National Library of Energy BETA

Sample records for neutron spin echo

  1. Three-dimensional magnetic spin-echo small-angle neutron scattering and neutron depolarization: A comparison

    SciTech Connect (OSTI)

    Rekveldt, M. Theo; Dijk, Niels H. van; Grigoriev, Serguei V.; Kraan, Wicher H.; Bouwman, Wim G. [Department of Radiation, Radionuclides and Reactors, Faculty of Applied Sciences, Delft University of Technology, 2629 JB Delft (Netherlands); Petersburg Nuclear Physics Institute, 188300 Gatchina, St-Petersburg District (Russian Federation); Department of Radiation, Radionuclides and Reactors, Faculty of Applied Sciences, Delft University of Technology, 2629 JB Delft (Netherlands)

    2006-07-15

    The recently developed magnetic spin-echo small-angle neutron scattering (SANS) technique provides unique information about the distance correlation of the local vector magnetization as a function of the spin-echo length within a magnetic material. The technique probes the magnetic correlations on a length scale from 10 nm up to 10 {mu}m within the bulk of a magnetic material by evaluating the Larmor precession of a polarized neutron beam in a spin-echo setup. The characteristics of the spin-echo SANS technique are discussed and compared to those of the more conventional neutron depolarization technique. Both of these techniques probe the average size of the magnetic inhomogeneities and the local magnetic texture. The magnetic spin-echo SANS technique gives information on the size distribution of these magnetic inhomogeneities perpendicular to the beam and, in principle, independent on the local magnetic induction. This information is not accessible by the neutron depolarization technique that gives the average size parallel to the beam multiplied with the square of the local magnetic induction. The basic possibilities of the magnetic spin-echo SANS technique are demonstrated by experiments on samples with a strong magnetic texture.

  2. Observation of gravitationally induced vertical striation of polarized ultracold neutrons by spin-echo spectroscopy

    E-Print Network [OSTI]

    S. Afach; N. J. Ayres; G. Ban; G. Bison; K. Bodek; Z. Chowdhuri; M. Daum; M. Fertl; B. Franke; W. C. Griffith; Z. D. Gruji?; P. G. Harris; W. Heil; V. Hélaine; M. Kasprzak; Y. Kermaidic; K. Kirch; P. Knowles; H. -C. Koch; S. Komposch; A. Kozela; J. Krempel; B. Lauss; T. Lefort; Y. Lemière; A. Mtchedlishvili; M. Musgrave; O. Naviliat-Cuncic; J. M. Pendlebury; F. M. Piegsa; G. Pignol; C. Plonka-Spehr; P. N. Prashanth; G. Quéméner; M. Rawlik; D. Rebreyend; D. Ries; S. Roccia; D. Rozpedzik; P. Schmidt-Wellenburg; N. Severijns; J. A. Thorne; A. Weis; E. Wursten; G. Wyszynski; J. Zejma; J. Zenner; G. Zsigmond

    2015-09-08

    We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a $|B_0|=1~\\text{\\mu T}$ magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCN of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of $1.1~\\text{pT/cm}$. This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime.

  3. Functional Domain Motions in Proteins on the 1 100 ns Timescale: Comparison of Neutron Spin-Echo Spectroscopy of Phosphoglycerate Kinase with Molecular-Dynamics Simulation

    SciTech Connect (OSTI)

    Smolin, Nikolai [ORNL; Biehl, R [Southern Methodist University, Dallas; Kneller, Gerald [University of Orleans; Richter, Dieter O [ORNL; Smith, Jeremy C [ORNL

    2011-01-01

    Protein function often requires large-scale domain motion. An exciting new development in the experimental characterization of domain motions in proteins is the application of neutron spin-echo spectroscopy (NSE). NSE directly probes coherent (i.e., pair correlated) scattering on the 1 100 ns timescale. Here, we report on all-atom molecular-dynamics (MD) simulation of a protein, phosphoglycerate kinase, from which we calculate small-angle neutron scattering (SANS) and NSE scattering properties. The simulation-derived and experimental-solution SANS results are in excellent agreement. The contributions of translational and rotational whole-molecule diffusion to the simulation-derived NSE and potential problems in their estimation are examined. Principal component analysis identifies types of domain motion that dominate the internal motion's contribution to the NSE signal, with the largest being classic hinge bending. The associated free-energy profiles are quasiharmonic and the frictional properties correspond to highly overdamped motion. The amplitudes of the motions derived by MD are smaller than those derived from the experimental analysis, and possible reasons for this difference are discussed. The MD results confirm that a significant component of the NSE arises from internal dynamics. They also demonstrate that the combination of NSE with MD is potentially useful for determining the forms, potentials of mean force, and time dependence of functional domain motions in proteins.

  4. Electrical detection of spin echoes for phosphorus donors in silicon

    E-Print Network [OSTI]

    Hans Huebl; Felix Hoehne; Benno Grolik; Andre R. Stegner; Martin Stutzmann; Martin S. Brandt

    2007-12-02

    The electrical detection of spin echoes via echo tomography is used to observe decoherence processes associated with the electrical readout of the spin state of phosphorus donor electrons in silicon near a SiO$_2$ interface. Using the Carr-Purcell pulse sequence, an echo decay with a time constant of $1.7\\pm0.2 \\rm{\\mu s}$ is observed, in good agreement with theoretical modeling of the interaction between donors and paramagnetic interface states. Electrical spin echo tomography thus can be used to study the spin dynamics in realistic spin qubit devices for quantum information processing.

  5. Spin echo without an external permanent magnetic field

    E-Print Network [OSTI]

    Joakim Bergli; Leonid Glazman

    2006-09-19

    The spin echo techniques aim at the elimination of the effect of a random magnetic field on the spin evolution. These techniques conventionally utlize the application of a permanent field which is much stronger than the random one. The strong field, however, may also modify the magnetic response of the medium containing the spins, thus altering their ``natural'' dynamics. We suggest an iterative scheme for generating a sequence of pulses which create an echo without an external permanent field. The approximation to the ideal echo improves with the sequence length.

  6. Dynamic neutron scattering on incoherent systems using efficient resonance spin flip techniques

    SciTech Connect (OSTI)

    Häussler, Wolfgang [Heinz Maier-Leibnitz Zentrum, Technische Universität München, D-85748 Garching, Germany and Physik-Department E21, Technische Universität München, D-85748 Garching (Germany); Kredler, Lukas [Physik-Department E21, Technische Universität München, D-85748 Garching (Germany)

    2014-05-15

    We have performed numerical ray-tracing Monte-Carlo-simulations of incoherent dynamic neutron scattering experiments. We intend to optimize the efficiency of incoherent measurements depending on the fraction of neutrons scattered without and with spin flip at the sample. In addition to conventional spin echo, we have numerically and experimentally studied oscillating intensity techniques. The results point out the advantages of these different spin echo variants and are an important prerequisite for neutron resonance spin echo instruments like RESEDA (FRM II, Munich), to choose the most efficient technique depending on the scattering vector range and the properties of the sample system under study.

  7. Pulsed Nuclear Magnetic Resonance: Spin Echoes MIT Department of Physics

    E-Print Network [OSTI]

    Seager, Sara

    Pulsed Nuclear Magnetic Resonance: Spin Echoes MIT Department of Physics (Dated: February 5, 2014) In this experiment, the phenomenon of Nuclear Magnetic Resonance (NMR) is used to determine the magnetic moments-factor in atomic spectroscopy and is given by g = (µ/µN )/I, (2) and µN is the nuclear magneton, e /2mp

  8. Quantum and classical correlations in electron-nuclear spin echo

    SciTech Connect (OSTI)

    Zobov, V. E.

    2014-11-15

    The quantum properties of dynamic correlations in a system of an electron spin surrounded by nuclear spins under the conditions of free induction decay and electron spin echo have been studied. Analytical results for the time evolution of mutual information, classical part of correlations, and quantum part characterized by quantum discord have been obtained within the central-spin model in the high-temperature approximation. The same formulas describe discord in both free induction decay and spin echo although the time and magnetic field dependences are different because of difference in the parameters entering into the formulas. Changes in discord in the presence of the nuclear polarization ?{sub I} in addition to the electron polarization ?{sub S} have been calculated. It has been shown that the method of reduction of the density matrix to a two-spin electron-nuclear system provides a qualitatively correct description of pair correlations playing the main role at ?{sub S} ? ?{sub I} and small times. At large times, such correlations decay and multispin correlations ensuring nonzero mutual information and zero quantum discord become dominant.

  9. Selective Spectral Modulation of Strongly Coupled Spins with an Echo Top Refocusing Pulse in PRESS Sequences

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in PRESS Sequences Giulio Gambarota1,2,3 , Arnaud Bondon3,4 , Marie Le Floch5,6 , Robert V. Mulkern7; double spin echo; refocusing pulses; coherence transfer; density matrix theory; PRESS; citrate.12.014 #12;2 Abstract The double spin echo is the basis of the point resolved spectroscopy (PRESS) sequence

  10. Superconducting magnetic Wollaston prism for neutron spin encoding

    SciTech Connect (OSTI)

    Li, F., E-mail: fankli@indiana.edu; Parnell, S. R.; Wang, T.; Baxter, D. V. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States)] [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Hamilton, W. A. [Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)] [Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Maranville, B. B. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)] [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Semerad, R. [Ceraco Ceramic Coating GmbH, Ismaning 85737 (Germany)] [Ceraco Ceramic Coating GmbH, Ismaning 85737 (Germany); Cremer, J. T. [Adelphi Technology Inc., Redwood City, California 94063 (United States)] [Adelphi Technology Inc., Redwood City, California 94063 (United States); Pynn, R. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States) [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)

    2014-05-15

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ?30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ?98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 ?m. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

  11. Segmentation of Spin-Echo MRI brain images: a comparison study of Crisp and Fuzzy algorithms 

    E-Print Network [OSTI]

    Chung, Maranatha

    1993-01-01

    This thesis presents a scheme for segmenting Spin-Echo MRI brain images based on Fuzzy C-Mean (FCM) clustering techniques. This scheme consists of feature extraction, feature conditioning or evaluation, and thresholded FCM clustering. Feature...

  12. Spin in the Neutron | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the Neutron NEWPORT NEWS, Va. - Puzzling out the source of proton and neutron spin is part of the ongoing experimental effort at Jefferson Lab to understand their structure and...

  13. Spin echo dynamics under an applied drift field in graphene nanoribbon superlattices

    SciTech Connect (OSTI)

    Prabhakar, Sanjay; Melnik, Roderick; Gregorio Millan Institute, Universidad Carlos III de Madrid, 28911 Leganes ; Bonilla, Luis L.; Raynolds, James E.

    2013-12-02

    We investigate the evolution of spin dynamics in graphene nanoribbon superlattices (GNSLs) with armchair and zigzag edges in the presence of a drift field. We determine the exact evolution operator and show that it exhibits spin echo phenomena due to rapid oscillations of the quantum states along the ribbon. The evolution of the spin polarization is accompanied by strong beating patterns. We also provide detailed analysis of the band structure of GNSLs with armchair and zigzag edges.

  14. Spin Control for Ultracold Neutrons Jeff Martin

    E-Print Network [OSTI]

    Martin, Jeff

    to make lots of neutrons: Liberate them from nuclei! 1) In a nuclear reactor (fission). 2 Spin Control for Ultracold Neutrons Jeff Martin The University of Winnipeg August 2009 research Ridge, Tennessee, www.sns.gov ReactorAccelerator #12;How to make UCN Liberate neutrons

  15. Pulsed Gradient Spin Echo Nuclear Magnetic Resonance Imaging of Diffusion in Granular Flow

    SciTech Connect (OSTI)

    Seymour, Joseph D.; Caprihan, Arvind; Altobelli, Stephen A.; Fukushima, Eiichi

    2000-01-10

    We derive the formalism to obtain spatial distributions of collisional correlation times for macroscopic particles undergoing granular flow from pulsed gradient spin echo nuclear magnetic resonance diffusion data. This is demonstrated with an example of axial motion in the shear flow regime of a 3D granular flow in a horizontal rotating cylinder at one rotation rate. (c) 2000 The American Physical Society.

  16. Neutron resonance spin flippers: Static coils manufactured by electrical discharge machining

    SciTech Connect (OSTI)

    Martin, N.; Kredler, L.; Häußler, W. [Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching (Germany); Physik-Department E21, Technische Universität München, 85748 Garching (Germany); Wagner, J. N. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Dogu, M.; Fuchs, C. [Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching (Germany); Böni, P. [Physik-Department E21, Technische Universität München, 85748 Garching (Germany)

    2014-07-15

    Radiofrequency spin flippers (RFSF) are key elements of Neutron Resonance Spin Echo (NRSE) spectrometers, which allow performing controlled manipulations of the beam polarization. We report on the design and test of a new type of RFSF which originality lies in the new manufacturing technique for the static coil. The largely automated procedure ensures reproducible construction as well as an excellent homogeneity of the neutron magnetic resonance condition over the coil volume. Two salient features of this concept are the large neutron window and the closure of the coil by a ?-metal yoke which prevents field leakage outside of the coil volume. These properties are essential for working with large beams and enable new applications with coils tilted with respect to the beam axis such as neutron Larmor diffraction or the study of dispersive excitations by inelastic NRSE.

  17. Neutron Resonance Spin Flippers: Static Coils Manufactured by Electrical Discharge Machining

    E-Print Network [OSTI]

    Martin, N; Dogú, M; Fuchs, C; Kredler, L; Böni, P; Häussler, W

    2014-01-01

    Radiofrequency spin flippers (RFSF) are key elements of Neutron Resonance Spin Echo (NRSE) spectrometers, which allow performing controlled manipulations of the beam polarization. We report on the design and test of a new type of RFSF which originality lies in the new manufacturing technique for the static coil. The largely automated procedure ensures reproducible construction as well as an excellent homogeneity of the neutron magnetic resonance condition over the coil volume. Two salient features of this concept are the large neutron window and the closure of the coil by a $\\mu$-metal yoke which prevents field leakage outside of the coil volume. These properties are essential for working with large beams and enable new applications with coils tilted with respect to the beam axis such as neutron Larmor diffraction or the study of dispersive excitations by inelastic NRSE.

  18. Neutron single target spin asymmetries in SIDIS

    SciTech Connect (OSTI)

    Evaristo Cisbani

    2010-04-01

    The experiment E06-010 in Hall A at Jefferson Lab took data between November 2008 and February 2009 to directly measure, for the first time, the pion (and kaon) single "neutron" target-spin asymmetry (SSA) in semi-inclusive DIS from a polarized 3He target. Collins, Sivers (and Pretzelosity) neutron asymmetries are going to be extracted from the measured SSA. Details of the experiment are described together with the preliminary results of the ongoing analysis. Near future Hall A experiments on transverse nucleon spin structure are shorty reviewed.

  19. Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe

    SciTech Connect (OSTI)

    Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.

    2015-10-26

    We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonance can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. As a result, the method can be applied to a wide range of solid-state systems.

  20. Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.

    2015-10-26

    We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonancemore »can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. As a result, the method can be applied to a wide range of solid-state systems.« less

  1. Dynamics of Air-Fluidized Granular System Measured by the Modulated Gradient Spin-echo

    E-Print Network [OSTI]

    Janez Stepisnik; Samo Lasic; Igor Sersa; Ales Mohoric; Gorazd Planinsic

    2005-10-05

    The power spectrum of displacement fluctuation of beads in the air-fluidized granular system is measured by a novel NMR technique of modulated gradient spin-echo. The results of measurement together with the related spectrum of the velocity fluctuation autocorrelation function fit well to an empiric formula based on to the model of bead caging between nearest neighbours; the cage breaks up after a few collisions \\cite{Menon1}. The fit yields the characteristic collision time, the size of bead caging and the diffusion-like constant for different degrees of system fluidization. The resulting mean squared displacement increases proportionally to the second power of time in the short-time ballistic regime and increases linearly with time in the long-time diffusion regime as already confirmed by other experiments and simulations.

  2. Loschmidt echo in many-spin systems: contrasting time-scales of local and global measurements

    E-Print Network [OSTI]

    Pablo R. Zangara; Denise Bendersky; Patricia R. Levstein; Horacio M. Pastawski

    2015-08-28

    A local excitation in a quantum many-spin system evolves deterministically. A time-reversal procedure, involving the inversion of the signs of every energy and interaction, should produce the excitation revival. This idea, experimentally coined in NMR, embodies the concept of the Loschmidt echo (LE). While such an implementation involves a single spin autocorrelation $M_{1,1}$, i.e. a local LE, theoretical efforts have focused on the study of the recovery probability of a complete many-body state, referred here as global or many-body LE $M_{MB}$. Here, we analyze the relation between these magnitudes, in what concerns to their characteristic time scales and their dependence on the number of spins $N$. We show that the global LE can be understood, to some extent, as the simultaneous occurrence of $N$ independent local LEs, i.e. $M_{MB}\\sim \\left( M_{1,1}\\right) ^{N/4}$. This extensive hypothesis is exact for very short times and confirmed numerically beyond such a regime. Furthermore, we discuss a general picture of the decay of $M_{1,1}$ as a consequence of the interplay between the time scale that characterizes the reversible interactions ($T_{2}$) and that of the perturbation ($\\tau _{\\Sigma }$). Our analysis suggests that the short time decay, characterized by the time scale $\\tau _{\\Sigma }$, is greatly enhanced by the complex processes that occur beyond $T_{2}$ . This would ultimately lead to the experimentally observed $T_{3},$ which was found to be roughly independent of $\\tau _{\\Sigma }$ but closely tied to $T_{2}$.

  3. Neutron Interferometry with Polarized Spin States Frank Rioux

    E-Print Network [OSTI]

    Rioux, Frank

    Neutron Interferometry with Polarized Spin States Frank Rioux Department of Chemistry CSB|SJU The following paragraph appears in an encyclopedia entry on neutron optics.(1) A description of the original through the quantum math of the neutron interferometry experiment described here. One of the most

  4. Use of earth field spin echo NMR to search for liquid minerals

    DOE Patents [OSTI]

    Stoeffl, Wolfgang (Livermore, CA)

    2001-01-01

    An instrument for measuring the spatial, qualitative and quantitative parameters of an underground nuclear magnetic resonance (NMR) active liquid mineral deposit, including oil and water. A phased array of excitation and receiver antennas on the surface and/or in a borehole excites the NMR active nuclei in the deposit, and using known techniques from magnetic resonance imaging (MRI), the spatial and quantitative distribution of the deposit can be measured. A surface array may utilize, for example, four large (50-500 diameter) diameter wire loops laid on the ground surface, and a weak (1.5-2.5 kHz) alternating current (AC) field applied, matching the NMR frequency of hydrogen in the rather flat and uniform earth magnetic field. For a short duration (a few seconds) an additional gradient field can be generated, superimposed to the earth field, by applying direct current (DC) to the grid (wire loops), enhancing the position sensitivity of the spin-echo and also suppressing large surface water signals by shifting them to a different frequency. The surface coil excitation can be combined with downhole receivers, which are much more radio-quiet compared to surface receivers, and this combination also enhances the position resolution of the MRI significantly. A downhole receiver module, for example, may have a 5.5 inch diameter and fit in a standard six inch borehole having a one-quarter inch thick stainless steel casing. The receiver module may include more than one receiver units for improved penetration and better position resolution.

  5. Spin paramagnetic deformation of a neutron star

    E-Print Network [OSTI]

    Suvorov, A G; Melatos, A

    2015-01-01

    Quantum mechanical corrections to the hydromagnetic force balance equation, derived from the microscopic Schr\\"{o}dinger-Pauli theory of quantum plasmas, modify the equilibrium structure and hence the mass quadrupole moment of a neutron star. It is shown here that the dominant effect --- spin paramagnetism --- is most significant in a magnetar, where one typically has $\\mu_{B}|\\boldsymbol{B}|\\gtrsim k_B T_e$, where $\\mu_{B}$ is the Bohr magneton, $\\boldsymbol{B}$ is the magnetic field, and $T_e$ is the electron temperature. The spin paramagnetic deformation of a nonbarotropic magnetar with a linked poloidal-toroidal magnetic field is calculated to be up to ${{\\sim 10}}$ times greater than the deformation caused solely by the Lorentz force. It depends on the degree of Pauli blocking by conduction electrons and the propensity to form magnetic domains, processes which are incompletely modelled at magnetar field strengths. The star becomes more oblate, as the toroidal field component strengthens. The result impli...

  6. Binary Neutron Stars with Arbitrary Spins in Numerical Relativity

    E-Print Network [OSTI]

    Tacik, Nick; Pfeiffer, Harald P; Haas, Roland; Ossokine, Serguei; Kaplan, Jeff; Muhlberger, Curran; Duez, Matt D; Kidder, Lawrence E; Scheel, Mark A; Szilágyi, Béla

    2015-01-01

    We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasi-local angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of $\\sim 2\\times 10^{-4}$. Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin- and orbit-precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to $\\sim 0.1\\%$. The neutron stars show quasi-normal mode oscillations at an amplitude which increases with the rotation rate of the stars.

  7. Binary Neutron Stars with Arbitrary Spins in Numerical Relativity

    E-Print Network [OSTI]

    Nick Tacik; Francois Foucart; Harald P. Pfeiffer; Roland Haas; Serguei Ossokine; Jeff Kaplan; Curran Muhlberger; Matt D. Duez; Lawrence E. Kidder; Mark A. Scheel; Béla Szilágyi

    2015-08-27

    We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasi-local angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of $\\sim 2\\times 10^{-4}$. Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin- and orbit-precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to $\\sim 0.1\\%$. The neutron stars show quasi-normal mode oscillations at an amplitude which increases with the rotation rate of the stars.

  8. Spin diffusive modes and thermal transport in neutron star crusts

    E-Print Network [OSTI]

    Sedrakian, Armen

    2015-01-01

    In this contribution we first review a method for obtaining the collective modes of pair-correlated neutron matter as found in a neutron star inner crust. We discuss two classes of modes corresponding to density and spin perturbations with energy spectra $\\omega = \\omega_0 + \\alpha q^2$, where $\\omega_0 = 2\\Delta$ is the threshold frequency and $\\Delta$ is the gap in the neutron fluid spectrum. For characteristic values of Landau parameters in neutron star crusts the exitonic density modes have $\\alpha 0$ and they exist above $\\omega_0$ which implies that these modes are damped. As an application of these findings we compute the thermal conductivity due to spin diffusive modes and show that it scales as $T^{1/2} \\exp(-2\\omega_0/T)$ in the case where their two-by-two scattering cross-section is weakly dependent on temperature.

  9. Spin-orbit correlation energy in neutron matter

    E-Print Network [OSTI]

    M. Baldo; C. Maieron

    2003-11-20

    We study the relevance of the energy correlation produced by the two-body spin-orbit coupling present in realistic nucleon-nucleon potentials. To this purpose, the neutron matter Equation of State (EoS) is calculated with the realistic two-body Argonne $v_8'$ potential. The shift occuring in the EoS when spin-orbit terms are removed is taken as an estimate of the spin-orbit correlation energy. Results obtained within the Bethe-Brueckner-Goldstone expansion, extended up to three hole-line diagrams, are compared with other many-body calculations recently presented in the literature. In particular, excellent agreement is found with the Green's function Monte-Carlo method. This agreement indicates the present theoretical accuracy in the calculation of the neutron matter EoS.

  10. Eccentric mergers of black holes with spinning neutron stars

    E-Print Network [OSTI]

    William E. East; Vasileios Paschalidis; Frans Pretorius

    2015-06-26

    We study dynamical capture binary black hole-neutron star (BH-NS) mergers focusing on the effects of the neutron star spin. These events may arise in dense stellar regions, such as globular clusters, where the majority of neutron stars are expected to be rapidly rotating. We initialize the BH-NS systems with positions and velocities corresponding to marginally unbound Newtonian orbits, and evolve them using general-relativistic hydrodynamical simulations. We find that even moderate spins can significantly increase the amount of mass in unbound material. In some of the more extreme cases, there can be up to a third of a solar mass in unbound matter. Similarly, large amounts of tidally stripped material can remain bound and eventually accrete onto the BH---as much as a tenth of a solar mass in some cases. These simulations demonstrate that it is important to treat neutron star spin in order to make reliable predictions of the gravitational wave and electromagnetic transient signals accompanying these sources.

  11. SPIN-DEPENDENT SCATTERING LENGTHS OF SLOW NEUTRONS WITH NUCLEI BY PSEUDOMAGNETIC MEASUREMENTS

    E-Print Network [OSTI]

    Boyer, Edmond

    L-263 SPIN-DEPENDENT SCATTERING LENGTHS OF SLOW NEUTRONS WITH NUCLEI BY PSEUDOMAGNETIC MEASUREMENTS vu par les noyaux. Abstract. - The spin-dependent scattering length of slow neutrons by the nuclei 23 can be of practical importance in many thermal neutron scattering experiments. A new method, called

  12. Spin-dependent scattering and absorption of thermal neutrons on dynamically polarized nuclei

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    957 Spin-dependent scattering and absorption of thermal neutrons on dynamically polarized nuclei H neutrons and polarized nuclei have been used to measure spin-dependent scattering lengths and absorption cross sections of slow (S-wave) neutrons on nuclei. In order to obtain those scattering lengths

  13. Relativistic Simulations of Eccentric Binary Neutron Star Mergers: One-arm Spiral Instability and Effects of Neutron Star Spin

    E-Print Network [OSTI]

    East, William E; Pretorius, Frans; Shapiro, Stuart L

    2015-01-01

    We perform general-relativistic hydrodynamical simulations of dynamical capture binary neutron star mergers, emphasizing the role played by the neutron star spin. Dynamical capture mergers may take place in globular clusters, as well as other dense stellar systems, where most neutron stars have large spins. We find significant variability in the merger outcome as a function of initial neutron star spin. For cases where the spin is aligned with the orbital angular momentum, the additional centrifugal support in the remnant hypermassive neutron star can prevent the prompt collapse to a black hole, while for antialigned cases the decreased total angular momentum can facilitate the collapse to a black hole. We show that even moderate spins can significantly increase the amount of ejected material, including the amount unbound with velocities greater than half the speed of light, leading to brighter electromagnetic signatures associated with kilonovae and interaction of the ejecta with the interstellar medium. Fur...

  14. Magnetic resonance visualization of conductive structures by sequence-triggered direct currents and spin-echo phase imaging

    SciTech Connect (OSTI)

    Eibofner, Frank; Wojtczyk, Hanne; Graf, Hansjörg E-mail: drGraf@t-online.de; Clasen, Stephan

    2014-06-15

    Purpose: Instrument visualization in interventional magnetic resonance imaging (MRI) is commonly performed via susceptibility artifacts. Unfortunately, this approach suffers from limited conspicuity in inhomogeneous tissue and disturbed spatial encoding. Also, susceptibility artifacts are controllable only by sequence parameters. This work presents the basics of a new visualization method overcoming such problems by applying sequence-triggered direct current (DC) pulses in spin-echo (SE) imaging. SE phase images allow for background free current path localization. Methods: Application of a sequence-triggered DC pulse in SE imaging, e.g., during a time period between radiofrequency excitation and refocusing, results in transient field inhomogeneities. Dependent on the additional z-magnetic field from the DC, a phase offset results despite the refocusing pulse. False spatial encoding is avoided by DC application during periods when read-out or slice-encoding gradients are inactive. A water phantom containing a brass conductor (water equivalent susceptibility) and a titanium needle (serving as susceptibility source) was used to demonstrate the feasibility. Artifact dependence on current strength and orientation was examined. Results: Without DC, the brass conductor was only visible due to its water displacement. The titanium needle showed typical susceptibility artifacts. Applying triggered DC pulses, the phase offset of spins near the conductor appeared. Because SE phase images are homogenous also in regions of persistent field inhomogeneities, the position of the conductor could be determined with high reliability. Artifact characteristic could be easily controlled by amperage leaving sequence parameters unchanged. For an angle of 30° between current and static field visualization was still possible. Conclusions: SE phase images display the position of a conductor carrying pulsed DC free from artifacts caused by persistent field inhomogeneities. Magnitude and phase images are acquired simultaneously under the same conditions without the use of extra measurement time. The presented technique offers many advantages for precise instrument localization in interventional MRI.

  15. Asterix is a reflectometer/diffractometer/grazing-incidence-SANS/SESAME-enabled-SANS spectrometer that is primarily used for experiments or neutron scattering

    E-Print Network [OSTI]

    that is primarily used for experiments or neutron scattering techniques requiring polarized neutron beams detector arm is readily configurable for polarization or energy analysis of the scattered neutron beam be translated in the horizontal and vertical directions. Neutron detector (Spin Echo Scattering Angle

  16. MnO spin-wave dispersion curves from neutron powder diffraction

    SciTech Connect (OSTI)

    Goodwin, Andrew L.; Dove, Martin T.; Tucker, Matthew G.; Keen, David A.

    2007-02-15

    We describe a model-independent approach for the extraction of spin-wave dispersion curves from powder neutron total scattering data. Our approach is based on a statistical analysis of real-space spin configurations to calculate spin-dynamical quantities. The RMCPROFILE implementation of the reverse Monte Carlo refinement process is used to generate a large ensemble of supercell spin configurations from MnO powder diffraction data collected at 100 K. Our analysis of these configurations gives spin-wave dispersion curves for MnO that agree well with those determined independently using neutron triple-axis spectroscopic techniques.

