03-11-01, Steam Pipes and Asbestos Tiles; (2) 16-04-01, Septic Tanks (3); (3) 16-04-02, Distribution Box; (4) 16-04-03, Sewer Pipes; (5) 23-20-01, DNA Motor Pool Sewage and Waste System; and (6) 23-20-02, Injection Well. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document.

  5. Brick manufacture with fly ash from Illinois coals. Quarterly technical report, September 1, 1994--November 30, 1994

    SciTech Connect (OSTI)

    Hughes, R.E.; Dreher, G.; Frost, J.; Moore, D.; Rostam-Abadi, M.; Fiocchi, T.; Swartz, D.

    1995-03-01

    This investigation seeks to utilize fly ash in fired-clay products such as building and patio bricks, ceramic blocks, field and sewer tile, and flower pots. This goal is accomplished by (1) one or more plant-scale, 5000-brick tests with fly ash mixed with brick clays at the 20% or higher level; (2) a laboratory-scale study to measure the firing reactions of a range of compositions of clay and fly ash mixtures; (3) a technical and economic study to evaluate the potential environmental and economic benefits of brick manufacture with fly ash. Bricks and feed materials will be tested for compliance with market specifications and for leachability of pollutants derived from fly ash. The laboratory study will combine ISGS databases, ICCI-supported characterization methods, and published information to improve predictions of the firing characteristics of Illinois fly ash and brick clay mixtures. Because identical methods are used to test clay firing and coal ash fusion, and because melting mechanisms are the same, improved coal ash fusion predictions are an expected result of this research. If successful, this project should convert an environmental problem (fly ash) into valuable products - bricks. During this quarter, the authors set up the manufacturing run at Colonial Brick Co., provided an expanded NEPA questionnaire for DOE, made preliminary arrangements for a larger brick manufacturing run at Marseilles Brick Co., revised laboratory procedures for selective dissolution analysis, and began characterization of brick clays that could be mixed with fly ash for fired-clay products.

  6. EPA issues draft general permits for industrial stormwater discharges

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    EPA on Nov. 16, 1990, issued stormwater discharge regulations associated with industrial activity'' under the authority of CWA's National Pollutant Discharge Elimination System (NPDES). Those regulations established NPDES permit application requirements for industrial and certain municipal separate stormwater discharge systems. Three permit application options were made available for industrial stormwater discharges -- filing an individual application, becoming a participant in a group application or filing a notice of intent to be covered under a general permit and its requirements. The Agency of Nov. 19 proposed a draft general permit for group applications. Industrial dischargers choosing the group option previously were required to file in two parts. Part 1 was due by Sept. 30, 1991, and Part 2 was due by Oct. 1, 1992. The proposed permit would apply to industrial facilities, including certain Indian lands, in selected areas of EPA Regions I, II, III, IV, VI, VIII, IX and X. The permit would cover industrial stormwater discharges to US waters, and would include discharges transmitted through large, medium-sized and other municipal separate storm sewer systems.

  7. Oakland Ravine Stormwater Treatment System Project, Borough of Queens, NYC

    SciTech Connect (OSTI)

    Dinkle, R.E.; Moutal, H.P.; Evans, T.M.; Kloman, L.

    1999-07-01

    Compared to other cities, New York City (NYC) is abundantly endowed with parklands and open spaces, many of which can be utilized to treat and dissipate stormwater runoff flows, in conjunction with the preservation, restoration and creation of ecological systems. Such use of available parklands and open spaces has the benefit of decreasing cost for stormwater treatment and conveyance, while at the same time enhancing the natural biological systems. Through the combined efforts of the NYC Department of Environmental Protection (NYCDEP), which is responsible for stormwater control, and the NYC Department of Parks and Recreation (NYCDPR), which is responsible for preserving and restoring the ecological systems of parklands and open spaces, URS Greiner Woodward Clyde (URSGWC) developed a project to provide for the treatment of stormwater and the attenuation of peak stormwater flows through restoration and creation of wetlands within Oakland Ravine (located in the densely populated northeastern section of the Borough of Queens, NYC). The proposed Oakland Ravine Stormwater Treatment System Project was developed in conjunction with the East River Combined Sewer Overflow (CSO) Abatement Project, which is part of the NYC comprehensive program to reduce CSO discharges into receiving waters. Discharges into Alley Creek through Outfall TI-7, an outfall located about one-half mile northeast of the ravine which has been designated for CSO abatement, will be reduced as a result of the project.

  8. Use belowground storage tanks to manage stormwater

    SciTech Connect (OSTI)

    Nedrow, J.

    1996-01-01

    To meet performance and operating requirements under Resource Conservation and Recovery Act (RCRA), BP Oil`s Toledo Refinery installed two 10-million-gallon (MMgal) concrete belowground storage tanks to replace the existing impoundment ponds. Environmental, safety and operating criteria influenced how this older refinery could cost-effectively replace impoundment ponds without interrupting the production schedule. The north stormwater impoundment pond at BP Oil`s Toledo Refinery had received primary sludge, a RCRA-listed hazardous waste and material exceeding the toxic characteristic limit for benzene (0.5 ppm). Because the pond could not be adapted to meet RCRA standards, it had to be replaced by a system that met these standards and New Source Performance Standards (NSPS). Under normal operating conditions, stormwater was commingled with process wastewater and processed at the wastewater treatment unit (WWTU) before final disposal. However, when flow in the sewer system exceeded the capacity of the WWTU, excess flow was stored in an impoundment system. The case history shows how BP Oil`s project engineers, working with a consulting engineering group and a general contractor (GC), cost-effectively replaced the impoundment pond to handle stormwater runoff for the refinery.

  9. On the utilization of coking plant surface runoff

    SciTech Connect (OSTI)

    Evzel'man, I.B.; Kagasov, V.M.; Maiskii, S.V.; Pimenov, I.V.; Rod'kin, S.P.; Ushakov, E.B.

    1983-01-01

    Surface runoff from the industrial sites of coking plants in the East and Center of the USSR is usually diverted into a storm sewer in a mixture with the conditionally pure water. General data on the contamination of this mixture (industrial stormwater) and the snow cover at a number of coking plants in this region are tabulated. Our data on the quality of industrial stormwater show that schemes for utilization of surface runoff must include pretreatment to remove suspended matter and oils. For example, the oil concentration in melt water is 2-10 times greater than the concentration in industrial phenol-containing effluent (2). When the biochemical facilities receive surface runoff containing up to 40 g/l suspended solids, which occurs in periods of snowmelt, without treatment to remove these solids, there are difficulties with the discharge of tar from the secondary sedimenters of the biochemical treatment plant. An analysis of the literature materials (3-9) showed that the maximum allowable concentration of suspended solids in make-up water for the closed-cycle heat exchange water cooling system should apparently not exceed 25 mg/l. The level of this parameter in the make-up water of these systems at coke plants requires correction.

  10. Sources and management of hazardous waste in Papua New Guinea

    SciTech Connect (OSTI)

    Singh, K.

    1996-12-31

    Papua New Guinea (PNG) has considerable mineral wealth, especially in gold and copper. Large-scale mining takes place, and these activities are the source of most of PNG`s hazardous waste. Most people live in small farming communities throughout the region. Those living adjacent to mining areas have experienced some negative impacts from river ecosystem damage and erosion of their lands. Industry is centered mainly in urban areas and Generates waste composed of various products. Agricultural products, pesticide residues, and chemicals used for preserving timber and other forestry products also produce hazardous waste. Most municipal waste comes from domestic and commercial premises; it consists mainly of combustibles, noncombustibles, and other wastes. Hospitals generate pathogenic organisms, radioactive materials, and chemical and pharmaceutical laboratory waste. Little is known about the actual treatment of waste before disposal in PNG. Traditional low-cost waste disposal methods are usually practiced, such as use of landfills; storage in surface impoundments; and disposal in public sewers, rivers, and the sea. Indiscriminate burning of domestic waste in backyards is also commonly practiced in urban and rural areas. 10 refs., 4 tabs.

  11. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Kentucky. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    Until April 1, 1979, the Public Service Commission had been vested with exclusive jurisdiction over the regulation of rates and service of utilities. As of that date two new agencies, the Energy Regulatory Commission (ERC) and the Utility Regulatory Commission (URC), have replaced the Public Service Commission. The ERC consists of three full-time members appointed by the governor for four year terms and is responsible for enforcing the provisions of the Kentucky statutes relating to electric and gas utilities. The three-member URC is responsible for enforcing the provisions relating to non-energy utilities such as telephone, sewer, and water utilities. The statutes vest all regulatory authority over public utilities in either the ERC or the URC. Local governments retain only the power to grant local franchises. However, it should be noted, that any utility owned or operated by a political subdivision of the state is exempt from regulation. Thus, local government has complete authority over utilities which are self-owned. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  12. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Texas. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities in Texas is generally vested in the Public Utilities Commission. The Commission is comprised of three members appointed by the governor, with the advice of at least two-thirds of the senate, for a six-year term. Prior to the passage of the Texas Public Utility Regulatory Act (PURA) in 1975, the power to regulate public utilities was vested almost exclusively in municipalities. Under PURA, municipalities retain exclusive original jurisdiction over all electric, water, and sewer utilities within the municipality. PURA provides that all regulations pertaining to public utilities promulgated by local regulatory agencies remain in effect unless they are superceded by Commission rules. The municipality's governing body is required to exercise its regulatory authority under rules and standards consistent with those promulgated by the Commission. The Commission has exclusive appellate jurisdiction to review orders and ordinances of regulatory municipalities. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  13. Environmental assessment for effluent reduction, Los Alamos National Laboratory, Los Alamos, New Mexico

    SciTech Connect (OSTI)

    NONE

    1996-09-11

    The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL`s sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent. After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL`s outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE`s purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives.

  14. Regional socioeconomic impacts of alternative energy scenarios for the Ohio River Basin Energy Study region

    SciTech Connect (OSTI)

    Gordon, S.I.; Graham, A.S.

    1980-10-01

    The report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program. It describes projected socioeconomic impacts of the ORBES energy futures, defined as scenarios, on the region. The region consists of all of Kentucky, most of West Virginia, and substantial portions of Illinois, Indiana, Ohio, and Pennsylvania. The major impact areas considered are employment impacts of coal-fired power plants and of coal mining; population impacts of coal-fired power plants and coal mining; and public service impacts (e.g., water and sewer systems). The analyses of power plant impacts was aided by use of the ORBES Labor Impact Model (OLIM), which projects total county employment over time by scenario. For coal-mining employment impacts, a set of employment multipliers was developed using existing data to enable county- and regional-level employment changes. The mining employment data also are used in conjunction with other forecasts to look at general migration trends within the study region.

  15. A novel plug-flow digester for biogasification of conventional and hazardous organics

    SciTech Connect (OSTI)

    Ghosh, S.; Kato, Y.; Liu, T.; Fukushi, K.

