Sample records for neutron spin echo

  1. Neutron resonance spin echo, bootstrap method for increasing the effective magnetic field

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1195 Neutron resonance spin echo, bootstrap method for increasing the effective magnetic field R donné en spectrométrie d'echos de spins de neutrons. Les limites théoriques et techniques à l field intensity in Neutron Resonance Spin Echo (NRSE) spectrometry. The limits, theoretical as well

  2. Dynamics of microemulsions bridged with hydrophobically end-capped star polymers studied by neutron spin-echo

    SciTech Connect (OSTI)

    Hoffmann, I., E-mail: ingo.hoffmann@tu-berlin.de [Stranski-Laboratorium fr Physikalische und Theoretische Chemie, Institut fr Chemie, Technische Universitt Berlin, Strae des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Malo de Molina, Paula; Gradzielski, M., E-mail: michael.gradzielski@tu-berlin.de [Stranski-Laboratorium fr Physikalische und Theoretische Chemie, Institut fr Chemie, Technische Universitt Berlin, Strae des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Farago, B.; Falus, P. [Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France)] [Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Herfurth, Christoph; Laschewsky, Andr [Fraunhofer Institut fr Angewandte Polymerforschung IAP, Geiselbergstrae 69, 14476 Potsdam-Golm (Germany)] [Fraunhofer Institut fr Angewandte Polymerforschung IAP, Geiselbergstrae 69, 14476 Potsdam-Golm (Germany)

    2014-01-21T23:59:59.000Z

    The mesoscopic dynamical properties of oil-in-water microemulsions (MEs) bridged with telechelic polymers of different number of arms and with different lengths of hydrophobic stickers were studied with neutron spin-echo (NSE) probing the dynamics in the size range of individual ME droplets. These results then were compared to those of dynamicic light scattering (DLS) which allow to investigate the dynamics on a much larger length scale. Studies were performed as a function of the polymer concentration, number of polymer arms, and length of the hydrophobic end-group. In general it is observed that the polymer bridging has a rather small influence on the local dynamics, despite the fact that the polymer addition leads to an increase of viscosity by several orders of magnitude. In contrast to results from rheology and DLS, where the dynamics on much larger length and time scales are observed, NSE shows that the linear polymer is more efficient in arresting the motion of individual ME droplets. This finding can be explained by a simple simulation, merely by the fact that the interconnection of droplets becomes more efficient with a decreasing number of arms. This means that the dynamics observed on the short and on the longer length scale depend in an opposite way on the number of arms and hydrophobic stickers.

  3. Electrical detection of spin echoes for phosphorus donors in silicon

    E-Print Network [OSTI]

    Hans Huebl; Felix Hoehne; Benno Grolik; Andre R. Stegner; Martin Stutzmann; Martin S. Brandt

    2007-12-02T23:59:59.000Z

    The electrical detection of spin echoes via echo tomography is used to observe decoherence processes associated with the electrical readout of the spin state of phosphorus donor electrons in silicon near a SiO$_2$ interface. Using the Carr-Purcell pulse sequence, an echo decay with a time constant of $1.7\\pm0.2 \\rm{\\mu s}$ is observed, in good agreement with theoretical modeling of the interaction between donors and paramagnetic interface states. Electrical spin echo tomography thus can be used to study the spin dynamics in realistic spin qubit devices for quantum information processing.

  4. Dynamic neutron scattering on incoherent systems using efficient resonance spin flip techniques

    SciTech Connect (OSTI)

    Hussler, Wolfgang [Heinz Maier-Leibnitz Zentrum, Technische Universitt Mnchen, D-85748 Garching, Germany and Physik-Department E21, Technische Universitt Mnchen, D-85748 Garching (Germany); Kredler, Lukas [Physik-Department E21, Technische Universitt Mnchen, D-85748 Garching (Germany)

    2014-05-15T23:59:59.000Z

    We have performed numerical ray-tracing Monte-Carlo-simulations of incoherent dynamic neutron scattering experiments. We intend to optimize the efficiency of incoherent measurements depending on the fraction of neutrons scattered without and with spin flip at the sample. In addition to conventional spin echo, we have numerically and experimentally studied oscillating intensity techniques. The results point out the advantages of these different spin echo variants and are an important prerequisite for neutron resonance spin echo instruments like RESEDA (FRM II, Munich), to choose the most efficient technique depending on the scattering vector range and the properties of the sample system under study.

  5. Electrically detected spin echoes of donor nuclei in silicon

    E-Print Network [OSTI]

    McCamey, D R; Morley, G W; van Tol, J

    2011-01-01T23:59:59.000Z

    The ability to probe the spin properties of solid state systems electrically underlies a wide variety of emerging technology. Here, we extend electrical readout of the nuclear spin states of phosphorus donors in silicon to the coherent regime with modified Hahn echo sequences. We find that, whilst the nuclear spins have electrically detected phase coherence times exceeding 2 ms, they are nonetheless limited by the artificially shortened lifetime of the probing donor electron.

  6. Pulsed Nuclear Magnetic Resonance: Spin Echoes MIT Department of Physics

    E-Print Network [OSTI]

    Seager, Sara

    Pulsed Nuclear Magnetic Resonance: Spin Echoes MIT Department of Physics (Dated: February 5, 2014) In this experiment, the phenomenon of Nuclear Magnetic Resonance (NMR) is used to determine the magnetic moments-factor in atomic spectroscopy and is given by g = (µ/µN )/I, (2) and µN is the nuclear magneton, e /2mp

  7. E-Print Network 3.0 - alamethicin electron spin-echo Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 > >> 1 Alamethicin Topology in Phospholipid Membranes by Oriented Solid-state NMR and EPR Spectroscopies: a Comparison Summary: paramagnetic resonance. ESEEM electron spin echo...

  8. Superconducting magnetic Wollaston prism for neutron spin encoding

    SciTech Connect (OSTI)

    Li, F., E-mail: fankli@indiana.edu; Parnell, S. R.; Wang, T.; Baxter, D. V. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States)] [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Hamilton, W. A. [Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)] [Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Maranville, B. B. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)] [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Semerad, R. [Ceraco Ceramic Coating GmbH, Ismaning 85737 (Germany)] [Ceraco Ceramic Coating GmbH, Ismaning 85737 (Germany); Cremer, J. T. [Adelphi Technology Inc., Redwood City, California 94063 (United States)] [Adelphi Technology Inc., Redwood City, California 94063 (United States); Pynn, R. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States) [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)

    2014-05-15T23:59:59.000Z

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ?30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ?98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm 30 mm) and an increase in length scales accessible to SESAME to beyond 10 ?m. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

  9. Spin Dynamics Simulations of Multiple Echo Spacing Pulse Sequences in Grossly Inhomogeneous Fields

    SciTech Connect (OSTI)

    Heidler, R.; Bachman, H. N.; Johansen, Y. [Schlumberger Oilfield Services, Sugar Land, TX 77478 (United States)

    2008-12-05T23:59:59.000Z

    Pulse sequences with multiple lengths of echo spacings are used in oilfield NMR logging for diffusion-based NMR applications such as rock and fluid characterization. One specific implementation is the so-called diffusion editing sequence comprising two long echo spacings followed by a standard CPMG at a shorter echo spacing. The echoes in the CPMG portion contain signal from both the direct and stimulated echoes.Modern oilfield NMR logging tools are designed for continuous depth logging of earth formations by projecting both the static (B{sub 0}) and dynamic (B{sub 1}) fields into the formation. Both B{sub 0} and B{sub 1} profiles are grossly inhomogeneous which results in non-steady-state behavior in the early echoes. The spin dynamics effects present a challenge for processing the echo amplitudes to measure porosity (amplitude extrapolated to zero time) and attenuations for fluid or pore size characterization.In this work we describe a calculation of the spin dynamics of the diffusion editing sequence with two long echo spacings. The calculation takes into account full B{sub 1} and B{sub 0} field maps, and comparisons will be made for sensors and parameters typical of oilfield logging tools and environments.

  10. Operating Spin Echo in the Quantum Regime for an Atomic-Ensemble Quantum Memory

    E-Print Network [OSTI]

    Rui, Jun; Yang, Sheng-Jun; Zhao, Bo; Bao, Xiao-Hui; Pan, Jian-Wei

    2015-01-01T23:59:59.000Z

    Spin echo is a powerful technique to extend atomic or nuclear coherence time by overcoming the dephasing due to inhomogeneous broadening. However, applying this technique to an ensemble-based quantum memory at single-quanta level remains challenging. In our experimental study we find that noise due to imperfection of the rephasing pulses is highly directional. By properly arranging the beam directions and optimizing the pulse fidelities, we have successfully managed to operate the spin echo technique in the quantum regime and observed nonclassical photon-photon correlations. In comparison to the case without applying the rephasing pulses, quantum memory lifetime is extended by 5 folds. Our work for the first time demonstrates the feasibility of harnessing the spin echo technique to extend lifetime of ensemble-based quantum memories at single-quanta level.

  11. Operating Spin Echo in the Quantum Regime for an Atomic-Ensemble Quantum Memory

    E-Print Network [OSTI]

    Jun Rui; Yan Jiang; Sheng-Jun Yang; Bo Zhao; Xiao-Hui Bao; Jian-Wei Pan

    2015-01-26T23:59:59.000Z

    Spin echo is a powerful technique to extend atomic or nuclear coherence time by overcoming the dephasing due to inhomogeneous broadening. However, applying this technique to an ensemble-based quantum memory at single-quanta level remains challenging. In our experimental study we find that noise due to imperfection of the rephasing pulses is highly directional. By properly arranging the beam directions and optimizing the pulse fidelities, we have successfully managed to operate the spin echo technique in the quantum regime and observed nonclassical photon-photon correlations. In comparison to the case without applying the rephasing pulses, quantum memory lifetime is extended by 5 folds. Our work for the first time demonstrates the feasibility of harnessing the spin echo technique to extend lifetime of ensemble-based quantum memories at single-quanta level.

  12. Isotropic 3D fast spin-echo imaging versus standard 2D imaging at 3.0 T of the kneeimage quality and diagnostic performance

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    SB (2007) High-resolution 3D cartilage imaging with IDEALMa Thomas M. Link Isotropic 3D fast spin-echo imaging versusintermediate-weighted (IM-w) 3D fast spin-echo (FSE) se-

  13. A study of diffusion in binary solutions using spin echoes

    E-Print Network [OSTI]

    Rousseau, Cecil Clyde

    1962-01-01T23:59:59.000Z

    / )) 22)] sin 22 cos [a co (t. - 2; ) / I) 2] , (2-8) W(x, t) / cos el = -sin Bi sin 22 cos [D CO 2 / (() 22] cos 82 ~ (2-9) 13 If g(x)dx is the fraction of nuclei in the sample between x and x j dx and N is the equilibrium magnetization...'fusion coefficient, D, is given by Cx (t)) D 2t Substituting (2-20) into (2-18) and integrating, (gg) - 4+2Q2D(T'3 - P 2t j t3/6). (2 20) (2-21) 16 Letting t "- 2V in (2-21), (g)4. +GD 3 (2-22) Let h(2T ) denote the maximum height of the observed echo...

  14. Neutron single target spin asymmetries in SIDIS

    SciTech Connect (OSTI)

    Evaristo Cisbani

    2010-04-01T23:59:59.000Z

    The experiment E06-010 in Hall A at Jefferson Lab took data between November 2008 and February 2009 to directly measure, for the first time, the pion (and kaon) single "neutron" target-spin asymmetry (SSA) in semi-inclusive DIS from a polarized 3He target. Collins, Sivers (and Pretzelosity) neutron asymmetries are going to be extracted from the measured SSA. Details of the experiment are described together with the preliminary results of the ongoing analysis. Near future Hall A experiments on transverse nucleon spin structure are shorty reviewed.

  15. Long-lived selective spin echoes in dipolar solids under periodic and aperiodic pi-pulse trains

    E-Print Network [OSTI]

    Clark D. Ridge; Lauren F. O'Donnell; Jamie D. Walls

    2013-12-04T23:59:59.000Z

    The application of Carr-Purcell-Meiboom-Gill (CPMG) $\\pi-$trains for dynamically decoupling a system from its environment has been extensively studied in a variety of physical systems. When applied to dipolar solids, recent experiments have demonstrated that CPMG pulse trains can generate long-lived spin echoes. While there still remains some controversy as to the origins of these long-lived spin echoes under the CPMG sequence, there is a general agreement that pulse errors during the $\\pi-$pulses are a necessary requirement. In this work, we develop a theory to describe the spin dynamics in dipolar coupled spin-1/2 system under a CPMG($\\phi_{1},\\phi_{2}$) pulse train, where $\\phi_{1}$ and $\\phi_{2}$ are the phases of the $\\pi-$pulses. From our theoretical framework, the propagator for the CPMG($\\phi_{1},\\phi_{2}$) pulse train is equivalent to an effective ``pulsed'' spin-locking of single-quantum coherences with phase $\\pm\\frac{\\phi_{2}-3\\phi_{1}}{2}$, which generates a periodic quasiequilibrium that corresponds to the long-lived echoes. Numerical simulations, along with experiments on both magnetically dilute, random spin networks found in C$_{60}$ and C$_{70}$ and in non-dilute spin systems found in adamantane and ferrocene, were performed and confirm the predictions from the proposed theory.

  16. Spin in the Neutron | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4 By I. Tudosa, H. C. SiegmannSpin

  17. Mergers of binary neutron stars with realistic spin

    E-Print Network [OSTI]

    Sebastiano Bernuzzi; Tim Dietrich; Wolfgang Tichy; Bernd Bruegmann

    2014-06-06T23:59:59.000Z

    Simulations of binary neutron stars have seen great advances in terms of physical detail and numerical quality. However, the spin of the neutron stars, one of the simplest global parameters of binaries, remains mostly unstudied. We present the first, fully nonlinear general relativistic dynamical evolutions of the last three orbits for constraint satisfying initial data of spinning neutron star binaries, with astrophysically realistic spins aligned and anti-aligned to the orbital angular momentum. The initial data is computed with the constant rotational velocity approach. The dynamics of the systems is analyzed in terms of gauge-invariant binding energy vs. orbital angular momentum curves. By comparing to a binary black hole configuration we can estimate the different tidal and spin contributions to the binding energy for the first time. First results on the gravitational wave forms are presented. The phase evolution during the orbital motion is significantly affected by spin-orbit interactions, leading to delayed or early mergers. Furthermore, a frequency shift in the main emission mode of the hyper massive neutron star is observed. Our results suggest that a detailed modeling of merger waveforms requires the inclusion of spin, even for the moderate magnitudes observed in binary neutron star systems.

  18. E-Print Network 3.0 - acquisition spin echo Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    point for data... collected in a single TR with CPMG (a) or a mixed-CPMG (b) echo train. Blue lines correspond to a b-value0 Source: National Institutes of Health,...

  19. Persistent crust-core spin lag in neutron stars

    E-Print Network [OSTI]

    Glampedakis, Kostas

    2015-01-01T23:59:59.000Z

    It is commonly believed that the magnetic field threading a neutron star provides the ultimate mechanism (on top of fluid viscosity) for enforcing long-term corotation between the slowly spun down solid crust and the liquid core. We show that this argument fails for axisymmetric magnetic fields with closed field lines in the core, the commonly used `twisted torus' field being the most prominent example. The failure of such magnetic fields to enforce global crust-core corotation leads to the development of a persistent spin lag between the core region occupied by the closed field lines and the rest of the crust and core. We discuss the repercussions of this spin lag for the evolution of the magnetic field, suggesting that, in order for a neutron star to settle to a stable state of crust-core corotation, the bulk of the toroidal field component should be deposited into the crust soon after the neutron star's birth.

  20. Spin-dependent scattering and absorption of thermal neutrons on dynamically polarized nuclei

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    957 Spin-dependent scattering and absorption of thermal neutrons on dynamically polarized nuclei H neutrons and polarized nuclei have been used to measure spin-dependent scattering lengths and absorption cross sections of slow (S-wave) neutrons on nuclei. In order to obtain those scattering lengths

  1. Electron spin resonance and electron spin-echo modulation study of paramagnetic Rh species generated in Ca-Y and Na-Y zeolites

    SciTech Connect (OSTI)

    Goldfarb, D.; Kevan, L.

    1987-04-15T23:59:59.000Z

    Paramagnetic Rh species generated in RhNa-Y and RhCa-Y zeolites after various treatments were characterized by using electron spin resonance (ESR) and electron spin-echo modulation (ESEM) spectroscopies. Activation in flowing oxygen at 500/sup 0/C ..beta..-hydrogen a considerable amount of Rh(II) located in site I in the hexagonal prism of the zeolite structure for 3 wt % Rh in RhNa-Y zeolite. Samples of 1 wt % Rh in RhNa-Y and RhCa-Y did not show any paramagnetic signals. Adsorption of various adsorbates such as water, ammonia, methanol, carbon monoxide, and oxygen on activated samples induced a considerable increase in the ESR intensities. Adsorption of oxygen and carbon monoxide yields the corresponding adducts which are located in the ..cap alpha..-cage of the zeolite structure. Hydration generated a species which is coordinated to three water molecules. Adsorption of methanol on RhNa-Y generated a species H2 which is also formed after reduction of RhNa-Y with H/sub 2/, suggesting that the methanol molecule undergoes a reaction to generate products which further reduce Rh(III) species in the ..beta..-cage of the zeolite structure to Rh(II). No significant differences were observed between RhNa-Y and RhCa-Y except for the formation of different Rh(II) species after methanol adsorption in RhCa-Y and the generation of a larger amount of Rh(II) in site I in RhNa-Y. These results are compared to previously obtained data in RhNa-X and RhCa-X to account for the effect of the cocations and the Si/Al ratio on the generation of Rh(II) species in zeolites.

  2. MnO spin-wave dispersion curves from neutron powder diffraction

    SciTech Connect (OSTI)

    Goodwin, Andrew L.; Dove, Martin T. [Department of Earth Sciences, Cambridge University, Downing Street, Cambridge CB2 3EQ (United Kingdom); Tucker, Matthew G. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Keen, David A. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Department of Physics, Oxford University, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom)

    2007-02-15T23:59:59.000Z

    We describe a model-independent approach for the extraction of spin-wave dispersion curves from powder neutron total scattering data. Our approach is based on a statistical analysis of real-space spin configurations to calculate spin-dynamical quantities. The RMCPROFILE implementation of the reverse Monte Carlo refinement process is used to generate a large ensemble of supercell spin configurations from MnO powder diffraction data collected at 100 K. Our analysis of these configurations gives spin-wave dispersion curves for MnO that agree well with those determined independently using neutron triple-axis spectroscopic techniques.

  3. High-Efficiency Resonant RF Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    E-Print Network [OSTI]

    P. -N. Seo; L. Barron-Palos; J. D. Bowman; T. E. Chupp; C. Crawford; M. Dabaghyan; M. Dawkins; S. J. Freedman; T. Gentile; M. T. Gericke; R. C. Gillis; G. L. Greene; F. W. Hersman; G. L. Jones; M. Kandes; S. Lamoreaux; B. Lauss; M. B. Leuschner; R. Mahurin; M. Mason; J. Mei; G. S. Mitchell; H. Nann; S. A. Page; S. I. Penttila; W. D. Ramsay; A. Salas Bacci; S. Santra; M. Sharma; T. B. Smith; W. M. Snow; W. S. Wilburn; H. Zhu

    2007-10-15T23:59:59.000Z

    We have developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to RF neutron spin flippers based on adiabatic fast passage. The spin rotator does not change the kinetic energy of the neutrons and leaves the neutron beam phase space unchanged to high precision. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically-polarized 3He neutron spin filters. The efficiency of the spin rotator was measured to be 98.0+/-0.8% on resonance for neutron energies from 3.3 to 18.4 meV over the full phase space of the beam. As an example of the application of this device to an experiment we describe the integration of the RF spin rotator into an apparatus to search for the small parity-violating asymmetry A_gamma in polarized cold neutron capture on para-hydrogen by the NPDGamma collaboration at LANSCE.

  4. Observation of spin-wave dispersion in Nd-Fe-B magnets using neutron Brillouin scattering

    SciTech Connect (OSTI)

    Ono, K., E-mail: kanta.ono@kek.jp; Inami, N.; Saito, K.; Takeichi, Y.; Kawana, D.; Yokoo, T.; Itoh, S. [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Yano, M.; Shoji, T.; Manabe, A.; Kato, A. [Toyota Motor Corporation, Toyota, Aichi 471-8571 (Japan); Kaneko, Y. [Toyota Central R and D Labs. Inc., Aichi 480-1192 (Japan)

    2014-05-07T23:59:59.000Z

    The low-energy spin-wave dispersion in polycrystalline Nd-Fe-B magnets was observed using neutron Brillouin scattering (NBS). Low-energy spin-wave excitations for the lowest acoustic spin-wave mode were clearly observed. From the spin-wave dispersion, we were able to determine the spin-wave stiffness constant D{sub sw} (100.0??4.9?meV.{sup 2}) and the exchange stiffness constant A (6.6 0.3 pJ/m)

  5. SPIN-DEPENDENT SCATTERING LENGTHS OF SLOW NEUTRONS WITH NUCLEI BY PSEUDOMAGNETIC MEASUREMENTS

    E-Print Network [OSTI]

    Boyer, Edmond

    conditions, the nuclear polarization in non-magnetic substances is given by the Curie law : P = C of thermal neutrons by nuclei con- tains a spin-dependent part. In the present state of nuclear theory. In analogy to magnetic scattering, the influence of the nuclear spin-dependent scattering on a pola- rized

  6. Inversion-free, noiseless Raman echoes

    E-Print Network [OSTI]

    Byoung S. Ham

    2011-11-20T23:59:59.000Z

    Using double optical Raman rephasing, an inversion-free resonant Raman echo is studied in an inhomogeneously broadened spin ensemble of a solid medium, where the Raman optical field-excited spin coherence has a frozen propagation vector. Unlike photon echoes whose quantum memory application is strictly limited due to \\pi rephasing pulse-induced population inversion causing quantum noises, the optical Raman field-excited spin echo is inherently silent owing to the frozen propagation vector. Thus, the doubly rephased Raman echo can be directly applied for quantum interface in a population inversion-free environment.

  7. Upper bound on parity-violating neutron spin rotation in {sup 4}He

    SciTech Connect (OSTI)

    Snow, W. M.; Luo, D.; Walbridge, S. B. [Indiana University/CEEM, 2401 Milo B. Sampson Lane, Bloomington, Indiana 47408 (United States); Bass, C. D.; Bass, T. D.; Mumm, H. P.; Nico, J. S. [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899 (United States); Crawford, B. E. [Gettysburg College, 300 North Washington Street, Gettysburg, Pennsylvania 17325 (United States); Gan, K.; Micherdzinska, A. M.; Opper, A. K. [The George Washington University, 725 21st Street NW, Washington, DC 20052 (United States); Heckel, B. R.; Swanson, H. E. [University of Washington/CENPA, Box 354290, Seattle, Washington 98195 (United States); Markoff, D. M. [North Carolina Central University/TUNL, 1801 Fayetteville Street, Durham, North Carolina 27707 (United States); Sarsour, M. [Georgia State University, 29 Peachtree Center Avenue, Atlanta, Georgia 30303-4106 (United States); Sharapov, E. I. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna (Russian Federation); Zhumabekova, V. [Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050038 Almaty (Kazakhstan)

    2011-02-15T23:59:59.000Z

    We report an upper bound on parity-violating neutron spin rotation in {sup 4}He. This experiment is the most sensitive search for neutron-weak optical activity yet performed and represents a significant advance in precision in comparison to past measurements in heavy nuclei. The experiment was performed at the NG-6 slow-neutron beamline at the National Institute of Standards and Technology (NIST) Center for Neutron Research. Our result for the neutron spin rotation angle per unit length in {sup 4}He is d{phi}/dz=[+1.7{+-}9.1(stat.){+-}1.4(sys.)]x10{sup -7} rad/m. The statistical uncertainty is smaller than current estimates of the range of possible values of d{phi}/dz in n+{sup 4}He.

  8. Impact of precession on aligned-spin searches for neutron-star--black-hole binaries

    E-Print Network [OSTI]

    Tito Dal Canton; Andrew P. Lundgren; Alex B. Nielsen

    2014-11-25T23:59:59.000Z

    The inclusion of aligned-spin effects in gravitational-wave search pipelines for neutron-star--black-hole binary coalescence has been shown to increase the astrophysical reach with respect to search methods where spins are neglected completely, under astrophysically reasonable assumptions about black-hole spins. However, theoretical considerations and population synthesis models suggest that many of these binaries may have a significant misalignment between the black-hole spin and the orbital angular momentum, which could lead to precession of the orbital plane during the inspiral and a consequent loss in detection efficiency if precession is ignored. This work explores the effect of spin misalignment on a search pipeline that completely neglects spin effects and on a recently-developed pipeline that only includes aligned-spin effects. Using synthetic but realistic data, which could reasonably represent the first scientific runs of advanced-LIGO detectors, the relative sensitivities of both pipelines are shown for different assumptions about black-hole spin magnitude and alignment with the orbital angular momentum. Despite the inclusion of aligned-spin effects, the loss in signal-to-noise ratio due to precession can be as large as $40\\%$, but this has a limited impact on the overall detection rate: even if precession is a predominant feature of neutron-star--black-hole binaries, an aligned-spin search pipeline can still detect at least half of the signals compared to an idealized generic precessing search pipeline.

  9. Large volume high-pressure cell for inelastic neutron scattering W. Wang, D. A. Sokolov, A. D. Huxley, and K. V. Kamenev

    E-Print Network [OSTI]

    Hall, Christopher

    Large volume high-pressure cell for inelastic neutron scattering W. Wang, D. A. Sokolov, A. D for inelastic neutron scattering measurements of quantum fluids and solids Rev. Sci. Instrum. 84, 015101 (2013) TOF-SEMSANS--Time-of-flight spin-echo modulated small-angle neutron scattering J. Appl. Phys. 112

  10. Outflows from accretion disks formed in neutron star mergers: effect of black hole spin

    E-Print Network [OSTI]

    Rodrigo Fernndez; Daniel Kasen; Brian D. Metzger; Eliot Quataert

    2014-10-09T23:59:59.000Z

    The accretion disk that forms after a neutron star merger is a source of neutron-rich ejecta. The ejected material contributes to a radioactively-powered electromagnetic transient, with properties that depend sensitively on the composition of the outflow. Here we investigate how the spin of the black hole remnant influences mass ejection on the thermal and viscous timescales. We carry out two-dimensional, time-dependent hydrodynamic simulations of merger remnant accretion disks including viscous angular momentum transport and approximate neutrino self-irradiation. The gravity of the spinning black hole is included via a pseudo-Newtonian potential. We find that a disk around a spinning black hole ejects more mass, up to a factor of several, relative to the non-spinning case. The enhanced mass loss is due to energy release by accretion occurring deeper in the gravitational potential, raising the disk temperature and hence the rate of viscous heating in regions where neutrino cooling is ineffective. The mean electron fraction of the outflow increases moderately with BH spin due to a highly-irradiated (though not neutrino-driven) wind component. While the bulk of the ejecta is still very neutron-rich, thus generating heavy r-process elements, the leading edge of the wind contains a small amount of Lanthanide-free material. This component can give rise to a ~1 day blue optical `bump' in a kilonova light curve, even in the case of prompt BH formation, which may facilitate its detection.

  11. Two-pulse stimulated echo in magnets

    E-Print Network [OSTI]

    Zviadadze, M D; Gegechkori, T O; Akhalkatsi, A M; Gavasheli, T A

    2012-01-01T23:59:59.000Z

    The results of experimental study of two-pulse stimulated echo in ferromagnets of two types are presented. Ferromagnet Co and half-metal Co MnSi 2, in which a single-pulse echo formed by the distortion mechanism of the fronts of exciting pulse is also observed, are classified among the first type. Lithium ferrite and intermetal compound MnSb characterized by the absence of single-pulse echo in them - belong to the second type. For signals of two-pulse stimulated echo in the materials of the first type a short time and a long time of relaxations are observed. The short time is about the order of value shorter less than the spin-spin relaxation time. The long time is close to the transverse relaxation time of single-pulse echo formed by the distortion mechanism. The mechanisms that provide the possible interpretations of the peculiarities of the processes of nuclear magnetic relaxation are discussed.

  12. Development of a compact in situ polarized {sup 3}He neutron spin filter at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Jiang, C. Y.; Tong, X., E-mail: tongx@ornl.gov; Brown, D. R.; Kadron, B. J.; Robertson, J. L. [Instrument and Source Design Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Chi, S.; Christianson, A. D.; Winn, B. L. [Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-07-15T23:59:59.000Z

    We constructed a compact in situ polarized {sup 3}He neutron spin filter based on spin-exchange optical pumping which is capable of continuous pumping of the {sup 3}He gas while the system is in place in the neutron beam on an instrument. The compact size and light weight of the system simplifies its utilization on various neutron instruments. The system has been successfully tested as a neutron polarizer on the triple-axis spectrometer (HB3) and the hybrid spectrometer (HYSPEC) at Oak Ridge National Laboratory. Over 70% {sup 3}He polarization was achieved and maintained during the test experiments. Over 90% neutron polarization and an average of 25% transmission for neutrons of 14.7 meV and 15 meV was also obtained.

  13. Measurements Of Spin Observables In Pseudoscalar-Meson Photo-Production Using Polarized Neutrons In Solid HD

    SciTech Connect (OSTI)

    Kageya, Tsuneo

    2014-01-01T23:59:59.000Z

    Psuedo-scalar meson photo production measurements have been carried out with longitudinally-polarized neutrons using the circularly and linearly polarized photon beams and the CLAS at Thomas Jefferson National Accelerator Facility (Jlab). The experiment aims to obtain a complete set of spin observables on an efficient neutron target. Preliminary E asymmetries for the exclusive reaction, gamma + n(p)--> pi- + p(p), selecting quasi free neutron kinematics are discussed.

  14. Test of Parity-Conserving Time-Reversal Invariance Using Polarized Neutrons and Nuclear Spin Aligned Holmium

    E-Print Network [OSTI]

    P. R. Huffman; N. R. Roberson; W. S. Wilburn; C. R. Gould; D. G. Haase; C. D. Keith; B. W. Raichle; M. L. Seely; J. R. Walston

    1996-05-24T23:59:59.000Z

    A test of parity-conserving, time-reversal non-invariance (PC TRNI) has been performed in 5.9 MeV polarized neutron transmission through nuclear spin aligned holmium. The experiment searches for the T-violating five-fold correlation via a double modulation technique - flipping the neutron spin while rotating the alignment axis of the holmium. Relative cross sections for spin-up and spin-down neutrons are found to be equal to within $1.2 \\times 10^{-5}$ (80\\% confidence). This is a two order of magnitude improvement compared to traditional detailed balance studies of time reversal, and represents the most precise test of PC TRNI in a dynamical process.

  15. Nuclear-Powered Millisecond Pulsars and the Maximum Spin Frequency of Neutron Stars

    E-Print Network [OSTI]

    Deepto Chakrabarty; Edward H. Morgan; Michael P. Muno; Duncan K. Galloway; Rudy Wijnands; Michiel van der Klis; Craig B. Markwardt

    2003-07-01T23:59:59.000Z

    Millisecond pulsars are neutron stars (NSs) that are thought to have been spun-up by mass accretion from a stellar companion. It is unknown whether there is a natural brake for this process, or if it continues until the centrifugal breakup limit is reached at submillisecond periods. Many NSs that are accreting from a companion exhibit thermonuclear X-ray bursts that last tens of seconds, caused by unstable nuclear burning on their surfaces. Millisecond brightness oscillations during bursts from ten NSs (as distinct from other rapid X-ray variability that is also observed) are thought to measure the stellar spin, but direct proof of a rotational origin has been lacking. Here, we report the detection of burst oscillations at the known spin frequency of an accreting millisecond pulsar, and we show that these oscillations always have the same rotational phase. This firmly establishes burst oscillations as nuclear-powered pulsations tracing the spin of accreting NSs, corroborating earlier evidence. The distribution of spin frequencies of the 11 nuclear-powered pulsars cuts off well below the breakup frequency for most NS models, supporting theoretical predictions that gravitational radiation losses can limit accretion torques in spinning up millisecond pulsars.

  16. Precision measurement of neutron spin asymmetry An1 at large xBj using CEBAF at 5.7 GeV

    E-Print Network [OSTI]

    Zheng, Xiaochao, 1977-

    2003-01-01T23:59:59.000Z

    Nucleon spin structure has remained one of the key issues of hadronic physics since the 1980's. Among the unsolved questions, the neutron spin structure in the valence quark region (the large Bjorken variable XBj region) ...

  17. Neutron spin structure with polarized deuterons and spectator proton tagging at EIC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cosyn, W; Guzey, V; Higinbotham, D W; Hyde, C; Kuhn, S; Nadel-Turonski, P; Park, K; Sargsian, M; Strikman, M; Weiss, C

    2014-10-27T23:59:59.000Z

    The neutron's deep-inelastic structure functions provide essential information for the flavor separation of the nucleon parton densities, the nucleon spin decomposition, and precision studies of QCD phenomena in the flavor-singlet and nonsinglet sectors. Traditional inclusive measurements on nuclear targets are limited by dilution from scattering on protons, Fermi motion and binding effects, final-state interactions, and nuclear shadowing at x << 0.1. An Electron-Ion Collider (EIC) would enable next-generation measurements of neutron structure with polarized deuteron beams and detection of forward-moving spectator protons over a wide range of recoil momenta (0 < p_R << several 100 MeV in the nucleus rest frame). The free neutron structure functions could be obtained by extrapolating the measured recoil momentum distributions to the on-shell point. The method eliminates nuclear modifications and can be applied to polarized scattering, as well as to semi-inclusive and exclusive final states. We review the prospects for neutron structure measurements with spectator tagging at EIC, the status of R&D efforts, and the accelerator and detector requirements.

  18. Measurements of spin observables in pseudo-scalar meson photo-production using polarized neutrons in solid HD

    SciTech Connect (OSTI)

    Kageya, Tsuneo [JLAB, Newport News, VA (United States)

    2014-01-01T23:59:59.000Z

    A measurement of psuedo-scalar meson photo production from longitudinally polarized solid HD has been carried out with the CLAS at Thomas Jefferson National Accelerator Facility (Jlab) with circularly and linearly polarized photon beams. Its aim is to measure a complete set of spin observables for the neutron simultaneously from the same experiment. As a polarized neutron, deutron in HD was used. Preliminary asymmetries are shown for the {pi}{sup -} channel.

  19. On the Properties of Hypermassive Neutron Stars Formed in Mergers of Spinning Binaries

    E-Print Network [OSTI]

    Wolfgang Kastaun; Filippo Galeazzi

    2014-11-28T23:59:59.000Z

    We present numerical simulations of binary neutron star (BNS) mergers, comparing irrotational binaries to binaries of NSs rotating aligned to the orbital angular momentum. For the first time, we study spinning BNSs employing nuclear physics equations of state (EOS), namely the ones of Lattimer & Swesty as well as Shen & Horowitz & Teige. We study mainly equal mass systems leading to a hypermassive neutron star (HMNS), and analyze in detail its structure and dynamics. In order to exclude gauge artifacts, we introduce a novel coordinate system used for post-processing. The results for our equal mass models show that the strong radial oscillations of the HMNS modulate the instantaneous frequency of the gravitational wave (GW) signal to an extend that leads to separate peaks in the corresponding Fourier spectrum. In particular, the high frequency peaks which are often attributed to combination frequencies can also be caused by the modulation of the m=2 mode frequency in the merger phase. As a consequence for GW data analysis, the offset of the high frequency peak does not necessarily carry information about the radial oscillation frequency. Further, the low frequency peak in our simulations is dominated by the contribution of the plunge and the first 1-2 bounces. The amplitude of the radial oscillations depends on the initial NS spin, which therefore has a complicated influence on the spectrum. Another important result is that HMNSs can consist of a slowly rotating core with an extended, massive envelope rotating close to Keplerian velocity, contrary to the common notion that a rapidly rotating core is necessary to prevent a prompt collapse. Finally, our estimates on the amount of unbound matter show a dependency on the initial NS spin, explained by the influence of the latter on the amplitude of radial oscillations, which in turn cause shock waves.

  20. Implementing a search for aligned-spin neutron star -- black hole systems with advanced ground based gravitational wave detectors

    E-Print Network [OSTI]

    Tito Dal Canton; Alexander H. Nitz; Andrew P. Lundgren; Alex B. Nielsen; Duncan A. Brown; Thomas Dent; Ian W. Harry; Badri Krishnan; Andrew J. Miller; Karl Wette; Karsten Wiesner; Joshua L. Willis

    2014-10-27T23:59:59.000Z

    We study the effect of spins on searches for gravitational waves from compact binary coalescences in realistic simulated early advanced LIGO data. We construct a detection pipeline including matched filtering, signal-based vetoes, a coincidence test between different detectors, and an estimate of the rate of background events. We restrict attention to neutron star--black hole (NS-BH) binary systems, and we compare a search using non-spinning templates to one using templates that include spins aligned with the orbital angular momentum. To run the searches we implement the binary inspiral matched-filter computation in PyCBC, a new software toolkit for gravitational-wave data analysis. We find that the inclusion of aligned-spin effects significantly increases the astrophysical reach of the search. Considering astrophysical NS-BH systems with non-precessing black hole spins, for dimensionless spin components along the orbital angular momentum uniformly distributed in $(-1, 1)$, the sensitive volume of the search with aligned-spin templates is increased by $\\sim 50\\%$ compared to the non-spinning search; for signals with aligned spins uniformly distributed in the range $(0.7,1)$, the increase in sensitive volume is a factor of $\\sim 10$.

  1. High-spin structure and multiphonon {gamma} vibrations in very neutron-rich {sup 114}Ru

    SciTech Connect (OSTI)

    Yeoh, E. Y.; Wang, J. G.; Ding, H. B.; Gu, L.; Xu, Q.; Xiao, Z. G. [Department of Physics, Tsinghua University, Beijing 100084 (China); Zhu, S. J. [Department of Physics, Tsinghua University, Beijing 100084 (China); Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 (United States); Hamilton, J. H.; Li, K.; Ramayya, A. V.; Hwang, J. K. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 (United States); Liu, Y. X. [School of Science, Huzhou Teachers College, Huzhou 313000 (China); Liu, S. H. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 (United States); UNIRIB/Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831 (United States); Sun, Y. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Sheikh, J. A.; Bhat, G. H. [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Luo, Y. X. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Rasmussen, J. O.; Lee, I. Y. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ma, W. C. [Department of Physics, Mississippi State University, Mississippi State, Mississippi 39762 (United States)

    2011-05-15T23:59:59.000Z

    High-spin levels of the neutron-rich {sup 114}Ru have been investigated by measuring the prompt {gamma} rays in the spontaneous fission of {sup 252}Cf. The ground-state band and one-phonon {gamma}-vibrational band have been extended up to 14{sup +} and 9{sup +}, respectively. Two levels are proposed as the members of a two-phonon {gamma}-vibrational band. A back bending (band crossing) has been observed in the ground-state band at ({h_bar}/2{pi}){omega}{approx_equal} 0.40 MeV. Using the triaxial deformation parameters, the cranked shell model calculations indicate that this back bending in {sup 114}Ru should originate from the alignment of a pair of h{sub 11/2} neutrons. Triaxial projected shell model calculations for the {gamma}-vibrational band structures of {sup 114}Ru are in good agreement with the experimental data. However, when using the oblate deformation parameters, both of the above-calculated results are not in agreement with the experimental data.

  2. Beta-delayed neutron and gamma-ray spectroscopy of 17C utilizing spin-polarized 17B

    E-Print Network [OSTI]

    H. Ueno; H. Miyatake; Y. Yamamoto; S. Tanimoto; T. Shimoda; N. Aoi; K. Asahi; E. Ideguchi; M. Ishihara; H. Izumi; T. Kishida; T. Kubo; S. Mitsuoka; Y. Mizoi; M. Notani; H. Ogawa; A. Ozawa; M. Sasaki; T. Shirakura; N. Takahashi; K. Yoneda

    2013-01-31T23:59:59.000Z

    Excited states in 17C were investigated through the measurement of beta?-delayed neutrons and gamma rays emitted in the ? decay of 17B. In the measurement, three negative-parity states and two inconclusive states, were identified in 17C above the neutron threshold energy, and seven gamma-lines were identified in a beta?-delayed multiple neutron emission of the 17B ? decay. From these transitions, the beta?-decay scheme of 17B was determined. In the present work, the ?beta-NMR technique is combined with the ?-delayed particle measurements using a fragmentation-induced spin-polarized 17B beam. This new scheme allows us to determine the spin parity of beta?-decay feeding excited states based on the difference in the discrete ?beta-decay asymmetry parameters, provided the states are connected through the Gamow-Teller transition. In this work, 1/2-, 3/2-, and (5/2-) are assigned to the observed states at Ex = 2.71(2), 3.93(2), and 4.05(2) MeV in 17C, respectively.

  3. Beta-delayed neutron and gamma-ray spectroscopy of 17C utilizing spin-polarized 17B

    E-Print Network [OSTI]

    Ueno, H; Yamamoto, Y; Tanimoto, S; Shimoda, T; Aoi, N; Asahi, K; Ideguchi, E; Ishihara, M; Izumi, H; Kishida, T; Kubo, T; Mitsuoka, S; Mizoi, Y; Notani, M; Ogawa, H; Ozawa, A; Sasaki, M; Shirakura, T; Takahashi, N; Yoneda, K

    2013-01-01T23:59:59.000Z

    Excited states in 17C were investigated through the measurement of beta?-delayed neutrons and gamma rays emitted in the ? decay of 17B. In the measurement, three negative-parity states and two inconclusive states, were identified in 17C above the neutron threshold energy, and seven gamma-lines were identified in a beta?-delayed multiple neutron emission of the 17B ? decay. From these transitions, the beta?-decay scheme of 17B was determined. In the present work, the ?beta-NMR technique is combined with the ?-delayed particle measurements using a fragmentation-induced spin-polarized 17B beam. This new scheme allows us to determine the spin parity of beta?-decay feeding excited states based on the difference in the discrete ?beta-decay asymmetry parameters, provided the states are connected through the Gamow-Teller transition. In this work, 1/2-, 3/2-, and (5/2-) are assigned to the observed states at Ex = 2.71(2), 3.93(2), and 4.05(2) MeV in 17C, respectively.

  4. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect (OSTI)

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J. [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom); Blundell, S. J.; Lancaster, T. [Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S. [Cryogenic Limited, 30 Acton Park Industrial Estate, The Vale, Acton, London W3 7QE (United Kingdom); Scheuermann, R. [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Salman, Z. [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom); Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom)

    2011-07-15T23:59:59.000Z

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  5. Spin exchange optical pumping based polarized {sup 3}He filling station for the Hybrid Spectrometer at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Jiang, C. Y.; Tong, X.; Brown, D. R.; Culbertson, H.; Kadron, B.; Robertson, J. L. [Instrument and Source Design Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Graves-Brook, M. K. [Research Accelerator Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Hagen, M. E. [Neutron Data Analysis and Visualization Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Lee, W. T. [Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Winn, B. [Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2013-06-15T23:59:59.000Z

    The Hybrid Spectrometer (HYSPEC) is a new direct geometry spectrometer at the Spallation Neutron Source at the Oak Ridge National Laboratory. This instrument is equipped with polarization analysis capability with 60 Degree-Sign horizontal and 15 Degree-Sign vertical detector coverages. In order to provide wide angle polarization analysis for this instrument, we have designed and built a novel polarized {sup 3}He filling station based on the spin exchange optical pumping method. It is designed to supply polarized {sup 3}He gas to HYSPEC as a neutron polarization analyzer. In addition, the station can optimize the {sup 3}He pressure with respect to the scattered neutron energies. The depolarized {sup 3}He gas in the analyzer can be transferred back to the station to be repolarized. We have constructed the prototype filling station. Preliminary tests have been carried out demonstrating the feasibility of the filling station. Here, we report on the design, construction, and the preliminary results of the prototype filling station.

  6. MAGNETIC NEUTRON SCATTERING

    SciTech Connect (OSTI)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30T23:59:59.000Z

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science, ranging from large-scale structures and dynamics of polymers and biological systems, to electronic properties of today's technological materials. Neutron scattering developed into a vast field, encompassing many different experimental techniques aimed at exploring different aspects of matter's atomic structure and dynamics. Modern magnetic neutron scattering includes several specialized techniques designed for specific studies and/or particular classes of materials. Among these are magnetic reflectometry aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy for glasses and polymers. Each of these techniques and many others offer exciting opportunities for examining magnetism and warrant extensive reviews, but the aim of this chapter is not to survey how different neutron-scattering methods are used to examine magnetic properties of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron scattering, and on the recent developments in applying one of the oldest methods, the triple axis spectroscopy, that still is among the most extensively used ones. The developments discussed here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed in Chapter 3.

  7. Slow and static spin correlations in Dy(2+x)Ti(2-x)O(7-d)

    SciTech Connect (OSTI)

    Gardner, Jason [Indiana University; Ehlers, Georg [ORNL; Fouquet, Peter [Institut Laue-Langevin (ILL); Farago, Bela [Institut Laue-Langevin (ILL); Stewart, John Ross [ISIS Facility, Rutherford Appleton Laboratory

    2011-01-01T23:59:59.000Z

    The static and dynamic spin correlations in the spin ices Dy{sub 2.3}Ti{sub 1.7}O{sub 6.85} and Dy{sub 2}Ti{sub 2}O{sub 7} have been studied in polarized neutron diffraction and neutron spin echo experiments. The measurements reveal that, below 100 mK, the magnetic scattering braodens and shifts to higher |Q| upon stuffing the pyrochlore lattice with additional Dy{sup 3+} ions. These observations can be related, by means of reverse Monte Carlo simulation, to the modified distribution of near-neighbour distances and an overall more antiferromagnetic character of the near-neighbour couplings. The dynamic measurements show that the spin correlations are slower in the stuffed system. These results will be discussed and compared to the holmium analogues.

  8. Q-dependence of the inelastic neutron scattering cross section for molecular spin clusters with high molecular symmetry

    E-Print Network [OSTI]

    O. Waldmann

    2003-04-21T23:59:59.000Z

    For powder samples of polynuclear metal complexes the dependence of the inelastic neutron scattering intensity on the momentum transfer Q is known to be described by a combination of so called interference terms. They reflect the interplay between the geometrical structure of the compound and the spatial properties of the wave functions involved in the transition. In this work, it is shown that the Q-dependence is strongly interrelated with the molecular symmetry of molecular nanomagnets, and, if the molecular symmetry is high enough, is actually completely determined by it. A general formalism connecting spatial symmetry and interference terms is developed. The arguments are detailed for cyclic spin clusters, as experimentally realized by e.g. the octanuclear molecular wheel Cr8, and the star like tetranuclear cluster Fe4.

  9. A toy model for coupling accretion disk oscillations to the neutron star spin

    E-Print Network [OSTI]

    J. Petri

    2005-09-02T23:59:59.000Z

    Lee, Abramowicz & Kluzniak (2004) demonstrated numerically that rotation of neutron star couples with oscillations of its accretion disk, and excites resonances. No specific coupling was assumed, but magnetic field was suggested as the most likely one. Following this idea, we show (Petri 2005) that if the neutron star is non-axially symmetric and rotating, its gravity may provide the coupling and excite resonances. Here, we return to the original suggestion that the coupling is of a magnetic origin, and demonstrate how does it work in terms of a simple, analytic toy-model.

  10. Precise determination of the spin structure function $\\mathbf{g_1}$ of the proton, deuteron and neutron

    E-Print Network [OSTI]

    Airapetian, A; Akopov, Z; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Belostotskii, S; Bianchi, N; Blok, H P; Bttcher, H; Borisov, A; Borysenko, A; Brll, A; Bryzgalov, V; Capiluppi, M; Capitani, G P; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Devitsin, E; Diefenthaler, M; Di Nezza, P; Dreschler, J; Dren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Funel, A; Gabbert, D; Grber, Y; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Gavrilov, G; Karibian, V; Giordano, F; Grebenyuk, O; Gregor, I M; Guler, H; Gute, A; Hadjidakis, C; Hartig, M; Hasch, D; Hasegawa, T; Hesselink, W H A; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Hristova, I; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Keri, T; Kinney, E; Kiselev, A; Kobayashi, T; Kopytin, M; Korotkov, V; Kozlov, V; Krauss, B; Kravchenko, P; Krivokhizhin, V G; Lagamba, L; Lapikas, L; Lenisa, P; Liebing, P; Linden-Levy, L A; Lorenzon, W; L, J; Lu, S; Ma, B Q; Maiheu, B; Makins, N C R; Mao, Y; Marianski, B; Marukyan, H; Masoli, F; Mexner, V; Meyners, N; Michler, T; Miklukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Murray, M; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Negodaev, M; Nowak, Wolf-Dieter; Ohsuga, H; Osborne, A; Perez-Benito, R; Pickert, N; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Savin, I; Schfer, A; Schnell, G; Schler, K P; Seele, J; Seitz, B; Shearer, C; Shibata, T A; Shutov, V; Sinram, K; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Stsslein, U; Streit, J; Tait, P; Tanaka, H; Taroian, S P; Tchuiko, B; Terkulov, A R; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Van Haarlem, Y; Veretennikov, D; Vikhrov, V; Vogel, C; Wang, S; Weiskopf, C; Ye, Y; Ye, Z; Yen, S; Zihlmann, B; Zupranski, P

    2006-01-01T23:59:59.000Z

    Precise measurements of the spin structure functions of the proton $g_1^p(x,Q^2)$ and deuteron $g_1^d(x,Q^2)$ are presented over the kinematic range $0.0041 \\leq x \\leq 0.9$ and $0.18 $ GeV$^2$ $\\leq Q^2 \\leq 20$ GeV$^2$. The data were collected at the HERMES experiment at DESY, in deep-inelastic scattering of 27.6 GeV longitudinally polarized positrons off longitudinally polarized hydrogen and deuterium gas targets internal to the HERA storage ring. The neutron spin structure function $g_1^n$ is extracted by combining proton and deuteron data. The integrals of $g_1^{p,d}$ at $Q^2=5$ GeV$^2$ are evaluated over the measured $x$ range. Neglecting any possible contribution to the $g_1^d$ integral from the region $x \\leq 0.021$, a value of $0.330 \\pm 0.011\\mathrm{(theo.)}\\pm0.025\\mathrm{(exp.)}\\pm 0.028$(evol.) is obtained for the flavor-singlet axial charge $a_0$ in a leading-twist NNLO analysis.