  17. SPIN-PRECESSION: BREAKING THE BLACK HOLE-NEUTRON STAR DEGENERACY

    SciTech Connect (OSTI)

    Chatziioannou, Katerina; Cornish, Neil; Klein, Antoine; Yunes, Nicolás

    2015-01-01

    Mergers of compact stellar remnants are prime targets for the LIGO/Virgo gravitational wave detectors. The gravitational wave signals from these merger events can be used to study the mass and spin distribution of stellar remnants, and provide information about black hole horizons and the material properties of neutron stars. However, it has been suggested that degeneracies in the way that the star's mass and spin are imprinted in the waveforms may make it impossible to distinguish between black holes and neutron stars. Here we show that the precession of the orbital plane due to spin-orbit coupling breaks the mass-spin degeneracy, and allows us to distinguish between standard neutron stars and alternative possibilities, such as black holes or exotic neutron stars with large masses and spins.

  18. High-Efficiency Resonant RF Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    E-Print Network [OSTI]

    P. -N. Seo; L. Barron-Palos; J. D. Bowman; T. E. Chupp; C. Crawford; M. Dabaghyan; M. Dawkins; S. J. Freedman; T. Gentile; M. T. Gericke; R. C. Gillis; G. L. Greene; F. W. Hersman; G. L. Jones; M. Kandes; S. Lamoreaux; B. Lauss; M. B. Leuschner; R. Mahurin; M. Mason; J. Mei; G. S. Mitchell; H. Nann; S. A. Page; S. I. Penttila; W. D. Ramsay; A. Salas Bacci; S. Santra; M. Sharma; T. B. Smith; W. M. Snow; W. S. Wilburn; H. Zhu

    2007-10-15

    We have developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to RF neutron spin flippers based on adiabatic fast passage. The spin rotator does not change the kinetic energy of the neutrons and leaves the neutron beam phase space unchanged to high precision. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically-polarized 3He neutron spin filters. The efficiency of the spin rotator was measured to be 98.0+/-0.8% on resonance for neutron energies from 3.3 to 18.4 meV over the full phase space of the beam. As an example of the application of this device to an experiment we describe the integration of the RF spin rotator into an apparatus to search for the small parity-violating asymmetry A_gamma in polarized cold neutron capture on para-hydrogen by the NPDGamma collaboration at LANSCE.

  19. Calculation of the interaction of a neutron spin with an atomic electric field

    E-Print Network [OSTI]

    R. Golub; S. K. Lamoreaux

    1999-10-05

    The Thomas-Fermi approximation for an atomic wavefunction is used to calculate the interaction of a neutron spin with the atomic electric field, either through motional magnetic (v x E) or possibly electric (due to the possible existence of a neutron permanent electric dipole moment) couplings.

  20. Observation of spin-wave dispersion in Nd-Fe-B magnets using neutron Brillouin scattering

    SciTech Connect (OSTI)

    Ono, K. Inami, N.; Saito, K.; Takeichi, Y.; Kawana, D.; Yokoo, T.; Itoh, S.; Yano, M.; Shoji, T.; Manabe, A.; Kato, A.; Kaneko, Y.

    2014-05-07

    The low-energy spin-wave dispersion in polycrystalline Nd-Fe-B magnets was observed using neutron Brillouin scattering (NBS). Low-energy spin-wave excitations for the lowest acoustic spin-wave mode were clearly observed. From the spin-wave dispersion, we were able to determine the spin-wave stiffness constant D{sub sw} (100.0?±?4.9?meV.Å{sup 2}) and the exchange stiffness constant A (6.6 ± 0.3 pJ/m)

  1. Large volume high-pressure cell for inelastic neutron scattering W. Wang, D. A. Sokolov, A. D. Huxley, and K. V. Kamenev

    E-Print Network [OSTI]

    Hall, Christopher

    Large volume high-pressure cell for inelastic neutron scattering W. Wang, D. A. Sokolov, A. D for inelastic neutron scattering measurements of quantum fluids and solids Rev. Sci. Instrum. 84, 015101 (2013) TOF-SEMSANS--Time-of-flight spin-echo modulated small-angle neutron scattering J. Appl. Phys. 112

  2. Polarized and unpolarized neutron-scattering study of the dynamical spin susceptibility of YBa2Cu3O7

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    Polarized and unpolarized neutron-scattering study of the dynamical spin susceptibility of YBa2Cu3O to previous neutron- scattering data on YBa2Cu3O7 , theoretical interpretations of NMR data and current models, , is mea- sured by neutron scattering as a function of momentum q and energy . Neutron-scattering

  3. Upper bound on parity-violating neutron spin rotation in {sup 4}He

    SciTech Connect (OSTI)

    Snow, W. M.; Luo, D.; Walbridge, S. B.; Crawford, B. E.; Gan, K.; Micherdzinska, A. M.; Opper, A. K.; Heckel, B. R.; Swanson, H. E.; Sharapov, E. I.; Zhumabekova, V.

    2011-02-15

    We report an upper bound on parity-violating neutron spin rotation in {sup 4}He. This experiment is the most sensitive search for neutron-weak optical activity yet performed and represents a significant advance in precision in comparison to past measurements in heavy nuclei. The experiment was performed at the NG-6 slow-neutron beamline at the National Institute of Standards and Technology (NIST) Center for Neutron Research. Our result for the neutron spin rotation angle per unit length in {sup 4}He is d{phi}/dz=[+1.7{+-}9.1(stat.){+-}1.4(sys.)]x10{sup -7} rad/m. The statistical uncertainty is smaller than current estimates of the range of possible values of d{phi}/dz in n+{sup 4}He.

  4. Parameter estimation on gravitational waves from neutron-star binaries with spinning components

    E-Print Network [OSTI]

    Ben Farr; Christopher P. L. Berry; Will M. Farr; Carl-Johan Haster; Hannah Middleton; Kipp Cannon; Philip B. Graff; Chad Hanna; Ilya Mandel; Chris Pankow; Larry R. Price; Trevor Sidery; Leo P. Singer; Alex L. Urban; Alberto Vecchio; John Veitch; Salvatore Vitale

    2015-08-24

    Inspiraling binary neutron stars are expected to be one of the most significant sources of gravitational-wave signals for the new generation of advanced ground-based detectors. Advanced LIGO will begin operation in 2015 and we investigate how well we could hope to measure properties of these binaries should a detection be made in the first observing period. We study an astrophysically motivated population of sources (binary components with masses $1.2~\\mathrm{M}_\\odot$-$1.6~\\mathrm{M}_\\odot$ and spins of less than $0.05$) using the full LIGO analysis pipeline. While this simulated population covers the observed range of potential binary neutron-star sources, we do not exclude the possibility of sources with parameters outside these ranges; given the existing uncertainty in distributions of mass and spin, it is critical that analyses account for the full range of possible mass and spin configurations. We find that conservative prior assumptions on neutron-star mass and spin lead to average fractional uncertainties in component masses of $\\sim 16\\%$, with little constraint on spins (the median $90\\%$ upper limit on the spin of the more massive component is $\\sim 0.7$). Stronger prior constraints on neutron-star spins can further constrain mass estimates, but only marginally. However, we find that the sky position and luminosity distance for these sources are not influenced by the inclusion of spin; therefore, if LIGO detects a low-spin population of BNS sources, less computationally expensive results calculated neglecting spin will be sufficient for guiding electromagnetic follow-up.

  5. Spin polarized neutron matte and magnetic susceptibility within the Brueckner-Hartree-Fock approximation

    E-Print Network [OSTI]

    I. Vidaña; A. Polls; A. Ramos

    2001-11-19

    The Brueckner--Hartree--Fock formalism is applied to study spin polarized neutron matter properties. Results of the total energy per particle as a function of the spin polarization and density are presented for two modern realistic nucleon-nucleon interactions, Nijmegen II and Reid93. We find that the dependence of the energy on the spin polarization is practically parabolic in the full range of polarizations. The magnetic susceptibility of the system is computed. Our results show no indication of a ferromagnetic transition which becomes even more difficult as the density increases.

  6. Neutron Scattering Study on spin dynamics in superconducting (TlRb)2Fe4Se5

    SciTech Connect (OSTI)

    Chi, Songxue [ORNL; Ye, Feng [ORNL; Bao, Wei [Renmin University of China; Fang, Dr. Minghu [Zhejiang University; Wang, H.D. [Zhejiang University; Dong, C.H. [Zhejiang University; Savici, Andrei T [ORNL; Granroth, Garrett E [ORNL; Stone, Matthew B [ORNL; Fishman, Randy Scott [ORNL

    2013-01-01

    Spin dynamics in superconducting (Tl,Rb)2Fe4Se5 was investigated using the inelastic neutron scattering technique. Spin wave branches that span an energy range from 6.5 to 209 meV are success- fully described by a Heisenberg model whose dominant interactions include only the in-plane nearest (J1 and J0 1) and next nearest neighbor (J2 and J0 2) exchange terms within and between the tetramer spin blocks, respectively. These exchange constants, experimentally determined in this work, would crucially constrain the diverse theoretical viewpoints on magnetism and superconductivity in the Fe-based materials.

  7. Outflows from accretion disks formed in neutron star mergers: effect of black hole spin

    E-Print Network [OSTI]

    Rodrigo Fernández; Daniel Kasen; Brian D. Metzger; Eliot Quataert

    2014-10-09

    The accretion disk that forms after a neutron star merger is a source of neutron-rich ejecta. The ejected material contributes to a radioactively-powered electromagnetic transient, with properties that depend sensitively on the composition of the outflow. Here we investigate how the spin of the black hole remnant influences mass ejection on the thermal and viscous timescales. We carry out two-dimensional, time-dependent hydrodynamic simulations of merger remnant accretion disks including viscous angular momentum transport and approximate neutrino self-irradiation. The gravity of the spinning black hole is included via a pseudo-Newtonian potential. We find that a disk around a spinning black hole ejects more mass, up to a factor of several, relative to the non-spinning case. The enhanced mass loss is due to energy release by accretion occurring deeper in the gravitational potential, raising the disk temperature and hence the rate of viscous heating in regions where neutrino cooling is ineffective. The mean electron fraction of the outflow increases moderately with BH spin due to a highly-irradiated (though not neutrino-driven) wind component. While the bulk of the ejecta is still very neutron-rich, thus generating heavy r-process elements, the leading edge of the wind contains a small amount of Lanthanide-free material. This component can give rise to a ~1 day blue optical `bump' in a kilonova light curve, even in the case of prompt BH formation, which may facilitate its detection.

  8. Parameter estimation on gravitational waves from neutron-star binaries with spinning components

    E-Print Network [OSTI]

    Farr, Ben; Farr, Will M; Haster, Carl-Johan; Middleton, Hannah; Cannon, Kipp; Graff, Philip B; Hanna, Chad; Mandel, Ilya; Pankow, Chris; Price, Larry R; Sidery, Trevor; Singer, Leo P; Urban, Alex L; Vecchio, Alberto; Veitch, John; Vitale, Salvatore

    2015-01-01

    Inspiraling binary neutron stars are expected to be one of the most significant sources of gravitational-wave signals for the new generation of advanced ground-based detectors. Advanced LIGO will begin operation in 2015 and we investigate how well we could hope to measure properties of these binaries should a detection be made in the first observing period. We study an astrophysically motivated population of sources (binary components with masses $1.2~\\mathrm{M}_\\odot$-$1.6~\\mathrm{M}_\\odot$ and spins of less than $0.05$) using the full LIGO analysis pipeline. While this simulated population covers the observed range of potential binary neutron-star sources, we do not exclude the possibility of sources with parameters outside these ranges; given the existing uncertainty in distributions of mass and spin, it is critical that analyses account for the full range of possible mass and spin configurations. We find that conservative prior assumptions on neutron-star mass and spin lead to average fractional uncertain...

  9. Spin-orbit induced backflow in neutron matter with auxiliary field diffusion Monte Carlo

    E-Print Network [OSTI]

    L. Brualla; S. Fantoni; A. Sarsa; K. E Schmidt; S. A. Vitiello

    2003-04-14

    The energy per particle of zero-temperature neutron matter is investigated, with particular emphasis on the role of the $\\vec L\\cdot\\vec S$ interaction. An analysis of the importance of explicit spin--orbit correlations in the description of the system is carried out by the auxiliary field diffusion Monte Carlo method. The improved nodal structure of the guiding function, constructed by explicitly considering these correlations, lowers the energy. The proposed spin--backflow orbitals can conveniently be used also in Green's Function Monte Carlo calculations of light nuclei.

  10. Neutron spin structure with polarized deuterons and spectator proton tagging at EIC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cosyn, W.; Guzey, V.; Higinbotham, D. W.; Hyde, C.; Kuhn, S.; Nadel-Turonski, P.; Park, K.; Sargsian, M.; Strikman, M.; Weiss, C.

    2014-10-27

    The neutron's deep-inelastic structure functions provide essential information for the flavor separation of the nucleon parton densities, the nucleon spin decomposition, and precision studies of QCD phenomena in the flavor-singlet and nonsinglet sectors. Thus, traditional inclusive measurements on nuclear targets are limited by dilution from scattering on protons, Fermi motion and binding effects, final-state interactions, and nuclear shadowing at x more »rest frame). The free neutron structure functions could be obtained by extrapolating the measured recoil momentum distributions to the on-shell point. The method eliminates nuclear modifications and can be applied to polarized scattering, as well as to semi-inclusive and exclusive final states. We review the prospects for neutron structure measurements with spectator tagging at EIC, the status of R&D efforts, and the accelerator and detector requirements.« less

  11. Measurements Of Spin Observables In Pseudoscalar-Meson Photo-Production Using Polarized Neutrons In Solid HD

    SciTech Connect (OSTI)

    Kageya, Tsuneo

    2014-01-01

    Psuedo-scalar meson photo production measurements have been carried out with longitudinally-polarized neutrons using the circularly and linearly polarized photon beams and the CLAS at Thomas Jefferson National Accelerator Facility (Jlab). The experiment aims to obtain a complete set of spin observables on an efficient neutron target. Preliminary E asymmetries for the exclusive reaction, gamma + n(p)--> pi- + p(p), selecting quasi free neutron kinematics are discussed.

  12. Nuclear-Powered Millisecond Pulsars and the Maximum Spin Frequency of Neutron Stars

    E-Print Network [OSTI]

    Deepto Chakrabarty; Edward H. Morgan; Michael P. Muno; Duncan K. Galloway; Rudy Wijnands; Michiel van der Klis; Craig B. Markwardt

    2003-07-01

    Millisecond pulsars are neutron stars (NSs) that are thought to have been spun-up by mass accretion from a stellar companion. It is unknown whether there is a natural brake for this process, or if it continues until the centrifugal breakup limit is reached at submillisecond periods. Many NSs that are accreting from a companion exhibit thermonuclear X-ray bursts that last tens of seconds, caused by unstable nuclear burning on their surfaces. Millisecond brightness oscillations during bursts from ten NSs (as distinct from other rapid X-ray variability that is also observed) are thought to measure the stellar spin, but direct proof of a rotational origin has been lacking. Here, we report the detection of burst oscillations at the known spin frequency of an accreting millisecond pulsar, and we show that these oscillations always have the same rotational phase. This firmly establishes burst oscillations as nuclear-powered pulsations tracing the spin of accreting NSs, corroborating earlier evidence. The distribution of spin frequencies of the 11 nuclear-powered pulsars cuts off well below the breakup frequency for most NS models, supporting theoretical predictions that gravitational radiation losses can limit accretion torques in spinning up millisecond pulsars.

  13. Neutron spin structure with polarized deuterons and spectator proton tagging at EIC

    SciTech Connect (OSTI)

    Cosyn, W; Guzey, V; Higinbotham, D W; Hyde, C; Kuhn, S; Nadel-Turonski, P; Park, K; Sargsian, M; Strikman, M; Weiss, C

    2014-10-27

    The neutron's deep-inelastic structure functions provide essential information for the flavor separation of the nucleon parton densities, the nucleon spin decomposition, and precision studies of QCD phenomena in the flavor-singlet and nonsinglet sectors. Traditional inclusive measurements on nuclear targets are limited by dilution from scattering on protons, Fermi motion and binding effects, final-state interactions, and nuclear shadowing at x << 0.1. An Electron-Ion Collider (EIC) would enable next-generation measurements of neutron structure with polarized deuteron beams and detection of forward-moving spectator protons over a wide range of recoil momenta (0 < p_R << several 100 MeV in the nucleus rest frame). The free neutron structure functions could be obtained by extrapolating the measured recoil momentum distributions to the on-shell point. The method eliminates nuclear modifications and can be applied to polarized scattering, as well as to semi-inclusive and exclusive final states. We review the prospects for neutron structure measurements with spectator tagging at EIC, the status of R&D efforts, and the accelerator and detector requirements.

  14. Neutron spin structure with polarized deuterons and spectator proton tagging at EIC

    SciTech Connect (OSTI)

    Cosyn, W. [Ghent University, Gent (Belgium); Guzey, V. [Petersburg Nuclear Physics Institute, Gatchina (Russia); Higinbotham, D. W. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hyde, C. [Old Dominion Univ., Norfolk, VA (United States); Kuhn, S. [Old Dominion Univ., Norfolk, VA (United States); Nadel-Turonski, P. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Park, K. [Old Dominion Univ., Norfolk, VA (United States); Sargsian, M. [Florida Intl Univ., Miami, FL (United States); Strikman, M. [Pennsylvania State Univ., State College, PA (United States); Weiss, C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2014-10-27

    The neutron's deep-inelastic structure functions provide essential information for the flavor separation of the nucleon parton densities, the nucleon spin decomposition, and precision studies of QCD phenomena in the flavor-singlet and nonsinglet sectors. Traditional inclusive measurements on nuclear targets are limited by dilution from scattering on protons, Fermi motion and binding effects, final-state interactions, and nuclear shadowing at x << 0.1. An Electron-Ion Collider (EIC) would enable next-generation measurements of neutron structure with polarized deuteron beams and detection of forward-moving spectator protons over a wide range of recoil momenta (0 < pR << several 100 MeV in the nucleus rest frame). The free neutron structure functions could be obtained by extrapolating the measured recoil momentum distributions to the on-shell point. The method eliminates nuclear modifications and can be applied to polarized scattering, as well as to semi-inclusive and exclusive final states. We review the prospects for neutron structure measurements with spectator tagging at EIC, the status of R&D efforts, and the accelerator and detector requirements.

  15. Measurement of spin-flip probabilities for ultracold neutrons interacting with nickel phosphorus coated surfaces

    E-Print Network [OSTI]

    Z. Tang; E. R. Adamek; A. Brandt; N. B. Callahan; S. M. Clayton; S. A. Currie; T. M. Ito; M. Makela; Y. Masuda; C. L. Morris; R. Pattie Jr.; J. C. Ramsey; D. J. Salvat; A. Saunders; A. R. Young

    2015-10-23

    We report a measurement of the spin-flip probabilities for ultracold neutrons interacting with surfaces coated with nickel phosphorus. For 50 $\\mu$m thick nickel phosphorus coated on stainless steel, the spin-flip probability per bounce was found to be $\\beta_{\\rm NiP\\;on\\;SS} = (3.3^{+1.8}_{-5.6}) \\times 10^{-6}$. For 50 $\\mu$m thick nickel phosphorus coated on aluminum, the spin-flip probability per bounce was found to be $\\beta_{\\rm NiP\\;on\\;Al} = (3.6^{+2.1}_{-5.9}) \\times 10^{-6}$. For the copper guide used as reference, the spin flip probability per bounce was found to be $\\beta_{\\rm Cu} = (6.7^{+5.0}_{-2.5}) \\times 10^{-6}$. Nickel phosphorus coated stainless steel or aluminum provides a solution when UCN guides that have a high Fermi potential and are low-cost, mechanically robust, and non-depolarizing are needed.

  16. Measurements of spin observables in pseudo-scalar meson photo-production using polarized neutrons in solid HD

    SciTech Connect (OSTI)

    Kageya, Tsuneo

    2014-01-01

    A measurement of psuedo-scalar meson photo production from longitudinally polarized solid HD has been carried out with the CLAS at Thomas Jefferson National Accelerator Facility (Jlab) with circularly and linearly polarized photon beams. Its aim is to measure a complete set of spin observables for the neutron simultaneously from the same experiment. As a polarized neutron, deutron in HD was used. Preliminary asymmetries are shown for the {pi}{sup -} channel.

  17. Nuclear-Powered Millisecond Pulsars and the Maximum Spin Frequency of Neutron Stars

    E-Print Network [OSTI]

    Chakraborty, D; Muno, M P; Galloway, D K; Wijnands, R; Van der Klis, M; Markwardt, C B; Chakrabarty, Deepto; Morgan, Edward H.; Muno, Michael P.; Galloway, Duncan K.; Wijnands, Rudy; Klis, Michiel van der; Markwardt, Craig B.

    2003-01-01

    Millisecond pulsars are neutron stars (NSs) that are thought to have been spun-up by mass accretion from a stellar companion. It is unknown whether there is a natural brake for this process, or if it continues until the centrifugal breakup limit is reached at submillisecond periods. Many NSs that are accreting from a companion exhibit thermonuclear X-ray bursts that last tens of seconds, caused by unstable nuclear burning on their surfaces. Millisecond brightness oscillations during bursts from ten NSs (as distinct from other rapid X-ray variability that is also observed) are thought to measure the stellar spin, but direct proof of a rotational origin has been lacking. Here, we report the detection of burst oscillations at the known spin frequency of an accreting millisecond pulsar, and we show that these oscillations always have the same rotational phase. This firmly establishes burst oscillations as nuclear-powered pulsations tracing the spin of accreting NSs, corroborating earlier evidence. The distributio...

  18. Binary Neutron Stars with Generic Spin, Eccentricity, Mass ratio, and Compactness - Quasi-equilibrium Sequences and First Evolutions

    E-Print Network [OSTI]

    Dietrich, Tim; Johnson-McDaniel, Nathan K; Bernuzzi, Sebastiano; Markakis, Charalampos M; Bruegmann, Bernd; Tichy, Wolfgang

    2015-01-01

    Information about the last stages of a binary neutron star inspiral and the final merger can be extracted from quasi-equilibrium configurations and dynamical evolutions. In this article, we construct quasi-equilibrium configurations for different spins, eccentricities, mass ratios, compactnesses, and equations of state. For this purpose we employ the SGRID code, which allows us to construct such data in previously inaccessible regions of the parameter space. In particular, we consider spinning neutron stars in isolation and in binary systems; we incorporate new methods to produce highly eccentric and eccentricity reduced data; we present the possibility of computing data for significantly unequal-mass binaries; and we create equal-mass binaries with individual compactness up to 0.23. As a proof of principle, we explore the dynamical evolution of three new configurations. First, we simulate a $q=2.06$ mass ratio which is the highest mass ratio for a binary neutron star evolved in numerical relativity to date. ...

  19. X-ray and Neutron Scattering Studies of Magnetic Domain Dynamics and Spin Structures /

    E-Print Network [OSTI]

    Chen, San-Wen

    2014-01-01

    Stanley. X-ray and neutron scattering from rough surfaces.1988. [3] R. Pynn. Neutron scattering by rough surfaces at39] V. F. Sears. Neutron scattering lengths and cross

  20. Calibrating the BOLD signal revisited Calculation of oxygen metabolism for gradient-and spin-echo sequence up to 16.4T , A-C. Zappe1

    E-Print Network [OSTI]

    Calibrating the BOLD signal revisited ­ Calculation of oxygen metabolism for gradient- and spin to the the signal. One goal of quantitative fMRI is to determine oxygen metabolism (CMRO2) from fMRI data. To this end, a calibrated BOLD approach has been proposed calculating oxygen metabolism from combined CBF

  1. On the theory of proton solid echo in polymer melts

    E-Print Network [OSTI]

    Fatkullin, N; Mattea, C; Stapf, S

    2015-01-01

    Based on a modified Anderson-Weiss approximation (N. Fatkullin, A. Gubaidullin, C. Mattea, S.Stapf, J. Chem. Phys. 137 (2012), 224907) an improved theory of proton spin solid echo in polymer melts is formulated, taking into account contribution from intermolecular magnetic dipole-dipole interactions. The solid echo build-up function defined by the relation , where , and are the respective signals arising from ( ),( ) and ( ) spin echo experiments, where is an operator rotating the spin system on the angle relatively axis , is investigated. It is shown that the intermolecular part of this function at short times , where is a characteristic time for flip-flop transitions between proton spins, contains information about the relative mean squared displacements of polymer segments at different macromolecules, opening up a new opportunity for obtaining information about polymer dynamics in the millisecond regime.

  2. The Spin Structure of 3He and the Neutron at Low Q^2: A Measurement of the Generalized GDH Integrand

    SciTech Connect (OSTI)

    Vincent Sulkosky

    2007-08-01

    Since the 1980's, the study of nucleon (proton or neutron) spin structure has been an active field both experimentally and theoretically. One of the primary goals of this work is to test our understanding of Quantum Chromodynamics (QCD), the fundamental theory of the strong interaction. In the high energy region of asymptotically free quarks, QCD has been verified. However, verifiable predictions in the low energy region are harder to obtain due to the complex interactions between the nucleon's constituents: quarks and gluons. In the non-pertubative regime, low-energy effective field theories such as chiral perturbation theory provide predictions for the spin structure functions in the form of sum rules. Spin-dependent sum rules such as the Gerasimov-Drell-Hearn (GDH) sum rule are important tools available to study nucleon spin structure. Originally derived for real photon absorption, the Gerasimov-Drell-Hearn (GDH) sum rule was first extended for virtual photon absorption in 1989. The extension of the sum rule provides a unique relation, valid at any momentum transfer ($Q^{2}$), that can be used to study the nucleon spin structure and make comparisons between theoretical predictions and experimental data. Experiment E97-110 was performed at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) to examine the spin structure of the neutron and $^{3}$He. The Jefferson Lab longitudinally-polarized electron beam with incident energies between 1.1 and 4.4 GeV was scattered from a longitudinally or transversely polarized $^{3}$He gas target in the Hall A end station. Asymmetries and polarized cross-section differences were measured in the quasielastic and resonance regions to extract the spin structure functions $g_{1}(x,Q^{2})$ and $g_{2}(x,Q^{2})$ at low momentum transfers (0.02 $< Q^{2} <$ 0.3 GeV$^{2}$). The goal of the experiment was to perform a precise measurement of the $Q^{2}$ dependence of the extended GDH integral and of the moments of the neutron and $^{3}$He spin structure functions at low $Q^{2}$. This $Q^{2}$ range allows us to test predictions of chiral perturbation theory and check the GDH sum rule by extrapolating the integral to the real photon point. This thesis will discuss preliminary results from the E97-110 data analysis.

  3. Measurements of the Neutron Longitudinal Spin Asymmetry A1n and Flavor Decomposition in the Valence Quark Region

    SciTech Connect (OSTI)

    Flay, David J.

    2014-08-01

    The current data for the nucleon-virtual photon longitudinal spin asymmetry A1 on the proton and neutron have shown that the ratio of the polarized-to-unpolarized down-quarkparton distribution functions,Dd=d, tends towards -1/2 at large x, in disagreement with the perturbative QCD prediction that Dd/d approaches 1 but more in line with constituent quark models. As a part of experiment E06-014 in Hall A of Jefferson Lab, double-spin asymmetries were measured in the scattering of a longitudinally polarized electron beam of energies 4.74 and 5.89 GeV from a longitudinally and transversely polarized 3He target in the deep inelastic scattering and resonance region, allowing for the extraction of the neutron asymmetry An1 and the ratios Dd/d and Du/u. We will discuss our analysis of the data and present results for A1 and g1/F1 on both 3He and the neutron, and the resulting quark ratios for the up and down quarks in the kinematic range of 0.2

  4. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect (OSTI)

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J.; Blundell, S. J.; Lancaster, T.; Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S.; Scheuermann, R.; Salman, Z.

    2011-07-15

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  5. Electromagnetic form factors of one neutron halos with spin 1/2+ ground state

    E-Print Network [OSTI]

    Fernando, Lakma; Rupak, Gautam

    2015-01-01

    The electromagnetic form factors for single neutron halo nuclei Be-11, C-15 and C-19 are calculated. The calculations are performed in halo effective field theory (EFT) where the halo nuclei are approximated as made of a single neutron and a core. The form factors depend on the single neutron separation energy, the s-wave neutron-core scattering effective range and a two-body current. The EFT expressions are presented to leading order for C-15 and next-to-leading order for Be-11 and C-19.

  6. 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer spin valve component investigated by polarized neutron reflectometry

    SciTech Connect (OSTI)

    Callori, S. J., E-mail: sara.callori@ansto.gov.au; Bertinshaw, J. [School of Physics, The University of New South Wales, Sydney, New South Wales 2052 (Australia); Bragg Institute, Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234 (Australia); Cortie, D. L. [The Institute for Superconducting and Electronic Materials, The University of Wollongong, Wollongong, New South Wales 2522 (Australia); Bragg Institute, Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234 (Australia); Cai, J. W., E-mail: jwcai@aphy.iphy.ac.cn; Zhu, T. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Le Brun, A. P. [Bragg Institute, Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234 (Australia); Klose, F. [Bragg Institute, Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234 (Australia); Department of Physics and Materials Science, City University of Hong Kong (Hong Kong)

    2014-07-21

    We have observed 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer system using polarized neutron reflectometry. Magnetometry results show magnetic switching for both the biased and free NiFe layers, the latter of which reverses at low applied fields. As these measurements are only capable of providing information about the total magnetization within a sample, polarized neutron reflectometry was used to investigate the reversal behavior of the NiFe layers individually. Both the non-spin-flip and spin-flip neutron reflectometry signals were tracked around the free NiFe layer hysteresis loop and were used to detail the evolution of the magnetization during reversal. At low magnetic fields near the free NiFe coercive field, a large spin-flip signal was observed, indicating magnetization aligned perpendicular to both the applied field and pinned layer.