    1996-12-31

    A novel plug-flow digestion system of simple construction was designed, fabricated and operated for several years with a synthetic mixture of solid and liquid wastes simulating conditions south of the US-Mexican border and other developing countries. Benzene, toluene, and o-xylene (BTX) were mixed with the synthetic feed in several phases of this research to simulate field conditions where these solvents are discharged to public sewers and mixed with non-hazardous pollutants. The mesophilic plug-flow digester exhibited a high gas yield of 0.46 SCM /kg VS added, a methane content of 77 mol%, and a VS reduction of 75% at an HRT of 13 days with a 96% biodegradation of the feed toluene. At a feed concentration of 50 mg/l, toluene did not inhibit anaerobic fermentation. Gas and methane yields, and VS and COD conversion efficiencies were about the same with or without toluene present in the feed. At a reduced HRT of 8 days, a high feed COD concentration of 50,000 mg/l, and a loading rate of 0.48 kg VS/m{sup 3}-day, the digester afforded a gas yield of 3.1 SCM /kg VS added, and a methane content of 67 mol%. Benzene, toluene, and o-xylene were biodegraded at efficiencies of 94%, 90%, and 88%, respectively. The degradation kinetics of the xenobiotic compound could be described by a model based on cometabolic degradation of these secondary substrates.

  16. Radiological Instrumentation Assessment for King County Wastewater Treatment Division

    SciTech Connect (OSTI)

    Strom, Daniel J.; McConn, Ronald J.; Brodzinski, Ronald L.

    2005-05-19

    The King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into its combined sanitary and storm sewer system. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material. Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. Volume 2 of PNNL-15163 assesses the radiological instrumentation needs for detection of radiological or nuclear terrorism, in support of decisions to treat contaminated wastewater or to bypass the West Point Treatment Plant (WPTP), and in support of radiation protection of the workforce, the public, and the infrastructure of the WPTP. Fixed radiation detection instrumentation should be deployed in a defense-in-depth system that provides 1) early warning of significant radioactive material on the way to the WPTP, including identification of the radionuclide(s) and estimates of the soluble concentrations, with a floating detector located in the wet well at the Interbay Pump Station and telemetered via the internet to all authorized locations; 2) monitoring at strategic locations within the plant, including 2a) the pipe beyond the hydraulic ram in the bar screen room; 2b) above the collection funnels in the fine grit facility; 2c) in the sampling tank in the raw sewage pump room; and 2d) downstream of the concentration facilities that produce 6% blended and concentrated biosolids. Engineering challenges exist for these applications. It is necessary to deploy both ultra-sensitive detectors to provide early warning and identification and detectors capable of functioning in high-dose rate environments that are likely under some scenarios, capable of functioning from 10 microrems per hour (background) up to 1000 rems per hour. Software supporting fixed spectroscopic detectors is needed to provide prompt, reliable, and simple interpretations of spectroscopic outputs that are of use to operators and decision-makers. Software to provide scientists and homeland security personnel with sufficient technical detail for identification, quantification, waste management decisions, and for the inevitable forensic and attribution needs must be developed. Computational modeling using MCNP software has demonstrated that useful detection capabilities can be deployed. In particular, any of the isotopes examined can be detected at levels between 0.01 and 0.1 μCi per gallon. General purpose instruments that can be used to determine the nature and extent of radioactive contamination and measure radiation levels for purposes of protecting personnel and members of the public should be available. One or more portable radioisotope identifiers (RIIDs) should be available to WTD personnel. Small, portable battery-powered personal radiation monitors should be widely available WTD personnel. The personal monitors can be used for personal and group radiation protection decisions, and to alert management to the need to get expert backup. All considerations of radiological instrumentation require considerations of training and periodic retraining of personnel, as well as periodic calibration and maintenance of instruments. Routine “innocent” alarms will occur due to medical radionuclides that are legally discharged into sanitary sewers on a daily basis.

  17. Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2012-12-20

    This report details a study into the demand response potential of a large wastewater treatment facility in San Francisco. Previous research had identified wastewater treatment facilities as good candidates for demand response and automated demand response, and this study was conducted to investigate facility attributes that are conducive to demand response or which hinder its implementation. One years' worth of operational data were collected from the facility's control system, submetered process equipment, utility electricity demand records, and governmental weather stations. These data were analyzed to determine factors which affected facility power demand and demand response capabilities The average baseline demand at the Southeast facility was approximately 4 MW. During the rainy season (October-March) the facility treated 40% more wastewater than the dry season, but demand only increased by 4%. Submetering of the facility's lift pumps and centrifuges predicted load shifts capabilities of 154 kW and 86 kW, respectively, with large lift pump shifts in the rainy season. Analysis of demand data during maintenance events confirmed the magnitude of these possible load shifts, and indicated other areas of the facility with demand response potential. Load sheds were seen to be possible by shutting down a portion of the facility's aeration trains (average shed of 132 kW). Load shifts were seen to be possible by shifting operation of centrifuges, the gravity belt thickener, lift pumps, and external pump stations These load shifts were made possible by the storage capabilities of the facility and of the city's sewer system. Large load reductions (an average of 2,065 kW) were seen from operating the cogeneration unit, but normal practice is continuous operation, precluding its use for demand response. The study also identified potential demand response opportunities that warrant further study: modulating variable-demand aeration loads, shifting operation of sludge-processing equipment besides centrifuges, and utilizing schedulable self-generation.

  18. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    SciTech Connect (OSTI)

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60{degree}C) or long extraction times (23 h). Adding KMnO{sub 4} in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

  19. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    SciTech Connect (OSTI)

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60[degree]C) or long extraction times (23 h). Adding KMnO[sub 4] in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

  20. Corrective Action Decision Document/Closure Report for Corrective Action 405: Area 3 Septic Systems, Tonopah Test Range, Nevada Rev. No.: 0, April 2002

    SciTech Connect (OSTI)

    IT Coroporation, Las Vegas, NV

    2002-04-17

    This Corrective Action Decision Document/Closure Report (CADD/CR) has been prepared for Corrective Action Unit (CAU) 405, Area 3 Septic Systems, in accordance with the Federal Facility Agreement and Consent Order. Located on the Tonopah Test Range (TTR) approximately 235 miles north of Las Vegas, Nevada, CAU 405 consists of three Corrective Action Sites (CASs): 03-05-002-SW03, Septic Waste System (aka: Septic Waste System [SWS] 3); 03-05-002-SW04, Septic Waste System (aka: SWS 4); 03-05-002-SW07, Septic Waste System (aka: SWS 7). The CADD and CR have been combined into one report because no further action is recommended for this CAU, and this report provides specific information necessary to support this recommendation. The CAU consists of three leachfields and associated collection systems that were installed in or near Area 3 for wastewater disposal. These systems were used until a consolidated sewer system was installed in 1990. Historically, operations within various buildin gs in and near Area 3 of the TTR generated sanitary and industrial wastewaters. There is a potential that contaminants of concern (COCs) were present in the wastewaters and were disposed of in septic tanks and leachfields. The justification for closure of this CAU without further action is based on process knowledge and the results of the investigative activities. Closure activities were performed at these CASs between January 14 and February 2, 2002, and included the removal and proper disposal of media containing regulated constituents and proper closure of septic tanks. No further action is appropriate because all necessary activities have been completed. No use restrictions are required to be imposed for these sites since the investigation showed no evidence of COCs identified in the soil for CAU 405.

  1. Closure Report for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-04-01

    Corrective Action Unit (CAU) 151 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and Discharge Area. CAU 151 consists of the following eight Corrective Action Sites (CASs), located in Areas 2, 12, and 18 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). CAU 151 closure activities were conducted according to the FFACO (FFACO, 1996; as amended February 2008) and the Corrective Action Plan for CAU 151 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007) from October 2007 to January 2008. The corrective action alternatives included no further action, clean closure, and closure in place with administrative controls. CAU 151 closure activities are summarized in Table 1. Closure activities generated liquid remediation waste, sanitary waste, hydrocarbon waste, and mixed waste. Waste generated was appropriately managed and disposed. Waste that is currently staged onsite is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams. Some waste exceeded land disposal restriction limits and required offsite treatment prior to disposal. Other waste meeting land disposal restrictions was disposed of in appropriate onsite or offsite landfills. Waste disposition documentation is included as Appendix C.

  2. National radiation exposures and risks caused by implementing EPA`s proposed revised national primary drinking water regulations

    SciTech Connect (OSTI)

    Morris, S.C.; Rowe, M.D.; Holtzman, S.; Meinhold, A.F.

    1993-05-01

    This report estimates risks to workers and the public associated with treatment processes and their associated waste products that would be mandated under proposed regulations of radium, radon, and uranium in drinking water. Three scenarios were examined: (1) all wastes flushed to the sanitary sewer; (2) all wastes disposed on land; (3) similar to (2) but radon removal by granulated activated carbon rather than packed tower aeration. Risks considered included accidental injury and cancer. Worker risks for both scenarios I and II were estimated to be 0.025 and 0.01 deaths per year of operation for radium-226 and radium-228, respectively. Worker risks for uranium were estimated to be 0.13 deaths/year of operation for scenario I and 0.5 deaths/year of operation for scenario II. Worker risks for radon removal were estimated to be 1.7 deaths/year of operation for scenario I and 2.2 deaths/year of operation for scenario II. Risks to the public for scenarios I and II for radium-226 were 4 {times} 10{sup {minus}4} and for radium-228 were 9 {times} 10{sup {minus}5} deaths/year of operation. Risks to the public for scenarios I and II for uranium were 7.3 {times} 10{sup {minus}2} and 2 {times} 10{sup {minus}4}, respectively. Risks to the public for scenario I and II for radon were 24 deaths/year of operation and for scenario III were nil. Public risks were quantified only for people exposed during a year of operation. For example, effects of public exposures in future years via groundwater contamination associated with landfill of treatment waste were not considered.

  3. Advances in technology for the construction of deep-underground facilities

    SciTech Connect (OSTI)

    Not Available

    1987-12-31

    The workshop was organized in order to address technological issues important to decisions regarding the feasibility of strategic options. The objectives of the workshop were to establish the current technological capabilities for deep-underground construction, to project those capabilities through the compressed schedule proposed for construction, and to identify promising directions for timely allocation of existing research and development resources. The earth has been used as a means of protection and safekeeping for many centuries. Recently, the thickness of the earth cover required for this purpose has been extended to the 2,000- to 3,000-ft range in structures contemplated for nuclear-waste disposal, energy storage, and strategic systems. For defensive missile basing, it is now perceived that the magnitude of the threat has increased through better delivery systems, larger payloads, and variable tactics of attack. Thus, depths of 3,000 to 8,000 ft are being considered seriously for such facilities. Moreover, it appears desirable that the facilities be operational (if not totally complete) for defensive purposes within a five-year construction schedule. Deep excavations such as mines are similar in many respects to nearsurface tunnels and caverns for transit, rail, sewer, water, hydroelectric, and highway projects. But the differences that do exist are significant. Major distinctions between shallow and deep construction derive from the stress fields and behavior of earth materials around the openings. Different methodologies are required to accommodate other variations resulting from increased depth, such as elevated temperatures, reduced capability for site exploration, and limited access during project execution. This report addresses these and other questions devoted to geotechnical characterization, design, construction, and excavation equipment.