  11. A new code for quasi-equilibrium initial data of binary neutron stars: corotating, irrotational and slowly spinning systems

    E-Print Network [OSTI]

    Tsokaros, Antonios; Rezzolla, Luciano

    2015-01-01T23:59:59.000Z

    We present the extension of our \\cocal~- Compact Object CALculator - code to compute general-relativistic initial data for asymmetric binary compact-star systems. We construct quasi-equilibrium initial data for spinning binaries and multiple coordinate systems are employed. The Isenberg-Wilson-Mathews formalism is adopted and the constraint equations are solved using the representation formula with a suitable choice of a Green's function. We validate the new code with solutions for equal-mass binaries and explore its capabilities for a wide range of compactnesses, from a white dwarf binary with compactness $\\sim 10^{-4}$, up to a highly relativistic neutron-star binary with compactness $\\sim 0.22$. We also present a comparison with corotating and irrotational quasi-equilibrium sequences from the spectral code \\lorene~\\cite{TG2002b} with different compactness, showing that the results from the two codes agree to a precision of the order of $0.05\\%$. Finally, we present equilibria for spinning configurations wi...

  12. A new code for quasi-equilibrium initial data of binary neutron stars: corotating, irrotational and slowly spinning systems

    E-Print Network [OSTI]

    Antonios Tsokaros; Koji Uryu; Luciano Rezzolla

    2015-02-19T23:59:59.000Z

    We present the extension of our \\cocal~- Compact Object CALculator - code to compute general-relativistic initial data for asymmetric binary compact-star systems. We construct quasi-equilibrium initial data for spinning binaries and multiple coordinate systems are employed. The Isenberg-Wilson-Mathews formalism is adopted and the constraint equations are solved using the representation formula with a suitable choice of a Green's function. We validate the new code with solutions for equal-mass binaries and explore its capabilities for a wide range of compactnesses, from a white dwarf binary with compactness $\\sim 10^{-4}$, up to a highly relativistic neutron-star binary with compactness $\\sim 0.22$. We also present a comparison with corotating and irrotational quasi-equilibrium sequences from the spectral code \\lorene~\\cite{TG2002b} with different compactness, showing that the results from the two codes agree to a precision of the order of $0.05\\%$. Finally, we present equilibria for spinning configurations with a nuclear-physics equation of state in a piecewise polytropic representation.

  13. Measurement of the Spin Structure of the Neutron using Polarised Deep Inelastic Scattering

    E-Print Network [OSTI]

    with a polarised internal gas target of hydrogen, deuterium or 3 He for the study of the spin structure Himmel ist, erfassen, Die Wissenschaft und die Natur. Mephistopheles Da seid Ihr auf der rechten Spur are not learned from books and being in Canada has changed and enriched my life more than I ever would have

  14. Dynamics of quantum spin liquid and spin solid phases in IPA-CuCl3 under an applied magnetic field studied with neutron scattering

    SciTech Connect (OSTI)

    Zheludev, Andrey I [ORNL; Garlea, Vasile O [ORNL; Masuda, T. [Yokohama City University, Japan; Manaka, H. [Kagoshima University, Kagoshima JAPAN; Regnault, L.-P. [CEA, Grenoble, France; Ressouche, E. [CEA, Grenoble, France; Grenier, B. [CEA, Grenoble, France; Chung, J.-H. [National Institute of Standards and Technology (NIST); Qiu, Y. [National Institute of Standards and Technology (NIST); Habicht, Klaus [Hahn-Meitner Institut, Berlin, Germany; Kiefer, K. [Hahn-Meitner Institut, Berlin, Germany; Boehm, Martin [Institut Laue-Langevin (ILL)

    2007-01-01T23:59:59.000Z

    Inelastic and elastic neutron scattering is used to study spin correlations in the quasi-one-dimensional quantum antiferromagnet IPA-CuCl3 in strong applied magnetic fields. A condensation of magnons and commensurate transverse long-range ordering is observe at a critical field Hc=9.5 T. The field dependencies of the energies and polarizations of all magnon branches are investigated both below and above the transition point. Their dispersion is measured across the entire one-dimensional Brillouin zone in magnetic fields up to 14 T. The critical wave vector of magnon spectrum truncation Masuda et al., Phys. Rev. Lett. 96, 047210 2006 is found to shift from hc0,35 at HHC to hc=0.25 for HHC. A drastic reduction of magnon bandwidths in the ordered phase Garlea et al., Phys. Rev. Lett. 98, 167202 2007 is observed and studied in detail. New features of the spectrum, presumably related to this bandwidth collapse, are observed just above the transition field.

  15. Emergence of magnetic field due to spin-polarized baryon matter in neutron stars

    E-Print Network [OSTI]

    M. Kutschera

    1999-07-28T23:59:59.000Z

    A model of the ferromagnetic origin of magnetic fields of neutron stars is considered. In this model, the magnetic phase transition occurs inside the core of neutron stars soon after formation. However, owing to the high electrical conductivity the core magnetic field is initially fully screened. We study how this magnetic field emerges for an outside observer. After some time, the induced field that screens the ferromagnetic field decays enough to uncover a detectable fraction of the ferromagnetic field. We conjecture that weak fields of millisecond pulsars of 10^8-10^9 G could be identified with ferromagnetic fields of unshielded fraction f=10^-4 resulting from the decay of screening fields by a factor 1-f in 10^8 yr since their birth.

  16. Measurement of spin-dependent total cross-section difference $??_T$ in neutron-proton scattering at 16 MeV

    E-Print Network [OSTI]

    J. Broz; J. Cerny; Z. Dolezal; G. M. Gurevich M. Jirasek; P. Kubik; A. A. Lukhanin; J. Svejda; I. Wilhelm; N. S. Borisov; Yu. M. Kazarinov B. A. Khachaturov; E. S. Kuzmin; V. N. Matafonov; A. B. Neganov; I. L. Pisarev; Yu. A. Plis; Yu. A. Usov; M. Rotter; B. Sedlak

    1995-07-28T23:59:59.000Z

    A new measurement of $\\Delta\\sigma_T$ for polarized neutrons transmitted through a polarized proton target at 16.2 MeV has been made. A polarized neutron beam was obtained from the $^{3}\\rm{H}(d,\\vec n)^{4}\\rm{He}$ reaction; proton polarization over 90\\% was achieved in a frozen spin target of 20 cm$^3$ volume. The measurement yielded the value $\\Delta\\sigma_T=(-126\\pm21\\pm14)$ mb. The result of a simple phase shift analysis for the $^3S_1-^3D_1$ mixing parameter $\\epsilon_1$ is presented and compared with the theoretical potential model predictions.

  17. Long-range ordering of reduced magnetic moments in the spin-gap compound CeOs{sub 2}Al{sub 10} as seen via muon spin relaxation and neutron scattering

    SciTech Connect (OSTI)

    Adroja, D. T.; Hillier, A. D.; Kockelmann, W. A.; Anand, V. K.; Stewart, J. R.; Taylor, J. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot Oxon OX11 0QX (United Kingdom); Deen, P. P. [Institute Laue-Langevin, BP 156, 6 Rue Jules Horowitz, 38042 Grenoble Cedex (France); Strydom, A. M. [Physics Department, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Muro, Y.; Kajino, J.; Takabatake, T. [Department of Quantum Matter, ADSM, and IAMR, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan)

    2010-09-01T23:59:59.000Z

    We have carried out neutron diffraction, muon spin relaxation ({mu}SR), and inelastic neutron scattering (INS) investigations on a polycrystalline sample of CeOs{sub 2}Al{sub 10} to investigate the nature of the phase transition observed near 29 K in the resistivity and heat capacity. Our {mu}SR data clearly reveal coherent frequency oscillations below 28 K, indicating the presence of an internal field at the muon site, which confirms the long-range magnetic ordering of the Ce moment below 28 K. Upon cooling the sample below 15 K, unusual behavior of the temperature-dependent {mu}SR frequencies may indicate either a change in the muon site, consistent with the observation of superstructure reflections in electron diffraction, or a change in the ordered magnetic structure. Neutron diffraction data do not reveal any clear sign of either magnetic Bragg peaks or superlattice reflections. Furthermore, INS measurements clearly reveal the presence of a sharp inelastic excitation near 11 meV between 5 and 26 K, due to opening of a gap in the spin-excitation spectrum, which transforms into a broad response at and above 30 K. The magnitude of the spin gap (11 meV) as derived from the INS peak position agrees very well with the gap value as estimated from the bulk properties.

  18. Thermodynamic and neutron scattering study of the spin- 1/2 kagome antiferromagnet ZnCu?(OH)?Cl? : a quantum spin liquid system

    E-Print Network [OSTI]

    Han, Tianheng, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    New physics, such as a quantum spin liquid, can emerge in systems where quantum fluctuations are enhanced due to reduced dimensionality and strong frustration. The realization of a quantum spin liquid in two-dimensions ...

  19. Measurements of the Double-Spin Asymmetry A{sub 1} on Helium-3: Toward a Precise Measurement of the Neutron A{sub 1}

    SciTech Connect (OSTI)

    Parno, Diana Seymour [Carnegie Mellon University

    2011-04-01T23:59:59.000Z

    The spin structure of protons and neutrons has been an open question for nearly twenty-five years, after surprising experimental results disproved the simple model in which valence quarks were responsible for nearly 100% of the nucleon spin. Diverse theoretical approaches have been brought to bear on the problem, but a shortage of precise data - especially on neutron spin structure - has prevented a thorough understanding. Experiment E06-014, conducted in Hall A of Jefferson Laboratory in 2009, presented an opportunity to add to the world data set for the neutron in the poorly covered valence-quark region. Jefferson Laboratory's highly polarized electron beam, combined with Hall A's facilities for a high-density, highly polarized {sup 3}He target, allowed a high-luminosity double-polarized experiment, while the large acceptance of the BigBite spectrometer gave coverage over a wide kinematic range: 0.15 < x < 0.95. In this work, we present the analysis of a portion of the E06-014 data, measured with an incident beam energy of 4.74 GeV and spanning 1.5 < Q{sup 2} < 5.5 (GeV/c){sup 2}. From these data, we extract the longitudinal asymmetry in virtual photon-nucleon scattering, A{sub 1}, on the {sup 3}He nucleus. Combined with the remaining E06-014 data, this will form the basis of a measurement of the neutron asymmetry A{sup n}{sub 1} that will extend the kinematic range of the data available to test models of spin-dependent parton distributions in the nucleon.

  20. Effects of droplet fluctuations on the scattering of neutrons and light by microemulsions

    E-Print Network [OSTI]

    V. Lisy; B. Brutovsky

    2000-10-26T23:59:59.000Z

    Beginning from the first neutron spin-echo study of the shape fluctuations of microemulsion droplets [J.S. Huang, S.T. Milner, B. Farago, and D. Richter, Phys. Rev. Lett. 59, 2600 (1987)] these experiments are incorrectly interpreted in the literature. This is due to an inappropriate account for the fluctuations and the erroneous application of the original theory to the experiments (see [V. Lisy and B. Brutovsky, Czech. J. Phys. 50, 239 (2000)]). In the presented work both these shortcomings are corrected. We develop the theory of static and dynamic light and neutron scattering from droplet microemulsions. The fluids inside and out of the droplets are separated by a surfactant layer of arbitrary thickness. The scattering functions consistently take into account thermal fluctuations of the shapes of such double-layered spheres to the second order in the changes of their radius. The relaxation times and correlation functions of the fluctuations are found within the Helfrich's theory of interfacial elasticity. The theory is applied to the quantitative description of small-angle neutron scattering, neutron spin-echo spectroscopy and dynamic light scattering experiments. Basic characteristics of the microemulsions, extracted from the fits to the experimental data, significantly differ from those determined in the original works. We include into the consideration the viscosity of the surface layer and give its estimation for the octane-C10E5- water microemulsion.

  1. Echoes and Revival Echoes in Systems of Anharmonically Confined Atoms

    E-Print Network [OSTI]

    Herrera, Mark; Ott, Edward; Fishman, Shmuel

    2012-01-01T23:59:59.000Z

    We study echoes and what we call 'revival echoes' for a collection of atoms that are described by a single quantum wavefunction and are confined in a weakly anharmonic trap. The echoes and revival echoes are induced by applying two, successive temporally localized potential perturbations to the confining potential, one at time $t=0$, and a smaller one at time $t=\\tau$. Pulse-like responses in the expectation value of position $$ are predicted at $t \\approx n\\tau$ ($n=2,3,...$) and are particularly evident at $t = 2\\tau$. A novel result of our study is the finding of 'revival echoes'. Revivals (but not echoes) occur even if the second perturbation is absent. In particular, in the absence of the second perturbation, the response to the first perturbation dies away, but then reassembles, producing a response at revival times $mT_x$ ($m=1,2,...$). Including the second perturbation at $t=\\tau$, we find temporally localized responses, revival echoes, both before and after $t\\approx mT_x$, e.g., at $t\\approx m T_x-n...

  2. Single Spin Asymmetries in Proton-Proton and Proton-Neutron Scattering at 820 GeV

    E-Print Network [OSTI]

    Wolf-Dieter Nowak

    1995-01-11T23:59:59.000Z

    The physics case is summarised for the investigation of high energy spin phenomena by placing an internal polarised target into HERA's unpolarised proton beam. The luminosity and experimental sensitivity are discussed. Estimating the physics reach of single spin asymmetries in different final states reveals a considerable physics potential in testing the spin sector of perturbative QCD.

  3. A high resolution neutron scattering study of Tb2Mo2O7: A geometrically frustrated and disorder-free spin glass

    SciTech Connect (OSTI)

    Ehlers, Georg [ORNL; Gardner, Jason [Indiana University; Qiu, Y. [National Institute of Standards and Technology (NIST); Rule, K [Helmholtz-Zentrum Berlin; Greedan, John E [McMaster University; Stewart, John Ross [ISIS Facility, Rutherford Appleton Laboratory; Fouquet, Peter [Institut Laue-Langevin (ILL); Cornelius, A. L. [University of Nevada, Las Vegas; Adriano, Cris [ORNL; Pagliuso, P G [Instituto de Fisica Gleb Wataghin, Unicamp, Brazil

    2010-01-01T23:59:59.000Z

    Neutron scattering, muon spin relaxation, and de susceptibility studies have been carried out on polycrystalline Tb{sub 2}Ti{sub 2}O{sub 7}, a pyrochlore antiferromagnet in which the Tb{sup 3+} moments reside on a network of corner-sharing tetrahedra. Unlike other geometrically frustrated systems, Tb{sub 2}Ti{sub 2}O{sub 7} remains paramagnetic down to {approx}0.07 K, rather than ordering into a conventional Neel or spin-glass-like state, despite the fact that short-range antiferromagnetic correlations (AFC) develop at {approx}50 K. At the first AFC wave vector, its low-lying, relatively flat magnetic excitation spectrum softens partially below 30 K.

  4. Level crossings and zero-field splitting in the {Cr8}-cubane spin-cluster studied using inelastic neutron scattering and magnetization

    SciTech Connect (OSTI)

    Vaknin, D. [Ames Laboratory; Garlea, Vasile O [ORNL; Demmel, F. [ISIS Facility, Rutherford Appleton Laboratory; Mamontov, Eugene [ORNL; Nojiri, H [Institute for Materials Research, Tohoku University, Sendai, Japan; Martin, Catalin [Florida State University; Chiorescu, Irinel [Florida State University; Qiu, Y. [National Institute of Standards and Technology (NIST); Luban, M. [Ames Laboratory; Kogerler, P. [Ames Laboratory; Fielden, J. [Ames Laboratory; Engelhardt, L [Francis Marion University, Florence, South Sarolina; Rainey, C [Francis Marion University, Florence, South Sarolina

    2010-01-01T23:59:59.000Z

    Inelastic neutron scattering (INS) in variable magnetic field and high-field magnetization measurements in the millikelvin temperature range were performed to gain insight into the low-energy magnetic excitation spectrum and the field-induced level crossings in the molecular spin cluster {Cr8}-cubane. These complementary techniques provide consistent estimates of the lowest level-crossing field. The overall features of the experimental data are explained using an isotropic Heisenberg model, based on three distinct exchange interactions linking the eight CrIII paramagnetic centers (spins s = 3/2), that is supplemented with a relatively large molecular magnetic anisotropy term for the lowest S = 1 multiplet. It is noted that the existence of the anisotropy is clearly evident from the magnetic field dependence of the excitations in the INS measurements, while the magnetization measurements are not sensitive to its effects.

  5. Measurement of the 3He Spin Structure Functions in the Resonance Region: A Test of Quark-Hadron Duality on the Neutron

    SciTech Connect (OSTI)

    Patricia Solvignon

    2006-08-31T23:59:59.000Z

    One of the biggest challenges in the study of the nucleon structure is the understanding of the transition from partonic degrees of freedom to hadronic degrees of freedom. In 1970, Bloom and Gilman noticed that structure function data taken at SLAC in the resonance region average to the scaling curve of deep inelastic scattering (DIS). Early theoretical interpretations suggested that these two very different regimes can be linked under the condition that the quark-gluon and quark-quark interactions are suppressed. Substantial efforts are ongoing to investigate this phenomenon both experimentally and theoretically. Quark-hadron duality has been confirmed for the unpolarized structure function F{sub 2} of the proton and the deuteron using data from the experimental Hall C at Jefferson Lab (JLab). Indications of duality have been seen for the proton polarized structure function g{sub 1} and the virtual photon asymmetry A{sub 1} at JLab Hall B and HERMES. Because of the different resonance behavior, it is expected that the onset of duality for the neutron will happen at lower momentum transfer than for the proton. Now that precise spin structure data in the DIS region are available at large x, data in the resonance region are greatly needed in order to test duality in spin-dependent structure functions. The goal of experiment E01-012 was to provide such data on the neutron ({sup 3}He) in the moderate momentum transfer (Q{sup 2}) region, 1.0 < Q{sup 2} < 4.0 (GeV/c{sup 2}), where duality is expected to hold. The experiment ran successfully in early 2003 at Jefferson Lab in Hall B. It was an inclusive measurement of longitudinally polarized electrons scattering from a longitudinally or transversely polarized {sup 3}He target. Asymmetries and cross section differences were measured in order to extract the {sup 3}He spin structure function g{sub 1} and virtual photon asymmetry A{sub 1} in the resonance region. A test of quark-hadron duality has then been performed for the {sup 3}He and neutron structure functions. The study of spin duality for the neutron will provide a better understanding of the mechanism of the strong interaction. Moreover, if duality is well understood, our resonance data will bring information on the high x region where theoretical predictions for A{sub 1} are drastically different.

  6. Dr. Ferenc Mezei, Los Alamos National Laboratory, Los Alamos, NM

    ScienceCinema (OSTI)

    Dr. Ferenc Mezei

    2010-01-08T23:59:59.000Z

    Neutron Spin Echo Spectroscopy: History and Outlook. Presented at the Workshop on Spin Echo Spectroscopy 2009 at Oak Ridge National Laboratory on November 4, 2009.

  7. Distinguishing S-plus-minus and S-plus-plus electron pairing symmetries by neutron spin resonances in superconducting Sodium-Iron-Cobalt-Arsenic (transitional temperature = 18 Kelvin)

    SciTech Connect (OSTI)

    Das, Tanmoy [Los Alamos National Laboratory; Balatsky, Alexander V. [Los Alamos National Laboratory; Zhang, Chenglin [University of Tennessee, Knoxville, Tennessee; Li, Haifeng [Institut fur Festkorperforschung, Julich, Germany; Su, Yiki [The University of Tennessee, Knoxville, Tennessee; Nethertom, Tucker [The University of Tennessee, Knoxville, Tennessee; Redding, Caleb [The University of Tennessee, Knoxville, Tennessee; Carr, Scott [The University of Tennessee, Knoxville, Tennessee; Schneidewind, Astrid [Forschungsneutronenquelle Heinz, Garching, Germany; Faulhaber, Enrico [Gemeinsame Forschergruppe HZB, Berlin, Germany; Li, Shiliang [Institute of Physics, Chinese Academy of Sciences, Beijing, China; Yao, Daoxin [Sun Yat-Sen University, Guangzhou, China; Bruckel, Thomas [Institut fur Festkorperforschung, Julich, Germany; Dai, Pengchen [Institute of Physics, Chinese Academy of Sciences, Beijing, China; Sobolev, Oleg [Forschungsneutronenquelle Heinz, Garching, Germany

    2012-06-05T23:59:59.000Z

    A determination of the superconducting (SC) electron pairing symmetry forms the basis for establishing a microscopic mechansim for superconductivity. For iron pnictide superconductors, the s{sup {+-}}-pairing symmetry theory predicts the presence of a sharp neutron spin resonance at an energy below the sum of hole and electron SC gap energies (E {le} 2{Delta}). Although the resonances have been observed for various iron pnictide superconductors, they are broad in energy and can also be interpreted as arising from the s{sup ++}-pairing symmetry with E {ge} 2{Delta}. Here we use inelastic neutron scattering to reveal a sharp resonance at E = 7 meV in the SC NaFe{sub 0.935}Co{sub 0.045}As (T{sub c} = 18 K). By comparing our experiments with calculated spin-excitations spectra within the s{sup {+-}} and s{sup ++}-pairing symmetries, we conclude that the resonance in NaFe{sub 0.935}Co{sub 0.045}As is consistent with the s{sup {+-}}-pairing symmetry, thus eliminating s{sup ++}-pairing symmetry as a candidate for superconductivity.

  8. A measurement of. Delta. sigma. sub L (np), the difference between neutron-proton total cross sections in pure longitudinal spin states

    SciTech Connect (OSTI)

    Beddo, M.E.

    1990-10-01T23:59:59.000Z

    A measurement off {Delta}{sigma}{sub L}(np), the difference between neutron-proton total cross sections in pure longitudinal spin states, is described. The results will help determine the isospin-zero (I = 0) scattering amplitudes, which are not well known above laboratory energies of 500 MeV, whereas the isospin-one (I = 1) amplitudes are fairly well-determined to 1 GeV. Data points were taken at the Los Alamos Meson Physics Facility (LAMPF) at Los Alamos, New Mexico, for five neutron beam energies: 484, 568, 634,720 and 788 MeV; they are the first in this energy range. Polarized neutrons were produced by charge-exchange of polarized protons on a liquid deuterium target (LD{sub 2}). Large-volume neutron counters detected the neutrons that passed through a polarized proton target. The counters subtended a range of solid angles large enough to allow extrapolation of the scattered neutrons to 0{degree}. Two modifications to the LAMPF accelerator system which were made for this work are described. They included a beam buncher,'' which modified the normal rf-time structure of the proton beam and allowed for the selection of peak-energy neutrons by time-of-flight means, and a computerized beam steering program, which reduced systematic effects due to beam motion at the LD{sub 2} target. The experimental values of {Delta}{sigma}{sub L}(np) are found to be consistent with other np data, including preliminary data from SIN and Saclay, but not with some results from Argonne which used a polarized proton beam and a polarized deuteron target. The I = 0 component was extracted from {Delta}{sigma}{sub L}(np) using existing pp data (I = 1), with the unexpected result that {Delta}{sigma}{sub L}(I = 0) was found to be essentially identical in shape to {Delta}{sigma}{sub L}(I = 1). The significance of this is not yet understood.

  9. Excess wing in glass-forming glycerol and LiCl-glycerol mixtures detected by neutron scattering

    E-Print Network [OSTI]

    S. Gupta; N. Arend; P. Lunkenheimer; A. Loidl; L. Stingaciu; N. Jalarvo; E. Mamontov; M. Ohl

    2014-03-08T23:59:59.000Z

    The relaxational dynamics in glass-forming glycerol and glycerol mixed with LiCl is in-vestigated using different neutron scattering techniques. The performed neutron spin-echo experiments, which extend up to relatively long relaxation-time scales of the order of 10 ns, should allow for the detection of contributions from the so-called excess wing. This phenomenon, whose microscopic origin is controversially discussed, arises in a variety of glass formers and, until now, was almost exclusively investigated by dielectric spectros-copy and light scattering. Here we show that the relaxational process causing the excess wing also can be detected by neutron scattering, which directly couples to density fluctua-tions.

  10. E-Print Network 3.0 - advanced neutron beam Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    level Summary: . Neutrons have SPIN. They can be formed into polarized neutron beams, used to study nuclear (atomic... Spallation Neutron Source (SNS) The world's most...

  11. BLACK HOLE-NEUTRON STAR MERGERS WITH A HOT NUCLEAR EQUATION OF STATE: OUTFLOW AND NEUTRINO-COOLED DISK FOR A LOW-MASS, HIGH-SPIN CASE

    SciTech Connect (OSTI)

    Deaton, M. Brett; Duez, Matthew D. [Department of Physics and Astronomy, Washington State University, Pullman, WA 99164 (United States); Foucart, Francois; O'Connor, Evan [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8 (Canada); Ott, Christian D.; Scheel, Mark A.; Szilagyi, Bela [TAPIR, MC 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Kidder, Lawrence E.; Muhlberger, Curran D., E-mail: mbdeaton@wsu.edu, E-mail: m.duez@wsu.edu [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States)

    2013-10-10T23:59:59.000Z

    Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state (EOS) and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M{sub ?} neutron star, 5.6 M{sub ?} black hole), high-spin (black hole J/M {sup 2} = 0.9) system with the K{sub 0} = 220 MeV Lattimer-Swesty EOS. We find that about 0.08 M{sub ?} of nuclear matter is ejected from the system, while another 0.3 M{sub ?} forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (1) to make the disk much denser and more compact, (2) to cause the average electron fraction Y{sub e} of the disk to rise to about 0.2 and then gradually decrease again, and (3) to gradually cool the disk. The disk is initially hot (T ? 6 MeV) and luminous in neutrinos (L{sub ?} ? 10{sup 54} erg s{sup 1}), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution.

  12. Echo-Enabled Harmonic Generation

    SciTech Connect (OSTI)

    Stupakov, Gennady; /SLAC

    2012-06-28T23:59:59.000Z

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  13. Partial Spin Ordering and Complex Magnetic Structure in BaYFeO4: A Neutron Diffraction and High Temperature Susceptibility Study

    SciTech Connect (OSTI)

    Thompson, Corey [Florida State University, Tallahassee] [Florida State University, Tallahassee; Greedan, John [McMaster University] [McMaster University; Garlea, Vasile O [ORNL] [ORNL; Flacau, Roxana [National Research Council of Canada] [National Research Council of Canada; Tan, Malinda [California State University, Long Beach (CSULB)] [California State University, Long Beach (CSULB); Derakhshan, Shahab [California State University, Long Beach (CSULB)] [California State University, Long Beach (CSULB)

    2014-01-01T23:59:59.000Z

    The novel iron-based compound, BaYFeO4, crystallizes in the Pnma space group with two distinct Fe3+ sites, that are alternately corner-shared [FeO5]7 square pyramids and [FeO6]9 octahedra, forming into [Fe4O18]24 rings, which propagate as columns along the b-axis. A recent report shows two discernible antiferromagnetic (AFM) transitions at 36 and 48 K in the susceptibility, yet heat capacity measurements reveal no magnetic phase transitions at these temperatures. An upturn in the magnetic susceptibility measurements up to 400 K suggests the presence of shortrange magnetic behavior at higher temperatures. In this Article, variable-temperature neutron powder diffraction and hightemperature magnetic susceptibility measurements were performed to clarify the magnetic behavior. Neutron powder diffraction confirmed that the two magnetic transitions observed at 36 and 48 K are due to long-range magnetic order. Below 48 K, the magnetic structure was determined as a spin-density wave (SDW) with a propagation vector, k = (0, 0, 1/3), and the moments along the b-axis, whereas the structure becomes an incommensurate cycloid [k = (0, 0, 0.35)] below 36 K with the moments within the bc-plane. However, for both cases the ordered moments on Fe3+ are only of the order 3.0 B, smaller than the expected values near 4.5 B, indicating that significant components of the Fe moments remain paramagnetic to the lowest temperature studied, 6 K. Moreover, new high-temperature magnetic susceptibility measurements revealed a peak maximum at 550 K indicative of short-range spin correlations. It is postulated that most of the magnetic entropy is thus removed at high temperatures which could explain the absence of heat capacity anomalies at the long-range ordering temperatures. Published spin dimer calculations, which appear to suggest a k = (0, 0, 0) magnetic structure, and allow for neither low dimensionality nor geometric frustration, are inadequate to explain the observed complex magnetic structure.

  14. Light-shift modulated photon-echo

    E-Print Network [OSTI]

    Chanelire, Thierry

    2015-01-01T23:59:59.000Z

    We show that the AC-Stark shift (light-shift) is a powerful and versatile tool to control the emission of a photon-echo in the context of optical storage. As a proof-of-principle, we demonstrate that the photon-echo efficiency can be fully modulated by applying light-shift control pulses in an erbium doped solid. The control of the echo emission is attributed to the spatial gradient induced by the light-shift beam.

  15. Light-shift modulated photon-echo

    E-Print Network [OSTI]

    Thierry Chanelire; Gabriel Htet

    2015-02-24T23:59:59.000Z

    We show that the AC-Stark shift (light-shift) is a powerful and versatile tool to control the emission of a photon-echo in the context of optical storage. As a proof-of-principle, we demonstrate that the photon-echo efficiency can be fully modulated by applying light-shift control pulses in an erbium doped solid. The control of the echo emission is attributed to the spatial gradient induced by the light-shift beam.

  16. The Spin Structure of the Nucleon

    E-Print Network [OSTI]

    Filippone, B W; Ji, Xiangdong

    2001-01-01T23:59:59.000Z

    We present an overview of recent experimental and theoretical advances in our understanding of the spin structure of protons and neutrons.

  17. The Spin Structure of the Nucleon

    E-Print Network [OSTI]

    B. W. Filippone; Xiangdong Ji

    2001-01-19T23:59:59.000Z

    We present an overview of recent experimental and theoretical advances in our understanding of the spin structure of protons and neutrons.

  18. Effect of Diffusion on Bunched Beam Echo

    SciTech Connect (OSTI)

    Stupakov, G.V.; Chao, A.W.; /SLAC

    2011-09-01T23:59:59.000Z

    When a beam receives a dipole kick, its centroid signal decoheres due to the betatron tune spread in the beam. Long after the signal has decohered, however, a followup quadrupole kick to the beam brings a pronounced echo back to the centroid signal. This echo effect has been analyzed for the case of a bunched beam in Ref. [1]. In this work, the perturbation calculation of Ref. [1] is extended to include a diffusion in betatron amplitude. The effect of diffusion on the magnitude of the echo is then parameterized and studied.

  19. EChO - Exoplanet Characterisation Observatory

    E-Print Network [OSTI]

    Tinetti, G; Henning, T; Meyer, M; Micela, G; Ribas, I; Stam, D; Swain, M; Krause, O; Ollivier, M; Pace, E; Swinyard, B; Aylward, A; van Boekel, R; Coradini, A; Encrenaz, T; Snellen, I; Zapatero-Osorio, M R; Bouwman, J; Cho, J Y-K; Foresto, V Coud du; Guillot, T; Lopez-Morales, M; Mueller-Wodarg, I; Palle, E; Selsis, F; Sozzetti, A; Ade, P A R; Achilleos, N; Adriani, A; Agnor, C B; Afonso, C; Prieto, C Allende; Bakos, G; Barber, R J; Barlow, M; Bernath, P; Bezard, B; Bord, P; Brown, L R; Cassan, A; Cavarroc, C; Ciaravella, A; Cockell, C O U; Coustenis, A; Danielski, C; Decin, L; De Kok, R; Demangeon, O; Deroo, P; Doel, P; Drossart, P; Fletcher, L N; Focardi, M; Forget, F; Fossey, S; Fouqu, P; Frith, J; Galand, M; Gaulme, P; Hernndez, J I Gonzlez; Grasset, O; Grassi, D; Grenfell, J L; Griffin, M J; Griffith, C A; Grzinger, U; Guedel, M; Guio, P; Hainaut, O; Hargreaves, R; Hauschildt, P H; Heng, K; Heyrovsky, D; Hueso, R; Irwin, P; Kaltenegger, L; Kervella, P; Kipping, D; Koskinen, T T; Kovcs, G; La Barbera, A; Lammer, H; Lellouch, E; Leto, G; Morales, M Lopez; Valverde, M A Lopez; Lopez-Puertas, M; Lovis, C; Maggio, A; Maillard, J P; Prado, J Maldonado; Marquette, J B; Martin-Torres, F J; Maxted, P; Miller, S; Molinari, S; Montes, D; Moro-Martin, A; Moses, J I; Mousis, O; Tuong, N Nguyen; Nelson, R; Orton, G S; Pantin, E; Pascale, E; Pezzuto, S; Pinfield, D; Poretti, E; Prinja, R; Prisinzano, L; Rees, J M; Reiners, A; Samuel, B; Sanchez-Lavega, A; Forcada, J Sanz; Sasselov, D; Savini, G; Sicardy, B; Smith, A; Stixrude, L; Strazzulla, G; Tennyson, J; Tessenyi, M; Vasisht, G; Vinatier, S; Viti, S; Waldmann, I; White, G J; Widemann, T; Wordsworth, R; Yelle, R; Yung, Y; Yurchenko, S N

    2011-01-01T23:59:59.000Z

    A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO -the Exoplanet Characterisation Observatory- is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. EChO will build on observations by Hubble, Spitzer and groundbased telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. EChO will simultaneously observe a broad enough spectral region -from the visible to the mid-IR- to constrain from one single spectrum the temperature structure of the atmosphere and the abundances of the major molecular species. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules to retrieve the composition and temperature str...

  20. Spin Stability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4 By I. Tudosa, H. C. SiegmannSpin Stability

  1. Measurement of the neutron ({sup 3}He) spin structure functions at low Q{sup 2}: A CONNECTION BETWEEN THE BJORKEN AND GERASIMOV-DRELL-HEARN SUM RULE

    SciTech Connect (OSTI)

    Pibero Djawotho

    2002-12-01T23:59:59.000Z

    This dissertation presents results of experiment E94-010 performed at Jefferson Laboratory (simply known as JLab) in Hall A. The experiment aimed to measure the low Q{sup 2} evolution of the Gerasimov-Drell-Hearn (GDH) integral from Q{sup 2} = 0.1 to 0.9 GeV{sup 2}. The GDH sum rule at the real photon point provides an important test of Quantum Chromodynamics (QCD). The low Q{sup 2} evolution of the GDH integral contests various resonance models, Chiral Perturbation Theory ({chi}#31;PT) and lattice QCD calculations, but more importantly, it helps us understand the transition between partonic and hadronic degrees of freedom. At high Q{sup 2}, beyond 1 GeV{sup 2}, the difference of the GDH integrals for the proton and the neutron is related to the Bjorken sum rule, another fundamental test of QCD. In addition, results of the measurements for the spin structure functions g{sub 1} and g{sub 2}, cross sections, and asymmetries are presented. E94-010 was the first experiment of its kind at JLab. It used a high-pressure, polarized {sup 3}He target with a gas pressure of 10 atm and average target polarization of 35%. For the first time, the polarized electron source delivered an average beam polarization of 70% with a beam current of 15 {micro}#22;A. The limit on the beam current was only imposed by the target. The experiment required six different beam energies from 0.86 to 5.1 GeV. This was the first time the accelerator ever reached 5.1 GeV. Both High-Resolution Spectrometers of Hall A, used in singles mode, were positioned at 15.5#14;{deg} each.

  2. Inelastic Neutron Scattering Study of a Nonmagnetic Collapsed Tetragonal Phase in Nonsuperconducting CaFe2As2: Evidence of the Impact of Spin Fluctuations on Superconductivity in the Iron-Arsenide Compounds

    SciTech Connect (OSTI)

    Soh, Jing-Han [Ames Laboratory; Tucker, Ggregory S. [Ames Laboratory; Pratt, Daniel K. [Ames Laboratory; Abernathy, D. L. [Oak Ridge National Laboratory; Stone, M. B. [Oak Ridge National Laboratory; Ran, Sheng [Ames Laboratory; Budko, Sergey L. [Ames Laboratory; Canfield, Paul C. [Ames Laboratory; Kreyssig, Andreas [Ames Laboratory; McQueeney, Robert J. [Ames Laboratory; Goldman, Alan I. [Ames Laboratory

    2013-11-27T23:59:59.000Z

    The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations in the nonsuperconducting collapsed tetragonal phase of CaFe2As2 via inelastic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetragonal phase of CaFe2As2 is nonmagnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds.

  3. Inelastic neutron scattering study of a nonmagnetic collapsed tetragonal phase of CaFe2As2: Evidence of the impact of spin fluctuations on superconductivity in the iron-arsenide compounds.

    SciTech Connect (OSTI)

    Soh, Jing Han [ORNL] [ORNL; Tucker, G. S. [Ames Laboratory and Iowa State University] [Ames Laboratory and Iowa State University; Pratt, Daniel K [ORNL] [ORNL; Abernathy, Douglas L [ORNL] [ORNL; Stone, Matthew B [ORNL] [ORNL; Ran, S. [Ames Laboratory and Iowa State University] [Ames Laboratory and Iowa State University; Budko, S L [Ames Laboratory and Iowa State University] [Ames Laboratory and Iowa State University; Canfield, P. C. [Ames Laboratory] [Ames Laboratory; Kreyssig, A. [Ames Laboratory and Iowa State University] [Ames Laboratory and Iowa State University; McQueeney, R. J. [Ames Laboratory] [Ames Laboratory; Goldman, A. I. [Ames Laboratory and Iowa State University] [Ames Laboratory and Iowa State University

    2013-01-01T23:59:59.000Z

    The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations in the non-superconducting collapsed tetragonal phase of CaFe2As2 via inelas- tic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetrag- onal phase of CaFe2As2 is non-magnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds.

  4. E-Print Network 3.0 - active neutron correlation Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sample search results for: active neutron correlation Page: << < 1 2 3 4 5 > >> 1 The Neutron Scattering Society www.neutronscattering.org Summary: of antiferromagnetic spin...

  5. Quantum superintegrable system for arbitrary spin

    E-Print Network [OSTI]

    G. Pronko

    2007-09-20T23:59:59.000Z

    In [1] was considered the superintegrable system which describes the magnetic dipole with spin 1/2 (neutron) in the field of linear current. Here we present its generalization for any spin which preserves superintegrability. The dynamical symmetry stays the same as it is for spin 1/2.

  6. AN ECHO OF SUPERNOVA 2008bk

    SciTech Connect (OSTI)

    Van Dyk, Schuyler D., E-mail: vandyk@ipac.caltech.edu [Spitzer Science Center/Caltech, Mailcode 220-6, Pasadena, CA 91125 (United States)

    2013-08-01T23:59:59.000Z

    I have discovered a prominent light echo around the low-luminosity Type II-plateau supernova (SN) 2008bk in NGC 7793, seen in archival images obtained with the Wide Field Channel of the Advanced Camera for Surveys on board the Hubble Space Telescope (HST). The echo is a partial ring, brighter to the north and east than to the south and west. The analysis of the echo I present suggests that it is due to the SN light pulse scattered by a sheet, or sheets, of dust located Almost-Equal-To 15 pc from the SN. The composition of the dust is assumed to be of standard Galactic diffuse interstellar grains. The visual extinction of the dust responsible for the echo is A{sub V} Almost-Equal-To 0.05 mag in addition to the extinction due to the Galactic foreground toward the host galaxy. That the SN experienced much less overall extinction implies that it is seen through a less dense portion of the interstellar medium in its environment. The late-time HST photometry of SN 2008bk also clearly demonstrates that the progenitor star has vanished.

  7. The ground state of the spin-1/2 kagom lattice antiferromagnet : neutron scattering studies of the zinc-paratacamite mineral family

    E-Print Network [OSTI]

    Helton, Joel Strader

    2009-01-01T23:59:59.000Z

    The magnetic properties of the geometrically frustrated quantum magnets clinoatacamite, Cu2(OH)3Cl, and herbertsmithite, ZnCu3(OH)6Cl2, are studied by means of neutron scattering measurements as well as specific heat, ...

  8. angle field spinning: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Glitches Astrophysics (arXiv) Summary: In the core of a canonical spinning magnetized neutron star(NS) a nearly uniform superfluid neutron vortex-array interacts strongly with...

  9. Liquid 1-propanol studied by neutron scattering, near-infrared, and dielectric spectroscopy

    SciTech Connect (OSTI)

    Sillrn, P.; Matic, A.; Karlsson, M. [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Gteborg (Sweden)] [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Gteborg (Sweden); Koza, M.; Maccarini, M.; Fouquet, P. [Institut Laue Langevin, 6, rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9 (France)] [Institut Laue Langevin, 6, rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9 (France); Gtz, M.; Bauer, Th.; Gulich, R.; Lunkenheimer, P.; Loidl, A. [Experimental Physics V, University of Augsburg, 86135 Augsburg (Germany)] [Experimental Physics V, University of Augsburg, 86135 Augsburg (Germany); Mattsson, J. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)] [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Gainaru, C.; Vynokur, E.; Schildmann, S.; Bauer, S.; Bhmer, R. [Fakultt fr Physik, Technische Universitt Dortmund, 44221 Dortmund (Germany)] [Fakultt fr Physik, Technische Universitt Dortmund, 44221 Dortmund (Germany)

    2014-03-28T23:59:59.000Z

    Liquid monohydroxy alcohols exhibit unusual dynamics related to their hydrogen bonding induced structures. The connection between structure and dynamics is studied for liquid 1-propanol using quasi-elastic neutron scattering, combining time-of-flight and neutron spin-echo techniques, with a focus on the dynamics at length scales corresponding to the main peak and the pre-peak of the structure factor. At the main peak, the structural relaxation times are probed. These correspond well to mechanical relaxation times calculated from literature data. At the pre-peak, corresponding to length scales related to H-bonded structures, the relaxation times are almost an order of magnitude longer. According to previous work [C. Gainaru, R. Meier, S. Schildmann, C. Lederle, W. Hiller, E. Rssler, and R. Bhmer, Phys. Rev. Lett. 105, 258303 (2010)] this time scale difference is connected to the average size of H-bonded clusters. The relation between the relaxation times from neutron scattering and those determined from dielectric spectroscopy is discussed on the basis of broad-band permittivity data of 1-propanol. Moreover, in 1-propanol the dielectric relaxation strength as well as the near-infrared absorbance reveal anomalous behavior below ambient temperature. A corresponding feature could not be found in the polyalcohols propylene glycol and glycerol.

  10. Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: A neutron and x-ray diffraction investigation of single-crystal Na2IrO3

    SciTech Connect (OSTI)

    Ye, Feng [ORNL; Chi, Songxue [ORNL; Cao, Huibo [ORNL; Chakoumakos, Bryan C [ORNL; Fernandez-Baca, Jaime A [ORNL; Custelcean, Radu [ORNL; Qi, Tongfei [University of Kentucky; Korneta, O. B. [University of Kentucky, Lexington; Cao, Gang [University of Kentucky

    2012-01-01T23:59:59.000Z

    We have combined single crystal neutron and x-ray diffractions to investigate the magnetic and crystal structures of the honeycomb lattice $\\rm Na_2IrO_3$. The system orders magnetically below $18.1(2)$~K with Ir$^{4+}$ ions forming zigzag spin chains within the layered honeycomb network with ordered moment of $\\rm 0.22(1)~\\mu_B$/Ir site. Such a configuration sharply contrasts the N{\\'{e}}el or stripe states proposed in the Kitaev-Heisenberg model. The structure refinement reveals that the Ir atoms form nearly ideal 2D honeycomb lattice while the $\\rm IrO_6$ octahedra experience a trigonal distortion that is critical to the ground state. The results of this study provide much-needed experimental insights into the magnetic and crystal structure crucial to the understanding of the exotic magnetic order and possible topological characteristics in the 5$d$-electron based honeycomb lattice.

  11. Neutron Transversity at Jefferson Lab

    SciTech Connect (OSTI)

    Jian-Ping Chen; Xiaodong Jiang; Jen-chieh Peng; Lingyan Zhu

    2005-09-07T23:59:59.000Z

    Nucleon transversity and single transverse spin asymmetries have been the recent focus of large efforts by both theorists and experimentalists. On-going and planned experiments from HERMES, COMPASS and RHIC are mostly on the proton or the deuteron. Presented here is a planned measurement of the neutron transversity and single target spin asymmetries at Jefferson Lab in Hall A using a transversely polarized {sup 3}He target. Also presented are the results and plans of other neutron transverse spin experiments at Jefferson Lab. Finally, the factorization for semi-inclusive DIS studies at Jefferson Lab is discussed.

  12. Coherent Control of a Single Silicon-29 Nuclear Spin Qubit

    E-Print Network [OSTI]

    Jarryd J. Pla; Fahd A. Mohiyaddin; Kuan Y. Tan; Juan P. Dehollain; Rajib Rahman; Gerhard Klimeck; David N. Jamieson; Andrew S. Dzurak; Andrea Morello

    2014-08-06T23:59:59.000Z

    Magnetic fluctuations caused by the nuclear spins of a host crystal are often the leading source of decoherence for many types of solid-state spin qubit. In group-IV materials, the spin-bearing nuclei are sufficiently rare that it is possible to identify and control individual host nuclear spins. This work presents the first experimental detection and manipulation of a single $^{29}$Si nuclear spin. The quantum non-demolition (QND) single-shot readout of the spin is demonstrated, and a Hahn echo measurement reveals a coherence time of $T_2 = 6.3(7)$ ms - in excellent agreement with bulk experiments. Atomistic modeling combined with extracted experimental parameters provides possible lattice sites for the $^{29}$Si atom under investigation. These results demonstrate that single $^{29}$Si nuclear spins could serve as a valuable resource in a silicon spin-based quantum computer.

  13. Environment Assisted Metrology with Spin Qubit

    E-Print Network [OSTI]

    P. Cappellaro; G. Goldstein; J. S. Hodges; L. Jiang; J. R. Maze; A. S. Srensen; M. D. Lukin

    2012-01-12T23:59:59.000Z

    We investigate the sensitivity of a recently proposed method for precision measurement [Phys. Rev. Lett. 106, 140502 (2011)], focusing on an implementation based on solid-state spin systems. The scheme amplifies a quantum sensor response to weak external fields by exploiting its coupling to spin impurities in the environment. We analyze the limits to the sensitivity due to decoherence and propose dynamical decoupling schemes to increase the spin coherence time. The sensitivity is also limited by the environment spin polarization; therefore we discuss strategies to polarize the environment spins and present a method to extend the scheme to the case of zero polarization. The coherence time and polarization determine a figure of merit for the environment's ability to enhance the sensitivity compared to echo-based sensing schemes. This figure of merit can be used to engineer optimized samples for high-sensitivity nanoscale magnetic sensing, such as diamond nanocrystals with controlled impurity density.

  14. Environment Assisted Metrology with Spin Qubit

    E-Print Network [OSTI]

    Cappellaro, P; Hodges, J S; Jiang, L; Maze, J R; Srensen, A S; Lukin, M D

    2012-01-01T23:59:59.000Z

    We investigate the sensitivity of a recently proposed method for precision measurement [Phys. Rev. Lett. 106, 140502 (2011)], focusing on an implementation based on solid-state spin systems. The scheme amplifies a quantum sensor response to weak external fields by exploiting its coupling to spin impurities in the environment. We analyze the limits to the sensitivity due to decoherence and propose dynamical decoupling schemes to increase the spin coherence time. The sensitivity is also limited by the environment spin polarization; therefore we discuss strategies to polarize the environment spins and present a method to extend the scheme to the case of zero polarization. The coherence time and polarization determine a figure of merit for the environment's ability to enhance the sensitivity compared to echo-based sensing schemes. This figure of merit can be used to engineer optimized samples for high-sensitivity nanoscale magnetic sensing, such as diamond nanocrystals with controlled impurity density.

  15. Microsoft Word - EchoPointCommunityWind_CX_2012.docx

    Broader source: Energy.gov (indexed) [DOE]

    metering at the Echo Point generation site. BPA will calibrate, test, and energize the meter and commission, assume ownership of, and maintain the meter and associated equipment....