  7. Inelastic Neutron-Scattering Measurements of a Three-Dimensional Spin Resonance in the FeAs-Based BaFe1:9Ni0:1As2 Superconductor

    E-Print Network [OSTI]

    Hu, Jiangping

    Inelastic Neutron-Scattering Measurements of a Three-Dimensional Spin Resonance in the Fe, Purdue University, West Lafayette, Indiana 47907, USA 5 Neutron Scattering Science Division, Oak Ridge 2009) We use inelastic neutron scattering to study magnetic excitations of the Fe

  8. Slow and static spin correlations in Dy(2+x)Ti(2-x)O(7-d)

    SciTech Connect (OSTI)

    Gardner, Jason; Ehlers, Georg; Fouquet, Peter; Farago, Bela; Stewart, John Ross

    2011-01-01

    The static and dynamic spin correlations in the spin ices Dy{sub 2.3}Ti{sub 1.7}O{sub 6.85} and Dy{sub 2}Ti{sub 2}O{sub 7} have been studied in polarized neutron diffraction and neutron spin echo experiments. The measurements reveal that, below 100 mK, the magnetic scattering braodens and shifts to higher |Q| upon stuffing the pyrochlore lattice with additional Dy{sup 3+} ions. These observations can be related, by means of reverse Monte Carlo simulation, to the modified distribution of near-neighbour distances and an overall more antiferromagnetic character of the near-neighbour couplings. The dynamic measurements show that the spin correlations are slower in the stuffed system. These results will be discussed and compared to the holmium analogues.

  9. Q-dependence of the inelastic neutron scattering cross section for molecular spin clusters with high molecular symmetry

    E-Print Network [OSTI]

    O. Waldmann

    2003-04-21

    For powder samples of polynuclear metal complexes the dependence of the inelastic neutron scattering intensity on the momentum transfer Q is known to be described by a combination of so called interference terms. They reflect the interplay between the geometrical structure of the compound and the spatial properties of the wave functions involved in the transition. In this work, it is shown that the Q-dependence is strongly interrelated with the molecular symmetry of molecular nanomagnets, and, if the molecular symmetry is high enough, is actually completely determined by it. A general formalism connecting spatial symmetry and interference terms is developed. The arguments are detailed for cyclic spin clusters, as experimentally realized by e.g. the octanuclear molecular wheel Cr8, and the star like tetranuclear cluster Fe4.

  10. Neutron $2p$ and $1f$ spin--orbit splittings in $^{40}$Ca, $^{36}$S, and $^{34}$Si $N=20$ isotones: tensor--induced and pure spin--orbit effects

    E-Print Network [OSTI]

    Grasso, M

    2015-01-01

    Neutron $2p$ and $1f$ spin--orbit splittings were recently measured in the isotones $^{37}$S and $^{35}$Si by $(d,p)$ transfer reactions. Values were reported by using the major fragments of the states. An important reduction of the $p$ splitting was observed, from $^{37}$S to $^{35}$Si, associated to a strong modification of the spin--orbit potential in the central region of the nucleus $^{35}$Si. We analyze $2p$ and $1f$ neutron spin--orbit splittings in the $N=20$ isotones $^{40}$Ca, $^{36}$S, and $^{34}$Si. We employ several Skyrme and Gogny interactions, to reliably isolate pure spin--orbit and tensor--induced contributions, within the mean--field approximation. We use interactions (i) without the tensor force; (ii) with the tensor force and with tensor parameters adjusted on top of existing parametrizations; (iii) with the tensor force and with tensor and spin--orbit parameters adjusted simultaneously on top of existing parametrizations. We predict in cases (ii) and (iii) a non negligible reduction of b...

  11. Measurement of spin-dependent total cross-section difference $??_T$ in neutron-proton scattering at 16 MeV

    E-Print Network [OSTI]

    J. Broz; J. Cerny; Z. Dolezal; G. M. Gurevich M. Jirasek; P. Kubik; A. A. Lukhanin; J. Svejda; I. Wilhelm; N. S. Borisov; Yu. M. Kazarinov B. A. Khachaturov; E. S. Kuzmin; V. N. Matafonov; A. B. Neganov; I. L. Pisarev; Yu. A. Plis; Yu. A. Usov; M. Rotter; B. Sedlak

    1995-07-28

    A new measurement of $\\Delta\\sigma_T$ for polarized neutrons transmitted through a polarized proton target at 16.2 MeV has been made. A polarized neutron beam was obtained from the $^{3}\\rm{H}(d,\\vec n)^{4}\\rm{He}$ reaction; proton polarization over 90\\% was achieved in a frozen spin target of 20 cm$^3$ volume. The measurement yielded the value $\\Delta\\sigma_T=(-126\\pm21\\pm14)$ mb. The result of a simple phase shift analysis for the $^3S_1-^3D_1$ mixing parameter $\\epsilon_1$ is presented and compared with the theoretical potential model predictions.

  12. Long-range ordering of reduced magnetic moments in the spin-gap compound CeOs{sub 2}Al{sub 10} as seen via muon spin relaxation and neutron scattering

    SciTech Connect (OSTI)

    Adroja, D. T.; Hillier, A. D.; Kockelmann, W. A.; Anand, V. K.; Stewart, J. R.; Taylor, J. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot Oxon OX11 0QX (United Kingdom); Deen, P. P. [Institute Laue-Langevin, BP 156, 6 Rue Jules Horowitz, 38042 Grenoble Cedex (France); Strydom, A. M. [Physics Department, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Muro, Y.; Kajino, J.; Takabatake, T. [Department of Quantum Matter, ADSM, and IAMR, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan)

    2010-09-01

    We have carried out neutron diffraction, muon spin relaxation ({mu}SR), and inelastic neutron scattering (INS) investigations on a polycrystalline sample of CeOs{sub 2}Al{sub 10} to investigate the nature of the phase transition observed near 29 K in the resistivity and heat capacity. Our {mu}SR data clearly reveal coherent frequency oscillations below 28 K, indicating the presence of an internal field at the muon site, which confirms the long-range magnetic ordering of the Ce moment below 28 K. Upon cooling the sample below 15 K, unusual behavior of the temperature-dependent {mu}SR frequencies may indicate either a change in the muon site, consistent with the observation of superstructure reflections in electron diffraction, or a change in the ordered magnetic structure. Neutron diffraction data do not reveal any clear sign of either magnetic Bragg peaks or superlattice reflections. Furthermore, INS measurements clearly reveal the presence of a sharp inelastic excitation near 11 meV between 5 and 26 K, due to opening of a gap in the spin-excitation spectrum, which transforms into a broad response at and above 30 K. The magnitude of the spin gap (11 meV) as derived from the INS peak position agrees very well with the gap value as estimated from the bulk properties.

  13. Thermodynamic and neutron scattering study of the spin- 1/2 kagome antiferromagnet ZnCu?(OH)?Cl? : a quantum spin liquid system

    E-Print Network [OSTI]

    Han, Tianheng, Ph. D. Massachusetts Institute of Technology

    2012-01-01

    New physics, such as a quantum spin liquid, can emerge in systems where quantum fluctuations are enhanced due to reduced dimensionality and strong frustration. The realization of a quantum spin liquid in two-dimensions ...

  14. Measurements of the Double-Spin Asymmetry A{sub 1} on Helium-3: Toward a Precise Measurement of the Neutron A{sub 1}

    SciTech Connect (OSTI)

    Parno, Diana Seymour

    2011-04-01

    The spin structure of protons and neutrons has been an open question for nearly twenty-five years, after surprising experimental results disproved the simple model in which valence quarks were responsible for nearly 100% of the nucleon spin. Diverse theoretical approaches have been brought to bear on the problem, but a shortage of precise data - especially on neutron spin structure - has prevented a thorough understanding. Experiment E06-014, conducted in Hall A of Jefferson Laboratory in 2009, presented an opportunity to add to the world data set for the neutron in the poorly covered valence-quark region. Jefferson Laboratory's highly polarized electron beam, combined with Hall A's facilities for a high-density, highly polarized {sup 3}He target, allowed a high-luminosity double-polarized experiment, while the large acceptance of the BigBite spectrometer gave coverage over a wide kinematic range: 0.15 < x < 0.95. In this work, we present the analysis of a portion of the E06-014 data, measured with an incident beam energy of 4.74 GeV and spanning 1.5 < Q{sup 2} < 5.5 (GeV/c){sup 2}. From these data, we extract the longitudinal asymmetry in virtual photon-nucleon scattering, A{sub 1}, on the {sup 3}He nucleus. Combined with the remaining E06-014 data, this will form the basis of a measurement of the neutron asymmetry A{sup n}{sub 1} that will extend the kinematic range of the data available to test models of spin-dependent parton distributions in the nucleon.

  15. Precise Determination of the Deuteron Spin Structure at Low to Moderate $Q^2$ with CLAS and Extraction of the Neutron Contribution

    E-Print Network [OSTI]

    N. Guler; R. G. Fersch; S. E. Kuhn; P. Bosted; K. A. Griffioen; C. Keith; R. Minehart; Y. Prok; K. P. Adhikari; D. Adikaram; M. J. Amaryan; M. D. Anderson; S. Anefalos Pereira; J. Ball; M. Battaglieri; V. Batourine; I. Bedlinskiy; W. J. Briscoe; W. K. Brooks; S. Bultmann; V. D. Burkert; D. S. Carman; A. Celentano; S. Chandavar; G. Charles; L. Colaneri; P. L. Cole; M. Contalbrigo; D. Crabb; V. Crede; A. D Angelo; N. Dashyan; A. Deur; C. Djalali; G. E. Dodge; R. Dupre; A. El Alaoui; L. El Fassi; L. Elouadrhiri; P. Eugenio; G. Fedotov; S. Fegan; A. Filippi; J. A. Fleming; T. A. Forest; B. Garillon; M. Garcon; N. Gevorgyan; G. P. Gilfoyle; K. L. Giovanetti; F. X. Girod; J. T. Goetz; E. Golovatch; R. W. Gothe; M. Guidal; L. Guo; K. Hafidi; H. Hakobyan; N. Harrison; M. Hattawy; K. Hicks; D. Ho; M. Holtrop; S. M. Hughes; C. E. Hyde; D. G. Ireland; B. S. Ishkhanov; E. L. Isupov; H. S. Jo; K. Joo; S. Joosten; D. Keller; M. Khandaker; A. Kim; W. Kim; A. Klein; F. J. Klein; V. Kubarovsky; S. V. Kuleshov; K. Livingston; H. Y. Lu; I. J. D. MacGregor; B. McKinnon; M. Mirazita; V. Mokeev; R. A. Montgomery; A Movsisyan; C. Munoz Camacho; P. Nadel-Turonski; L. A. Net; I. Niculescu; M. Osipenko; A. I. Ostrovidov; K. Park; E. Pasyuk; S. Pisano; O. Pogorelko; J. W. Price; S. Procureur; M. Ripani; A. Rizzo; G. Rosner; P. Rossi; P. Roy; F. Sabatie; C. Salgado; D. Schott; R. A. Schumacher; E. Seder; A. Simonyan; Iu. Skorodumina; D. Sokhan; N. Sparveris; I. I. Strakovsky; S. Strauch; V. Sytnik; Ye Tian; S. Tkachenko; M. Ungaro; E. Voutier; N. K. Walford; X. Wei; L. B. Weinstein; M. H. Wood; N. Zachariou; L. Zana; J. Zhang; Z. W. Zhao; I. Zonta

    2015-06-01

    We present the final results for the deuteron spin structure functions obtained from the full data set collected with Jefferson Lab's CLAS in 2000-2001. Polarized electrons with energies of 1.6, 2.5, 4.2 and 5.8 GeV were scattered from deuteron ($^{15}$ND$_3$) targets, dynamically polarized along the beam direction, and detected with CLAS. From the measured double spin asymmetry, the virtual photon absorption asymmetry $A_1^d$ and the polarized structure function $g_1^d$ were extracted over a wide kinematic range (0.05 GeV$^2 < Q^2 <$ 5 GeV$^2$ and 0.9 GeV $< W <$ 3 GeV). We use an unfolding procedure and a parametrization of the corresponding proton results to extract from these data the polarized structure functions $A_1^n$ and $g_1^n$ of the (bound) neutron, which are so far unknown in the resonance region, $W < 2$ GeV. We compare our final results, including several moments of the deuteron and neutron spin structure functions, with various theoretical models and expectations as well as parametrizations of the world data. The unprecedented precision and dense kinematic coverage of these data can aid in future extractions of polarized parton distributions, tests of perturbative QCD predictions for the quark polarization at large $x$, a better understanding of quark-hadron duality, and more precise values for higher-twist matrix elements in the framework of the Operator Product Expansion.

  16. A high resolution neutron scattering study of Tb2Mo2O7: A geometrically frustrated and disorder-free spin glass

    SciTech Connect (OSTI)

    Ehlers, Georg; Gardner, Jason; Qiu, Y.; Rule, K; Greedan, John E; Stewart, John Ross; Fouquet, Peter; Cornelius, A. L.; Adriano, Cris; Pagliuso, P G

    2010-01-01

    Neutron scattering, muon spin relaxation, and de susceptibility studies have been carried out on polycrystalline Tb{sub 2}Ti{sub 2}O{sub 7}, a pyrochlore antiferromagnet in which the Tb{sup 3+} moments reside on a network of corner-sharing tetrahedra. Unlike other geometrically frustrated systems, Tb{sub 2}Ti{sub 2}O{sub 7} remains paramagnetic down to {approx}0.07 K, rather than ordering into a conventional Neel or spin-glass-like state, despite the fact that short-range antiferromagnetic correlations (AFC) develop at {approx}50 K. At the first AFC wave vector, its low-lying, relatively flat magnetic excitation spectrum softens partially below 30 K.

  17. Level crossings and zero-field splitting in the {Cr8}-cubane spin-cluster studied using inelastic neutron scattering and magnetization

    SciTech Connect (OSTI)

    Vaknin, D.; Garlea, Vasile O; Demmel, F.; Mamontov, Eugene; Nojiri, H; Martin, Catalin; Chiorescu, Irinel; Qiu, Y.; Luban, M.; Kogerler, P.; Fielden, J.; Engelhardt, L; Rainey, C

    2010-01-01

    Inelastic neutron scattering (INS) in variable magnetic field and high-field magnetization measurements in the millikelvin temperature range were performed to gain insight into the low-energy magnetic excitation spectrum and the field-induced level crossings in the molecular spin cluster {Cr8}-cubane. These complementary techniques provide consistent estimates of the lowest level-crossing field. The overall features of the experimental data are explained using an isotropic Heisenberg model, based on three distinct exchange interactions linking the eight CrIII paramagnetic centers (spins s = 3/2), that is supplemented with a relatively large molecular magnetic anisotropy term for the lowest S = 1 multiplet. It is noted that the existence of the anisotropy is clearly evident from the magnetic field dependence of the excitations in the INS measurements, while the magnetization measurements are not sensitive to its effects.

  18. Precise determination of the deuteron spin structure at low to moderate Q2 with CLAS and extraction of the neutron contribution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guler, N.; Fersch, R. G.; Kuhn, S. E.; Bosted, P.; Griffioen, K. A.; Keith, C.; Minehart, R.; Prok, Y.; Adhikari, K. P.; Adikaram, D.; et al

    2015-11-02

    In this study, we present the final results for the deuteron spin structure functions obtained from the full data set collected with Jefferson Lab's CLAS in 2000-2001. Polarized electrons with energies of 1.6, 2.5, 4.2 and 5.8 GeV were scattered from deuteron (15ND3) targets, dynamically polarized along the beam direction, and detected with CLAS. From the measured double spin asymmetry, the virtual photon absorption asymmetry Ad1 and the polarized structure function gd1 were extracted over a wide kinematic range (0.05 GeV2 more »a parametrization of the corresponding proton results to extract from these data the polarized structure functions An1 and g1n of the (bound) neutron, which are so far unknown in the resonance region, W « less

  19. Neutron scattering evidence for isolated spin-1/2 ladders in (C5D12N)2CuBr4

    SciTech Connect (OSTI)

    Savici, Andrei T [ORNL; Granroth, Garrett E [ORNL; Broholm, Collin L [ORNL; Pajerowski, Daniel M. [University of Florida, Gainesville; Brown, Craig [National Institute of Standards and Technology (NIST); Talham, Daniel R. [University of Florida, Gainesville; Meisel, Mark W. [University of Florida, Gainesville; Schmidt, K. P. [Technische Universit Dortmund, Germany; Uhrig, G. S. [Technische Universit Dortmund, Germany; Nagler, Stephen E [ORNL

    2009-01-01

    Inelastic neutron scattering was used to determine the spin Hamiltonian for the singlet ground state system (C5D12N)2CuBr4 (BPCB). A 2-leg spin 1/2 ladder model, with J? = 1:084 0:005 meV and Jk = 0:321 0:008 meV, accurately describes the data. The experimental limit on the inter-ladder exchange constant is jJ0j 0.005 meV, and the limit on diagonal, intra-ladder exchange is jJF j 0.1 meV. The experimental ratios of intra-ladder bond energies are consistent with the predictions of continuous unitary transformations calculations.

  20. Dr. Ferenc Mezei, Los Alamos National Laboratory, Los Alamos, NM

    ScienceCinema (OSTI)

    Dr. Ferenc Mezei

    2010-01-08

    Neutron Spin Echo Spectroscopy: History and Outlook. Presented at the Workshop on Spin Echo Spectroscopy 2009 at Oak Ridge National Laboratory on November 4, 2009.

  1. A measurement of. Delta. sigma. sub L (np), the difference between neutron-proton total cross sections in pure longitudinal spin states

    SciTech Connect (OSTI)

    Beddo, M.E.

    1990-10-01

    A measurement off {Delta}{sigma}{sub L}(np), the difference between neutron-proton total cross sections in pure longitudinal spin states, is described. The results will help determine the isospin-zero (I = 0) scattering amplitudes, which are not well known above laboratory energies of 500 MeV, whereas the isospin-one (I = 1) amplitudes are fairly well-determined to 1 GeV. Data points were taken at the Los Alamos Meson Physics Facility (LAMPF) at Los Alamos, New Mexico, for five neutron beam energies: 484, 568, 634,720 and 788 MeV; they are the first in this energy range. Polarized neutrons were produced by charge-exchange of polarized protons on a liquid deuterium target (LD{sub 2}). Large-volume neutron counters detected the neutrons that passed through a polarized proton target. The counters subtended a range of solid angles large enough to allow extrapolation of the scattered neutrons to 0{degree}. Two modifications to the LAMPF accelerator system which were made for this work are described. They included a beam buncher,'' which modified the normal rf-time structure of the proton beam and allowed for the selection of peak-energy neutrons by time-of-flight means, and a computerized beam steering program, which reduced systematic effects due to beam motion at the LD{sub 2} target. The experimental values of {Delta}{sigma}{sub L}(np) are found to be consistent with other np data, including preliminary data from SIN and Saclay, but not with some results from Argonne which used a polarized proton beam and a polarized deuteron target. The I = 0 component was extracted from {Delta}{sigma}{sub L}(np) using existing pp data (I = 1), with the unexpected result that {Delta}{sigma}{sub L}(I = 0) was found to be essentially identical in shape to {Delta}{sigma}{sub L}(I = 1). The significance of this is not yet understood.

  2. Echo-Enabled Harmonic Generation

    SciTech Connect (OSTI)

    Stupakov, Gennady; /SLAC

    2012-06-28

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  3. Blogs Are Echo Chambers: Blogs Are Echo Chambers Eric Gilbert, Tony Bergstrom and Karrie Karahalios

    E-Print Network [OSTI]

    Karahalios, Karrie G.

    Blogs Are Echo Chambers: Blogs Are Echo Chambers Eric Gilbert, Tony Bergstrom and Karrie Karahalios decade, blogs have exploded in number, popularity and scope. However, many commentators and researchers speculate that blogs isolate readers in echo chambers, cutting them off from dissenting opin- ions. Our

  4. BLACK HOLE-NEUTRON STAR MERGERS WITH A HOT NUCLEAR EQUATION OF STATE: OUTFLOW AND NEUTRINO-COOLED DISK FOR A LOW-MASS, HIGH-SPIN CASE

    SciTech Connect (OSTI)

    Deaton, M. Brett; Duez, Matthew D.; Foucart, Francois; O'Connor, Evan; Ott, Christian D.; Scheel, Mark A.; Szilagyi, Bela; Kidder, Lawrence E.; Muhlberger, Curran D. E-mail: m.duez@wsu.edu

    2013-10-10

    Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state (EOS) and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M{sub ?} neutron star, 5.6 M{sub ?} black hole), high-spin (black hole J/M {sup 2} = 0.9) system with the K{sub 0} = 220 MeV Lattimer-Swesty EOS. We find that about 0.08 M{sub ?} of nuclear matter is ejected from the system, while another 0.3 M{sub ?} forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (1) to make the disk much denser and more compact, (2) to cause the average electron fraction Y{sub e} of the disk to rise to about 0.2 and then gradually decrease again, and (3) to gradually cool the disk. The disk is initially hot (T ? 6 MeV) and luminous in neutrinos (L{sub ?} ? 10{sup 54} erg s{sup –1}), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution.

  5. Neutron scattering of iron-based superconductors (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Neutron scattering of iron-based superconductors Citation Details In-Document Search Title: Neutron scattering of iron-based superconductors Low-energy spin excitations have been...

  6. Beam Echoes in the CERN SPS

    E-Print Network [OSTI]

    Brüning, Oliver Sim; Ruggiero, F; Scandale, Walter; Shaposhnikova, Elena; Stellfeld, D

    1998-01-01

    Longitudinal echo signals have been produced in the CERN SPS by exciting a proton beam at 120~GeV/c with two short RF pulses separated by a suitable time-delay. The aim of the experiments was to confirm the analytical predictions for beam echoes in the SPS and to probe the applicability of beam echoes for a measurement of the energy distribution and diffusion coefficients in the accelerator. We summarise here the results obtained with bunched and un-bunched beams. For an un-bunched beam, the excitation frequencies are at different harmonics of the revolution frequency and result in an echo response at the difference frequency of the two RF kicks. For the case of a bunched beam, the RF kicks are adjusted to excite the quadrupole mode of the bunch motion and the beam echo response can also be observed as a quadrupole mode.

  7. Unstable spin-ice order in the stuffed metallic pyrochlore Pr2+xIr2-xO7-?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    MacLaughlin, D. E.; Bernal, O. O.; Shu, Lei; Ishikawa, Jun; Matsumoto, Yosuke; Wen, Jia -Jia; Mourigal, Martin P.; Stock, C.; Ehlers, Georg; Broholm, C. L.; et al

    2015-08-24

    Specific heat, elastic neutron scattering, and muon spin rotation experiments have been carried out on a well-characterized sample of “stuffed” (Pr-rich) Pr2+xIr2-xO7-?. Elastic neutron scattering shows the onset of long-range spin-ice “2-in/2-out” magnetic order at 0.93 kelvin, with an ordered moment of 1.7(1) Bohr magnetons per Pr ion at low temperatures. Approximate lower bounds on the correlation length and correlation time in the ordered state are 170 angstroms and 0.7 nanosecond, respectively. Muon spin rotation experiments yield an upper bound 2.6(7) milliteslas on the local field B4floc at the muon site, which is nearly two orders of magnitude smaller thanmore »the expected dipolar field for long-range spin-ice ordering of 1.7-Bohr magneton moments (120–270 milliteslas, depending on the muon site). This shortfall is due in part to splitting of the non-Kramers crystal-field ground-state doublets of near-neighbor Pr3+ ions by the positive-muon-induced lattice distortion. For this to be the only effect, however, ~160 Pr moments out to a distance of ~14 angstroms must be suppressed. An alternative scenario—one consistent with the observed reduced nuclear hyperfine Schottky anomaly in the specific heat—invokes slow correlated Pr-moment fluctuations in the ordered state that average B4floc on the ?SR time scale (~10-7 second), but are static on the time scale of the elastic neutron scattering experiments (~10-9 second). In this picture, the dynamic muon relaxation suggests a Pr3+ 4f correlation time of a few nanoseconds, which should be observable in a neutron spin echo experiment.« less

  8. DIFFUSION INELASTIQUE DES AIEUTRONS ET ONDES DE SPIN

    E-Print Network [OSTI]

    Boyer, Edmond

    measured in the three principal symmetry directions by neutron inelastic scattering.The spin wave of neutrons C(Eogo)scattered by a spin wave of energy Eo and wave vector qo satisfies the following diffusion inklastiquedes neutrons. On a trouvB que les relations de dispersion des ondes de spin

  9. Science and Technology of Future Light Sources

    E-Print Network [OSTI]

    Bergmann, Uwe

    2009-01-01

    to inelastic neutron scattering, such studies providestudies have replaced neutron scattering as the technique ofusing spin-echo neutron scattering or quasi-elastic nuclear

  10. 2008 NIST Center for Neutron Research Accomplishments and

    E-Print Network [OSTI]

    . Nanda, et al. NEUTRON PHYSICS 24 Precision Measurement of the Spin-Dependent Neutron­ Helium-3 for Rapid Detection of Neutrons, A. K.Thompson, et al. 50 Visualizing Nanoscale Magnetism in 3D

  11. A study of diffusion in binary solutions using spin echoes 

    E-Print Network [OSTI]

    Rousseau, Cecil Clyde

    1962-01-01

    of Experimentally Determined Diffusion Coefficients of Cyclohexane and Acetone with the Results of NcCall, Douglass, and Anderson . . . . . . . . . 23 INTRODUCTION The available descriptions of the liquid state form a continuous spectrum that extends from... the liquid with unit velocity. The intrinsic diffusion coefficient is now given by Di kT Equation (1-11) is known as the Einstein relation. Thus far, no explicit statement has been made concerning diffusion in binary systems. In addition to the intrinsic...

  12. Evolution of entanglement under echo dynamics

    SciTech Connect (OSTI)

    Prosen, Tomaz; Znidaric, Marko [Physics Department, FMF, University of Ljubljana, Ljubljana (Slovenia); Seligman, Thomas H. [Centro de Ciencias Fisicas, University of Mexico (UNAM), Cuernavaca (Mexico)

    2003-04-01

    Echo dynamics and fidelity are often used to discuss stability in quantum-information processing and quantum chaos. Yet fidelity yields no information about entanglement, the characteristic property of quantum mechanics. We study the evolution of entanglement in echo dynamics. We find qualitatively different behavior between integrable and chaotic systems on one hand and between random and coherent initial states for integrable systems on the other. For the latter the evolution of entanglement is given by a classical time scale. Analytic results are illustrated numerically in a Jaynes-Cummings model.

  13. Dual Domain Echo Cancellers for Multirate Discrete Multitone Systems

    E-Print Network [OSTI]

    Champagne, Benoît

    Dual Domain Echo Cancellers for Multirate Discrete Multitone Systems Neda Ehtiati and Beno Email:{neda.ehtiati, benoit.champagne}@mcgill.ca Abstract--Digital echo cancellers are used in duplex

  14. Polar Mesosphere Winter Echoes -by ESRAD, EISCAT and lidar

    E-Print Network [OSTI]

    Kirkwood, Sheila

    fluctuations with scale-sizes as short as the 3 m needed to produce radar echoes at 52 MHz at half maximum echo power) than the 300 m resolution of the radar measurements. When the radar echoes km. A sharp cut-off in PMWE occurrence was found at ~ 102 , independent of electron density

  15. AN ECHO OF SUPERNOVA 2008bk

    SciTech Connect (OSTI)

    Van Dyk, Schuyler D., E-mail: vandyk@ipac.caltech.edu [Spitzer Science Center/Caltech, Mailcode 220-6, Pasadena, CA 91125 (United States)

    2013-08-01

    I have discovered a prominent light echo around the low-luminosity Type II-plateau supernova (SN) 2008bk in NGC 7793, seen in archival images obtained with the Wide Field Channel of the Advanced Camera for Surveys on board the Hubble Space Telescope (HST). The echo is a partial ring, brighter to the north and east than to the south and west. The analysis of the echo I present suggests that it is due to the SN light pulse scattered by a sheet, or sheets, of dust located Almost-Equal-To 15 pc from the SN. The composition of the dust is assumed to be of standard Galactic diffuse interstellar grains. The visual extinction of the dust responsible for the echo is A{sub V} Almost-Equal-To 0.05 mag in addition to the extinction due to the Galactic foreground toward the host galaxy. That the SN experienced much less overall extinction implies that it is seen through a less dense portion of the interstellar medium in its environment. The late-time HST photometry of SN 2008bk also clearly demonstrates that the progenitor star has vanished.

  16. NEUTRON INTERFEROMETRY Neutron Interferometry

    E-Print Network [OSTI]

    Jeanjean, Louis

    #12;NEUTRON INTERFEROMETRY #12;#12;Neutron Interferometry Lessons in Experimental Quantum Mechanics of the modern quantum mechanical literature. Neutron interferometry is a mature technique in experimental of many isotopes is given in Chapter 3. Very accurate measurements of the neutron scattering lengths

  17. Neutron Physics at NIST 8th UCN Workshop

    E-Print Network [OSTI]

    Titov, Anatoly

    Measurement Neutron fluence is measured by counting gamma-rays from the reaction n+10B 4He+7Li + (478KeV) with a calibrated gamma detector and neutron calorimeter. Polarized 3-He Neutron Spin Analyzers A Spin Exchange: Silicon Mass Density of Thin Polymer Films Search for Quantum Entanglement in Liquid H2O-D2O Mixtures

  18. More about neutron - mirror neutron oscillation

    E-Print Network [OSTI]

    Zurab Berezhiani

    2009-11-12

    It was pointed out recently that oscillation of the neutron $n$ into mirror neutron $n'$, a sterile twin of the neutron with exactly the same mass, could be a very fast process with the the baryon number violation, even faster than the neutron decay itself. This process is sensitive to the magnetic fields and it could be observed by comparing the neutron lose rates in the UCN storage chambers for different magnetic backgrounds. We calculate the probability of $n-n'$ oscillation in the case when a mirror magnetic field $\\vec{B}'$ is non-zero and show that in this case it can be suppressed or resonantly enhanced by applying the ordinary magnetic field $\\vec{B}$, depending on its strength and on its orientation with respect to $\\vec{B}'$. The recent experimental data, under this hypothesis, still allow the $n-n'$ oscillation time order 1 s or even smaller. Moreover, they indicate that the neutron losses are sensitive to the orientation of the magnetic field. %at about $3\\sigma$ level. If these hints will be confirmed in the future experiments, this would point to the presence of the mirror magnetic field on the Earth of the order of 0.1 G, or some equivalent spin-dependent force of the other origin that makes a difference between the neutron and mirror neutron states.