  4. Hydrogeologic Setting of A/M Area: Framework for Groundwater Transport. Book 1

    SciTech Connect (OSTI)

    Van Pelt, R.; Lewis, S.E.; Aadland, R.K.

    1994-03-11

    This document includes a brief summary of the regional geology within a 200--mile radius of the A/M Area, a summary of stratigraphy and hydrostratigraphic nomenclature as it applies to the A/M Area, and a summary of stratigraphy and hydrostratigraphy specific to the A/M Area. Five different stratigraphic cross sections show site-specific geology of the Tertiary section of the Upper Atlantic Coastal Plain geologic province within the A/M Area. The Cretaceous section lacks detail because the deepest wells penetrate only the uppermost part of the Upper Cretaceous sediments. Most of the wells are confined to the Tertiary section. The A/M Area is located in the northwestern corner of the Savannah River Site (SRS). The area serves as a main administrative hub for the site. Between 1958 and 1985, approximately 2,000,000 pounds of volatile organic solvents (metal degreasers, primarily trichloroethylene and tetrachloroethylene) were routed to the M Area Settling Basin. Between 1954 and 1958, effluent also was discharged to Tim`s Branch via the A014 Outfall. In the main M Area Solvent Handling/Storage Area, a significant amount of leakage occurred from drums stored during this time period. Extensive quantities of solvents were transported, via the Process Sewer Line, to the M Area Settling Basin, and leaks occurred along this line as well. A smaller source area has been identified and is centered around the Savannah River Laboratory (SRL) (now called the Savannah River Technology Center [SRTC]) Complex. All of these source areas are represented by solvent contamination in the groundwater system. (Abstract Truncated)

  5. VOCs in Non-Arid Soils Integrated Demonstration: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Volatile Organic Compounds (VOCs) in Non-Arid Soils Integrated Demonstration (ID) was initiated in 1989. Objectives for the ID were to test the integrated demonstration concept, demonstrate and evaluate innovative technologies/systems for the remediation of VOC contamination in soils and groundwater, and to transfer technologies and systems to internal and external customers for use in fullscale remediation programs. The demonstration brought together technologies from DOE laboratories, other government agencies, and industry for demonstration at a single test bed. The Savannah River Site was chosen as the location for this ID as the result of having soil and groundwater contaminated with VOCS. The primary contaminants, trichlorethylene and tetrachloroethylene, originated from an underground process sewer line servicing a metal fabrication facility at the M-Area. Some of the major technical accomplishments for the ID include the successful demonstration of the following: In situ air stripping coupled with horizontal wells to remediate sites through air injection and vacuum extraction; Crosshole geophysical tomography for mapping moisture content and lithologic properties of the contaminated media; In situ radio frequency and ohmic heating to increase mobility, of the contaminants, thereby speeding recovery and the remedial process; High-energy corona destruction of VOCs in the off-gas of vapor recovery wells; Application of a Brayton cycle heat pump to regenerate carbon adsorption media used to trap VOCs from the offgas of recovery wells; In situ permeable flow sensors and the colloidal borescope to determine groundwater flow; Chemical sensors to rapidly quantify chlorinated solvent contamination in the subsurface; In situ bioremediation through methane/nutrient injection to enhance degradation of contaminants by methanotrophic bateria.

  6. Conceptual design report for site drainage control

    SciTech Connect (OSTI)

    Hunter, M.R.

    1996-07-01

    The Mound Plant (Mound), located in Miamisburg, Ohio, is a Department of Energy (DOE) development and production facility performing support work for DOE`s weapons and energy-related programs. EG&G Mound Applied Technologies, Inc. (EG&G) is the Operating Contractor (OC) for this Government-Owned, Contractor-Operated (GOCO) facility. The work performed at Mound emphasizes nuclear energy and explosives technology. Mound is currently implementing an Environmental, Safety & Health (ES&H) Upgrades Program designed to protect its employees, the public, and the environment from adverse effects caused by facility activities. The first project of this multiphase program is now in the final stages of construction, and the second project is currently under design. Four additional projects, one of which is presented in this report, are in the conceptual design stage. At Mound, 22 soil zones have become contaminated with radioactive material. These zones cover approximately 20 percent of the total area of developed property at the site. During a storm event, the rainwater washes contaminated soil from these zones into the storm sewer system. These radioactive contaminants may then be discharged along with the stormwater into the Great Miami River via the Miami Erie Canal. This conceptual design report (CDR), Site Drainage Control, the fourth project in the ES&H program, describes a project that will provide improvements and much needed repairs to inadequate and deteriorating portions of the storm drainage system on the developed property. The project also will provide a stormwater retention facility capable of storing the stormwater runoff, from the developed property, resulting from a 100-year storm event. These improvements will permit the effective control and monitoring of stormwater to prevent the spread of radioactive contaminants from contaminated soil zones and will provide a means to collect and contain accidental spills of hazardous substances.

  7. Remedial Investigation Report on the Abandoned Nitric Acid Pipeline at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Energy Systems Environmental Restoration Program; Y-12 Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    Upper East Fork Poplar Creek Operable Unit 2 consists of the Abandoned Nitric Acid pipeline (ANAP). This pipeline was installed in 1951 to transport liquid wastes {approximately}4800 ft from Buildings 9212, 9215, and 9206 to the S-3 Ponds. Materials known to have been discharged through the pipeline include nitric acid, depleted and enriched uranium, various metal nitrates, salts, and lead skimmings. During the mid-1980s, sections of the pipeline were removed during various construction projects. A total of 19 locations were chosen to be investigated along the pipeline for the first phase of this Remedial Investigation. Sampling consisted of drilling down to obtain a soil sample at a depth immediately below the pipeline. Additional samples were obtained deeper in the subsurface depending upon the depth of the pipeline, the depth of the water table, and the point of auger refusal. The 19 samples collected below the pipeline were analyzed by the Oak Ridge Y-12 Plant`s laboratory for metals, nitrate/nitrite, and isotopic uranium. Samples collected from three boreholes were also analyzed for volatile organic compounds because these samples produced a response with organic vapor monitoring equipment. Uranium activities in the soil samples ranged from 0.53 to 13.0 pCi/g for {sup 238}U, from 0.075 to 0.75 pCi/g for {sup 235}U, and from 0.71 to 5.0 pCi/g for {sup 238}U. Maximum total values for lead, chromium, and nickel were 75.1 mg/kg, 56.3 mg/kg, and 53.0 mg/kg, respectively. The maximum nitrate/nitrite value detected was 32.0 mg-N/kg. One sample obtained adjacent to a sewer line contained various organic compounds, at least some of which were tentatively identified as fragrance chemicals commonly associated with soaps and cleaning solutions. The results of the baseline human health risk assessment for the ANAP contaminants of potential concern show no unacceptable risks to human health.

  8. Oak Ridge Cleanup Vision: Moving to the Future by Cleaning Up the Past - 13291

    SciTech Connect (OSTI)

    Cange, Susan M.; Wieland, Christopher C.; DePaoli, Susan M.

    2013-07-01

    The Oak Ridge Office of Environmental Management (EM) strives to be the leader in the Department of Energy's (DOE's) EM Complex regarding successful and safe project execution and stakeholder interactions that yield positive results. EM's goal has been to become 'Investment Worthy' and, in order to accomplish that important objective, has also had to improve communications both within and outside of the Department. One of our most important missions is to assist the Department in achieving the sustainability goals set forth in Executive Order 13514. In this regard, EM's primary role is to return land to beneficial use and reduce energy impacts and maintenance costs by demolishing unneeded and deteriorating structures and remediating environmental contamination. Recent accomplishments toward meeting these goals include significant progress in the decontamination and demolition of the country's largest facility, the former K-25 Gaseous Diffusion Building, constructed in 1942 to enrich uranium to help end World War II; the disposition of the first phase of Uranium-233 material from the Oak Ridge National Laboratory (ORNL) which involved the transfer of Zero Power Reactor Plates to the National Nuclear Security Administration (NNSA); and a host of other project successes associated with transuranic (TRU) waste processing, hot cell decontamination and demolition, remediation of highly contaminated soils and burial grounds, and removal of mercury from storm sewers and surface waters. With regard to successful stakeholder interactions, recent accomplishments include a new method for collaboration that has renewed EM's working relationship with the regulators, and success in completing an extensive consultation process with over a dozen parties on the historic preservation of the former Oak Ridge Gaseous Diffusion Plant, which is now called the East Tennessee Technology Park (ETTP). Regarding improved communications, EM has successfully revised Program priorities and has received buy-in from the leadership in Headquarters, the regulators, and the community. Issues EM was facing in 2009 are presented. Resulting lessons learned and subsequent changes that the Office has gone through in the past several years in order to improve performance in the safe execution of work, relationships with external stakeholders, and communications both internally and externally are discussed. Results of these efforts are provided as a summary of Program accomplishments, including a strong focus on the future. EM's motto, Moving to the Future by Cleaning up the Past, will be demonstrated through the Program's mission, which includes protecting the region's health and environment; ensuring the continuation of ongoing vital missions being conducted by DOE on the Oak Ridge Reservation; and making clean land available for future use at all three sites, with a near-term focus on Re-industrialization of ETTP. (authors)

  9. H-Canyon Recovery Crawler

    SciTech Connect (OSTI)

    Kriikku, E. M.; Hera, K. R.; Marzolf, A. D.; Phillips, M. H.

    2015-08-01

    The Nuclear Material Disposition Project group asked the Savannah River National Lab (SRNL) Research and Development Engineering (R&DE) department to help procure, test, and deploy a remote crawler to recover the 2014 Inspection Crawler (IC) that tipped over in the H-Canyon Air Exhaust Tunnel. R&DE wrote a Procurement Specification for a Recovery Crawler (RC) and SRNS Procurement Department awarded the contract to Power Equipment Manufacturing Inc. (PEM). The PEM RC was based on their standard sewer inspection crawler with custom arms and forks added to the front. The arms and forks would be used to upright the 2014 Inspection Crawler. PEM delivered the RC and associated cable reel, 2014 Inspection Crawler mockup, and manuals in late April 2015. R&DE and the team tested the crawler in May of 2015 and made modifications based on test results and Savannah River Site (SRS) requirements. R&DE delivered the RC to H-Area at the end of May. The team deployed the RC on June 9, 10, and 11, 2015 in the H-Canyon Air Exhaust Tunnel. The RC struggled with some obstacles in the tunnel, but eventually made it to the IC. The team spent approximately five hours working to upright the IC and eventually got it on its wheels. The IC travelled approximately 20 feet and struggled to drive over debris on the air tunnel floor. Unfortunately the IC tripped over trying to pass this obstacle. The team decided to leave the IC in this location and inspect the tunnel with the RC. The RC passed the IC and inspected the tunnel as it travelled toward H-Canyon. The team turned the RC around when it was about 20 feet from the H-Canyon crossover tunnel. From that point, the team drove the RC past the manway towards the new sand filter and stopped approximately 20 feet from the new sand filter. The team removed the RC from the tunnel, decontaminated the RC, and stored it the manway building, 294-2H. The RC deployment confirmed the IC was not in a condition to perform useful tunnel inspections and would require significant maintenance to become inspection ready. The RC traveled approximately 660 feet in the tunnel and viewed the tunnel and ceiling wall surfaces that were not blocked by existing ducts. This deployment also documented the tunnel obstacles for future inspections. Overall, the RC deployment was a success.