  16. The EChO science case

    E-Print Network [OSTI]

    Tinetti, Giovanna; Eccleston, Paul; Hartogh, Paul; Isaak, Kate; Linder, Martin; Lovis, Christophe; Micela, Giusi; Ollivier, Marc; Puig, Ludovic; Ribas, Ignasi; Snellen, Ignas; Allard, Bruce Swinyard France; Barstow, Joanna; Cho, James; Coustenis, Athena; Cockell, Charles; Correia, Alexandre; Decin, Leen; de Kok, Remco; Deroo, Pieter; Encrenaz, Therese; Forget, Francois; Glasse, Alistair; Griffith, Caitlin; Guillot, Tristan; Koskinen, Tommi; Lammer, Helmut; Leconte, Jeremy; Maxted, Pierre; Mueller-Wodarg, Ingo; Nelson, Richard; North, Chris; Pall, Enric; Pagano, Isabella; Piccioni, Guseppe; Pinfield, David; Selsis, Franck; Sozzetti, Alessandro; Stixrude, Lars; Tennyson, Jonathan; Turrini, Diego; Beaulieu, Mariarosa Zapatero-Osorio Jean-Philippe; Grodent, Denis; Guedel, Manuel; Luz, David; Nrgaard-Nielsen, Hans Ulrik; Ray, Tom; Rickman, Hans; Selig, Avri; Banaszkiewicz, Mark Swain Marek; Barlow, Mike; Bowles, Neil; Branduardi-Raymont, Graziella; Foresto, Vincent Coud du; Gerard, Jean-Claude; Gizon, Laurent; Hornstrup, Allan; Jarchow, Christopher; Kerschbaum, Franz; Kovacs, Gza; Lagage, Pierre-Olivier; Lim, Tanya; Lopez-Morales, Mercedes; Malaguti, Giuseppe; Pace, Emanuele; Pascale, Enzo; Vandenbussche, Bart; Wright, Gillian; Adriani, Gonzalo Ramos Zapata Alberto; Azzollini, Ruymn; Balado, Ana; Bryson, Ian; Burston, Raymond; Colom, Josep; Crook, Martin; Di Giorgio, Anna; Griffin, Matt; Hoogeveen, Ruud; Ottensamer, Roland; Irshad, Ranah; Middleton, Kevin; Morgante, Gianluca; Pinsard, Frederic; Rataj, Mirek; Reess, Jean-Michel; Savini, Giorgio; Schrader, Jan-Rutger; Stamper, Richard; Abe, Berend Winter L; Abreu, M; Achilleos, N; Ade, P; Adybekian, V; Affer, L; Agnor, C; Agundez, M; Alard, C; Alcala, J; Prieto, C Allende; Floriano, F J Alonso; Altieri, F; Iglesias, C A Alvarez; Amado, P; Andersen, A; Aylward, A; Baffa, C; Bakos, G; Ballerini, P; Banaszkiewicz, M; Barber, R J; Barrado, D; Barton, E J; Batista, V; Bellucci, G; Avils, J A Belmonte; Berry, D; Bzard, B; Biondi, D; B??cka, M; Boisse, I; Bonfond, B; Bord, P; Brner, P; Bouy, H; Brown, L; Buchhave, L; Budaj, J; Bulgarelli, A; Burleigh, M; Cabral, A; Capria, M T; Cassan, A; Cavarroc, C; Cecchi-Pestellini, C; Cerulli, R; Chadney, J; Chamberlain, S; Charnoz, S; Jessen, N Christian; Ciaravella, A; Claret, A; Claudi, R; Coates, A; Cole, R; Collura, A; Cordier, D; Covino, E; Danielski, C; Damasso, M; Deeg, H J; Delgado-Mena, E; Del Vecchio, C; Demangeon, O; De Sio, A; De Wit, J; Dobrijvic, M; Doel, P; Dominic, C; Dorfi, E; Eales, S; Eiroa, C; Contreras, M Espinoza; Esposito, M; Eymet, V; Fabrizio, N; Fernndez, M; Castella, B Femena; Figueira, P; Filacchione, G; Fletcher, L; Focardi, M; Fossey, S; Fouqu, P; Frith, J; Galand, M; Gambicorti, L; Gaulme, P; Lpez, R J Garca; Garcia-Piquer, A; Gear, W; Gerard, J -C; Gesa, L; Giani, E; Gianotti, F; Gillon, M; Giro, E; Giuranna, M; Gomez, H; Gomez-Leal, I; Hernandez, J Gonzalez; Merino, B Gonzlez; Graczyk, R; Grassi, D; Guardia, J; Guio, P; Gustin, J; Hargrave, P; Haigh, J; Hbrard, E; Heiter, U; Heredero, R L; Herrero, E; Hersant, F; Heyrovsky, D; Hollis, M; Hubert, B; Hueso, R; Israelian, G; Iro, N; Irwin, P; Jacquemoud, S; Jones, G; Jones, H; Justtanont, K; Kehoe, T; Kerschbaum, F; Kerins, E; Kervella, P; Kipping, D; Koskinen, T; Krupp, N; Lahav, O; Laken, B; Lanza, N; Lellouch, E; Leto, G; Goldaracena, J Licandro; Lithgow-Bertelloni, C; Liu, S J; Cicero, U Lo; Lodieu, N; Lognonn, P; Lopez-Puertas, M; Lopez-Valverde, M A; Rasmussen, I Lundgaard; Luntzer, A; Machado, P; MacTavish, C; Maggio, A; Maillard, J -P; Magnes, W; Maldonado, J; Mall, U; Marquette, J -B; Mauskopf, P; Massi, F; Maurin, A -S; Medvedev, A; Michaut, C; Miles-Paez, P; Montalto, M; Rodrguez, P Montas; Monteiro, M; Montes, D; Morais, H; Morales, J C; Morales-Caldern, M; Morello, G; Martn, A Moro; Moses, J; Bedon, A Moya; Alcaino, F Murgas; Oliva, E; Orton, G; Palla, F; Pancrazzi, M; Pantin, E; Parmentier, V; Parviainen, H; Ramrez, K Y Pea; Peralta, J; Perez-Hoyos, S; Petrov, R; Pezzuto, S; Pietrzak, R; Pilat-Lohinger, E; Piskunov, N; Prinja, R; Prisinzano, L; Polichtchouk, I; Poretti, E; Radioti, A; Ramos, A A; Rank-Lftinger, T; Read, P; Readorn, K; Lpez, R Rebolo; Rebordo, J; Rengel, M; Rezac, L; Rocchetto, M; Rodler, F; Bjar, V J Snchez; Lavega, A Sanchez; Sanrom, E; Santos, N; Forcada, J Sanz; Scandariato, G; Schmider, F -X; Scholz, A; Scuderi, S; Sethenadh, J; Shore, S; Showman, A; Sicardy, B; Sitek, P; Smith, A; Soret, L; Sousa, S; Stiepen, A; Stolarski, M; Strazzulla, G; Tabernero, H M; Tanga, P; Tecsa, M; Temple, J; Terenzi, L; Tessenyi, M; Testi, L; Thompson, S; Thrastarson, H; Tingley, B W; Trifoglio, M; Torres, J Martn

    2015-01-01T23:59:59.000Z

    The discovery of almost 2000 exoplanets has revealed an unexpectedly diverse planet population. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? What causes the exceptional diversity observed as compared to the Solar System? EChO (Exoplanet Characterisation Observatory) has been designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large and diverse planet sample within its four-year mission lifetime. EChO can target the atmospheres of super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300K-3000K) of F to M-type host stars. Over the next ten years, several new ground- and space-based transit surveys will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on find...

  17. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

    1983-01-01T23:59:59.000Z

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  18. Ris-PhD-7(EN) Neutron scattering studies of two-

    E-Print Network [OSTI]

    Risø-PhD-7(EN) Neutron scattering studies of two- dimensional antiferromagnetic spin fluctuations Denmark January 2005 #12;Neutron scattering studies of two-dimensional antiferromagnetic spin fluctuations Laboratory 4000 Roskilde, Denmark #12;#12;Abstract: In this thesis, neutron scattering techniques are used

  19. Motional Spin Relaxation in Large Electric Fields

    E-Print Network [OSTI]

    Schmid, Riccardo; Filippone, B W

    2008-01-01T23:59:59.000Z

    We discuss the precession of spin-polarized Ultra Cold Neutrons (UCN) and $^{3}\\mathrm{He}$ atoms in uniform and static magnetic and electric fields and calculate the spin relaxation effects from motional $v\\times E$ magnetic fields. Particle motion in an electric field creates a motional $v\\times E$ magnetic field, which when combined with collisions, produces variations of the total magnetic field and results in spin relaxation of neutron and $^{3}\\mathrm{He}$ samples. The spin relaxation times $T_{1}$ (longitudinal) and $T_{2}$ (transverse) of spin-polarized UCN and $^{3}\\mathrm{He}$ atoms are important considerations in a new search for the neutron Electric Dipole Moment at the SNS \\emph{nEDM} experiment. We use a Monte Carlo approach to simulate the relaxation of spins due to the motional $v\\times E$ field for UCN and for $^{3}\\mathrm{He}$ atoms at temperatures below $600 \\mathrm{mK}$. We find the relaxation times for the neutron due to the $v\\times E$ effect to be long compared to the neutron lifetime, ...

  20. Motional Spin Relaxation in Large Electric Fields

    E-Print Network [OSTI]

    Riccardo Schmid; B. Plaster; B. W. Filippone

    2008-07-02T23:59:59.000Z

    We discuss the precession of spin-polarized Ultra Cold Neutrons (UCN) and $^{3}$He atoms in uniform and static magnetic and electric fields and calculate the spin relaxation effects from motional $v\\times E$ magnetic fields. Particle motion in an electric field creates a motional $v\\times E$ magnetic field, which when combined with collisions, produces variations of the total magnetic field and results in spin relaxation of neutron and $^{3}$He samples. The spin relaxation times $T_{1}$ (longitudinal) and $T_{2}$ (transverse) of spin-polarized UCN and $^{3}$He atoms are important considerations in a new search for the neutron Electric Dipole Moment at the SNS \\emph{nEDM} experiment. We use a Monte Carlo approach to simulate the relaxation of spins due to the motional $v\\times E$ field for UCN and for $^{3}$He atoms at temperatures below $600,\\mathrm{mK}$. We find the relaxation times for the neutron due to the $v\\times E$ effect to be long compared to the neutron lifetime, while the $^{3}$He relaxation times may be important for the \\emph{nEDM} experiment.

  1. Refocusing dipolar interactions between electronic spins of donors in silicon

    E-Print Network [OSTI]

    T. S. Monteiro

    2014-12-08T23:59:59.000Z

    We note the existence of a set of magnetic field values where a simple Hahn echo sequence refocuses the dynamics of the full dipolar interaction, for spin systems of electron donors in silicon. As the refocussing occurs for both arbitrary coupling strengths and arbitrary times, these dipolar refocusing points (DRPs) offer new possibilities for regulating entanglement due to the always-on spin dipolar interaction. While the experimental effects of DRPs will be strongly diluted in the measured coherences of thermal (unpolarized) spin ensembles, we investigate possible signatures in coherence decays arising from a study of the combined effects of decoherence arising from instantaneous diffusion and direct flip-flops

  2. Quantum Decoherence of the Central Spin in a Sparse System of Dipolar Coupled Spins

    E-Print Network [OSTI]

    Wayne M. Witzel; Malcolm S. Carroll; Lukasz Cywinski; S. Das Sarma

    2012-08-02T23:59:59.000Z

    The central spin decoherence problem has been researched for over 50 years in the context of both nuclear magnetic resonance and electron spin resonance. Until recently, theoretical models have employed phenomenological stochastic descriptions of the bath-induced noise. During the last few years, cluster expansion methods have provided a microscopic, quantum theory to study the spectral diffusion of a central spin. These methods have proven to be very accurate and efficient for problems of nuclear-induced electron spin decoherence in which hyperfine interactions with the central electron spin are much stronger than dipolar interactions among the nuclei. We provide an in-depth study of central spin decoherence for a canonical scale-invariant all-dipolar spin system. We show how cluster methods may be adapted to treat this problem in which central and bath spin interactions are of comparable strength. Our extensive numerical work shows that a properly modified cluster theory is convergent for this problem even as simple perturbative arguments begin to break down. By treating clusters in the presence of energy detunings due to the long-range (diagonal) dipolar interactions of the surrounding environment and carefully averaging the effects over different spin states, we find that the nontrivial flip-flop dynamics among the spins becomes effectively localized by disorder in the energy splittings of the spins. This localization effect allows for a robust calculation of the spin echo signal in a dipolarly coupled bath of spins of the same kind, while considering clusters of no more than 6 spins. We connect these microscopic calculation results to the existing stochastic models. We, furthermore, present calculations for a series of related problems of interest for candidate solid state quantum bits including donors and quantum dots in silicon as well as nitrogen-vacancy centers in diamond.

  3. Spin waves in the (

    SciTech Connect (OSTI)

    Lipscombe, O. J. [University of Tennessee, Knoxville (UTK); Chen, G. F. [The Institute of Physics, Chinese Academy of Sciences; Fang, Chen [Purdue University; Perring, T. G. [ISIS Facility, Rutherford Appleton Laboratory; Abernathy, Douglas L [ORNL; Christianson, Andrew D [ORNL; Egami, Takeshi [ORNL; Wang, Nanlin [The Institute of Physics, Chinese Academy of Sciences; Hu, Jiangping [Purdue University and Chinese Academy of Sciences; Dai, Pengcheng [University of Tennessee, Knoxville (UTK)

    2011-01-01T23:59:59.000Z

    We use neutron scattering to show that spin waves in the iron chalcogenide Fe{sub 1.05}Te display novel dispersion clearly different from both the first principles density functional calculations and recent observations in the related iron pnictide CaFe{sub 2}As{sub 2}. By fitting to a Heisenberg Hamiltonian, we find that although the nearest-neighbor exchange couplings in the two systems are quite different, their next-nearest-neighbor (NNN) couplings are similar. This suggests that superconductivity in the pnictides and chalcogenides share a common magnetic origin that is intimately associated with the NNN magnetic coupling between the irons.

  4. Measuring the Neutron Lifetime Using Magnetically Trapped Neutrons

    E-Print Network [OSTI]

    C. M. O'Shaughnessy; R. Golub; K. W. Schelhammer; C. M. Swank; P. -N. Seo; P. R. Huffman; S. N. Dzhosyuk; C. E. H. Mattoni; L. Yang; J. M. Doyle; K. J. Coakley; A. K. Thompson; H. P. Mumm; S. K. Lamoreaux; G. Yang

    2009-03-31T23:59:59.000Z

    The neutron beta-decay lifetime plays an important role both in understanding weak interactions within the framework of the Standard Model and in theoretical predictions of the primordial abundance of 4He in Big Bang Nucleosynthesis. In previous work, we successfully demonstrated the trapping of ultracold neutrons (UCN) in a conservative potential magnetic trap. A major upgrade of the apparatus is nearing completion at the National Institute of Standards and Technology Center for Neutron Research (NCNR). In our approach, a beam of 0.89 nm neutrons is incident on a superfluid 4He target within the minimum field region of an Ioffe-type magnetic trap. A fraction of the neutrons is downscattered in the helium to energies <200 neV, and those in the appropriate spin state become trapped. The inverse process is suppressed by the low phonon density of helium at temperatures less than 200 mK, allowing the neutron to travel undisturbed. When the neutron decays the energetic electron ionizes the helium, producing scintillation light that is detected using photomultiplier tubes. Statistical limitations of the previous apparatus will be alleviated by significant increases in field strength and trap volume resulting in twenty times more trapped neutrons.

  5. Displacement Echoes: Classical Decay and Quantum Freeze

    E-Print Network [OSTI]

    Cyril Petitjean; Diego V. Bevilaqua; Eric J. Heller; Philippe Jacquod

    2007-04-23T23:59:59.000Z

    Motivated by neutron scattering experiments, we investigate the decay of the fidelity with which a wave packet is reconstructed by a perfect time-reversal operation performed after a phase space displacement. In the semiclassical limit, we show that the decay rate is generically given by the Lyapunov exponent of the classical dynamics. For small displacements, we additionally show that, following a short-time Lyapunov decay, the decay freezes well above the ergodic value because of quantum effects. Our analytical results are corroborated by numerical simulations.

  6. Neutron skins and neutron stars

    SciTech Connect (OSTI)

    Piekarewicz, J. [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

    2013-11-07T23:59:59.000Z

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ('PREX') at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in {sup 208}Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron beams may impact the physics of neutron stars.

  7. Light Loop Echoes and Blinking Black Holes

    E-Print Network [OSTI]

    Boyle, Latham

    2011-01-01T23:59:59.000Z

    Radiation emitted near a black hole reaches the observer by multiple paths; and when this radiation varies in time, the time-delays between the various paths generate a "blinking" effect in the observed light curve L(t) or its auto-correlation function xi(T)= . For the particularly important "face-on" configuration (in which the hole is viewed roughly along its spin axis, while the emission comes roughly from its equatorial plane -- e.g. from the inner edge of its accretion disk, or from the violent flash of a nearby/infalling star) we calculate the blinking in detail by computing the time delay Delta t_{j}(r,a) and magnification mu_{j}(r,a) of the jth path (j=1,2,3,...), relative to the primary path (j=0), as a function of the emission radius r and black hole spin 0

  8. angle spinning proton: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hadronic (piN) states. An estimate of the beam-normal single-spin asymmetry for the scattering from the neutron is made using a quasi-static deuterium approximation, and is...

  9. Neutron guide

    DOE Patents [OSTI]

    Greene, Geoffrey L. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  10. Loschmidt echo in one-dimensional interacting Bose gases

    SciTech Connect (OSTI)

    Lelas, K.; Seva, T.; Buljan, H. [Faculty of Electrical Engineering Mechanical Engineering and Naval Architecture, University of Split, Rudjera Boskovica BB, 21000 Split (Croatia); Department of Physics, University of Zagreb, Bijenicka c. 32, 10000 Zagreb (Croatia)

    2011-12-15T23:59:59.000Z

    We explore Loschmidt echo in two regimes of one-dimensional interacting Bose gases: the strongly interacting Tonks-Girardeau (TG) regime, and the weakly interacting mean-field regime. We find that the Loschmidt echo of a TG gas decays as a Gaussian when small (random and time independent) perturbations are added to the Hamiltonian. The exponent is proportional to the number of particles and the magnitude of a small perturbation squared. In the mean-field regime the Loschmidt echo shows richer behavior: it decays faster for larger nonlinearity, and the decay becomes more abrupt as the nonlinearity increases; it can be very sensitive to the particular realization of the noise potential, especially for relatively small nonlinearities.

  11. Echo Meadows Project Winter Artificial Recharge.

    SciTech Connect (OSTI)

    Ziari, Fred

    2002-12-19T23:59:59.000Z

    This report discusses the findings of the Echo Meadows Project (BPA Project 2001-015-00). The main purpose of this project is to artificially recharge an alluvial aquifer, WITH water from Umatilla River during the winter high flow period. In turn, this recharged aquifer will discharge an increased flow of cool groundwater back to the river, thereby improving Umatilla River water quality and temperature. A considerable side benefit is that the Umatilla River should improve as a habitat for migration, spanning, and rearing of anadromous and resident fish. The scope of this project is to provide critical baseline information about the Echo Meadows and the associated reach of the Umatilla River. Key elements of information that has been gathered include: (1) Annual and seasonal groundwater levels in the aquifer with an emphasis on the irrigation season, (2) Groundwater hydraulic properties, particularly hydraulic conductivity and specific yield, and (3) Groundwater and Umatilla River water quality including temperature, nutrients and other indicator parameters. One of the major purposes of this data gathering was to develop input to a groundwater model of the area. The purpose of the model is to estimate our ability to recharge this aquifer using water that is only available outside of the irrigation season (December through the end of February) and to estimate the timing of groundwater return flow back to the river. We have found through the data collection and modeling efforts that this reach of the river had historically returned as much as 45 cubic feet per second (cfs) of water to the Umatilla River during the summer and early fall. However, this return flow was reduced to as low as 10 cfs primarily due to reduced quantities of irrigation application, gain in irrigation efficiencies and increased groundwater pumping. Our modeling indicated that it is possible to restore these critical return flows using applied water outside of the irrigation season. We further found that this water can be timed to return to the river during the desired time of the year (summer to early fall). This is because the river stage, which remains relatively high until this time, drops during the irrigation season-thereby releasing the stored groundwater and increasing river flows. A significant side benefit is that these enhanced groundwater return flows will be clean and cold, particularly as compared to the Umatilla River. We also believe that this same type of application of water could be done and the resulting stream flows could be realized in other watersheds throughout the Pacific Northwest. This means that it is critical to compare the results from this baseline report to the full implementation of the project in the next phase. As previously stated, this report only discusses the results of data gathered during the baseline phase of this project. We have attempted to make the data that has been gathered accessible with the enclosed databases and spreadsheets. We provide computer links in this report to the databases so that interested parties can fully evaluate the data that has been gathered. However, we cannot emphasize too strongly that the real value of this project is to implement the phases to come, compare the results of these future phases to this baseline and develop the science and strategies to successfully implement this concept to other rivers in the Pacific Northwest. The results from our verified and calibrated groundwater model matches the observed groundwater data and trends collected during the baseline phase. The modeling results indicate that the return flows may increase to their historic values with the addition of 1 acre-ft/acre of recharge water to the groundwater system (about 9,600 acre-feet total). What this means is that through continued recharge project, you can double to quadruple the annual baseflow of the Umatilla River during the low summer and fall flow periods as compared to the present base-flow. The cool and high quality recharge water is a significant beneficial impact to the river system.

  12. Radar precipitation echo patterns associated with midwestern severe storms

    E-Print Network [OSTI]

    Inman, Rex Lee

    1959-01-01T23:59:59.000Z

    to their appeaxattce en time-lapse Plan Position huttcator oscQloecope (Ppl scope) photogtaphs into several types including isolated and scattered echoes, widespread sheet achene, and several categories of Uae echoes. Cbkracterlstic feacures QF each of these types..., static stahfllty, aad mofsture COLLSCTlON OF DATh Radar doss used la the study coaslsssd of ppl scope Nims exposed at hMwestarn U. S. hlr Fates htr ~ Command (hDC) stathms during ths years 1955, 1956, and 1957. Proctpttatlon atteauathm could he...

  13. Algorithms for processing ultrasonic echo data for height control systems

    E-Print Network [OSTI]

    Lin, Reng Rong

    1984-01-01T23:59:59.000Z

    estimation was affected by the value of the weighting factor (M) in equation (1). The accuracy of this stubble height estimation was evaluated by using the Student's t test technique. ESTH(n) = AVS(n) ? AVG(n) (3) Computer program: A FORTRAN program... YES IS HTs'P READ AVS & AVG, STALK AND GROUND AVERAGES r---- RAISE BLADES t, READ THD OR THH & THL, SINGLE THRESHOLD OR GET NEW SAMPLE ECHO ECHO DISCRIMINATION GROUND STALK OR GROUND ? STALK AVS ~AVS + Y(I)-AVS n n-I AVG =AVG Y...

  14. Measuring the Neutron Lifetime Using Magnetically Trapped Neutrons

    E-Print Network [OSTI]

    O'Shaughnessy, C M; Schelhammer, K W; Swank, C M; Seo, P -N; Huffman, P R; Dzhosyuk, S N; Mattoni, C E H; Yang, L; Doyle, J M; Coakley, K J; Thompson, A K; Mumm, H P; Lamoreaux, S K; Yang, G

    2009-01-01T23:59:59.000Z

    The neutron beta-decay lifetime plays an important role both in understanding weak interactions within the framework of the Standard Model and in theoretical predictions of the primordial abundance of 4He in Big Bang Nucleosynthesis. In previous work, we successfully demonstrated the trapping of ultracold neutrons (UCN) in a conservative potential magnetic trap. A major upgrade of the apparatus is nearing completion at the National Institute of Standards and Technology Center for Neutron Research (NCNR). In our approach, a beam of 0.89 nm neutrons is incident on a superfluid 4He target within the minimum field region of an Ioffe-type magnetic trap. A fraction of the neutrons is downscattered in the helium to energies <200 neV, and those in the appropriate spin state become trapped. The inverse process is suppressed by the low phonon density of helium at temperatures less than 200 mK, allowing the neutron to travel undisturbed. When the neutron decays the energetic electron ionizes the helium, producing sci...

  15. Synthesize Neutron-Drip-Line-Nuclides with Free-Neutron Bose-Einstein Condensates Experimentally

    E-Print Network [OSTI]

    Bao-Guo Dong

    2014-09-22T23:59:59.000Z

    We first show a possible way to create a new type of matter, free-neutron Bose-Einstein condensate by the ultracold free-neutron-pair Bose-Einstein condensation and then determine the neutron drip line experimentally. The Bose-Einstein condensation of bosonic and fermionic atoms in atomic gases was performed experimentally and predicted theoretically early. Neutrons are similar to fermionic atoms. We found free neutrons could be cooled to ultracold neutrons with very low energy by other colder neutral atoms which are cooled by the laser. These neutrons form neutron pairs with spin zero, and then ultracold neutron-pairs form Bose-Einstein condensate. Our results demonstrate how these condensates can react with accelerated ion beams at different energy to synthesize very neutron-rich nuclides near, on or/and beyond the neutron drip line, to determine the neutron drip line and whether there are long-life nuclide or isomer islands beyond the neutron drip line experimentally. Otherwise, these experimental results will confirm our prediction that is in the whole interacting region or distance of nuclear force in all energy region from zero to infinite, Only repulsive nuclear force exists among identical nucleons and only among different nucleons exists attractive nuclear force.

  16. INVERTED ECHO SOUNDER DEVELOPMENT G. F. Chaplin and D. Randolph Watts

    E-Print Network [OSTI]

    Rhode Island, University of

    INVERTED ECHO SOUNDER DEVELOPMENT G. F. Chaplin and D. Randolph Watts Graduate School of Oceanography University of Rhode Island Narragansett, RI 02882 ABSTRACT The Inverted Echo Sounder (IES and, consequently, the acoustic travel time through the water column change. The inverted echo sounder

  17. Finland HF and Esrange MST radar observations of polar mesosphere summer echoes

    E-Print Network [OSTI]

    Kirkwood, Sheila

    Finland HF and Esrange MST radar observations of polar mesosphere summer echoes Tadahiko Ogawa1 (200x) xx:1­8 Finland HF and Esrange MST radar observations of polar mesosphere summer echoes Tadahiko in Finland are presented. The echoes were detected at four frequencies of 9, 11, 13 and 15 MHz at slant

  18. Emergent spin

    SciTech Connect (OSTI)

    Creutz, Michael, E-mail: creutz@bnl.gov

    2014-03-15T23:59:59.000Z

    Quantum mechanics and relativity in the continuum imply the well known spinstatistics connection. However for particles hopping on a lattice, there is no such constraint. If a lattice model yields a relativistic field theory in a continuum limit, this constraint must emerge for physical excitations. We discuss a few models where a spin-less fermion hopping on a lattice gives excitations which satisfy the continuum Dirac equation. This includes such well known systems such as graphene and staggered fermions. -- Highlights: The spinstatistics theorem is not required for particles on a lattice. Spin emerges dynamically when spinless fermions have a relativistic continuum limit. Graphene and staggered fermions are examples of this phenomenon. The phenomenon is intimately tied to chiral symmetry and fermion doubling. Anomaly cancellation is a crucial feature of any valid lattice fermion action.

  19. Probing the Type Ia environment with Light Echoes

    E-Print Network [OSTI]

    F. Patat

    2004-11-19T23:59:59.000Z

    In general, Light Echoes (LE) are beautiful, rather academical and therefore unavoidably useless phenomena. In some cases, however, they can give interesting information about the environment surrounding the exploding star. After giving a brief introduction to the subject, I describe its application to the case of Type Ia Supernovae and discuss the implications for progenitors and their location within the host galaxies.

  20. Inelastic Neutron-Scattering Measurements of a Three-Dimensional Spin Resonance in the FeAs-Based BaFe1:9Ni0:1As2 Superconductor

    E-Print Network [OSTI]

    Hu, Jiangping

    , Germany 3 Department of Physics, Zhejiang University, Hangzhou 310027, China 4 Department of Physics-Tc) superconductors is important because spin fluc- tuations may mediate electron pairing for superconductiv- ity. In the case of high-Tc copper oxides, it is now well documented that the spin fluctuation spectrum is domi

  1. Neutron detector

    DOE Patents [OSTI]

    Stephan, Andrew C. (Knoxville, TN); Jardret; Vincent D. (Powell, TN)

    2011-04-05T23:59:59.000Z

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  2. Monash University AUSTRALIA 1A Real Time DSP Sonar Echo Processor -IROS'2000 A Real Time DSP Sonar Echo

    E-Print Network [OSTI]

    Monash University AUSTRALIA 1A Real Time DSP Sonar Echo Processor - IROS'2000 A Real Time DSP Sonar of Electrical and Computer Systems Engineering Monash University, Victoria, AUSTRALIA www.ecse.monash.edu.au/centres/IRRC # Funded by an Australian Research Council Large Grant #12;Monash University AUSTRALIA 2A Real Time DSP

  3. Classical gravitational spin-spin interaction

    E-Print Network [OSTI]

    W. B. Bonnor

    2002-01-30T23:59:59.000Z

    I obtain an exact, axially symmetric, stationary solution of Einstein's equations for two massless spinning particles. The term representing the spin-spin interaction agrees with recently published approximate work. The spin-spin force appears to be proportional to the inverse fourth power of the coordinate distance between the particles.

  4. - and -delayed neutron- decay of neutron-rich copper isotopes

    SciTech Connect (OSTI)

    Korgul, A. [University of Warsaw; Rykaczewski, Krzysztof Piotr [ORNL; Winger, J. A. [Oak Ridge Associated Universities (ORAU); Ilyushkin, S. [Mississippi State University (MSU); Gross, Carl J [ORNL; Batchelder, J. C. [Oak Ridge Associated Universities (ORAU); Bingham, C. R. [University of Tennessee, Knoxville (UTK); Borzov, Ivan N [ORNL; Goodin, C. [Vanderbilt University; Grzywacz, Robert Kazimierz [ORNL; Hamilton, Joseph H [ORNL; Krolas, W. [Joint Institute for Heavy Ion Research, Oak Ridge; Liddick, S. N. [Oak Ridge Associated Universities (ORAU); Mazzocchi, C. [University of Warsaw; Nelson, C. [Vanderbilt University; Nowacki, F. [Institut Pluridisciplinaire Hubert Curien, Strasbourg, France; Padgett, Stephen [University of Tennessee, Knoxville (UTK); Piechaczek, A. [Louisiana State University; Rajabali, M. M. [University of Tennessee, Knoxville (UTK); Shapira, Dan [ORNL; Sieja, K. [Technische Universitat Darmstadt, Germany; Zganjar, E. F. [Louisiana State University

    2012-01-01T23:59:59.000Z

    The {beta}-decay properties of neutron-rich Cu isotopes produced in proton-induced fission of {sup 238}U were studied at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. The data were collected using high-resolution online mass separation, reacceleration, and digital {beta}-{gamma} spectroscopy methods. An improved decay scheme of N = 49 {sup 78}Cu and the first observation of N = 50 {sup 79}Cu {beta}-delayed neutron decay followed by a gamma transition are reported. Spin and parity (5{sup -}) are deduced for {sup 78gs}Cu. The {beta}-delayed neutron branching ratios (P{sub {beta}n}) for the {sup 77}Cu and {sup 79}Cu precursors are analyzed with the help of nuclear structure models.

  5. Neutron tubes

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Lou, Tak Pui (Berkeley, CA); Reijonen, Jani (Oakland, CA)

    2008-03-11T23:59:59.000Z

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  6. Neutron shell structure and deformation in neutron-drip-line nuclei

    E-Print Network [OSTI]

    Ikuko Hamamoto

    2012-06-18T23:59:59.000Z

    Neutron shell-structure and the resulting possible deformation in the neighborhood of neutron-drip-line nuclei are systematically discussed, based on both bound and resonant neutron one-particle energies obtained from spherical and deformed Woods-Saxon potentials. Due to the unique behavior of weakly-bound and resonant neutron one-particle levels with smaller orbital angular-momenta $\\ell$, a systematic change of the shell structure and thereby the change of neutron magic-numbers are pointed out, compared with those of stable nuclei expected from the conventional j-j shell-model. For spherical shape with the operator of the spin-orbit potential conventionally used, the $\\ell_{j}$ levels belonging to a given oscillator major shell with parallel spin- and orbital-angular-momenta tend to gather together in the energetically lower half of the major shell, while those levels with anti-parallel spin- and orbital-angular-momenta gather in the upper half. The tendency leads to a unique shell structure and possible deformation when neutrons start to occupy the orbits in the lower half of the major shell. Among others, the neutron magic-number N=28 disappears and N=50 may disappear, while the magic number N=82 may presumably survive due to the large $\\ell =5$ spin-orbit splitting for the $1h_{11/2}$ orbit. On the other hand, an appreciable amount of energy gap may appear at N=16 and 40 for spherical shape, while neutron-drip-line nuclei in the region of neutron number above N=20, 40 and 82, namely N $\\approx$ 21-28, N $\\approx$ 41-54, and N $\\approx$ 83-90, may be quadrupole-deformed though the possible deformation depends also on the proton number of respective nuclei.

  7. Investigating Neutron Polarizabilities through Compton Scattering on $^3He$

    E-Print Network [OSTI]

    Deepshikha Choudhury; Andreas Nogga; Daniel R. Phillips

    2007-06-11T23:59:59.000Z

    We examine manifestations of neutron electromagnetic polarizabilities in coherent Compton scattering from the Helium-3 nucleus. We calculate $\\gamma ^3He$ elastic scattering observables using chiral perturbation theory to next-to-leading order (${\\mathcal O}(e^2 Q)$). We find that the unpolarized differential cross section can be used to measure neutron electric and magnetic polarizabilities, while two double-polarization observables are sensitive to different linear combinations of the four neutron spin polarizabilities.

  8. Multi mode nano scale Raman echo quantum memory

    E-Print Network [OSTI]

    S. A. Moiseev; E. S. Moiseev

    2010-01-31T23:59:59.000Z

    Low loss magnetic surface plasmon polariton (SPP) modes characterized by enhanced electrical field component and subwavelength confinement on the dielectric and negative-index metamaterial interface are presented. We demonstrate a possibility of storage and perfect retrieval of the low loss magnetic SPP fields by using a photon echo quantum memory on Raman atomic transition. We describe specific properties of the proposed technique which opens a possibility for efficient nano scale multi-mode quantum memory.

  9. Glen Echo, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformationGilroy,Glasscock County,Avon,Echo, Maryland:

  10. The Visible and Near Infrared module of EChO

    E-Print Network [OSTI]

    Adriani, A; Gambicorti, L; Focardi, M; Oliva, E; Farina, M; Di Giorgio, A M; Santoli, F; Pace, E; Piccioni, G; Filacchione, G; Pancrazzi, M; Tozzi, A; Micela, G

    2014-01-01T23:59:59.000Z

    The Visible and Near Infrared (VNIR) is one of the modules of EChO, the Exoplanets Characterization Observatory proposed to ESA for an M-class mission. EChO is aimed to observe planets while transiting by their suns. Then the instrument had to be designed to assure a high efficiency over the whole spectral range. In fact, it has to be able to observe stars with an apparent magnitude Mv= 9-12 and to see contrasts of the order of 10-4 - 10-5 necessary to reveal the characteristics of the atmospheres of the exoplanets under investigation. VNIR is a spectrometer in a cross-dispersed configuration, covering the 0.4-2.5 micron spectral range with a resolving power of about 330 and a field of view of 2 arcsec. It is functionally split into two channels respectively working in the 0.4-1 and 1.0-2.5 micron spectral ranges. Such a solution is imposed by the fact the light at short wavelengths has to be shared with the EChO Fine Guiding System (FGS) devoted to the pointing of the stars under observation. The spectromete...

  11. Demonstration of improved sensitivity of echo interferometers to gravitational acceleration

    E-Print Network [OSTI]

    Mok, C; Carew, A; Berthiaume, R; Beattie, S; Kumarakrishnan, A

    2013-01-01T23:59:59.000Z

    We have developed two configurations of an echo interferometer that rely on standing wave excitation of a laser-cooled sample of rubidium atoms that measures acceleration. For a two-pulse configuration, the interferometer signal is modulated at the recoil frequency and exhibits a sinusoidal frequency chirp as a function of pulse spacing. For a three-pulse stimulated echo configuration, the signal is observed without recoil modulation and exhibits a modulation at a single frequency. The three-pulse configuration is less sensitive to effects of vibrations and magnetic field curvature leading to a longer experimental timescale. For both configurations of the atom interferometer (AI), we show that a measurement of acceleration with a statistical precision of 0.5% can be realized by analyzing the shape of the echo envelope that has a temporal duration of a few microseconds. Using the two-pulse AI, we obtain measurements of acceleration that are statistically precise to 6 parts per million (ppm) on a 25 ms timescal...

  12. Detection of a Light Echo from the Otherwise Normal SN 2007af

    E-Print Network [OSTI]

    Drozdov, D; Milne, P A; Pearcy, J; Riess, A G; Macri, L M; Bryngelson, G L; Garnavich, P M

    2014-01-01T23:59:59.000Z

    We present the discovery of a light echo from SN 2007af, a normal Type Ia supernova (SN Ia) in NGC 5584. Hubble Space Telescope (HST) images taken three years post explosion reveal two separate echoes; an outer echo and extended central region, which we propose as an unresolved inner echo. Multiple images were obtained in the F160W, F350LP, F555W, and F814W using the Wide Field Camera 3. If the outer echo is produced by an interstellar dust sheet perpendicular to the line of sight, it is located ~800 pc in front of the SN. The dust for the inner echo is 0.45 pc < d < 90 pc away from the SN. The inner echo color is consistent with typical interstellar dust wavelength-dependent scattering cross-sections, while the outer echo color does not match the predictions. Both dust sheets, if in the foreground, are optically thin for scattering, with the outer echo sheet thickness consistent with the inferred extinction from peak brightness. Whether the inner echo is from interstellar or circumstellar dust is ambig...

  13. Segmentation of Spin-Echo MRI brain images: a comparison study of Crisp and Fuzzy algorithms

    E-Print Network [OSTI]

    Chung, Maranatha

    1993-01-01T23:59:59.000Z

    system Xt, XView, Motif, etc. are some of the widely used toolkits. The relationship between Xlib and the toolkits is illustrated in Fig. 12. This study has utilized Xlib and XView using X11R4. All the programs are written on a SparcStation 1. Xlib...

  14. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01T23:59:59.000Z

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  15. A solenoidal electron spectrometer for a precision measurement of the neutron $?$-asymmetry with ultracold neutrons

    E-Print Network [OSTI]

    B. Plaster; R. Carr; B. W. Filippone; D. Harrison; J. Hsiao; T. M. Ito; J. Liu; J. W. Martin; B. Tipton; J. Yuan

    2008-06-12T23:59:59.000Z

    We describe an electron spectrometer designed for a precision measurement of the neutron $\\beta$-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-Tesla solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-Tesla field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.

  16. Neutron Tomography and Space

    E-Print Network [OSTI]

    Egbert, Hal; Walker, Ronald; Flocchini, R.

    2007-01-01T23:59:59.000Z

    Kevin Shields, Optimization of neutron tomography for rapidNEUTRON TOMOGRAPHY AND SPACE Hal Egbert, Ronald Walker, R.industrial applications[1]. Neutron Computed Tomography was

  17. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, S.H.

    1988-03-10T23:59:59.000Z

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  18. BPS Skyrmions as neutron stars

    E-Print Network [OSTI]

    C. Adam; C. Naya; J. Sanchez-Guillen; R. Vazquez; A. Wereszczynski

    2014-07-14T23:59:59.000Z

    The BPS Skyrme model has been demonstrated already to provide a physically intriguing and quantitatively reliable description of nuclear matter. Indeed, the model has both the symmetries and the energy-momentum tensor of a perfect fluid, and thus represents a field theoretic realization of the "liquid droplet" model of nuclear matter. In addition, the classical soliton solutions together with some obvious corrections (spin-isospin quantization, Coulomb energy, proton-neutron mass difference) provide an accurate modeling of nuclear binding energies for heavier nuclei. These results lead to the rather natural proposal to try to describe also neutron stars by the BPS Skyrme model coupled to gravity. We find that the resulting self-gravitating BPS Skyrmions provide excellent results as well as some new perspectives for the description of bulk properties of neutron stars when the parameter values of the model are extracted from nuclear physics. Specifically, the maximum possible mass of a neutron star before black-hole formation sets in is a few solar masses, the precise value depending on the precise values of the model parameters, and the resulting neutron star radius is of the order of 10 km.

  19. E-Print Network 3.0 - acoustic echo cancellation Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group Collection: Geosciences 47 CURRICULUM VITAE September 2011 Summary: , "Nonlinear Adaptive Filters for Acoustic Echo Cancellation in Mobile Terminals," in K. E. Barner, G....

  20. Climatological study of radar echo pictures from Albrook Air Force Base, Panama

    E-Print Network [OSTI]

    Bowen, Christopher

    2012-06-07T23:59:59.000Z

    of the radar beam above the surface of the earth for a two degree antenna tilt (From AWS, 1955). . 9 Echo occurrence chart of radar data observed at Albrook AFB, Panama, for the month of January, 1962 Echo occurrence chart of radar date observed... at Albrook AFB, Panama, for the month of April, 1961 Echo occurrence chart of radar data observed at Albrook AFB, Panama, for the month of July, 1961 16 17 18 Topography and radar echo occurrence profiles for a circle of 75-statute-mile radius from...

  1. JOURNAL DE PHYSIQUE Colloque C6, supplment au n 8, Tome 39, aot 1978, page C6-819 NEUTRON SCATTERING STUDY ON THE SPIN-FLOP SYSTEM Cs.MnBr3.2D20

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    JOURNAL DE PHYSIQUE Colloque C6, supplément au n° 8, Tome 39, août 1978, page C6-819 NEUTRON Netherlands Energy Research Foundation (ECN), Westerduinweg Z, 17SS LE Petten (NH) The Netherlands Department of Physios, Eindhoven University of Technology, Eindhoven, The Netherlands Résumé.- La variation de l

  2. Demand Response Spinning Reserve Demonstration

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    F) Enhanced ACP Date RAA ACP Demand Response SpinningReserve Demonstration Demand Response Spinning Reservesupply spinning reserve. Demand Response Spinning Reserve

  3. Neutron Repulsion

    E-Print Network [OSTI]

    Oliver K. Manuel

    2011-02-08T23:59:59.000Z

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding how: a.) The Sun generates and releases neutrinos, energy and solar-wind hydrogen and helium; b.) An inhabitable planet formed and life evolved around an ordinary-looking star; c.) Continuous climate change - induced by cyclic changes in gravitational interactions of the Sun's energetic core with planets - has favored survival by adaptation.

  4. On Hilbert after slide 4 1 echo $SHELL

    E-Print Network [OSTI]

    Dahl, David B.

    On Hilbert after slide 4 1 echo $SHELL 2 ls ­la /bin/*sh* 3 clear 4 ls 5 cat get 6 ls ­la get after slide 5 1 cat Rb 2 cat rnorm.R 3 ./R 4 ls ­la Rb 5 chmod +x Rb 6 cat Rb 7 man ls 8 ls ­c *.out 9 ls ­lc *.out 10 man head 11 ./Rb rnorm.R 12 clear On Hilbert after slide 7 1 cat res 2 man

  5. Electrical activation and spin coherence of ultra low doseantimony implants in silicon

    SciTech Connect (OSTI)

    Schenkel, T.; Tyryshkin, A.M.; de Sousa, R.; Whaley, K.B.; Bokor,J.; Liddle, J.A.; Persaud, A.; Shangkuan, J.; Chakarov, I.; Lyon, S.A.

    2005-07-13T23:59:59.000Z

    We implanted ultra low doses (0.2 to 2 x 10{sup 11} cm{sup -2}) of Sb ions into isotopically enriched {sup 28}Si, and probed electrical activation and electron spin relaxation after rapid thermal annealing. Strong segregation of dopants towards both Si{sub 3}N{sub 4} and SiO{sub 2} interfaces limits electrical activation. Pulsed Electron Spin Resonance shows that spin echo decay is sensitive to the dopant profiles, and the interface quality. A spin decoherence time, T{sub 2}, of 1.5 ms is found for profiles peaking 25 nm below a Si/SiO{sub 2} interface, increasing to 2.1 ms when the surface is passivated with hydrogen. These measurements provide benchmark data for the development of devices in which quantum information is encoded in donor electron spins.

  6. Neutron Interactions: Q-Equation, Elastic Scattering

    E-Print Network [OSTI]

    unknown authors

    Since a neutron has no charge it can easily enter into a nucleus and cause a reaction. Neutrons interact primarily with the nucleus of an atom, except in the special case of magnetic scattering where the interaction involves the neutron spin and the magnetic moment of the atom. Because magnetic scattering is of no interest in this class, we can neglect the interaction between neutrons and electrons and think of atoms and nuclei interchangeably. Neutron reactions can take place at any energy, so one has to pay particular attention to the energy variation of the interaction cross section. In a nuclear reactor neutrons can have energies ranging from 10-3 ev (1 mev) to 10 7 ev (10 Mev). This means our study of neutron interactions, in principle, will have to cover an energy range of 10 ten orders of magnitude. In practice we will limit ourselves to two energy ranges, the slowing down region (ev to Kev) and the thermal region (around 0.025 ev). For a given energy region thermal, epithermal, resonance, fast not all the possible reactions are equally important. Which reaction is important depends on the target nucleus and the neutron energy. Generally speaking the important types of interactions, in the order of increasing complexity from the standpoint of theoretical

  7. Observational evidence for superfluidity, and pinning, in the core of neutron stars

    E-Print Network [OSTI]

    M. Jahan-Miri

    1999-11-11T23:59:59.000Z

    The observed large rates of spinning down after glitches in some radio pulsars has been previously explained in terms of a long-term spin-up behaviour of a superfluid part of the crust of neutron stars. We argue that the suggested mechanism is not viable; being inconsistent with the basic requirements for a superfluid spin-up, in addition to its quantitative disagreement with the data. One may therefore conclude, for the first time, that the presence and the pinned nature of neutron superfluid in the core of neutron stars is evidenced by the existing observational data.

  8. Correction of Physiologically Induced Global Off-Resonance Effects in Dynamic Echo-Planar and

    E-Print Network [OSTI]

    Glover, Gary H.

    information from the center of k-space and a navigator echo and is illustrated with dynamic scans of single oxygen level-dependant (BOLD) func- tional neuroimaging (3), which will be the primary focus of this work maps. Zero-order phase (non- evolving in time) corrections using navigator echoes (8­ 10

  9. The maturity characterization of orange fruit by using high frequency ultrasonic echo pulse method

    E-Print Network [OSTI]

    Boyer, Edmond

    The maturity characterization of orange fruit by using high frequency ultrasonic echo pulse method of the maturity of orange fruit by the ultrasonic echo pulse method with immersion in water. This study relates the strong attenuation of the ultrasounds in the texture of fruits and vegetables, we limited our study only

  10. ELECTRIC DIPOLAR ECHOES IN GLASSES L. BERNARD, L. PICHE, G. SCHUMACHER

    E-Print Network [OSTI]

    Boyer, Edmond

    field : we apply an R.F. electrical pulse to the electrodes attached on a thin disk of Suprasil I glassL-126 ELECTRIC DIPOLAR ECHOES IN GLASSES L. BERNARD, L. PICHE, G. SCHUMACHER C.R.T.B.T., C couplage avec les déformations élas- tiques. Abstract. 2014 Electric dipolar echoes are observed in OH

  11. E-Print Network 3.0 - accretion powered spin-up Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of accretion onto MFD (Urpin et al. 1996). Spin-up... Restrictions on parameters of power-law magnetic field decay for accreting isolated neutron stars S... of INSs with the...

  12. Centennial Variations of the Global Monsoon Precipitation in the Last Millennium: Results from ECHO-G Model

    E-Print Network [OSTI]

    Wang, Bin

    Centennial Variations of the Global Monsoon Precipitation in the Last Millennium: Results from ECHO-G with the ECHAM and the global Hamburg Ocean Primitive Equation (ECHO-G) coupled ocean­atmosphere model

  13. Methods for absorbing neutrons

    DOE Patents [OSTI]

    Guillen, Donna P. (Idaho Falls, ID); Longhurst, Glen R. (Idaho Falls, ID); Porter, Douglas L. (Idaho Falls, ID); Parry, James R. (Idaho Falls, ID)

    2012-07-24T23:59:59.000Z

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  14. NEUTRON ELECTRIC-DIPOLE MOMENT, ULTRACOLD NEUTRONS

    E-Print Network [OSTI]

    NEUTRON ELECTRIC-DIPOLE MOMENT, ULTRACOLD NEUTRONS AND POLARIZED 3He R. GOLUB~and Steve K REPORTS (Review Section of Physics Letters) 237, No. 1(1994)1--62. PHYSICS REPORTS North-Holland Neutron electric-dipole moment, ultracold neutrons and polarized 3He R. Goluba and Steve K. Lamoreauxb a

  15. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01T23:59:59.000Z

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  16. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, J.L.

    1992-12-01T23:59:59.000Z

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  17. Megadroughts in Southwestern North America in ECHO-G Millennial Simulations and Their Comparison to Proxy Drought Reconstructions*

    E-Print Network [OSTI]

    Megadroughts in Southwestern North America in ECHO-G Millennial Simulations and Their Comparison transient and control simulations from the ECHAM and the global Hamburg Ocean Primitive Equation (ECHO-G­42.58N, 1258­1058W). Megadroughts in the ECHO-G AOGCM are found to be similar in duration and magnitude

  18. 6.4 A BOW-ECHO EVENT ON A SQUALL LINE IN THE NETHERLANDS Rob Groenland

    E-Print Network [OSTI]

    Haak, Hein

    6.4 A BOW-ECHO EVENT ON A SQUALL LINE IN THE NETHERLANDS Rob Groenland Meteo Consult, Wageningen, The Netherlands (Europe) ABSTRACT In this study, the structure of a bow-echo on a squall line is investigated . It accelerated as it moved into the Netherlands. A bow-echo developed over extreme northern Belgium

  19. EChO Payload electronics architecture and SW design

    E-Print Network [OSTI]

    Focardi, M; Farina, M; Pancrazzi, M; Ottensamer, R; Lim, T L; Pezzuto, S; Micela, G; Pace, E

    2014-01-01T23:59:59.000Z

    EChO is a three-modules (VNIR, SWIR, MWIR), highly integrated spectrometer, covering the wavelength range from 0.55 $\\mu$m, to 11.0 $\\mu$m. The baseline design includes the goal wavelength extension to 0.4 $\\mu$m while an optional LWIR module extends the range to the goal wavelength of 16.0 $\\mu$m. An Instrument Control Unit (ICU) is foreseen as the main electronic subsystem interfacing the spacecraft and collecting data from all the payload spectrometers modules. ICU is in charge of two main tasks: the overall payload control (Instrument Control Function) and the housekeepings and scientific data digital processing (Data Processing Function), including the lossless compression prior to store the science data to the Solid State Mass Memory of the Spacecraft. These two main tasks are accomplished thanks to the Payload On Board Software (P-OBSW) running on the ICU CPUs.

  20. Lambda-Neutron Scattering Lengths from Radiative K-minus Capture

    E-Print Network [OSTI]

    W. R. Gibbs; S. A. Coon; H. K. Han; B. F. Gibson

    2000-01-02T23:59:59.000Z

    Radiative capture of the K-minus by the deuteron as a reaction for measurement of the Lambda-neutron scattering lengths. The use of spin information to separate the singlet and triplet scattering lengths is treated.

  1. Spitzer Observations of V838 Monocerotis: Detection of a Rare Infrared Light Echo

    E-Print Network [OSTI]

    D. P. K. Banerjee; K. Y. L. Su; K. A. Misselt; N. M. Ashok

    2006-05-05T23:59:59.000Z

    We present Spitzer observations of the unusual variable V838 Monocerotis. Extended emission is detected around the object at 24, 70 and 160um. The extended infrared emission is strongly correlated spatially with the HST optical light echo images taken at a similar epoch. We attribute this diffuse nebulosity to be from an infrared light echo caused by reprocessed thermal emission from dust heated by the outward-propagating radiation from the 2002 eruption. The detection of an IR light echo provides an opportunity to estimate the mass in dust of the echo material and hence constrain its origin. We estimate the dust mass of the light echo to be on the order of a solar mass - thereby implying the total gas plus dust mass to be considerably more - too massive for the echo material to be the ejecta from previous outburst/mass-losing events. This is therefore suggestive that a significant fraction of the matter seen through the light echo is interstellar in origin. Unresolved emission at 24 and 70um is also seen at the position of the central star possibly indicating the presence of hot dust freshly condensed in the outburst ejecta.

  2. Jefferson Lab's results on the Q^2-evolution of moments of spin structure functions

    E-Print Network [OSTI]

    A. Deur

    2005-07-15T23:59:59.000Z

    We present the recent JLab measurements on moments of spin structure functions at intermediate and low Q^2. The Bjorken sum and Burkhardt-Cottingham sum on the neutron are presented. The later appears to hold. Higher moments (generalized spin polarizabilities and d_2^n) are shown and compared to chiral perturbation theory and lattice QCD respectively.

  3. The helical jet of IGR J11014-6103: echoes of a core-collapse supernova

    E-Print Network [OSTI]

    Pavan, L; Puehlhofer, G; Filipovic, M D; De Horta, A; O'Brien, A; Balbo, M; Walter, R; Bozzo, E; Ferrigno, C; Crawford, E; Stella, L

    2013-01-01T23:59:59.000Z

    Jets from rotation-powered pulsars have so far only been observed in systems moving subsonically trough their ambient medium and/or embedded in their progenitor supernova remnant (SNR). Supersonic runaway pulsars are also expected to produce jets, but they have not been confirmed so far. We investigated the nature of the jet-like structure associated to the INTEGRAL source IGR J11014-6103. The source is a neutron star escaping its parent SNR MSH 11-61A supersonically at a velocity exceeding 1000 km/s. We observed IGR J11014-6103 and its jet-like X-ray structure through dedicated high spatial resolution observations in X-rays (Chandra) and radio band (ATCA). Our results show that the feature is a true pulsar's jet. It extends highly collimated over 11pc, displays a clear precession-like modulation, and propagates nearly perpendicular to the system direction of motion, implying that the neutron star's spin axis in IGR J11014-6103 is almost perpendicular to the direction of the kick received during the supernova...