  19. Ultrasonic unipolar pulse/echo instrument

    DOE Patents [OSTI]

    Hughes, Michael S. (Ames, IA); Hsu, David K. (Ames, IA); Thompson, Donald O. (Ames, IA); Wormley, Samuel J. (Ames, IA)

    1993-01-01

    An ultrasonic unipolar pulse/echo instrument uses active switches and a timing and drive circuitry to control electrical energy to a transducer, the discharging of the transducer, and the opening of an electrical pathway to the receiving circuitry for the returning echoes. The active switches utilize MOSFET devices along with decoupling circuitry to insure the preservation of the unipolar nature of the pulses, insure fast transition times, and maintain broad band width and time resolution. A housing contains the various circuitry and switches and allows connection to a power supply and a movable ultrasonic transducer. The circuitry maintains low impedance input to the transducer during transmitting cycles, and high impedance between the transducer and the receiving circuit during receive cycles to maintain the unipolar pulse shape. A unipolar pulse is valuable for nondestructive evaluation, a prime use for the present instrument.

  20. Ultrasonic unipolar pulse/echo instrument

    DOE Patents [OSTI]

    Hughes, M.J.; Hsu, D.K.; Thompson, D.O.; Wormley, S.J.

    1993-04-06

    An ultrasonic unipolar pulse/echo instrument uses active switches and a timing and drive circuitry to control electrical energy to a transducer, the discharging of the transducer, and the opening of an electrical pathway to the receiving circuitry for the returning echoes. The active switches utilize MOSFET devices along with decoupling circuitry to insure the preservation of the unipolar nature of the pulses, insure fast transition times, and maintain broad band width and time resolution. A housing contains the various circuitry and switches and allows connection to a power supply and a movable ultrasonic transducer. The circuitry maintains low impedance input to the transducer during transmitting cycles, and high impedance between the transducer and the receiving circuit during receive cycles to maintain the unipolar pulse shape. A unipolar pulse is valuable for nondestructive evaluation, a prime use for the present instrument.

  1. Nonperiodic echoes from quantum mushroom billiard hats

    E-Print Network [OSTI]

    B. Dietz; T. Friedrich; M. Miski-Oglu; A. Richter; F. Schäfer; T. H. Seligmann

    2009-08-28

    Nonperiodic tunable quantum echoes have been observed in experiments with an open microwave billiard whose geometry under certain conditions provides Fibonacci like sequences of classical delay times. These sequences combined with the reflection at the opening induced by the wave character of the experiment and the size of the opening allow to shape quantum pulses. The pulses are obtained by response of an integrable scattering system.

  2. Dual Transform Domain Echo Canceller for Discrete Multitone Systems

    E-Print Network [OSTI]

    Champagne, Benoît

    Dual Transform Domain Echo Canceller for Discrete Multitone Systems Neda Ehtiati and Beno Email:{neda.ehtiati,benoit.champagne}@mcgill.ca Abstract--In communication systems where full

  3. Final Report Gentile, Thomas R. 36 MATERIALS SCIENCE neutron...

    Office of Scientific and Technical Information (OSTI)

    spin filter; polarization; helium-3 We propose to extend the technique of polarized neutron scattering into new domains by continued development and application of polarized...

  4. Zero-field NMR study on a spin glass: iron-doped 2H-niobium diselenide

    SciTech Connect (OSTI)

    Chen, M C

    1982-01-01

    Spin echoes are used to study the /sup 93/Nb NQR in 2H-NbSe/sub 2/Fe/sub x/. Measured are (intensity) x (temperature), and T/sub 1P/ (spin-lattice relaxation parameter) and T/sub 2/ (spin-spin relaxation time) as a function of temperature. Data reveal dramatic differences between non-spin glass samples (x = 0, 0.25%, 1% and 5%) and spin glass samples (x = 8%, 10% and 12%). All of the NQR results and the model calculation of the correlation times of Fe spins are best described by the phase transition picture of spin glasses.

  5. The EChO science case

    E-Print Network [OSTI]

    Tinetti, Giovanna; Eccleston, Paul; Hartogh, Paul; Isaak, Kate; Linder, Martin; Lovis, Christophe; Micela, Giusi; Ollivier, Marc; Puig, Ludovic; Ribas, Ignasi; Snellen, Ignas; Allard, Bruce Swinyard France; Barstow, Joanna; Cho, James; Coustenis, Athena; Cockell, Charles; Correia, Alexandre; Decin, Leen; de Kok, Remco; Deroo, Pieter; Encrenaz, Therese; Forget, Francois; Glasse, Alistair; Griffith, Caitlin; Guillot, Tristan; Koskinen, Tommi; Lammer, Helmut; Leconte, Jeremy; Maxted, Pierre; Mueller-Wodarg, Ingo; Nelson, Richard; North, Chris; Pallé, Enric; Pagano, Isabella; Piccioni, Guseppe; Pinfield, David; Selsis, Franck; Sozzetti, Alessandro; Stixrude, Lars; Tennyson, Jonathan; Turrini, Diego; Beaulieu, Mariarosa Zapatero-Osorio Jean-Philippe; Grodent, Denis; Guedel, Manuel; Luz, David; Nørgaard-Nielsen, Hans Ulrik; Ray, Tom; Rickman, Hans; Selig, Avri; Banaszkiewicz, Mark Swain Marek; Barlow, Mike; Bowles, Neil; Branduardi-Raymont, Graziella; Foresto, Vincent Coudé du; Gerard, Jean-Claude; Gizon, Laurent; Hornstrup, Allan; Jarchow, Christopher; Kerschbaum, Franz; Kovacs, Géza; Lagage, Pierre-Olivier; Lim, Tanya; Lopez-Morales, Mercedes; Malaguti, Giuseppe; Pace, Emanuele; Pascale, Enzo; Vandenbussche, Bart; Wright, Gillian; Adriani, Gonzalo Ramos Zapata Alberto; Azzollini, Ruymán; Balado, Ana; Bryson, Ian; Burston, Raymond; Colomé, Josep; Crook, Martin; Di Giorgio, Anna; Griffin, Matt; Hoogeveen, Ruud; Ottensamer, Roland; Irshad, Ranah; Middleton, Kevin; Morgante, Gianluca; Pinsard, Frederic; Rataj, Mirek; Reess, Jean-Michel; Savini, Giorgio; Schrader, Jan-Rutger; Stamper, Richard; Abe, Berend Winter L; Abreu, M; Achilleos, N; Ade, P; Adybekian, V; Affer, L; Agnor, C; Agundez, M; Alard, C; Alcala, J; Prieto, C Allende; Floriano, F J Alonso; Altieri, F; Iglesias, C A Alvarez; Amado, P; Andersen, A; Aylward, A; Baffa, C; Bakos, G; Ballerini, P; Banaszkiewicz, M; Barber, R J; Barrado, D; Barton, E J; Batista, V; Bellucci, G; Avilés, J A Belmonte; Berry, D; Bézard, B; Biondi, D; B??cka, M; Boisse, I; Bonfond, B; Bordé, P; Börner, P; Bouy, H; Brown, L; Buchhave, L; Budaj, J; Bulgarelli, A; Burleigh, M; Cabral, A; Capria, M T; Cassan, A; Cavarroc, C; Cecchi-Pestellini, C; Cerulli, R; Chadney, J; Chamberlain, S; Charnoz, S; Jessen, N Christian; Ciaravella, A; Claret, A; Claudi, R; Coates, A; Cole, R; Collura, A; Cordier, D; Covino, E; Danielski, C; Damasso, M; Deeg, H J; Delgado-Mena, E; Del Vecchio, C; Demangeon, O; De Sio, A; De Wit, J; Dobrijévic, M; Doel, P; Dominic, C; Dorfi, E; Eales, S; Eiroa, C; Contreras, M Espinoza; Esposito, M; Eymet, V; Fabrizio, N; Fernández, M; Castella, B Femenía; Figueira, P; Filacchione, G; Fletcher, L; Focardi, M; Fossey, S; Fouqué, P; Frith, J; Galand, M; Gambicorti, L; Gaulme, P; López, R J García; Garcia-Piquer, A; Gear, W; Gerard, J -C; Gesa, L; Giani, E; Gianotti, F; Gillon, M; Giro, E; Giuranna, M; Gomez, H; Gomez-Leal, I; Hernandez, J Gonzalez; Merino, B González; Graczyk, R; Grassi, D; Guardia, J; Guio, P; Gustin, J; Hargrave, P; Haigh, J; Hébrard, E; Heiter, U; Heredero, R L; Herrero, E; Hersant, F; Heyrovsky, D; Hollis, M; Hubert, B; Hueso, R; Israelian, G; Iro, N; Irwin, P; Jacquemoud, S; Jones, G; Jones, H; Justtanont, K; Kehoe, T; Kerschbaum, F; Kerins, E; Kervella, P; Kipping, D; Koskinen, T; Krupp, N; Lahav, O; Laken, B; Lanza, N; Lellouch, E; Leto, G; Goldaracena, J Licandro; Lithgow-Bertelloni, C; Liu, S J; Cicero, U Lo; Lodieu, N; Lognonné, P; Lopez-Puertas, M; Lopez-Valverde, M A; Rasmussen, I Lundgaard; Luntzer, A; Machado, P; MacTavish, C; Maggio, A; Maillard, J -P; Magnes, W; Maldonado, J; Mall, U; Marquette, J -B; Mauskopf, P; Massi, F; Maurin, A -S; Medvedev, A; Michaut, C; Miles-Paez, P; Montalto, M; Rodríguez, P Montañés; Monteiro, M; Montes, D; Morais, H; Morales, J C; Morales-Calderón, M; Morello, G; Martín, A Moro; Moses, J; Bedon, A Moya; Alcaino, F Murgas; Oliva, E; Orton, G; Palla, F; Pancrazzi, M; Pantin, E; Parmentier, V; Parviainen, H; Ramírez, K Y Peña; Peralta, J; Perez-Hoyos, S; Petrov, R; Pezzuto, S; Pietrzak, R; Pilat-Lohinger, E; Piskunov, N; Prinja, R; Prisinzano, L; Polichtchouk, I; Poretti, E; Radioti, A; Ramos, A A; Rank-Lüftinger, T; Read, P; Readorn, K; López, R Rebolo; Rebordão, J; Rengel, M; Rezac, L; Rocchetto, M; Rodler, F; Béjar, V J Sánchez; Lavega, A Sanchez; Sanromá, E; Santos, N; Forcada, J Sanz; Scandariato, G; Schmider, F -X; Scholz, A; Scuderi, S; Sethenadh, J; Shore, S; Showman, A; Sicardy, B; Sitek, P; Smith, A; Soret, L; Sousa, S; Stiepen, A; Stolarski, M; Strazzulla, G; Tabernero, H M; Tanga, P; Tecsa, M; Temple, J; Terenzi, L; Tessenyi, M; Testi, L; Thompson, S; Thrastarson, H; Tingley, B W; Trifoglio, M; Torres, J Martín

    2015-01-01

    The discovery of almost 2000 exoplanets has revealed an unexpectedly diverse planet population. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? What causes the exceptional diversity observed as compared to the Solar System? EChO (Exoplanet Characterisation Observatory) has been designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large and diverse planet sample within its four-year mission lifetime. EChO can target the atmospheres of super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300K-3000K) of F to M-type host stars. Over the next ten years, several new ground- and space-based transit surveys will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on find...

  6. Vibrational dephasing mechanisms in liquids and glasses: Vibrational echo experiments

    E-Print Network [OSTI]

    Fayer, Michael D.

    Vibrational dephasing mechanisms in liquids and glasses: Vibrational echo experiments K. D. Rector September 1997; accepted 27 October 1997 Picosecond vibrational echo studies of the asymmetric stretching. It is proposed that the T1 dependence arises from coupling of the vibration to the glass's tunneling two level

  7. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  8. Ris-PhD-7(EN) Neutron scattering studies of two-

    E-Print Network [OSTI]

    Risø-PhD-7(EN) Neutron scattering studies of two- dimensional antiferromagnetic spin fluctuations Denmark January 2005 #12;Neutron scattering studies of two-dimensional antiferromagnetic spin fluctuations Laboratory 4000 Roskilde, Denmark #12;#12;Abstract: In this thesis, neutron scattering techniques are used

  9. A local Echo State Property through the largest Lyapunov exponent

    E-Print Network [OSTI]

    Mathieu Galtier; Gilles Wainrib

    2015-05-24

    Echo State Networks are efficient time-series predictors, which highly depend on the value of the spectral radius of the reservoir connectivity matrix. Based on recent results on the mean field theory of driven random recurrent neural networks, enabling the computation of the largest Lyapunov exponent of an ESN, we develop a cheap algorithm to establish a local and operational version of the Echo State Property.

  10. Motional Spin Relaxation in Large Electric Fields

    E-Print Network [OSTI]

    Riccardo Schmid; B. Plaster; B. W. Filippone

    2008-07-02

    We discuss the precession of spin-polarized Ultra Cold Neutrons (UCN) and $^{3}$He atoms in uniform and static magnetic and electric fields and calculate the spin relaxation effects from motional $v\\times E$ magnetic fields. Particle motion in an electric field creates a motional $v\\times E$ magnetic field, which when combined with collisions, produces variations of the total magnetic field and results in spin relaxation of neutron and $^{3}$He samples. The spin relaxation times $T_{1}$ (longitudinal) and $T_{2}$ (transverse) of spin-polarized UCN and $^{3}$He atoms are important considerations in a new search for the neutron Electric Dipole Moment at the SNS \\emph{nEDM} experiment. We use a Monte Carlo approach to simulate the relaxation of spins due to the motional $v\\times E$ field for UCN and for $^{3}$He atoms at temperatures below $600,\\mathrm{mK}$. We find the relaxation times for the neutron due to the $v\\times E$ effect to be long compared to the neutron lifetime, while the $^{3}$He relaxation times may be important for the \\emph{nEDM} experiment.

  11. Quantum Decoherence of the Central Spin in a Sparse System of Dipolar Coupled Spins

    E-Print Network [OSTI]

    Wayne M. Witzel; Malcolm S. Carroll; Lukasz Cywinski; S. Das Sarma

    2012-08-02

    The central spin decoherence problem has been researched for over 50 years in the context of both nuclear magnetic resonance and electron spin resonance. Until recently, theoretical models have employed phenomenological stochastic descriptions of the bath-induced noise. During the last few years, cluster expansion methods have provided a microscopic, quantum theory to study the spectral diffusion of a central spin. These methods have proven to be very accurate and efficient for problems of nuclear-induced electron spin decoherence in which hyperfine interactions with the central electron spin are much stronger than dipolar interactions among the nuclei. We provide an in-depth study of central spin decoherence for a canonical scale-invariant all-dipolar spin system. We show how cluster methods may be adapted to treat this problem in which central and bath spin interactions are of comparable strength. Our extensive numerical work shows that a properly modified cluster theory is convergent for this problem even as simple perturbative arguments begin to break down. By treating clusters in the presence of energy detunings due to the long-range (diagonal) dipolar interactions of the surrounding environment and carefully averaging the effects over different spin states, we find that the nontrivial flip-flop dynamics among the spins becomes effectively localized by disorder in the energy splittings of the spins. This localization effect allows for a robust calculation of the spin echo signal in a dipolarly coupled bath of spins of the same kind, while considering clusters of no more than 6 spins. We connect these microscopic calculation results to the existing stochastic models. We, furthermore, present calculations for a series of related problems of interest for candidate solid state quantum bits including donors and quantum dots in silicon as well as nitrogen-vacancy centers in diamond.

  12. Displacement Echoes: Classical Decay and Quantum Freeze

    E-Print Network [OSTI]

    Cyril Petitjean; Diego V. Bevilaqua; Eric J. Heller; Philippe Jacquod

    2007-04-23

    Motivated by neutron scattering experiments, we investigate the decay of the fidelity with which a wave packet is reconstructed by a perfect time-reversal operation performed after a phase space displacement. In the semiclassical limit, we show that the decay rate is generically given by the Lyapunov exponent of the classical dynamics. For small displacements, we additionally show that, following a short-time Lyapunov decay, the decay freezes well above the ergodic value because of quantum effects. Our analytical results are corroborated by numerical simulations.

  13. Displacement Echoes: Classical Decay and Quantum Freeze

    SciTech Connect (OSTI)

    Petitjean, Cyril [Departement de Physique Theorique, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Bevilaqua, Diego V. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Heller, Eric J. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Jacquod, Philippe [Physics Department, University of Arizona, Tucson, Arizona 85721 (United States)

    2007-04-20

    Motivated by neutron scattering experiments, we investigate the decay of the fidelity with which a wave packet is reconstructed by a perfect time-reversal operation performed after a phase-space displacement. In the semiclassical limit, we show that the decay rate is generically given by the Lyapunov exponent of the classical dynamics. For small displacements, we additionally show that, following a short-time Lyapunov decay, the decay freezes well above the ergodic value because of quantum effects. Our analytical results are corroborated by numerical simulations.

  14. Loschmidt echo in one-dimensional interacting Bose gases

    SciTech Connect (OSTI)

    Lelas, K.; Seva, T.; Buljan, H.

    2011-12-15

    We explore Loschmidt echo in two regimes of one-dimensional interacting Bose gases: the strongly interacting Tonks-Girardeau (TG) regime, and the weakly interacting mean-field regime. We find that the Loschmidt echo of a TG gas decays as a Gaussian when small (random and time independent) perturbations are added to the Hamiltonian. The exponent is proportional to the number of particles and the magnitude of a small perturbation squared. In the mean-field regime the Loschmidt echo shows richer behavior: it decays faster for larger nonlinearity, and the decay becomes more abrupt as the nonlinearity increases; it can be very sensitive to the particular realization of the noise potential, especially for relatively small nonlinearities.

  15. Echo Meadows Project Winter Artificial Recharge.

    SciTech Connect (OSTI)

    Ziari, Fred

    2002-12-19

    This report discusses the findings of the Echo Meadows Project (BPA Project 2001-015-00). The main purpose of this project is to artificially recharge an alluvial aquifer, WITH water from Umatilla River during the winter high flow period. In turn, this recharged aquifer will discharge an increased flow of cool groundwater back to the river, thereby improving Umatilla River water quality and temperature. A considerable side benefit is that the Umatilla River should improve as a habitat for migration, spanning, and rearing of anadromous and resident fish. The scope of this project is to provide critical baseline information about the Echo Meadows and the associated reach of the Umatilla River. Key elements of information that has been gathered include: (1) Annual and seasonal groundwater levels in the aquifer with an emphasis on the irrigation season, (2) Groundwater hydraulic properties, particularly hydraulic conductivity and specific yield, and (3) Groundwater and Umatilla River water quality including temperature, nutrients and other indicator parameters. One of the major purposes of this data gathering was to develop input to a groundwater model of the area. The purpose of the model is to estimate our ability to recharge this aquifer using water that is only available outside of the irrigation season (December through the end of February) and to estimate the timing of groundwater return flow back to the river. We have found through the data collection and modeling efforts that this reach of the river had historically returned as much as 45 cubic feet per second (cfs) of water to the Umatilla River during the summer and early fall. However, this return flow was reduced to as low as 10 cfs primarily due to reduced quantities of irrigation application, gain in irrigation efficiencies and increased groundwater pumping. Our modeling indicated that it is possible to restore these critical return flows using applied water outside of the irrigation season. We further found that this water can be timed to return to the river during the desired time of the year (summer to early fall). This is because the river stage, which remains relatively high until this time, drops during the irrigation season-thereby releasing the stored groundwater and increasing river flows. A significant side benefit is that these enhanced groundwater return flows will be clean and cold, particularly as compared to the Umatilla River. We also believe that this same type of application of water could be done and the resulting stream flows could be realized in other watersheds throughout the Pacific Northwest. This means that it is critical to compare the results from this baseline report to the full implementation of the project in the next phase. As previously stated, this report only discusses the results of data gathered during the baseline phase of this project. We have attempted to make the data that has been gathered accessible with the enclosed databases and spreadsheets. We provide computer links in this report to the databases so that interested parties can fully evaluate the data that has been gathered. However, we cannot emphasize too strongly that the real value of this project is to implement the phases to come, compare the results of these future phases to this baseline and develop the science and strategies to successfully implement this concept to other rivers in the Pacific Northwest. The results from our verified and calibrated groundwater model matches the observed groundwater data and trends collected during the baseline phase. The modeling results indicate that the return flows may increase to their historic values with the addition of 1 acre-ft/acre of recharge water to the groundwater system (about 9,600 acre-feet total). What this means is that through continued recharge project, you can double to quadruple the annual baseflow of the Umatilla River during the low summer and fall flow periods as compared to the present base-flow. The cool and high quality recharge water is a significant beneficial impact to the river system.

  16. Space Time Reversal Experiment by Use of Pulsed Neutron Ramsey Resonance

    SciTech Connect (OSTI)

    Masuda, Y.; Jeong, S. C.; Watanabe, Y. [Institute of Particle and Nuclear Studies, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Skoy, V. [Joint Institute for Nuclear Research, 14980 Dubna Moscow Region (Russian Federation); Ino, T. [Institute of Material Structure Science, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)

    2007-06-13

    We have developed a pulsed neutron Ramsey resonance for a T-violation experiment on polarized neutron transmission through a polarized nuclear target. Two separated oscillatory fields were placed in a pulsed neutron beam line, which were synchronized with a neutron pulse for precision neutron spin manipulation. We observed neutron Larmor precession between the two oscillatory fields as a function of a neutron time of flight (TOF). We modulated the phase of the second oscillatory field with respect to the first oscillatory field. The effect of the phase modulation was found in a neutron intensity modulation as a function of the TOF. From the neutron intensity modulation, the neutron spin direction as well as the neutron velocity between the two oscillatory fields was precisely obtained.

  17. Neutron guide

    DOE Patents [OSTI]

    Greene, Geoffrey L. (Los Alamos, NM)

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  18. Parallel and real-time implementation of an acoustic echo canceller using oversampled wavelet frame algorithms 

    E-Print Network [OSTI]

    Tam, Pak-Yin

    1995-01-01

    This thesis describes a novel echo cancellation system that eliminates nonstationary echoes with long acoustic delays in real-time. By combining subband adaptive filtering and active system identification based on fast wavelet transform...

  19. Neutron Charge Radius: Relativistic Effects and the Foldy Term

    E-Print Network [OSTI]

    D'Araújo, W R B; Beyer, M; Weber, H J

    2003-01-01

    The neutron charge radius is studied within a light-front model with different spin coupling schemes and wave functions. The cancellation of the contributions from the Foldy term and Dirac form factor to the neutron charge form factor is verified for large nucleon sizes and it is independent of the detailed form of quark spin coupling and wave function. For the physical nucleon our results for the contribution of the Dirac form factor to the neutron radius are insensitive to the form of the wave function while they strongly depend on the quark spin coupling scheme.

  20. Spin waves in the (

    SciTech Connect (OSTI)

    Lipscombe, O. J.; Chen, G. F.; Fang, Chen; Perring, T. G.; Abernathy, Douglas L; Christianson, Andrew D; Egami, Takeshi; Wang, Nanlin; Hu, Jiangping; Dai, Pengcheng

    2011-01-01

    We use neutron scattering to show that spin waves in the iron chalcogenide Fe{sub 1.05}Te display novel dispersion clearly different from both the first principles density functional calculations and recent observations in the related iron pnictide CaFe{sub 2}As{sub 2}. By fitting to a Heisenberg Hamiltonian, we find that although the nearest-neighbor exchange couplings in the two systems are quite different, their next-nearest-neighbor (NNN) couplings are similar. This suggests that superconductivity in the pnictides and chalcogenides share a common magnetic origin that is intimately associated with the NNN magnetic coupling between the irons.

  1. Finland HF and Esrange MST radar observations of polar mesosphere summer echoes

    E-Print Network [OSTI]

    Kirkwood, Sheila

    Finland HF and Esrange MST radar observations of polar mesosphere summer echoes Tadahiko Ogawa1 (200x) xx:1­8 Finland HF and Esrange MST radar observations of polar mesosphere summer echoes Tadahiko in Finland are presented. The echoes were detected at four frequencies of 9, 11, 13 and 15 MHz at slant

  2. Echo360 and Copyright Introduction and Summary Tables

    E-Print Network [OSTI]

    Fleming, Andrew J.

    commercial price'. Artwork from Internet (Includes photographs, maps, tables, images, etc.) Yes Yes* Must and Summary Tables Echo360 records and communicates material from a variety of sources. Some activities time' at an `ordinary commercial price'. Note: Individual licence agreements may limit use. Abide

  3. Synthesize Neutron-Drip-Line-Nuclides with Free-Neutron Bose-Einstein Condensates Experimentally

    E-Print Network [OSTI]

    Bao-Guo Dong

    2014-09-22

    We first show a possible way to create a new type of matter, free-neutron Bose-Einstein condensate by the ultracold free-neutron-pair Bose-Einstein condensation and then determine the neutron drip line experimentally. The Bose-Einstein condensation of bosonic and fermionic atoms in atomic gases was performed experimentally and predicted theoretically early. Neutrons are similar to fermionic atoms. We found free neutrons could be cooled to ultracold neutrons with very low energy by other colder neutral atoms which are cooled by the laser. These neutrons form neutron pairs with spin zero, and then ultracold neutron-pairs form Bose-Einstein condensate. Our results demonstrate how these condensates can react with accelerated ion beams at different energy to synthesize very neutron-rich nuclides near, on or/and beyond the neutron drip line, to determine the neutron drip line and whether there are long-life nuclide or isomer islands beyond the neutron drip line experimentally. Otherwise, these experimental results will confirm our prediction that is in the whole interacting region or distance of nuclear force in all energy region from zero to infinite, Only repulsive nuclear force exists among identical nucleons and only among different nucleons exists attractive nuclear force.

  4. Synthesize Neutron-Drip-Line-Nuclides with Free-Neutron Bose-Einstein Condensates Experimentally

    E-Print Network [OSTI]

    Dong, Bao-Guo

    2014-01-01

    We first show a possible way to create a new type of matter, free-neutron Bose-Einstein condensate by the ultracold free-neutron-pair Bose-Einstein condensation and then determine the neutron drip line experimentally. The Bose-Einstein condensation of bosonic and fermionic atoms in atomic gases was performed experimentally and predicted theoretically early. Neutrons are similar to fermionic atoms. We found free neutrons could be cooled to ultracold neutrons with very low energy by other colder neutral atoms which are cooled by the laser. These neutrons form neutron pairs with spin zero, and then ultracold neutron-pairs form Bose-Einstein condensate. Our results demonstrate how these condensates can react with accelerated ion beams at different energy to synthesize very neutron-rich nuclides near, on or/and beyond the neutron drip line, to determine the neutron drip line and whether there are long-life nuclide or isomer islands beyond the neutron drip line experimentally. Otherwise, these experimental results ...

  5. Neutron Scattering Tutorials | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Tutorials SHARE Neutron Scattering Tutorials The following lectures were presented at the 2011 and 2010 National School on Neutron & X-Ray Scattering. This...

  6. Spin and orbital ordering in ternary transition metal oxides 

    E-Print Network [OSTI]

    Kimber, Simon A. J.

    Spin and orbital orderings are amongst the most important phenomena in the solid state chemistry of oxides. Physical property and powder neutron and X-ray diffraction measurements are reported for a range of mostly low ...

  7. Neutron detector

    DOE Patents [OSTI]

    Stephan, Andrew C. (Knoxville, TN); Jardret; Vincent D. (Powell, TN)

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  8. Neutron tubes

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Lou, Tak Pui (Berkeley, CA); Reijonen, Jani (Oakland, CA)

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  9. Loschmidt echo in a system of interacting electrons

    E-Print Network [OSTI]

    G. Manfredi; P. -A. Hervieux

    2006-10-20

    We study the Loschmidt echo for a system of electrons interacting through mean-field Coulomb forces. The electron gas is modeled by a self-consistent set of hydrodynamic equations. It is observed that the quantum fidelity drops abruptly after a time that is proportional to the logarithm of the perturbation amplitude. The fidelity drop is related to the breakdown of the symmetry properties of the wave function.