  10. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect (OSTI)

    Ghafghazi, Saeed; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2011-03-01

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

  11. Closure Report for Corrective Action Unit 261: Area 25 Test Cell A Leachfield System, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    T. M. Fitzmaurice

    2001-04-01

    The purpose of this Closure Report (CR) is to provide documentation of the completed corrective action at the Test Cell A Leachfield System and to provide data confirming the corrective action. The Test Cell A Leachfield System is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Corrective Action Unit (CAU) 261. Remediation of CAU 261 is required under the FFACO (1996). CAU 261 is located in Area 25 of the Nevada Test Site (NTS) which is approximately 140 kilometers (87 miles) northwest of Las Vegas, Nevada (Figure 1). CAU 261 consists of two Corrective Action Sites (CASS): CAS 25-05-01, Leachfield; and CAS 25-05-07, Acid Waste Leach Pit (AWLP) (Figures 2 and 3). Test Cell A was operated during the 1960s and 1970s to support the Nuclear Rocket Development Station. Various operations within Building 3124 at Test Cell A resulted in liquid waste releases to the Leachfield and the AWLP. The following existing site conditions were reported in the Corrective Action Decision Document (CADD) (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1999): Soil in the leachfield was found to exceed the Nevada Division of Environmental Protection (NDEP) Action Level for petroleum hydrocarbons, the U.S. Environmental Protection Agency (EPA) preliminary remediation goals for semi volatile organic compounds, and background concentrations for strontium-90; Soil below the sewer pipe and approximately 4.5 meters (m) (15 feet [ft]) downstream of the initial outfall was found to exceed background concentrations for cesium-137 and strontium-90; Sludge in the leachfield septic tank was found to exceed the NDEP Action Level for petroleum hydrocarbons and to contain americium-241, cesium-137, uranium-234, uranium-238, potassium-40, and strontium-90; No constituents of concern (COC) were identified at the AWLP. The NDEP-approved CADD (DOWNV, 1999) recommended Corrective Action Alternative 2, ''Closure of the Septic Tank and Distribution Box, Partial Excavation, and Administrative Controls.'' The corrective action was performed following the NDEP-approved Corrective Action Plan (CAP) (DOE/NV, 2000).

  12. Evaluation of Trenchless Installation Technology for Radioactive Wastewater Piping Applications

    SciTech Connect (OSTI)

    Robinson, Sharon M; Jubin, Robert Thomas; Patton, Bradley D; Sullivan, Nicholas M; Bugbee, Kathy P

    2009-09-01

    The U.S. Department of Energy (DOE) Office of Environmental Management (EM) cleanup mission at Oak Ridge National Laboratory (ORNL) includes dispositioning facilities, contaminated legacy materials/waste, and contamination sources and remediation of soil under facilities, groundwater, and surface water to support final Records of Decision (RODs). The Integrated Facilities Disposition Project (IFDP) is a roughly $15B project for completion of the EM mission at Oak Ridge, with a project duration of up to 35 years. The IFDP Mission Need Statement - Critical Decision-0 (CD-0) - was approved by DOE in July 2007, and the IFDP Alternative Selection and Cost Range - Critical Decision-1 (CD-1) - was approved in November 2008. The IFDP scope includes reconfiguration of waste collection and treatment systems as needed to complete the IFDP remediation and decontamination and decommissioning (D&D) missions in a safe and cost-effective manner while maintaining compliance with all governing regulations and bodies and preserving the support of continuing operations at ORNL. A step in the CD-1 approval process included an external technical review (ETR) of technical approaches proposed in the CD-1 document related to the facility reconfiguration for the ORNL radioactive waste and liquid low-level waste management systems. The ETR team recommended that the IFDP team consider the use of trenchless technologies for installing pipelines underground in and around contaminated sites as part of the alternatives evaluations required in support of the CD-2 process. The team specifically recommended evaluating trenchless technologies for installing new pipes in existing underground pipelines as an alternative to conventional open trench installation methods. Potential benefits could include reduction in project costs, less costly underground piping, fewer disruptions of ongoing and surface activities, and lower risk for workers. While trenchless technologies have been used extensively in the sanitary sewer and natural gas pipeline industries, they have been used far less in contaminated environments. Although trenchless technologies have been used at ORNL in limited applications to install new potable water and gas lines, the technologies have not been used in radioactive applications. This study evaluates the technical risks, benefits, and economics for installing gravity drained and pressurized piping using trenchless technologies compared to conventional installation methods for radioactive applications under ORNL geological conditions. A range of trenchless installation technologies was reviewed for this report for general applicability for replacing existing contaminated piping and/or installing new pipelines in potentially contaminated areas. Installation methods that were determined to have potential for use in typical ORNL contaminated environments were then evaluated in more detail for three specific ORNL applications. Each feasible alternative was evaluated against the baseline conventional open trench installation method using weighted criteria in the areas of environment, safety, and health (ES&H); project cost and schedule; and technical operability. The formulation of alternatives for evaluation, the development of selection criteria, and the scoring of alternatives were performed by ORNL staff with input from vendors and consultants. A description of the evaluation methodology and the evaluation results are documented in the following sections of this report.

  13. Supplemental Radiological Survey Plan for the Lease of the Rooms Associated with C107 of Building K-1006 at the East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Blevins M.F.

    2010-09-01

    In 1998, a portion of Bldg. K-1006 was leased to the Community Reuse Organization of East Tennessee (CROET) as part of the reindustrialization efforts at the East Tennessee Technology Park (ETTP). The facility was subleased and is being used as an analytical laboratory. The 1998 lease did not include rooms C107, C107-A, C107-B, C107-C, and C107-D. The lease of these rooms is now desired. These rooms comprise the area to be surveyed. The building was constructed as a laboratory facility to support the gaseous diffusion uranium enrichment process. It also contains offices and administrative spaces for laboratory personnel. After the gaseous diffusion process was shut down in the mid-1980s, the building was used to provide research and development support to ETTP environmental, safety, and health programs; the Toxic Substances Control Act Incinerator; the Central Neutralization Facility; and other multi-site waste treatment activities. It also served as the chemistry laboratory for the Environmental Technology Technical Services Organization. The activities currently conducted in Bldg. K-1006 utilize a variety of analytical techniques. Some of the major techniques being employed are X-ray analysis, electron microanalysis, and spectrochemical analysis. In 1998, a portion of Bldg. K-1006 was leased to CROET as part of the reindustrialization efforts at ETTP. The facility was subleased and is being used as an analytical laboratory. The 1998 lease did not include Rooms C107, C107-A, C107-B, C107-C, and C107-D. Some demolition of furniture and decontamination activities has taken place for Rooms C 107 and C 107-B since the last radiological survey of those rooms. In March 2009, a final remedial action (RA) was performed for the Bldg. K-1006 north basement sump. The Bldg. K-1006 north basement sump is a nominal 30-in.-diameter, 36-in.-deep concrete structure in the north corner of room C107B. The building receives groundwater in-leakage that is periodically pumped to the sewer system via this float-controlled pump. Solids in the bottom of the sump consisted of an estimated 1-ft{sup 3} coarse-grained material that varied in thickness from 0 to 4 in. with no suspended fraction. The RA consisted of removing the water in the sump and then removing and sampling the solids. The solids were mixed with grout after removal and allowed to set. The solids were then disposed off-site at an approved disposal facility. The building sump will remain until the K-1006 building is demolished. The actions for the K- 1006 sump are described in the revised Phased Construction Completion Report for Exposure Unit (EU) Z2-33, which received regulatory approval in December 2009.

  14. Sulfur Polymer Stabilization/Solidification Treatability Study of Mercury Contaminated Soil from the Y-12 Site

    SciTech Connect (OSTI)

    Kalb P.; Milian, L.; Yim, S. P.

    2012-11-30

    As a result of past operations, the Department of Energys (DOE) Oak Ridge Y-12 National Security Complex (Y-12 Plant) has extensive mercury-contamination in building structures, soils, storm sewer sediments, and stream sediments, which are a source of pollution to the local ecosystem. Because of mercurys toxicity and potential impacts on human health and the environment, DOE continues to investigate and implement projects to support the remediation of the Y-12 site.URS and #9122;CH2M Oak Ridge LLC (UCOR) under its prime contract with DOE has cleanup responsibilities on the DOE Oak Ridge Reservation and is investigating potential mercury-contaminated soil treatment technologies through an agreement with Babcock and Wilcox (B and W) Y-12, the Y-12 operating contractor to DOE. As part of its investigations, UCOR has subcontracted with Brookhaven National Laboratory (BNL) to conduct laboratory-scale studies evaluating the applicability of the Sulfur Polymer Stabilization/Solidification (SPSS) process using surrogate and actual mixed waste Y-12 soils containing mercury (Hg) at 135, 2,000, and 10,000 ppm.SPSS uses a thermoplastic sulfur binder to convert Hg to stable mercury sulfide (HgS) and solidifies the chemically stable product in a monolithic solid final waste form to reduce dispersion and permeability. Formulations containing 40 60 dry wt% Y-12 soil were fabricated and samples were prepared in triplicate for Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP) testing by an independent laboratory. Those containing 50 and 60 wt% soil easily met the study criteria for maximum allowable Hg concentrations (47 and 1 ppb, respectively compared with the TCLP limit of 200 ppb Hg). The lowest waste loading of 40 wt% yielded TCLP Hg concentrations slightly higher (240 ppb) than the allowable limit. Since the Y-12 soil tended to form clumps, the improved leaching at higher waste loadings was probably due to reduction in particle size from friction of the soil mixing, which creates more surface area for chemical conversion. This was corroborated by the fact that the same waste loading pre-treated by ball milling to reduce particle size prior to SPSS processing yielded TCLP concentrations almost 30 times lower, and at 8.5 ppb Hg was well below EPA limits. Pre-treatment by ball milling also allowed a reduction in the time required for stabilization, thus potentially reducing total process times by 30%.Additional performance testing was conducted including measurement of compressive strength to confirm mechanical integrity and immersion testing to determine the potential impacts of storage or disposal under saturated conditions. For both surrogate and actual Y-12 treated soils, waste form compressive strengths ranged between 2,300 and 6,500 psi, indicating very strong mechanical integrity (a minimum of greater than 40 times greater than the NRC guidance for low-level radioactive waste). In general, compressive strength increases with waste loading as the soil acts as an aggregate in the sulfur concrete waste forms. No statistically significant loss in strength was recorded for the 30 and 40 wt% surrogate waste samples and only a minor reduction in strength was measured for the 43 wt% waste forms. The 30 wt% Y-12 soil did not show a significant loss in strength but the 50 wt% samples were severely degraded in immersion due to swelling of the clay soil. The impact on Hg leaching, if any, was not determined.