  4. Isolated electron spins in silicon carbide with millisecond-coherence times

    E-Print Network [OSTI]

    David J. Christle; Abram L. Falk; Paolo Andrich; Paul V. Klimov; Jawad ul Hassan; Nguyen T. Son; Erik Janzn; Takeshi Ohshima; David D. Awschalom

    2014-06-27T23:59:59.000Z

    The elimination of defects from SiC has facilitated its move to the forefront of the optoelectronics and power-electronics industries. Nonetheless, because the electronic states of SiC defects can have sharp optical and spin transitions, they are increasingly recognized as a valuable resource for quantum-information and nanoscale-sensing applications. Here, we show that individual electron spin states in highly purified monocrystalline 4H-SiC can be isolated and coherently controlled. Bound to neutral divacancy defects, these states exhibit exceptionally long ensemble Hahn-echo spin coherence, exceeding 1 ms. Coherent control of single spins in a material amenable to advanced growth and microfabrication techniques is an exciting route to wafer-scale quantum technologies.

  5. Short Gamma-Ray Bursts from Binary Neutron Star Mergers

    E-Print Network [OSTI]

    Roland Oechslin; Thomas Janka

    2006-04-27T23:59:59.000Z

    We present the results from new relativistic hydrodynamic simulations of binary neutron star mergers using realistic non-zero temperature equations of state. We vary several unknown parameters in the system such as the neutron star (NS) masses, their spins and the nuclear equation of state. The results are then investigated with special focus on the post-merger torus-remnant system. Observational implications on the Gamma-ray burst (GRB) energetics are discussed and compared with recent observations.

  6. Proton-neutron pairing correlations in the nuclear shell model

    E-Print Network [OSTI]

    Lei Yang; S. Pittel; B. Thakur; N. Sandulescu; A. Poves; Yu-Min Zhao

    2010-06-16T23:59:59.000Z

    A shell-model study of proton-neutron pairing in f - p shell nuclei using a parametrized hamiltonian that includes deformation and spin-orbit effects as well as isoscalar and isovector pairing is reported. By working in a shell-model framework we are able to assess the role of the various modes of proton-neutron pairing in the presence of nuclear deformation without violating symmetries. Results are presented for $^{44}$Ti, $^{46}$Ti and $^{48}$Cr.

  7. Spin Structure with JLab 6 and 12 GeV

    SciTech Connect (OSTI)

    Jian-Ping Chen

    2012-02-01T23:59:59.000Z

    Highlights of JLab 6 GeV results on spin structure study and plan for 12 GeV program. Spin structure study is full of surprises and puzzles. A decade of experiments from JLab yield these exciting results: (1) valence spin structure; (2) precision measurements of g{sub 2}/d{sub 2} - high-twist; (3) spin sum rules and polarizabilities; and (4) first neutron transversity. There is a bright future as the 12 GeV Upgrade will greatly enhance our capability: (1) Precision determination of the valence quark spin structure flavor separation; (2) Precision measurements of g{sub 2}/d{sub 2}; and (3) Precision extraction of transversity/tensor charge.

  8. Spin Rotation of Formalism for Spin Tracking

    SciTech Connect (OSTI)

    Luccio,A.

    2008-02-01T23:59:59.000Z

    The problem of which coefficients are adequate to correctly represent the spin rotation in vector spin tracking for polarized proton and deuteron beams in synchrotrons is here re-examined in the light of recent discussions. The main aim of this note is to show where some previous erroneous results originated and how to code spin rotation in a tracking code. Some analysis of a recent experiment is presented that confirm the correctness of the assumptions.

  9. A solenoidal electron spectrometer for a precision measurement of the neutron $\\beta$-asymmetry with ultracold neutrons

    E-Print Network [OSTI]

    Plaster, B; Filippone, B W; Harrison, D; Hsiao, J; Ito, T M; Liu, J; Martin, J W; Tipton, B; Yuan, J

    2008-01-01T23:59:59.000Z

    We describe an electron spectrometer designed for a precision measurement of the neutron $\\beta$-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-Tesla solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-Tesla field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.

  10. Publications | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications SHARE Publications The Neutron Science publications system contains peer-reviewed publications based on research conducted at ORNL's Neutron Science facilities or...

  11. SHARP Neutronics Expanded

    Broader source: Energy.gov [DOE]

    The SHARP neutronics module, PROTEUS, includes neutron and gamma transport solvers and cross-section processing tools as well as the capability for depletion and fuel cycle analysis.

  12. ONDES DE SPIN MAGNETISM IN THE LIGHT RARE EARTH 'METALS

    E-Print Network [OSTI]

    Boyer, Edmond

    ONDES DE SPIN MAGNETISM IN THE LIGHT RARE EARTH 'METALS A. R. MACKINTOSH H. C. Mrsted Institute terres rares Ikgeres. Abstract. -The magnetic properties of the light rare earth metals are reviewed interaction. The discussion is illustrated by recent magnetization and neutron diffraction measurements

  13. Broadband and statistical characterization of echoes from random scatterers : application to acoustic scattering by marine organisms

    E-Print Network [OSTI]

    Lee, Wu-Jung

    2013-01-01T23:59:59.000Z

    The interpretation of echoes collected by active remote-sensing systems, such as sonar and radar, is often ambiguous due to the complexities in the scattering processes involving the scatterers, the environment, and the ...

  14. Photon echo with a few photons in two-level atoms

    E-Print Network [OSTI]

    M. Bonarota; J. Dajczgewand; A. Louchet-Chauvet; J. -L. Le Gout; T. Chanelire

    2014-03-25T23:59:59.000Z

    To store and retrieve signals at the single photon level, various photon echo schemes have resorted to complex preparation steps involving ancillary shelving states in multi-level atoms. For the first time, we experimentally demonstrate photon echo operation at such a low signal intensity without any preparation step, which allows us to work with mere two-level atoms. This simplified approach relies on the so-coined "Revival Of Silenced Echo" (ROSE) scheme. Low noise conditions are obtained by returning the atoms to the ground state before the echo emission. In the present paper we manage ROSE in photon counting conditions, showing that very strong control fields can be compatible with extremely weak signals, making ROSE consistent with quantum memory requirements.

  15. Microsoft Word - CX-Echo Lake-Monroe Spacers_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    17, 2010 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Corinn Castro Project Manager - TELM-TPP-3 Proposed Action: Spacer-damper replacements on the Echo...

  16. Impossibility of faithfully storing single photons with the three-pulse photon echo

    SciTech Connect (OSTI)

    Sangouard, Nicolas; Minar, Jiri; Afzelius, Mikael; Gisin, Nicolas; Riedmatten, Hugues de [Group of Applied Physics, University of Geneva, Geneva (Switzerland); Simon, Christoph; Tittel, Wolfgang [Institute for Quantum Information Science and Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Chaneliere, Thierry; Le Goueet, Jean-Louis [Laboratoire Aime Cotton, CNRS-UPR 3321, Universite Paris-Sud, F-91405 Orsay cedex (France)

    2010-06-15T23:59:59.000Z

    The three-pulse photon echo is a well-known technique to store intense light pulses in an inhomogeneously broadened atomic ensemble. This protocol is attractive because it is relatively simple and it is well suited for the storage of multiple temporal modes. Furthermore, it offers very long storage times, greater than the phase relaxation time. Here, we consider the three-pulse photon echo in both two- and three-level systems as a potential technique for the storage of light at the single-photon level. By explicit calculations, we show that the ratio between the echo signal corresponding to a single-photon input and the noise is smaller than one. This severely limits the achievable fidelity of the quantum state storage, making the three-pulse photon echo unsuitable for single-photon quantum memory.

  17. Accidents and opportunities: a history of the radio echo-sounding of Antarctica, 1958-79

    E-Print Network [OSTI]

    Siegert, Martin; Turchetti, S.; Dean, K.; Naylor, S.

    2008-01-01T23:59:59.000Z

    This paper explores the history of radio echo-sounding (RES), a technique of glaciological surveying that from the late 1960s has been used to examine Antarctica's sub-glacial morphology. Although the origins of RES can ...

  18. Quasiuniversal properties of neutron star mergers

    E-Print Network [OSTI]

    Sebastiano Bernuzzi; Alessandro Nagar; Simone Balmelli; Tim Dietrich; Maximiliano Ujevic

    2014-06-06T23:59:59.000Z

    Binary neutron star mergers are studied using nonlinear 3+1 numerical relativity simulations and the analytical effective-one-body (EOB) model. The EOB model predicts quasiuniversal relations between the mass-rescaled gravitational wave frequency and the binding energy at the moment of merger, and certain dimensionless binary tidal coupling constants depending on the stars Love numbers, compactnesses and the binary mass ratio. These relations are quasiuniversal in the sense that, for a given value of the tidal coupling constant, they depend significantly neither on the equation of state nor on the mass ratio, though they do depend on stars spins. The spin dependence is approximately linear for small spins aligned with the orbital angular momentum. The quasiuniversality is a property of the conservative dynamics; nontrivial relations emerge as the binary interaction becomes tidally dominated. This analytical prediction is qualitatively consistent with new, multi-orbit numerical relativity results for the relevant case of equal-mass irrotational binaries. Universal relations are thus expected to characterize neutron star mergers dynamics. In the context of gravitational wave astronomy, these universal relations may be used to constrain the neutron star equation of state using waveforms that model the merger accurately.

  19. Precision Measurement of PArity Violation in Polarized Cold Neutron Capture on the Proton: the NPDGamma Experiment

    E-Print Network [OSTI]

    Lauss Bernhard

    2006-01-02T23:59:59.000Z

    The NPDGamma experiment at the Los Alamos Neutron Science Center (LANSCE) is dedicated to measure with high precision the parity violating asymmetry in the $\\gamma$ emission after capture of spin polarized cold neutrons in para-hydrogen. The measurement will determine unambiguously the weak pion-nucleon-nucleon ($\\pi NN$) coupling constant {\\it f$^1_{\\pi}$}

  20. PROBING INTERSTELLAR DUST WITH INFRARED ECHOES FROM THE Cas A SUPERNOVA

    SciTech Connect (OSTI)

    Vogt, Frederic P. A. [Mount Stromlo Observatory, Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Besel, Marc-Andre; Krause, Oliver; Dullemond, Cornelis P., E-mail: fvogt@mso.anu.edu.au [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany)

    2012-05-10T23:59:59.000Z

    We present the analysis of an Infrared Spectrograph 5-38 {mu}m spectrum and Multiband Imaging Photometer for Spitzer photometric measurements of an infrared echo near the Cassiopeia A (Cas A) supernova (SN) remnant observed with the Spitzer Space Telescope. We have modeled the recorded echo accounting for polycyclic aromatic hydrocarbons (PAHs), quantum-heated carbon and silicate grains, as well as thermal carbon and silicate particles. Using the fact that optical light-echo spectroscopy has established that Cas A originated from a Type IIb SN explosion showing an optical spectrum remarkably similar to the prototypical Type IIb SN 1993J, we use the latter to construct template data input for our simulations. We are then able to reproduce the recorded infrared echo spectrum by combining the emission of dust heated by the UV burst produced at the shock breakout after the core-collapse and dust heated by optical light emitted near the visual maximum of the SN light curve, where the UV burst and optical light curve characteristics are based on SN 1993J. We find a mean density of {approx}680 H cm{sup -3} for the echo region, with a size of a few light years across. We also find evidence of dust processing in the form of a lack of small PAHs with less than {approx}300 carbon atoms, consistent with a scenario of PAHs destruction by the UV burst via photodissociation at the estimated distance of the echo region from Cas A. Furthermore, our simulations suggest that the weak 11 {mu}m features of our recorded infrared echo spectrum are consistent with a strong dehydrogenated state of the PAHs. This exploratory study highlights the potential of investigating dust processing in the interstellar medium through infrared echoes.

  1. Can Light Echoes Account for the Slow Decay of Type IIn Supernovae?

    E-Print Network [OSTI]

    B. Roscherr; B. E. Schaefer

    1999-09-09T23:59:59.000Z

    The spectra of type IIn supernovae indicate the presence of apre-existing slow, dense circumstellar wind (CSW). If the CSW extends sufficiently far from the progenitor star, then dust formation should occur in the wind. The light from the supernova explosion will scatter off this dust and produce a light echo. Continuum emission seen after the peak will have contributions from both this echo as well as from the shock of the ejecta colliding with the CSW, with a fundamental question of which source dominates the continuum. We calculate the brightness of the light echo as a function of time for a range of dust shell geometries, and use our calculations to fit to the light curves of SN 1988Z and SN 1997ab, the two slowest declining IIn supernovae on record. We find that the light curves of both objects can be reproduced by the echo model. However, their rate of decay from peak, color at peak and their observed peak absolute magnitudes when considered together are inconsistent with the echo model. Furthermore, when the observed values of M$_{B}$ are corrected for the effects of dust scattering, the values obtained imply that these supernovae have unrealistically high luminosities. We conclude that light echoes cannot properly account for the slow decline seen in some IIn's, and that the shock interaction is likely to dominate the continuum emission.

  2. Neutron Compound Refractive Prisms - DOE SBIR Phase II Final Report

    SciTech Connect (OSTI)

    Dr. Jay Theodore Cremer, Jr

    2011-06-25T23:59:59.000Z

    The results of the research led to a pulsed electromagnetic periodic magnetic field array (PMF), which coupled with a pair of collimation slits, and a mechanical chopper slit, were able to deflect spin-up neutrons to a band of line-fused neutrons a focal plane heights that correspond to the time-varying magnetic field amplitude. The electromagnetic field PMF produced 5.4 pulses per minute in which each pulse was 50 msec in duration with a full width half maximum (FWHM) of 7.5 msec. The calculated 7.7 mm vertical height of the band of focused spin-up neutrons corresponded closely to the measured 7.5 mm height of the center line of the imaged band of neutrons. The band of deflected spin-up neutrons was 5 mm in vertical width and the bottom of the band was 5 mm above the surface of the PMF pole. The limited exposure time of 3 hours and the smaller 0.78 T magnetic field allowed focused and near focused neutrons of 1.8 ???? to 2.6 ???? neutrons, which were in the tails of the McClellan Nuclear Radiation Center Bay 4 Maxwell Boltzmann distribution of neutrons with peak flux at 1.1-1.2 ????. The electromagnetic PMF was expected to produces a 2.0 T peak magnetic field amplitude, which would be operational at a higher duty factor, rather than the as built 7.5 msec FWHM with pulse repetition frequency of 5.4 pulses per minute. The fabricated pulsed electromagnetic PMF with chopper is expected to perform well on a cold, very cold or ultra cold beam line as a spectrometer or monochromator source of spin-up polarized neutron. In fact there may be a possible use of the PMF to do ultra-cold neutron trapping, see paper by A. I. Frank1, V. G. Nosov, Quantum Effects in a One-Dimensional Magnetic Gravitational Trap for Ultracold Neutrons, JETP Letters, Vol. 79, No. 7, 2004, pp. 313?¢????315. The next step is to find a cold or very cold neutron facility, where further testing or use of the pulsed magnetic field PMF can be pursued.

  3. Noise pair velocity and range echo location system

    DOE Patents [OSTI]

    Erskine, D.J.

    1999-02-16T23:59:59.000Z

    An echo-location method for microwaves, sound and light capable of using incoherent and arbitrary waveforms of wide bandwidth to measure velocity and range (and target size) simultaneously to high resolution is disclosed. Two interferometers having very long and nearly equal delays are used in series with the target interposed. The delays can be longer than the target range of interest. The first interferometer imprints a partial coherence on an initially incoherent source which allows autocorrelation to be performed on the reflected signal to determine velocity. A coherent cross-correlation subsequent to the second interferometer with the source determines a velocity discriminated range. Dithering the second interferometer identifies portions of the cross-correlation belonging to a target apart from clutter moving at a different velocity. The velocity discrimination is insensitive to all slowly varying distortions in the signal path. Speckle in the image of target and antenna lobing due to parasitic reflections is minimal for an incoherent source. An arbitrary source which varies its spectrum dramatically and randomly from pulse to pulse creates a radar elusive to jamming. Monochromatic sources which jigger in frequency from pulse to pulse or combinations of monochromatic sources can simulate some benefits of incoherent broadband sources. Clutter which has a symmetrical velocity spectrum will self-cancel for short wavelengths, such as the apparent motion of ground surrounding target from a sidelooking airborne antenna. 46 figs.

  4. Proton-neutron interacting boson model under random two-body interactions

    SciTech Connect (OSTI)

    Yoshida, N.; Zhao, Y. M.; Arima, A. [Faculty of Informatics, Kansai University, Takatsuki 569-1095 (Japan); Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Science Museum, Japan Science Foundation, 2-1 Kitanomaru-koen, Chiyoda ku, Tokyo 102-0091 (Japan)

    2009-12-15T23:59:59.000Z

    The low-lying states of sd-boson systems in the presence of random two-body interactions are studied in the proton-neutron interacting boson model (IBM-2). The predominance of spin-zero ground states is confirmed, and a very prominent maximum F-spin dominance in ground states is found. It turns out that the requirement of random interactions with F-spin conservation intensifies the above predominance. Collective motion in the low-lying states is discussed.

  5. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01T23:59:59.000Z

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  6. Spin-Orbit Force from Lattice QCD

    E-Print Network [OSTI]

    K. Murano; N. Ishii; S. Aoki; T. Doi; T. Hatsuda; Y. Ikeda; T. Inoue; H. Nemura; K. Sasaki

    2014-06-19T23:59:59.000Z

    We present a first attempt to determine nucleon-nucleon potentials in the parity-odd sector, which appear in 1P1, 3P0, 3P1, 3P2-3F2 channels, in Nf=2 lattice QCD simulations. These potentials are constructed from the Nambu-Bethe-Salpeter wave functions for J^P=0^-, 1^- and 2^-, which correspond to A1^-, T1^- and T2^- + E^- representation of the cubic group, respectively. We have found a large and attractive spin-orbit potential VLS(r) in the isospin-triplet channel, which is qualitatively consistent with the phenomenological determination from the experimental scattering phase shifts. The potentials obtained from lattice QCD are used to calculate the scattering phase shifts in 1P1, 3P0, 3P1 and 3P2-3F2 channels. The strong attractive spin-orbit force and a weak repulsive central force in spin-triplet P-wave channels lead to an attraction in the 3P2 channel, which is related to the P-wave neutron paring in neutron stars.

  7. Neutron-Mirror-Neutron Oscillations in a Trap

    E-Print Network [OSTI]

    B. Kerbikov; O. Lychkovskiy

    2008-04-03T23:59:59.000Z

    We calculate the rate of neutron-mirror-neutron oscillations for ultracold neutrons trapped in a storage vessel. Recent experimental bounds on the oscillation time are discussed.

  8. Imaging with Scattered Neutrons

    E-Print Network [OSTI]

    H. Ballhausen; H. Abele; R. Gaehler; M. Trapp; A. Van Overberghe

    2006-10-30T23:59:59.000Z

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-resolution images by scattered neutron radiography and tomography are presented.

  9. Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars

    E-Print Network [OSTI]

    Michalis Agathos; Jeroen Meidam; Walter Del Pozzo; Tjonnie G. F. Li; Marco Tompitak; John Veitch; Salvatore Vitale; Chris Van Den Broeck

    2015-03-18T23:59:59.000Z

    Recently exploratory studies were performed on the possibility of constraining the neutron star equation of state (EOS) using signals from coalescing binary neutron stars, or neutron star-black hole systems, as they will be seen in upcoming advanced gravitational wave detectors such as Advanced LIGO and Advanced Virgo. In particular, it was estimated to what extent the combined information from multiple detections would enable one to distinguish between different equations of state through hypothesis ranking or parameter estimation. Under the assumption of zero neutron star spins both in signals and in template waveforms and considering tidal effects to 1PN order, it was found that O(20) sources would suffice to distinguish between a hard, moderate, and soft equation of state. Here we revisit these results, this time including neutron star tidal effects to the highest order currently known, termination of gravitational waveforms at the contact frequency, neutron star spins, and the resulting quadrupole-monopole interaction. We also take the masses of neutron stars in simulated sources to be distributed according to a relatively strongly peaked Gaussian, as hinted at by observations, but without assuming that the data analyst will necessarily have accurate knowledge of this distribution for use as a mass prior. We find that especially the effect of the latter is dramatic, necessitating many more detections to distinguish between different EOS and causing systematic biases in parameter estimation, on top of biases due to imperfect understanding of the signal model pointed out in earlier work. This would get mitigated if reliable prior information about the mass distribution could be folded into the analyses.

  10. Analysis of a time-of-flight neutron spectrometer

    SciTech Connect (OSTI)

    Biggs, F.

    1983-12-01T23:59:59.000Z

    A neutron spectrometer is analyzed. The spectrum is resolved using a time-of-flight method in which the angular position of a rapidly spinning wheel is used to measure time. The measurement method is summarized, the data-analysis problem is formulated, units are discussed, the calibration technique is described, and a spectral transformation is developed.

  11. Possible Effects of Pair Echoes on Gamma-Ray Burst Afterglow Emission

    E-Print Network [OSTI]

    Kohta Murase; Bing Zhang; Keitaro Takahashi; Shigehiro Nagataki

    2009-02-27T23:59:59.000Z

    High-energy emission from gamma-ray bursts (GRBs) is widely expected but had been sparsely observed until recently when the Fermi satellite was launched. If >TeV gamma rays are produced in GRBs and can escape from the emission region, they are attenuated by the cosmic infrared background photons, leading to regeneration of GeV-TeV secondary photons via inverse-Compton scattering. This secondary emission can last for a longer time than the duration of GRBs, and it is called a pair echo. We investigate how this pair echo emission affects spectra and light curves of high energy afterglows, considering not only prompt emission but also afterglow as the primary emission. Detection of pair echoes is possible as long as the intergalactic magnetic field (IGMF) in voids is weak. We find (1) that the pair echo from the primary afterglow emission can affect the observed high-energy emission in the afterglow phase after the jet break, and (2) that the pair echo from the primary prompt emission can also be relevant, but only when significant energy is emitted in the TeV range, typically E_{gamma, >0.1 TeV} > (Y/(1+Y)) epsilon_e E_k. Even non-detections of the pair echoes could place interesting constraints on the strength of IGMF. The more favorable targets to detect pair echoes may be the "naked" GRBs without conventional afterglow emission, although energetic naked GRBs would be rare. If the IGMF is weak enough, it is predicted that the GeV emission extends to >30-300 s.

  12. Improvement of the polarized neutron interferometer setup demonstrating violation of a Bell-like inequality

    E-Print Network [OSTI]

    Hermann Geppert; Tobias Denkmayr; Stephan Sponar; Hartmut Lemmel; Yuji Hasegawa

    2014-04-14T23:59:59.000Z

    For precise measurements with polarized neutrons high efficient spin-manipulation is required. We developed several neutron optical elements suitable for a new sophisticated setup, i.e., DC spin-turners and Larmor-accelerators which diminish thermal disturbances and depolarisation considerably. The gain in performance is exploited demonstrating violation of a Bell-like inequality for a spin-path entangled single-neutron state. The obtained value of S=2.365(13), which is much higher than previous measurements by neutron interferometry, is 28 $\\sigma$ above the limit of S=2 predicted by contextual hidden variable theories. The new setup is more flexible referring to state preparation and analysis, therefore new, more precise measurements can be carried out.

  13. Reflections on Reflexions: I. Light Echoes in Type Ia Supernovae

    E-Print Network [OSTI]

    F. Patat

    2004-09-28T23:59:59.000Z

    In the last ten years, observational evidences about a possible connection between Type Ia Supernovae (SNe) properties and the environment where they explode have been steadily growing. In this paper I discuss, from a theoretical point of view but with an observer's perspective, the usage of light echoes (LEs) to probe the CSM around SNe of Type Ia since, in principle, they give us a unique opportunity of getting a three-dimensional description of the SN environment. In turn, this can be used to check the often suggested association of some Ia's with dusty/star forming regions, which would point to a young population for the progenitors. After giving a brief introduction to the LE phenomenon in single scattering approximation, I derive analytical and numerical solutions for the optical light and colour curves for a few simple dust geometries. A fully 3D multiple scattering treatment has also been implemented in a Monte Carlo code, which I have used to investigate the effects of multiple scattering. In particular, I have explored in detail the LE colour dependency from time and dust distribution, since this is a promising tool to determine the dust density and derive the effective presence of multiple scattering from the observed properties. Finally, again by means of Monte Carlo simulations, I have studied the effects of multiple scattering on the LE linear polarization, analyzing the dependencies from the dust parameters and geometry. Both the analytical formalism and MC codes described in this paper can be used for any LE for which the light curve of the central source is known.

  14. Slow motions detection in polybutadiene through novel analyses of MSE refocusing efficiency and spin-lattice relaxation

    E-Print Network [OSTI]

    Simone Sturniolo; Marco Pieruccini; Maurizio Corti; Attilio Rigamonti

    2014-05-20T23:59:59.000Z

    Novel methods to analyze NMR signals dominated by dipolar interaction are applied to the study of slow relaxation motions in polybutadiene approaching its glass transition temperature. The analysis is based on a recently developed model where the time dependence in an ensemble of dipolar interacting spin pairs is described without resorting to the Anderson-Weiss approximation. The ability to catch relevant features of the $\\alpha$ relaxation process is emphasized. In particular, it is shown that the temperature profile of the Magic Sandwich Echo efficiency carries information on the frequency profile of the $\\alpha$-process. The analysis is corroborated by the temperature dependence of the spin-lattice relaxation time.

  15. Implications of Recent Nucleon Spin Structure Measurements for Neutralino Dark Matter Detection

    E-Print Network [OSTI]

    Marc Kamionkowski; Lawrence M. Krauss; M. Ted Ressell

    1994-06-22T23:59:59.000Z

    Predicted rates for direct and indirect detection of dark-matter neutralinos depend in general on the spin content of the nucleon. Neutralinos that are predominantly $B$-ino are the likeliest candidates for detection via spin-dependent interactions. Uncertainties in the measured spin content of the nucleon may lead to dramatic uncertainties in the rates for detection of $B$-inos by scattering off of nuclei with unpaired neutrons. Rates for spin-dependent scattering of $B$-inos off of nuclei with unpaired protons are far more robust, as are rates for capture of $B$-inos in the Sun.

  16. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, Stephen H. (East Syracuse, NY)

    1989-06-06T23:59:59.000Z

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  17. Type II superconductivity and magnetic flux transport in neutrons stars

    E-Print Network [OSTI]

    P. B. Jones

    2005-10-13T23:59:59.000Z

    The transition to a type II proton superconductor which is believed to occur in a cooling neutron star is accompanied by changes in the equation of hydrostatic equilibrium and by the formation of proton vortices with quantized magnetic flux. Analysis of the electron Boltzmann equation for this system and of the proton supercurrent distribution formed at the transition leads to the derivation of a simple expression for the transport velocity of magnetic flux in the liquid interior of a neutron star. This shows that flux moves easily as a consequence of the interaction between neutron and proton superfluid vortices during intervals of spin-down or spin-up in binary systems. The differences between the present analysis and those of previous workers are reviewed and an error in the paper of Jones (1991) is corrected.

  18. Spinning particles and higher spin field equations

    E-Print Network [OSTI]

    Bastianelli, Fiorenzo; Corradini, Olindo; Latini, Emanuele

    2015-01-01T23:59:59.000Z

    Relativistic particles with higher spin can be described in first quantization using actions with local supersymmetry on the worldline. First, we present a brief review of these actions and their use in first quantization. In a Dirac quantization scheme the field equations emerge as Dirac constraints on the Hilbert space, and we outline how they lead to the description of higher spin fields in terms of the more standard Fronsdal-Labastida equations. Then, we describe how these actions can be extended so that the propagating particle is allowed to take different values of the spin, i.e. carry a reducible representation of the Poincar\\'e group. This way one may identify a four dimensional model that carries the same degrees of freedom of the minimal Vasiliev's interacting higher spin field theory. Extensions to massive particles and to propagation on (A)dS spaces are also briefly commented upon.

  19. A molecular cloud within the light echo of V838 Monocerotis

    E-Print Network [OSTI]

    Kami?ski, T; Deguchi, S

    2011-01-01T23:59:59.000Z

    Context. V838 Mon is an eruptive variable, which exploded in 2002. It displayed the most spectacular light echo ever observed. However, neither the origin of the reflecting matter nor the nature of the 2002 outburst have been firmly constrained. Aims. We investigate the nature of the CO radio emission detected in the field of the light echo. In particular, we explore its connection to the echoing dust around V838 Mon. Methods. We observed the echo region in multiple CO rotational transitions. We present and analyse maps of the region obtained in the 12CO(1-0) and (3-2) lines. In addition, deep spectra at several positions were acquired in 12CO(1-0), (2-1), (3-2), and 13CO(1-0), (2-1). Radiative transfer modelling of line intensities is performed for chosen positions to constrain the kinetic temperatures and densities. We derive global parameters (e.g. mass, distance, total column density) of the emitting cloud. Results. We found that a compact molecular cloud is located within the echo region. The molecular e...

  20. Asymmetry in the Outburst of SN 1987A Detected Using Light Echo Spectroscopy

    E-Print Network [OSTI]

    Sinnott, B; Rest, A; Sutherland, P G; Bergmann, M

    2012-01-01T23:59:59.000Z

    We report direct evidence for asymmetry in the early phases of SN 1987A via optical spectroscopy of five fields of its light echo system. The light echoes allow the first few hundred days of the explosion to be reobserved, with different position angles providing different viewing angles to the supernova. Light echo spectroscopy therefore allows a direct spectroscopic comparison of light originating from different regions of the photosphere during the early phases of SN 1987A. Gemini multi-object spectroscopy of the light echo fields shows fine-structure in the H-alpha line as a smooth function of position angle on the near-circular light echo rings. H-alpha profiles originating from the northern hemisphere of SN 1987A show an excess in redshifted emission and a blue knee, while southern hemisphere profiles show an excess of blueshifted H-alpha emission and a red knee. This fine-structure is reminiscent of the "Bochum event" originally observed for SN 1987A, but in an exaggerated form. Maximum deviation from ...

  1. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    SciTech Connect (OSTI)

    Rest, A; Welch, D L; Suntzeff, N B; Oaster, L; Lanning, H; Olsen, K; Smith, R C; Becker, A C; Bergmann, M; Challis, P; Clocchiatti, A; Cook, K H; Damke, G; Garg, A; Huber, M E; Matheson, T; Minniti, D; Prieto, J L; Wood-Vasey, W M

    2008-05-06T23:59:59.000Z

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane.

  2. Layered semiconductor neutron detectors

    DOE Patents [OSTI]

    Mao, Samuel S; Perry, Dale L

    2013-12-10T23:59:59.000Z

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  3. Neutron streak camera

    DOE Patents [OSTI]

    Wang, C.L.

    1981-05-14T23:59:59.000Z

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  4. Search of parity violation effects in neutron reaction on natural Lead

    E-Print Network [OSTI]

    A. I. Oprea; C. Oprea; P. V. Sedyshev; Yu. M. Gledenov

    2014-06-02T23:59:59.000Z

    Parity violation effects (PV) in nuclear reaction were discovered in the 60 years of the last century in the capture of thermal transversal polarized neutrons by 113Cd nucleus. In this reaction experimentally was measured a non zero asymmetry of emitted gamma quanta and the results was interpreted by the existence of weak non leptonic interaction between nucleons in the compound nucleus. This first experimental result gave a serious impulse of theoretical and experimental developments of parity violation question in nuclear reactions. The weak interaction acts in the background of strong interaction (with order of magnitude higher) and therefore it is very difficult to observe and evidence it. One possibility is the evaluation of asymmetry effects induced by PV phenomena. For neutrons scattering there are a few asymmetry effects (like polarization of incident neutron beam, spin rotation and emitted neutrons asymmetry of incident transversal polarized neutrons) explained by the presence of weak interaction. In natural Lead were observed an unexpected high value of neutron spin rotation due to the PV phenomena. The natural Lead contains four isotopes and the main contribution to the PV effects is given by 204Pb. Further to explain the high value of neutron spin rotation it was supposed the existence of a new negative P resonance with energy EP = - 16 eV. In this work were estimated the PV effects in neutrons scattering in order to extract the weak matrix element and to verify the existence of the new negative resonance of 204Pb nucleus.

  5. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Hsu, Hsiao-Hua (Los Alamos, NM); Casson, William H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM); Kleck, Jeffrey H. (Menlo Park, CA); Beverding, Anthony (Foster City, CA)

    1996-01-01T23:59:59.000Z

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  6. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, C.L.

    1985-06-19T23:59:59.000Z

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  7. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, H.A. Jr.

    1984-01-01T23:59:59.000Z

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  8. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, Jr., Herbert A. (Oak Ridge, TN)

    1985-01-01T23:59:59.000Z

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  9. Tetrade Spin Foam Model

    E-Print Network [OSTI]

    A. Mikovic

    2005-04-26T23:59:59.000Z

    We propose a spin foam model of four-dimensional quantum gravity which is based on the integration of the tetrads in the path integral for the Palatini action of General Relativity. In the Euclidian gravity case we show that the model can be understood as a modification of the Barrett-Crane spin foam model. Fermionic matter can be coupled by using the path integral with sources for the tetrads and the spin connection, and the corresponding state sum is based on a spin foam where both the edges and the faces are colored independently with the irreducible representations of the spacetime rotations group.

  10. ASYMMETRY IN THE OUTBURST OF SN 1987A DETECTED USING LIGHT ECHO SPECTROSCOPY

    SciTech Connect (OSTI)

    Sinnott, B.; Welch, D. L.; Sutherland, P. G. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)] [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Rest, A. [Space Telescope Science Institute, Baltimore, MD 21218 (United States)] [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Bergmann, M.

    2013-04-10T23:59:59.000Z

    We report direct evidence for asymmetry in the early phases of SN 1987A via optical spectroscopy of five fields of its light echo system. The light echoes allow the first few hundred days of the explosion to be reobserved, with different position angles providing different viewing angles to the supernova. Light echo spectroscopy therefore allows a direct spectroscopic comparison of light originating from different regions of the photosphere during the early phases of SN 1987A. Gemini multi-object spectroscopy of the light echo fields shows fine structure in the H{alpha} line as a smooth function of position angle on the near-circular light echo rings. H{alpha} profiles originating from the northern hemisphere of SN 1987A show an excess in redshifted emission and a blue knee, while southern hemisphere profiles show an excess of blueshifted H{alpha} emission and a red knee. This fine structure is reminiscent of the 'Bochum event' originally observed for SN 1987A, but in an exaggerated form. Maximum deviation from symmetry in the H{alpha} line is observed at position angles 16 Degree-Sign and 186 Degree-Sign , consistent with the major axis of the expanding elongated ejecta. The asymmetry signature observed in the H{alpha} line smoothly diminishes as a function of viewing angle away from the poles of the elongated ejecta. We propose an asymmetric two-sided distribution of {sup 56}Ni most dominant in the southern far quadrant of SN 1987A as the most probable explanation of the observed light echo spectra. This is evidence that the asymmetry of high-velocity {sup 56}Ni in the first few hundred days after explosion is correlated to the geometry of the ejecta some 25 years later.

  11. Analyzing the Effects of Neutron Polarizabilities in Elastic Compton Scattering off ${}^3He$

    E-Print Network [OSTI]

    Deepshikha Shukla; Andreas Nogga; Daniel R. Phillips

    2008-12-01T23:59:59.000Z

    Motivated by the fact that a polarized ${}^3He$ nucleus behaves as an `effective' neutron target, we examine manifestations of neutron electromagnetic polarizabilities in elastic Compton scattering from the Helium-3 nucleus. We calculate both unpolarized and double-polarization observables using chiral perturbation theory to next-to-leading order (${\\mathcal O}(e^2 Q)$) at energies, $\\omega \\lsim m_{\\pi}$, where $m_{\\pi}$ is the pion mass. Our results show that the unpolarized differential cross section can be used to measure neutron electric and magnetic polarizabilities, while two double-polarization observables are sensitive to different linear combinations of the four neutron spin polarizabilities.

  12. Neutron computed tomography

    E-Print Network [OSTI]

    Russell, Clifford Marlow

    2012-06-07T23:59:59.000Z

    to make the Donner Algorithms run. TABLE OF CONTEliiTS CHAPTF. . R I NEI. TRON RADIOGRAPHY . I. 1 Background . I. 2 Theory . l. 3 Neutron Beam Characterization I. 4 Image Detectors . COMPI'TED TOMOGRAPHY . Il I Background . II. 2 Notation II. 3... data which is generated by rays traveling (and being attenuated) in straight lines. However in neutron radiography, what is measured is, to most extents, the levels of neutrons which are not attenuated. Neutrons are particles. They scatter...

  13. An effectual template bank for the detection of gravitational waves from inspiralling compact binaries with generic spins

    E-Print Network [OSTI]

    P. Ajith; N. Fotopoulos; S. Privitera; A. Neunzert; N. Mazumder; A. J. Weinstein

    2014-05-21T23:59:59.000Z

    We report the construction of a three-dimensional template bank for the search for gravitational waves from inspiralling binaries consisting of spinning compact objects. The parameter space consists of two dimensions describing the mass parameters and one "reduced-spin" parameter, which describes the secular (non-precessing) spin effects in the waveform. The template placement is based on an efficient stochastic algorithm and makes use of the semi-analytical computation of a metric in the parameter space. We demonstrate that for "low-mass" ($m_1 + m_2 \\lesssim 12\\,M_\\odot$) binaries, this template bank achieves effective fitting factors $\\sim0.92$--$0.99$ towards signals from generic spinning binaries in the advanced detector era over the entire parameter space of interest (including binary neutron stars, binary black holes, and black hole-neutron star binaries). This provides a powerful and viable method for searching for gravitational waves from generic spinning low-mass compact binaries. Under the assumption that spin magnitudes of black-holes [neutron-stars] are uniformly distributed between 0--0.98 [0 -- 0.4] and spin angles are isotropically distributed, the expected improvement in the average detection volume (at a fixed signal-to-noise-ratio threshold) of a search using this reduced-spin bank is $\\sim20-52\\%$, as compared to a search using a non-spinning bank.

  14. Driven dynamics and rotary echo of a qubit tunably coupled to a harmonic oscillator

    E-Print Network [OSTI]

    Gustavsson, Simon; Yan, Fei; Forn-Daz, Pol; Bolkhovsky, Vlad; Braje, Danielle; Fitch, George; Harrabi, Khalil; Lennon, Donna; Miloshi, Jovi; Murphy, Peter; Slattery, Rick; Spector, Steven; Turek, Ben; Weir, Terry; Welander, Paul B; Yoshihara, Fumiki; Cory, David G; Nakamura, Yasunobu; Orlando, Terry P; Oliver, William D

    2012-01-01T23:59:59.000Z

    We have investigated the driven dynamics of a superconducting flux qubit that is tunably coupled to a microwave resonator. We find that the qubit experiences an oscillating field mediated by off-resonant driving of the resonator, leading to strong modifications of the qubit Rabi frequency. This opens an additional noise channel, and we find that low-frequency noise in the coupling parameter causes a reduction of the coherence time during driven evolution. The noise can be mitigated with the rotary-echo pulse sequence, which, for driven systems, is analogous to the Hahn-echo sequence.

  15. Advanced neutron absorber materials

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

    2000-01-01T23:59:59.000Z

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  16. BUNCHED BEAM ECHOES IN THE HERA PROTON RING I.V. Agapov, G.H. Hoffstaetter, E. Vogel, DESY, Hamburg

    E-Print Network [OSTI]

    Hoffstaetter, Georg

    , considering HERA's double har- monic RF system, are compared to the measurements. We cannot specify all the oscillations are manipulated appropriately. Electromagnetic wave echoes in a plasma and echoes of magnetization deviation from the ref- erence energy, can be approximated by a smooth model with = 2h 2T0 , = e T0 V () E

  17. Spin-one color superconductors: collective modes and effective Lagrangian

    E-Print Network [OSTI]

    Jin-yi Pang; Tomas Brauner; Qun Wang

    2010-10-11T23:59:59.000Z

    We investigate the collective excitations in spin-one color superconductors. We classify the Nambu--Goldstone modes by the pattern of spontaneous symmetry breaking, and then use the Ginzburg--Landau theory to derive their dispersion relations. These soft modes play an important role for the low-energy dynamics of the system such as the transport phenomena and hence are relevant for late-stage evolution of neutron stars. In the case of the color-spin-locking phase, we use a functional technique to obtain the low-energy effective action for the physical Nambu--Goldstone bosons that survive after gauging the color symmetry.

  18. Results from the spin programme at COSY-ANKE

    E-Print Network [OSTI]

    A. Kacharava; C. Wilkin

    2012-12-12T23:59:59.000Z

    Some of the important results from the COSY-Juelich spin programme are summarised. These include the measurement of the deuteron beam momentum through the excitation of a depolarising resonance, which allowed the mass of the eta-meson to be determined to high precision. The charge exchange of polarised deuterons on hydrogen gave rise to a detailed study of the spin dependence of large angle neutron-proton elastic scattering amplitudes. The measurements of the cross section and analysing powers for pion production in both pp and pn collisions at 353 MeV could be described very successfully in terms of a partial wave decomposition.

  19. Constraining interactions mediated by axion-like particles with ultracold neutrons

    E-Print Network [OSTI]

    S. Afach; G. Ban; G. Bison; K. Bodek; M. Burghoff; M. Daum; M. Fertl; B. Franke; Z. D. Gruji?; V. Hlaine; M. Kasprzak; Y. Kermadic; K. Kirch; P. Knowles; H. -C. Koch; S. Komposch; A. Kozela; J. Krempel; B. Lauss; T. Lefort; Y. Lemire; A. Mtchedlishvili; O. Naviliat-Cuncic; F. M. Piegsa; G. Pignol; P. N. Prashanth; G. Qumner; D. Rebreyend; D. Ries; S. Roccia; P. Schmidt-Wellenburg; A. Schnabel; N. Severijns; J. Voigt; A. Weis; G. Wyszynski J. Zejma; J. Zenner; G. Zsigmond

    2014-12-11T23:59:59.000Z

    We report a new limit on a possible short range spin-dependent interaction from the precise measurement of the ratio of Larmor precession frequencies of stored ultracold neutrons and $^{199}$Hg atoms confined in the same volume. The measurement was performed in a $\\sim$1$\\mu$ T vertical magnetic holding field with the apparatus searching for a permanent electric dipole moment of the neutron at the Paul Scherrer Institute. A possible coupling between freely precessing polarized neutron spins and unpolarized nucleons of the wall material can be investigated by searching for a tiny change of the precession frequencies of neutron and mercury spins. Such a frequency change can be interpreted as a consequence of a short range spin-dependent interaction that could possibly be mediated by axions or axion-like particles. The interaction strength is proportional to the CP violating product of scalar and pseudoscalar coupling constants $g_Sg_P$. Our result confirms limits from complementary experiments with spin-polarized nuclei in a model-independent way. Limits from other neutron experiments are improved by up to two orders of magnitude in the interaction range of $10^{-6}<\\lambda<10^{-4}$ m.

  20. Effect of spin rotation coupling on spin transport

    SciTech Connect (OSTI)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2013-12-15T23:59:59.000Z

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k{sup ?}?p{sup ?} perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. In the k{sup ?}?p{sup ?} framework we study the renormalization of spin electric field and spin current. For an inertial system we have discussed the spin splitting. Expression for the Berry phase in the inertial system is discussed. The inertial spin galvanic effect is studied.

  1. Semiconductor neutron detector

    DOE Patents [OSTI]

    Ianakiev, Kiril D. (Los Alamos, NM); Littlewood, Peter B. (Cambridge, GB); Blagoev, Krastan B. (Arlington, VA); Swinhoe, Martyn T. (Los Alamos, NM); Smith, James L. (Los Alamos, NM); Sullivan, Clair J. (Los Alamos, NM); Alexandrov, Boian S. (Los Alamos, NM); Lashley, Jason Charles (Santa Fe, NM)

    2011-03-08T23:59:59.000Z

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  2. High energy neutron dosimeter

    DOE Patents [OSTI]

    Rai, K.S.F.

    1994-01-11T23:59:59.000Z

    A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures.

  3. High energy neutron dosimeter

    DOE Patents [OSTI]

    Sun, Rai Ko S.F. (Albany, CA)

    1994-01-01T23:59:59.000Z

    A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.

  4. Spin coating of electrolytes

    DOE Patents [OSTI]

    Stetter, Joseph R. (Naperville, IL); Maclay, G. Jordan (Maywood, IL)

    1989-01-01T23:59:59.000Z

    Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

  5. The Neutron Lifetime

    E-Print Network [OSTI]

    F. E. Wietfeldt

    2014-11-13T23:59:59.000Z

    The decay of the free neutron into a proton, electron, and antineutrino is the prototype semileptonic weak decay and the simplest example of nuclear beta decay. The nucleon vector and axial vector weak coupling constants G_V and G_A determine the neutron lifetime as well as the strengths of weak interaction processes involving free neutrons and protons that are important in astrophysics, cosmology, solar physics and neutrino detection. In combination with a neutron decay angular correlation measurement, the neutron lifetime can be used to determine the first element of the CKM matrix Vud. Unfortunately the two main experimental methods for measuring the neutron lifetime currently disagree by almost 4 sigma. I will present a brief review of the status of the neutron lifetime and prospects for the future.

  6. Inertial effect on spinorbit coupling and spin transport

    SciTech Connect (OSTI)

    Basu, B., E-mail: sribbasu@gmail.com; Chowdhury, Debashree, E-mail: debashreephys@gmail.com

    2013-08-15T23:59:59.000Z

    We theoretically study the renormalization of inertial effects on the spin dependent transport of conduction electrons in a semiconductor by taking into account the interband mixing on the basis of k{sup ?}?p{sup ?} perturbation theory. In our analysis, for the generation of spin current we have used the extended Drude model where the spinorbit coupling plays an important role. We predict enhancement of the spin current resulting from the renormalized spinorbit coupling effective in our model in cubic and non-cubic crystals. Attention has been paid to clarify the importance of gauge fields in the spin transport of this inertial system. A theoretical proposition of a perfect spin filter has been done through the AharonovCasher like phase corresponding to this inertial system. For a time dependent acceleration, effect of k{sup ?}?p{sup ?} perturbation on the spin current and spin polarization has also been addressed. Furthermore, achievement of a tunable source of polarized spin current through the non uniformity of the inertial spinorbit coupling strength has also been discussed. -- Highlights: Study of the renormalization of inertial spin dependent transport of electrons. Enhancement of the spin current due to the renormalized spinorbit coupling. A theoretical proposition of a perfect spin filter. For a time dependent acceleration, spin current, spin polarization is addressed.

  7. Supergiant Pulses from Extragalactic Neutron Stars

    E-Print Network [OSTI]

    Cordes, J M

    2015-01-01T23:59:59.000Z

    We evaluate the hypothesis that extragalactic radio bursts originate from neutron stars. These could be active pulsars or dormant, slowly spinning objects, but the different population distances for these two classes require correspondingly different contributions to burst dispersion measures from any host or intervening galaxies combined with the intergalactic medium. The large, apparent burst rate $\\sim 10^4~$ sky$^{-1}~$ day$^{-1}$ is comparable to the core-collapse supernova rate in a Hubble volume and can be accommodated by a single burst per object in the resulting large reservoir of $\\sim 10^{17}~$ neutron stars. A smaller population distance requires more bursts per object but the likelihood of seeing repeated bursts from any single object is extremely low on human timescales. Gravitational microlensing could play a role for high redshift sources. Extrapolation of the Crab pulsar's giant pulses --- exemplars of coherent, high brightness temperature radiation --- to a rate of one per $10^3~$yr yields a...

  8. H-2(p,n)2p Spin Transfer from 305 to 788 Mev

    E-Print Network [OSTI]

    McNaughton, M. W.; Koch, K.; Supek, I.; Tanaka, N.; Ambrose, DA; Coffey, P.; Johnston, K.; McNaughton, K. H.; Riley, P. J.; Glass, G.; Hiebert, John C.; Northcliffe, L. C.; Simon, A. J.; Mercer, D. J.; Adams, D. L.; Spinka, H.; Jeppersen, R. H.; Tripard, G. E.; Woolverton, H.

    1992-01-01T23:59:59.000Z

    PHYSICAL REVIEW C VOLUME 45, NUMBER 6 JUNE 1992 ARTICLES 2H(y, n)2p spin transfer from $05 to 7'88 Mev M. W. McNaughton, K. Koch, ' I. Supek, and N. Tanakat Los Alamos National Laboratory, Ios Alarnos, ?wMexico 876/6 D. A. Ambrose, P. Coff... the primary polarized-proton beam onto a liquid-deuterium (LD2) target and collimating the neutrons at a laboratory scat- tering angle of 0 (180' c.m. ). The neutron beam is po- larized via the L-to-L spin-transfer observable A'L, l. for the ~H(p, n...

  9. Flux Expulsion - Field Evolution in Neutron Stars

    E-Print Network [OSTI]

    M. Jahan-Miri

    1999-10-27T23:59:59.000Z

    Models for the evolution of magnetic fields of neutron stars are constructed, assuming the field is embedded in the proton superconducting core of the star. The rate of expulsion of the magnetic flux out of the core, or equivalently the velocity of outward motion of flux-carrying proton-vortices is determined from a solution of the Magnus equation of motion for these vortices. A force due to the pinning interaction between the proton-vortices and the neutron-superfluid vortices is also taken into account in addition to the other more conventional forces acting on the proton-vortices. Alternative models for the field evolution are considered based on the different possibilities discussed for the effective values of the various forces. The coupled spin and magnetic evolution of single pulsars as well as those processed in low-mass binary systems are computed, for each of the models. The predicted lifetimes of active pulsars, field strengths of the very old neutron stars, and distribution of the magnetic fields versus orbital periods in low-mass binary pulsars are used to test the adopted field decay models. Contrary to the earlier claims, the buoyancy is argued to be the dominant driving cause of the flux expulsion, for the single as well as the binary neutron stars. However, the pinning is also found to play a crucial role which is necessary to account for the observed low field binary and millisecond pulsars.

  10. Fuel Cells prognostics using Echo State Network S. Morando1,2,3

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Fuel Cells prognostics using Echo State Network S. Morando1,2,3 , S. Jemei1,2 , R. Gouriveau2,3 , N department / ENSMM Abstract-- One remaining technological bottleneck to develop industrial Fuel Cell (FC Life of a Proton Exchange Membrane Fuel Cell. Developments emphasize on the prediction of the mean

  11. Ionwater hydrogen-bond switching observed with 2D IR vibrational echo chemical

    E-Print Network [OSTI]

    Fayer, Michael D.