  10. V838 Mon: light echo evolution and distance estimate

    E-Print Network [OSTI]

    Lisa A. Crause; Warrick A. Lawson; John W. Menzies; Fred Marang

    2005-01-22

    Following its 2002 February eruption, V838 Mon developed a light echo that continues to expand and evolve as light from the outburst scatters off progressively more distant circumstellar and/or interstellar material. Multi-filter images of the light echo, obtained with the South African Astronomical Observatory (SAAO) 1.0-m telescope between 2002 May and 2004 December, are analysed and made available electronically. The expansion of the light echo is measured from the images and the data compared with models for scattering by a thin sheet and a thin shell of dust. From these model results we infer that the dust is likely in the form of a thin sheet distant from the star, suggesting that the material is of interstellar origin, rather than being from earlier stages in the star's evolution. Although the fit is uncertain, we derive a stellar distance of ~ 9 kpc and a star-dust distance of ~ 5 pc, in good agreement with recent results reported from other methods. We also present JHKL and Cousins UBVRI photometry obtained at the SAAO during the star's second, third and fourth observing seasons post-outburst. These data show complex infrared colour behaviour while V838 Mon is slowly brightening in the optical.

  11. Neutron shell structure and deformation in neutron-drip-line nuclei

    E-Print Network [OSTI]

    Ikuko Hamamoto

    2012-06-18

    Neutron shell-structure and the resulting possible deformation in the neighborhood of neutron-drip-line nuclei are systematically discussed, based on both bound and resonant neutron one-particle energies obtained from spherical and deformed Woods-Saxon potentials. Due to the unique behavior of weakly-bound and resonant neutron one-particle levels with smaller orbital angular-momenta $\\ell$, a systematic change of the shell structure and thereby the change of neutron magic-numbers are pointed out, compared with those of stable nuclei expected from the conventional j-j shell-model. For spherical shape with the operator of the spin-orbit potential conventionally used, the $\\ell_{j}$ levels belonging to a given oscillator major shell with parallel spin- and orbital-angular-momenta tend to gather together in the energetically lower half of the major shell, while those levels with anti-parallel spin- and orbital-angular-momenta gather in the upper half. The tendency leads to a unique shell structure and possible deformation when neutrons start to occupy the orbits in the lower half of the major shell. Among others, the neutron magic-number N=28 disappears and N=50 may disappear, while the magic number N=82 may presumably survive due to the large $\\ell =5$ spin-orbit splitting for the $1h_{11/2}$ orbit. On the other hand, an appreciable amount of energy gap may appear at N=16 and 40 for spherical shape, while neutron-drip-line nuclei in the region of neutron number above N=20, 40 and 82, namely N $\\approx$ 21-28, N $\\approx$ 41-54, and N $\\approx$ 83-90, may be quadrupole-deformed though the possible deformation depends also on the proton number of respective nuclei.

  12. Investigating Neutron Polarizabilities through Compton Scattering on $^3He$

    E-Print Network [OSTI]

    Deepshikha Choudhury; Andreas Nogga; Daniel R. Phillips

    2007-06-11

    We examine manifestations of neutron electromagnetic polarizabilities in coherent Compton scattering from the Helium-3 nucleus. We calculate $\\gamma ^3He$ elastic scattering observables using chiral perturbation theory to next-to-leading order (${\\mathcal O}(e^2 Q)$). We find that the unpolarized differential cross section can be used to measure neutron electric and magnetic polarizabilities, while two double-polarization observables are sensitive to different linear combinations of the four neutron spin polarizabilities.

  13. Deformation and shape transitions in hot rotating neutron deficient Te isotopes

    SciTech Connect (OSTI)

    Aggarwal, Mamta; Mazumdar, I.

    2009-08-15

    Evolution of the nuclear shapes and deformations under the influence of temperature and rotation is investigated in Te isotopes with neutron number ranging from the proton drip line to the stability valley. Spin dependent critical temperatures for the shape transitions in Te nuclei are computed. Shape transitions from prolate at low temperature and spin to oblate via triaxiality are seen with increasing neutron number and spin.

  14. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  15. Classical gravitational spin-spin interaction

    E-Print Network [OSTI]

    W. B. Bonnor

    2002-01-30

    I obtain an exact, axially symmetric, stationary solution of Einstein's equations for two massless spinning particles. The term representing the spin-spin interaction agrees with recently published approximate work. The spin-spin force appears to be proportional to the inverse fourth power of the coordinate distance between the particles.

  16. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  17. Neutron Tomography and Space

    E-Print Network [OSTI]

    Egbert, Hal; Walker, Ronald; Flocchini, R.

    2007-01-01

    Kevin Shields, “Optimization of neutron tomography for rapidNEUTRON TOMOGRAPHY AND SPACE Hal Egbert, Ronald Walker, R.industrial applications[1]. Neutron Computed Tomography was

  18. Moments of the neutron g? structure function at intermediate Q²

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solvignon-Slifer, Patricia H.

    2015-07-15

    We present new experimental results of the ³He spin structure function g? in the resonance region at Q² values between 1.2 and 3.0 (GeV/c)². Spin dependent moments of the neutron were then extracted.Our main result, the inelastic contribution to the neutron d? matrix element, was found to be small (Q²) = 2.4 (GeV/c)² and in agreement with the Lattice QCD calculation. The Burkhardt-Cottingham sum rule for ³He neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low x unmeasured region.

  19. A solenoidal electron spectrometer for a precision measurement of the neutron $?$-asymmetry with ultracold neutrons

    E-Print Network [OSTI]

    B. Plaster; R. Carr; B. W. Filippone; D. Harrison; J. Hsiao; T. M. Ito; J. Liu; J. W. Martin; B. Tipton; J. Yuan

    2008-06-12

    We describe an electron spectrometer designed for a precision measurement of the neutron $\\beta$-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-Tesla solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-Tesla field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.

  20. Glen Echo, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:BoreOpenGilliam County,Glastonbury Center,Avon,Echo,

  1. Echo 1-7 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)askDoubleEERESoda LakeEcho 1-7 Wind Farm Jump

  2. Echo 8-9 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)askDoubleEERESoda LakeEcho 1-7 Wind Farm

  3. Spin ejector

    DOE Patents [OSTI]

    Andersen, John A. (Alburquerque, NM); Flanigan, John J. (Alburquerque, NM); Kindley, Robert J. (Alburquerque, NM)

    1978-01-01

    The disclosure relates to an apparatus for spin ejecting a body having a flat plate base containing bosses. The apparatus has a base plate and a main ejection shaft extending perpendicularly from the base plate. A compressible cylindrical spring is disposed about the shaft. Bearings are located between the shaft and the spring. A housing containing a helical aperture releasably engages the base plate and surrounds the shaft bearings and the spring. A piston having an aperture follower disposed in the housing aperture is seated on the spring and is guided by the shaft and the aperture. The spring is compressed and when released causes the piston to spin eject the body.

  4. BPS Skyrmions as neutron stars

    E-Print Network [OSTI]

    C. Adam; C. Naya; J. Sanchez-Guillen; R. Vazquez; A. Wereszczynski

    2015-02-26

    The BPS Skyrme model has been demonstrated already to provide a physically intriguing and quantitatively reliable description of nuclear matter. Indeed, the model has both the symmetries and the energy-momentum tensor of a perfect fluid, and thus represents a field theoretic realization of the "liquid droplet" model of nuclear matter. In addition, the classical soliton solutions together with some obvious corrections (spin-isospin quantization, Coulomb energy, proton-neutron mass difference) provide an accurate modeling of nuclear binding energies for heavier nuclei. These results lead to the rather natural proposal to try to describe also neutron stars by the BPS Skyrme model coupled to gravity. We find that the resulting self-gravitating BPS Skyrmions provide excellent results as well as some new perspectives for the description of bulk properties of neutron stars when the parameter values of the model are extracted from nuclear physics. Specifically, the maximum possible mass of a neutron star before black-hole formation sets in is a few solar masses, the precise value depending on the precise values of the model parameters, and the resulting neutron star radius is of the order of 10 km.

  5. Neutron Repulsion

    E-Print Network [OSTI]

    Oliver K. Manuel

    2011-02-08

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding how: a.) The Sun generates and releases neutrinos, energy and solar-wind hydrogen and helium; b.) An inhabitable planet formed and life evolved around an ordinary-looking star; c.) Continuous climate change - induced by cyclic changes in gravitational interactions of the Sun's energetic core with planets - has favored survival by adaptation.

  6. Neutron Scattering User Program | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Program SHARE Neutron Scattering Can Benefit Your Research Neutron scattering has applications in almost every technical and scientific field, from biology and chemistry to...

  7. Dual-Doppler analysis of the 17 June 1997 bow echo over southeast Texas 

    E-Print Network [OSTI]

    Moncla, Kerry Louis

    2001-01-01

    not shown in conceptual models of bow echoes however is a distinct, smaller-scale, cyclonic vortex present along the northern front edge of the bow echo. This vortex seems to have formed from the tilting and subsequent stretching of vorticity generated...

  8. The Echo Distributed File System Andrew D. Birrell, Andy Hisgen, Chuck Jerian,

    E-Print Network [OSTI]

    Chin, Shiu-Kai

    . All rights reserved. #12;The Echo Distributed File System · 1 WHAT AND WHY? One of the holy grails systems with the virtues of distributed and personal computer systems. This grail is all the harder to capture the file system portion of this grail. We thought of the Echo file system as a crucial first piece

  9. Meteor Trail Echo Rejection in Atmospheric Phased Array Radars Using Adaptive Sidelobe Cancellation

    E-Print Network [OSTI]

    Sato, Toru

    of power (NC-DCMP), which balances the capability of canceling the clutter and the robustness of beam February 2014, in final form 21 May 2014) ABSTRACT Strong meteor trail echoes are interferences in the wind of the signal-to-noise ratio (SNR) and inaccurate wind estimates for weak atmospheric echoes. This paper

  10. Reaching the quantum limit of sensitivity in electron spin resonance

    E-Print Network [OSTI]

    A. Bienfait; J. J. Pla; Y. Kubo; M. Stern; X. Zhou; C. C. Lo; C. D. Weis; T. Schenkel; M. L. W. Thewalt; D. Vion; D. Esteve; B. Julsgaard; K. Moelmer; J. J. L. Morton; P. Bertet

    2015-07-24

    We report pulsed electron-spin resonance (ESR) measurements on an ensemble of Bismuth donors in Silicon cooled at 10mK in a dilution refrigerator. Using a Josephson parametric microwave amplifier combined with high-quality factor superconducting micro-resonators cooled at millikelvin temperatures, we improve the state-of-the-art sensitivity of inductive ESR detection by nearly 4 orders of magnitude. We demonstrate the detection of 1700 bismuth donor spins in silicon within a single Hahn echo with unit signal-to-noise (SNR) ratio, reduced to just 150 spins by averaging a single Carr-Purcell-Meiboom-Gill sequence. This unprecedented sensitivity reaches the limit set by quantum fluctuations of the electromagnetic field instead of thermal or technical noise, which constitutes a novel regime for magnetic resonance.

  11. Neutron rich nuclei and neutron stars

    E-Print Network [OSTI]

    C. J. Horowitz

    2013-03-01

    The PREX experiment at Jefferson Laboratory measures the neutron radius of 208Pb with parity violating electron scattering in a way that is free from most strong interaction uncertainties. The 208Pb radius has important implications for neutron rich matter and the structure of neutron stars. We present first PREX results, describe future plans, and discuss a follow on measurement of the neutron radius of 48Ca. We review radio and X-ray observations of neutron star masses and radii. These constrain the equation of state (pressure versus density) of neutron rich matter. We present a new energy functional that is simultaneously fit to both nuclear and neutron star properties. In this approach, neutron star masses and radii constrain the energy of neutron matter. This avoids having to rely on model dependent microscopic calculations of neutron matter. The functional is then used to predict the location of the drip lines and the properties of very neutron rich heavy nuclei.

  12. SPIN DENSITY OF THE CANTED MOMENT IN 03B1-Fe2O3 (1) By S. J. PICKART,

    E-Print Network [OSTI]

    Boyer, Edmond

    avec des neutrons polarisés. On trouve que cette densité diffère de celle de l'ion Fe3+. Abstract. 2014 neutrons and found to differ from that of the Fe3+ ion. LE JOURNAL DE PHYSIQUE TOME 25, MAI 1964, as established by the original neutron diffraction measurements [3], consists of the Fe3 ~ spins in each (111

  13. Methods for absorbing neutrons

    DOE Patents [OSTI]

    Guillen, Donna P. (Idaho Falls, ID); Longhurst, Glen R. (Idaho Falls, ID); Porter, Douglas L. (Idaho Falls, ID); Parry, James R. (Idaho Falls, ID)

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  14. NEUTRON ELECTRIC-DIPOLE MOMENT, ULTRACOLD NEUTRONS

    E-Print Network [OSTI]

    NEUTRON ELECTRIC-DIPOLE MOMENT, ULTRACOLD NEUTRONS AND POLARIZED 3He R. GOLUB~and Steve K REPORTS (Review Section of Physics Letters) 237, No. 1(1994)1--62. PHYSICS REPORTS North-Holland Neutron electric-dipole moment, ultracold neutrons and polarized 3He R. Goluba and Steve K. Lamoreauxb a

  15. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  16. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  17. Demand Response Spinning Reserve Demonstration

    E-Print Network [OSTI]

    2007-01-01

    F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

  18. A Method for Extracting Light Echo Fluxes Using the NN2 Difference Imaging Technique

    E-Print Network [OSTI]

    Andrew B. Newman; Armin Rest

    2006-10-19

    Light echoes are interesting because of the wealth of information they offer about their progenitors and the reflecting dust. Due to their faint surface brightnesses, difference imaging is necessary to separate most light echoes from the sky background. However, difference images reveal only the relative fluxes between two epochs. Obtaining absolute fluxes for individual epochs has traditionally relied on a single template image that is free of light echoes. Since such an observation is normally unavailable, a light echo-free template must be constructed by a complicated and usually subjective process. Here we present an application of the NN2 method of Barris et al. to extract the relative fluxes of light echoes across a range of epochs directly from a series of difference images. This method requires no privileged image and makes maximal use of the observational data. Statistical methods to estimate the zero-flux level and thus the absolute flux are also presented. The efficacy of the technique is demonstrated by an application to the light echoes around SN 1987A. The resulting images reveal new detail and faint light echo structures. This method can be adapted and applied to other extended variable light sources, such as stellar outflows and supernova remnants.

  19. Experimental Studies of Spin, Charge and Orbital Order at Extreme Conditions 

    E-Print Network [OSTI]

    Carlsson, Sandra J E

    2009-01-01

    Spin, charge and orbital ordering in various crystalline compounds have been studied under extreme conditions. The main techniques used were synchrotron X-ray and neutron powder diffraction. High-pressure conditions were ...

  20. The helical jet of IGR J11014-6103: echoes of a core-collapse supernova

    E-Print Network [OSTI]

    Pavan, L; Puehlhofer, G; Filipovic, M D; De Horta, A; O'Brien, A; Balbo, M; Walter, R; Bozzo, E; Ferrigno, C; Crawford, E; Stella, L

    2013-01-01

    Jets from rotation-powered pulsars have so far only been observed in systems moving subsonically trough their ambient medium and/or embedded in their progenitor supernova remnant (SNR). Supersonic runaway pulsars are also expected to produce jets, but they have not been confirmed so far. We investigated the nature of the jet-like structure associated to the INTEGRAL source IGR J11014-6103. The source is a neutron star escaping its parent SNR MSH 11-61A supersonically at a velocity exceeding 1000 km/s. We observed IGR J11014-6103 and its jet-like X-ray structure through dedicated high spatial resolution observations in X-rays (Chandra) and radio band (ATCA). Our results show that the feature is a true pulsar's jet. It extends highly collimated over 11pc, displays a clear precession-like modulation, and propagates nearly perpendicular to the system direction of motion, implying that the neutron star's spin axis in IGR J11014-6103 is almost perpendicular to the direction of the kick received during the supernova...

  1. Lambda-Neutron Scattering Lengths from Radiative K-minus Capture

    E-Print Network [OSTI]

    W. R. Gibbs; S. A. Coon; H. K. Han; B. F. Gibson

    2000-01-02

    Radiative capture of the K-minus by the deuteron as a reaction for measurement of the Lambda-neutron scattering lengths. The use of spin information to separate the singlet and triplet scattering lengths is treated.

  2. Search for a T-odd, P-even Triple Correlation in Neutron Decay

    E-Print Network [OSTI]

    Chupp, T. E.

    2013-01-01

    is a supermirror bender (PSM) [44]. Neutrons are polarizedtical magnetic field of the PSM. The spin flipper con- sistssheet was parallel to the PSM field, and the current in the

  3. The performance and evaluation of the damaging downburst prediction and detection algorithm for bow echo storms 

    E-Print Network [OSTI]

    Karl, Beth Ann

    2000-01-01

    storm systems. This report marks the first time that the DDPDA has been evaluated for bow echo storm systems. Moreover, this validation database is one of the largest validation data sets constructed to date. The DDPDA alerts were evaluated using...

  4. A Proof-of-Principle Echo-enabled Harmonic Generation Free Electron...

    Office of Scientific and Technical Information (OSTI)

    ThesisDissertation: A Proof-of-Principle Echo-enabled Harmonic Generation Free Electron Laser Experiment at SLAC Citation Details In-Document Search Title: A Proof-of-Principle...

  5. Broadband and statistical characterization of echoes from random scatterers : application to acoustic scattering by marine organisms

    E-Print Network [OSTI]

    Lee, Wu-Jung

    2013-01-01

    The interpretation of echoes collected by active remote-sensing systems, such as sonar and radar, is often ambiguous due to the complexities in the scattering processes involving the scatterers, the environment, and the ...

  6. Sky Wars: The Attempted Merger of EchoStar and DirecTV (2000)

    E-Print Network [OSTI]

    Gilbert, Richard; Ratliff, James

    2007-01-01

    this conclusion using “churn data,” which estimated theEchoStar and DirecTV. Churn data, however, are difficult tohave not changed. Thus, churn data that show more switching

  7. Poster Abstract: Practical Limits of WiFi Time-of-Flight Echo Techniques

    E-Print Network [OSTI]

    Lenders, Vincent

    Giustiniano Institute IMDEA Networks Madrid, Spain domenico.giustiniano@imdea.org Vincent Lenders Armasuisse Thun, Switzerland vincent.lenders@armasuisse.ch Abstract--Time-of-flight echo techniques have been

  8. GP+Echo+Subsumption = Improved Problem Solving Computer Science and Engineering

    E-Print Network [OSTI]

    Fernandez, Thomas

    rather than for emulation of real systems." 2. Geography: Agents in Echo should move within a "geography of resources in the developed community of agents. Tags provide a means of identifying agents

  9. Spin Wave Diffraction Control and Read-out with a Quantum Memory for Light

    E-Print Network [OSTI]

    Gabriel Hétet; David Guéry-Odelin

    2015-01-06

    A scheme for control and read-out of diffracted spins waves to propagating light fields is presented. Diffraction is obtained via sinusoidally varying lights shifts and ideal one-to-one mapping to light is realized using a gradient echo quantum memory. We also show that dynamical control of the diffracted spin waves spatial orders can be implemented to realize a quantum pulse sequencer for temporal modes that have high time-bandwidth products. Full numerical solutions suggest that both co-propagating and couterpropagating light shift geometries can be used, making the proposal applicable to hot and cold atomic vapours as well as solid state systems with two-level atoms.

  10. SHARP Neutronics Expanded

    Broader source: Energy.gov [DOE]

    The SHARP neutronics module, PROTEUS, includes neutron and gamma transport solvers and cross-section processing tools as well as the capability for depletion and fuel cycle analysis.

  11. Instruments | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrons and Pressure Diffractometer CG-2 GP-SANS - General-Purpose Small-Angle Neutron Scattering Diffractometer 4A MR - Magnetism Reflectometer CG-3 Bio-SANS -...

  12. Short Gamma-Ray Bursts from Binary Neutron Star Mergers

    E-Print Network [OSTI]

    Roland Oechslin; Thomas Janka

    2006-04-27

    We present the results from new relativistic hydrodynamic simulations of binary neutron star mergers using realistic non-zero temperature equations of state. We vary several unknown parameters in the system such as the neutron star (NS) masses, their spins and the nuclear equation of state. The results are then investigated with special focus on the post-merger torus-remnant system. Observational implications on the Gamma-ray burst (GRB) energetics are discussed and compared with recent observations.

  13. Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-$\\alpha$ Scattering, and Neutron Matter

    E-Print Network [OSTI]

    Lynn, J E; Carlson, J; Gandolfi, S; Gezerlis, A; Schmidt, K E; Schwenk, A

    2015-01-01

    We present quantum Monte Carlo calculations of light nuclei, neutron-$\\alpha$ scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral effective field theory up to next-to-next-to-leading order (N$^2$LO). The two undetermined 3N low-energy couplings are fit to the $^4$He binding energy and, for the first time, to the spin-orbit splitting in the neutron-$\\alpha$ $P$-wave phase shifts. Furthermore, we investigate different choices of local 3N operator structures and find that chiral interactions at N$^2$LO are able to simultaneously reproduce the properties of $A=4,5$ systems and of neutron matter, in contrast to commonly used phenomenological 3N interactions.

  14. What are Neutrons? | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What are Neutrons SHARE What are Neutrons? Visualization of An error occurred. Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in your browser. a...

  15. Can Light Echoes Account for the Slow Decay of Type IIn Supernovae?

    E-Print Network [OSTI]

    B. Roscherr; B. E. Schaefer

    1999-09-09

    The spectra of type IIn supernovae indicate the presence of apre-existing slow, dense circumstellar wind (CSW). If the CSW extends sufficiently far from the progenitor star, then dust formation should occur in the wind. The light from the supernova explosion will scatter off this dust and produce a light echo. Continuum emission seen after the peak will have contributions from both this echo as well as from the shock of the ejecta colliding with the CSW, with a fundamental question of which source dominates the continuum. We calculate the brightness of the light echo as a function of time for a range of dust shell geometries, and use our calculations to fit to the light curves of SN 1988Z and SN 1997ab, the two slowest declining IIn supernovae on record. We find that the light curves of both objects can be reproduced by the echo model. However, their rate of decay from peak, color at peak and their observed peak absolute magnitudes when considered together are inconsistent with the echo model. Furthermore, when the observed values of M$_{B}$ are corrected for the effects of dust scattering, the values obtained imply that these supernovae have unrealistically high luminosities. We conclude that light echoes cannot properly account for the slow decline seen in some IIn's, and that the shock interaction is likely to dominate the continuum emission.

  16. A solenoidal electron spectrometer for a precision measurement of the neutron $\\beta$-asymmetry with ultracold neutrons

    E-Print Network [OSTI]

    Plaster, B; Filippone, B W; Harrison, D; Hsiao, J; Ito, T M; Liu, J; Martin, J W; Tipton, B; Yuan, J

    2008-01-01

    We describe an electron spectrometer designed for a precision measurement of the neutron $\\beta$-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-Tesla solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-Tesla field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.

  17. Noise pair velocity and range echo location system

    DOE Patents [OSTI]

    Erskine, D.J.

    1999-02-16

    An echo-location method for microwaves, sound and light capable of using incoherent and arbitrary waveforms of wide bandwidth to measure velocity and range (and target size) simultaneously to high resolution is disclosed. Two interferometers having very long and nearly equal delays are used in series with the target interposed. The delays can be longer than the target range of interest. The first interferometer imprints a partial coherence on an initially incoherent source which allows autocorrelation to be performed on the reflected signal to determine velocity. A coherent cross-correlation subsequent to the second interferometer with the source determines a velocity discriminated range. Dithering the second interferometer identifies portions of the cross-correlation belonging to a target apart from clutter moving at a different velocity. The velocity discrimination is insensitive to all slowly varying distortions in the signal path. Speckle in the image of target and antenna lobing due to parasitic reflections is minimal for an incoherent source. An arbitrary source which varies its spectrum dramatically and randomly from pulse to pulse creates a radar elusive to jamming. Monochromatic sources which jigger in frequency from pulse to pulse or combinations of monochromatic sources can simulate some benefits of incoherent broadband sources. Clutter which has a symmetrical velocity spectrum will self-cancel for short wavelengths, such as the apparent motion of ground surrounding target from a sidelooking airborne antenna. 46 figs.

  18. Noise pair velocity and range echo location system

    DOE Patents [OSTI]

    Erskine, David J. (Oakland, CA)

    1999-01-01

    An echo-location method for microwaves, sound and light capable of using incoherent and arbitrary waveforms of wide bandwidth to measure velocity and range (and target size) simultaneously to high resolution. Two interferometers having very long and nearly equal delays are used in series with the target interposed. The delays can be longer than the target range of interest. The first interferometer imprints a partial coherence on an initially incoherent source which allows autocorrelation to be performed on the reflected signal to determine velocity. A coherent cross-correlation subsequent to the second interferometer with the source determines a velocity discriminated range. Dithering the second interferometer identifies portions of the cross-correlation belonging to a target apart from clutter moving at a different velocity. The velocity discrimination is insensitive to all slowly varying distortions in the signal path. Speckle in the image of target and antenna lobing due to parasitic reflections is minimal for an incoherent source. An arbitrary source which varies its spectrum dramatically and randomly from pulse to pulse creates a radar elusive to jamming. Monochromatic sources which jigger in frequency from pulse to pulse or combinations of monochromatic sources can simulate some benefits of incoherent broadband sources. Clutter which has a symmetrical velocity spectrum will self-cancel for short wavelengths, such as the apparent motion of ground surrounding target from a sidelooking airborne antenna.

  19. Timelike Compton scattering off the neutron

    E-Print Network [OSTI]

    Marie Boër; Michel Guidal; Marc Vanderhaeghen

    2015-10-10

    We study the exclusive photoproduction of an electron-positron pair on a neutron target in the Jefferson Lab energy domain. The reaction consists of two processes: the Bethe-Heitler and the Timelike Compton Scattering. The latter process provides potentially access to the Generalized Parton Distributions (GPDs) of the nucleon. We calculate all the unpolarized, single- and double-spin observables of the reaction and study their sensitivities to GPDs.

  20. Jefferson Lab's results on the Q^2-evolution of moments of spin structure functions

    E-Print Network [OSTI]

    A. Deur

    2005-07-15

    We present the recent JLab measurements on moments of spin structure functions at intermediate and low Q^2. The Bjorken sum and Burkhardt-Cottingham sum on the neutron are presented. The later appears to hold. Higher moments (generalized spin polarizabilities and d_2^n) are shown and compared to chiral perturbation theory and lattice QCD respectively.

  1. Neutrostriction in Neutron stars

    E-Print Network [OSTI]

    V. K. Ignatovich

    2006-06-29

    It is demonstrated that not only gravity, but also neutrostriction forces due to optical potential created by coherent elastic neutron-neutron scattering can hold a neutron star together. The latter forces can be stronger than gravitational ones. The effect of these forces on mass, radius and structure of the neutron star is estimated.

  2. Neutron Drops and Skyrme Energy-Density Functionals

    E-Print Network [OSTI]

    B. S. Pudliner; A. Smerzi; J. Carlson; V. R. Pandharipande; Steven C. Pieper; D. G. Ravenhall

    1995-10-12

    The J$^{\\pi}$=0$^+$ ground state of a drop of 8 neutrons and the lowest 1/2$^-$ and 3/2$^-$ states of 7-neutron drops, all in an external well, are computed accurately with variational and Green's function Monte Carlo methods for a Hamiltonian containing the Argonne $v_{18}$ two-nucleon and Urbana IX three-nucleon potentials. These states are also calculated using Skyrme-type energy-density functionals. Commonly used functionals overestimate the central density of these drops and the spin-orbit splitting of 7-neutron drops. Improvements in the functionals are suggested.

  3. Neutron Compound Refractive Prisms - DOE SBIR Phase II Final Report

    SciTech Connect (OSTI)

    Dr. Jay Theodore Cremer, Jr

    2011-06-25

    The results of the research led to a pulsed electromagnetic periodic magnetic field array (PMF), which coupled with a pair of collimation slits, and a mechanical chopper slit, were able to deflect spin-up neutrons to a band of line-fused neutrons a focal plane heights that correspond to the time-varying magnetic field amplitude. The electromagnetic field PMF produced 5.4 pulses per minute in which each pulse was 50 msec in duration with a full width half maximum (FWHM) of 7.5 msec. The calculated 7.7 mm vertical height of the band of focused spin-up neutrons corresponded closely to the measured 7.5 mm height of the center line of the imaged band of neutrons. The band of deflected spin-up neutrons was 5 mm in vertical width and the bottom of the band was 5 mm above the surface of the PMF pole. The limited exposure time of 3 hours and the smaller 0.78 T magnetic field allowed focused and near focused neutrons of 1.8 ���� to 2.6 ���� neutrons, which were in the tails of the McClellan Nuclear Radiation Center Bay 4 Maxwell Boltzmann distribution of neutrons with peak flux at 1.1-1.2 ����. The electromagnetic PMF was expected to produces a 2.0 T peak magnetic field amplitude, which would be operational at a higher duty factor, rather than the as built 7.5 msec FWHM with pulse repetition frequency of 5.4 pulses per minute. The fabricated pulsed electromagnetic PMF with chopper is expected to perform well on a cold, very cold or ultra cold beam line as a spectrometer or monochromator source of spin-up polarized neutron. In fact there may be a possible use of the PMF to do ultra-cold neutron trapping, see paper by A. I. Frank1, V. G. Nosov, Quantum Effects in a One-Dimensional Magnetic Gravitational Trap for Ultracold Neutrons, JETP Letters, Vol. 79, No. 7, 2004, pp. 313�¢����315. The next step is to find a cold or very cold neutron facility, where further testing or use of the pulsed magnetic field PMF can be pursued.

  4. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  5. Neutron-Mirror-Neutron Oscillations in a Trap

    E-Print Network [OSTI]

    B. Kerbikov; O. Lychkovskiy

    2008-06-01

    We calculate the rate of neutron-mirror-neutron oscillations for ultracold neutrons trapped in a storage vessel. Recent experimental bounds on the oscillation time are discussed.