  15. Tritium in the World Trade Center September 11, 2001 Terrorist Attack: It's Possible Sources and Fate

    SciTech Connect (OSTI)

    Parekh, P; Semkow, T; Husain, L; Haines, D; Woznial, G; Williams, P; Hafner, R; Rabun, R

    2002-05-03

    Traces of tritiated water (HTO) were determined at World Trade Center (WTC) ground zero after the 9/11/01 terrorist attack. A method of ultralow-background liquid scintillation counting was used after distilling HTO from the samples. A water sample from the WTC sewer, collected on 9/13/01, contained 0.174{plus_minus}0.074 (2{sigma}) nCi/L of HTO. A split water sample, collected on 9/21/01 from the basement of WTC Building 6, contained 3.53{plus_minus}0.17 and 2.83{plus_minus}0.15 nCi/L, respectively. Several water and vegetation samples were analyzed from areas outside the ground zero, located in Manhattan, Brooklyn, Queens, and Kensico Reservoir. No HTO above the background was found in those samples. All these results are well below the levels of concern to human exposure. Several tritium radioluminescent (RL) devices were investigated as possible sources of the traces of tritium at ground zero. Tritium is used in self-luminescent emergency EXIT signs. No such signs were present inside the WTC buildings. However, it was determined that Boeing 767-222 aircraft operated by the United Airlines that hit WTC Tower 2 as well as Boeing 767-223ER operated by the American Airlines, that hit WTC Tower 1, had a combined 34.3 Ci of tritium at the time of impact. Other possible sources of tritium include dials and lights of fire and emergency equipment, sights and scopes in weaponry, as well as time devices equipped with tritium dials. It was determined that emergency equipment was not a likely source. However, WTC hosted several law-enforcement agencies such as ATF, CIA, US Secret Service and US Customs. The ATF office had two weapon vaults in WTC Building 6. Also 63 Police Officers, possibly carrying handguns with tritium sights, died in the attack. The weaponry containing tritium was therefore a likely and significant source of tritium. It is possible that some of the 2830 victims carried tritium watches, however this source appears to be less significant that the other two. The fate of tritium in the attack depended on its chemistry. Any tritium present in the vicinity of jet-fuel explosion or fire would convert to HTO. The molecular tritium is also known to quickly exchange with water adsorbed on surfaces at ambient temperatures. Therefore, the end product of reacted tritium was HTO. A part of it would disperse into the atmosphere and a part would remain on site. The dynamic aspect of HTO removal was investigated taking into a consideration water flow at ground zero. Most of ground zero is encircled by the Slurry Wall, 70 ft deep underground, called a Bathtub. Approximately three million gallons of water were hosed on site in the fire-fighting efforts, and 1 million gallons fell as rainwater, between 9/11 and 9/21 (the day of the reported measurement). The combined water percolated through the debris down to the bottom of the Bathtub dissolving and removing HTO with it. That water would meet and combine with the estimated 26 million gallons of water that leaked from the Hudson River as well as broken mains, during the same period of 10 days after the attack. The combined water was collecting in the PATH train tunnel and continuously being pumped out to prevent flooding. A %Box model of water flow was developed to describe the above scenario. Considering the uncertainty in the amount of tritium present from sources other than the aircraft, as well as the dynamic character of tritium removal from the site, it is feasible to provide only a qualitative picture of the fate and behavior of tritium at WTC with the limited experimental data available. If the time history of tritium concentration at WTC had been measured, this study could have been a tracer study of water flow at WTC possibly useful to civil engineering.

  16. Annual Site Environmental Report: 2003

    SciTech Connect (OSTI)

    Nuckolls, H.; /SLAC

    2006-04-19

    This report provides information about environmental programs during 2003 at the Stanford Linear Accelerator Center (SLAC). Seasonal activities that span calendar years are also included. Production of an annual site environmental report (ASER) is a requirement established by the DOE for all management and operating (M&O) contractors throughout the DOE complex. This summary demonstrates the effective application of SLAC environmental management to meet the site's integrated safety management system (ISMS) goals. For normal daily activities, all SLAC managers and supervisors are responsible for ensuring proper procedures are followed so that worker safety and health are protected; the environment is protected; and compliance is ensured. Throughout 2003, SLAC focused on these activities through the SLAC management systems (described in Chapter 3). These systems were utilized by SLAC to implement such ''greening of the government'' initiatives like Executive Order 13148. The management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. There were no reportable releases to the environment from SLAC operations during 2003. In addition, many improvements were continued during 2003 in waste minimization, recycling, decreasing air emission rates, stormwater drain system, groundwater restoration, and planning for a system to better manage chemical use. Program-specific details discussed are: (1) Air Quality--SLAC operates its air quality management program in compliance with established permit conditions; 2003 was the sixth consecutive year the air quality management program operated without any NOVs issued by regulators. Nevertheless, SLAC has an active program to improve its environmental performance in air quality. (2) Hazardous Waste--The Environmental Health Division of the San Mateo County Health Services Agency is the California certified unified permitting agency (CUPA) responsible for overseeing hazardous materials and waste management at SLAC. The CUPA made facility enforcement inspections of SLAC in August and September of 2003. These inspections covered SLAC's hazardous materials and waste management, business plan, California Accidental Release Prevention Program (CalARP), and tiered permitting/permit-by-rule programs. No notices of violation were issued as a result of either inspection. (3) Stormwater and Industrial Wastewater--SLAC operates its industrial and sanitary wastewater management program in compliance with established permit conditions; 2003 was the seventh consecutive year the program operated without any NOVs issued by regulators. SLAC actively pursues projects to reduce flow to the wastewater system, and through a variety of measures, has managed to keep its facility-wide wastewater discharge constant during a period in which many new connections were made to the system. SLAC continues to make the transition to a new facility-wide sanitary sewer flow-monitoring scheme, and made substantial progress towards completing the project during 2003. SLAC discharges stormwater with the potential to come into contact with industrial activities. SLAC has an extensive monitoring program in place at the eight discharge locations where the greatest potential for contact exists. During the 2002-2003 wet season, SLAC met all the requirements of its monitoring plan, with the exception of consistent sample collection within the first hour of discharge. For the eleventh consecutive year, the surface water program operated in 2003 without receiving any NOVs from program regulators. After expenditures of more than $1 million, SLAC was nearly complete with its Unauthorized Stormwater Connection Project at year-end; only 32 connections (less than 10 percent of the original total) remained to be replumed. SLAC actively pursued several other BMP-related performance improvements during the year. (4) Hazardous Materials Program--Although SLAC has been successful in meeting regulatory requirements for managing hazardous materials, it has decided to pursue a more active strategy to reduce the use of such materials. The cornerstone of this reduction effort is the chemical management system (CMS). (5) Environmental Radiological Program--In 2003, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC reduced the amount of waste generated. As detailed in Chapter 5, SLAC has implemented programs and systems to ensure compliance with all radiological requirements related to the environment. (6) Groundwater Protection and Environmental Restoration--In general, environmental concerns at SLAC are limited in number, small in scale, and are actively managed or eliminated.

  17. Annual Site Environmental Report: 2008 (ASER)

    SciTech Connect (OSTI)

    Sabba, D.

    2009-11-09

    This report provides information about environmental programs during the calendar year of 2008 at the SLAC National Accelerator Laboratory (SLAC), Menlo Park, California. Activities that span the calendar year, i.e., stormwater monitoring covering the winter season of 2008/2009 (October 2008 through May 2009), are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. Under Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, and DOE Order 450.1A, Environmental Protection Program, SLAC effectively implements and integrates the key elements of an Environmental Management System (EMS) to achieve the site's integrated safety and environmental management system goals. For normal daily activities, SLAC managers and supervisors are responsible for ensuring that policies and procedures are understood and followed so that: (1) Worker safety and health are protected; (2) The environment is protected; and (3) Compliance is ensured. Throughout 2008, SLAC continued to improve its management systems. These systems provided a structured framework for SLAC to implement 'greening of the government' initiatives such as EO 13423 and DOE Orders 450.1A and 430.2B. Overall, management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. SLAC continues to demonstrate significant progress in implementing and integrating EMS into day-to-day operations and construction activities at SLAC. The annual management review and ranking of environmental aspects were completed this year by SLAC's EMS Steering Committee, the Environmental Safety Committee (ESC), and twelve objectives and targets were established for 2008. For each objective and target, a work plan, or Environmental Management Program (EMP) was completed and progress reports were routinely provided to SLAC senior management and the DOE SLAC Site Office (SSO). During 2008, there were no reportable releases to the environment from SLAC operations. In addition, many improvements in waste minimization, recycling, stormwater management, groundwater restoration, and SLAC's chemical management system (CMS) were continued during the year. The following are amongst SLAC's environmental accomplishments for 2008: a composting program at SLAC's onsite cafeteria was initiated, greater than 800 cubic feet of legacy radioactive waste were packaged and shipped from SLAC, a chemical redistribution program was developed, SLAC reduced the number of General Services Administration leased vehicles from 221 to 164, recycling of municipal waste was increased by approximately 140 tons during 2008, and site-wide releases of sulfur hexafluoride were reduced by 50 percent. In 2008, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC worked to reduce the amount of waste generated. SLAC has implemented programs and systems to ensure compliance with all radiological requirements related to the environment. Specifically, the Radiation Protection Radiological Waste Management Group developed a training course to certify Radioactive Waste Generators, conducted a training pilot, and developed a list of potential radioactive waste generators to train. Twenty eight generators were trained in 2008. As a best management practice, SLAC also reduced its tritium inventory by at least 95 percent by draining one of its accelerator cooling water systems; with the cooperation of the South Bayside System Authority, the West Bay Sanitary District and the DOE, SLAC discharged the cooling water to the sanitary sewer according to federal regulations and replenished the system with clean water. In 2008, the SLAC Environmental Restoration Program personnel continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low concentrations of lead in soil. SLAC is regulated under a site cleanup requirements order (board order) issued by the California Regional Water Quality Control Board (RWQCB), San Francisco Bay Region in May 2005 for the investigation and remediation of impacted soil and groundwater at SLAC. The board order lists specific tasks and deadlines for completion of groundwater and soil characterization and other remediation activities. All 2008 submittals to the RWQCB were completed and submitted on time.