    Ion­water hydrogen-bond switching observed with 2D IR vibrational echo chemical exchange for review November 8, 2008) The exchange of water hydroxyl hydrogen bonds between anions and water oxygens of anion­ water hydroxyl hydrogen bond switching under thermal equilib- rium conditions as Taw 7 1 ps. Pump

  12. Photon echoes and related four-wave-mixing spectroscopies using phase-locked pulses

    E-Print Network [OSTI]

    Scherer, Norbert F.

    . Combining two phase-locked pulse excitation with time-resolved detection of the spontaneous light emissionPhoton echoes and related four-wave-mixing spectroscopies using phase-locked pulses Minhaeng ChoRochester, Rochester, New York 14627 (Received 3 December 1991; accepted 6 January 1992) The use of phase-locked pulses

  13. Water dynamics: dependence on local structure probed with vibrational echo correlation spectroscopy

    E-Print Network [OSTI]

    Fayer, Michael D.

    Water dynamics: dependence on local structure probed with vibrational echo correlation spectroscopy­D stretching band of HOD in H2O and molecular dynamics simulations are employed to investigate water dynamics. The wavelength dependence of the measured dynamics demonstrates that different hydrogen bonded water species

  14. Myoglobin-CO Substate Structures and Dynamics: Multidimensional Vibrational Echoes and Molecular Dynamics

    E-Print Network [OSTI]

    Fayer, Michael D.

    Myoglobin-CO Substate Structures and Dynamics: Multidimensional Vibrational Echoes and Molecular to establishing the relationships between protein structure and protein function.1-5 Protein dynamics occur structural specificity to assign these dynamics to particular atomic motions. Computational tech- niques

  15. Extended CO emission in the field of the light echo of V838 Mon

    E-Print Network [OSTI]

    T. Kami?ski

    2008-01-10T23:59:59.000Z

    V838 Mon erupted at the beginning of 2002 becoming an extremely luminous star with L=10^6 L_sun. The outburst was followed by the spectacular light echo that revealed that the star is immersed in a diffuse and dusty medium, plausibly interstellar in nature. Low angular resolution observations in the lowest CO rotational transitions revealed a molecular emission from the direction of V838 Mon. The origin of this CO emission has not been established. In this paper we investigate the idea that the molecular emission originates in the material responsible for the optical light echo. We report on observations of 13 positions within the light echo in the two lowest rotational transitions of CO using the IRAM 30 m telescope. Emission in CO J=1-0 and J=2-1 was detected in three positions. In three other positions only weak J=1-0 lines were found. We conclude that the molecular emission from the direction of V838 Mon is extended and has a complex distribution. We identify the emission as arising from diffuse interstellar clouds and suggest that the CO-bearing gas and the echoing dust are collocated in the same interstellar cloud.

  16. Hydrogen bond breaking probed with multidimensional stimulated vibrational echo correlation spectroscopy

    E-Print Network [OSTI]

    Fayer, Michael D.

    Hydrogen bond breaking probed with multidimensional stimulated vibrational echo correlation September 2003 Hydrogen bond population dynamics are extricated with exceptional detail using ultrafast ( 50 of methanol­OD oligomers in CCl4 . Hydrogen bond breaking makes it possible to acquire data for times much

  17. Deeply Virtual Compton Scattering off the neutron

    E-Print Network [OSTI]

    M. Mazouz; A. Camsonne; C. Muoz Camacho; for the Jefferson Lab Hall A collaboration

    2007-12-12T23:59:59.000Z

    The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({\\vec e},e'\\gamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.

  18. Deuteron Spin Structure Functions in the Resonance and DIS Regions

    SciTech Connect (OSTI)

    S. Kulagin; W. Melnitchouk

    2007-10-03T23:59:59.000Z

    We derive relations between spin-dependent nuclear and nucleon g_1 and g_2 structure functions, valid at all Q^2, and in both the resonance and deep inelastic regions. We apply the formalism to the specific case of the deuteron, which is often used as a source of neutron structure information, and compare the size of the nuclear corrections calculated using exact kinematics and using approximations applicable at large Q^2.

  19. Dynamics of Composite Haldane Spin Chains in IPA-CuCl3

    SciTech Connect (OSTI)

    Masuda, Takatsugu [ORNL; Zheludev, Andrey I [ORNL; Manaka, H. [Kagoshima University, Kagoshima JAPAN; Regnault, L.-P. [CEA, Grenoble, France; Chung, J.-H. [National Institute of Standards and Technology (NIST); Qiu, Y. [National Institute of Standards and Technology (NIST)

    2006-01-01T23:59:59.000Z

    Magnetic excitations in the quasi-one-dimensional antiferromagnet IPA-CuCl{sub 3} are studied by cold neutron inelastic scattering. Strongly dispersive gap excitations are observed. Contrary to previously proposed models, the system is best described as an asymmetric quantum spin ladder. The observed spectrum is interpreted in terms of composite Haldane spin chains. The key difference from actual S = 1 chains is a sharp cutoff of the single-magnon spectrum at a certain critical wave vector.

  20. Correlation Functions and Spin

    E-Print Network [OSTI]

    T. Tyc

    2000-06-30T23:59:59.000Z

    The k-electron correlation function of a free chaotic electron beam is derived with the spin degree of freedom taken into account. It is shown that it can be expressed with the help of correlation functions for a polarized electron beam of all orders up to k and the degree of spin polarization. The form of the correlation function suggests that if the electron beam is not highly polarized, observing multi-particle correlations should be difficult. The result can be applied also to chaotic photon beams, the degree of spin polarization being replaced by the degree of polarization.

  1. Realization of adiabatic Aharonov-Bohm scattering with neutrons

    E-Print Network [OSTI]

    Erik Sjqvist; Martin Almquist; Ken Mattsson; Zeynep Nilhan Grkan; Bjrn Hessmo

    2015-03-08T23:59:59.000Z

    The adiabatic Aharonov-Bohm (AB) effect is a manifestation of the Berry phase acquired when some slow variables take a planar spin around a loop. While the effect has been observed in molecular spectroscopy, direct measurement of the topological phase shift in a scattering experiment has been elusive in the past. Here, we demonstrate an adiabatic AB effect for neutrons that scatter on a long straight current-carrying wire. We propose an experiment to verify the effect and demonstrate its feasibility by explicit simulation of the dynamics of unpolarized very slow neutrons that scatter on the wire under realistic conditions.

  2. Polarized 3He for Neutron Spin Filters and MRI Applications

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: CrystalFG36-08GO18149Speeding access toSpeedingSpeeding

  3. International Spin Physics 2014 Summary

    E-Print Network [OSTI]

    Milner, Richard G

    2015-01-01T23:59:59.000Z

    The Stern-Gerlach experiment and the origin of electron spin are described in historical context. SPIN 2014 occurs on the fortieth anniversary of the first International High Energy Spin Physics Symposium at Argonne in 1974. A brief history of the international spin conference series is presented.

  4. International Spin Physics 2014 Summary

    E-Print Network [OSTI]

    Richard G. Milner

    2015-02-06T23:59:59.000Z

    The Stern-Gerlach experiment and the origin of electron spin are described in historical context. SPIN 2014 occurs on the fortieth anniversary of the first International High Energy Spin Physics Symposium at Argonne in 1974. A brief history of the international spin conference series is presented.

  5. Neutron sources and applications

    SciTech Connect (OSTI)

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1994-01-01T23:59:59.000Z

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  6. Measurement of the neutron $\\beta$-asymmetry parameter $A_0$ with ultracold neutrons

    E-Print Network [OSTI]

    Plaster, B; Back, H O; Bowles, T J; Broussard, L J; Carr, R; Clayton, S; Currie, S; Filippone, B W; Garcia, A; Geltenbort, P; Hickerson, K P; Hoagland, J; Hogan, G E; Hona, B; Holley, A T; Ito, T M; Liu, C -Y; Liu, J; Makela, M; Mammei, R R; Martin, J W; Melconian, D; Mendenhall, M P; Morris, C L; Mortensen, R; Pattie, R W; Jr.,; Galvan, A Perez; Pitt, M L; Ramsey, J C; Russell, R; Saunders, A; Schmid, R; Seestrom, S J; Sjue, S; Sondheim, W E; Tatar, E; Tipton, B; Vogelaar, R B; VornDick, B; Wrede, C; Xu, Y P; Yan, H; Young, A R; Yuan, J

    2012-01-01T23:59:59.000Z

    We present a detailed report of a measurement of the neutron $\\beta$-asymmetry parameter $A_0$, the parity-violating angular correlation between the neutron spin and the decay electron momentum, performed with polarized ultracold neutrons (UCN). UCN were extracted from a pulsed spallation solid deuterium source and polarized via transport through a 7-T magnetic field. The polarized UCN were then transported through an adiabatic-fast-passage spin-flipper field region, prior to storage in a cylindrical decay volume situated within a 1-T $2 \\times 2\\pi$ solenoidal spectrometer. The asymmetry was extracted from measurements of the decay electrons in multiwire proportional chamber and plastic scintillator detector packages located on both ends of the spectrometer. From an analysis of data acquired during runs in 2008 and 2009, we report $A_0 = -0.11966 \\pm 0.00089_{-0.00140} ^{+0.00123}$, from which we extract a value for the ratio of the weak axial-vector and vector coupling constants of the nucleon, $\\lambda = g...

  7. Measurement of the neutron $?$-asymmetry parameter $A_0$ with ultracold neutrons

    E-Print Network [OSTI]

    UCNA Collaboration; B. Plaster; R. Rios; H. O. Back; T. J. Bowles; L. J. Broussard; R. Carr; S. Clayton; S. Currie; B. W. Filippone; A. Garcia; P. Geltenbort; K. P. Hickerson; J. Hoagland; G. E. Hogan; B. Hona; A. T. Holley; T. M. Ito; C. -Y. Liu; J. Liu; M. Makela; R. R. Mammei; J. W. Martin; D. Melconian; M. P. Mendenhall; C. L. Morris; R. Mortensen; R. W. Pattie, Jr.; A. Perez Galvan; M. L. Pitt; J. C. Ramsey; R. Russell; A. Saunders; R. Schmid; S. J. Seestrom; S. Sjue; W. E. Sondheim; E. Tatar; B. Tipton; R. B. Vogelaar; B. VornDick; C. Wrede; Y. P. Xu; H. Yan; A. R. Young; J. Yuan

    2012-07-25T23:59:59.000Z

    We present a detailed report of a measurement of the neutron $\\beta$-asymmetry parameter $A_0$, the parity-violating angular correlation between the neutron spin and the decay electron momentum, performed with polarized ultracold neutrons (UCN). UCN were extracted from a pulsed spallation solid deuterium source and polarized via transport through a 7-T magnetic field. The polarized UCN were then transported through an adiabatic-fast-passage spin-flipper field region, prior to storage in a cylindrical decay volume situated within a 1-T $2 \\times 2\\pi$ solenoidal spectrometer. The asymmetry was extracted from measurements of the decay electrons in multiwire proportional chamber and plastic scintillator detector packages located on both ends of the spectrometer. From an analysis of data acquired during runs in 2008 and 2009, we report $A_0 = -0.11966 \\pm 0.00089_{-0.00140} ^{+0.00123}$, from which we extract a value for the ratio of the weak axial-vector and vector coupling constants of the nucleon, $\\lambda = g_A/g_V = -1.27590 \\pm 0.00239_{-0.00377}^{+0.00331}$. Complete details of the analysis are presented.

  8. Moments of the neutron $g_2$ structure function at intermediate $Q^2$

    E-Print Network [OSTI]

    P. Solvignon; N. Liyanage; J. -P. Chen; Seonho Choi; K. Slifer; K. Aniol; T. Averett; W. Boeglin; A. Camsonne; G. D. Cates; C. C. Chang; E. Chudakov; B. Craver; F. Cusanno; A. Deur; D. Dutta; R. Ent; R. Feuerbach; S. Frullani; H. Gao; F. Garibaldi; R. Gilman; C. Glashausser; V. Gorbenko; O. Hansen; D. W. Higinbotham; H. Ibrahim; X. Jiang; M. Jones; A. Kelleher; J. Kelly; C. Keppel; W. Kim; W. Korsch; K. Kramer; G. Kumbartzki; J. J. LeRose; R. Lindgren; B. Ma; D. J. Margazioti; P. Markowitz; K. McCormick; Z. -E. Meziani; R. Michaels; B. Moffit; P. Monaghan; C. Munoz Camacho; K. Paschke; B. Reitz; A. Saha; R. Shneor; J. Singh; V. Sulkosky; A. Tobias; G. M. Urciuoli; K. Wang; K. Wijesooriya; B. Wojtsekhowski; S. Woo; J. -C. Yang; X. Zheng; L. Zhu

    2014-03-14T23:59:59.000Z

    We present new experimental results of the $^3$He spin structure function $g_2$ in the resonance region at $Q^2$ values between 1.2 and 3.0 (GeV/c)$^2$. Spin dependent moments of the neutron were then extracted. Our main result, the resonance contribution to the neutron $d_2$ matrix element, was found to be small at $$=2.4 (GeV/c)$^2$ and in agreement with the Lattice QCD calculation. The Burkhardt-Cottingham sum rule for $^3$He and the neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low $x$ unmeasured region. A small deviation was observed at $Q^2$ values between 0.5 and 1.2 (GeV/c)$^2$ for the neutron.

  9. Finite-temperature lineshapes in gapped quantum spin chains

    E-Print Network [OSTI]

    Fabian H. L. Essler; Robert M. Konik

    2007-12-05T23:59:59.000Z

    We consider the finite-temperature dynamical structure factor (DSF) of gapped quantum spin chains such as the spin one Heisenberg model and the transverse field Ising model in the disordered phase. At zero temperature the DSF in these models is dominated by a delta-function line arising from the coherent propagation of single particle modes. Using methods of integrable quantum field theory we determine the evolution of the lineshape at low temperatures. We show that the line shape is in general asymmetric in energy and becomes Lorentzian only at temperatures far below the gap. We discuss the relevance of our results for the analysis of inelastic neutron scattering experiments on gapped spin chain systems such as CsNiCl_3 and YBaNiO_5.

  10. The spin deep within

    SciTech Connect (OSTI)

    Stackhouse, S. (Michigan)

    2008-10-08T23:59:59.000Z

    The electronic configuration of iron impurities in lower-mantle minerals influences their physical properties, but it is not well constrained. New studies suggest that ferrous iron in silicate phases exists mainly in an intermediate spin state.

  11. Neutron Science Forum | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environment for discussion, innovation, and dissemination of information within the neutron scattering community as well as engaging closely related disciplines through...

  12. Neutron wave packet tomography

    E-Print Network [OSTI]

    G. Badurek; P. Facchi; Y. Hasegawa; Z. Hradil; S. Pascazio; H. Rauch; J. Rehacek; T. Yoneda

    2005-03-29T23:59:59.000Z

    A tomographic technique is introduced in order to determine the quantum state of the center of mass motion of neutrons. An experiment is proposed and numerically analyzed.

  13. Lujan Neutron Scattering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent...

  14. Neutron electric dipole moment on the lattice

    E-Print Network [OSTI]

    Eigo Shintani; S. Aoki; N. Ishizuka; K. Kanaya; Y. Kikukawa; Y. Kuramashi; M. Okawa; A. Ukawa; T. Yoshi

    2005-09-26T23:59:59.000Z

    We carry out a feasibility study toward a lattice QCD calculation of the neutron electric dipole moment (NEDM) in the presence of the $\\theta$ term using two different approaches. In the first method, we calculate the CP-odd electromagnetic form factor $F_3$, which becomes the NEDM in the zero momentum transfer limit. At the first order in $\\theta$, we derive a formula connecting the lattice three-point function to the CP-odd electromagnetic form factor. In the second method we directly extract the NEDM from the energy difference between spin-up and spin-down neutron states in the presence of a constant electric field, without expanding a small but non-zero $\\theta$. We test both approaches numerically, employing the domain-wall quark action with the RG improved gauge action in quenched QCD at $a^{-1}\\simeq 2$ GeV on a $16^3\\times 32\\times 16$ lattice, and further applying the second method to the clover quark action at a similar lattice spacing and nucleon mass. We obtain good signals from both approaches. In particular the second method works well with both fermion formulations.

  15. HFIR History - ORNL Neutron Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has grown to include materials irradiation, neutron activation, and, most recently, neutron scattering. In 2007, HFIR completed the most dramatic transformation in its...

  16. Neutron Stars and Fractal Dimensionality

    E-Print Network [OSTI]

    Burra G. Sidharth

    2008-05-06T23:59:59.000Z

    We argue that the material inside Neutron stars behaves anomalously with fractal statistics and that in principle, we could induce mini Neutron stars, with the release of energy.

  17. Strength of reduced two-body spin-orbit interaction from chiral three-nucleon force

    E-Print Network [OSTI]

    M. Kohno

    2012-09-23T23:59:59.000Z

    The contribution of a chiral three-nucleon force to the strength of an effective spin-orbit coupling is estimated. We first construct a reduced two-body interaction by folding one-nucleon degrees of freedom of the three-nucleon force in nuclear matter. The spin-orbit strength is evaluated by a Scheerbaum factor obtained by the $G$-matrix calculation in nuclear matter with the two-nucleon interaction plus the reduced two-nucleon interaction. The problem of the insufficiency of modern realistic two-nucleon interactions to account for the empirical spin-orbit strength is resolved. It is also indicated that the spin-orbit coupling is weaker in the neutron-rich environment. Because the spin-orbit component from the three-nucleon force is determined by the low-energy constants fixed in the two-nucleon sector, there is little uncertainty in the present estimation.

  18. Strength of reduced two-body spin-orbit interaction from chiral three-nucleon force

    E-Print Network [OSTI]

    Kohno, M

    2012-01-01T23:59:59.000Z

    The contribution of a chiral three-nucleon force to the strength of an effective spin-orbit coupling is estimated. We first construct a reduced two-body interaction by folding one-nucleon degrees of freedom of the three-nucleon force in nuclear matter. The spin-orbit strength is evaluated by a Scheerbaum factor obtained by the $G$-matrix calculation in nuclear matter with the two-nucleon interaction plus the reduced two-nucleon interaction. The problem of the insufficiency of modern realistic two-nucleon interactions to account for the empirical spin-orbit strength is resolved. It is also indicated that the spin-orbit coupling is weaker in the neutron-rich environment. Because the spin-orbit component from the three-nucleon force is determined by the low-energy constants fixed in the two-nucleon sector, there is little uncertainty in the present estimation.

  19. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22T23:59:59.000Z

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  20. Neutron capture therapies

    DOE Patents [OSTI]

    Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    1999-01-01T23:59:59.000Z

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  1. Decay of the Loschmidt echo in a time-dependent environment

    E-Print Network [OSTI]

    Fernando M. Cucchietti; Caio H. Lewenkopf; Horacio M. Pastawski

    2006-01-11T23:59:59.000Z

    We study the decay rate of the Loschmidt echo or fidelity in a chaotic system under a time-dependent perturbation $V(q,t)$ with typical strength $\\hbar/\\tau_{V}$. The perturbation represents the action of an uncontrolled environment interacting with the system, and is characterized by a correlation length $\\xi_0$ and a correlation time $\\tau_0$. For small perturbation strengths or rapid fluctuating perturbations, the Loschmidt echo decays exponentially with a rate predicted by the Fermi Golden Rule, $1/\\tilde{\\tau}= \\tau_{c}/\\tau_{V}^2$, where typically $\\tau_{c} \\sim \\min[\\tau_{0},\\xi_0/v]$ with $v$ the particle velocity. Whenever the rate $1/\\tilde{\\tau}$ is larger than the Lyapunov exponent of the system, a perturbation independent Lyapunov decay regime arises. We also find that by speeding up the fluctuations (while keeping the perturbation strength fixed) the fidelity decay becomes slower, and hence, one can protect the system against decoherence.

  2. The neutron skin in neutron-rich nuclei at Jefferson Lab

    SciTech Connect (OSTI)

    Dalton, Mark M. [University of Virginia (United States)

    2013-11-07T23:59:59.000Z

    The Jefferson Lab program to measure the symmetry energy of neutron-rich nuclear matter, using precision electroweak methods, is progressing well. The initial measurement by the PREX experiment, leading to a 2-sigma determination of the 'neutron skin' in {sup 208}Pb, has been published. Design and preparation for a further, more-precise measurement on {sup 208}Pb is progressing well and there is general acceptance of the great advantage to a further measurement on {sup 48}Ca. The surprising ancillary result that the beam-normal single-spin asymmetry for {sup 208}Pb is consistent with zero is also now in the literature. This paper will discuss the current experimental situation of the program.

  3. Pocked surface neutron detector

    DOE Patents [OSTI]

    McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

    2003-04-08T23:59:59.000Z

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  4. THERMAL NEUTRON BACKSCATTER IMAGING.

    SciTech Connect (OSTI)

    VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

    2004-10-16T23:59:59.000Z

    Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

  5. Pulsed neutron detector

    DOE Patents [OSTI]

    Robertson, deceased, J. Craig (late of Albuquerque, NM); Rowland, Mark S. (Livermore, CA)

    1989-03-21T23:59:59.000Z

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  6. The performance and evaluation of the damaging downburst prediction and detection algorithm for bow echo storms

    E-Print Network [OSTI]

    Karl, Beth Ann

    2000-01-01T23:59:59.000Z

    THE PERFORMANCE AND EVALUATION OF THE DAMAGING DOWNBURST PREDICTION AND DETECTION ALGORITHM FOR BOW ECHO STORMS A Thesis by BETH ANN KARL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2000 Major Subject: Atmospheric Sciences THE PERFORMANCE AND EVALUATION OF THE DAMAGING DOWNBURST PREDICTION...

  7. EIS-0317-S1: Kangley-Echo Lake Transmission Line Project Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration (BPA) has completed a supplemental draft Environmental Impact Statement (SDEIS) for the proposed Kangley-Echo Lake Transmission Line Project. The proposed line in central King County, Washington is needed to accommodate electrical growth and reliability concerns in the Puget Sound area. The SDEIS analyzes four additional transmission alternatives not analyzed in detail in the draft Environmental Impact Statement (DEIS) issued in June 2001, and a number of non-transmission alternatives.

  8. On the potential of the EChO mission to characterise gas giant atmospheres

    E-Print Network [OSTI]

    Barstow, Joanna K; Irwin, Patrick G J; Bowles, Neil; Fletcher, Leigh N; Lee, Jae-Min

    2012-01-01T23:59:59.000Z

    Space telescopes such as EChO (Exoplanet Characterisation Observatory) and JWST (James Webb Space Telescope) will be important for the future study of extrasolar planet atmospheres. Both of these missions are capable of performing high sensitivity spectroscopic measurements at moderate resolutions in the visible and infrared, which will allow the characterisation of atmospheric properties using primary and secondary transit spectroscopy. We use the NEMESIS radiative transfer and retrieval tool (Irwin et al. 2008, Lee et al. 2012) to explore the potential of the proposed EChO mission to solve the retrieval problem for a range of H2-He planets orbiting different stars. We find that EChO should be capable of retrieving temperature structure to ~200 K precision and detecting H2O, CO2 and CH4 from a single eclipse measurement for a hot Jupiter orbiting a Sun-like star and a hot Neptune orbiting an M star, also providing upper limits on CO and NH3. We provide a table of retrieval precisions for these quantities in ...

  9. Electron Spin Decoherence in Silicon Carbide Nuclear Spin Bath

    E-Print Network [OSTI]

    Li-Ping Yang; Christian Burk; Mattias Widmann; Sang-Yun Lee; Jrg Wrachtrup; Nan Zhao

    2014-09-16T23:59:59.000Z

    In this paper, we study the electron spin decoherence of single defects in silicon carbide (SiC) nuclear spin bath. We find that, although the natural abundance of $^{29}\\rm{Si}$ ($p_{\\rm{Si}}=4.7\\%$) is about 4 times larger than that of $^{13}{\\rm C}$ ($p_{\\rm{C}}=1.1\\%$), the electron spin coherence time of defect centers in SiC nuclear spin bath in strong magnetic field ($B>300~\\rm{Gauss}$) is longer than that of nitrogen-vacancy (NV) centers in $^{13}{\\rm C}$ nuclear spin bath in diamond. The reason for this counter-intuitive result is the suppression of heteronuclear-spin flip-flop process in finite magnetic field. Our results show that electron spin of defect centers in SiC are excellent candidates for solid state spin qubit in quantum information processing.

  10. Observation of the Goos-Haenchen Shift with Neutrons

    SciTech Connect (OSTI)

    Haan, Victor-O. de; Plomp, Jeroen; Rekveldt, Theo M.; Kraan, Wicher H.; Well, Ad A. van; Dalgliesh, Robert M.; Langridge, Sean [Department Radiation, Radionuclides and Reactors, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); STFC, ISIS, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX (United Kingdom)

    2010-01-08T23:59:59.000Z

    The Goos-Haenchen effect is a spatial shift along an interface resulting from an interference effect that occurs for total internal reflection. This phenomenon was suggested by Sir Isaac Newton, but it was not until 1947 that the effect was experimentally observed by Goos and Haenchen. We provide the first direct, absolute, experimental determination of the Goos-Haenchen shift for a particle experiencing a potential well as required by quantum mechanics: namely, wave-particle duality. Here, the particle is a spin-polarized neutron reflecting from a film of magnetized material. We detect the effect through a subtle change in polarization of the neutron. Here, we demonstrate, through experiment and theory, that neutrons do exhibit the Goos-Haenchen effect and postulate that the associated time shift should also be observable.

  11. Gamma Spectrum from Neutron Capture on Tungsten Isotopes

    SciTech Connect (OSTI)

    Hurst, Aaron; Summers, Neil; Sleaford, Brad; Firestone, Richard B; Belgya, T.; Revay, Z.S.

    2010-04-29T23:59:59.000Z

    An evaluation of thermal neutron capture on the stable tungsten isotopes is presented, with preliminary results for the compound systems 183;184;185;187W. The evaluation procedure compares the g-ray cross-section data collected at the Budapest reactor, with Monte Carlo simulations of g-ray emission following the thermal neutron-capture process. The statistical-decay code DICEBOX was used for the Monte Carlo simulations. The evaluation yields new gamma rays in 185W and the confirmation of spins in 187W, raising the number of levels below which the level schemes are considered complete, thus increasing the number of levels that can be used in neutron data libraries.

  12. On the kinematics and resolution of spectrometers for neutron Brillouin scattering

    SciTech Connect (OSTI)

    Robinson, R.A.

    1988-01-01T23:59:59.000Z

    Neutron Brillouin scattering involves measurement of excitations at smaller Q values than in currently customary. We outline the kinematic constraints on scattering angle and incident energy for excitations with both linear dispersion (sound waves) and parabolic dispersion (ferromagnetic spin waves), and discuss the resolution characteristics of the chopper spectrometer proposed for LANSCE which should be suitable for such studies. In particular, we demonstrate that longitudinal resolution focusing can be exploited both in neutron energy gain and in neutron energy loss. 13 refs., 8 figs., 1 tab.

  13. Spinning fluids reactor

    DOE Patents [OSTI]

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20T23:59:59.000Z

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  14. Spinning superconducting electrovacuum soliton

    E-Print Network [OSTI]

    Irina Dymnikova

    2006-07-24T23:59:59.000Z

    In nonlinear electrodynamics coupled to general relativity and satisfying the weak energy condition, a spherically symmetric electrically charged electrovacuum soliton has obligatory de Sitter center in which the electric field vanishes while the energy density of electromagnetic vacuum achieves its maximal value. De Sitter vacuum supplies a particle with the finite positive electromagnetic mass related to breaking of space-time symmetry from the de Sitter group in the origin. By the G\\"urses-G\\"ursey algorithm based on the Newman-Trautman technique it is transformed into a spinning electrovacuum soliton asymptotically Kerr-Newman for a distant observer. De Sitter center becomes de Sitter equatorial disk which has both perfect conductor and ideal diamagnetic properties. The interior de Sitter vacuum disk displays superconducting behavior within a single spinning soliton. This behavior found for an arbitrary nonlinear lagrangian ${\\cal L}(F)$, is generic for the class of regular spinning electrovacuum solutions describing both black holes and particle-like structures.

  15. Quantum spin dynamics

    E-Print Network [OSTI]

    Robert Wieser

    2014-10-23T23:59:59.000Z

    The classical Landau-Lifshitz equation has been derived from quantum mechanics. Starting point is the assumption of a non-Hermitian Hamilton operator to take the energy dissipation into account. The corresponding quantum mechanical time dependent Schr\\"odinger, Liouville and Heisenberg equation have been described and the similarities and differences between classical and quantum mechanical spin dynamics have been discussed. Furthermore, a time dependent Schr\\"odinger equation corresponding to the classical Landau-Lifshitz-Gilbert equation and two ways to include temperature into the quantum mechanical spin dynamics have been proposed.

  16. Coherent spin mixing dynamics in thermal $^{87}$Rb spin-1 and spin-2 gases

    E-Print Network [OSTI]

    He, Xiaodong; Li, Xiaoke; Wang, Fudong; Xu, Zhifang; Wang, Dajun

    2015-01-01T23:59:59.000Z

    We study the non-equilibrium coherent spin mixing dynamics in ferromagnetic spin-1 and antiferromagnetic spin-2 thermal gases of ultracold $^{87}$Rb atoms. Long lasting spin population oscillations with magnetic field dependent resonances are observed in both cases. Our observations are well reproduced by Boltzmann equations of the Wigner distribution function. Compared to the equation of motion of spinor Bose-Einstein condensates, the only difference here is a factor of two increase in the spin-dependent interaction, which is confirmed directly in the spin-2 case by measuring the relation between the oscillation amplitude and the sample's density.

  17. Neutron LifetimeNeutron Lifetime IUCF Colloquium April 13,

    E-Print Network [OSTI]

    Steyerl, Albert

    Neutron LifetimeNeutron Lifetime IUCF Colloquium April 13, 2007 Albert Steyerl Department 940 878.5±0.8 885.7±0.8 new result neutronlifetime(),s year world average Neutron lifetime data #12 world average Neutron lifetime data A. Serebrov et al. 2005Storage of ultra-cold neutrons878.5 ±±±± 0

  18. Low-Energy X-ray Emission from Young Isolated Neutron Stars

    E-Print Network [OSTI]

    M. Ruderman

    2003-10-28T23:59:59.000Z

    A young neutron star with large spin-down power is expected to be closely surrounded by an e+/- pair plasma maintained by the conversion of gamma-rays associated with the star's polar-cap and/or outer-gap accelerators. Cyclotron-resonance scattering by the e- and e+ within several radii of such neutron stars prevents direct observations of thermal X-rays from the stellar surface. Estimates are presented for the parameters of the Planck-like X-radiation which ultimately diffuses out through this region. Comparisons with observations, especially of apparent blackbody emission areas as a function of neutron star age, support the proposition that we are learning about a neutron star's magnetosphere rather than about its surface from observations of young neutron star thermal X-rays.

  19. Hyperons in neutron stars

    E-Print Network [OSTI]

    Katayama, Tetsuya

    2015-01-01T23:59:59.000Z

    Using the Dirac-Brueckner-Hartree-Fock approach, the properties of neutron-star matter including hyperons are investigated. In the calculation, we consider both time and space components of the vector self-energies of baryons as well as the scalar ones. Furthermore, the effect of negative-energy states of baryons is partly taken into account. We obtain the maximum neutron-star mass of $2.08\\,M_{\\odot}$, which is consistent with the recently observed, massive neutron stars. We discuss a universal, repulsive three-body force for hyperons in matter.

  20. Switchable radioactive neutron source device

    DOE Patents [OSTI]

    Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

    1987-11-06T23:59:59.000Z

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

  1. Spin Transport in Semiconductor heterostructures

    SciTech Connect (OSTI)

    Domnita Catalina Marinescu

    2011-02-22T23:59:59.000Z

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  2. Gluonic Spin Contribution to Proton Spin at NLO

    SciTech Connect (OSTI)

    Casey, Andrew [CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide SA 5005 (Australia)

    2011-05-24T23:59:59.000Z

    In 1988, when the EMC results showed that the quarks had a much smaller contribution to the spin of the proton than previously thought, the 'Proton Spin Crisis' began. Since then, considerable effort has been directed into discovering the main contributors to proton spin and how much each contributes. One such contributor is the gluonic spin component. QCD NLO evolution equations are combined with boundary conditions obtained from heavy quark decoupling expressions to evolve the equations from infinity to the mass of the charm quark in order to determine the gluonic spin contribution.

  3. ACCELERATION INDUCED SPIN AND

    E-Print Network [OSTI]

    Gerlach, Ulrich

    spin at each event. A unique and natural law of parallel transport of quantum states between different mechanical line of reasoning leads to the heuristic con* *clusion that gravitation is to be identified AND ITS GAUGE GEOMETRY The line of reasoning which lies at the base of Einstein's gravitation the

  4. Strangeness in Neutron Stars

    E-Print Network [OSTI]

    Fridolin Weber; Alexander Ho; Rodrigo P. Negreiros; Philip Rosenfield

    2006-04-20T23:59:59.000Z

    It is generally agreed on that the tremendous densities reached in the centers of neutron stars provide a high-pressure environment in which several intriguing particles processes may compete with each other. These range from the generation of hyperons to quark deconfinement to the formation of kaon condensates and H-matter. There are theoretical suggestions of even more exotic processes inside neutron stars, such as the formation of absolutely stable strange quark matter. In the latter event, neutron stars would be largely composed of strange quark matter possibly enveloped in a thin nuclear crust. This paper gives a brief overview of these striking physical possibilities with an emphasis on the role played by strangeness in neutron star matter, which constitutes compressed baryonic matter at ultra-high baryon number density but low temperature which is no accessible to relativistic heavy ion collision experiments.

  5. Shifting scintillator neutron detector

    DOE Patents [OSTI]

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04T23:59:59.000Z

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  6. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  7. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2008-04-22T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  8. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2009-12-29T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  9. Neutron Stars Properties and Crust Movements in Post-glitch Epoch

    E-Print Network [OSTI]

    L. M. Gonzlez-Romero; F. Navarro-Lrida

    2009-02-07T23:59:59.000Z

    Using a new numerical code with non-uniform adapted mesh, we study the changes produced in the global properties of neutron stars by the motion of matter in crust region during post-glitch epoch. Our numerical analysis shows that these changes may contribute to explain the observed spin-down of rotational frequency.

  10. RHIC spin flipper commissioning results

    SciTech Connect (OSTI)

    Bai M.; Roser, T.; Dawson, C.; Kewisch, J.; Makdisi, Y.; Oddo, P.; Pai, C.; Pile, P.

    2012-05-20T23:59:59.000Z

    The five AC dipole RHIC spin flipper design in the RHIC Blue ring was first tested during the RHIC 2012 polarized proton operation. The advantage of this design is to eliminate the vertical coherent betatron oscillations outside the spin flipper. The closure of each ac dipole vertical bump was measured with orbital response as well as spin. The effect of the rotating field on the spin motion by the spin flipper was also confirmed by measuring the suppressed resonance at Q{sub s} = 1 - Q{sub osc}.

  11. Possible evidence of quark matter in neutron star X-ray binaries

    E-Print Network [OSTI]

    Norman K. Glendenning; F. Weber

    2000-09-05T23:59:59.000Z

    We study the spin evolution of X-ray neutron stars in binary systems, which are being spun up by mass transfer from accretion disks. Our investigation reveals that a quark phase transition resulting from the changing central density induced by the changing spin, can lead to a pronounced peak in the frequency distribution of X-ray neutron stars. This finding provides one of several possible explanations available in the literature, or at least a contributor to part of the observed anomalous frequency distribution of neutron stars in low-mass X-ray binaries (LMXBs), which lie in a narrow band centered at about 300 Hz, as found by the Rossi Explorer (RXTE).

  12. Deeply virtual compton scattering from the neutron with CLAS and CLAS12

    SciTech Connect (OSTI)

    Sokhan, Daria [Glasgow University, Glasgow, Scotland (United Kingdom)

    2014-01-01T23:59:59.000Z

    Generalised Parton Distributions (GPDs) offer an insight into the three-dimensional structure of the nucleon and its internal dynamics, relating the longitudinal momentum of quarks to their transverse position. A very effective means of accessing GPDs is via measurements of cross-sections and polarisation-asymmetries in Deeply Virtual Compton Scattering (DVCS). In particular, the beam-spin asymmetry (BSA) in DVCS from the neutron is especially sensitive to angular momentum of the up- and down-quarks, and its measurement therefore has potential to shed important light on the puzzle of nucleon spin. We present a preliminary extraction of BSA from a recent experiment using a 6 GeV electron beam and the CLAS detector at Jefferson Laboratory and introduce the Central Neutron Detector to be integrated with CLAS12 for the exclusive measurement of neutron DVCS at 11 GeV, made possible by the Jefferson Lab upgrade.

  13. RELATIONS BETWEEN NEUTRON-STAR PARAMETERS IN THE HARTLE-THORNE APPROXIMATION

    SciTech Connect (OSTI)

    Baubck, Michi; Psaltis, Dimitrios; zel, Feryal [Astronomy Department, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Berti, Emanuele, E-mail: mbaubock@email.arizona.edu, E-mail: dpsaltis@email.arizona.edu, E-mail: fozel@email.arizona.edu, E-mail: berti@phy.olemiss.edu [Department of Physics and Astronomy, The University of Mississippi, University, MS 38677 (United States)

    2013-11-01T23:59:59.000Z

    Using stellar structure calculations in the Hartle-Thorne approximation, we derive analytic expressions connecting the ellipticity of the stellar surface to the compactness, the spin angular momentum, and the quadrupole moment of the spacetime. We also obtain empirical relations between the compactness, the spin angular momentum, and the spacetime quadrupole. Our formulae reproduce the results of numerical calculations to within a few percent and help reduce the number of parameters necessary to model the observational appearance of moderately spinning neutron stars. This is sufficient for comparing theoretical spectroscopic and timing models to observations that aim to measure the masses and radii of neutron stars and to determine the equation of state prevailing in their interiors.

  14. Quantum correlations in bulk properties of solids obtained from neutron scattering

    E-Print Network [OSTI]

    Ben-Qiong Liu; Lian-Ao Wu; Guo-Mo Zeng; Jian-Ming Song; Wei Luo; Yang Lei; Guang-Ai Sun; Bo Chen; Shu-Ming Peng

    2014-07-02T23:59:59.000Z

    We demonstrate that inelastic neutron scattering technique can be used to indirectly detect and measure the macroscopic quantum correlations quantified by both entanglement and discord in a quantum magnetic material, VODPO4 . 1D2O. The amount of quantum correlations is obtained 2 by analyzing the neutron scattering data of magnetic excitations in isolated V4+ spin dimers. Our quantitative analysis shows that the critical temperature of this material can reach as high as Tc = 82.5 K, where quantum entanglement drops to zero. Significantly, quantum discord can even survive at Tc = 300 K and may be used in room temperature quantum devices. Taking into account the spin-orbit (SO) coupling, we also predict theoretically that entanglement can be significantly enhanced and the critical temperature Tc increases with the strength of spin-orbit coupling.

  15. Parallel and real-time implementation of an acoustic echo canceller using oversampled wavelet frame algorithms

    E-Print Network [OSTI]

    Tam, Pak-Yin

    2012-06-07T23:59:59.000Z

    yields: f's-r(x) = Q~r, " Qp& ? && ? 8 &q (2 x r ' ) a 3 + Pd'?'Pq, ?, , rf(2'+'x ? r? P P+l, ly(2j+I (3+1, l ) 3 (3. 53) Comparing the $ terms, one can obtain the wavelet frame reconstruction relation: g [ c~i: p, ? &s ?, , + d~&: v. -sa.... Besides improving convergence duc to subband decorrelation, wavelet decomposition offers a, "divirle- and-conffucr" approach to meet the stringent filtcr length requirement. To cope with time-varying echoes, a channel probing engine is used to reset...

  16. Generation of high-power tunable terahertz-radiation by nonrelativistic beam-echo harmonic effect

    SciTech Connect (OSTI)

    Gong Huarong; Xu Jin; Wei Yanyu; Gong Yubin [National Key Laboratory of Science and Technology on Vacuum Electronics, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Travish, Gil [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Feng Jinjun [Vacuum Electronics National Laboratory, Vacuum Electronics research Institute, Beijing 100016 (China)

    2013-01-15T23:59:59.000Z

    A new type of terahertz radiation source based on the nonrelativistic electron beam-wave interaction is proposed. Here, the beam echo harmonic effect is applied to a traveling wave tube like device. The scheme is configured as a combination of a frequency multiplier and amplifier with, for instance, W-band (millimeter wave) input signals and terahertz output power. A one-dimensional model of this device shows that a 10th order harmonic-wave can be generated while other harmonic waves are suppressed. The device only requires a readily available input source (W-band), and the output frequency can be tuned continuously over a wide band.

  17. Meteorological significance of frontal thin-line angel echoes observed by CPS-9 radar

    E-Print Network [OSTI]

    Miller, Donald Bradford

    2012-06-07T23:59:59.000Z

    Effects of Vertical Wind-Shear on Convection Cells in the Atmosphere and Ocean 83 86 C. Radar Observations of Benard Cells and the Effects of Vertical Wind-Shear 89 D. Possible Effects of Wind-Shear Modified Convection Cells Exhibited by the Angel... of the Relationship between Wind-shear and Angel Echo Patterns 102 D. Summary of Conclusions REFERENCES APPENDIX 103 105 110 LIST OF FIGURES Figure 1. Surface Nap, 1500C, 10 December 1957 2. PPI Photographs~ 10 December 1957 3. Cold-frontal and Thin...

  18. Dual-Doppler analysis of the 17 June 1997 bow echo over southeast Texas

    E-Print Network [OSTI]

    Moncla, Kerry Louis

    2001-01-01T23:59:59.000Z

    , 1996: Role of gust front circulations in long-track severe straight-line winds. Preprints, 18' Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc. , 504-508. Biggerstaff, M. I. , J. Guynes, S. Hristova-Veleva, E-K Seo, B. Karl, Z... and Lightening Experiment ? TEXACAL 97. Preprints, 28th Conf. on Radar Meteor. , Austin, TX, Amer. Meteor. Soc. , 588-589. Burgess, D. W. , and B. F. Smull, 1990: Doppler radar observation of a bow echo associated with a long-track severe windstorm. Preprints...

  19. Hanford Tank Farms Waste Feed Flow Loop Phase VI: PulseEcho System Performance Evaluation

    SciTech Connect (OSTI)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Hopkins, Derek F.

    2012-11-21T23:59:59.000Z

    This document presents the visual and ultrasonic PulseEcho critical velocity test results obtained from the System Performance test campaign that was completed in September 2012 with the Remote Sampler Demonstration (RSD)/Waste Feed Flow Loop cold-test platform located at the Monarch test facility in Pasco, Washington. This report is intended to complement and accompany the report that will be developed by WRPS on the design of the System Performance simulant matrix, the analysis of the slurry test sample concentration and particle size distribution (PSD) data, and the design and construction of the RSD/Waste Feed Flow Loop cold-test platform.

  20. An analysis of the uncertainty and bias in DCE-MRI measurements using the spoiled gradient-recalled echo pulse sequence

    SciTech Connect (OSTI)

    Subashi, Ergys [Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 (United States)] [Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 (United States); Choudhury, Kingshuk R. [Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27710 (United States)] [Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27710 (United States); Johnson, G. Allan, E-mail: gjohnson@duke.edu [Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina 27710 (United States); Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-03-15T23:59:59.000Z

    Purpose: The pharmacokinetic parameters derived from dynamic contrast-enhanced (DCE) MRI have been used in more than 100 phase I trials and investigator led studies. A comparison of the absolute values of these quantities requires an estimation of their respective probability distribution function (PDF). The statistical variation of the DCE-MRI measurement is analyzed by considering the fundamental sources of error in the MR signal intensity acquired with the spoiled gradient-echo (SPGR) pulse sequence. Methods: The variance in the SPGR signal intensity arises from quadrature detection and excitation flip angle inconsistency. The noise power was measured in 11 phantoms of contrast agent concentration in the range [01] mM (in steps of 0.1 mM) and in onein vivo acquisition of a tumor-bearing mouse. The distribution of the flip angle was determined in a uniform 10 mM CuSO{sub 4} phantom using the spin echo double angle method. The PDF of a wide range of T1 values measured with the varying flip angle (VFA) technique was estimated through numerical simulations of the SPGR equation. The resultant uncertainty in contrast agent concentration was incorporated in the most common model of tracer exchange kinetics and the PDF of the derived pharmacokinetic parameters was studied numerically. Results: The VFA method is an unbiased technique for measuringT1 only in the absence of bias in excitation flip angle. The time-dependent concentration of the contrast agent measured in vivo is within the theoretically predicted uncertainty. The uncertainty in measuring K{sup trans} with SPGR pulse sequences is of the same order, but always higher than, the uncertainty in measuring the pre-injection longitudinal relaxation time (T1{sub 0}). The lowest achievable bias/uncertainty in estimating this parameter is approximately 20%70% higher than the bias/uncertainty in the measurement of the pre-injection T1 map. The fractional volume parameters derived from the extended Tofts model were found to be extremely sensitive to the variance in signal intensity. The SNR of the pre-injection T1 map indicates the limiting precision with which K{sup trans} can be calculated. Conclusions: Current small-animal imaging systems and pulse sequences robust to motion artifacts have the capacity for reproducible quantitative acquisitions with DCE-MRI. In these circumstances, it is feasible to achieve a level of precision limited only by physiologic variability.

  1. Spin and Madelung fluid

    E-Print Network [OSTI]

    G. Salesi

    2009-06-23T23:59:59.000Z

    Starting from the Pauli current we obtain the decomposition of the non-relativistic local velocity in two parts: one parallel and the other orthogonal to the momentum. The former is recognized to be the ``classical'' part, that is the velocity of the center-of-mass, and the latter the ``quantum'' one, that is the velocity of the motion in the center-of-mass frame (namely, the internal ``spin motion'' or {\\em Zitterbewegung}). Inserting the complete expression of the velocity into the kinetic energy term of the classical non-relativistic (i.e., Newtonian) Lagrangian, we straightforwardly derive the so-called ``quantum potential'' associated to the Madelung fluid. In such a way, the quantum mechanical behaviour of particles appears to be strictly correlated to the existence of spin and Zitterbewegung.

  2. Neutron-deuteron breakup reaction as a tool for studying neutron-neutron interactions

    SciTech Connect (OSTI)

    Konobeevski, E. S., E-mail: konobeev@inr.ru; Zuyev, S. V.; Mordovskoy, M. V.; Potashev, S. I.; Sharapov, I. M. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)] [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2013-11-15T23:59:59.000Z

    An analysis of the most recent data on the reaction nd {yields} pnn revealed a serious discrepancy between theoretical predictions and cross sections measured for this reaction in various configurations where the role of neutron-neutron interactions is important. In view of this, it seems necessary both to develop theoretical approaches and to obtain new experimental data. For this purpose, a setup for studying the neutron-deuteron breakup reaction was created at the Institute for Nuclear Research on the basis of the neutron beam in the RADEX channel and deuterium targets. This facility makes it possible to perform experiments over a broad region of primary-neutron energies (10-60 MeV) and in various (final-state interaction, quasifree scattering, and spatial-star) configurations. Preliminary results of the respective experiment were obtained for configurations of final-state neutron-neutron interaction and quasifree neutron-neutron scattering.

  3. Electron-neutron scattering and transport properties of neutron stars

    E-Print Network [OSTI]

    Bertoni, Bridget; Rrapaj, Ermal

    2014-01-01T23:59:59.000Z

    We show that electrons can couple to the neutron excitations in neutron stars and find that this can limit their contribution to the transport properties of dense matter, especially the shear viscosity. The coupling between electrons and neutrons is induced by protons in the core, and by ions in the crust. We calculate the effective electron-neutron interaction for the kinematics of relevance to the scattering of degenerate electrons at high density. We use this interaction to calculate the electron thermal conductivity, electrical conductivity, and shear viscosity in the neutron star inner crust, and in the core where we consider both normal and superfluid phases of neutron-rich matter. In some cases, particularly when protons are superconducting and neutrons are in their normal phase, we find that electron-neutron scattering can be more important than the other scattering mechanisms considered previously.

  4. Novel neutron focusing mirrors for compact neutron sources

    E-Print Network [OSTI]

    Gubarev, M.V.

    We demonstrated neutron beam focusing and neutron imaging using axisymmetric optics, based on pairs of confocal ellipsoid and hyperboloid mirrors. Such systems, known as Wolter mirrors, are commonly used in x-ray telescopes. ...

  5. Neutron lifetime measurements using gravitationally trapped ultracold neutrons

    SciTech Connect (OSTI)

    Serebrov, A. P.; Varlamov, V. E.; Kharitonov, A. G.; Fomin, A. K.; Krasnoschekova, I. A.; Lasakov, M. S.; Taldaev, R. R.; Vassiljev, A. V.; Zherebtsov, O. M. [Petersburg Nuclear Physics Institute, Russian Academy of Sciences, RU-188300 Gatchina, Leningrad District (Russian Federation); Pokotilovski, Yu. N. [Joint Institute for Nuclear Research, RU-141980 Dubna, Moscow Region (Russian Federation); Geltenbort, P. [Institut Max von Laue Paul Langevin, Boite Postal 156, F-38042 Grenoble Cedex 9 (France)

    2008-09-15T23:59:59.000Z

    Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before: the probability of UCN losses from the trap was only 1% of that for neutron {beta} decay. The neutron lifetime obtained, 878.5{+-}0.7{sub stat}{+-}0.3{sub sys} s, is the most accurate experimental measurement to date.

  6. Neutron lifetime measurements using gravitationally trapped ultracold neutrons

    E-Print Network [OSTI]

    A. P. Serebrov; V. E. Varlamov; A. G. Kharitonov; A. K. Fomin; Yu. N. Pokotilovski; P. Geltenbort; I. A. Krasnoschekova; M. S. Lasakov; R. R. Taldaev; A. V. Vassiljev; O. M. Zherebtsov

    2007-02-06T23:59:59.000Z

    Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before:the probability of UCN losses from the trap was only 1% of that for neutron beta decay. The neutron lifetime obtained,878.5+/-0.7stat+/-0.3sys s, is the most accurate experimental measurement to date.