  6. Possible Effects of Pair Echoes on Gamma-Ray Burst Afterglow Emission

    E-Print Network [OSTI]

    Kohta Murase; Bing Zhang; Keitaro Takahashi; Shigehiro Nagataki

    2009-02-27

    High-energy emission from gamma-ray bursts (GRBs) is widely expected but had been sparsely observed until recently when the Fermi satellite was launched. If >TeV gamma rays are produced in GRBs and can escape from the emission region, they are attenuated by the cosmic infrared background photons, leading to regeneration of GeV-TeV secondary photons via inverse-Compton scattering. This secondary emission can last for a longer time than the duration of GRBs, and it is called a pair echo. We investigate how this pair echo emission affects spectra and light curves of high energy afterglows, considering not only prompt emission but also afterglow as the primary emission. Detection of pair echoes is possible as long as the intergalactic magnetic field (IGMF) in voids is weak. We find (1) that the pair echo from the primary afterglow emission can affect the observed high-energy emission in the afterglow phase after the jet break, and (2) that the pair echo from the primary prompt emission can also be relevant, but only when significant energy is emitted in the TeV range, typically E_{gamma, >0.1 TeV} > (Y/(1+Y)) epsilon_e E_k. Even non-detections of the pair echoes could place interesting constraints on the strength of IGMF. The more favorable targets to detect pair echoes may be the "naked" GRBs without conventional afterglow emission, although energetic naked GRBs would be rare. If the IGMF is weak enough, it is predicted that the GeV emission extends to >30-300 s.

  7. Dark matter transport properties and rapidly rotating neutron stars

    E-Print Network [OSTI]

    C. J. Horowitz

    2012-05-16

    Neutron stars are attractive places to look for dark matter because their high densities allow repeated interactions. Weakly interacting massive particles (WIMPs) may scatter efficiently in the core or in the crust of a neutron star. In this paper we focus on WIMP contributions to transport properties, such as shear viscosity or thermal conductivity, because these can be greatly enhanced by long mean free paths. We speculate that WIMPs increase the shear viscosity of neutron star matter and help stabilize r-mode oscillations. These are collective oscillations where the restoring force is the Coriolis force. At present r-modes are thought to be unstable in many observed rapidly rotating stars. If WIMPs stabilize the r-modes, this would allow neutron stars to spin rapidly. This likely requires WIMP-nucleon cross sections near present experimental limits and an appropriate density of WIMPs in neutron stars.

  8. Versatile module for experiments with focussing neutron guides

    SciTech Connect (OSTI)

    Adams, T.; Pfleiderer, C.; Böni, P. [Physik-Department, Technische Universität München, D-85748 Garching (Germany); Brandl, G.; Chacon, A.; Wagner, J. N.; Rahn, M.; Mühlbauer, S.; Georgii, R. [Physik-Department, Technische Universität München, D-85748 Garching (Germany); Heinz Maier-Leibnitz Zentrum, FRM II, Technische Universität München, D-85748 Garching (Germany)

    2014-09-22

    We report the development of a versatile module that permits fast and reliable use of focussing neutron guides under varying scattering angles. A simple procedure for setting up the module and neutron guides is illustrated by typical intensity patterns to highlight operational aspects as well as typical parasitic artefacts. Combining a high-precision alignment table with separate housings for the neutron guides on kinematic mounts, the change-over between neutron guides with different focussing characteristics requires no readjustments of the experimental setup. Exploiting substantial gain factors, we demonstrate the performance of this versatile neutron scattering module in a study of the effects of uniaxial stress on the domain populations in the transverse spin density wave phase of single crystal Cr.

  9. Geometric phases in electric dipole searches with spin-1/2 particles from spin dependent Schrödinger equation

    E-Print Network [OSTI]

    A. Steyerl; C. Kaufman; G. Müller; S. S. Malik; A. M. Desai

    2015-07-20

    Geometric phases of trapped particles have been recognized as potential sources of false signals in experiments searching for a permanent electric dipole moment of the neutron. We present a new analysis that treats the spin fully quantum mechanically and uses the same model system as previous works based on semi-classical methods. The results are similar but exhibit significant differences in some respects.

  10. Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars

    E-Print Network [OSTI]

    Michalis Agathos; Jeroen Meidam; Walter Del Pozzo; Tjonnie G. F. Li; Marco Tompitak; John Veitch; Salvatore Vitale; Chris Van Den Broeck

    2015-07-12

    Recently exploratory studies were performed on the possibility of constraining the neutron star equation of state (EOS) using signals from coalescing binary neutron stars, or neutron star-black hole systems, as they will be seen in upcoming advanced gravitational wave detectors such as Advanced LIGO and Advanced Virgo. In particular, it was estimated to what extent the combined information from multiple detections would enable one to distinguish between different equations of state through hypothesis ranking or parameter estimation. Under the assumption of zero neutron star spins both in signals and in template waveforms and considering tidal effects to 1 post-Newtonian (1PN) order, it was found that O(20) sources would suffice to distinguish between a hard, moderate, and soft equation of state. Here we revisit these results, this time including neutron star tidal effects to the highest order currently known, termination of gravitational waveforms at the contact frequency, neutron star spins, and the resulting quadrupole-monopole interaction. We also take the masses of neutron stars in simulated sources to be distributed according to a relatively strongly peaked Gaussian, as hinted at by observations, but without assuming that the data analyst will necessarily have accurate knowledge of this distribution for use as a mass prior. We find that especially the effect of the latter is dramatic, necessitating many more detections to distinguish between different EOS and causing systematic biases in parameter estimation, on top of biases due to imperfect understanding of the signal model pointed out in earlier work. This would get mitigated if reliable prior information about the mass distribution could be folded into the analyses.

  11. Neutrino signatures and the neutrino-driven wind in Binary Neutron Star Mergers

    E-Print Network [OSTI]

    Luc Dessart; Christian Ott; Adam Burrows; Stefan Rosswog; Eli Livne

    2008-06-26

    We present VULCAN/2D multi-group flux-limited-diffusion radiation hydrodynamics simulations of binary neutron star (BNS) mergers, using the Shen equation of state, covering ~100 ms, and starting from azimuthal-averaged 2D slices obtained from 3D SPH simulations of Rosswog & Price for 1.4 Msun (baryonic) neutron stars with no initial spins, co-rotating spins, and counter-rotating spins. Snapshots are post-processed at 10 ms intervals with a multi-angle neutrino-transport solver. We find polar-enhanced neutrino luminosities, dominated by $\\bar{\

  12. Spin - or, actually: Spin and Quantum Statistics

    E-Print Network [OSTI]

    Juerg Froehlich

    2008-02-29

    The history of the discovery of electron spin and the Pauli principle and the mathematics of spin and quantum statistics are reviewed. Pauli's theory of the spinning electron and some of its many applications in mathematics and physics are considered in more detail. The role of the fact that the tree-level gyromagnetic factor of the electron has the value g = 2 in an analysis of stability (and instability) of matter in arbitrary external magnetic fields is highlighted. Radiative corrections and precision measurements of g are reviewed. The general connection between spin and statistics, the CPT theorem and the theory of braid statistics are described.

  13. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    SciTech Connect (OSTI)

    Rest, A; Welch, D L; Suntzeff, N B; Oaster, L; Lanning, H; Olsen, K; Smith, R C; Becker, A C; Bergmann, M; Challis, P; Clocchiatti, A; Cook, K H; Damke, G; Garg, A; Huber, M E; Matheson, T; Minniti, D; Prieto, J L; Wood-Vasey, W M

    2008-05-06

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane.

  14. Spin Seebeck power generators

    SciTech Connect (OSTI)

    Cahaya, Adam B.; Tretiakov, O. A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Bauer, Gerrit E. W. [Institute for Materials Research and WPI-AIMR, Tohoku University, Sendai 980-8577 (Japan); Kavli Institute of NanoScience, TU Delft Lorentzweg 1, 2628 CJ Delft (Netherlands)

    2014-01-27

    We derive expressions for the efficiency and figure of merit of two spin caloritronic devices based on the spin Seebeck effect (SSE), i.e., the generation of spin currents by a temperature gradient. The inverse spin Hall effect is conventionally used to detect the SSE and offers advantages for large area applications. We also propose a device that converts spin current into electric one by means of a spin-valve detector, which scales favorably to small sizes and approaches a figure of merit of 0.5 at room temperature.

  15. Probe Spin-Velocity Dependent New Interactions by Spin Relaxation Times of Polarized $^{3}He$ Gas

    E-Print Network [OSTI]

    H. Yan; G. A. Sun; S. M. Peng; Y. Zhang; C. B. Fu; Hao Guo; B. Q. Liu

    2015-09-18

    We have constrained possible new interactions which produce nonrelativistic potentials between polarized neutrons and unpolarized matter proportional to $\\alpha\\vec{\\sigma}\\cdot\\vec{v}$ where $\\vec{\\sigma}$ is the neutron spin and $\\vec{v}$ is the relative velocity. We use existing data from laboratory measurements on the very long $T_{1}$ and $T_{2}$ spin relaxation times of polarized $^{3}$He gas in glass cells.Using the best available measured $T_{2}$ of polarized $^{3}$He gas atoms as the polarized source and the earth as an unpolarized source, we obtain constraints on two new interactions. We present a new experimental upper bound on possible vector-axial-vector($V_{VA}$) type interactions for ranges between $1\\sim10^{8}$m. In combination with previous results, we set the most stringent experiment limits on $g_{V}g_{A}$ ranging from $\\sim\\mu$m to $\\sim10^{8}$m. We also report what is to our knowledge the first experimental upper limit on the possible torsion fields induced by the earth on its surface. Dedicated experiments could further improve these bounds by a factor of $\\sim100$. Our method of analysis also makes it possible to probe many velocity dependent interactions which depend on the spins of both neutrons and other particles which have never been searched for before experimentally.

  16. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, Stephen H. (East Syracuse, NY)

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  17. Layered semiconductor neutron detectors

    DOE Patents [OSTI]

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  18. Organic metal neutron detector

    DOE Patents [OSTI]

    Butler, M.A.; Ginley, D.S.

    1984-11-21

    A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.

  19. Neutron streak camera

    DOE Patents [OSTI]

    Wang, C.L.

    1981-05-14

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  20. Type II superconductivity and magnetic flux transport in neutrons stars

    E-Print Network [OSTI]

    P. B. Jones

    2005-10-13

    The transition to a type II proton superconductor which is believed to occur in a cooling neutron star is accompanied by changes in the equation of hydrostatic equilibrium and by the formation of proton vortices with quantized magnetic flux. Analysis of the electron Boltzmann equation for this system and of the proton supercurrent distribution formed at the transition leads to the derivation of a simple expression for the transport velocity of magnetic flux in the liquid interior of a neutron star. This shows that flux moves easily as a consequence of the interaction between neutron and proton superfluid vortices during intervals of spin-down or spin-up in binary systems. The differences between the present analysis and those of previous workers are reviewed and an error in the paper of Jones (1991) is corrected.

  1. Neutron producing target for accelerator based neutron source for

    E-Print Network [OSTI]

    Taskaev, Sergey Yur'evich

    247 Neutron producing target for accelerator based neutron source for NCT V. Belov1 , S. Fadeev1, Russia Summary Neutron producing targets for novel accelerator based neutron source [1, 2] are presented Neutron producing target is one of the main elements of proposed accelerator based facility for neutron

  2. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; Andersen, Niels H.; Li, Jiying; Le, Manh Duc; Laver, Mark; Niedermayer, Christof; Klemke, Bastian; Lefmann, Kim; et al

    2015-07-06

    We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, we showmore »that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. It is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.« less

  3. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  4. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, Jr., Herbert A. (Oak Ridge, TN)

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  5. Dose equivalent neutron dosimeter

    DOE Patents [OSTI]

    Griffith, Richard V. (Pleasanton, CA); Hankins, Dale E. (Livermore, CA); Tomasino, Luigi (Rome, IT); Gomaa, Mohamed A. M. (Heliopolis, EG)

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  6. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Hsu, Hsiao-Hua (Los Alamos, NM); Casson, William H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM); Kleck, Jeffrey H. (Menlo Park, CA); Beverding, Anthony (Foster City, CA)

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  7. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, C.L.

    1985-06-19

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  8. Simulation of a D-T Neutron Source for Neutron Scattering Experiments

    E-Print Network [OSTI]

    Lou, T.P.; Ludewigt, B.A.; Vujic, J.L.; Leung, K.-N.

    2003-01-01

    T Neutron Source for Neutron Scattering Experiments T.P. Louor cold neutrons for neutron scattering experiments. Thisto simulate a neutron scattering setup and to estimate

  9. Bouncing Neutrons and the Neutron Centrifuge

    E-Print Network [OSTI]

    P. J. S. Watson

    2003-02-26

    The recent observation of the quantum state of the neutron bouncing freely under gravity allows some novel experiments. A method of purifying the ground state is given, and possible applications to the measurement of the electric dipole moment of the neutron and the short distance behaviour of gravity are discussed.

  10. R-mode constraints from neutron star equation of state

    E-Print Network [OSTI]

    M. C. Papazoglou; C. C. Moustakidis

    2015-06-15

    The gravitational radiation has been proposed a long time before, as an explanation for the observed relatively low spin frequencies of young neutron stars and of accreting neutron stars in low-mass X-ray binaries as well. In the present work we studied the effects of the neutron star equation of state on the r-mode instability window of rotating neutron stars. Firstly, we employed a set of analytical solution of the Tolman-Oppemheimer-Volkoff equations. In particular, we tried to clarify the effects of the bulk neutron star properties (mass, radius, density distribution, crust size and elasticity) on the r-mode instability window. We found that the critical angular velocity $\\Omega_c$ depends mainly on the neutron star radius. The effects of the gravitational mass and the mass distribution are almost negligible. Secondly, we studied the effect of the elasticity of the crust, via to the slippage factor $S$ and also the effect of the nuclear equation of state, via the slope parameter $L$, on the instability window. We found that the crust effects are more pronounced, compared to those originated from the equation of state. Moreover, we proposed simple analytical expressions which relate the macroscopic quantity $\\Omega_c$ to the radius, the parameter $L$ and the factor ${\\cal S}$. Finally, we investigated the possibility to measure the radius of a neutron star and the factor ${\\cal S}$ with the help of accurate measures of $\\Omega_c$ and the neutron star temperature.

  11. Advanced neutron absorber materials

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  12. Arsenic activation neutron detector

    DOE Patents [OSTI]

    Jacobs, Eddy L. (Albuquerque, NM)

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  13. Arsenic activation neutron detector

    DOE Patents [OSTI]

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  14. Attenuation of Beaming Oscillations Near Neutron Stars

    E-Print Network [OSTI]

    M. Coleman Miller

    2000-07-17

    Observations with RXTE have revealed kilohertz quasi-periodic brightness oscillations (QPOs) from nearly twenty different neutron-star low-mass X-ray binaries (LMXBs). These frequencies often appear as a pair of kilohertz QPOs in a given power density spectrum. In many models the higher-frequency of these QPOs is a beaming oscillation at the frequency of a nearly circular orbit at some radius near the neutron star. In such models it is expected that there will also be beaming oscillations at the stellar spin frequency and at overtones of the orbital frequency, but no strong QPOs have been detected at these frequencies. We therefore examine the processes that can attenuate beaming oscillations near neutron stars, and in doing so extend the work on this subject that was initiated by the discovery of lower-frequency QPOs from LMXBs. Among our main results are (1)in a spherical scattering cloud, all overtones of rotationally modulated beaming oscillations are attenuated strongly, not just the even harmonics, and (2)it is possible to have a relatively high-amplitude modulation near the star at, e.g., the stellar spin frequency, even if no peak at that frequency is detectable in a power density spectrum taken at infinity. We discuss the application of these results to modeling of kilohertz QPOs.

  15. Analyzing the Effects of Neutron Polarizabilities in Elastic Compton Scattering off ${}^3He$

    E-Print Network [OSTI]

    Deepshikha Shukla; Andreas Nogga; Daniel R. Phillips

    2008-12-01

    Motivated by the fact that a polarized ${}^3He$ nucleus behaves as an `effective' neutron target, we examine manifestations of neutron electromagnetic polarizabilities in elastic Compton scattering from the Helium-3 nucleus. We calculate both unpolarized and double-polarization observables using chiral perturbation theory to next-to-leading order (${\\mathcal O}(e^2 Q)$) at energies, $\\omega \\lsim m_{\\pi}$, where $m_{\\pi}$ is the pion mass. Our results show that the unpolarized differential cross section can be used to measure neutron electric and magnetic polarizabilities, while two double-polarization observables are sensitive to different linear combinations of the four neutron spin polarizabilities.

  16. High energy neutron dosimeter

    DOE Patents [OSTI]

    Rai, K.S.F.

    1994-01-11

    A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures.

  17. High energy neutron dosimeter

    DOE Patents [OSTI]

    Sun, Rai Ko S.F. (Albany, CA)

    1994-01-01

    A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.

  18. Semiconductor neutron detector

    DOE Patents [OSTI]

    Ianakiev, Kiril D. (Los Alamos, NM); Littlewood, Peter B. (Cambridge, GB); Blagoev, Krastan B. (Arlington, VA); Swinhoe, Martyn T. (Los Alamos, NM); Smith, James L. (Los Alamos, NM); Sullivan, Clair J. (Los Alamos, NM); Alexandrov, Boian S. (Los Alamos, NM); Lashley, Jason Charles (Santa Fe, NM)

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  19. Neutron scatter camera

    DOE Patents [OSTI]

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  20. Simulation of Dispersionless Injections and Drift Echoes of Energetic Electrons Associated with Substorms

    E-Print Network [OSTI]

    Reeves, Geoffrey D.

    Simulation of Dispersionless Injections and Drift Echoes of Energetic Electrons Associated of electrons and ions with di erent energies usually seen at or near geosynchronous orbit. We show by modeling an electron injection event observed early on January 10, 1997 by means of a test

  1. Water dynamics: dependence on local structure probed with vibrational echo correlation spectroscopy

    E-Print Network [OSTI]

    Fayer, Michael D.

    Water dynamics: dependence on local structure probed with vibrational echo correlation spectroscopy­D stretching band of HOD in H2O and molecular dynamics simulations are employed to investigate water dynamics. The wavelength dependence of the measured dynamics demonstrates that different hydrogen bonded water species

  2. Extended CO emission in the field of the light echo of V838 Mon

    E-Print Network [OSTI]

    T. Kami?ski

    2008-01-10

    V838 Mon erupted at the beginning of 2002 becoming an extremely luminous star with L=10^6 L_sun. The outburst was followed by the spectacular light echo that revealed that the star is immersed in a diffuse and dusty medium, plausibly interstellar in nature. Low angular resolution observations in the lowest CO rotational transitions revealed a molecular emission from the direction of V838 Mon. The origin of this CO emission has not been established. In this paper we investigate the idea that the molecular emission originates in the material responsible for the optical light echo. We report on observations of 13 positions within the light echo in the two lowest rotational transitions of CO using the IRAM 30 m telescope. Emission in CO J=1-0 and J=2-1 was detected in three positions. In three other positions only weak J=1-0 lines were found. We conclude that the molecular emission from the direction of V838 Mon is extended and has a complex distribution. We identify the emission as arising from diffuse interstellar clouds and suggest that the CO-bearing gas and the echoing dust are collocated in the same interstellar cloud.

  3. Frog calls echo microsatellite phylogeography in the European pool frog (Rana lessonae)

    E-Print Network [OSTI]

    Doran, Simon J.

    Frog calls echo microsatellite phylogeography in the European pool frog (Rana lessonae) Julia be informative about phylogeographic history. Microsatellite studies of the pool frog Rana lessonae have been of the pool frog was quanti®ed and the pattern observed was concordant with the differentiation of a distinct

  4. SYSTEM IDENTIFICATION FOR MULTI-CHANNEL LISTENING-ROOM COMPENSATION USING AN ACOUSTIC ECHO CANCELLER

    E-Print Network [OSTI]

    Lübeck, Universität zu

    state of the AEC and to incorporate this knowledge into the equalizer design. Index Terms-- Listening employ several subsystems in combination. Ambient noise has to be suppressed and acoustic echoes due propose a method to avoid signal dis- tortions due to unsatisfactory RIR estimates by using the knowledge

  5. Fuel Cells prognostics using Echo State Network S. Morando1,2,3

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Fuel Cells prognostics using Echo State Network S. Morando1,2,3 , S. Jemei1,2 , R. Gouriveau2,3 , N department / ENSMM Abstract-- One remaining technological bottleneck to develop industrial Fuel Cell (FC Life of a Proton Exchange Membrane Fuel Cell. Developments emphasize on the prediction of the mean

  6. Hydrogen bond breaking probed with multidimensional stimulated vibrational echo correlation spectroscopy

    E-Print Network [OSTI]

    Fayer, Michael D.

    Hydrogen bond breaking probed with multidimensional stimulated vibrational echo correlation September 2003 Hydrogen bond population dynamics are extricated with exceptional detail using ultrafast ( 50 of methanol­OD oligomers in CCl4 . Hydrogen bond breaking makes it possible to acquire data for times much

  7. Recommended Hardware and Software (documented by Echo360 as of Sept. 2013)

    E-Print Network [OSTI]

    Pittendrigh, Barry

    Recommended Hardware and Software (documented by Echo360 as of Sept. 2013) The following table and verified in house. While we make every attempt to support a wide variety of hardware and devices, we cannot Capture for Windows is not supported on netbook computers. OS Minimum Hardware for audio and display

  8. Accidents and opportunities: a history of the radio echo-sounding of Antarctica, 1958-79 

    E-Print Network [OSTI]

    Siegert, Martin; Turchetti, S.; Dean, K.; Naylor, S.

    2008-01-01

    This paper explores the history of radio echo-sounding (RES), a technique of glaciological surveying that from the late 1960s has been used to examine Antarctica's sub-glacial morphology. Although the origins of RES can be traced back to two...

  9. COMPARATIVE EVALUATION OF THE DUAL TRANSFORM DOMAIN ECHO CANCELLER FOR DMT-BASED SYSTEMS

    E-Print Network [OSTI]

    Champagne, Benoît

    COMPARATIVE EVALUATION OF THE DUAL TRANSFORM DOMAIN ECHO CANCELLER FOR DMT-BASED SYSTEMS Neda´eal, QC H3A 2A7, Canada e-mail: neda.ehtiati@mcgill.ca, benoit.champagne@mcgill.ca ABSTRACT In DMT

  10. Neuroglobin dynamics observed with ultrafast 2D-IR vibrational echo spectroscopy

    E-Print Network [OSTI]

    Fayer, Michael D.

    Neuroglobin dynamics observed with ultrafast 2D-IR vibrational echo spectroscopy Haruto Ishikawa Contributed by Michael D. Fayer, August 15, 2007 (sent for review July 25, 2007) Neuroglobin (Ngb), a protein energy minimum. myoglobin mutants protein dynamics energy landscape Neuroglobin (Ngb) is a recently

  11. Quantum discord in spin-cluster materials

    E-Print Network [OSTI]

    M. A. Yurischev

    2011-04-07

    The total quantum correlation (discord) in Heisenberg dimers is expressed via the spin-spin correlation function, internal energy, specific heat or magnetic susceptibility. This allows one to indirectly measure the discord through neutron scattering, as well as calorimetric or magnetometric experiments. Using the available experimental data, we found the discord for a number of binuclear Heisenberg substances with both antiferro- and ferromagnetic interactions. For the dimerized antiferromagnet copper nitrate Cu(NO_3)_2*2.5H_2O, the three independent experimental methods named above lead to a discord of approximately 0.2-0.3 bit/dimer at a temperature of 4 K. We also determined the temperature behavior of discord for hydrated and anhydrous copper acetates, as well as for the ferromagnetic binuclear copper acetate complex [Cu_2L(OAc)]*6H_2O, where L is a ligand.

  12. Constraining interactions mediated by axion-like particles with ultracold neutrons

    E-Print Network [OSTI]

    S. Afach; G. Ban; G. Bison; K. Bodek; M. Burghoff; M. Daum; M. Fertl; B. Franke; Z. D. Gruji?; V. Hélaine; M. Kasprzak; Y. Kermaïdic; K. Kirch; P. Knowles; H. -C. Koch; S. Komposch; A. Kozela; J. Krempel; B. Lauss; T. Lefort; Y. Lemière; A. Mtchedlishvili; O. Naviliat-Cuncic; F. M. Piegsa; G. Pignol; P. N. Prashanth; G. Quéméner; D. Rebreyend; D. Ries; S. Roccia; P. Schmidt-Wellenburg; A. Schnabel; N. Severijns; J. Voigt; A. Weis; G. Wyszynski J. Zejma; J. Zenner; G. Zsigmond

    2014-12-11

    We report a new limit on a possible short range spin-dependent interaction from the precise measurement of the ratio of Larmor precession frequencies of stored ultracold neutrons and $^{199}$Hg atoms confined in the same volume. The measurement was performed in a $\\sim$1$\\mu$ T vertical magnetic holding field with the apparatus searching for a permanent electric dipole moment of the neutron at the Paul Scherrer Institute. A possible coupling between freely precessing polarized neutron spins and unpolarized nucleons of the wall material can be investigated by searching for a tiny change of the precession frequencies of neutron and mercury spins. Such a frequency change can be interpreted as a consequence of a short range spin-dependent interaction that could possibly be mediated by axions or axion-like particles. The interaction strength is proportional to the CP violating product of scalar and pseudoscalar coupling constants $g_Sg_P$. Our result confirms limits from complementary experiments with spin-polarized nuclei in a model-independent way. Limits from other neutron experiments are improved by up to two orders of magnitude in the interaction range of $10^{-6}<\\lambda<10^{-4}$ m.

  13. Gravity Waves from Rotating Neutron Stars and Evaluation of Fast Chirp Transform Techniques

    E-Print Network [OSTI]

    Tod E. Strohmayer

    2001-09-28

    X-ray observations suggest that neutron stars in low mass X-ray binaries (LMXB) are rotating with frequencies from 300 - 600 Hz. These spin rates are significantly less than the break-up rates for essentially all realistic neutron star equations of state, suggesting that some process may limit the spin frequencies of accreting neutron stars to this range. If the accretion induced spin up torque is in equilibrium with gravitational radiation losses, these objects could be interesting sources of gravity waves. I present a brief summary of current measurements of neutron star spins in LMXBs based on the observations of high-Q oscillations during thermonuclear bursts (so called ``burst oscillations''). Further measurements of neutron star spins will be important in exploring the gravitational radiation hypothesis in more detail. To this end I also present a study of fast chirp transform (FCT) techniques as described by Jenet & Prince (2000) in the context of searching for the chirping signals observed during X-ray bursts.

  14. The Neutron Lifetime

    E-Print Network [OSTI]

    F. E. Wietfeldt

    2014-11-13

    The decay of the free neutron into a proton, electron, and antineutrino is the prototype semileptonic weak decay and the simplest example of nuclear beta decay. The nucleon vector and axial vector weak coupling constants G_V and G_A determine the neutron lifetime as well as the strengths of weak interaction processes involving free neutrons and protons that are important in astrophysics, cosmology, solar physics and neutrino detection. In combination with a neutron decay angular correlation measurement, the neutron lifetime can be used to determine the first element of the CKM matrix Vud. Unfortunately the two main experimental methods for measuring the neutron lifetime currently disagree by almost 4 sigma. I will present a brief review of the status of the neutron lifetime and prospects for the future.

  15. New Results on Nucleon Spin Structure

    SciTech Connect (OSTI)

    Jian-Ping Chen

    2005-09-10

    Recent precision spin structure data from Jefferson Lab have significantly advanced our knowledge of nucleon structure in the valence quark (high-x) region and improved our understanding of higher-twist effects, spin sum rules and quark-hadron duality. First, results of a precision measurement of the neutron spin asymmetry, A{sub 1}{sup n}, in the high-x region are discussed. The new data shows clearly, for the first time, that A{sub 1}{sup n} becomes positive at high x. They provide crucial input for the global fits to world data to extract polarized parton distribution functions. Preliminary results on A{sub 1}{sup p} and A{sub 1}{sup d} in the high-x region have also become available. The up and down quark spin distributions in the nucleon were extracted. The results for {Delta}d/d disagree with the leading-order pQCD prediction assuming hadron helicity conservation. Then, results of a precision measurement of the g{sub 2}{sup n} structure function to study higher-twist effects are presented. The data show a clear deviation from the lead-twist contribution, indicating a significant higher-twist (twist-3 or higher) effect. The second moment of the spin structure functions and the twist-3 matrix element d{sub 2}{sup n} results were extracted at a high Q{sup 2} of 5 GeV{sup 2} from the measured A{sub 2}{sup n} in the high-x region in combination with existing world data and compared with a Lattice QCD calculation. Results for d{sub 2}{sup n} at low-to-intermediate Q{sup 2} from 0.1 to 0.9 GeV{sup 2} were also extracted from the JLab data. In the same Q{sup 2} range, the Q{sup 2} dependence of the moments of the nucleon spin structure functions was measured, providing a unique bridge linking the quark-gluon picture of the nucleon and the coherent hadronic picture. Sum rules and generalized forward spin polarizabilities were extracted and compared with Chiral Perturbation Theory calculations and phenomenological models. Finally, preliminary results on the resonance spin structure functions in the Q{sup 2} range from 1 to 4 GeV{sup 2} were presented, which, in combination with DIS data, will enable a detailed study of the quark-hadron duality in spin structure functions.

  16. Spin caloritronics in graphene

    SciTech Connect (OSTI)

    Ghosh, Angsula; Frota, H. O.