  18. COMPNAME","COMPID","YEAR","PLANTNAME","KIND","CONSTRUC","INSTALLED","MAXCAP","NE

    U.S. Energy Information Administration (EIA) Indexed Site

    EQUIP","TOTCOST","COSTCAP","GROSSEXP","OPERENG","FUEL","COOLANTS","STEXP","STOTH","STTRANS","ELECEXP","MISCST","RENTS","MAINSUP","MAINSTRUC","MAINBOIL","MAINELEC","MAINMISC","TOTPROD","EXPKWH","UNITCL","QUANTCL","AVGHEATCL","ACDELCL","ACBURNCL","ACBTUCL","ACNETGENCL","ABTUNETGCL","UNITGAS","QUANTGAS","AVGHEATGAS","ACDELGAS","ACBURNGAS","ACBTUGAS","ACNETGNGAS","ABTUNETGAS","UNITOIL","QUANTOIL","AVGHEATOIL","ACDELOIL","ACBURNOIL","ACBTUOIL","ACNETGNOIL","ABTUNETOIL" "Tennessee Valley Authority",18642,1999,"Sequoyah","Nuclear","01/01/81",,2441160,2303000,8760,1008,1.8570502e+10,3184031,533636867,2488511062,3025331960,1239,33187938,21080862,86166618,4316783,11925073,0,0,13329621,28360769,0,16330987,1528775,8295886,3650336,7012139,201997849,11,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MillionBTU",189924066,0,0,0,0.43,0.04,10230 "Tennessee Valley Authority",18642,1999,"Watts Bar","Nuclear","01/01/96","1/1/1996",1269000,1200000,8208,728,8230350000,1953589,2108999339,4827648621,6938601549,5468,30551823,12179502,38261150,3963151,7056493,0,0,10400580,24553068,0,14243155,2328791,9244870,870737,990214,124091711,15,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MillionBTU",84467683,0,0,0,0.43,0.04,10260 "Tennessee Valley Authority",18642,1999,"Johnsonville","Gas Turbine","01/01/75","1/1/1975",1088000,1407000,8760,14,256798000,0,6064116,119609619,125673735,116,112893140,2747882,9870790,0,0,0,0,0,477926,0,2274,1326,0,475339,7436,13582973,53,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Gallons",24224936,139600,0,0.41,0.03,0,13170 "Tennessee Valley Authority",18642,1999,"Gallatin","Gas Turbine","01/01/75","1/1/1975",325200,431000,8760,8,176258000,0,3324533,63486109,66810642,205,80539157,665541,6810251,0,0,0,0,0,151587,0,1339166,1553,0,3922,4338,8976358,51,,0,0,0,0,0,0,0,"Mcf",2252179,1024,0,2.67,2.61,0,0,"Gallons",2063233,139100,0,0.37,0,0.03,14710 "Tennessee Valley Authority",18642,1999,"Browns Ferry","Nuclear","01/01/74","1/1/1977",3456000,2529000,8760,1085,1.771301e+10,890631,909522117,3830292072,4740704820,1372,47061477,58344025,102890781,3642332,11672365,0,0,16130309,26099224,0,5560106,0,25822517,1921329,0,252082988,14,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MillionBTU",186421503,0,0,0,0.53,0,10520 "Tennessee Valley Authority",18642,1999,"Cumberland","Steam","01/01/73","1/1/1973",2600000,2591000,8760,323,1.6530325e+10,1829568,103903145,1638681020,1744413733,671,63827428,5077791,197194700,0,86656,0,0,3945,13987241,0,1210473,1306476,16946838,4232440,841362,240887922,15,"Tons",6868849,10459,26.16,27.86,1.2,0.01,9746,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Thomas H. Allen","Gas Turbine","01/01/71","1/1/1972",820300,622000,8760,9,264695000,0,3063638,102977658,106041296,129,1709273,879771,11709062,0,0,0,0,0,72128,0,301000,0,0,150309,2816,13115086,50,,0,0,0,0,0,0,0,"Mcf",3589538,1024,0,3.06,3.03,0,0,"Gallons",1173222,139500,0,0.55,0,0.03,14460 "Tennessee Valley Authority",18642,1999,"Colbert","Gas Turbine","01/01/72","1/1/1972",476000,420000,8760,7,326221000,0,2826177,64911682,67737859,142,3078759,1248563,12167389,0,0,0,0,0,69117,0,27275,0,0,74,2699,13515117,41,,0,0,0,0,0,0,0,"Mcf",3866688,1024,0,2.8,2.71,0,0,"Gallons",3619161,138400,0,0.35,0,0.03,13670 "Tennessee Valley Authority",18642,1999,"Bull Run","Steam","01/01/67","1/1/1967",950000,912000,8760,87,4389788000,2220883,35786684,300943172,338950739,357,21987402,2324904,50419615,0,2286709,0,0,1742,6906593,0,754423,481980,8505768,2788903,314448,74785085,17,"Tons",1593346,11895,28.85,30.74,1.24,0.01,9257,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Thomas H. Allen","Steam","01/01/59","1/1/1959",990000,858000,8760,122,4102572000,142024,73025058,451231229,524398311,530,20254094,1206283,60294160,0,16,0,0,0,9854407,0,392524,824748,8011764,5402527,184253,86170682,21,"Tons",2039487,9680,25.5,29.45,1.39,0.01,10585,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Watts Bar","Steam","01/01/42","1/1/1945",240000,0,8760,0,-1381000,11997,4933530,18578656,23524183,98,-6629,177,0,0,0,0,0,0,109802,0,908,5,0,0,0,110892,-80,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Paradise","Steam","01/01/63","1/1/1970",2558200,2286000,8760,296,1.4181992e+10,8519495,115906466,1287447341,1411873302,552,57696636,6093708,168293657,0,752026,0,0,536,10779025,0,3529172,4127133,18094770,3094627,676700,215441354,15,"Tons",6332104,10413,21.43,26.2,1.14,0.01,10280,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Gallatin","Steam","01/01/56","1/1/1959",1255200,992000,8760,131,7002818000,690082,44703289,427469961,472863332,377,5073325,1612720,80238724,0,1258244,0,0,73323,7350012,0,1803476,714460,6039653,3054984,792751,102938347,15,"Tons",3266195,9540,22.99,24.49,1.19,0.01,9651,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"John Sevier","Steam","01/01/55","1/1/1957",800000,748000,8760,129,5522165000,1570328,37309270,253176616,292056214,365,2993416,946133,70531483,0,3286201,0,0,0,4864155,0,569877,953882,3537596,666934,559907,85916168,16,"Tons",2120222,11710,32.44,33.21,1.3,0.01,9802,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Kingston","Steam","01/01/54","1/1/1955",1700000,1583000,8760,275,1.0147089e+10,3475653,55125946,433125237,491726836,289,31839874,1201130,133624099,0,732904,0,0,671,15993919,0,2888077,697638,10886872,3114678,359796,169499784,17,"Tons",4038449,11134,31.75,32.96,1.34,0.01,9845,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Colbert","Steam","01/01/55","1/1/1965",1350000,1283000,8760,222,6557785000,279029,50717782,608908796,659905607,489,12808186,3684548,92134159,0,115314,0,0,3096,11894009,0,1552144,1216679,16776178,4392373,150021,131918521,20,"Tons",2890398,10787,27.4,31.47,1.38,0.01,10066,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Shawnee","Steam","01/01/53","1/1/1956",1750000,1368000,8760,264,8060005000,504507,64076435,534941906,599522848,343,20760203,5379072,113531307,0,6565666,0,0,278,7470171,0,2988378,2163530,11022440,5415043,396055,154931940,19,"Tons",3766896,10234,28.54,29.83,1.34,0.01,10474,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Johnsonville","Steam","01/01/51","1/1/1959",1485200,1213000,8760,269,6638234000,87967,76839994,522564850,599492811,404,5328716,12443723,83697340,0,-481100,0,0,6321,6501533,0,2973740,1891947,6444598,2867797,430252,116776151,18,"Tons",2922958,11389,26.49,28.52,1.16,0.01,10912,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Widows Creek","Steam","01/01/52","1/1/1965",1968760,1652000,8760,332,8498846000,855691,74795817,748521437,824172945,419,22653730,3695032,119092329,0,6555644,0,0,1697,9854746,0,1449646,2594983,13869309,4635675,4932791,166681852,20,"Tons",3858785,10808,28.8,30.16,1.27,0.01,10896,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"PALO VERDE 17.49%","n","01/01/86","01/01/88",666364,659000,8760,0,5317709000,1244457,281584974,735793972,1018623403,1529,6013000,4282694,25651422,2986065,4032493,0,0,2276671,26939892,0,5837013,1933729,6303817,3749209,2418208,86411213,16,,0,0,0,0,0,0,0,"BBTU",57406,0,0,440.13,0.44,0.01,10795,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"San Tan","Combined Cy","01/01/74","01/01/75",414000,292000,4112,43,714062000,149179,2773141,65463525,68385845,165,-5000,380221,14107193,0,1594474,0,0,0,845877,0,332730,170816,0,7389209,249749,25070269,35,,0,0,0,0,0,0,0,"MCF",6579686,1017,2.12,2.12,2.08,0.02,9372,"BBL",291,485968,0,24.61,4.22,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"SOLAR PV1 & PV2","So1ar","01/01/98","01/01/98",216,100,3000,0,119493,0,0,1676818,1676818,7763,1852000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"KYRENE","Steam","01/01/52","01/01/54",108000,106000,736,12,50072000,313326,2433283,15283485,18030094,167,726000,180057,1483303,0,338591,0,0,169009,304652,0,157896,27729,608781,344347,214929,3829294,76,,0,0,0,0,0,0,0,"MCF",651225,1016,2.16,2.16,2.12,0.03,13215,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"KYRENE","Gas Turbine","01/01/71","01/01/73",226850,149000,290,0,18990000,0,0,16888448,16888448,74,0,114913,724438,0,85074,0,0,0,40298,0,64493,11249,0,291038,96634,1428137,75,,0,0,0,0,0,0,0,"MCF",281631,1017,2.09,2.09,2.06,0.04,15094,"BBL",60,488889,0,24.61,4.19,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"MOHAVE 