  7. Nuclear spin circular dichroism

    SciTech Connect (OSTI)

    Vaara, Juha, E-mail: juha.vaara@iki.fi [NMR Research Group, Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014 Oulu (Finland)] [NMR Research Group, Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014 Oulu (Finland); Rizzo, Antonio [Istituto per i Processi Chimico-Fisici del Consiglio Nazionale delle Ricerche (IPCF-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa (Italy)] [Istituto per i Processi Chimico-Fisici del Consiglio Nazionale delle Ricerche (IPCF-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa (Italy); Kauczor, Joanna; Norman, Patrick [Department of Physics, Chemistry and Biology, Linkping University, S-58183 Linkping (Sweden)] [Department of Physics, Chemistry and Biology, Linkping University, S-58183 Linkping (Sweden); Coriani, Sonia, E-mail: coriani@units.it [Dipartimento di Scienze Chimiche e Farmaceutiche, Universit degli Studi di Trieste, Via L. Giorgieri 1, I-34127 Trieste (Italy)] [Dipartimento di Scienze Chimiche e Farmaceutiche, Universit degli Studi di Trieste, Via L. Giorgieri 1, I-34127 Trieste (Italy)

    2014-04-07T23:59:59.000Z

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  8. Existence of exotic torus configuration in high-spin excited states of $^{40}$Ca

    E-Print Network [OSTI]

    T. Ichikawa; J. A. Maruhn; N. Itagaki; K. Matsuyanagi; P. -G. Reinhard; S. Ohkubo

    2012-07-26T23:59:59.000Z

    We investigate the possibility of the existence of the exotic torus configuration in the high-spin excited states of $^{40}$Ca. We here consider the spin alignments about the symmetry axis. To this end, we use a three-dimensional cranked Skyrme Hartree-Fock method and search for stable single-particle configurations. We find one stable state with the torus configuration at the total angular momentum $J=$ 60 $\\hbar$ and an excitation energy of about 170 MeV in all calculations using various Skyrme interactions. The total angular momentum J=60 $\\hbar$ consists of aligned 12 nucleons with the orbital angular momenta $\\Lambda=+4$, +5, and +6 for spin up-down neutrons and protons. The obtained results strongly suggest that a macroscopic amount of circulating current breaking the time-reversal symmetry emerges in the high-spin excited state of $^{40}$Ca.

  9. Linear Polarization Measurements for High-Spin States in 146Gd

    E-Print Network [OSTI]

    Krishichayan; Rajashri Bhattacherjee; S. K. Basu; R. K. Bhowmik; A. Chakraborty; L. Chaturvedi; A. Dhal; U. Garg; S. S. Ghugre; R. Goswami; A. Jhingan; N. Madhvan; P. V. Madhusudhana Rao; S. Mukhopadhyay; S. Muralithar; S. Nath; N. S. Pattabiraman; S. Ray; S. Saha; M. Saha Sarkar; S. Sarkar; R. Singh; R. P. Singh; A. K. Sinha; R. K. Sinha; P. Sugathan; B. K. Yogi

    2013-08-01T23:59:59.000Z

    A {\\gamma}-ray linear polarization measurement has been performed to directly determine the parities for the levels in 146Gd nucleus. High-spin states in this nucleus were populated in a reaction 115In + 34S at 140 MeV incident energy. Linearly polarized {\\gamma} - rays emitted from oriented states were measured using a Compton polarimeter consisting of an array of 8 Compton-suppressed Clover detectors. Unambiguous assignments of the spin and parity have been made for most of the observed levels and changes made in the previously reported spin-parity assignments for a few levels. Shell model calculations performed with judicious truncation over the {\\pi}(gdsh) valence space interpret the structure of only the low-lying levels up to J{\\pi} = 19+ and 9-. N = 82 neutron-core breaking is found to be essential for high spin states with excitation energies Ex > 7 MeV.

  10. Spin-bus concept of spin quantum computing

    SciTech Connect (OSTI)

    Mehring, Michael; Mende, Jens [2. Physikalisches Institut, University of Stuttgart (Germany)

    2006-05-15T23:59:59.000Z

    We present a spin-bus concept of quantum computing where an electron spin S=1/2 acts as a bus qubit connected to a finite number N of nuclear spins I=1/2 serving as client qubits. Spin-bus clusters are considered as local processing units and may be interconnected with other spin-bus clusters via electron-electron coupling in a scaled up version. Here we lay the ground for the basic functional unit with long qubit registers, provide the theory and experimental verification of correlated qubit states, and demonstrate the Deutsch algorithm. Experiments were performed on a qubyte plus one nuclear spin in a solid state system.

  11. Causality bounds for neutron-proton scattering

    E-Print Network [OSTI]

    Serdar Elhatisari; Dean Lee

    2012-07-25T23:59:59.000Z

    We consider the constraints of causality and unitarity for the low-energy interactions of protons and neutrons. We derive a general theorem that non-vanishing partial-wave mixing cannot be reproduced with zero-range interactions without violating causality or unitarity. We define and calculate interaction length scales which we call the causal range and the Cauchy-Schwarz range for all spin channels up to J = 3. For some channels we find that these length scales are as large as 5 fm. We investigate the origin of these large lengths and discuss their significance for the choice of momentum cutoff scales in effective field theory and universality in many-body Fermi systems.

  12. Evidence of High Harmonics from Echo-Enabled Harmonic Generation for Seeding X-ray Free Electron Lasers

    SciTech Connect (OSTI)

    Xiang, D.; Colby, E.; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodle, M.; /SLAC; ,

    2012-02-15T23:59:59.000Z

    Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science.

  13. Strangeness in Neutron Stars

    E-Print Network [OSTI]

    Fridolin Weber

    2000-08-23T23:59:59.000Z

    It is generally agreed on that the tremendous densities reached in the centers of neutron stars provide a high-pressure environment in which numerous novel particles processes are likely to compete with each other. These processes range from the generation of hyperons to quark deconfinement to the formation of kaon condensates and H-matter. There are theoretical suggestions of even more exotic processes inside neutron stars, such as the formation of absolutely stable strange quark matter, a configuration of matter even more stable than the most stable atomic nucleus, iron. In the latter event, neutron stars would be largely composed of pure quark matter, eventually enveloped in a thin nuclear crust. No matter which physical processes are actually realized inside neutron stars, each one leads to fingerprints, some more pronounced than others though, in the observable stellar quantities. This feature combined with the unprecedented progress in observational astronomy, which allows us to see vistas with remarkable clarity that previously were only imagined, renders neutron stars to nearly ideal probes for a wide range of physical studies, including the role of strangeness in dense matter.

  14. Portable Neutron Sensors for Emergency Response Operations

    SciTech Connect (OSTI)

    Mukhopadhyay, S., Maurer, R., Detweiler, R.

    2012-06-22T23:59:59.000Z

    This slide-show presents neutron measurement work, including design, use and performance of different neutron detection systems.

  15. Neutron beam characterization at the Neutron Radiography Reactor (NRAD)

    SciTech Connect (OSTI)

    Imel, G.R.; Urbatsch, T.; Pruett, D.P.; Ross, J.R.

    1990-01-01T23:59:59.000Z

    The Neutron Radiography Reactor (NRAD) is a 250-kW TRIGA Reactor operated by Argonne National Laboratory and is located near Idaho Falls, Idaho. The reactor and its facilities regarding radiography are detailed in another paper at this conference; this paper summarizes neutron flux measurements and calculations that have been performed to better understand and potentially improve the neutronics characteristics of the reactor.

  16. Putting the Spin on Graphite: Observing the Spins of Impurity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Spins of Impurity Atoms Align Friday, February 28, 2014 The existence of magnetism in graphite is a very intriguing subject. The possibility to exploit the magnetic...

  17. Measurement of np elastic scattering spin-spin correlation parameters at 484, 634, and 788 MeV

    SciTech Connect (OSTI)

    Garnett, R.W.

    1989-03-01T23:59:59.000Z

    The spin-spin correlation parameters C/sub LL/ and C/sub SL/ were measured for np elastic scattering at the incident neutron kinetic energy of 634 MeV. Good agreement was obtained with previously measured data. Additionally, the first measurement of the correlation parameter C/sub SS/ was made at the three energies, 484, 634, and 788 MeV. It was found that the new values, in general, do not agree well with phase shift predictions. A study was carried out to determine which of the isospin-0 partial waves will be affected by this new data. It was found that the /sup 1/P/sub 1/ partial wave will be affected significantly at all three measurement energies. At 634 and 788 MeV, the /sup 3/S/sub 1/ phase shifts will also change. 29 refs., 21 figs., 16 tabs.

  18. Relativistic viscous hydrodynamics for heavy-ion collisions with ECHO-QGP

    E-Print Network [OSTI]

    Del Zanna, L; Inghirami, G; Rolando, V; Beraudo, A; De Pace, A; Pagliara, G; Drago, A; Becattini, F

    2013-01-01T23:59:59.000Z

    We present ECHO-QGP, a numerical code for $(3+1)$-dimensional relativistic viscous hydrodynamics designed for the modeling of the space-time evolution of the matter created in high energy nuclear collisions. The code has been built on top of the \\emph{Eulerian Conservative High-Order} astrophysical code for general relativistic magneto-hydrodynamics [\\emph{Del Zanna et al., Astron. Astrophys. 473, 11, 2007}] and here it has been upgraded to handle the physics of the Quark-Gluon Plasma. ECHO-QGP features second-order treatment of causal relativistic viscosity effects in both Minkowskian or Bjorken coordinates; partial or complete chemical equilibrium of hadronic species before kinetic freeze-out; initial conditions based on the optical Glauber model, including a Monte-Carlo routine for event-by-event fluctuating initial conditions; a freeze-out procedure based on the Cooper-Frye prescription. The code is extensively validated against several test problems and results always appear accurate, as guaranteed by th...

  19. Spherical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2006-11-21T23:59:59.000Z

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  20. Personnel electronic neutron dosimeter

    DOE Patents [OSTI]

    Falk, Roger B. (Lafayette, CO); Tyree, William H. (Boulder, CO)

    1984-12-18T23:59:59.000Z

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  1. Personnel electronic neutron dosimeter

    DOE Patents [OSTI]

    Falk, R.B.; Tyree, W.H.

    1982-03-03T23:59:59.000Z

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  2. Neutron Scattering Tutorials | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1, 2007Transmission toBeamNDiscoveryNeutron

  3. COS DCE BOOT FSW v1.09 Component Test Results Requirement 5.2.3.2 Echoes for Command Opcode and Parameters

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    COS DCE BOOT FSW v1.09 Component Test Results Requirement 5.2.3.2 Echoes for Command Opcode. Brownsberger 2-13-01 The Center for Astrophysics and Space Astronomy Reviewed: Approved: COS DCE BOOT FSW v1 & Space Astronomy Initial Release COS DCE BOOT FSW v1.09 Component Test Results Requirement 5.2.3.2 Echoes

  4. COS DCE BOOT FSW v1.13 Component Test Results Requirement 5.2.3.2 Echoes for Command Opcode and Parameters

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    COS DCE BOOT FSW v1.13 Component Test Results Requirement 5.2.3.2 Echoes for Command Opcode. Brownsberger 2-13-01 The Center for Astrophysics and Space Astronomy Reviewed: Approved: COS DCE BOOT FSW v1 & Space Astronomy Initial Release COS DCE BOOT FSW v1.13 Component Test Results Requirement 5.2.3.2 Echoes

  5. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12T23:59:59.000Z

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  6. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan (El Cerrito, CA); Farmer, Joseph C. (Tracy, CA); Lee, Chuck K. (Hayward, CA); Walker, Jeffrey (Gaithersburg, MD); Russell, Paige (Las Vegas, NV); Kirkwood, Jon (Saint Leonard, MD); Yang, Nancy (Lafayette, CA); Champagne, Victor (Oxford, PA)

    2012-05-29T23:59:59.000Z

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  7. Fast neutron dosimetry

    SciTech Connect (OSTI)

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01T23:59:59.000Z

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  8. Asymptotics of Relativistic Spin Networks

    E-Print Network [OSTI]

    John W Barrett; Christopher M Steele

    2003-01-31T23:59:59.000Z

    The stationary phase technique is used to calculate asymptotic formulae for SO(4) Relativistic Spin Networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the Spin Network evaluation. Finally we discuss the asymptotics of the SO(3,1) 10j-symbol.

  9. Feedback control of spin systems

    E-Print Network [OSTI]

    Claudio Altafini

    2006-01-03T23:59:59.000Z

    The feedback stabilization problem for ensembles of coupled spin 1/2 systems is discussed from a control theoretic perspective. The noninvasive nature of the bulk measurement allows for a fully unitary and deterministic closed loop. The Lyapunov-based feedback design presented does not require spins that are selectively addressable. With this method, it is possible to obtain control inputs also for difficult tasks, like suppressing undesired couplings in identical spin systems.

  10. Heterostructure unipolar spin transistors M. E. Flatta

    E-Print Network [OSTI]

    Flatte, Michael E.

    carriers on one side of the device are spin-down spin-up electrons and on the other side of the device semiconductor electronics and spin-based unipolar electronics by considering unipolar spin transistors electrons to the collector limits the performance of "homojunction" unipolar spin transistors, in which

  11. NEUTRON AND NON-NEUTRON NUCLEAR DATA FOR RADIATION DOSIMETRY

    SciTech Connect (OSTI)

    HOLDEN,N.E.

    1999-09-10T23:59:59.000Z

    NEUTRON NUCLEAR DATA THAT IS USED IN REACTOR DOSIMETRY INCLUDE THERMAL NEUTRON CROSS SECTIONS AND NEUTRON RESONANCE INTEGRALS, FISSION SPECTRUM AVERAGED CROSS SECTIONS FOR REACTIONS ON A TARGET NUCLEUS. NON-NEUTRON NUCLEAR DATA USED IN REACTOR DOSIMETRY INCLUDE ISOTOPIC COMPOSITIONS OF TARGET NUCLIDES AND RADIOACTIVE HALF-LIVES, GAMMA-RAY ENERGIES AND INTENSITIES OF REACTION PRODUCT NUCLIDES. ALL OF THESE DATA ARE PERIODICALLY EVALUATED AND RECOMMENDED VALUES ARE PROVIDED IN THE HANDBOOK OF CHEMISTRY AND PHYSICS. THE LATEST RECOMMENDED VALUES ARE DISCUSSED AND THEY ARE CONTRASTED WITH SOME EARLIER NUCLEAR DATA, WHICH WAS PROVIDED WITH NEUTRON DETECTOR FOILS.

  12. Gravitational waves from rapidly rotating neutron stars

    E-Print Network [OSTI]

    Brynmor Haskell; Nils Andersson; Caroline D`Angelo; Nathalie Degenaar; Kostas Glampedakis; Wynn C. G. Ho; Paul D. Lasky; Andrew Melatos; Manuel Oppenoorth; Alessandro Patruno; Maxim Priymak

    2014-07-31T23:59:59.000Z

    Rapidly rotating neutron stars in Low Mass X-ray Binaries have been proposed as an interesting source of gravitational waves. In this chapter we present estimates of the gravitational wave emission for various scenarios, given the (electromagnetically) observed characteristics of these systems. First of all we focus on the r-mode instability and show that a 'minimal' neutron star model (which does not incorporate exotica in the core, dynamically important magnetic fields or superfluid degrees of freedom), is not consistent with observations. We then present estimates of both thermally induced and magnetically sustained mountains in the crust. In general magnetic mountains are likely to be detectable only if the buried magnetic field of the star is of the order of $B\\approx 10^{12}$ G. In the thermal mountain case we find that gravitational wave emission from persistent systems may be detected by ground based interferometers. Finally we re-asses the idea that gravitational wave emission may be balancing the accretion torque in these systems, and show that in most cases the disc/magnetosphere interaction can account for the observed spin periods.

  13. Magnetohydrodynamics in Superconducting-Superfluid Neutron Stars

    E-Print Network [OSTI]

    Gregory Mendell

    1997-09-09T23:59:59.000Z

    MHD equations are presented for the mixture of superfluid neutrons, superconducting protons, and normal electrons believed to exist in the outer cores of neutron stars. The dissipative effects of electron viscosity and mutual friction due to electron-vortex scattering are also included. It is shown that Alfven waves are replaced by cyclotron- vortex waves that have not been previously derived from MHD theory. The cyclotron- vortex waves are analogous to Alfven waves with the tension due to the magnetic energy density replaced by the vortex energy density. The equations are then put into a simplified form useful for studying the effects of the interior magnetic field on the dynamics. Of particular interest is the crust-core coupling time which can be inferred from pulsar glitch observations. The hypothesis that cyclotron-vortex waves play a significant role in the core spin-up during a glitch is used to place limits on the interior magnetic field. The results are compared with those of other studies.

  14. Nuclear Spin-Dependent Contributions to Atomic PNC: Combined Effect of Coherent Z Exchange and the Hyperfine

    E-Print Network [OSTI]

    Johnson, Walter R.

    1 Nuclear Spin-Dependent Contributions to Atomic PNC: Combined Effect of Coherent Z Exchange parity, is violated! 2 Otto Laporte (1902-1971) discovered the law of parity conservation in physics. He) is a nuclear density ( neutron density) and #12;5 Electron Axial-Vector ­ Nucleon Vector Contribution

  15. Determination of the Pt spin diffusion length by spin-pumping and spin Hall effect

    SciTech Connect (OSTI)

    Zhang, Wei; Pearson, John E.; Hoffmann, Axel [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)] [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Vlaminck, Vincent [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States) [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Colegio de Ciencias e Ingenera, Universidad San Fransciso de Quito, Quito (Ecuador); Divan, Ralu [Center for Nanoscale Materials, Argonne National Laboratory, Illinois 60439 (United States)] [Center for Nanoscale Materials, Argonne National Laboratory, Illinois 60439 (United States); Bader, Samuel D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States) [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, Illinois 60439 (United States)

    2013-12-09T23:59:59.000Z

    The spin diffusion length of Pt at room temperature and at 8 K is experimentally determined via spin pumping and spin Hall effect in permalloy/Pt bilayers. Voltages generated during excitation of ferromagnetic resonance from the inverse spin Hall effect and anisotropic magnetoresistance effect were investigated with a broadband approach. Varying the Pt layer thickness gives rise to an evolution of the voltage line shape due to the superposition of the above two effects. By studying the ratio of the two voltage components with the Pt layer thickness, the spin diffusion length of Pt can be directly extracted. We obtain a spin diffusion length of ?1.2 nm at room temperature and ?1.6 nm at 8 K.

  16. RHIC | Spin Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115, 2001 MediaBrookhavenBlackATheSpin

  17. np elastic spin-transfer measurements at 485 and 635 MeV

    E-Print Network [OSTI]

    McNaughton, K. H.; Ambrose, DA; Coffey, P.; Johnston, K.; Riley, P. J.; McNaughton, M. W.; Koch, K.; Supek, I.; Tanaka, N.; Glass, G.; Hiebert, John C.; Northcliffe, L. C.; Simon, A. J.; Mercer, D. J.; Adams, D. L.; Spinka, H.; Jeppersen, R. H.; Tripard, G. E.; Woolverton, H.

    1992-01-01T23:59:59.000Z

    Naughton, K. Koch, t I. Supek, and N. Tanaka~ Los Alamos National Laboratory, Los Alamos, Nenes Mexico 87$$$ G. Glass, J. C. Hiebert, L. C. Northcliffe, and A. J. Simon Texas ASM Universa ty, C'ollege Station, Texas 778/8 D. J. Mercer University...-hydrogen target. Elastically scattered neutrons and protons are detected by a neutron detector [9] and by the Scylla magnetic spectrometer. The 30' vertical bend in Scylla precessed the L-spin component through approximately 90' while leaving the S...

  18. Spin-rotation coupling in compound spin objects

    E-Print Network [OSTI]

    G. Lambiase; G. Papini

    2013-01-31T23:59:59.000Z

    We generalize spin-rotation coupling to compound spin systems. In the case of muons bound to nuclei in a storage ring the decay process acquires a modulation. Typical frequencies for $Z/A\\sim 1/2$ are $\\sim 3\\times 10^6$Hz, a factor 10 higher than the modulation observed in $g-2$ experiments.

  19. Oscillations During Thermonuclear X-ray Bursts: A New Probe of Neutron Stars

    E-Print Network [OSTI]

    Tod E. Strohmayer

    1999-11-19T23:59:59.000Z

    Observations of thermonuclear (Type I) X-ray bursts from neutron stars in low mass X-ray binaries (LMXB) with the Rossi X-ray Timing Explorer (RXTE) have revealed large amplitude, high coherence X-ray brightness oscillations with frequencies in the 300 - 600 Hz range. Substantial spectral and timing evidence point to rotational modulation of the X-ray burst flux as the cause of these oscillations, and it is likely that they reveal the spin frequencies of neutron stars in LMXB from which they are detected. Here I review the status of our knowledge of these oscillations and describe how they can be used to constrain the masses and radii of neutron stars as well as the physics of thermonuclear burning on accreting neutron stars.

  20. Neutrino emission and cooling rates of spin-one color superconductors

    E-Print Network [OSTI]

    Andreas Schmitt; Igor A. Shovkovy; Qun Wang

    2006-01-26T23:59:59.000Z

    Neutrino emissivities due to direct Urca processes of several spin-one color-superconducting phases of dense quark matter are calculated. In particular, the role of anisotropies and nodes of the gap functions is analyzed. Results for the specific heat as well as for the cooling rates of the color-spin-locked, planar, polar, and {\\it A} phases are presented and consequences for the physics of neutron stars are briefly discussed. Furthermore, it is shown that the {\\em A} phase exhibits a helicity order, giving rise to a reflection asymmetry in the neutrino emissivity.

  1. Symmetry breaking patterns and collective modes of spin-one color superconductors

    E-Print Network [OSTI]

    Tomas Brauner; Jin-yi Pang; Qun Wang

    2009-09-23T23:59:59.000Z

    Spin-one color superconductor is a viable candidate phase of dense matter in the interiors of compact stars. Its low-energy excitations will influence the transport properties of such matter and thus have impact on late-stage evolution of neutron stars. It also provides a good example of spontaneous symmetry breaking with rich breaking patterns. In this contribution, we reanalyze the phase diagram of a spin-one color superconductor and point out that a part of it is occupied by noninert states, which have been neglected in literature so far. We classify the collective Nambu--Goldstone modes, which are essential to the transport phenomena.

  2. Neutron Absorbing Alloys

    DOE Patents [OSTI]

    Mizia, Ronald E. (Idaho Falls, ID); Shaber, Eric L. (Idaho Falls, ID); DuPont, John N. (Whitehall, PA); Robino, Charles V. (Albuquerque, NM); Williams, David B. (Bethlehem, PA)

    2004-05-04T23:59:59.000Z

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  3. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17T23:59:59.000Z

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  4. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, John G. (Pittsburgh, PA); Ruddy, Frank H. (Monroeville, PA); Brandt, Charles D. (Mount Lebanon, PA); Dulloo, Abdul R. (Pittsburgh, PA); Lott, Randy G. (Pittsburgh, PA); Sirianni, Ernest (Monroeville, PA); Wilson, Randall O. (Greensburg, PA)

    1999-01-01T23:59:59.000Z

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  5. Dose-equivalent neutron dosimeter

    DOE Patents [OSTI]

    Griffith, R.V.; Hankins, D.E.; Tomasino, L.; Gomaa, M.A.M.

    1981-01-07T23:59:59.000Z

    A neutron dosimeter is disclosed which provides a single measurement indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer contaning conversion material such as /sup 6/Li and /sup 10/B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet.

  6. Uncertainties in radar echo top heights used for hail detection L. Delobbe (1) and I. Holleman (2)

    E-Print Network [OSTI]

    Stoffelen, Ad

    of hail is derived from the height of the freezing level and the 45-dBZ radar echo top height (maximum is based on the comparison between reflectivity measurements from two radars on the vertical cross section hail using reflectivity measurements from this type of radar. Most hail detection methods based

  7. Accelerated Short-TE 3D Proton Echo-Planar Spectroscopic Imaging Using 2D-SENSE with

    E-Print Network [OSTI]

    Accelerated Short-TE 3D Proton Echo-Planar Spectroscopic Imaging Using 2D-SENSE with a 32-Channel times and 2D acceleration with a large array coil is expected to provide high acceleration capability using a 32-channel array coil can be accelerated 8-fold (R 4 2) along y-z to achieve a minimum

  8. Predicting the Remaining Useful Lifetime of a Proton Exchange Membrane Fuel Cell using an Echo State Network

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Predicting the Remaining Useful Lifetime of a Proton Exchange Membrane Fuel Cell using an Echo industrial Fuel Cell (FC) application resides in the system limited useful lifetime. Consequently, it Membrane Fuel Cell using an iterative predictive structure, which is the most common approach performing

  9. Spin noise spectroscopy of ZnO

    SciTech Connect (OSTI)

    Horn, H.; Berski, F.; Hbner, J.; Oestreich, M. [Institute for Solid State Physics, Leibniz Universitt Hannover, Appelstr. 2, 30167 Hannover (Germany); Balocchi, A.; Marie, X. [INSA-CNRS-UPS, LPCNO, Universit de Toulouse, 135 Av. de Rangueil, 31077 Toulouse (France); Mansur-Al-Suleiman, M.; Bakin, A.; Waag, A. [Institute of Semiconductor Technology, Technische Universitt Braunschweig, Hans-Sommer-Strae 66, 38106 Braunschweig (Germany)

    2013-12-04T23:59:59.000Z

    We investigate the thermal equilibrium dynamics of electron spins bound to donors in nanoporous ZnO by optical spin noise spectroscopy. The spin noise spectra reveal two noise contributions: A weak spin noise signal from undisturbed localized donor electrons with a dephasing time of 24 ns due to hyperfine interaction and a strong spin noise signal with a spin dephasing time of 5 ns which we attribute to localized donor electrons which interact with lattice defects.

  10. QCD Spin Physics: Theoretical Overview

    SciTech Connect (OSTI)

    Vogelsang,W.

    2008-11-09T23:59:59.000Z

    We give an overview of some of the current activities and results in QCD spin physics. We focus on the helicity structure of the nucleon, where we highlight the results of a recent first global analysis of the helicity parton distributions, and on single-transverse spin asymmetries.

  11. Spin Hall Effect For Anyons

    E-Print Network [OSTI]

    S. Dhar; B. Basu; Subir Ghosh

    2007-06-27T23:59:59.000Z

    We explain the intrinsic spin Hall effect from generic anyon dynamics in the presence of external electromagnetic field. The free anyon is represented as a spinning particle with an underlying non-commutative configuration space. The Berry curvature plays a major role in the analysis.

  12. Search for neutron - mirror neutron oscillations in a laboratory experiment with ultracold neutrons

    E-Print Network [OSTI]

    A. P. Serebrov; E. B. Aleksandrov; N. A. Dovator; S. P. Dmitriev; A. K. Fomin; P. Geltenbort; A. G. Kharitonov; I. A. Krasnoschekova; M. S. Lasakov; A. N. Murashkin; G. E. Shmelev; V. E. Varlamov; A. V. Vassiljev; O. M. Zherebtsov; O. Zimmer

    2008-09-29T23:59:59.000Z

    Mirror matter is considered as a candidate for dark matter. In connection with this an experimental search for neutron - mirror neutron (nn') transitions has been carried out using storage of ultracold neutrons in a trap with different magnetic fields. As a result, a new limit for the neutron - mirror neutron oscillation time has been obtained, tau_osc >= 448 s (90% C.L.), assuming that there is no mirror magnetic field larger than 100 nT. Besides a first attempt to obtain some restriction for mirror magnetic field has been done.

  13. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Flipping Photoelectron Spins in Topological Insulators Print Tuesday, 23 April 2013 10:00 Inherently strange crystalline...

  14. EChO spectra and stellar activity II. The case of dM stars

    E-Print Network [OSTI]

    Scandariato, G

    2014-01-01T23:59:59.000Z

    EChO is a dedicated mission to investigate exoplanetary atmospheres. When extracting the planetary signal, one has to take care of the variability of the hosting star, which introduces spectral distortion that can be mistaken as planetary signal. Magnetic variability is a major deal in particular for M stars. To this purpose, assuming a one spot dominant model for the stellar photosphere, we develop a mixed observational-theoretical tool to extract the spot's parameters from the observed optical spectrum. This method relies on a robust library of spectral M templates, which we derive using the observed spectra of quiet M dwarfs in the SDSS database. Our procedure allows to correct the observed spectra for photospheric activity in most of the analyzed cases, reducing the spectral distortion down to the noise levels. Ongoing refinements of the template library and the algorithm will improve the efficiency of our algorithm.

  15. Storage and Manipulation of Light Using a Raman Gradient Echo Process

    E-Print Network [OSTI]

    Hosseini, M; Campbell, G T; Lam, P K; Buchler, B C

    2012-01-01T23:59:59.000Z

    The Gradient Echo Memory (GEM) scheme has potential to be a suitable protocol for storage and retrieval of optical quantum information. In this paper, we review the properties of the $\\Lambda$-GEM method that stores information in the ground states of three-level atomic ensembles via Raman coupling. The scheme is versatile in that it can store and re-sequence multiple pulses of light. To date, this scheme has been implemented using warm rubidium gas cells. There are different phenomena that can influence the performance of these atomic systems. We investigate the impact of atomic motion and four-wave mixing and present experiments that show how parasitic four-wave mixing can be mitigated. We also use the memory to demonstrate preservation of pulse shape and the backward retrieval of pulses.

  16. Why the two-pulse photon echo is not a good quantum memory protocol

    SciTech Connect (OSTI)

    Ruggiero, Jerome; Le Goueet, Jean-Louis; Chaneliere, Thierry [Laboratoire Aime Cotton, CNRS-UPR 3321, Universite Paris-Sud, Bat. 505, 91405 Orsay Cedex (France); Simon, Christoph [Group of Applied Physics, University of Geneva, CH-1211 Geneva 4 (Switzerland)

    2009-05-15T23:59:59.000Z

    We consider in this paper a two-pulse photon echo sequence in the prospect of quantum light storage. We analyze the conditions where quantum storage could be realistically performed. We simply and analytically calculate the efficiency in that limit, and clarify the role of the exactly {pi}-rephasing pulse in the sequence. Our physical interpretation of the process is well supported by its experimental implementation in a Tm{sup 3+}:yttrium aluminum garnet crystal thanks to an accurate control of the rephasing pulse area. We finally address independently the fundamental limitations of the quantum fidelity. Our work allows us to point out on one side the real drawbacks of this scheme for quantum storage and on the other side its specificities which can be a source of inspiration to conceive more promising procedures with rare-earth ion doped crystals.

  17. Study of spin polarized nuclear matter and finite nuclei with finite range simple effective interaction

    E-Print Network [OSTI]

    Behera, B; Routray, T R; Centelles, M

    2015-01-01T23:59:59.000Z

    The properties of spin polarized pure neutron matter and symmetric nuclear matter are studied using the finite range simple effective interaction, upon its parametrization revisited. Out of the total twelve parameters involved, we now determine ten of them from nuclear matter, against the nine parameters in our earlier calculation, as required in order to have predictions in both spin polarized nuclear matter and finite nuclei in unique manner being free from uncertainty found using the earlier parametrization. The information on the effective mass splitting in polarized neutron matter of the microscopic calculations is used to constrain the one more parameter, that was earlier determined from finite nucleus, and in doing so the quality of the description of finite nuclei is not compromised. The interaction with the new set of parameters is used to study the possibilities of ferromagnetic and antiferromagnetic transitions in completely polarized symmetric nuclear matter. Emphasis is given to analyze the resul...

  18. Beam-Target Double Spin Asymmetry ALT in Charged Pion Production from Deep Inelastic Scattering on a Transversely Polarized 3He Target at 1.422

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meziani, Z -E; Michaels, R; Munoz Camacho, C; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Oh, Y; Osipenko, M; Parno, D; Peng, J C; Phillips, S K; Posik, M; Puckett, A.J. R; Qiang, Y; Rakhman, A; Ransome, R D; Riordan, S; Saha, A; Sawatzky, B; Schulte, E; Shahinyan, A; Shabestari, M H; Sirca, S; Stepanyan, S; Subedi, R; Sulkosky, V; Tang, L -G; Tobias, A; Urciuoli, G M; Vilardi, I; Wang, K; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y -W; Zhao, B; Zheng, X; Zhu, L; Zhu, X

    2012-01-30T23:59:59.000Z

    We report the first measurement of the double-spin asymmetry ALT for charged pion electroproduction in semi-inclusive deep inelastic electron scattering on a transversely polarized 3He target. The kinematics focused on the valence quark region, 0.16 2 2. The corresponding neutron ALT asymmetries were extracted from the measured 3He asymmetries and proton/3He cross section ratios using the effective polarization approximation. These new data probe the transverse momentum dependent parton distribution function gq and therefore provide access to quark spin-orbit correlations. Our results indicate a positive azimuthal asymmetry for ?- production on 3He and the neutron, while our ?+ asymmetries are consistent with zero.

  19. LENDA, a Low Energy Neutron Detector Array for experiments with radioactive beams in inverse kinematics

    E-Print Network [OSTI]

    G. Perdikakis; M. Sasano; Sam M. Austin; D. Bazin; C. Caesar; S. Cannon; J. M. Deaven; H. J. Doster; C. J. Guess; G. W. Hitt; J. Marks; R. Meharchand; D. T. Nguyen; D. Peterman; A. Prinke; M. Scott; Y. Shimbara; K. Thorne; L. Valdez; R. G. T. Zegers

    2012-05-21T23:59:59.000Z

    The Low Energy Neutron Detector Array (LENDA) is a neutron time-of-flight (TOF) spectrometer developed at the National Superconducting Cyclotron Lab- oratory (NSCL) for use in inverse kinematics experiments with rare isotope beams. Its design has been motivated by the need to study the spin-isospin response of unstable nuclei using (p, n) charge-exchange reactions at intermediate energies (> 100 MeV/u). It can be used, however, for any reaction study that involves emission of low energy neutrons (150 keV - 10 MeV). The array consists of 24 plastic scintillator bars and is capable of registering the recoiling neutron energy and angle with high detection efficiency. The neutron energy is determined by the time-of-flight technique, while the position of interaction is deduced using the timing and energy information from the two photomultipliers of each bar. A simple test setup utilizing radioactive sources has been used to characterize the array. Results of test measurements are compared with simulations. A neutron energy threshold of 20 % for neutrons below 4 MeV have been obtained.

  20. Coarse graining methods for spin net and spin foam models

    E-Print Network [OSTI]

    Bianca Dittrich; Frank C. Eckert; Mercedes Martin-Benito

    2011-09-22T23:59:59.000Z

    We undertake first steps in making a class of discrete models of quantum gravity, spin foams, accessible to a large scale analysis by numerical and computational methods. In particular, we apply Migdal-Kadanoff and Tensor Network Renormalization schemes to spin net and spin foam models based on finite Abelian groups and introduce `cutoff models' to probe the fate of gauge symmetries under various such approximated renormalization group flows. For the Tensor Network Renormalization analysis, a new Gauss constraint preserving algorithm is introduced to improve numerical stability and aid physical interpretation. We also describe the fixed point structure and establish an equivalence of certain models.

  1. Porous material neutron detector

    DOE Patents [OSTI]

    Diawara, Yacouba (Oak Ridge, TN); Kocsis, Menyhert (Venon, FR)

    2012-04-10T23:59:59.000Z

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  2. Neutron Scattering Stiudies

    SciTech Connect (OSTI)

    Kegel, Gunter H.R.; Egan, James J

    2007-04-18T23:59:59.000Z

    This project covers four principal areas of research: Elastic and inelastic neutron scattering studies in odd-A terbium, thulium and other highly deformed nuclei near A=160 with special regard to interband transitions and to the investigation of the direct-interaction versus the compound-nucleus excitation process in these nuclei. Examination of new, fast photomultiplier tubes suitable for use in a miniaturized neutron-time-of-flight spectrometer. Measurement of certain inelastic cross sections of 238U. Determination of the multiplicity of prompt fission gamma rays in even-A fissile actinides. Energies and mean lives of fission isomers produced by fast fission of even-Z, even-A actinides. Study of the mean life of 7Be in different host matrices and its possible astro-physical significance.

  3. Neutron electric polarizability

    E-Print Network [OSTI]

    Andrei Alexandru; Frank X. Lee

    2009-11-13T23:59:59.000Z

    We use the background field method to extract the "connected" piece of the neutron electric polarizability. We present results for quenched simulations using both clover and Wilson fermions and discuss our experience in extracting the mass shifts and the challenges we encountered when we lowered the quark mass. For the neutron we find that as the pion mass is lowered below $500\\MeV$, the polarizability starts rising in agreement with predictions from chiral perturbation theory. For our lowest pion mass, $m_\\pi=320\\MeV$, we find that $\\alpha_n = 3.8(1.3)\\times 10^{-4}\\fm^3$, which is still only one third of the experimental value. We also present results for the neutral pion; we find that its polarizability turns negative for pion masses smaller than $500\\MeV$ which is puzzling.

  4. Mean-Field Calculation Based on Proton-Neutron Mixed Energy Density Functionals

    E-Print Network [OSTI]

    Koichi Sato; Jacek Dobaczewski; Takashi Nakatsukasa; Wojciech Satu?a

    2014-10-10T23:59:59.000Z

    We have performed calculations based on the Skyrme energy density functional (EDF) that includes arbitrary mixing between protons and neutrons. In this framework, single-particle states are generalized as mixtures of proton and neutron components. The model assumes that the Skyrme EDF is invariant under the rotation in isospin space and the Coulomb force is the only source of the isospin symmetry breaking. To control the isospin of the system, we employ the isocranking method, which is analogous to the standard cranking approach used for describing high-spin states. Here, we present results of the isocranking calculations performed for the isobaric analog states in $A = 40$ and $A = 54$ nuclei.

  5. Mantid - Data Analysis and Visualization Package for Neutron Scattering and $\\mu SR$ Experiments

    SciTech Connect (OSTI)

    Arnold, Owen [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Bilheux, Jean-Christophe [ORNL; Borreguero Calvo, Jose M [ORNL; Buts, Alex [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Campbell, Stuart I [ORNL; Doucet, Mathieu [ORNL; Draper, Nicholas J [ORNL; Ferraz Leal, Ricardo F [ORNL; Gigg, Martyn [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Lynch, Vickie E [ORNL; Mikkelson, Dennis J [ORNL; Mikkelson, Ruth L [ORNL; Miller, Ross G [ORNL; Perring, Toby G [ORNL; Peterson, Peter F [ORNL; Ren, Shelly [ORNL; Reuter, Michael A [ORNL; Savici, Andrei T [ORNL; Taylor, Jonathan W [ORNL; Taylor, Russell J [ORNL; Zhou, Wenduo [ORNL; Zikovsky, Janik L [ORNL

    2014-01-01T23:59:59.000Z

    The Mantid framework is a software solution developed for the analysis and visualization of neutron scattering and muon spin measurements. The framework is jointly developed by a large team of software engineers and scientists at the ISIS Neutron and Muon Facility and the Oak Ridge National Laboratory. The objective of the development is to improve software quality, both in terms of performance and ease of use, for the the user community of large scale facilities. The functionality and novel design aspects of the framework are described.

  6. Fast neutron imaging device and method

    DOE Patents [OSTI]

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11T23:59:59.000Z

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  7. Proton recoil scintillator neutron rem meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Seagraves, David T. (Los Alamos, NM)

    2003-01-01T23:59:59.000Z

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  8. Spallation Neutron Sources Around the World

    E-Print Network [OSTI]

    McDonald, Kirk

    Spallation Neutron Sources Around the World Bernie Riemer Thanks to others for the many shamelessly Laboratory #12;2 Managed by UT-Battelle for the U.S. Department of Energy Spallation Neutron Source Facilities Spallation Neutron Source Facilities Serve Neutron Science Programs · Neutron beams to suites

  9. Di-neutron correlation in light neutron-rich nuclei

    E-Print Network [OSTI]

    K. Hagino; H. Sagawa; P. Schuck

    2008-12-03T23:59:59.000Z

    Using a three-body model with density-dependent contact interaction, we discuss the root mean square distance between the two valence neutrons in $^{11}$Li nuclues as a function of the center of mass of the neutrons relative to the core nucleus $^9$Li. We show that the mean distance takes a pronounced minimum around the surface of the nucleus, indicating a strong surface di-neutron correlation. We demonstrate that the pairing correlation plays an essential role in this behavior. We also discuss the di-neutron structure in the $^8$He nucleus.

  10. REVIEW OF NON-NEUTRON AND NEUTRON NUCLEAR DATA, 2004.

    SciTech Connect (OSTI)

    HOLDEN, N.E.

    2004-09-26T23:59:59.000Z

    Review articles are in preparation for the 2004 edition of the CRC Handbook of Chemistry and Physics dealing with the evaluation of both non-neutron and neutron nuclear data. Data on the discovery of element 110, Darmstadtium, and element 111 have been officially accepted, while data on element 11 8 have been withdrawn. Data to be presented include revised values for very short-lived nuclides, long-lived nuclides and beta-beta decay measurements. There has been a reassessment of the spontaneous fission (sf) half-lives, which distinguishes between sf decay half-lives and cluster decay half-lives and with cluster-fission decay. New measurements of isotopic abundance values for many elements will be discussed with an emphasis on the minor isotopes of interest for use in neutron activation analysis measurements. Neutron resonance integrals will be discussed emphasizing the differences between the calculated values obtained from the analytical integration over neutron resonances and the measured values in a neutron reactor-spectrum, which does not quite conform to the assumed 1/E neutron energy spectrum. The method used to determine the neutron resonance integral from measurement, using neutron activation analysis, will be discussed.

  11. Review of Non-Neutron and Neutron Nuclear Data, 2004

    SciTech Connect (OSTI)

    Holden, Norman E. [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2005-05-24T23:59:59.000Z

    Review articles are in preparation for the 2004 edition of the CRC Handbook of Chemistry and Physics dealing with the evaluation of both non-neutron and neutron nuclear data. Data on the discovery of element 110, Darmstadtium, and element 111 have been officially accepted, while data on element 118 have been withdrawn. Data to be presented include revised values for very short-lived nuclides, long-lived nuclides, and beta-beta decay measurements. There has been a reassessment of the spontaneous fission (sf) half-lives, which distinguishes between sf decay half-lives and cluster decay half-lives, and with cluster-fission decay. New measurements of isotopic abundance values for many elements will be discussed with an emphasis on the minor isotopes of interest for use in neutron activation analysis measurements. Neutron resonance integrals will be discussed emphasizing the differences between the calculated values obtained from the analytical integration over neutron resonances and the measured values in a neutron reactor-spectrum, which does not quite conform to the assumed 1/E neutron energy spectrum. The method used to determine the neutron resonance integral from measurement, using neutron activation analysis, will be discussed.

  12. Deeply virtual Compton scattering on longitudinally polarized protons and neutrons at CLAS

    E-Print Network [OSTI]

    Silvia Niccolai; for the CLAS Collaboration

    2012-07-13T23:59:59.000Z

    This paper focuses on a measurement of deeply virtual Compton scattering (DVCS) performed at Jefferson Lab using a nearly-6-GeV polarized electron beam, two longitudinally polarized (via DNP) solid targets of protons (NH3) and deuterons (ND3) and the CEBAF Large Acceptance Spectrometer. Here, preliminary results for target-spin asymmetries and double (beam-target) asymmetries for proton DVCS, as well as a very preliminary extraction of beam-spin asymmetry for neutron DVCS, are presented and linked to Generalized Parton Distributions.

  13. Deeply virtual Compton scattering on longitudinally polarized protons and neutrons at CLAS

    SciTech Connect (OSTI)

    Silvia Niccolai

    2012-04-01T23:59:59.000Z

    This paper focuses on a measurement of deeply virtual Compton scattering (DVCS) performed at Jefferson Lab using a nearly-6-GeV polarized electron beam, two longitudinally polarized (via DNP) solid targets of protons (NH{sub 3}) and deuterons (ND{sub 3}) and the CEBAF Large Acceptance Spectrometer. Here, preliminary results for target-spin asymmetries and double (beam-target) asymmetries for proton DVCS, as well as a very preliminary extraction of beam-spin asymmetry for neutron DVCS, are presented and linked to Generalized Parton Distributions.

  14. Separated spin-up and spin-down quantum hydrodynamics of degenerated electrons: spin-electron acoustic wave appearance

    E-Print Network [OSTI]

    Pavel A. Andreev

    2014-05-04T23:59:59.000Z

    Quantum hydrodynamic (QHD) model of charged spin-1/2 particles contains physical quantities defined for all particles of a species including particles with spin-up and with spin-down. Different population of states with different spin direction is included in the spin density (magnetization). In this paper we derive a QHD model, which separately describes spin-up electrons and spin-down electrons. Hence we consider electrons with different projection of spin on the preferable direction as two different species of particles. We show that numbers of particles with different spin direction do not conserve. Hence the continuity equations contain sources of particles. These sources are caused by the interactions of spins with magnetic field. Terms of similar nature arise in the Euler equation. We have that z-projection of the spin density is no longer an independent variable. It is proportional to difference between concentrations of electrons with spin-up and electrons with spin-down. In terms of new model we consider propagation of waves in magnetized plasmas of degenerate electrons and motionless ions. We show that new form of QHD equations gives all solutions obtained from traditional form of QHD equations with no distinguish of spin-up and spin-down states. But it also reveals a sound-like solution we call the spin-electron acoustic wave. Coincidence of most solutions is expected since we started derivation with the same basic equation.

  15. Hubble Sees a Neutron Star Alone in Space Nearest Known Neutron Star

    E-Print Network [OSTI]

    Barnes, Joshua Edward

    Hubble Sees a Neutron Star Alone in Space Nearest Known Neutron Star #12;Birth of a Neutron Star In the core, nuclei are smashed into protons & neutrons; the protons combine with electrons to make neutrons & neutrinos. The birth temperature of a neutron star is ~5?1011 K, but neutrino emission cools it to `only

  16. SPIN-UP/SPIN-DOWN MODELS FOR TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Stefano, R. Di [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Voss, R. [Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands); Claeys, J. S. W. [Sterrekundig Instituut, Universiteit Utrecht, P.O. Box 800000, 3508 TA Utrecht (Netherlands)

    2011-09-01T23:59:59.000Z

    In the single-degenerate scenario for Type Ia supernovae (SNe Ia), a white dwarf (WD) must gain a significant amount of matter from a companion star. Because the accreted mass carries angular momentum, the WD is likely to achieve fast spin periods, which can increase the critical mass, M{sub crit}, needed for explosion. When M{sub crit} is higher than the maximum mass achieved by the WD, the central regions of the WD must spin down before it can explode. This introduces super-Chandrasekhar single-degenerate explosions, and a delay between the completion of mass gain and the time of the explosion. Matter ejected from the binary during mass transfer therefore has a chance to become diffuse, and the explosion occurs in a medium with a density similar to that of typical regions of the interstellar medium. Also, either by the end of the WD's mass increase or else by the time of explosion, the donor may exhaust its stellar envelope and become a WD. This alters, generally diminishing, explosion signatures related to the donor star. Nevertheless, the spin-up/spin-down model is highly predictive. Prior to explosion, progenitors can be super-M{sub Ch} WDs in either wide binaries with WD companions or cataclysmic variables. These systems can be discovered and studied through wide-field surveys. Post-explosion, the spin-up/spin-down model predicts a population of fast-moving WDs, low-mass stars, and even brown dwarfs. In addition, the spin-up/spin-down model provides a paradigm which may be able to explain both the similarities and the diversity observed among SNe Ia.

  17. 22.101 Applied Nuclear Physics (Fall 2006) Lecture 8 (10/4/06) Neutron-Proton Scattering

    E-Print Network [OSTI]

    unknown authors

    We continue the study of the neutron-proton system by taking up the well-known problem of neutron scattering in hydrogen. The scattering cross section has been carefully measured to be 20.4 barns over a wide energy range. Our intent is to apply the method of phase shifts summarized in the preceding lecture to this problem. We see very quickly that the s-wave approximation (the condition of interaction at low energy) is very well justified in the neutron energy range of 1- 1000 eV. The scattering-state solution, with E> 0, gives us the phase shift or equivalently the scattering length. This calculation yields a cross section of 2.3 barns which is considerably different from the experimental value. The reason for the discrepancy lies in the fact that we have not taken into account the spin-dependent nature of the n-p interaction. The neutron and proton spins can form two distinct spin configurations, the two spins being parallel (triplet state) or anti-parallel (singlet), each giving rise to a scattering length. When this is taken into account, the new estimate is quite close to the experimental value. The conclusion is therefore that n-p interaction is spin-dependent and that the anomalously large value of the hydrogen scattering cross section for neutrons is really due to this aspect of the nuclear force. For the scattering problem our task is to solve the radial wave equation for s-wave for solutions with E> 0. The interior and exterior solutions have the form ur () = Bsin ( Kr ' ) , r < ro (8.1) and ur () = C sin(

  18. Portable neutron spectrometer and dosimeter

    DOE Patents [OSTI]

    Waechter, David A. (Los Alamos, NM); Erkkila, Bruce H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM)

    1985-01-01T23:59:59.000Z

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  19. CHRPR Neutron Board Replacement Manual

    SciTech Connect (OSTI)

    Erikson, Rebecca L.; Myjak, Mitchell J.

    2013-03-31T23:59:59.000Z

    This document will walk through the steps to exchange the neutron channel boards with gamma channel boards in the CHRPR box.

  20. High spin spectroscopy of near spherical nuclei: Role of intruder orbitals

    SciTech Connect (OSTI)

    Bhattacharyya, S.; Bhattacharjee, T.; Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064 (India); Chanda, S. [Fakir Chand College, Diamond Herbour, West Bengal (India); Banerjee, D.; Das, S. K.; Guin, R. [Radiochemistry Division, Variable Energy Cyclotron Centre, BARC, Kolkata - 700064 (India); Gupta, S. Das [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064, India and Saha Institute of Nuclear Physics, Kolkata-700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064, India and Institut fr Kernphysik, Technische Universitt Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

    2014-08-14T23:59:59.000Z

    High spin states of nuclei in the vicinity of neutron shell closure N = 82 and proton shell closure Z = 82 have been studied using the Clovere Ge detectors of Indian National Gamma Array. The shape driving effects of proton and neutron unique parity intruder orbitals for the structure of nuclei around the above shell closures have been investigated using light and heavy ion beams. Lifetime measurements of excited states in {sup 139}Pr have been done using pulsed-beam-? coincidence technique. The prompt spectroscopy of {sup 207}Rn has been extended beyond the 181?s 13/2{sup +} isomer. Neutron-rich nuclei around {sup 132}Sn have been produced from proton induced fission of {sup 235}U and lifetime measurement of low-lying states of odd-odd {sup 132}I have been performed from offline decay.