    2015-06-14

    Spin caloritronics, the combination of spintronics with thermoelectrics, exploiting both the intrinsic spin of the electron and its associated magnetic moment in addition to its fundamental electronic charge and temperature, is an emerging technology mainly in the development of low-power-consumption technology. In this work, we study the thermoelectric properties of a Rashba dot attached to two single layer/bilayer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current, which depends on the temperature and chemical potential. We demonstrate that the Rashba dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature, and also the Rashba term have been observed.

  17. Deeply Virtual Compton Scattering off the neutron

    E-Print Network [OSTI]

    M. Mazouz; A. Camsonne; C. Muñoz Camacho; for the Jefferson Lab Hall A collaboration

    2007-12-12

    The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({\\vec e},e'\\gamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.

  18. Spin coating apparatus

    DOE Patents [OSTI]

    Torczynski, John R. (Albuquerque, NM)

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  19. Spin-one color superconductors: collective modes and effective Lagrangian

    E-Print Network [OSTI]

    Jin-yi Pang; Tomas Brauner; Qun Wang

    2010-10-11

    We investigate the collective excitations in spin-one color superconductors. We classify the Nambu--Goldstone modes by the pattern of spontaneous symmetry breaking, and then use the Ginzburg--Landau theory to derive their dispersion relations. These soft modes play an important role for the low-energy dynamics of the system such as the transport phenomena and hence are relevant for late-stage evolution of neutron stars. In the case of the color-spin-locking phase, we use a functional technique to obtain the low-energy effective action for the physical Nambu--Goldstone bosons that survive after gauging the color symmetry.

  20. March, 2001 Neutron Scattering Group

    E-Print Network [OSTI]

    Johnson, Peter D.

    March, 2001 Neutron Scattering Group A High Performance Hybrid Spectrometer for theA High of the instrument performance · Igor Zaliznyak · Laurence Passell OutlineOutline #12;Neutron Scattering GroupNeutron states in single crystals.single crystals. #12;Neutron Scattering GroupNeutron Scattering Group What

  1. SPINDOWN OF ISOLATED NEUTRON STARS: GRAVITATIONAL WAVES OR MAGNETIC BRAKING?

    SciTech Connect (OSTI)

    Staff, Jan E.; Jaikumar, Prashanth; Chan, Vincent; Ouyed, Rachid

    2012-05-20

    We study the spindown of isolated neutron stars from initially rapid rotation rates, driven by two factors: (1) gravitational wave emission due to r-modes and (2) magnetic braking. In the context of isolated neutron stars, we present the first study including self-consistently the magnetic damping of r-modes in the spin evolution. We track the spin evolution employing the RNS code, which accounts for the rotating structure of neutron stars for various equations of state. We find that, despite the strong damping due to the magnetic field, r-modes alter the braking rate from pure magnetic braking for B {<=} 10{sup 13} G. For realistic values of the saturation amplitude {alpha}{sub sat}, the r-mode can also decrease the time to reach the threshold central density for quark deconfinement. Within a phenomenological model, we assess the gravitational waveform that would result from r-mode-driven spindown of a magnetized neutron star. To contrast with the persistent signal during the spindown phase, we also present a preliminary estimate of the transient gravitational wave signal from an explosive quark-hadron phase transition, which can be a signal for the deconfinement of quarks inside neutron stars.

  2. Spin-mapping of coal structures with ESE and ENDOR

    SciTech Connect (OSTI)

    Belford, R.L.; Clarkson, R.B.

    1991-12-01

    The goals of this program include developing a system for the analysis of the chemical forms of organic sulfur in coal and for study of coal particle surfaces by multifrequency EPR spectroscopy, ENDOR, and ESE spectroscopy and Applying it to coals, to the effects of treatment upon their sulfur-containing organic components, and to related carbonaceous materials (chars and the like). The approach is to utilize the naturally-occurring unpaired electrons in the organic structures of coals as spies to provide molecular structure information, reading out the information with Electron Paramagnetic Resonance (EPR) spectroscopy. Several forms of EPR are employed: Multifrequency continuous-wave (CW) EPR, from 1 GHz to 240 GHz source frequency; electron-nuclear double resonance (ENDOR), in which NMR spectra at paramagnetic centers are obtained by EPR detection; and pulsed EPR, including ESE (Electron Spin Echo) spectroscopy.

  3. Realization of adiabatic Aharonov-Bohm scattering with neutrons

    E-Print Network [OSTI]

    Erik Sjöqvist; Martin Almquist; Ken Mattsson; Zeynep Nilhan Gürkan; Björn Hessmo

    2015-03-08

    The adiabatic Aharonov-Bohm (AB) effect is a manifestation of the Berry phase acquired when some slow variables take a planar spin around a loop. While the effect has been observed in molecular spectroscopy, direct measurement of the topological phase shift in a scattering experiment has been elusive in the past. Here, we demonstrate an adiabatic AB effect for neutrons that scatter on a long straight current-carrying wire. We propose an experiment to verify the effect and demonstrate its feasibility by explicit simulation of the dynamics of unpolarized very slow neutrons that scatter on the wire under realistic conditions.

  4. Fast Neutron Detection Evaluation

    SciTech Connect (OSTI)

    McKigney, Edward A.; Stange, Sy

    2014-03-17

    These slides present a summary of previous work, conclusions, and anticipated schedule for the conclusion of our fast neutron detection evaluation.

  5. Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Office User Program Manager Laura Morris Edwards 865.574.2966 ORNL study uses neutron scattering, supercomputing to demystify forces at play in biofuel production Full...

  6. Lujan Neutron Scattering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent...

  7. The neutron star mass distribution

    E-Print Network [OSTI]

    Kiziltan, B; Kottas, A; De Yoreo, M; Thorsett, SE

    2013-01-01

    Science Library, Vol. 326, Neutron Stars 1 : Equation ofBlack holes, white dwarfs, and neutron stars: The physics ofPhys. Rev. , 55, 364 The Neutron Star Mass Distribution van

  8. Frustrated spin correlations in diluted spin ice Ho2-xLaxTi2O7

    E-Print Network [OSTI]

    Ehlers, G.

    2008-01-01

    edge. Quasielastic neutron scattering and AC susceptibilityit was shown by neutron scattering that the peak iscomplementary to neutron scattering techniques. Neutron di?

  9. Spin Transport Shingo Katsumoto

    E-Print Network [OSTI]

    Iye, Yasuhiro

    -1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan According to DARPA's definition, "Spintronics"[1] means "Spin Transport Electronics". The issue "Spin Trans- port" thus covers all the fields of spintronics and one devices. In semiconductor spintronics devices, we therefore utilize the differences in n, , m for up

  10. Sensing remote nuclear spins

    E-Print Network [OSTI]

    Nan Zhao; Jan Honert; Berhard Schmid; Junichi Isoya; Mathew Markham; Daniel Twitchen; Fedor Jelezko; Ren-Bao Liu; Helmut Fedder; Jörg Wrachtrup

    2012-04-29

    Sensing single nuclear spins is a central challenge in magnetic resonance based imaging techniques. Although different methods and especially diamond defect based sensing and imaging techniques in principle have shown sufficient sensitivity, signals from single nuclear spins are usually too weak to be distinguished from background noise. Here, we present the detection and identification of remote single C-13 nuclear spins embedded in nuclear spin baths surrounding a single electron spins of a nitrogen-vacancy centre in diamond. With dynamical decoupling control of the centre electron spin, the weak magnetic field ~10 nT from a single nuclear spin located ~3 nm from the centre with hyperfine coupling as weak as ~500 Hz is amplified and detected. The quantum nature of the coupling is confirmed and precise position and the vector components of the nuclear field are determined. Given the distance over which nuclear magnetic fields can be detected the technique marks a firm step towards imaging, detecting and controlling nuclear spin species external to the diamond sensor.

  11. Spin Coating of Photoresists

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Spin Coating of Photoresists Revised: 2009-11-05 Source: www.microchemicals.eu e-Mail: sales@microchemicals.eu Basics of Spin Coating During spincoating, the centrifugal force the substrate. Advantages: The high resist film thickness homogeneity as well as the short coating times make

  12. Moments of the neutron $g_2$ structure function at intermediate $Q^2$

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solvignon-Slifer, Patricia H.; et. al.,

    2015-07-01

    We present new experimental results of the $^3$He spin structure function $g_2$ in the resonance region at $Q^2$ values between 1.2 and 3.0 (GeV/c)$^2$. Spin dependent moments of the neutron were then extracted. The resonance contribution to the neutron $d_2$ matrix element was found to be small at $\\ $=2.4 (GeV/c)$^2$ and in agreement with the Lattice QCD calculation. The Burkhardt-Cottingham sum rule for neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low $x$ unmeasured region. A small deviation was observed at $Q^2$ values between 0.5 and 1.2 (GeV/c)$^2$ for themore »neutron.« less

  13. Moments of the neutron $g_2$ structure function at intermediate $Q^2$

    E-Print Network [OSTI]

    P. Solvignon; N. Liyanage; J. -P. Chen; Seonho Choi; K. Slifer; K. Aniol; T. Averett; W. Boeglin; A. Camsonne; G. D. Cates; C. C. Chang; E. Chudakov; B. Craver; F. Cusanno; A. Deur; D. Dutta; R. Ent; R. Feuerbach; S. Frullani; H. Gao; F. Garibaldi; R. Gilman; C. Glashausser; V. Gorbenko; O. Hansen; D. W. Higinbotham; H. Ibrahim; X. Jiang; M. Jones; A. Kelleher; J. Kelly; C. Keppel; W. Kim; W. Korsch; K. Kramer; G. Kumbartzki; J. J. LeRose; R. Lindgren; B. Ma; D. J. Margazioti; P. Markowitz; K. McCormick; Z. -E. Meziani; R. Michaels; B. Moffit; P. Monaghan; C. Munoz Camacho; K. Paschke; B. Reitz; A. Saha; R. Shneor; J. Singh; V. Sulkosky; A. Tobias; G. M. Urciuoli; K. Wang; K. Wijesooriya; B. Wojtsekhowski; S. Woo; J. -C. Yang; X. Zheng; L. Zhu

    2015-06-29

    We present new experimental results of the $^3$He spin structure function $g_2$ in the resonance region at $Q^2$ values between 1.2 and 3.0 (GeV/c)$^2$. Spin dependent moments of the neutron were then extracted. Our main result, the resonance contribution to the neutron $d_2$ matrix element, was found to be small at $$=2.4 (GeV/c)$^2$ and in agreement with the Lattice QCD calculation. The Burkhardt-Cottingham sum rule for $^3$He and the neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low $x$ unmeasured region. A small deviation was observed at $Q^2$ values between 0.5 and 1.2 (GeV/c)$^2$ for the neutron.

  14. IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 2, FEBRUARY 2013 769 A General Framework for Mixed-Domain Echo

    E-Print Network [OSTI]

    Champagne, Benoît

    for Mixed-Domain Echo Cancellation in Discrete Multitone Systems Neda Ehtiati and Beno^it Champagne Abstract University St., Montr´eal, H3A 2A7 Canada (e-mail: neda.ehtiati@mail.mcgill.ca, benoit

  15. Transverse Spin Physics: Recent Developments

    E-Print Network [OSTI]

    Yuan, Feng

    2009-01-01

    that the transverse spin physics is playing a very importantrole in the strong interaction physics forhadronic spin physics. We will learn more about QCD dynamics

  16. Deuteron Spin Structure Functions in the Resonance and DIS Regions

    SciTech Connect (OSTI)

    S. Kulagin; W. Melnitchouk

    2007-10-03

    We derive relations between spin-dependent nuclear and nucleon g_1 and g_2 structure functions, valid at all Q^2, and in both the resonance and deep inelastic regions. We apply the formalism to the specific case of the deuteron, which is often used as a source of neutron structure information, and compare the size of the nuclear corrections calculated using exact kinematics and using approximations applicable at large Q^2.

  17. EIS-0317-S1: Kangley-Echo Lake Transmission Line Project Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration (BPA) has completed a supplemental draft Environmental Impact Statement (SDEIS) for the proposed Kangley-Echo Lake Transmission Line Project. The proposed line in central King County, Washington is needed to accommodate electrical growth and reliability concerns in the Puget Sound area. The SDEIS analyzes four additional transmission alternatives not analyzed in detail in the draft Environmental Impact Statement (DEIS) issued in June 2001, and a number of non-transmission alternatives.

  18. Neutron Science Research Areas | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home | Science & Discovery | Neutron Science | Research Areas SHARE Research Areas Neutron scattering research at ORNL covers four broad research areas: biology and soft...

  19. Neutron Stars and Fractal Dimensionality

    E-Print Network [OSTI]

    Burra G. Sidharth

    2008-05-06

    We argue that the material inside Neutron stars behaves anomalously with fractal statistics and that in principle, we could induce mini Neutron stars, with the release of energy.

  20. Polarized 3He for Neutron Spin Filters and MRI Applications

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLEDSpeeding accessSpeedingPATENTS- 05 -1960-2012

  1. On the potential of the EChO mission to characterise gas giant atmospheres

    E-Print Network [OSTI]

    Barstow, Joanna K; Irwin, Patrick G J; Bowles, Neil; Fletcher, Leigh N; Lee, Jae-Min

    2012-01-01

    Space telescopes such as EChO (Exoplanet Characterisation Observatory) and JWST (James Webb Space Telescope) will be important for the future study of extrasolar planet atmospheres. Both of these missions are capable of performing high sensitivity spectroscopic measurements at moderate resolutions in the visible and infrared, which will allow the characterisation of atmospheric properties using primary and secondary transit spectroscopy. We use the NEMESIS radiative transfer and retrieval tool (Irwin et al. 2008, Lee et al. 2012) to explore the potential of the proposed EChO mission to solve the retrieval problem for a range of H2-He planets orbiting different stars. We find that EChO should be capable of retrieving temperature structure to ~200 K precision and detecting H2O, CO2 and CH4 from a single eclipse measurement for a hot Jupiter orbiting a Sun-like star and a hot Neptune orbiting an M star, also providing upper limits on CO and NH3. We provide a table of retrieval precisions for these quantities in ...

  2. An Overview of Longitudinal Spin Structure Measurements from JLab

    SciTech Connect (OSTI)

    Sulkosky, Vincent A. [MIT, JLAB

    2013-08-01

    Jefferson Lab is currently one of the facilities leading the investigation of the spin structure of the nucleon. Over the past 15 years, several high precision measurements have been completed, extending our knowledge of the polarized structure functions g{sub 1} and g{sub 2} down to Q{sup 2} = 0.02 GeV{sup 2}. In particular, the low-Q{sup 2} range ({<=} 0.1 GeV{sup 2}) from these data allows us to make a benchmark-check of Chiral Perturbation theory ({chi}PT). Previous results for the moments of the spin structure functions in this region have shown mixed agreement. For {Gamma}{sub 1}, the first moment of g{sub 1}, we find good consistency between data and theory. However, we have seen a surprisingly large discrepancy with {chi}PT calculations for the {delta}{sub LT} spin polarizability on the neutron, which is significantly less sensitive to the {Delta}-resonance contribution. These proceedings will discuss the recent experimental effort at low Q{sup 2} from Jefferson Lab, including a discussion of preliminary results on the neutron. The new results on the neutron still show a sizeable discrepancy between data and theory. However, new calculations show improved agreement with data for some observables. In addition, new proton data for g{sub 2} is also expected to help resolve the disagreement for {delta}{sub LT}.

  3. Neutron capture therapies

    DOE Patents [OSTI]

    Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  4. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  5. Pulsed neutron detector

    DOE Patents [OSTI]

    Robertson, deceased, J. Craig (late of Albuquerque, NM); Rowland, Mark S. (Livermore, CA)

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  6. Pocked surface neutron detector

    DOE Patents [OSTI]

    McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  7. Nuclear Spins in Nanostructures

    E-Print Network [OSTI]

    W. A. Coish; J. Baugh

    2009-07-22

    We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through "state narrowing". These results demonstrate the richness of this physical system and promise many new mysteries for the future.

  8. The neutron skin in neutron-rich nuclei at Jefferson Lab

    SciTech Connect (OSTI)

    Dalton, Mark M.

    2013-11-01

    The Jefferson Lab program to measure the symmetry energy of neutron-rich nuclear matter, using precision electroweak methods, is progressing well. The initial measurement by the PREX experiment, leading to a 2-sigma determination of the "neutron skin" in {sup 208}Pb , has been published. Design and preparation for a further, more-precise measurement on {sup 208}Pb is progressing well and there is general acceptance of the great advantage to a further measurement on {sup 48}Ca . The surprising ancillary result that the beam-normal single-spin asymmetry for {sup 208}Pb is consistent with zero is also now in the literature. This paper will discuss the current experimental situation of the program.

  9. Finite-temperature lineshapes in gapped quantum spin chains

    E-Print Network [OSTI]

    Fabian H. L. Essler; Robert M. Konik

    2007-12-05

    We consider the finite-temperature dynamical structure factor (DSF) of gapped quantum spin chains such as the spin one Heisenberg model and the transverse field Ising model in the disordered phase. At zero temperature the DSF in these models is dominated by a delta-function line arising from the coherent propagation of single particle modes. Using methods of integrable quantum field theory we determine the evolution of the lineshape at low temperatures. We show that the line shape is in general asymmetric in energy and becomes Lorentzian only at temperatures far below the gap. We discuss the relevance of our results for the analysis of inelastic neutron scattering experiments on gapped spin chain systems such as CsNiCl_3 and YBaNiO_5.

  10. Spin splittings among charmed hadrons

    E-Print Network [OSTI]

    Randy Lewis; Nilmani Mathur; R. M. Woloshyn

    2001-09-19

    The mass differences between spin-1/2 and spin-3/2 baryons are compared to the mass differences between spin-0 and spin-1 mesons. Results of simulations for charmed hadrons in the quenched approximation from a tadpole-improved anisotropic action are discussed in the context of other lattice calculations, quark model predictions, heavy quark symmetry predictions and experimental data.

  11. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    SciTech Connect (OSTI)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  12. Observation of the Goos-Haenchen Shift with Neutrons

    SciTech Connect (OSTI)

    Haan, Victor-O. de; Plomp, Jeroen; Rekveldt, Theo M.; Kraan, Wicher H.; Well, Ad A. van; Dalgliesh, Robert M.; Langridge, Sean

    2010-01-08

    The Goos-Haenchen effect is a spatial shift along an interface resulting from an interference effect that occurs for total internal reflection. This phenomenon was suggested by Sir Isaac Newton, but it was not until 1947 that the effect was experimentally observed by Goos and Haenchen. We provide the first direct, absolute, experimental determination of the Goos-Haenchen shift for a particle experiencing a potential well as required by quantum mechanics: namely, wave-particle duality. Here, the particle is a spin-polarized neutron reflecting from a film of magnetized material. We detect the effect through a subtle change in polarization of the neutron. Here, we demonstrate, through experiment and theory, that neutrons do exhibit the Goos-Haenchen effect and postulate that the associated time shift should also be observable.

  13. Gamma Spectrum from Neutron Capture on Tungsten Isotopes

    SciTech Connect (OSTI)

    Hurst, Aaron; Summers, Neil; Sleaford, Brad; Firestone, Richard B; Belgya, T.; Revay, Z.S.

    2010-04-29

    An evaluation of thermal neutron capture on the stable tungsten isotopes is presented, with preliminary results for the compound systems 183;184;185;187W. The evaluation procedure compares the g-ray cross-section data collected at the Budapest reactor, with Monte Carlo simulations of g-ray emission following the thermal neutron-capture process. The statistical-decay code DICEBOX was used for the Monte Carlo simulations. The evaluation yields new gamma rays in 185W and the confirmation of spins in 187W, raising the number of levels below which the level schemes are considered complete, thus increasing the number of levels that can be used in neutron data libraries.

  14. THERMAL HYDRAULICS KEYWORDS: neutron activation,

    E-Print Network [OSTI]

    Pázsit, Imre

    THERMAL HYDRAULICS KEYWORDS: neutron activation, flow measurements, evaluation methods FLOWACT, FLOW RATE MEASUREMENTS IN PIPES WITH THE PULSED-NEUTRON ACTIVATION METHOD PER LINDÉN,* GUDMAR GROSSHÖG- neutron activation (PNA) in a specially designed test loop. A stationary neutron generator was used

  15. Neutron Scattering Group February, 2001

    E-Print Network [OSTI]

    Johnson, Peter D.

    Neutron Scattering Group February, 2001 A High Performance Instrument for the Single Crystal Igor Zaliznyak Outline #12;Neutron Scattering Group Neutron spectrometer for studies of the low-energy coherent excitations in single crystals. Common requirements for a single crystal neutron spectrometer

  16. Hypernuclear Physics for Neutron Stars

    E-Print Network [OSTI]

    Jurgen Schaffner-Bielich

    2008-01-24

    The role of hypernuclear physics for the physics of neutron stars is delineated. Hypernuclear potentials in dense matter control the hyperon composition of dense neutron star matter. The three-body interactions of nucleons and hyperons determine the stiffness of the neutron star equation of state and thereby the maximum neutron star mass. Two-body hyperon-nucleon and hyperon-hyperon interactions give rise to hyperon pairing which exponentially suppresses cooling of neutron stars via the direct hyperon URCA processes. Non-mesonic weak reactions with hyperons in dense neutron star matter govern the gravitational wave emissions due to the r-mode instability of rotating neutron stars.

  17. Neutron-induced nucleosynthesis

    E-Print Network [OSTI]

    H. Oberhummer; H. Herndl; T. Rauscher; H. Beer

    1996-08-20

    Neutron--induced nucleosynthesis plays an important role in astrophysical scenarios like in primordial nucleosynthesis in the early universe, in the s--process occurring in Red Giants, and in the $\\alpha$--rich freeze--out and r--process taking place in supernovae of type II. A review of the three important aspects of neutron--induced nucleosynthesis is given: astrophysical background, experimental methods and theoretical models for determining reaction cross sections and reaction rates at thermonuclear energies. Three specific examples of neutron capture at thermal and thermonuclear energies are discussed in some detail.

  18. Quantum Model Of Spin Noise

    E-Print Network [OSTI]

    R. Annabestani; D. G. Cory; J. Emerson

    2015-03-03

    Any ensemble of quantum particles exhibits statistical fluctuations known as spin noise. Here, we provide a description of spin noise in the language of open quantum systems. The description unifies the signatures of spin noise under both strong and weak measurements. Further, the model accounts for arbitrary spin dynamics from an arbitrary initial state. In all cases we can find both the spin noise and its time correlation function.

  19. Switchable radioactive neutron source device

    DOE Patents [OSTI]

    Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

    1987-11-06

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

  20. Spin photonics and spin-photonic devices with dielectric metasurfaces

    E-Print Network [OSTI]

    Liu, Yachao; Ke, Yougang; Zhou, Xinxing; Luo, Hailu; Wen, Shuangchun

    2015-01-01

    Dielectric metasurfaces with spatially varying birefringence and high transmission efficiency can exhibit exceptional abilities for controlling the photonic spin states. We present here some of our works on spin photonics and spin-photonic devices with metasurfaces. We develop a hybrid-order Poincare sphere to describe the evolution of spin states of wave propagation in the metasurface. Both the Berry curvature and the Pancharatnam-Berry phase on the hybrid-order Poincare sphere are demonstrated to be proportional to the variation of total angular momentum. Based on the spin-dependent property of Pancharatnam-Berry phase, we find that the photonic spin Hall effect can be observed when breaking the rotational symmetry of metasurfaces. Moreover, we show that the dielectric metasurfaces can provide great flexibility in the design of novel spin-photonic devices such as spin filter and spin-dependent beam splitter.

  1. Low-Energy X-ray Emission from Young Isolated Neutron Stars

    E-Print Network [OSTI]

    M. Ruderman

    2003-10-28

    A young neutron star with large spin-down power is expected to be closely surrounded by an e+/- pair plasma maintained by the conversion of gamma-rays associated with the star's polar-cap and/or outer-gap accelerators. Cyclotron-resonance scattering by the e- and e+ within several radii of such neutron stars prevents direct observations of thermal X-rays from the stellar surface. Estimates are presented for the parameters of the Planck-like X-radiation which ultimately diffuses out through this region. Comparisons with observations, especially of apparent blackbody emission areas as a function of neutron star age, support the proposition that we are learning about a neutron star's magnetosphere rather than about its surface from observations of young neutron star thermal X-rays.

  2. Shifting scintillator neutron detector

    DOE Patents [OSTI]

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  3. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2009-12-29

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  4. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  5. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  6. Neutron resonance averaging

    SciTech Connect (OSTI)

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.

  7. Spin-liquid ground state in the frustrated J1-J2 zigzag chain system BaTb2O4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aczel, A. A.; Li, L.; Garlea, V. O.; Yan, J. -Q.; Weickert, F.; Zapf, V. S.; Movshovich, R.; Jaime, M.; Baker, P. J.; Keppens, V.; et al

    2015-07-13

    We have investigated polycrystalline samples of the zigzag chain system BaTb2O4 with magnetic susceptibility, heat capacity, neutron powder diffraction, and muon spin relaxation measurements. No magnetic transitions are observed in the bulk measurements, while neutron diffraction reveals low-temperature, short-range, intrachain magnetic correlations between Tb3+ ions. Muon spin relaxation measurements indicate that these correlations are dynamic, as the technique detects no signatures of static magnetism down to 0.095 K. Altogether these findings provide strong evidence for a spin liquid ground state in BaTb2O4.

  8. H-2(p,n)2p Spin Transfer from 305 to 788 Mev 

    E-Print Network [OSTI]

    McNaughton, M. W.; Koch, K.; Supek, I.; Tanaka, N.; Ambrose, DA; Coffey, P.; Johnston, K.; McNaughton, K. H.; Riley, P. J.; Glass, G.; Hiebert, John C.; Northcliffe, L. C.; Simon, A. J.; Mercer, D. J.; Adams, D. L.; Spinka, H.; Jeppersen, R. H.; Tripard, G. E.; Woolverton, H.

    1992-01-01

    Measurements of the spin-transfer parameter K(LL) for H-2(p, n)2p at 0-degrees to calibrate the neutron-beam polarization clarify a normalization discrepancy affecting np data at LAMPF. The new data are in good agreement with theoretical predictions....

  9. Nuclear spin-orbit interaction and T-odd angular correlations in ternary fission

    E-Print Network [OSTI]

    A. L. Barabanov

    2014-07-08

    T-odd angular correlations in ternary fission of 233-U and 235-U nuclei by slow polarized neutrons are not related to TRI (time reversal invariance) violation, but are caused by an effective spin-orbit interaction in the final state.

  10. Cancellation of orbital and spin magnetism in UFe/sub 2/

    SciTech Connect (OSTI)

    Wulff, M.; Lander, G.H.; Lebech, B.; Delapalme, A.

    1989-03-01

    Polarized-neutron measurements have shown that the orbital and spin magnetic moments, which individually have a value of approx.0.23..mu../sub B/, almost completely cancel on the U sublattice in the ordered Laves phase UFe/sub 2/. This confirms a recent theoretical predicton and raises the possibility of ''magnetic'' compounds with zero total moment.

  11. Leading neutron spectra

    E-Print Network [OSTI]

    A. B. Kaidalov; V. A. Khoze; A. D. Martin; M. G. Ryskin

    2006-05-27

    It is shown that the observation of the spectra of leading neutrons from proton beams can be a good probe of absorptive and migration effects. We quantify how these effects modify the Reggeized pion-exchange description of the measurements of leading neutrons at HERA. We are able to obtain a satisfactory description of all the features of these data. We also briefly discuss the corresponding data for leading baryons produced in hadron-hadron collisions.

  12. On the Dramatic Spin-up/Spin-down Torque Reversals in Accreting Pulsars

    E-Print Network [OSTI]

    Robert W. Nelson; Lars Bildsten; Deepto Chakrabarty; Mark H. Finger; Danny T. Koh; Thomas A. Prince; Bradley C. Rubin; D. Mathew Scott; Brian A. Vaughan; Robert B. Wilson

    1997-08-21

    Dramatic torque reversals between spin up and spin down have been observed in half of the persistent X-ray pulsars monitored by the BATSE all-sky monitor on CGRO. Theoretical models developed to explain early pulsar timing data can explain spin down torques via a disk-magnetosphere interaction if the star nearly corotates with the inner accretion disk. To produce the observed BATSE torque reversals, however, these equilibrium models require the disk to alternate between two mass accretion rates, with $\\dot M_{\\pm}$ producing accretion torques of similar magnitude, but always of opposite sign. Moreover, in at least one pulsar (GX 1+4) undergoing secular spin down the neutron star spins down faster during brief ($\\sim 20$ day) hard X-ray flares -- this is opposite the correlation expected from standard theory, assuming BATSE pulsed flux increases with mass accretion rate. The $10$ day to 10 yr intervals between torque reversals in these systems are much longer than any characteristic magnetic or viscous time scale near the inner disk boundary and are more suggestive of a global disk phenomenon. We discuss possible explanations of the observed torque behavior. Despite the preferred sense of rotation defined by the binary orbit, the BATSE observations are surprisingly consistent with an earlier suggestion by Makishima \\etal (1988) for GX~1+4: the disks in these systems somehow alternate between episodes of prograde and retrograde rotation. We are unaware of any mechanism that could produce a stable retrograde disk in a binary undergoing Roche-lobe overflow, but such flip-flop behavior does occur in numerical simulations of wind-fed systems. One possibility is that the disks in some of these binaries are fed by an X-ray excited wind.