10%","Steam","01/01/71","01/01/71",163620,158000,8715,0,996913000,42812,5046928,50920964,56010704,342,1221000,250561,13703464,0,389195,0,0,245787,1776796,-12611,497248,178489,1673455,685271,112185,19499840,20,"Tons",457815,10939,28.47,29.64,1.35,0.01,10093,"MCF",45107,1028,0,2.94,2.86,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"CORONADO","Steam","01/01/79","01/01/80",821880,760000,8760,213,5039392000,8300198,158523884,696108809,862932891,1050,7523000,1228492,96325127,0,4607490,0,0,403466,4002498,10446,1754276,1703703,12035645,3902862,1238765,127212770,25,"Tons",2632698,9886,34.53,35.42,1.79,0.02,10357,,0,0,0,0,0,0,0,"BBL",24155,137315,24.21,26.79,4.65,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"CRAIG 29%","Steam","01/01/79","01/01/81",259414,248000,8760,0,2050747000,83589,52424794,181936864,234445247,904,680000,368849,22362014,0,1036824,0,0,425951,1689040,12271,323682,251566,1760910,701820,370069,29302996,14,"Coal",1040589,10060,22.56,21.42,1.06,0.01,10223,"MCF",28100,1000,0,2.49,2.49,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"CROSS CUT","Steam","01/01/42","01/01/49",30000,3000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MCF",0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"NAVAJO 21.7%","Steam","01/01/74","01/01/76",522857,488000,8760,539,3676183000,42866,27115117,246304509,273462492,523,5605000,1396220,45545213,0,1123640,0,0,257918,3750053,132023,667722,165042,7069421,2110905,434407,62652564,17,"Tons",1685726,10956,23.51,26.74,1.22,0.01,10061,,0,0,0,0,0,0,0,"BBL",8625,139078,22.75,28.63,4.9,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"NAVAJO 100%","Steam","01/01/74","01/01/76",2409480,2250000,8760,539,1.6020912e+10,197537,124954457,1135043822,1260195816,523,25829493,6236459,196347455,0,5554459,0,0,1293757,8406791,0,3306198,769371,29759456,10024854,2263428,263962228,16,"Tons",7339290,10979,23.5,26.63,1.21,0.01,10074,,0,0,0,0,0,0,0,"BBL",39756,139079,22.75,22.47,3.85,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"FOUR CORNERS 10%","Steam","01/01/69","01/01/70",163620,148000,8760,0,1176172000,11573,7334703,91939839,99286115,607,37000,105696,11684589,0,978340,0,0,90099,1040379,83795,135949,61864,1112429,291525,340786,15925451,14,"Tons",644302,8885,17.41,17.97,1.01,0.01,9757,"MCF",26430,1008,0,4.13,4.1,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"HAYDEN 50%","Steam","01/01/76","01/01/76",137700,131000,6809,0,812423000,482702,13855905,64632670,78971277,574,16419000,157050,8427442,0,469402,0,0,101091,1360780,0,245277,92834,431566,123971,241674,11651087,14,"Tons",413486,10561,22.49,20.28,0.96,0.01,10759,,0,0,0,0,0,0,0,"BBL",1248,138870,26.63,32.67,5.6,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"AGUA FRIA","Steam","01/01/57","01/01/61",390472,407000,4062,62,888092000,139014,5833721,51714773,57687508,148,23000,345003,21091146,0,1032200,0,0,1186582,715713,0,741888,530777,2232219,897096,413430,29186054,33,,0,0,0,0,0,0,0,"MCF",9553025,1009,2.14,2.14,2.12,0.02,10859,"BBL",3,500000,0,24.61,4.1,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"AGUA FRIA","Gas Turbine","01/01/74","01/01/75",222950,197000,451,0,42223000,0,299904,22692012,22991916,103,0,108584,1469697,0,233742,0,0,0,36481,0,284381,9332,0,296342,34359,2472918,59,,0,0,0,0,0,0,0,"MCF",617372,1007,2.12,0,2.1,0.03,14371,,0,0,0,0,0,0,0 "Alexandria City",298,1999,,"STEAM","01/01/56","01/01/74",171000,170000,5326,20,194429,0,0,0,0,0,0,708998,0,0,0,0,0,0,0,0,199997,14994,0,404462,0,1328451,6833,,0,0,0,0,0,0,0,"MCF",2346281,10,2.24,2.24,2.14,0.03,12.45,,0,0,0,0,0,0,0 "Ames City of",554,1999,,"STEAM","01/01/50",,102500,103000,8760,45,381623000,0,0,0,0,0,0,4120850,6152121,0,0,0,0,0,0,0,0,0,0,0,0,10272971,27,,239196,8800,25.72,25.72,1.46,0.02,11031,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Ames City of",554,1999,,"GAS TURBINE","01/01/72","1/1/1972",22000,18000,95,0,1007000,0,0,0,0,0,0,9422,53460,0,0,0,0,0,0,0,0,0,0,0,0,62882,62,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,99000,137300,0.54,0.54,3.93,0.05,13498 "Anaheim City of",590,1999,,"GAS TRUBINE","01/01/90","01/01/91",49270,45998,638,6,27719000,0,9226000,27237000,36463000,740,0,280835,699954,0,0,0,0,0,0,0,187223,0,0,0,1146979,2314991,84,,0,0,0,0,0,0,0,"MCF",258683,1009,2.76,2.76,2.74,25.7,9394,,0,0,0,0,0,0,0 "Anchorage City of",599,1999,"#1","4 Gas 2 Int","01/01/62","01/01/72",85000,33000,1010,14,9983618,80839,3457655,22418738,25957232,305,380194,55796,353989,0,0,0,0,809120,0,3922,67280,67353,0,442853,0,1800313,180,,0,0,0,0,0,0,0,273580,0,1000,1.38,1.38,1.38,0.03,19744,778,0,133500,33.82,33.82,6.03,0,0 "Anchorage City of",599,1999,"#2","3 Gas 1 Ste","01/01/75","01/01/84",243200,151000,19516,30,759258360,11240,8928538,75136820,84076598,346,5364843,257796,10642281,0,678572,0,0,1623991,233929,0,330573,231135,303990,1190866,118352,15611485,21,,0,0,0,0,0,0,0,7701758,0,1000,1.38,1.38,1.38,0.01,10144,570,0,133500,34.71,34.71,6.19,0,0 "Austin City of",1009,1999,"Downtown","Gas Turbine","01/01/54","01/01/54",5500,5000,0,0,493000,0,0,1065016,1065016,194,0,142,36663,0,0,0,0,7532,0,0,143,0,0,142049,0,186529,378,,0,0,0,0,0,0,0,"MCF",1347,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1009,1999,"Northeast","Steam","01/01/71","01/01/71",31500,31300,7566,24,120607160,70498,2376720,5711293,8158511,259,0,42490,2760067,0,395223,0,0,366434,798118,0,24135,51518,290200,20129,3652,4751966,39,"TON",58175,12000,39.8,39.48,1.64,0.02,12637,"MCF",125541,1020,2.75,2.75,2.7,0.03,12648,,0,0,0,0,0,0,0 "Austin City of",1009,1999,"Downtown","Steam","01/01/35","01/01/54",27500,22500,465,11,4508000,24099,1221355,5587700,6833154,248,0,31568,193351,0,41643,0,0,12652,492890,0,23781,136549,88433,55977,1897,1078741,239,,0,0,0,0,0,0,0,"MCF",70119,1020,2.75,2.75,2.7,0.04,15874,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"DECKER TURBINES","GAS TURBINE","01/01/88","01/01/88",200000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"DECKER SOLAR","SOLAR","01/01/86","01/01/86",300,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"DECKER","STEAM","01/01/70","01/01/77",726000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"HOLLY","STEAM","01/01/60","01/01/74",558000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"SEAHOLM","STEAM","01/01/51","01/01/55",120000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Braintree Town of",2144,1999,"Potter II","Gas Turbine","01/01/77","01/01/77",97500,79500,1284,27,72929000,20271,3762859,18429374,22212504,228,132748,176565,2625145,0,1154442,0,0,0,0,0,158096,316309,488498,491410,262035,5672500,78,,0,0,0,0,0,0,0,"MCF",931167,1035,3.03,3.03,2.92,0.03,11631,"BBLS",14190,138809,15.72,15.72,2.7,0.03,10520 "Brownsville Public Utils Board",2409,1999,"SILAS RAY","STEAM GAS T","01/01/46","01/01/77",155000,197000,5256,29,206,528443,4499041,192117166,197144650,1272,0,205477,6239714,0,1311,0,0,155739,309455,0,74856,224382,203068,176038,1264465,8854505,42983034,,0,0,0,0,0,0,0,"MCF",2346974,1059,2.65,2.65,2.5,0.03,12048,,0,0,0,0,0,0,0 "Bryan City of",2439,1999,,"Gas Turbine","01/01/70","01/01/87",39,30,265,8,5177,0,0,0,0,0,0,0,311874,0,0,0,0,499578,0,0,0,0,0,216081,0,1027533,198480,,0,0,0,0,0,0,0,"Mcf",72688,1000,3.8,3.8,3.8,0.06,29839,"Bbl29839",639,128000,55.63,55.63,7.12,0.06,29839 "Bryan City of",2442,1999,"Bryan Municipal","STEAM, GAS","01/01/55","01/01/74",138000,115000,0,20,118273000,0,7590674,7546886,15137560,110,46427,76607,3529286,0,372623,0,0,606045,154868,9320,63805,20315,520977,159461,31344,5544651,47,,0,0,0,0,0,0,0,"MCF",1626575,1,2.25,2.25,2.21,0.03,14.05,,0,0,0,0,0,0,0 "Bryan City of",2442,1999,"Roland C. Dandy","STEAM","01/01/77","01/01/77",105000,106000,0,19,461142000,1183486,10201555,18752019,30137060,287,105283,76291,11510542,0,391030,0,0,512056,181517,12858,53081,31539,405327,91686,57727,13323654,29,,0,0,0,0,0,0,0,"MCF",5120070,1,2.24,2.24,2.21,0.02,11.36,,0,0,0,0,0,0,0 "Burlington City of",2548,1999,"Gas Turbine","Gas Turbine","01/01/71","01/01/71",25500,25000,106,1,2093500,13587,531143,3214616,3759346,147,17164,6073,130467,0,0,0,0,324,5442,16648,0,0,0,75762,0,234716,112,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBL",6016,137674,20.61,21.69,3.75,0.06,16616 "Burlington City of",2548,1999,"Joseph C McNeil GenrЬ ","Steam","01/01/84","01/01/84",50,53,4305,48,183109400,278455,18147811,50484579,68910845,1378217,571376,140467,6439721,0,788415,0,0,291816,360657,0,131396,35661,553086,1325161,20193,10086573,55,"Wood-Tons",263762,4750,23.46,23.52,2.47,0.03,13742,"MCF",66041,1012124,2.82,2.82,2.78,0.24,86785,"BBL",2260,136430,20.13,21.19,3.7,0,71.02 "Cedar Falls City of",3203,1999,"Streeter