  1. Analysing powers and spin correlations in deuteron-proton charge exchange at 726 MeV

    E-Print Network [OSTI]

    Dymov, S; Bagdasarian, Z; Barsov, S; Carbonell, J; Chiladze, D; Engels, R; Gebel, R; Grigoryev, K; Hartmann, M; Kacharava, A; Khoukaz, A; Komarov, V; Kulessa, P; Kulikov, A; Kurbatov, V; Lomidze, N; Lorentz, B; Macharashvili, G; Mchedlishvili, D; Merzliakov, S; Mielke, M; Mikirtychyants, M; Mikirtychyants, S; Nioradze, M; Ohm, H; Prasuhn, D; Rathmann, F; Serdyuk, V; Seyfarth, H; Shmakova, V; Strher, H; Tabidze, M; Trusov, S; Tsirkov, D; Uzikov, Yu; Valdau, Yu; Weidemann, C; Wilkin, C

    2015-01-01T23:59:59.000Z

    The charge exchange of vector polarised deuterons on a polarised hydrogen target has been studied in a high statistics experiment at the COSY-ANKE facility at a deuteron beam energy of Td = 726 MeV. By selecting two fast protons at low relative energy E_{pp}, the measured analysing powers and spin correlations are sensitive to interference terms between specific neutron-proton charge-exchange amplitudes at a neutron kinetic energy of Tn ~ 1/2 Td =363 MeV. An impulse approximation calculation, which takes into account corrections due to the angular distribution in the diproton, describes reasonably the dependence of the data on both E_{pp} and the momentum transfer. This lends broad support to the current neutron-proton partial-wave solution that was used in the estimation.

  2. Analysing powers and spin correlations in deuteron-proton charge exchange at 726 MeV

    E-Print Network [OSTI]

    S. Dymov; T. Azaryan; Z. Bagdasarian; S. Barsov; J. Carbonell; D. Chiladze; R. Engels; R. Gebel; K. Grigoryev; M. Hartmann; A. Kacharava; A. Khoukaz; V. Komarov; P. Kulessa; A. Kulikov; V. Kurbatov; N. Lomidze; B. Lorentz; G. Macharashvili; D. Mchedlishvili; S. Merzliakov; M. Mielke; M. Mikirtychyants; S. Mikirtychyants; M. Nioradze; H. Ohm; D. Prasuhn; F. Rathmann; V. Serdyuk; H. Seyfarth; V. Shmakova; H. Strher; M. Tabidze; S. Trusov; D. Tsirkov; Yu. Uzikov; Yu. Valdau; C. Weidemann; C. Wilkin

    2015-03-02T23:59:59.000Z

    The charge exchange of vector polarised deuterons on a polarised hydrogen target has been studied in a high statistics experiment at the COSY-ANKE facility at a deuteron beam energy of Td = 726 MeV. By selecting two fast protons at low relative energy E_{pp}, the measured analysing powers and spin correlations are sensitive to interference terms between specific neutron-proton charge-exchange amplitudes at a neutron kinetic energy of Tn ~ 1/2 Td =363 MeV. An impulse approximation calculation, which takes into account corrections due to the angular distribution in the diproton, describes reasonably the dependence of the data on both E_{pp} and the momentum transfer. This lends broad support to the current neutron-proton partial-wave solution that was used in the estimation.

  3. Modeling of diffusion of injected electron spins in spin-orbit coupled microchannels

    E-Print Network [OSTI]

    Zarbo, Liviu P.; Sinova, Jairo; Knezevic, I.; Wunderlich, J.; Jungwirth, T.

    2010-01-01T23:59:59.000Z

    We report on a theoretical study of spin dynamics of an ensemble of spin-polarized electrons injected in a diffusive microchannel with linear Rashba and Dresselhaus spin-orbit coupling. We explore the dependence of the spin-precession and spin...

  4. Time evolution of a single spin inhomogeneously coupled to an interacting spin environment

    E-Print Network [OSTI]

    Kais, Sabre

    Time evolution of a single spin inhomogeneously coupled to an interacting spin environment Zhen to an environment of interacting spin bath modeled by the XY Hamiltonian. By evaluating the spin correlator the spins in the environment J. The decoherence time varies significantly based on the relative coupling

  5. Precision Measurement Of The Neutron's Beta Asymmetry Using Ultra-Cold Neutrons

    SciTech Connect (OSTI)

    Makela, M. [Los Alamos National Lab., P.O. Box 1663, Los Alamos, NM 87545 (United States); Back, H. O. [North Carolina State University Raleigh, NC 27695 (United States); Melconian, D. [University of Washington, Department of Physics, Box 351560 Seattle, WA 98195 (United States); Plaster, B. [California Institute of Technology, Kellogg Radiation Lab, Pasadena, CA 91125 (United States)

    2006-07-11T23:59:59.000Z

    A measurement of A{beta}, the correlation between the electron momentum and neutron (n) spin (the beta asymmetry) in n beta-decay, together with the n lifetime, provides a method for extracting fundamental parameters for the charged-current weak interaction of the nucleon. In particular when combined with decay measurements, one can extract the Vud element of the CKM matrix, a critical element in CKM unitarity tests. By using a new SD2 super-thermal source at LANSCE, large fluxes of UCN (ultra-cold neutrons) are expected for the UCNA project. These UCN will be 100% polarized using a 7 T magnetic field, and directed into the {beta} spectrometer. This approach, together with an expected large reduction in backgrounds, will result in an order of magnitude reduction in the critical systematic corrections associated with current n {beta}-asymmetry measurements. This paper will give an overview of the UCNA A{beta} measurement as well as an update on the status of the experiment.

  6. Neutron-deuteron breakup and quasielastic scattering

    E-Print Network [OSTI]

    Ohlson, Alice Elisabeth

    2009-01-01T23:59:59.000Z

    Quasielastic scattering and deuteron breakup in the 200 MeV region is studied by impinging a pulsed neutron beam on a deuterium target at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center. The ...

  7. Neutron Generators for Spent Fuel Assay

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01T23:59:59.000Z

    of a High Fluence Neutron Source for NondestructiveAugust 8-13, 2010. [11] D-D Neutron Generator Development at2005. [12] High-yield DT Neutron Generator, B.A. Ludewigt et

  8. NEUTRON EMISSION IN RELATIVISTIC NUCLEAR COLLISIONS

    E-Print Network [OSTI]

    Stevenson, J.D.

    2013-01-01T23:59:59.000Z

    Figure Captions Figure l. Neutron-to-proton ratio at 30 labapparent anomalies in the neutron-to-proton fragment ratio.3 proton data. Figure 2. Neutron-to-proton ratio R 1 , Solid

  9. NEUTRON PRODUCTION BY NEUTRAL BEAM SOURCES

    E-Print Network [OSTI]

    Berkner, K.H.

    2010-01-01T23:59:59.000Z

    HORSE CodeA Hultigroup Neutron and Gamma-Say Honte CarloR. Smith, "A Tantalus Fast Neutron Integrator," UCRL-17051.FiS- 9 Neutron dose during 3 months of typical TSUI

  10. PRACTICAL NEUTRON DOSIMETRY AT HIGH ENERGIES

    E-Print Network [OSTI]

    McCaslin, J.B.

    2010-01-01T23:59:59.000Z

    and Chupp, E. L. "Cosmic Ray Neutron Energy Spectrum." Phys.Study of Cosmic-Ray Neutrons." National Aero nautics andStudy of Cosmic-Ray Neutrons: Mid-Latitude Flights." Health

  11. Absorption Effects due to Spin in the Worldline Approach to Black Hole Dynamics

    E-Print Network [OSTI]

    Rafael A. Porto

    2007-10-26T23:59:59.000Z

    We generalize the effective point particle approach to black hole dynamics to include spin. In this approach dissipative effects are captured by degrees of freedom localized on the wordline. The absorptive properties of the black hole are determined by correlation functions which can be matched with the graviton absorption cross section in the long wavelength approximation. For rotating black holes, superradiance is responsible for the leading contribution. The effective theory is then used to predict the power loss due to spin in the dynamics of non-relativistic binary systems. An enhancement of three powers of the relative velocity is found with respect to the non-rotating case. Then we generalize the results to other type of constituents in the binary system, such as rotating neutron stars. Finally we compute the power loss absorbed by a test spinning black hole in a given spacetime background.

  12. Quantum correlations in spin models

    SciTech Connect (OSTI)

    Zhang Guofeng, E-mail: gf1978zhang@buaa.edu.cn [Department of Physics, School of Physics and Nuclear Energy Engineering, Beihang University, Xueyuan Road No. 37, Beijing 100191 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Fan Heng; Ji Ailing [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Jiang Zhaotan [Department of Physics, Beijing Institute of Technology, Beijing 100081 (China); Abliz, Ahmad [School of Mathematics, Physics and Informatics, Xinjiang Normal University, Urumchi 830054 (China); Liu Wuming [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-10-15T23:59:59.000Z

    Bell nonlocality, entanglement and nonclassical correlations are different aspects of quantum correlations for a given state. There are many methods to measure nonclassical correlations. In this paper, nonclassical correlations in two-qubit spin models are measured by the use of measurement-induced disturbance (MID) [S. Luo, Phys. Rev. A 77 (2008) 022301] and geometric measure of quantum discord (GQD) [B. Dakic, V. Vedral, C. Brukner, Phys. Rev. Lett. 105 (2010) 190502]. Their dependences on external magnetic field, spin-spin coupling, and the Dzyaloshinskii-Moriya (DM) interaction are presented in detail. We also compare Bell nonlocality, entanglement measured by concurrence, MID and GQD and illustrate their different characteristics. - Highlights: > Various quantum correlations in spin models are investigated. > Nonclassical correlations are measured by measurement-induced disturbance and Geometric measure of quantum discord. > Also, we investigate Bell nonlocality and concurrence. > We compare these quantum quantities and illustrate their different characteristics.

  13. Spin-Asymmetric Josephson Effect

    SciTech Connect (OSTI)

    Heikkinen, M. O. J.; Massel, F.; Kajala, J.; Leskinen, M. J.; Toermae, P. [Department of Applied Physics, Aalto University School of Science and Technology, P.O.Box 15100, FI-00076 Aalto (Finland); Paraoanu, G. S. [Low Temperature Laboratory, Aalto University School of Science and Technology, P.O.Box 15100, FI-00076 Aalto (Finland)

    2010-11-26T23:59:59.000Z

    We propose that with ultracold Fermi gases one can realize a spin-asymmetric Josephson effect in which the two spin components of a Cooper pair are driven asymmetrically - corresponding to driving a Josephson junction of two superconductors with different voltages V{sub {up_arrow}} and V{sub {down_arrow}} for spin up and down electrons, respectively. We predict that the spin up and down components oscillate at the same frequency but with different amplitudes. Furthermore our results reveal that the standard interpretation of the Josephson supercurrent in terms of coherent bosonic pair tunneling is insufficient. We provide an intuitive interpretation of the Josephson supercurrent as interference in Rabi oscillations of pairs and single particles, the latter causing the asymmetry.

  14. Impact of Triaxiality on the Emission and Absorption of Neutrons and Gamma Rays in Heavy Nuclei

    E-Print Network [OSTI]

    Grossea, Eckart; Massarczyk, Ralph

    2013-01-01T23:59:59.000Z

    For many spin-0 target nuclei neutron capture measurements yield information on level densities at the neutron separation energy. Also the average photon width has been determined from capture data as well as Maxwellian average cross sections for the energy range of unresolved resonances. Thus it is challenging to use this data set for a test of phenomenological prescriptions for the prediction of radiative processes. An important ingredient for respective calculations is the photon strength function for which a parameterization was proposed using a fit to giant dipole resonance shapes on the basis of theoretically determined ground state deformations including triaxiality. Deviations from spherical and axial symmetry also influence level densities and it is suggested to use a combined parameterization for both, level density and photon strength. The formulae presented give a good description of the data for low spin capture into 124 nuclei with 72

  15. Nuclear shape transitions in neutron-rich medium-mass nuclei

    SciTech Connect (OSTI)

    Sarriguren, P.; Rodriguez-Guzman, R.; Robledo, L. M. [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006 Madrid (Spain); Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Departamento de Fisica Teorica, Universidad Autonoma de Madrid, 28049-Madrid (Spain)

    2012-10-20T23:59:59.000Z

    We study the isotopic evolution of the ground-state nuclear shapes in neutron-rich Kr, Rb, Sr, Y, Zr, Nb, and Mo isotopic chains. Both even-even and odd-A nuclei are included in the analysis. For the latter we also study the systematics of their one-quasiparticle low-lying configurations. The theoretical approach is based on a selfconsistent Hartree-Fock-Bogoliubov formalism with finite range Gogny energy density functionals. Neutron separation energies, charge radii, and the spin-parity of the ground states are calculated and compared with available data. Shape-transition signatures are identified around N= 60 isotones as discontinuities in both charge radii isotopic shifts and spin-parities of the ground states. The nuclear deformation including triaxiality is shown to play a relevant role in the understanding of the bulk and spectroscopic features of the ground and low-lying one-quasiparticle states.

  16. Slow neutron leakage spectra from spallation neutron sources

    SciTech Connect (OSTI)

    Das, S.G.; Carpenter, J.M.; Prael, R.E.

    1980-02-01T23:59:59.000Z

    An efficient technique is described for Monte Carlo simulation of neutron beam spectra from target-moderator-reflector assemblies typical of pulsed spallation neutron sources. The technique involves the scoring of the transport-theoretical probability that a neutron will emerge from the moderator surface in the direction of interest, at each collision. An angle-biasing probability is also introduced which further enhances efficiency in simple problems. These modifications were introduced into the VIM low energy neutron transport code, representing the spatial and energy distributions of the source neutrons approximately as those of evaporation neutrons generated through the spallation process by protons of various energies. The intensity of slow neutrons leaking from various reflected moderators was studied for various neutron source arrangements. These include computations relating to early measurements on a mockup-assembly, a brief survey of moderator materials and sizes, and a survey of the effects of varying source and moderator configurations with a practical, liquid metal cooled uranium source Wing and slab, i.e., tangential and radial moderator arrangements, and Be vs CH/sub 2/ reflectors are compared. Results are also presented for several complicated geometries which more closely represent realistic arrangements for a practical source, and for a subcritical fission multiplier such as might be driven by an electron linac. An adaptation of the code was developed to enable time dependent calculations, and investigated the effects of the reflector, decoupling and void liner materials on the pulse shape.

  17. Measuring the Neutron's Mean Square Charge Radius Using Neutron Interferometry

    E-Print Network [OSTI]

    F. E. Wietfeldt; M. Huber; T. C. Black; H. Kaiser; M. Arif; D. L. Jacobson; S. A. Werner

    2005-09-14T23:59:59.000Z

    The neutron is electrically neutral, but its substructure consists of charged quarks so it may have an internal charge distribution. In fact it is known to have a negative mean square charge radius (MSCR), the second moment of the radial charge density. In other words the neutron has a positive core and negative skin. In the first Born approximation the neutron MSCR can be simply related to the neutron-electron scattering length b_ne. In the past this important quantity has been extracted from the energy dependence of the total transmission cross-section of neutrons on high-Z targets, a very difficult and complicated process. A few years ago S.A. Werner proposed a novel approach to measuring b_ne from the neutron's dynamical phase shift in a perfect crystal close to the Bragg condition. We are conducting an experiment based on this method at the NIST neutron interferometer which may lead to a five-fold improvement in precision of b_ne and hence the neutron MSCR.

  18. New neutron physics using spallation sources

    SciTech Connect (OSTI)

    Bowman, C.D.

    1988-01-01T23:59:59.000Z

    The extraordinary neutron intensities available from the new spallation pulsed neutron sources open up exciting opportunities for basic and applied research in neutron nuclear physics. The energy range of neutron research which is being explored with these sources extends from thermal energies to almost 800 MeV. The emphasis here is on prospective experiments below 100 keV neutron energy using the intense neutron bursts produced by the Proton Storage Ring (PSR) at Los Alamos. 30 refs., 10 figs.

  19. Two Wien Filter Spin Flipper

    SciTech Connect (OSTI)

    Grames, J M; Benesch, J F; Clark, J; Hansknecht, J; Kazimi, R; Machie, D; Poelker, M; Stutzman, M L; Suleiman, R

    2011-03-01T23:59:59.000Z

    A new 4pi spin manipulator composed of two Wien filters oriented orthogonally and separated by two solenoids has been installed at the CEBAF/Jefferson Lab photoinjector. The new spin manipulator is used to precisely set the electron spin direction at an experiment in any direction (in or out of plane of the accelerator) and provides the means to reverse, or flip, the helicity of the electron beam on a daily basis. This reversal is being employed to suppress systematic false asymmetries that can jeopardize challenging parity violation experiments that strive to measure increasingly small physics asymmetries [*,**,***]. The spin manipulator is part of the ultra-high vacuum polarized electron source beam line and has been successfully operated with 100keV and 130keV electron beam at high current (>100 microAmps). A unique feature of the device is that spin-flipping requires only the polarity of one solenoid magnet be changed. Performance characteristics of the Two Wien Filter Spin Flipper will be summarized.

  20. Neutron structure effects in the deuteron and one neutron halos

    E-Print Network [OSTI]

    M. Nowakowski; N. G. Kelkar; T. Mart

    2005-11-28T23:59:59.000Z

    Although the neutron (n) does not carry a total electric charge, its charge and magnetization distributions represented in momentum space by the electromagnetic form factors, $F_1^{(n)} (q^2)$ and $F_2^{(n)} (q^2)$, lead to an electromagnetic potential of the neutron. Using this fact, we calculate the electromagnetic corrections to the binding energy, $B_d$, of the deuteron and a one neutron halo nucleus (11Be), by evaluating the neutron-proton and the neutron-charged core (10Be) potential, respectively. The correction to $B_d$ (~9 keV) is comparable to that arising due to the inclusion of the $\\Delta$-isobar component in the deuteron wave function. In the case of the more loosely bound halo nucleus, 11Be, the correction is close to about 2 keV.

  1. HFIR Experiment Facilities | ORNL Neutron Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Neutron Scattering Facilities at HFIR The fully instrumented HFIR will eventually include 15 state-of-the-art neutron scattering instruments, seven of which will be...

  2. Neutron Imaging of Advanced Engine Technologies

    Broader source: Energy.gov (indexed) [DOE]

    the development process * Spallation Neutron Source (SNS) - Most intense pulsed neutron beams in the world; energy selective - Multi-laboratory effort funded by DOE Office of...

  3. Probing thermonuclear burning on accreting neutron stars.

    E-Print Network [OSTI]

    Keek, L.

    2008-01-01T23:59:59.000Z

    ??Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars (more)

  4. The Neutron EDM Experiment

    E-Print Network [OSTI]

    P. G. Harris

    2007-09-19T23:59:59.000Z

    The neutron EDM experiment has played an important part over many decades in shaping and constraining numerous models of CP violation. This review article discusses some of the techniques used to calculate EDMs under various theoretical scenarios, and highlights some of the implications of EDM limits upon such models. A pedagogical introduction is given to the experimental techniques employed in the recently completed ILL experiment, including a brief discussion of the dominant systematic uncertainties. A new and much more sensitive version of the experiment, which is currently under development, is also outlined.

  5. Effective No-Hair Relations for Neutron Stars and Quark Stars: Relativistic Results

    E-Print Network [OSTI]

    Kent Yagi; Koutarou Kyutoku; George Pappas; Nicolas Yunes; Theocharis A. Apostolatos

    2014-09-08T23:59:59.000Z

    Astrophysical charge-free black holes are known to satisfy no-hair relations through which all multipole moments can be specified in terms of just their mass and spin angular momentum. We here investigate the possible existence of no-hair-like relations among multipole moments for neutron stars and quark stars that are independent of their equation of state. We calculate the multipole moments of these stars up to hexadecapole order by constructing uniformly-rotating and unmagnetized stellar solutions to the Einstein equations. For slowly-rotating stars, we construct stellar solutions to quartic order in spin in a slow-rotation expansion, while for rapidly-rotating stars, we solve the Einstein equations numerically with the LORENE and RNS codes. We find that the multipole moments extracted from these numerical solutions are consistent with each other. We confirm that the current-dipole is related to the mass-quadrupole in an approximately equation of state independent fashion, which does not break for rapidly rotating neutron stars or quark stars. We further find that the current-octupole and the mass-hexadecapole moments are related to the mass-quadrupole in an approximately equation of state independent way to $\\sim 10%$, worsening in the hexadecapole case. All of our findings are in good agreement with previous work that considered stellar solutions to leading-order in a weak-field expansion. The quartic in spin, slowly-rotating solutions found here allow us to estimate the systematic errors in the measurement of the neutron star's mass and radius with future X-ray observations, such as NICER and LOFT. We find that the effect of these quartic-in-spin terms on the quadrupole and hexadecapole moments and stellar eccentricity may dominate the error budget for very rapidly-rotating neutron stars. The new universal relations found here should help to reduce such systematic errors.

  6. Physics of Neutron Star Crusts

    E-Print Network [OSTI]

    N. Chamel; P. Haensel

    2008-12-20T23:59:59.000Z

    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  7. Continued Evaluation of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations

    SciTech Connect (OSTI)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Burns, Carolyn A.; Schonewill, Philip P.; Hopkins, Derek F.; Thien, Michael G.; Wooley, Theodore A.

    2012-04-01T23:59:59.000Z

    Laboratory (PNNL) conducted an extensive evaluation of the ability of three ultrasonic instruments to detect critical velocity for a broad range of simulated Hanford nuclear waste streams containing particles with mean particle sizes of >50 microns. Evaluations were perform using the pipe loop at the Process Development Laboratory East (PDL-E) at PNNL that was designed and built to evaluate the pipeline plugging issue during slurry transfer operations at the Hanford Waste Treatment Plant. In 2011 the ability of the ultrasonic PulseEcho system to detect critical velocity continued to be evaluated using the PDL-E flow loop and new simulants containing high-density particles with a mean particle size of < 15 microns. The PDL-E flow loop was modified for the 2011 testing to include a new test section that contained 5-MHz and 10-MHz ultrasonic transducers non-invasively mounted to schedule 40 pipe. The test section also contained reference instrumentation to facilitate direct comparison of the real-time PulseEcho transducer responses with experimentally observed critical velocities. This paper presents the results from the 2011 PulseEcho evaluation using a variety of simulated Hanford nuclear waste streams that were selected to encompass the expected high-level waste feed properties.

  8. Continued Evaluation of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 12518

    SciTech Connect (OSTI)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Burns, Carolyn A.; Schonewill, Philip P.; Hopkins, Derek F. [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Thien, Michael G.; Wooley, Theodore A. [Washington River Protection Solutions, Richland, Washington 99354 (United States)

    2012-07-01T23:59:59.000Z

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. In 2010 Washington River Protection Solutions and the Pacific Northwest National Laboratory began evaluating the ultrasonic PulseEcho instrument to accurately identify critical velocities in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of >50 micrometers. In 2011 the PulseEcho instrument was further evaluated to identify critical velocities for slurries containing fast-settling, high-density particles with a mean particle diameter of <15 micrometers. This two-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

  9. Acoustic structure and echo character of surficial sediments of the northern Hatteras Abyssal Plain. [LLW Ocean Disposal Program

    SciTech Connect (OSTI)

    McCreery, C.J.; Laine, E.P.

    1986-05-01T23:59:59.000Z

    A study has been made of the high frequency acoustic response of abyssal plain depositional facies. Piston cores have been obtained at six stations and deep hydrophone recordings at three stations on the northern Hatteras Abyssal Plain. 3.5 kHz seismic profiles indicate acoustically transparent lobes of surficial sediment which thicken towards the Hatteral Transverse Canyon and Sohm Gap/Wilmington Fan. Physical property data from piston cores indicate a higher percentage of coarse sediment in the areas of transparent acoustic response. Many of the characteristics normally used in mapping of conventional 3.5 kHz profiler acoustic response varied only slightly in the study area. Regions of diffuse 3.5 kHz surface echoes, similar to prolonged echoes attributed to high percent sand beds, have been identified in the study area. High trace to trace variation in deep hydrophone/pinger recordings in these areas suggests that the diffuse echo returns are due to unresolved microtopography and are not necessarily associated with a sandy seafloor.

  10. Light Echoes from $\\eta$ Carinae's Great Eruption: Spectrophotometric Evolution and the Rapid Formation of Nitrogen-rich Molecules

    E-Print Network [OSTI]

    Prieto, J L; Bianco, F B; Matheson, T; Smith, N; Walborn, N R; Hsiao, E Y; Chornock, R; Alvarez, L Paredes; Campillay, A; Contreras, C; Gonzalez, C; James, D; Knapp, G R; Kunder, A; Margheim, S; Morrell, N; Phillips, M M; Smith, R C; Welch, D L; Zenteno, A

    2014-01-01T23:59:59.000Z

    We present follow-up optical imaging and spectroscopy of one of the light echoes of $\\eta$ Carinae's 19th-century Great Eruption discovered by Rest et al. (2012). By obtaining images and spectra at the same light echo position between 2011 and 2014, we follow the evolution of the Great Eruption on a three-year timescale. We find remarkable changes in the photometric and spectroscopic evolution of the echo light. The $i$-band light curve shows a decline of $\\sim 0.9$ mag in $\\sim 1$ year after the peak observed in early 2011 and a flattening at later times. The spectra show a pure-absorption early G-type stellar spectrum at peak, but a few months after peak the lines of the [Ca II] triplet develop strong P-Cygni profiles and we see the appearance of [Ca II] 7291,7324 doublet in emission. These emission features and their evolution in time resemble the spectra of some Type IIn supernovae and supernova impostors. Most surprisingly, starting $\\sim 300$ days after peak brightness, the spectra show strong molecular...

  11. The Spectroscopy of Neutron-Rich sdf-Shell Nuclei Using the CLARA-PRISMA Setup

    SciTech Connect (OSTI)

    Liang, X.; Hodsdon, A.; Chapman, R.; Burns, M.; Keyes, K.; Ollier, J.; Papenberg, A.; Spohr, K. [School of Engineering and Science, University of Paisley, Paisley, PA1 2BE (United Kingdom); Azaiez, F.; Ibrahim, F.; Stanoiu, M. [IPN, IN2P3-CNRS, F-91406 Orsay Cedex (France); Universite Paris-Sud, F-91406 Orsay Cedex (France); Haas, F.; Caurier, E.; Curien, D.; Nowacki, F.; Salsac, M.-D. [IPHC, UMR 7500, CNRS-IN2P3, 67037 Strasbourg Cedex 2 (France); Universite Louis Pasteur, 67037 Strasbourg Cedex 2 (France); Bazzacco, D.; Beghini, S.; Farnea, E.; Menegazzo, R. [Dipartimento di Fisica, Universita di Padova, I-35131 Padova (Italy); INFN-Sezione di Padova, Universita' di Padova, I-35131 Padova (Italy)] (and others)

    2006-08-14T23:59:59.000Z

    Since the discovery of the breakdown of shell effects in very neutron-rich N=20 and 28 nuclei, studies of the properties of nuclei far from stability have been of intense interest since they provide a unique opportunity to increase our understanding of nuclear interactions in extreme conditions and often challenge our theoretical models.Deep-inelastic processes can be used to populated high spin states of neutron-rich nuclei. In the deep-inelastic processes, an equilibration in N/Z between the target and projectile nuclei is achieved. For most heavy neutron-rich target nuclei, the N/Z ratio is 1.5 - 1.6, while for the possible neutron-rich sdf-shell projectile it is about 1.2. Thus by using deep-inelastic processes one can populate neutron-rich nuclei around N=20 and N=28.New results for the spectroscopy of neutron-rich N=22 36Si and 37P are presented here.

  12. Tycho Brahe's 1572 supernova as a standard type Ia explosion revealed from its light echo spectrum

    E-Print Network [OSTI]

    Oliver Krause; Masaomi Tanaka; Tomonori Usuda; Takashi Hattori; Miwa Goto; Stephan Birkmann; Ken'ichi Nomoto

    2008-10-28T23:59:59.000Z

    Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarf stars in close binary systems. They play an important role as cosmological distance indicators and have led to the discovery of the accelerated expansion of the Universe. Among the most important unsolved questions are how the explosion actually proceeds and whether accretion occurs from a companion or via the merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN 1572) is thought to be one of the best candidates for a SN Ia in the Milky Way. The proximity of the SN 1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. The determination of the yet unknown exact spectroscopic type of SN 1572 is crucial to relate these results to the diverse population of SNe Ia. Here we report an optical spectrum of Tycho Brahe's supernova near maximum brightness, obtained from a scattered-light echo more than four centuries after the direct light of the explosion swept past Earth. We find that SN 1572 belongs to the majority class of normal SNe Ia. The presence of a strong Ca II IR feature at velocities exceeding 20,000 km/s, which is similar to the previously observed polarized features in other SNe Ia, suggests asphericity in SN 1572.

  13. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    SciTech Connect (OSTI)

    Liu, Yang; Hu, Hui [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); Chen, Wen-Li [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); School of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090 (China); Bond, Leonard J. [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); Center for Nondestructive Evaluation, Iowa State University, 1915 Scholl Road, 151 ASC II, Ames, IA 50011 (United States)

    2014-02-18T23:59:59.000Z

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost $300, heavy wet snow removal can cost $3,000 and removal of accumulated frozen/freezing rain can cost close to $10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.

  14. Fast neutron environments.

    SciTech Connect (OSTI)

    Buchheit, Thomas Edward; Kotula, Paul Gabriel; Lu, Ping; Brewer, Luke N. (Naval Postgraduate School, Monterey, CA); Goods, Steven Howard (Sandia National Laboratories, Livermore, CA); Foiles, Stephen Martin; Puskar, Joseph David; Hattar, Khalid Mikhiel; Doyle, Barney Lee; Boyce, Brad Lee; Clark, Blythe G.

    2011-10-01T23:59:59.000Z

    The goal of this LDRD project is to develop a rapid first-order experimental procedure for the testing of advanced cladding materials that may be considered for generation IV nuclear reactors. In order to investigate this, a technique was developed to expose the coupons of potential materials to high displacement damage at elevated temperatures to simulate the neutron environment expected in Generation IV reactors. This was completed through a high temperature high-energy heavy-ion implantation. The mechanical properties of the ion irradiated region were tested by either micropillar compression or nanoindentation to determine the local properties, as a function of the implantation dose and exposure temperature. In order to directly compare the microstructural evolution and property degradation from the accelerated testing and classical neutron testing, 316L, 409, and 420 stainless steels were tested. In addition, two sets of diffusion couples from 316L and HT9 stainless steels with various refractory metals. This study has shown that if the ion irradiation size scale is taken into consideration when developing and analyzing the mechanical property data, significant insight into the structural properties of the potential cladding materials can be gained in about a week.

  15. Spin transport in lateral spin valves and across a metal- insulator transition in V?O? /

    E-Print Network [OSTI]

    Erekhinsky, Mikhail

    2013-01-01T23:59:59.000Z

    J. Ansermet, Spin-dependent Peltier effect of perpendicularB. van Wees, Interplay of Peltier and Seebeck Effects inspin Seebeck coefficient. Peltier or spin blockade effects

  16. Magnetism reflectometer study shows LiF layers improve efficiency in spin valve devices

    SciTech Connect (OSTI)

    Bardoel, Agatha A [ORNL; Lauter, Valeria [ORNL; Szulczewski, Greg J [ORNL

    2012-01-01T23:59:59.000Z

    New, more efficient materials for spin valves - a device used in magnetic sensors, random access memories, and hard disk drives - may be on the way based on research using the magnetism reflectometer at Oak Ridge National Laboratory (ORNL). Spin valve devices work by means of two or more conducting magnetic material layers that alternate their electrical resistance depending on the layers alignment. Giant magnetoresistance is a quantum mechanical effect first observed in thin film structures about 20 years ago. The effect is observed as a significant change in electrical resistance, depending on whether the magnetization of adjacent ferromagnetic layers is in a parallel or an antiparallel magnetic alignment. 'What we are doing here is developing new materials. The search for new materials suitable for injecting and transferring carriers with a preferential spin orientation is most important for the development of spintronics,' said Valeria Lauter, lead instrument scientist on the magnetism reflectometer at the Spallation Neutron Source (SNS), who collaborated on the experiment. The researchers discovered that the conductivity of such materials is improved when an organic polymer semiconductor layer is placed between the magnetic materials. Organic semiconductors are now the material of choice for future spin valve devices because they preserve spin coherence over longer times and distances than conventional semiconductors. While research into spin valves has been ongoing, research into organic semiconductors is recent. Previous research has shown that a 'conductivity mismatch' exists in spin valve systems in which ferromagnetic metal electrodes interface with such organic semiconductors as Alq3 ({pi}-conjugated molecule tris(8-hydroxy-quinoline) aluminium). This mismatch limits the efficient injection of the electrons from the electrodes at the interface with the semiconductor material. However, lithium fluoride (LiF), commonly used in light-emitting diodes, has been found to enhance the injection of electrons through the semiconductor. Researchers from the University of Alabama and ORNL used polarized neutrons at the magnetism reflectometer at SNS to investigate the electronic, magnetic, and structural properties of the electrodes in a novel system. In this system, the magnetic layers cobalt and Ni{sub 80}Fe{sub 20} are interfaced with spacer layers composed of the organic semiconductor Alq3. A coupling layer of LiF is inserted to separate the magnetized layers from the semiconductor. 'ALQ3 is an organic semiconductor material,' said Lauter. 'Normally in these systems a first magnetic layer is grown on a hard substrate so that one can get the controlled magnetic parameters. Then you grow the organic semiconductor layer, followed by another magnetic material layer, such as cobalt.' In addition to determining the effect of the LiF layers on the efficiency of the electron injection, the researchers wanted to determine the magnetic properties of the cobalt and Ni{sub 80}Fe{sub 20} as well as the interfacial properties: whether there is interdiffusion of cobalt through the LiF layer to the semiconductor, for example. The researchers used polarized neutrons at beam line 4A to probe the entire, layer-by-layer assembly of the system. 'Reflectometry with polarized neutrons is a perfect method to study thin magnetic films,' Lauter said. 'These thin films - if you put one on a substrate, you see it just like a mirror. However, this mirror has a very complicated internal multilayer structure. The neutrons look inside this complicated structure and characterize each and every interface. Due to the depth sensitivity of the method, we measure the structural and magnetic properties of each layer with the resolution of 0.5 nm. The neutron scattering results found that inserting LiF as a barrier significantly improves the quality of the interface, increasing the injection of electrons from the magnetic layer through the organic semiconductor in the spin valve and enhancing the overall properties of the system. In related work the magneti

  17. Spin transport in benzofurane bithiophene based organic spin valves

    SciTech Connect (OSTI)

    Palosse, Mathieu; Sguy, Isabelle; Bedel-Pereira, lena [CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse (France) [CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse (France); Universit de Toulouse (France); UPS, INSA, INP, ISAE (France); LAAS (France) [France; CEMES, F-31077 Toulouse (France)] [France; Villeneuve-Faure, Christina [Universit de Toulouse (France) [Universit de Toulouse (France); UPS, INSA, INP, ISAE (France); LAAS (France) [France; CEMES, F-31077 Toulouse (France) [France; LAPLACE, Universit Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9 (France); Mallet, Charlotte; Frre, Pierre [MOLTECH-Anjou, UMR CNRS 6200, Universit dAngers, 2 Bd Lavoisier 49045 ANGERS Cedex (France)] [MOLTECH-Anjou, UMR CNRS 6200, Universit dAngers, 2 Bd Lavoisier 49045 ANGERS Cedex (France); Warot-Fonrose, Bndicte; Biziere, Nicolas [Universit de Toulouse (France) [Universit de Toulouse (France); UPS, INSA, INP, ISAE (France); LAAS (France) [France; CEMES, F-31077 Toulouse (France) [France; CNRS, CEMES-CNRS UPR 8011, 29 rue Jeanne Marvig, BP 94347, FR-31055 Toulouse Cedex 4 (France); Bobo, Jean-Franois, E-mail: jfbobo@cemes.fr [Universit de Toulouse (France) [Universit de Toulouse (France); UPS, INSA, INP, ISAE (France); LAAS (France) [France; CEMES, F-31077 Toulouse (France) [France; CNRS, CEMES-ONERA, NMH, 2 avenue Edouard Belin, FR-31055 Toulouse Cedex 4 (France)

    2014-01-15T23:59:59.000Z

    In this paper we present spin transport in organic spin-valves using benzofurane bithiophene (BF3) as spacer layer between NiFe and Co ferromagnetic electrodes. The use of an AlO{sub x} buffer layer between the top electrode and the organic layer is discussed in terms of improvements of stacking topology, electrical transport and oxygen contamination of the BF3 layer. A study of magnetic hysteresis cycles evidences spin-valve behaviour. Transport properties are indicative of unshorted devices with non-linear I-V characteristics. Finally we report a magnetoresistance of 3% at 40 K and 10 mV in a sample with a 50 nm thick spacer layer, using an AlO{sub x} buffer layer.

  18. Correlation functions for a di-neutron condensate in asymmetric nuclear matter

    E-Print Network [OSTI]

    A. A. Isayev

    2008-07-10T23:59:59.000Z

    Recent calculations with an effective isospin dependent contact interaction show the possibility of the crossover from superfluidity of neutron Cooper pairs in $^1S_0$ pairing channel to Bose-Einstein condensation (BEC) of di-neutron bound states in dilute nuclear matter. The density and spin correlation functions are calculated for a di-neutron condensate in asymmetric nuclear matter with the aim to find the possible features of the BCS-BEC crossover. It is shown that the zero-momentum transfer spin correlation function satisfies the sum rule at zero temperature. In symmetric nuclear matter, the density correlation function changes sign at low momentum transfer across the BCS-BEC transition and this feature can be considered as a signature of the crossover. At finite isospin asymmetry, this criterion gives too large value for the critical asymmetry $\\alpha_c^d\\sim0.9$, at which the BEC state is quenched. Therefore, it can be trusted for the description of the density-driven BCS-BEC crossover of neutron pairs only at small isospin asymmetry. This result generalizes the conclusion of the study in Phys. Rev. Lett. {\\bf 95}, 090402 (2005), where the change of sign of the density correlation function at low momentum transfer in two-component quantum fermionic atomic gas with the balanced populations of fermions of different species was considered as an unambiguous signature of the BCS-BEC transition.

  19. Neutron star-black hole mergers with a nuclear equation of state and neutrino cooling: Dependence in the binary parameters

    E-Print Network [OSTI]

    Francois Foucart; M. Brett Deaton; Matthew D. Duez; Evan O'Connor; Christian D. Ott; Roland Haas; Lawrence E. Kidder; Harald P. Pfeiffer; Mark A. Scheel; Bela Szilagyi

    2014-06-19T23:59:59.000Z

    We present a first exploration of the results of neutron star-black hole mergers using black hole masses in the most likely range of $7M_\\odot-10M_\\odot$, a neutrino leakage scheme, and a modeling of the neutron star material through a finite-temperature nuclear-theory based equation of state. In the range of black hole spins in which the neutron star is tidally disrupted ($\\chi_{\\rm BH}\\gtrsim 0.7$), we show that the merger consistently produces large amounts of cool ($T\\lesssim 1\\,{\\rm MeV}$), unbound, neutron-rich material ($M_{\\rm ej}\\sim 0.05M_\\odot-0.20M_\\odot$). A comparable amount of bound matter is initially divided between a hot disk ($T_{\\rm max}\\sim 15\\,{\\rm MeV}$) with typical neutrino luminosity $L_\

  20. The orientation and magnitude of the orbital precession velocity of a binary pulsar system with double spins

    E-Print Network [OSTI]

    B. P. Gong

    2003-08-18T23:59:59.000Z

    The measurability of the spin--orbit (S--L) coupling induced orbital effect is dependent on the orientation and magnitude of the orbital precession velocity, ${\\bf \\Omega}_0$. This paper derives ${\\bf \\Omega}_0$ in the case that both spins in the binary system contribute to the spin--orbit (S--L) coupling, which is suitable for the most popular binary pulsars, Neutron star--White Dwarf star (NS--WD) binaries (as well as for NS--NS binaries). This paper shows that from two constraints, the conservation of the total angular momentum and the triangle formed by the orbital angular momentum, ${\\bf L}$, the sum the spin angular momenta of the two stars, ${\\bf S}$, and the total angular momentum, ${\\bf J}$, the orbital precession velocity, ${\\bf \\Omega}_0$, along ${\\bf J}$ is inevitable. Moreover, by the relation, $S/L\\ll 1$, which is satisfied for a general binary pulsar, a significant ${\\bf \\Omega}_0$ (in magnitude) is inevitable, 1.5 Post Newtonian order (PN). Which are similar to the case of one spin as discussed by many authors. However unlike the one spin case, the magnitude of the precession velocity of ${\\bf \\Omega}_0$ varies significantly due to the variation of the sum the spin angular momenta of the two stars, ${\\bf S}$, which can lead to significant secular variabilities in binary pulsars.

  1. Controllable spin entanglement production in a quantum spin Hall ring

    E-Print Network [OSTI]

    Anders Strm; Henrik Johannesson; Patrik Recher

    2015-03-13T23:59:59.000Z

    We study the entanglement production in a quantum spin Hall ring geometry where electrons of opposite spins are emitted in pairs from a source and collected in two different detectors. Postselection of coincidence detector events gives rise to entanglement in the system, measurable through correlations between the outcomes in the detectors. We have chosen a geometry such that the entanglement depends on the dynamical phases picked up by the edge states as they move around the ring. In turn, the dependence of the phases on gate potential and Rashba interaction allows for a precise electrical control of the entanglement production in the ring.

  2. Spin dynamics in the strong spin-orbit coupling regime

    E-Print Network [OSTI]

    Liu, Xin; Liu, Xiong-Jun; Sinova, Jairo.

    2011-01-01T23:59:59.000Z

    PHYSICAL REVIEW B 84, 035318 (2011) Spin dynamics in the strong spin-orbit coupling regime Xin Liu,1 Xiong-Jun Liu,1 and Jairo Sinova1,2 1Department of Physics, Texas A&M University, College Station, Texas 77843-4242, USA 2Institute of Physics... frequency #2;so take the form: H so = (?1 ? 2?3 cos 2? )kx?y + (?2 + 2?3 cos 2? )ky?x, (5) where ?1 = ? + ?1 and ?2 = ?1 ? ?. 035318-11098-0121/2011/84(3)/035318(8) 2011 American Physical Society XIN LIU, XIONG-JUN LIU, AND JAIRO SINOVA PHYSICAL REVIEW B...

  3. Sum rules for spin-$1/2$ quantum gases in well-defined-spin states: spin-independent interactions and spin-dependent external fields

    E-Print Network [OSTI]

    Yurovsky, Vladimir A

    2015-01-01T23:59:59.000Z

    Many-body eigenstates of spin-$1/2$ particles with defined total spins contain spin and spatial wavefunctions belonging to multidimensional irreducible representations of the symmetric group, unless the total spin has the maximal allowed value. Matrix elements in the basis of such eigenstates are analyzed for spin-dependent interactions with external fields and spin-independent ones between the particles. Analytical expressions are obtained for sums of the matrix elements and sums of their squared modules. The sum rules are applied to perturbative analysis of energy spectra.

  4. Rotational bands in odd-A Cm and Cf isotopes: Exploring the highest neutron orbitals

    SciTech Connect (OSTI)

    Tandel, S. K.; Chowdhury, P.; Lakshmi, S.; Tandel, U. S. [Department of Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Ahmad, I.; Carpenter, M. P.; Gros, S.; Janssens, R. V. F.; Khoo, T. L.; Kondev, F. G.; Greene, J. P.; Lauritsen, T.; Lister, C. J.; Peterson, D.; Robinson, A.; Seweryniak, D.; Zhu, S. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Hartley, D. J. [Department of Physics, US Naval Academy, Annapolis, Maryland 21402 (United States)

    2010-10-15T23:59:59.000Z

    Rotational bands have been identified up to high spins ({approx_equal}28({h_bar}/2{pi})) in the odd-A nuclei {sup 247,249}Cm and {sup 249}Cf through inelastic excitation and transfer reactions around the Z=100 region where stability results from shell effects. The [620]1/2 Nilsson configuration in {sup 249}Cm is the highest-lying neutron orbital, from above the N=164 spherical subshell gap, for which high-spin rotational behavior has been established. The data allow for an unambiguous experimental assignment of configurations to the observed bands, unusual for odd-A nuclei near Z=100. The high-spin properties are described in terms of Woods-Saxon cranking calculations.

  5. Evolution of the phonon density of states of LaCoO3 over the spin state transition

    SciTech Connect (OSTI)

    Golosova, N. O. [Joint Institute for Nuclear Research, Dubna, Russia; Kozlenko, D. P. [Joint Institute for Nuclear Research, Dubna, Russia; Kolesnikov, Alexander I [ORNL; Kazimirov, V. Yu. [Joint Institute for Nuclear Research, Dubna, Russia; Smirnov, M. B. [St. Petersburg State University, St. Petersburg, Russia; Jirak, Z. [Institute of Physics, Czech Republic; Savenko, B. N. [Joint Institute for Nuclear Research, Dubna, Russia

    2011-01-01T23:59:59.000Z

    The phonon spectra of LaCoO3 were studied by inelastic neutron scattering in the temperature range of 4 120 K. The DFT calculations of the lattice dynamics have been made for interpretation of the experimental data. The observed and calculated phonon frequencies were found to be in a reasonable agreement. The evolution of the phonon density of states over the spin state transition was analyzed. In the low-temperature range (T < 50 K), an increase in the energy of resolved breathing, stretching, and bending phonon modes was found, followed by their softening and broadening at higher temperatures due to the spin state transition and relevant orbital-phonon coupling.

  6. Research on fusion neutron sources

    SciTech Connect (OSTI)

    Gryaznevich, M. P. [Tokamak Solutions UK, Culham Science Centre, Abingdon, OXON, OX133DB (United Kingdom)

    2012-06-19T23:59:59.000Z

    The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. 'Fusion for Neutrons' (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.

  7. First neutron generation in the BINP accelerator based neutron source B. Bayanova

    E-Print Network [OSTI]

    Taskaev, Sergey Yur'evich

    First neutron generation in the BINP accelerator based neutron source B. Bayanova , A. Burdakova c l e i n f o Keywords: Epithermal neutrons Lithium target Neutron capture therapy Tandem accelerator a b s t r a c t Pilot innovative facility for neutron capture therapy was built at Budker

  8. neutron density. The neutron density (nn) of the source was modeled by solving the simul-

    E-Print Network [OSTI]

    West, Stuart

    neutron density. The neutron density (nn) of the source was modeled by solving the simul- taneousT is the thermal neutron velocity, l is the decay constant, Ns is the s-process abun- dance, bs? is the maxwellian-averaged neutron capture cross-section, and t0 is the average neutron exposure (21). The branching decay of 186Re

  9. A neutron producing target for BINP accelerator-based neutron source B. Bayanova

    E-Print Network [OSTI]

    Taskaev, Sergey Yur'evich

    A neutron producing target for BINP accelerator-based neutron source B. Bayanova , E. Kashaeva b l e i n f o Keywords: Target Lithium Neutron capture therapy Epithermal neutrons a b s t r a c t An innovative accelerator-based neutron source for BNCT has just started operation at the Budker Institute

  10. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA)

    1997-01-01T23:59:59.000Z

    An improved method for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue.

  11. Neutron Reflectometers -a bibliography Adrian R. Rennie

    E-Print Network [OSTI]

    Rennie, Adrian

    Neutron Reflectometers - a bibliography Adrian R. Rennie Background A short catalogue of neutron on the evolution of the design of neutron reflectometers. The papers listed in the bibliography are restricted "Gravity Diffractometer" for Ultracold-Neutron Optics' Nuclear Instruments and Methods, 179, (1981), 393

  12. Spin Hall and spin-diagonal conductivity in the presence of Rashba and Dresselhaus spin-orbit coupling

    E-Print Network [OSTI]

    Sinitsyn, NA; Hankiewicz, EM; Teizer, Winfried; Sinova, Jairo.

    2004-01-01T23:59:59.000Z

    We investigate the spin-current linear response conductivity tensor to an electric field in a paramagnetic two-dimensional electron gas with both Rashba and Dresselhaus spin-orbit coupling in the weak scattering regime within the Born approximation...

  13. Transverse target spin asymmetry in inclusive DIS with two-photon exchange

    SciTech Connect (OSTI)

    Andrei Afanasev; Mark Strikman; Christian Weiss

    2007-09-06T23:59:59.000Z

    We study the transverse target spin dependence of the cross section for the inclusive electron-nucleon scattering with unpolarized beam. Such dependence is absent in the one-photon exchange approximation (Christ-Lee theorem) and arises only in higher orders of the QED expansion, from the interference of one-photon and absorptive two-photon exchange amplitudes as well as from real photon emission (bremsstrahlung). We demonstrate that the transverse spin-dependent two-photon exchange cross section is free of QED infrared and collinear divergences. We argue that in DIS kinematics the transverse spin dependence should be governed by a "parton-like" mechanism in which the two-photon exchange couples mainly to a single quark. We calculate the normal spin asymmetry in an approximation where the dominant contribution arises from quark helicity flip due to interactions with non-perturbative vacuum fields (constituent quark picture) and is proportional to the quark transversity distribution in the nucleon. Such helicity-flip processes are not significantly Sudakov-suppressed if the infrared scale for gluon emission in the photon-quark subprocess is of the order of the chiral symmetry breaking scale, mu^2_chiral>>Lambda^2_QCD. We estimate the asymmetry in the kinematics of the planned Jefferson Lab Hall A experiment to be of the order 10^-4, with different sign for proton and neutron. We also comment on the spin dependence in the limit of soft high-energy scattering.

  14. The Magnetism of Neutron States

    E-Print Network [OSTI]

    B. G. Sidharth

    2003-10-01T23:59:59.000Z

    The recent measurement by Bignami and co-workers of the magnetic field of a neutron star for the first time gives a value that differs by about two orders of magnitude from the expected value. The speculation has been that the nuclear matter in the neutron stars exhibits some exotic behaviour. In this note we argue that this exotic behaviour is an anomalous statistics obeyed by the neutrons, and moreover these considerations lead to a value of the magnetic field that agrees with the observation. The same considerations also correctly give the magnetic fields of the earth and Jupiter.

  15. Scattered neutron tomography based on a neutron transport problem

    E-Print Network [OSTI]

    Scipolo, Vittorio

    2005-11-01T23:59:59.000Z

    scattering objects because it does not adequately account for the scattering component of the neutron beam intensity exiting the sample. We proposed a new method of computed tomography which employs an inverse problem analysis of both the transmitted...

  16. How the Spallation Neutron Source Works | ORNL Neutron Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-energy proton pulses strike a heavy-metal target, which is a container of liquid mercury. Corresponding pulses of neutrons freed by the spallation process are slowed down in...

  17. Effect of electronic reconstruction on cuprate-manganite spin switches.

    SciTech Connect (OSTI)

    Liu, Y.; Visani, C.; Nemes, N. M.; Fitzsimmons, M. R.; Zhu, L. Y.; Tornos, J.; Zhernenkov, M.; Hoffmann, A.; Leon, C.; Santamaria, J.; te Velthuis, S. G. E. (Materials Science Division); (Universidad Complutense de Madrid); (LANL)

    2012-01-01T23:59:59.000Z

    We examine the anomalous inverse spin switch behavior in La{sub 0.7}Ca{sub 0.3}MnO{sub 3}(LCMO)/YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO)/LCMO trilayers by combined transport studies and polarized neutron reflectometry. Measuring magnetization profiles and magnetoresistance in an in-plane rotating magnetic field, we prove that, contrary to many accepted theoretical scenarios, the relative orientation between the two LCMO's magnetizations is not sufficient to determine the magnetoresistance. Rather the field dependence of magnetoresistance is explained by the interplay between the applied magnetic field and the (exponential tail of the) induced exchange field in YBCO, the latter originating from the electronic reconstruction at the LCMO/YBCO interfaces.