Station","Steam","01/01/63","01/01/73",51500,50000,1650,23,38111600,281328,3758281,14375110,18414719,358,699506,97410,1113417,0,230220,0,0,102634,142771,0,90418,180725,588058,55402,9122,2610177,68,"Tons",19527,12429,38.79,36.49,1.47,0.02,14033.99,"MCF",49410,1000,2.75,2.75,2.75,0.04,14033.99,,0,0,0,0,0,0,0 "Cedar Falls City of",3203,1999,"Combustion Turbine","Combustion","01/01/68","01/01/68",25000,20000,193,0,2814300,70777,134588,3497629,3702994,148,3062,4978,122537,0,0,0,0,5713,0,0,6674,9708,0,32837,0,182447,65,,0,0,0,0,0,0,0,"MCF",50599,1000,2.42,2.42,2.42,0.04,17979.25,,0,0,0,0,0,0,0 "California Dept-Wtr Resources",3255,1999,"Reid Garner #4","Steam-coal","01/01/83","01/01/83",275000,250000,0,96,1597086000,319709000,0,0,319709000,1163,0,0,22054817,0,0,0,0,0,21659183,0,0,0,0,0,0,43714000,27,"Tons",672949,11858,0,13.11,1.31,0.01,11079,,0,0,0,0,0,0,0,"Barrels",7515,133622,0,25,4.55,0.05,11570 "California Dept-Wtr Resources",3255,1999,"BottleRock & S Geysep","Steam-Geoth","01/01/85","01/01/85",55000,0,0,0,0,10000,0,0,10000,0,0,0,0,0,0,0,0,0,553000,0,0,0,0,0,0,553000,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Chanute City of",3355,1999,"Plant #3","Internal Co","01/01/85","01/01/91",31915,39975,595,8,10378156,50000,612000,15500000,16162000,506,0,369525,245371,0,0,0,0,0,0,0,166666,0,0,136912,0,918474,89,"N/A",0,0,0,0,0,0,0,"MCF",78668,1000,2.66,2.66,2.66,0.02,0.02,"Barrels",3969,138000,26.57,26.57,0.08,0.01,0.01 "PUD No 1 of Clark County",3660,1999,"River Road CCCT","Gas Turbine","01/01/97","01/01/97",248000,258504,7058,21,1711891704,1053160,141767983,13187783,156008926,629,2319343,4203148,23066109,0,0,0,0,0,0,0,0,91900,0,0,0,27361157,16,,0,0,0,0,0,0,0,"MCF",11463,1060,2042,2012,1.9,0.01,7114,,0,0,0,0,0,0,0 "Clarksdale City of",3702,1999,,"Combine Cyc","01/01/71","01/01/71",25550,24000,2149,6,43507,0,0,4581109,4581109,179,0,10000,1053091,0,0,0,0,130000,80000,0,10000,0,12009,328580,0,1623680,37320,,0,0,0,0,0,0,0,"MCF",374997,1000,2.8,2.8,2.8,0.02,8.62,"BBL",70,142.5,23.14,23.14,3.86,0.05,13.99 "Clarksdale City of",3702,1999,,"Gas Turbine","01/01/65","01/01/65",11500,11500,754,6,12158,0,0,1445133,1445133,126,0,10000,478409,0,0,0,0,100000,50000,0,20000,0,0,226974,0,885383,72823,,0,0,0,0,0,0,0,"MCF",169662,1000,2.8,2.8,2.8,0.03,13.99,"BBL",115,142.5,23.14,23.14,3.86,0.07,20.18 "Coffeyville City o",3892,1999,"COFFEYVILLE","STEAM","01/01/01","01/01/73",56985,55900,4013,23,68578900,0,0,0,0,0,0,57285,2419645,0,0,0,0,0,1146750,0,0,0,8610,0,0,3632290,53,,0,0,0,0,0,0,0,"MMBTU",938070,1000,2.25,2.58,2.58,0.03,1368,,0,0,0,0,0,0,0 "Coldwater Board of Public Util",3915,1999,,"Steam","01/01/00","01/01/64",11125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,68864,7301,41,105,51389,127700,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Coldwater Board of Public Util",3915,1999,,"Diesel","01/01/48","01/01/78",13250,45933,1719,6,7081208,0,0,0,0,0,0,40423,214682,0,0,0,0,37863,0,0,0,12739,0,71418,0,377125,53,,0,0,0,0,0,0,0,"Mcf",65604,9530000,2.84,0,0,0,0,"Barrels",1725,126000,17.7,0,0,0,0 "Colorado Springs City of",3989,1999,"Birdsall","Steam-Gas","01/01/53","01/01/57",62500,4500,1717,4,20716000,10761,2593301,11384249,13988311,224,0,67716,1180669,0,107787,0,0,227078,88988,0,31363,89311,290603,224308,38374,2346197,113,,0,0,0,0,0,0,0,"MCF",412714,806,2.83,2.83,3.52,0.06,16212,"GALLONS",22000,137420,0.11,0.11,0.81,0.01,16212 "Colorado Springs City of",3989,1999,"Drake","Steam-Gas","01/01/25","01/01/74",257300,256000,8760,106,1484262000,2725551,23014851,80547185,106287587,413,0,1059853,25816108,0,1094453,0,0,3228406,1184954,0,462905,237248,4111443,1735831,152472,39083673,26,"TONS",769313,10914,29.13,31.49,1.44,0.01,11585,"MCF",494125,808,2.73,2.73,3.38,0.03,11585,"BARRELS",0,0,0,0,0,0,0 "Colorado Springs City of",3989,1999,"Nixon","Steam-Gas","01/01/80","01/01/80",207000,214000,6081,81,1117841000,5059222,39785705,107090082,151935009,734,0,969721,11571054,0,779121,0,0,1343687,1057607,0,489855,218501,3309067,2974204,146609,22859426,20,"TONS",538337,10432,18.31,18.84,0.9,0,10120,,0,0,0,0,0,0,0,"BARRELS",13952,136738,24.87,24.87,4.33,0.04,10120 "Colorado Springs City of",3989,1999,"CTS","Gas","01/01/99","01/01/99",71660,73000,458,0,22292000,418573,123167,32084223,32625963,455,0,0,715385,0,0,0,0,0,0,0,0,0,0,26204,0,741589,33,,0,0,0,0,0,0,0,"MCF",291394,983,2.89,2.87,2.92,0.03,12852,,0,0,0,0,0,0,0 "Columbia City of",4045,1999,,"Steam/Gas T","01/01/10","01/01/70",86000,226000,8760,46,62152000,115894,3578025,15986526,19680445,229,5320808,43503,2133251,0,531664,0,0,967929,376491,0,170114,28005,512239,452108,0,5215304,84,"Tons",37319,13265,53.83,53.69,2.02,3.22,15930,"Mcf",34179,0,3.64,3.64,0,0,0,,0,0,0,0,0,0,0 "Columbus City of",4065,1999,"O'Shaughnessy",,,,5000,5000,0,1,5860000,0,0,0,0,0,0,0,0,0,0,0,0,49898,0,0,0,0,0,2864,0,52762,9,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Concord City of",4150,1999,,,,,0,0,0,0,545243,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Connecticut Mun Elec Engy Coop",4180,1999,"Millstone Unit 3","Nuclear (e)","01/01/86","01/01/86",1253100,1164700,7329,933,8277624400,0,20415627,29930688,50346315,40,0,324496,363329,24201,162455,0,0,48209,296706,13608,313554,74201,315415,228127,1354,2165655,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Dalton City of",4744,1999,"Wansley 1 & 2","Coal fired","01/01/76","01/01/78",22220,0,0,0,149590620,0,0,9113036,9113036,410,28304,29233,2186381,0,24950,0,0,15863,81536,0,42895,19710,138435,167350,13819,2720172,18,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Dalton City of",4744,1999,"Scherer 1 & 2","Coal fired","/ /","01/01/84",22680,0,0,0,144814966,0,0,13467749,13467749,594,50818,27106,2605498,0,25617,0,0,15303,77539,0,34949,22981,256897,16076,11927,3093893,21,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Denton City of",5063,1999,"SPENCER PLANT","STEAM","01/01/55","01/01/73",179000,259100,11980,36,305539695,0,0,0,0,0,0,233373,9138796,0,348227,0,0,468112,432003,0,71604,11794,211613,467529,210327,11593378,38,,0,0,0,0,0,0,0,"Mcf",3800668,1,2.24,2.24,2.24,2.99,12.43,"BBl",0,139.68,7.82,0,0,0,0 "Eugene City of",6022,1999,"Willamette","Steam","01/01/31","01/01/50",25000,0,0,0,0,0,0,1189332,1189332,48,0,0,260,0,1204,0,0,-975,0,0,0,0,0,5095,7459,13043,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Eugene City of",6022,1999,"Energy Center","Steam","01/01/76","01/01/76",51200,41000,0,0,192829000,1280,320371,7521672,7843323,153,0,13058,1366594,0,0,0,0,261785,0,0,0,94,0,127793,0,1769324,9,,0,0,0,0,0,0,0,,321587,0,2.51,0,0,0,2495.24,,0,0,0,0,0,0,0 "Farmington City of",6204,1999,"ANIMAS","STEAM-COMBI","01/01/55","01/01/94",32180,28000,7808,14,170805000,5968,1109574,25033191,26148733,813,0,70145,3611891,0,225548,0,0,460952,226694,0,122984,0,217797,1021413,38103,5995527,35,,0,0,0,0,0,0,0,"MCF",1668856,1013,2.13,2.13,2.1,0.02,9897,,0,0,0,0,0,0,0 "Farmington City of",6204,1999,"SAN JUAN","STEAM-COAL","/ /","/ /",4300042200,43000,7919,10,293222700,0,5471749,62874731,68346480,0,0,71242,5641682,0,114021,0,0,120758,93838,131,62021,34762,382623,77158,65298,6663534,23,"TONS",167448,9421,32.33,32.33,1.72,0.01,10774,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Fayetteville Public Works Comm",6235,1999,"Butler-Warner Gen PtP","Gas-Turbine","01/01/76","01/01/88",303400,276500,1134,33,0,749336,5123088,100277060,106149484,350,4108529,0,-6665,0,0,0,0,0,0,0,0,0,0,292639,-141172,144802,0,,0,0,0,0,0,0,0,"Mcf",1724674,1046,2.72,2.72,2.6,0.03,12249.5,"Barrels",4,138800,27.15,27.87,4.78,0.06,13375.25 "Fort Pierce Utilities Auth",6616,1999,"Steam","Steam","01/01/21","01/01/89",120011,0,0,0,0,0,0,0,0,0,0,564929,6990,0,231196,0,0,428922,138247,0,21508,56082,204594,1437831,87424,3177723,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Freeport Village of Inc",6775,1999,"Power Plant #1","Internal Co",,"01/01/64",13190,0,0,9,2066120,5022,1113459,3036221,4154702,315,51721,42612,209909,0,0,0,0,518539,0,0,0,79604,0,0,0,850664,412,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",293755,138788,0.81,0.68,0.18,0.97,14.88 "Freeport Village of Inc",6775,1999,"Power Plant #2","Internal Co","1/1/1968","01/01/73",37390,57000,1,9,1277200,1827,3178208,8088951,11268986,301,0,52596,205053,0,0,0,0,634322,0,28573,0,101784,0,0,0,1022328,800,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",319336,138788,0.86,0.64,0.13,0.16,9.2 "Fremont City of",6779,1999,"Wright","Steam","01/01/56","01/01/76",132700,83390,8760,47,336075,202231,5905920,42850719,48958870,369,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0