  18. Chimera order in spin systems

    E-Print Network [OSTI]

    Rajeev Singh; Subinay Dasgupta; Sitabhra Sinha

    2010-11-23T23:59:59.000Z

    Homogeneous populations of oscillators have recently been shown to exhibit stable coexistence of coherent and incoherent regions. Generalizing the concept of chimera states to the context of order-disorder transition in systems at thermal equilibrium, we show analytically that such complex ordering can appear in a system of Ising spins, possibly the simplest physical system exhibiting this phenomenon. We also show numerically the existence of chimera ordering in 3-dimensional spin systems that model layered magnetic materials, suggesting possible means of experimentally observing such states.

  19. Delayed neutrons from the neutron irradiation of ?U

    E-Print Network [OSTI]

    Heinrich, Aaron David

    2008-10-10T23:59:59.000Z

    &M University Nuclear Science Center Reactor (NSCR) to verify 235U delayed neutron emission rates. A custom device was created to accurately measure a samples pneumatic flight time and the Nuclear Science Centers (NSCs) pneumatic transfer system (PTS... parameter measurements, including two 235U samples, an array of three 3He cylindrical neutron detectors, signal processing circuitry, the PTS, a reactor core sensor and a computerized control system. A. Fissile Material Isotope Products Laboratories...

  20. Chaotic spin correlations in frustrated Ising hierarchical lattices

    E-Print Network [OSTI]

    Aral, Nese

    Spin-spin correlations are calculated in frustrated hierarchical Ising models that exhibit chaotic renormalization-group behavior. The spin-spin correlations, as a function of distance, behave chaotically. The far correlations, ...

  1. The nuclear physics of neutron stars

    SciTech Connect (OSTI)

    Piekarewicz, J. [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

    2014-05-09T23:59:59.000Z

    We explore the unique and fascinating structure of neutron stars. Although neutron stars are of interest in many areas of Physics, our aim is to provide an intellectual bridge between Nuclear Physics and Astrophysics. We argue against the naive perception of a neutron star as a uniform assembly of neutrons packed to enormous densities. Rather, by focusing on the many exotic phases that are speculated to exist in a neutron star, we show how the reality is different and far more interesting.

  2. Control of single spin in Markovian environment

    E-Print Network [OSTI]

    Yuan, Haidong

    In this article we study the control of single spin in Markovian environment. Given an initial state, we compute all the possible states to which the spin can be driven at arbitrary time, under the assumption that fast ...

  3. Maps for Lorentz transformations of spin

    E-Print Network [OSTI]

    Thomas F. Jordan; Anil Shaji; E. C. G. Sudarshan

    2005-11-08T23:59:59.000Z

    Lorentz transformations of spin density matrices for a particle with positive mass and spin 1/2 are described by maps of the kind used in open quantum dynamics. They show how the Lorentz transformations of the spin depend on the momentum. Since the spin and momentum generally are entangled, the maps generally are not completely positive and act in limited domains. States with two momentum values are considered, so the maps are for the spin qubit entangled with the qubit made from the two momentum values, and results from the open quantum dynamics of two coupled qubits can be applied. Inverse maps are used to show that every Lorentz transformation completely removes the spin polarization, and so completely removes the information, from a number of spin density matrices. The size of the spin polarization that is removed is calculated for particular cases.

  4. Spin Network Wavefunction and the Graviton Propagator

    E-Print Network [OSTI]

    A. Mikovic

    2007-06-04T23:59:59.000Z

    We show that if the flat-spacetime wavefunction in the spin network basis of Loop Quantum Gravity has a large-spin asymptotics given by Rovelli's ansatz then the corresponding graviton propagator has the correct large-distance asymptotics nonperturbatively and independently of the spin foam model used to describe the evolution operator. We also argue that even in the Rovelli approach the wavefunction should satisfy the Hamiltonian constraint and we give an explanation for the spin parameter appearing in Rovelli's ansatz.

  5. Single electron spin qubits in electrostatically defined

    E-Print Network [OSTI]

    Duisburg-Essen, Universität

    · Read-out: spin-to-charge conversion · Manipulation: exchange interaction, spin-orbit interaction etc-out · Spin to charge conversion x y + Universal 1-qubit gate · Electron spin resonance z x y z Influence;Dilution refrigerator ~ 1m sample @ 25 mK 25 mK 1 K 4 K 300 K #12;Counting electrons onebyone electron

  6. Symmetry energy, neutron skin, and neutron star radius from chiral effective field theory interactions

    E-Print Network [OSTI]

    K. Hebeler; A. Schwenk

    2014-01-22T23:59:59.000Z

    We discuss neutron matter calculations based on chiral effective field theory interactions and their predictions for the symmetry energy, the neutron skin of 208 Pb, and for the radius of neutron stars.

  7. Chiral condensate in neutron matter

    E-Print Network [OSTI]

    N. Kaiser; W. Weise

    2008-08-06T23:59:59.000Z

    A recent chiral perturbation theory calculation of the in-medium quark condensate $$ is extended to the isospin-asymmetric case of pure neutron matter. In contrast to the behavior in isospin-symmetric nuclear matter we find only small deviations from the linear density approximation. This feature originates primarily from the reduced weight factors (e.g. 1/6 for the dominant contributions) of the $2\\pi$-exchange mechanisms in pure neutron matter. Our result suggests therefore that the tendencies for chiral symmetry restoration are actually favored in systems with large neutron excess (e.g. neutron stars). We also analyze the behavior of the density-dependent quark condensate $(\\rho_n)$ in the chiral limit $m_\\pi\\to 0$.

  8. Coherent control of neutron interferometry

    E-Print Network [OSTI]

    Pushin, Dmitry A

    2007-01-01T23:59:59.000Z

    In this thesis, several novel techniques are proposed and demonstrated for measuring the coherent properties of materials and testing aspects of quantum information processing using a single crystal neutron interferometer. ...

  9. Ion chamber based neutron detectors

    DOE Patents [OSTI]

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16T23:59:59.000Z

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  10. Inverse spin Hall effect induced by spin pumping into semiconducting ZnO

    SciTech Connect (OSTI)

    Lee, Jung-Chuan [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Huang, Leng-Wei [Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan (China); Hung, Dung-Shing, E-mail: dshung@mail.mcu.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Information and Telecommunications Engineering, Ming Chuan University, Taipei 111, Taiwan (China); Chiang, Tung-Han [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Huang, J. C. A., E-mail: jcahuang@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Liang, Jun-Zhi [Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Physics, Fu Jen Catholic University, Taipei 242, Taiwan (China); Lee, Shang-Fan, E-mail: leesf@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan (China)

    2014-02-03T23:59:59.000Z

    The inverse spin Hall effect (ISHE) of n-type semiconductor ZnO thin films with weak spin-orbit coupling has been observed by utilizing the spin pumping method. In the ferromagnetic resonance condition, the spin pumping driven by the dynamical exchange interaction of a permalloy film injects a pure spin current into the adjacent ZnO layer. This spin current gives rise to a DC voltage through the ISHE in the ZnO layer, and the DC voltage is proportional to the microwave excitation power. The effect is sizeable even when the spin backflow is considered.

  11. Neutron detectors comprising boron powder

    SciTech Connect (OSTI)

    Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

    2013-05-21T23:59:59.000Z

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  12. Alternative Neutron Detection Testing Summary

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Lintereur, Azaree T.; Siciliano, Edward R.; Stromswold, David C.; Woodring, Mitchell L.

    2010-04-08T23:59:59.000Z

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. Most currently deployed radiation portal monitors (RPMs) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large area neutron detector. This type of neutron detector is used in the TSA and other RPMs installed in international locations and in the Ludlum and Science Applications International Corporation RPMs deployed primarily for domestic applications. There is a declining supply of 3He in the world and, thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated wavelength-shifting plastic fibers. Reported here is a summary of the testing carried out at Pacific Northwest National Laboratory on these technologies to date, as well as measurements on 3He tubes at various pressures. Details on these measurements are available in the referenced reports. Sponsors of these tests include the Department of Energy (DOE), Department of Homeland Security (DHS), and the Department of Defense (DoD), as well as internal Pacific Northwest National Laboratory funds.

  13. Imaging mesoscopic spin Hall flow: Spatial distribution of local spin currents and spin densities in and out of multiterminal spin-orbit coupled semiconductor nanostructures

    E-Print Network [OSTI]

    Nikolic, Branislav K.

    symmetry and strong crystalline potential.3,4 Furthermore, harnessing of spin currents induced by the spin even in equilibrium when all leads are at the same potential , the total spin currents obtained SO coupling effects are tiny relativistic cor- rections for particles moving through electric fields

  14. The XY Spin Chain Random Block Operators

    E-Print Network [OSTI]

    Jung, Paul

    The XY Spin Chain Random Block Operators Proof of Main Result Open Questions Localization for Random Block Operators Related to the XY Spin Chain Jacob W. Chapman Division of Science Southern Wesleyan University Central, SC Joint work with G¨unter Stolz UAB NSF-CBMS Conference on Quantum Spin

  15. Neutron Scattering: Condensed Matter and Magnetic Science, MPA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Neutron Scattering Capability description: Neutron scattering is a powerful probe of structure and collective modes of condensed matter. We are focused on direct...

  16. SPINNING THE SEMANTIC WEB INTRODUCTION

    E-Print Network [OSTI]

    Wahlster, Wolfgang - Deutsche Forschungszentrum für Künstliche Intelligenz & FR 6.2

    SPINNING THE SEMANTIC WEB INTRODUCTION Dieter Fensel, Jim Hendler, Henry Lieberman, and Wolfgang Wahlster The World Wide Web (WWW) has drastically changed the availability of electronically accessible (http://www.w3c.org) expects around a billion Web users and an even higher number of available documents

  17. Spin-forming Project Report

    SciTech Connect (OSTI)

    Switzner, Nathan; Henry, Dick

    2009-03-20T23:59:59.000Z

    In a second development order, spin-forming equipment was again evaluated using the test shape, a hemispherical shell. In this second development order, pure vanadium and alloy titanium (Ti-6Al-4V) were spin-formed, as well as additional copper and 21-6-9 stainless. In the first development order the following materials had been spin-formed: copper (alloy C11000 ETP), 6061 aluminum, 304L stainless steel, 21-6-9 stainless steel, and tantalum-2.5% tungsten. Significant challenges included properly adjusting the rotations-per-minute (RPM), cracking at un-beveled edges and laser marks, redressing of notches, surface cracking, non-uniform temperature evolution in the titanium, and cracking of the tailstock. Lessons learned were that 300 RPM worked better than 600 RPM for most materials (at the feed rate of 800 mm/min); beveling the edges to lower the stress reduces edge cracking; notches, laser marks, or edge defects in the preform doom the process to cracking and failure; coolant is required for vanadium spin-forming; increasing the number of passes to nine or more eliminates surface cracking for vanadium; titanium develops a hot zone in front of the rollers; and the tailstock should be redesigned to eliminate the cylindrical stress concentrator in the center.

  18. BIOTOOLOMICS Ni SuperSpin \\ Cu SuperSpin \\ Co SuperSpin \\ Zn SuperSpin

    E-Print Network [OSTI]

    Lebendiker, Mario

    target protein. It is a particularly powerful tool in applications such as small-scale purification, high disposable device that allows rapid purification and screening of histidine- tagged proteins at much less cost. The spin tube is filled with novel metal immobilised chromatography resin of small particles (20

  19. Role of spin mixing conductance in spin pumping: Enhancement of spin pumping efficiency in Ta/Cu/Py structures

    SciTech Connect (OSTI)

    Deorani, Praveen; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore (Singapore)] [Department of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore (Singapore)

    2013-12-02T23:59:59.000Z

    From spin pumping measurements in Ta/Py devices for different thicknesses of Ta, we determine the spin Hall angle to be 0.0210.033 and spin diffusion length to be 8?nm in Ta. We have also studied the effect of changing the properties of non-magnet/ferromagnet interface by adding a Cu interlayer. The experimental results show that the effective spin mixing conductance increases in the presence of Cu interlayer for Ta/Cu/Py devices whereas it decreases in Pt/Cu/Py devices. Our findings allow the tunability of the spin pumping efficiency by adding a thin interlayer at the non-magnet/ferromagnet interface.

  20. A key factor to the spin parameter of uniformly rotating compact stars: crust structure

    E-Print Network [OSTI]

    Qi, B; Sun, B Y; Wang, S Y; Gao, J H

    2014-01-01T23:59:59.000Z

    We study the key factor to determine the dimensionless spin parameter $j\\equiv cJ/(GM^2)$ of different kinds of uniformly rotating compact stars, including the traditional neutron stars, hyperonic neutron stars, and hybrid stars, and check the reliability of the results on various types of equations of state of dense matter. The equations of state from the relativistic mean field theory and the MIT bag model are adopted to simulate compact stars. Numerical calculations of rigidly rotating neutron stars are performed using the RNS code in the framework of general relativity by solving the Einstein equations for stationary axis-symmetric spacetime. The crust structure of compact stars is found to be a key factor to determine the maximum value of the spin parameter $j_{\\rm max}$. For the stars with inclusion of the crust, $j_{\\rm max}\\sim 0.7$ is sustained for various kinds of compact stars with $M>0.5 M_{\\odot}$, and is found to be insensitive to the mass of star and selected equations of state. For the traditi...

  1. Spin-lozenge thermodynamics and magnetic excitations in Na3RuO4

    SciTech Connect (OSTI)

    Haraldsen, Jason T [ORNL; Stone, Matthew B [ORNL; Lumsden, Mark D [ORNL; Barnes, Ted {F E } [ORNL; Jin, Rongying [ORNL; Taylor, J. W. [ISIS Facility, Rutherford Appleton Laboratory; Fernandez-Alonso, F [ISIS Facility, Rutherford Appleton Laboratory

    2009-01-01T23:59:59.000Z

    We report inelastic and elastic neutron scattering, magnetic susceptibility, and heat capacity measurements of polycrystalline sodium ruthenate (Na3RuO4). Previous work suggests this material consists of isolated tetramers of S = 3/2 Ru5+ ions in a so-called lozenge configuration. Using a Heisenberg antiferromagnet Hamiltonian, we analytically determine the energy eigenstates for general spin S. From this model, the neutron scattering cross-sections for excitations associated with spin-3/2 tetramer configurations is determined. Comparison of magnetic susceptibility and inelastic neutron scattering results shows that the proposed lozenge model is not distinctly supported, but provides evidence that the system may be better described as a pair of non-interacting inequivalent dimers, i.e double dimers. However, the existence of long-range magnetic order below Tc ? 28 K immediately questions such a description. Although no evidence of the lozenge model is observed, future studies on single crystals may further clarify the appropriate magnetic Hamiltonian.

  2. Spinning Reserve From Responsive Loads

    SciTech Connect (OSTI)

    Kirby, B.J.

    2003-04-08T23:59:59.000Z

    Responsive load is the most underutilized reliability resource available to the power system today. It is currently not used at all to provide spinning reserve. Historically there were good reasons for this, but recent technological advances in communications and controls have provided new capabilities and eliminated many of the old obstacles. North American Electric Reliability Council (NERC), Federal Energy Regulatory Commission (FERC), Northeast Power Coordinating Council (NPCC), New York State Reliability Council (NYSRC), and New York Independent System Operator (NYISO) rules are beginning to recognize these changes and are starting to encourage responsive load provision of reliability services. The Carrier ComfortChoice responsive thermostats provide an example of these technological advances. This is a technology aimed at reducing summer peak demand through central control of residential and small commercial air-conditioning loads. It is being utilized by Long Island Power Authority (LIPA), Consolidated Edison (ConEd), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E). The technology is capable of delivering even greater response in the faster spinning reserve time frame (while still providing peak reduction). Analysis of demand reduction testing results from LIPA during the summer of 2002 provides evidence to back up this claim. It also demonstrates that loads are different from generators and that the conventional wisdom, which advocates for starting with large loads as better ancillary service providers, is flawed. The tempting approach of incrementally adapting ancillary service requirements, which were established when generators were the only available resources, will not work. While it is easier for most generators to provide replacement power and non-spinning reserve (the slower response services) than it is to supply spinning reserve (the fastest service), the opposite is true for many loads. Also, there is more financial reward for supplying spinning reserve than for supplying the other reserve services as a result of the higher spinning reserve prices. The LIPAedge program (LIPA's demand reduction program using Carrier ComfortChoice thermostats) provides an opportunity to test the use of responsive load for spinning reserve. With potentially 75 MW of spinning reserve capability already installed, this test program can also make an important contribution to the capacity needs of Long Island during the summer of 2003. Testing could also be done at ConEd ({approx}30 MW), SCE ({approx}15 MW), and/or SDG&E ({approx}15 MW). This paper is divided into six chapters. Chapter 2 discusses the contingency reserve ancillary services, their functions in supporting power system reliability, and their technical requirements. It also discusses the policy and tariff requirements and attempts to distinguish between ones that are genuinely necessary and ones that are artifacts of the technologies that were historically used to provide the services. Chapter 3 discusses how responsive load could provide contingency reserves (especially spinning reserve) for the power system. Chapter 4 specifically discusses the Carrier ComfortChoice responsive thermostat technology, the LIPAedge experience with that technology, and how the technology could be used to supply spinning reserve. Chapter 5 discusses a number of unresolved issues and suggests areas for further research. Chapter 6 offers conclusions and recommendations.

  3. Use of gravitational waves to measure alignment of spins in compact binaries

    E-Print Network [OSTI]

    Vitale, Salvatore; Graff, Philip; Sturani, Riccardo

    2015-01-01T23:59:59.000Z

    Coalescences of compact objects, neutron star and black holes, in binary systems are very promising sources of gravitational waves for the ground based detectors Advanced LIGO and Virgo. Much about compact binaries is still uncertain, including how often they are formed in the Universe, and some key details about their formation channels. One of the key open questions about compact binary coalescences is whether or not common envelope evolution is highly efficient in aligning spins with the orbital angular momentum. In this paper we show how gravitational waves detected by Advanced LIGO and Virgo can be used to verify if spins are preferentially aligned with the orbital angular momentum in compact binaries made of two black holes or a neutron star and a black hole. We first assume that all sources have either nearly aligned or non-aligned spins and use Bayesian model selection to calculate a cumulative odds ratio to compare the aligned and non-aligned models. We see that the correct model is typically preferr...

  4. The spin Hall angle and spin diffusion length of Pd measured by spin pumping and microwave photoresistance

    SciTech Connect (OSTI)

    Tao, X. D.; Feng, Z.; Miao, B. F.; Sun, L.; You, B.; Wu, D.; Du, J.; Zhang, W.; Ding, H. F., E-mail: hfding@nju.edu.cn [Department of Physics, National Laboratory of Solid State Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)

    2014-05-07T23:59:59.000Z

    We present the experimental study of the spin Hall angle (SHA) and spin diffusion length of Pd with the spin pumping and microwave photoresistance effects. The Py/Pd bilayer stripes are excited with an out-of-plane microwave magnetic field. The pure spin current is thus pumped and transforms into charge current via the inverse spin Hall effect (ISHE) in Pd layer, yielding an ISHE voltage. The ISHE voltage can be distinguished from the unwanted signal caused by the anisotropic magnetoresistance according to their different symmetries. Together with Pd thickness dependent measurements of in and out-of-plane precessing angles and effective spin mixing conductance, the SHA and spin-diffusion length of Pd are quantified as 0.0056??0.0007 and 7.3??0.7?nm, respectively.

  5. New Spin Foam Models of Quantum Gravity

    E-Print Network [OSTI]

    A. Mikovic

    2005-01-28T23:59:59.000Z

    We give a brief and a critical review of the Barret-Crane spin foam models of quantum gravity. Then we describe two new spin foam models which are obtained by direct quantization of General Relativity and do not have some of the drawbacks of the Barret-Crane models. These are the model of spin foam invariants for the embedded spin networks in loop quantum gravity and the spin foam model based on the integration of the tetrads in the path integral for the Palatini action.

  6. Neutron Reactions in Astrophysics

    E-Print Network [OSTI]

    R. Reifarth; C. Lederer; F. Kppeler

    2014-03-22T23:59:59.000Z

    The quest for the origin of matter in the Universe had been the subject of philosophical and theological debates over the history of mankind, but quantitative answers could be found only by the scientific achievements of the last century. A first important step on this way was the development of spectral analysis by Kirchhoff and Bunsen in the middle of the 19$^{\\rm th}$ century, which provided first insight in the chemical composition of the sun and the stars. The energy source of the stars and the related processes of nucleosynthesis, however, could be revealed only with the discoveries of nuclear physics. A final breakthrough came eventually with the compilation of elemental and isotopic abundances in the solar system, which are reflecting the various nucleosynthetic processes in detail. This review is focusing on the mass region above iron, where the formation of the elements is dominated by neutron capture, mainly in the slow ($s$) and rapid ($r$) processes. Following a brief historic account and a sketch of the relevant astrophysical models, emphasis is put on the nuclear physics input, where status and perspectives of experimental approaches are presented in some detail, complemented by the indispensable role of theory.

  7. Post-merger evolution of a neutron star-black hole binary with neutrino transport

    E-Print Network [OSTI]

    Foucart, Francois; Roberts, Luke; Duez, Matthew D; Haas, Roland; Kidder, Lawrence E; Ott, Christian D; Pfeiffer, Harald P; Scheel, Mark A; Szilagyi, Bela

    2015-01-01T23:59:59.000Z

    We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated general relativistic truncated moment formalism for neutrino transport. We describe our implementation of the moment formalism and important tests of our code, before studying the formation phase of a disk after a black hole-neutron star merger. We use as initial data an existing general relativistic simulation of the merger of a neutron star of 1.4 solar mass with a black hole of 7 solar mass and dimensionless spin a/M=0.8. Comparing with a simpler leakage scheme for the treatment of the neutrinos, we find noticeable differences in the neutron to proton ratio in and around the disk, and in the neutrino luminosity. We find that the electron neutrino luminosity is much lower in the transport simulations, and that the remnant is less neutron-rich. The spatial distribution of the neutrinos is significantly affected by relativistic effects. Over the short timescale e...

  8. STUDY MAGNETIC EXCITATIONS IN DOPED TRANSITION METAL OXIDES USING INELASTIC NEUTRON SCATTERING

    SciTech Connect (OSTI)

    Dai, Pengcheng

    2014-02-18T23:59:59.000Z

    Understanding the interplay between magnetism and superconductivity continues to be a hot topic in modern condensed matter physics. The discovery of high-temperature superconductivity in iron-based materials in 2008 provided an unique opportunity to compare and contrast these materials with traditional high-Tc copper oxide superconductors. Neutron scattering plays an important role in determining the dynamical spin properties in these materials. This proposal is a continuation of previous DOE supported proposal. This report summarizes the final progress we have made over from May 2005 till Aug. 2013. Overall, we continue to carry out extensive neutron scattering experiments on Fe-based materials, focusing on understanding their magnetic properties. In addition, we have established a materials laboratory at UT that has allowed us to grow these superconductors. Because neutron scattering typically demands a large amount of samples, by growing these materials in our own laboratory, we can now pursuit neutron scattering experiments over the entire electronic phase diagram, focusing on regions of interests. The material synthesis laboratory at UT was established entirely with the support of DOE funding. This not only allowed us to carry out neutron scattering experiments, but also permit us to provide samples to other US/International collaborators for studying these materials.

  9. Post-merger evolution of a neutron star-black hole binary with neutrino transport

    E-Print Network [OSTI]

    Francois Foucart; Evan O'Connor; Luke Roberts; Matthew D. Duez; Roland Haas; Lawrence E. Kidder; Christian D. Ott; Harald P. Pfeiffer; Mark A. Scheel; Bela Szilagyi

    2015-02-13T23:59:59.000Z

    We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated general relativistic truncated moment formalism for neutrino transport. We describe our implementation of the moment formalism and important tests of our code, before studying the formation phase of a disk after a black hole-neutron star merger. We use as initial data an existing general relativistic simulation of the merger of a neutron star of 1.4 solar mass with a black hole of 7 solar mass and dimensionless spin a/M=0.8. Comparing with a simpler leakage scheme for the treatment of the neutrinos, we find noticeable differences in the neutron to proton ratio in and around the disk, and in the neutrino luminosity. We find that the electron neutrino luminosity is much lower in the transport simulations, and that the remnant is less neutron-rich. The spatial distribution of the neutrinos is significantly affected by relativistic effects. Over the short timescale evolved, we do not observe purely neutrino-driven outflows. However, a small amount of material (3e-4Msun) is ejected in the polar region during the circularization of the disk. Most of that material is ejected early in the formation of the disk, and is fairly neutron rich. Through r-process nucleosynthesis, that material should produce high-opacity lanthanides in the polar region, and could thus affect the lightcurve of radioactively powered electromagnetic transients. We also show that by the end of the simulation, while the bulk of the disk is neutron-rich, its outer layers have a higher electron fraction. As that material would be the first to be unbound by disk outflows on longer timescales, the changes in Ye experienced during the formation of the disk could have an impact on the nucleosynthesis outputs from neutrino-driven and viscously-driven outflows. [Abridged

  10. Proposal for a 30-T Pulsed Magnet Suitable for Neutron Scattering Experiments

    E-Print Network [OSTI]

    Robinson Eyssa Schneider-Muntau; R. A. Robinson (a; Y. M. Eyssa (b; H. J. Schneider-muntau (b; H. J. Boenig (a

    this paper, we describe a conceptual design for a 30-T pulsed magnet that could be used in conjunction with neutron-scattering apparatus, along with the scientific opportunities that such a magnet might open up. Neutron diffraction has long been the technique of choice for determining the arrangements (magnetic structures) of magnetic moments in solids, the spatial extent of the magnetic electrons around their parent ions (form factors) and the full moment-density distribution function in real space. The proposed 30-T magnet would enable one to study such spatial aspects of many field-induced phase transitions for the first time, whether they are driven by competing exchange interactions, single-ion anisotropy, or a more radical change, say from an itinerant to a localised state. Inelastic Neutron Scattering, on the other hand, is the best general-purpose tool for the study of magnetic excitations like spin waves, crystal-field levels and spin fluctuations. These excitations manifest themselves in the imaginary part of the generalised magnetic susceptibility c"(Q,w), which is measured directly in a neutron scattering experiment. A field of 30T acting on a moment of 1 B corresponds to an energy of 1.7 meV, and we should be able to generate splittings or close gaps of this order. The present generation of spectrometers at spallation neutron sources have both sufficient resolution (as good as 10 eV) and sufficient dynamic range (up to 2 eV) to cover the effects that might be induced by such a field.

  11. Importance of nuclear triaxiality for electromagnetic strength, level density and neutron capture cross sections in heavy nuclei

    E-Print Network [OSTI]

    Eckart Grosse; Arnd R. Junghans; Ralph Massarczyk

    2014-04-17T23:59:59.000Z

    Cross sections for neutron capture in the range of unresolved resonances are predicted simultaneously to level distances at the neutron threshold for more than 100 spin-0 target nuclei with A >70. Assuming triaxiality in nearly all these nuclei a combined parameterization for both, level density and photon strength is presented. The strength functions used are based on a global fit to IVGDR shapes by the sum of three Lorentzians adding up to the TRK sum rule and theory-based predictions for the A-dependence of pole energies and spreading widths. For the small spins reached by capture level densities are well described by only one free global parameter; a significant collective enhancement due to the deviation from axial symmetry is observed. Reliable predictions for compound nuclear reactions also outside the valley of stability as expected from the derived global parameterization are important for nuclear astrophysics and for the transmutation of nuclear waste.

  12. Neutronic fuel element fabrication

    DOE Patents [OSTI]

    Korton, George (Cincinnati, OH)

    2004-02-24T23:59:59.000Z

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

  13. State Transfer and Spin Measurement

    E-Print Network [OSTI]

    A. Kay

    2006-04-21T23:59:59.000Z

    We present a Hamiltonian that can be used for amplifying the signal from a quantum state, enabling the measurement of a macroscopic observable to determine the state of a single spin. We prove a general mapping between this Hamiltonian and an exchange Hamiltonian for arbitrary coupling strengths and local magnetic fields. This facilitates the use of existing schemes for perfect state transfer to give perfect amplification. We further prove a link between the evolution of this fixed Hamiltonian and classical Cellular Automata, thereby unifying previous approaches to this amplification task. Finally, we show how to use the new Hamiltonian for perfect state transfer in the, to date, unique scenario where total spin is not conserved during the evolution, and demonstrate that this yields a significantly different response in the presence of decoherence.

  14. Neutron-Neutron Correlations in the Dissociation of Halo Nuclei

    E-Print Network [OSTI]

    N. A. Orr

    2008-03-06T23:59:59.000Z

    Studies attempting to probe the spatial configuration of the valence neutrons in two-neutron halo nuclei using the technique of intensity interferometry are described. Following a brief review of the method and its application to earlier measurements of the breakup of 6He, 11Li and 14Be, the results of the analysis of a high statistics data set for 6He are presented. The limitations of the technique, including the assumption of incoherent emission in the breakup and the sensitivity to the continuum states populated in the dissociation rather than the ground state, are discussed.

  15. Spin Asymmetries at Jurgen Wendland

    E-Print Network [OSTI]

    { Semi-Inclusive DIS #15; High p t hadron pairs #15; The HERMES RICH detector #15; Conclusion and Outlook; Inclusive DIS allows for the determination of the sum of the quark spins. (With QCD #12;ts to world data #15; HERA is an ep collider with a proton energy of 920GeV and electron energy of 27.5 GeV #15; HERMES

  16. Demand Response Spinning Reserve Demonstration

    SciTech Connect (OSTI)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01T23:59:59.000Z

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  17. On higher spin partition functions

    E-Print Network [OSTI]

    Beccaria, M

    2015-01-01T23:59:59.000Z

    We observe that the partition function of the set of all free massless higher spins s=0,1,2,3,... in flat space is equal to one: the ghost determinants cancel against the "physical" ones or, equivalently, the (regularized) total number of degrees of freedom vanishes. This reflects large underlying gauge symmetry and suggests analogy with supersymmetric or topological theory. The Z=1 property extends also to the AdS background, i.e. the 1-loop vacuum partition function of Vasiliev theory is equal to 1 (assuming a particular regularization of the sum over spins); this was noticed earlier as a consistency requirement for the vectorial AdS/CFT duality. We find that Z=1 is also true in the conformal higher spin theory (with higher-derivative d^{2s} kinetic terms) expanded near flat or conformally flat S^4 background. We also consider the partition function of free conformal theory of symmetric traceless rank s tensor field which has 2-derivative kinetic term but only scalar gauge invariance in flat space. This non...

  18. Effect of pressure on the quantum spin ladder material IPA-CuCl3.

    SciTech Connect (OSTI)

    Hong, Tao [ORNL; Garlea, Vasile O [ORNL; Zheludev, Andrey I [ORNL; Fernandez-Baca, Jaime A [ORNL; Manaka, H. [Kagoshima University, Kagoshima JAPAN; Chang, S. [National Institute of Standards and Technology (NIST); Leao, J. B. [National Institute of Standards and Technology (NIST); Poulton, S. J. [National Institute of Standards and Technology (NIST)

    2008-01-01T23:59:59.000Z

    Inelastic-neutron-scattering and bulk magnetic-susceptibility studies of the quantum S = 1/2 spin ladder system (CH{sub 3}){sub 2}CHNH{sub 3}CuCl{sub 3} are performed under hydrostatic pressure. The pressure dependence of the spin gap {Delta} is determined. At P = 1500 MPa it is reduced to {Delta} =0.79 meV from {Delta} =1.17 meV at ambient pressure. The results allow us to predict a soft-mode quantum phase transition in this system at P{sub c} {approx} 4 GPa. The measurements are complicated by the proximity of a structural phase transition that leads to a deterioration of the sample.

  19. Neutrons from the SNS's target are channeled

    E-Print Network [OSTI]

    Pennycook, Steve

    of Science. The five instruments under the SING (SNS Instruments - Next Generation) project the project. SCIENCE Project's completion gives neutron science community reason to SING Table of Contents Project's completion gives neutron science community reason to SING . . . . . . . . . . . 1 Oral

  20. Neutron coincidence detectors employing heterogeneous materials

    DOE Patents [OSTI]

    Czirr, J. Bartley (Mapleton, UT); Jensen, Gary L. (Orem, UT)

    1993-07-27T23:59:59.000Z

    A neutron detector relies upon optical separation of different scintillators to measure the total energy and/or number of neutrons from a neutron source. In pulse mode embodiments of the invention, neutrons are detected in a first detector which surrounds the neutron source and in a second detector surrounding the first detector. An electronic circuit insures that only events are measured which correspond to neutrons first detected in the first detector followed by subsequent detection in the second detector. In spectrometer embodiments of the invention, neutrons are thermalized in the second detector which is formed by a scintillator-moderator and neutron energy is measured from the summed signals from the first and second detectors.

  1. Neutron Imaging of Diesel Particulate Filters

    Broader source: Energy.gov (indexed) [DOE]

    August 3 2009 Non-invasive, non-destructive technique based on attenuation of the neutron beam. Neutrons interact with nuclei and their scattering power does not vary in...

  2. Neutron Matter from Low to High Density

    E-Print Network [OSTI]

    Gandolfi, Stefano; Carlson, J

    2015-01-01T23:59:59.000Z

    Neutron matter is an intriguing nuclear system with multiple connections to other areas of physics. Considerable progress has been made over the last two decades in exploring the properties of pure neutron fluids. Here we begin by reviewing work done to explore the behavior of very low density neutron matter, which forms a strongly paired superfluid and is thus similar to cold Fermi atoms, though at energy scales differing by many orders of magnitude. We then increase the density, discussing work that ties the study of neutron matter with the determination of the properties of neutron-rich nuclei and neutron-star crusts. After this, we review the impact neutron matter at even higher densities has on the mass-radius relation of neutron stars, thereby making contact with astrophysical observations.

  3. SEARCH FOR NEUTRON ANTI-NEUTRON OSCILLATION AT THE SUDBURY NEUTRINO OBSERVATORY

    E-Print Network [OSTI]

    Waltham, Chris

    SEARCH FOR NEUTRON ANTI-NEUTRON OSCILLATION AT THE SUDBURY NEUTRINO OBSERVATORY A Thesis Presented to explain the baryon asymmetry of the universe. In this thesis, a limit on the neutron anti-neutron (nnbar is sampled from the three phases of the SNO experiment to construct a three-phase blind analysis. The profile

  4. Neutron scattering and models: Titanium

    SciTech Connect (OSTI)

    Smith, A.B.

    1997-07-01T23:59:59.000Z

    Differential neutron elastic-scattering cross sections of elemental titanium were measured from 4.5 {r_arrow} 10.0 MeV in incident energy increments of {approx} 0.5 MeV. At each energy the measurements were made at forty or more scattering angles distributed between {approx} 17 and 160{degree}. Concurrently, differential neutron inelastic-scattering cross sections were measured for observed excitations of 0.975 {+-} 0.034, 1.497 {+-} 0.033, 2.322 {+-} 0.058, 3.252 {+-} 0.043, 3.700 {+-} 0.093, 4.317 {+-} 0.075 and 4.795 {+-} 0.100 MeV. All of the observed inelastically-scattered neutron groups were composites of contributions from several isotopes and/or levels. The experimental results were used to develop energy-average optical, statistical and coupled-channels models.

  5. THE DOUBLE PULSAR: EVIDENCE FOR NEUTRON STAR FORMATION WITHOUT AN IRON CORE-COLLAPSE SUPERNOVA

    SciTech Connect (OSTI)

    Ferdman, R. D.; Kramer, M.; Stappers, B. W.; Lyne, A. G. [School of Physics and Astronomy, University of Manchester, Jodrell Bank Centre for Astrophysics, Alan Turing Building, Oxford Road, Manchester M13 9PL (United Kingdom)] [School of Physics and Astronomy, University of Manchester, Jodrell Bank Centre for Astrophysics, Alan Turing Building, Oxford Road, Manchester M13 9PL (United Kingdom); Stairs, I. H. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)] [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Breton, R. P. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)] [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); McLaughlin, M. A. [Department of Physics, West Virginia University, Morgantown, WV 26505 (United States)] [Department of Physics, West Virginia University, Morgantown, WV 26505 (United States); Freire, P. C. C. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany)] [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Possenti, A. [INAF-Osservatorio Astronomico di Cagliari, Loc. Poggio dei Pini, I-09012 Capoterra (Italy)] [INAF-Osservatorio Astronomico di Cagliari, Loc. Poggio dei Pini, I-09012 Capoterra (Italy); Kaspi, V. M. [Department of Physics, McGill University, Ernest Rutherford Physics Building, 3600 University Street, Montreal, QC H3A 2T8 (Canada)] [Department of Physics, McGill University, Ernest Rutherford Physics Building, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Manchester, R. N., E-mail: ferdman@jb.man.ac.uk [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Epping, NSW 1710 (Australia)

    2013-04-10T23:59:59.000Z

    The double pulsar system PSR J0737-3039A/B is a double neutron star binary, with a 2.4 hr orbital period, which has allowed measurement of relativistic orbital perturbations to high precision. The low mass of the second-formed neutron star, as well as the low system eccentricity and proper motion, point to a different evolutionary scenario compared to most other known double neutron star systems. We describe analysis of the pulse profile shape over 6 years of observations and present the resulting constraints on the system geometry. We find the recycled pulsar in this system, PSR J0737-3039A, to be a near-orthogonal rotator with an average separation between its spin and magnetic axes of 90 Degree-Sign {+-} 11 Degree-Sign {+-} 5 Degree-Sign . Furthermore, we find a mean 95% upper limit on the misalignment between its spin and orbital angular momentum axes of 3. Degree-Sign 2, assuming that the observed emission comes from both magnetic poles. This tight constraint lends credence to the idea that the supernova that formed the second pulsar was relatively symmetric, possibly involving electron capture onto an O-Ne-Mg core.

  6. Evolution of magnetized, differentially rotating neutron stars: Simulations in full general relativity

    E-Print Network [OSTI]

    Matthew D. Duez; Yuk Tung Liu; Stuart L. Shapiro; Masaru Shibata; Branson C. Stephens

    2006-05-12T23:59:59.000Z

    We study the effects of magnetic fields on the evolution of differentially rotating neutron stars, which can form in stellar core collapse or binary neutron star coalescence. Magnetic braking and the magnetorotational instability (MRI) both redistribute angular momentum; the outcome of the evolution depends on the star's mass and spin. Simulations are carried out in axisymmetry using our recently developed codes which integrate the coupled Einstein-Maxwell-MHD equations. For initial data, we consider three categories of differentially rotating, equilibrium configurations, which we label normal, hypermassive and ultraspinning. Hypermassive stars have rest masses exceeding the mass limit for uniform rotation. Ultraspinning stars are not hypermassive, but have angular momentum exceeding the maximum for uniform rotation at the same rest mass. We show that a normal star will evolve to a uniformly rotating equilibrium configuration. An ultraspinning star evolves to an equilibrium state consisting of a nearly uniformly rotating central core, surrounded by a differentially rotating torus with constant angular velocity along magnetic field lines, so that differential rotation ceases to wind the magnetic field. In addition, the final state is stable against the MRI, although it has differential rotation. For a hypermassive neutron star, the MHD-driven angular momentum transport leads to catastrophic collapse of the core. The resulting rotating black hole is surrounded by a hot, massive, magnetized torus undergoing quasistationary accretion, and a magnetic field collimated along the spin axis--a promising candidate for the central engine of a short gamma-ray burst. (Abridged)

  7. Spin dynamics, short range order and spin freezing in Y0.5Ca0.5BaCo4O7

    SciTech Connect (OSTI)

    Stewart, John Ross [ISIS Facility, Rutherford Appleton Laboratory; Ehlers, Georg [ORNL; Fouquet, Peter [Institut Laue-Langevin (ILL); Mutka, Hannu [Institut Laue-Langevin (ILL); Payen, Christophe [Institut des Materiaux Jean Rouxel (IMN), Universite de Nantes-CNRS; Lortz, Rolf [University of Geneva

    2011-01-01T23:59:59.000Z

    Y0.5Ca0.5BaCo4O7 was recently introduced as a possible candidate for capturing some of the predicted classical spin kagome ground-state features. Stimulated by this conjecture, we have taken up a more complete study of the spin correlations in this compound with neutron scattering methods on a powder sample characterized with high-resolution neutron diffraction and the temperature dependence of magnetic susceptibility and specific heat. We have found that the frustrated near-neighbor magnetic correlations involve not only the kagome planes but concern the full Co sublattice, as evidenced by the analysis of the wave-vector dependence of the short-range order. We conclude from our results that the magnetic moments are located on the Co sublattice as a whole and that correlations extend beyond the two-dimensional kagome planes. We identify intriguing dynamical properties, observing high-frequency fluctuations with a Lorentzian linewidth G?20 meV at ambient temperature. On cooling a low-frequency ({approx}1 meV) dynamical component develops alongside the high-frequency fluctuations, which eventually becomes static at temperatures below T {approx} 50 K. The high-frequency response with an overall linewidth of {approx}10 meV prevails at T?2 K, coincident with a fully elastic short-range-ordered contribution.

  8. Project of Rotating Carbon High-Power Neutron Target. Research of Graphite Properties for Production of High Intensity Neutron Source

    E-Print Network [OSTI]

    Gubin, K V; Bak, P A; Kot, N K; Logatchev, P V

    2001-01-01T23:59:59.000Z

    Project of Rotating Carbon High-Power Neutron Target. Research of Graphite Properties for Production of High Intensity Neutron Source

  9. The magnetic and crystal structures of Sr2IrO4: A neutron diffraction study

    SciTech Connect (OSTI)

    Ye, Feng [ORNL; Chi, Songxue [ORNL; Chakoumakos, Bryan C [ORNL; Fernandez-Baca, Jaime A [ORNL; Qi, Tongfei [University of Kentucky; Cao, Gang [University of Kentucky

    2013-01-01T23:59:59.000Z

    We report a single-crystal neutron diffraction study of the layered Sr2IrO4. This work unambigu- ously determines the magnetic and crystal structures, and reveals that the spin orientation rigidly tracks the staggered rotation of the IrO6 octahedra in Sr2IrO4. The long-range antiferromagnetic order has a canted spin configuration with an ordered moment of 0.208(3) B/Ir site within the basal plane; a detailed examination of the spin canting yields 0.202(3) and 0.049(2) B/site for the a-axis and the b-axis, respectively. It is intriguing that forbidden nuclear reflections of space group I41/acd are also observed in a wide temperature range from 4 K to 600 K, which suggests a reduced crystal structure symmetry. This neutron scattering work provides a direct, well-refined experimen- tal characterization of the magnetic and crystal structures that are crucial to the understanding of the unconventional magnetism existent in this unusual magnetic insulator.

  10. Near-yrast, medium-spin structure of {sup 143}Xe

    SciTech Connect (OSTI)

    Rzaca-Urban, T. [Faculty of Physics, University of Warsaw, ulica Hoza 69, PL-00-681 Warsaw (Poland); Urban, W. [Faculty of Physics, University of Warsaw, ulica Hoza 69, PL-00-681 Warsaw (Poland); Institut Laue-Langevin, 6 rue J. Horowitz, F-38042 Grenoble Cedex 9 (France); Pinston, J. A. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, F-38026 Grenoble Cedex (France); Smith, A. G. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Ahmad, I. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2011-06-15T23:59:59.000Z

    Excited states in {sup 143}Xe, populated in spontaneous fission of {sup 248}Cm, are studied by means of {gamma} spectroscopy using the EUROGAM 2 Ge array. We identify three rotational bands in {sup 143}X: a decoupled band originating from the i{sub 13/2} neutron excitation, a strongly coupled band based on the 5/2{sup -} ground state, and a decoupled band based on the 322.9-keV level with spin 9/2. The new excitation scheme of {sup 143}Xe is compared to quasiparticle-rotor model calculations, performed with a reflection-symmetric potential.

  11. CHINA SPALLATION NEUTRON SOURCE DESIGN.

    SciTech Connect (OSTI)

    WEI,J.

    2007-01-29T23:59:59.000Z

    The China Spallation Neutron Source (CSNS) is an accelerator-based high-power project currently in preparation under the direction of the Chinese Academy of Sciences (CAS). The complex is based on an H- linear accelerator, a rapid cycling proton synchrotron accelerating the beam to 1.6 GeV, a solid tungsten target station, and five initial instruments for spallation neutron applications. The facility will operate at 25 Hz repetition rate with a phase-I beam power of about 120 kW. The major challenge is to build a robust and reliable user's facility with upgrade potential at a fractional of ''world standard'' cost.

  12. High-pressure neutron diffraction

    SciTech Connect (OSTI)

    Xu, Hongwu [Los Alamos National Laboratory

    2011-01-10T23:59:59.000Z

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  13. Nuclear Physics of Neutron Stars

    E-Print Network [OSTI]

    J. Piekarewicz

    2009-01-28T23:59:59.000Z

    Understanding the equation of state (EOS) of cold nuclear matter, namely, the relation between the pressure and energy density, is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova, all depend critically on the equation of state of hadronic matter. In this contribution I will concentrate on the special role that nuclear physics plays in constraining the EOS of cold baryonic matter and its impact on the properties of neutron stars.

  14. Protein crystallography with spallation neutrons

    SciTech Connect (OSTI)

    Langan, P. (Paul); Schoenborn, Benno P.

    2003-01-01T23:59:59.000Z

    proteins and oriented molecular complexes. With spallation neutrons and their time dependent wavelength structure, one can select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved diffraction data. This optimizes data quality with best peak to background ratios and provides spatial and energy resolution to eliminate peak overlaps. Such a Protein Crystallography Station (PCS) has been built and tested at Los Alamos Neutron Science Center. A partially coupled moderator is used to increase flux and data are collected by a Cylindrical He3 detector covering 120' with 200mm height. The PCS is described along with examples of data collected from a number of proteins.

  15. Spin transport parameters in metallic multilayers determined by ferromagnetic resonance measurements of spin-pumping

    SciTech Connect (OSTI)

    Boone, C. T.; Nembach, Hans T.; Shaw, Justin M.; Silva, T. J. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2013-04-21T23:59:59.000Z

    We measured spin-transport in nonferromagnetic (NM) metallic multilayers from the contribution to damping due to spin pumping from a ferromagnetic Co{sub 90}Fe{sub 10} thin film. The multilayer stack consisted of NM{sub 1}/NM{sub 2}/Co{sub 90}Fe{sub 10}(2 nm)/NM{sub 2}/NM{sub 3} with varying NM materials and thicknesses. Using conventional theory for one-dimensional diffusive spin transport in metals, we show that the effective damping due to spin pumping can be strongly affected by the spin transport properties of each NM in the multilayer, which permits the use of damping measurements to accurately determine the spin transport properties of the various NM layers in the full five-layer stack. We find that due to its high electrical resistivity, amorphous Ta is a poor spin conductor, in spite of a short spin-diffusion length of 1.0 nm, and that Pt is an excellent spin conductor by virtue of its low electrical resistivity and a spin diffusion length of only 0.5 nm. Spin Hall effect measurements may have underestimated the spin Hall angle in Pt by assuming a much longer spin diffusion length.

  16. Final Report - Nucelar Astrophysics & Neutron Cross Section Measurements

    SciTech Connect (OSTI)

    Carlton, Robert F

    2009-12-01T23:59:59.000Z

    This enduring research program of 28 years has taken advantage of the excellent research facility of ORELA at Oak Ridge National Laboratory. The fruitful collaborations include a number of scientists from ORNL and some from LASL. This program which has ranged from nuclear structure determinations to astrophysical applications has resulted in the identification and/or the refinement of the nuclear properties of more than 5,000 nuclear energy levels or compound energy states. The nuclei range from 30Si to 250Cf, the probes range from thermal to 50 MeV neutrons, and the studies range from capture gamma ray spectra to total and differential scattering and absorption cross sections. Specific target nuclei studied include the following: 120Sn 124Sn 125Sn 113Sn 115Sn 117Sn 119Sn 249Cf 33S 34S 249Bk 186Os 187Os 188Os 30Si 32S 40Ca 48Ca 60Ni 54Fe 86Kr 88Sr 40Ar 122Sn 90Zr 122Sn(n,?) 208Pb 204Pb 52Cr 54Cr 50Cr 53Cr As can be seen, we have studied, on average, more than one isotope per year of grant funding and have focused on exploiting those elements having multiple isotopes in order to investigate systematic trends in nuclear properties, for the purpose of providing more stringent tests of the nuclear spherical optical model with a surface imaginary potential. We have investigated an l-dependence of the real-well depth of the spherical optical model; we have used these measurements to deduce the existence of doorway states in the compound nucleus; and in the total cross section measurements we have, in addition to resonance energies and widths, obtained values for the level density and neutron strength function. Due to the high neutron energy resolution of the ORELA and in some cases the addition of differential scattering cross section data, we have been able to disaggregate the spin states and provide level spacing and strength function for each partial wave in the neutron-nucleus interaction, in some cases up to d5/2. In the following we will summarize the most recent analyses of neutron total cross section measurements, some of which have not been previously reported.

  17. A neutron transmission study of environmental Gd

    E-Print Network [OSTI]

    Cristiana Oprea; Ioan Alexandru Oprea; Alexandru Mihul

    2014-06-02T23:59:59.000Z

    A new method for the determination of environmental Gd by neutron transmission (NT) experiments is proposed. The NT method is based on the measurements of neutron spectra passing through a target. From the attenuation neutron spectra new data as concentration, width, resonance energies and cross section have been obtained.

  18. Measurements of the Thermal Neutron Scattering Kernel

    E-Print Network [OSTI]

    Danon, Yaron

    Measurements of the Thermal Neutron Scattering Kernel Li (Emily) Liu, Yaron Danon, Bjorn Becker and discussions Problems and Future study Questions #12;3 M. Mattes and J. Keinert, Thermal Neutron Scattering experimental data used was from 1973-1974! M. Mattes and J. Keinert, Thermal Neutron Scattering Data

  19. Neutron Scattering Studies of Correlated Electron Systems

    E-Print Network [OSTI]

    Boothroyd, Andrew

    Neutron Scattering Studies of Correlated Electron Systems Lucy Helme Thesis submitted submitted for the Degree of Doctor of Philosophy, Trinity Term 2006 This thesis presents neutron scatteringO2, through inelastic neutron scattering studies of the crystal field transitions above and below

  20. RisR1125(EN) Neutron Scattering

    E-Print Network [OSTI]

    Risø­R­1125(EN) Neutron Scattering Studies of Modulated Magnetic Structures Steen Aagaard Sørensen investigations of the magnetic systems DyFe4Al8 and MnSi by neutron scattering and in the former case also by X and the correlations between the scattering entities of the sample. The theoretical framework of neutron scattering