  13. Coherent heteronuclear spin dynamics in an ultracold spin-1 mixture

    E-Print Network [OSTI]

    Li, Xiaoke; He, Xiaodong; Wang, Fudong; Guo, Mingyang; Xu, Zhi-Fang; Zhang, Shizhong; Wang, Dajun

    2015-01-01

    We report the observation of coherent heteronuclear spin dynamics driven by inter-species spin-spin interaction in an ultracold spinor mixture, which manifests as periodical and well correlated spin oscillations between two atomic species. In particular, we investigate the magnetic field dependence of the oscillations and find a resonance behavior which depends on {\\em both} the linear and quadratic Zeeman effects and the spin-dependent interaction. We also demonstrate a unique knob for controlling the spin dynamics in the spinor mixture with species-dependent vector light shifts. Our finds are in agreement with theoretical simulations without any fitting parameters.

  14. Sandia Energy - Spontaneous Coherence and Spin Texture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spontaneous Coherence and Spin Texture Home Energy Research EFRCs Solid-State Lighting Science EFRC Spontaneous Coherence and Spin Texture Spontaneous Coherence and Spin...

  15. Neutron Stars Properties and Crust Movements in Post-glitch Epoch

    E-Print Network [OSTI]

    L. M. González-Romero; F. Navarro-Lérida

    2009-02-07

    Using a new numerical code with non-uniform adapted mesh, we study the changes produced in the global properties of neutron stars by the motion of matter in crust region during post-glitch epoch. Our numerical analysis shows that these changes may contribute to explain the observed spin-down of rotational frequency.

  16. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Proposal to the ISOLDE and Neutron Time-of-Flight Committee

    E-Print Network [OSTI]

    and Tl nuclides, as well as the energies, spins and parities of the excited and ground states, with Z 126, where only 9 nuclides have been observed so far. Our studies will provide-type facilities are hampered by large isobaric contaminations. One of such regions comprises neutron-rich nuclides

  17. An analysis of the uncertainty and bias in DCE-MRI measurements using the spoiled gradient-recalled echo pulse sequence

    SciTech Connect (OSTI)

    Subashi, Ergys [Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 (United States)] [Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 (United States); Choudhury, Kingshuk R. [Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27710 (United States)] [Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27710 (United States); Johnson, G. Allan, E-mail: gjohnson@duke.edu [Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina 27710 (United States); Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-03-15

    Purpose: The pharmacokinetic parameters derived from dynamic contrast-enhanced (DCE) MRI have been used in more than 100 phase I trials and investigator led studies. A comparison of the absolute values of these quantities requires an estimation of their respective probability distribution function (PDF). The statistical variation of the DCE-MRI measurement is analyzed by considering the fundamental sources of error in the MR signal intensity acquired with the spoiled gradient-echo (SPGR) pulse sequence. Methods: The variance in the SPGR signal intensity arises from quadrature detection and excitation flip angle inconsistency. The noise power was measured in 11 phantoms of contrast agent concentration in the range [0–1] mM (in steps of 0.1 mM) and in onein vivo acquisition of a tumor-bearing mouse. The distribution of the flip angle was determined in a uniform 10 mM CuSO{sub 4} phantom using the spin echo double angle method. The PDF of a wide range of T1 values measured with the varying flip angle (VFA) technique was estimated through numerical simulations of the SPGR equation. The resultant uncertainty in contrast agent concentration was incorporated in the most common model of tracer exchange kinetics and the PDF of the derived pharmacokinetic parameters was studied numerically. Results: The VFA method is an unbiased technique for measuringT1 only in the absence of bias in excitation flip angle. The time-dependent concentration of the contrast agent measured in vivo is within the theoretically predicted uncertainty. The uncertainty in measuring K{sup trans} with SPGR pulse sequences is of the same order, but always higher than, the uncertainty in measuring the pre-injection longitudinal relaxation time (T1{sub 0}). The lowest achievable bias/uncertainty in estimating this parameter is approximately 20%–70% higher than the bias/uncertainty in the measurement of the pre-injection T1 map. The fractional volume parameters derived from the extended Tofts model were found to be extremely sensitive to the variance in signal intensity. The SNR of the pre-injection T1 map indicates the limiting precision with which K{sup trans} can be calculated. Conclusions: Current small-animal imaging systems and pulse sequences robust to motion artifacts have the capacity for reproducible quantitative acquisitions with DCE-MRI. In these circumstances, it is feasible to achieve a level of precision limited only by physiologic variability.

  18. Inelastic neutron scattering in valence fluctuation compounds

    SciTech Connect (OSTI)

    Jon M Lawrence

    2011-02-15

    The valence fluctuation compounds are rare earth intermetallics where hybridization of the nearly-localized 4f electrons with the conduction electrons leads to incorporation of the 4f's into the itinerant states. This hybridization slows down the conduction electrons and hence gives them a heavy effective mass, justifying application of the term 'heavy Fermion' (HF) to these materials. During the project period, we grew large single crystals of several such compounds and measured their properties using both standard thermodynamic probes and state-of-the-art inelastic neutron scattering. We obtained three main results. For the intermediate valence compounds CePd{sub 3} and YbAl{sub 3}, we showed that the scattering of neutrons by the fluctuations of the 4f magnetic moment does not have the momentum dependence expected for the itinerant heavy mass state; rather, the scattering is more typical of a localized spin fluctuation. We believe that incoherent scattering localizes the excitation. For the heavy Fermion compound Ce(Ni{sub 0.935}Pd{sub 0.065}){sub 2}Ge{sub 2}, which sits at a T = 0 critical point for transformation into an antiferromagnetic (AF) phase, we showed that the scattering from the AF fluctuations does not exhibit any of the divergences that are expected at a phase transition. We speculate that alloy disorder profoundly suppresses the growth of the fluctuating AF regions, leading to short range clusters rather than regions of infinite size. Finally, we explored the applicability of key concepts used to describe the behavior of rare earth heavy Fermions to uranium based HF compounds where the 5f electrons are itinerant as opposed to localized. We found that scaling laws relating the spin fluctuation energy measured in neutron scattering to the low temperature specific heat and susceptibility are valid for the uranium compounds, once corrections are made for AF fluctuations; however, the degeneracy of the high temperature moment is smaller than expected for rare-earth-like Hund's rule behavior, essentially because the orbital moment is suppressed for itinerant 5f electrons. We also found that the standard local-moment-based theory of the temperature dependence of the specific heat, susceptibility and neutron scattering fails badly for URu{sub 2}Zn{sub 20} and UCo{sub 2}Zn{sub 20}, even though the theory is phenomenally successful for the closely related rare earth compound YbFe{sub 2}Zn{sub 20}. Both these results highlight the distinction between the itineracy of the 5f's and the localization of the 4f's. It is our hope that these results are sufficiently significant as to stimulate deeper investigation of these compounds.

  19. Spinning fluids reactor

    DOE Patents [OSTI]

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  20. Neutron-deuteron breakup reaction as a tool for studying neutron-neutron interactions

    SciTech Connect (OSTI)

    Konobeevski, E. S., E-mail: konobeev@inr.ru; Zuyev, S. V.; Mordovskoy, M. V.; Potashev, S. I.; Sharapov, I. M. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)] [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2013-11-15

    An analysis of the most recent data on the reaction nd {yields} pnn revealed a serious discrepancy between theoretical predictions and cross sections measured for this reaction in various configurations where the role of neutron-neutron interactions is important. In view of this, it seems necessary both to develop theoretical approaches and to obtain new experimental data. For this purpose, a setup for studying the neutron-deuteron breakup reaction was created at the Institute for Nuclear Research on the basis of the neutron beam in the RADEX channel and deuterium targets. This facility makes it possible to perform experiments over a broad region of primary-neutron energies (10-60 MeV) and in various (final-state interaction, quasifree scattering, and spatial-star) configurations. Preliminary results of the respective experiment were obtained for configurations of final-state neutron-neutron interaction and quasifree neutron-neutron scattering.

  1. Spin liquid ground state in the frustrated J1-J2 zigzag chain system BaTb2O4

    SciTech Connect (OSTI)

    Aczel, Adam A [ORNL; Li, Ling [University of Tennessee, Knoxville (UTK); Garlea, Vasile O [ORNL; Yan, Jiaqiang [ORNL; Weickert, Franziska [Los Alamos National Laboratory (LANL); Zapf, Vivien [National High Magnetic Field Laboratory, Los Alamos National Lab, Los Alamos; Movshovich, R [Los Alamos National Laboratory (LANL); Jaime, M. [Los Alamos National Laboratory (LANL); Baker, Peter J. [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Keppens, V. [University of Tennessee, Knoxville (UTK); Mandrus, D. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL)

    2015-01-01

    We have investigated polycrystalline samples of the zigzag chain system BaTb2O4 with magnetic susceptibility, heat capacity, neutron powder diffraction, and muon spin relaxation measurements. No magnetic transitions are observed in the bulk measurements, while neutron diffraction reveals the presence of low-temperature, short-range, intrachain magnetic correlations between Tb3+ ions. muSR indicates that these correlations are dynamic, as no signatures of static magnetism are detected by the technique down to 0.095 K. These combined findings provide strong evidence for a spin liquid ground state in BaTb2O4.

  2. Creation of ensembles of nitrogen-vacancy centers in diamond by neutron and electron irradiation

    E-Print Network [OSTI]

    Tobias Nöbauer; Kathrin Buczak; Andreas Angerer; Stefan Putz; Georg Steinhauser; Johanna Akbarzadeh; Herwig Peterlik; Johannes Majer; Jörg Schmiedmayer; Michael Trupke

    2013-09-02

    We created dense ensembles of negatively charged nitrogen-vacancy (NV-) centers in diamond by neutron and electron irradiation for applications in hybrid quantum systems and magnetometry. We characterize fluorescence intensity, optical and coherence properties of the resulting defects by confocal microscopy, UV/Vis and FTIR spectroscopy, optically detected magnetic resonance and small angle X-ray scattering. We find the highest densities of NV- at neutron fluences on the order of 10^17 cm^-2 and electron doses of 10^18 cm^-2, with spin resonance linewidths of 6 MHz. Lower electron energies increase the ratio of centers in the desired negative charge state to those in the neutral one. Annealing at 900 {\\deg}C during the irradiation reduces the spin resonance linewidth. Electron irradiation furthermore results in substantially higher optical transparency compared to neutron irradiation.

  3. Neutron lifetime measurements using gravitationally trapped ultracold neutrons

    E-Print Network [OSTI]

    A. P. Serebrov; V. E. Varlamov; A. G. Kharitonov; A. K. Fomin; Yu. N. Pokotilovski; P. Geltenbort; I. A. Krasnoschekova; M. S. Lasakov; R. R. Taldaev; A. V. Vassiljev; O. M. Zherebtsov

    2009-02-02

    Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before:the probability of UCN losses from the trap was only 1% of that for neutron beta decay. The neutron lifetime obtained,878.5+/-0.7stat+/-0.3sys s, is the most accurate experimental measurement to date.

  4. Novel neutron focusing mirrors for compact neutron sources

    E-Print Network [OSTI]

    Gubarev, M. V.

    We demonstrated neutron beam focusing and neutron imaging using axisymmetric optics, based on pairs of confocal ellipsoid and hyperboloid mirrors. Such systems, known as Wolter mirrors, are commonly used in x-ray telescopes. ...

  5. Quantum correlations in bulk properties of solids obtained from neutron scattering

    E-Print Network [OSTI]

    Ben-Qiong Liu; Lian-Ao Wu; Guo-Mo Zeng; Jian-Ming Song; Wei Luo; Yang Lei; Guang-Ai Sun; Bo Chen; Shu-Ming Peng

    2014-07-02

    We demonstrate that inelastic neutron scattering technique can be used to indirectly detect and measure the macroscopic quantum correlations quantified by both entanglement and discord in a quantum magnetic material, VODPO4 . 1D2O. The amount of quantum correlations is obtained 2 by analyzing the neutron scattering data of magnetic excitations in isolated V4+ spin dimers. Our quantitative analysis shows that the critical temperature of this material can reach as high as Tc = 82.5 K, where quantum entanglement drops to zero. Significantly, quantum discord can even survive at Tc = 300 K and may be used in room temperature quantum devices. Taking into account the spin-orbit (SO) coupling, we also predict theoretically that entanglement can be significantly enhanced and the critical temperature Tc increases with the strength of spin-orbit coupling.

  6. Self-Trapping of Diskoseismic Corrugation Modes in Neutron Star Spacetimes

    E-Print Network [OSTI]

    Tsang, David

    2015-01-01

    We examine the effects of higher-order multipole contributions of rotating neutron star (NS) spacetimes on the propagation of corrugation (c-)modes within a thin accretion disk. We find that the Lense-Thirring precession frequency, which determines the propagation region of the low-frequency fundamental corrugation modes, can experience a turnover allowing for c-modes to become self-trapped for sufficiently high dimensionless spin $j$ and quadrupole rotational deformability $\\alpha$. If such self-trapping c-modes can be detected, e.g. through phase-resolved spectroscopy of the iron line for a high-spin low-mass accreting neutron star, this could potentially constrain the spin-induced NS quadrupole and the NS equation of state.

  7. Hybrid superconducting neutron detectors

    SciTech Connect (OSTI)

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B?+?n?????+?{sup 7}Li, with ? and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T?=?8?K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40?mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  8. Spin Precession and Quantum Vacuum

    E-Print Network [OSTI]

    F. Kheirandish; M. Amooshahi

    2005-09-18

    The effect of quantum vacuum on spin precession is investigated. The radiation reaction is obtained and the time of spin flip (up state to down state) or spontaneous decay, is calculated.

  9. Spin Systems and Computational Complexity

    E-Print Network [OSTI]

    Daniel Gottesman

    2009-11-30

    I give a very brief non-technical introduction to the intersection of the fields of spin systems and computational complexity. The focus is on spin glasses and their relationship to NP-complete problems.

  10. 2D Fluid Plasma Echoes T.M.O'Neil, C.F.Driscoll, and D.H.Dubin, UCSD, PHY-9876999

    E-Print Network [OSTI]

    California at San Diego, University of

    imaging the "phase space" of theory. The wave damping is readily apparent as spiral wind-up at the resonant layer (b-c), and the echo is a coherent un-winding (e-f). The eventual destruction of echoes

  11. Neutron Science | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL's long history of neutron science began in the 1940s with the pioneering neutron scattering studies of Ernest Wollan and Clifford Shull. Shull was co-recipient of...

  12. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, Ching L. (Livermore, CA)

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  13. Personnel electronic neutron dosimeter

    DOE Patents [OSTI]

    Falk, R.B.; Tyree, W.H.

    1982-03-03

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  14. Personnel electronic neutron dosimeter

    DOE Patents [OSTI]

    Falk, Roger B. (Lafayette, CO); Tyree, William H. (Boulder, CO)

    1984-12-18

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  15. Spherical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  16. Spallation Neutron Source | Neutron Science at ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonforsupernovae modelsearch this site SandiaSpallation Neutron

  17. Spin Transport in Semiconductor heterostructures

    SciTech Connect (OSTI)

    Domnita Catalina Marinescu

    2011-02-22

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  18. Microwave generation by spin Hall nanooscillators with nanopatterned spin injector

    SciTech Connect (OSTI)

    Zholud, A., E-mail: azholud@emory.edu; Urazhdin, S. [Department of Physics, Emory University, Atlanta, Georgia 30322 (United States)

    2014-09-15

    We experimentally study spin Hall nano-oscillators based on Pt/ferromagnet bilayers with nanopatterned Pt spin injection layer. We demonstrate that both the spectral characteristics and the electrical current requirements can be simultaneously improved by reducing the spin injection area. Moreover, devices with nanopatterned Pt spin injector exhibit microwave generation over a wide temperature range that extends to room temperature. Studies of devices with additional Pt spacers under the device electrodes show that the oscillation characteristics are affected not only by the spin injection geometry but also by the effects of Pt/ferromagnet interface on the dynamical properties of the ferromagnet.

  19. Spin Physics with CLAS

    SciTech Connect (OSTI)

    Yelena Prok

    2010-05-01

    Inelastic scattering using polarized nucleon targets and polarized charged lepton beams allows the extraction of double and single spin asymmetries that provide information about the helicity structure of the nucleon. A program designed to study such processes at low and intermediate $Q^2$ for the proton and deuteron has been pursued by the CLAS Collaboration at Jefferson Lab since 1998. Our inclusive data with high statistical precision and extensive kinematic coverage allow us to better constrain the polarized parton distributions and to accurately determine various moments of spin structure function $g_1$ as a function of $Q^2$. The latest results will be shown, illustrating our contribution to the world data, with comparisons of the data with NLO global fits, phenomenological models, chiral perturbation theory and the GDH and Bjorken sum rules. The semi-inclusive measurements of single and double spin asymmetries for charged and neutral pions are also show, indicating the importance of the orbital motion of quarks in understanding the spin structure of the nucleon.

  20. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan (El Cerrito, CA); Farmer, Joseph C. (Tracy, CA); Lee, Chuck K. (Hayward, CA); Walker, Jeffrey (Gaithersburg, MD); Russell, Paige (Las Vegas, NV); Kirkwood, Jon (Saint Leonard, MD); Yang, Nancy (Lafayette, CA); Champagne, Victor (Oxford, PA)

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  1. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  2. Prospects for measuring neutron-star masses and radii with X-ray pulse profile modeling

    SciTech Connect (OSTI)

    Psaltis, Dimitrios; Özel, Feryal [Astronomy Department, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Chakrabarty, Deepto, E-mail: dpsaltis@email.arizona.edu, E-mail: fozel@email.arizona.edu, E-mail: deepto@mit.edu [Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2014-06-01

    Modeling the amplitudes and shapes of the X-ray pulsations observed from hot, rotating neutron stars provides a direct method for measuring neutron-star properties. This technique constitutes an important part of the science case for the forthcoming NICER and proposed LOFT X-ray missions. In this paper, we determine the number of distinct observables that can be derived from pulse profile modeling and show that using only bolometric pulse profiles is insufficient for breaking the degeneracy between inferred neutron-star radius and mass. However, we also show that for moderately spinning (300-800 Hz) neutron stars, analysis of pulse profiles in two different energy bands provides additional constraints that allow a unique determination of the neutron-star properties. Using the fractional amplitudes of the fundamental and the second harmonic of the pulse profile in addition to the amplitude and phase difference of the spectral color oscillations, we quantify the signal-to-noise ratio necessary to achieve a specified measurement precision for neutron star radius. We find that accumulating 10{sup 6} counts in a pulse profile is sufficient to achieve a ? 5% uncertainty in the neutron star radius, which is the level of accuracy required to determine the equation of state of neutron-star matter. Finally, we formally derive the background limits that can be tolerated in the measurements of the various pulsation amplitudes as a function of the system parameters.

  3. Neutron Detection Efficiency of the

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    Neutron Detection Efficiency of the CLAS12 Detector M. Moog and G. Gilfoyle University Of Richmond - Department of Physics Software We simulated the neutron detection efficiency of the forward time of flight scintillators for quasielastic electron-neutron scattering using a series of software packages. Elastic

  4. Spin Operators for Massive Particles

    E-Print Network [OSTI]

    Taeseung Choi; Sam Young Cho

    2014-10-02

    How to define a proper relativistic spin operator, as a long-standing problem, has by now become a central task for providing proper concepts and applications of spin in relativistic and non-relativistic quantum mechanics as well as solving emergent inconsistencies in rapidly developing research areas. We rigorously {\\it derive} a relativistic spin operator for an arbitrary spin massive particle on the two requirements that a proper spin operator should satisfy (i) the $\\mathfrak{su}(2)$ algebra and (ii) the Lorentz-transformation properties as a second-rank spin tensor. These requirements lead to two spin operators, properly giving the second Casimir invariant operator in the Poincar\\'e (inhomogeneous Lorentz) group, that provide the two inequivalent representations of Poincar\\'e group. We find that the two inequivalent representations are the left-handed and the right-handed representations. Each of the two spin operators generates a Wigner little group whose representation space is composed of spin-$s$ spin states. In the case that the Poincar\\'e group is extended by parity, only nonchiral $(s,s)$ representations and direct-sum $(s,s') \\oplus (s',s)$ representations are allowed. In the $(1/2,0)\\oplus (0,1/2)$ representation, we redrive the covariant Dirac equation by using the covariant parity operator defined by the two spin operators. This derivation deepens our understanding how the Dirac equation describes the spin-$1/2$ massive relativistic particle successfully. We have also discussed some important properties of our relativistic spin operators with arbitrary spin.

  5. Neutron - Mirror Neutron Oscillations: How Fast Might They Be?

    E-Print Network [OSTI]

    Zurab Berezhiani; Luis Bento

    2006-02-20

    We discuss the phenomenological implications of the neutron (n) oscillation into the mirror neutron (n'), a hypothetical particle exactly degenerate in mass with the neutron but sterile to normal matter. We show that the present experimental data allow a maximal n-n' oscillation in vacuum with a characteristic time $\\tau$ much shorter than the neutron lifetime, in fact as small as 1 sec. This phenomenon may manifest in neutron disappearance and regeneration experiments perfectly accessible to present experimental capabilities and may also have interesting astrophysical consequences, in particular for the propagation of ultra high energy cosmic rays.

  6. Enhancement of nonlocal spin-valve signal using spin accumulation in local spin-valve configuration

    E-Print Network [OSTI]

    Otani, Yoshichika

    because of additional spin functionalities. Recently, a class of spintronic devices, such as spin battery properties is essential to realizing such spintronic devices. Vertical structures are suitable to observe to keep spin information. Such lateral struc- tures can be applied to develop multiterminal spintronic de

  7. Light curves from rapidly rotating neutron stars

    E-Print Network [OSTI]

    Numata, Kazutoshi

    2010-01-01

    We calculate light curves produced by a hot spot of a rapidly rotating neutron star, assuming that the spot is perturbed by a core $r$-mode, which is destabilized by emitting gravitational waves. To calculate light curves, we take account of relativistic effects such as the Doppler boost due to the rapid rotation and light bending assuming the Schwarzschild metric around the neutron star. We assume that the core $r$-modes penetrate to the surface fluid ocean to have sufficiently large amplitudes to disturb the spot. For a $l'=m$ core $r$-mode, the oscillation frequency $\\omega\\approx2m\\Omega/[l'(l'+1)]$ defined in the co-rotating frame of the star will be detected by a distant observer, where $l'$ and $m$ are respectively the spherical harmonic degree and the azimuthal wave number of the mode, and $\\Omega$ is the spin frequency of the star. In a linear theory of oscillation, using a parameter $A$ we parametrize the mode amplitudes such that ${\\rm max}\\left(|\\xi_\\theta|,|\\xi_\\phi|\\right)/R=A$ at the surface, w...

  8. Magnetohydrodynamics in Superconducting-Superfluid Neutron Stars

    E-Print Network [OSTI]

    Gregory Mendell

    1997-09-09

    MHD equations are presented for the mixture of superfluid neutrons, superconducting protons, and normal electrons believed to exist in the outer cores of neutron stars. The dissipative effects of electron viscosity and mutual friction due to electron-vortex scattering are also included. It is shown that Alfven waves are replaced by cyclotron- vortex waves that have not been previously derived from MHD theory. The cyclotron- vortex waves are analogous to Alfven waves with the tension due to the magnetic energy density replaced by the vortex energy density. The equations are then put into a simplified form useful for studying the effects of the interior magnetic field on the dynamics. Of particular interest is the crust-core coupling time which can be inferred from pulsar glitch observations. The hypothesis that cyclotron-vortex waves play a significant role in the core spin-up during a glitch is used to place limits on the interior magnetic field. The results are compared with those of other studies.

  9. Predicting the Remaining Useful Lifetime of a Proton Exchange Membrane Fuel Cell using an Echo State Network

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Predicting the Remaining Useful Lifetime of a Proton Exchange Membrane Fuel Cell using an Echo industrial Fuel Cell (FC) application resides in the system limited useful lifetime. Consequently, it Membrane Fuel Cell using an iterative predictive structure, which is the most common approach performing

  10. LIGHT ECHOES FROM ? CARINAE'S GREAT ERUPTION: SPECTROPHOTOMETRIC EVOLUTION AND THE RAPID FORMATION OF NITROGEN-RICH MOLECULES

    SciTech Connect (OSTI)

    Prieto, J. L.; Knapp, G. R. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Rest, A.; Walborn, N. R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bianco, F. B. [Department of Physics, New York University, New York, NY 10012 (United States); Matheson, T. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Smith, N. [Steward Observatory, University of Arizona, Tucson, Arizona 85721 (United States); Hsiao, E. Y.; Campillay, A.; Contreras, C.; González, C.; Morrell, N.; Phillips, M. M. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Chornock, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Paredes Álvarez, L.; James, D.; Smith, R. C. [Cerro Tololo Inter-American Observatory, Casilla 603, La Serena (Chile); Kunder, A. [Leibniz-Institut für Astrophysik Potsdam, an der Sternwarte 16, D-14482, Potsdam (Germany); Margheim, S. [Gemini Observatory, Southern Operations Center, Casilla 603, La Serena (Chile); Welch, D. L. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); and others

    2014-05-20

    We present follow-up optical imaging and spectroscopy of one of the light echoes of ? Carinae's nineteenth century Great Eruption discovered by Rest et al. By obtaining images and spectra at the same light echo position between 2011 and 2014, we follow the evolution of the Great Eruption on a 3 yr timescale. We find remarkable changes in the photometric and spectroscopic evolution of the echo light. The i-band light curve shows a decline of ?0.9 mag in ?1 yr after the peak observed in early 2011 and a flattening at later times. The spectra show a pure-absorption early G-type stellar spectrum at peak, but a few months after peak the lines of the Ca II triplet develop strong P-Cygni profiles and we see the appearance of [Ca II] 7291, 7324 doublet in emission. These emission features and their evolution in time resemble those observed in the spectra of some Type IIn supernovae and supernova impostors. Most surprisingly, starting ?300 days after peak brightness, the spectra show strong molecular transitions of CN at ? 6800 Å. The appearance of these CN features can be explained if the ejecta are strongly nitrogen enhanced, as is observed in modern spectroscopic studies of the bipolar Homunculus nebula. Given the spectroscopic evolution of the light echo, velocities of the main features, and detection of strong CN, we are likely seeing ejecta that contributes directly to the Homunculus nebula.

  11. Solute-Solvent Complex Kinetics and Thermodynamics Probed by 2D-IR Vibrational Echo Chemical Exchange Spectroscopy

    E-Print Network [OSTI]

    Fayer, Michael D.

    Solute-Solvent Complex Kinetics and Thermodynamics Probed by 2D-IR Vibrational Echo Chemical, 2008 The formation and dissociation kinetics of a series of triethylsilanol/solvent weakly hydrogen with previous observations on eight phenol/solvent complexes with enthalpies of formation from -0.6 to -2.5 kcal

  12. Small Angle Neutron Scattering

    SciTech Connect (OSTI)

    Urban, Volker S [ORNL

    2012-01-01

    Small Angle Neutron Scattering (SANS) probes structural details at the nanometer scale in a non-destructive way. This article gives an introduction to scientists who have no prior small-angle scattering knowledge, but who seek a technique that allows elucidating structural information in challenging situations that thwart approaches by other methods. SANS is applicable to a wide variety of materials including metals and alloys, ceramics, concrete, glasses, polymers, composites and biological materials. Isotope and magnetic interactions provide unique methods for labeling and contrast variation to highlight specific structural features of interest. In situ studies of a material s responses to temperature, pressure, shear, magnetic and electric fields, etc., are feasible as a result of the high penetrating power of neutrons. SANS provides statistical information on significant structural features averaged over the probed sample volume, and one can use SANS to quantify with high precision the structural details that are observed, for example, in electron microscopy. Neutron scattering is non-destructive; there is no need to cut specimens into thin sections, and neutrons penetrate deeply, providing information on the bulk material, free from surface effects. The basic principles of a SANS experiment are fairly simple, but the measurement, analysis and interpretation of small angle scattering data involves theoretical concepts that are unique to the technique and that are not widely known. This article includes a concise description of the basics, as well as practical know-how that is essential for a successful SANS experiment.

  13. Neutron Absorbing Alloys

    DOE Patents [OSTI]

    Mizia, Ronald E. (Idaho Falls, ID); Shaber, Eric L. (Idaho Falls, ID); DuPont, John N. (Whitehall, PA); Robino, Charles V. (Albuquerque, NM); Williams, David B. (Bethlehem, PA)

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  14. Neutron Scattering of CeNi at the Spallation Neutron Source at...

    Office of Scientific and Technical Information (OSTI)

    Spallation Neutron Source at Oak Ridge National Laboratory: A Preliminary Report Citation Details In-Document Search Title: Neutron Scattering of CeNi at the Spallation Neutron...

  15. Dose-equivalent neutron dosimeter

    DOE Patents [OSTI]

    Griffith, R.V.; Hankins, D.E.; Tomasino, L.; Gomaa, M.A.M.

    1981-01-07

    A neutron dosimeter is disclosed which provides a single measurement indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer contaning conversion material such as /sup 6/Li and /sup 10/B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet.

  16. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  17. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, John G. (Pittsburgh, PA); Ruddy, Frank H. (Monroeville, PA); Brandt, Charles D. (Mount Lebanon, PA); Dulloo, Abdul R. (Pittsburgh, PA); Lott, Randy G. (Pittsburgh, PA); Sirianni, Ernest (Monroeville, PA); Wilson, Randall O. (Greensburg, PA)

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  18. Linear Polarization Measurements for High-Spin States in 146Gd

    E-Print Network [OSTI]

    Krishichayan,; Basu, S K; Bhowmik, R K; Chakraborty, A; Chaturvedi, L; Dhal, A; Garg, U; Ghugre, S S; Goswami, R; Jhingan, A; Madhvan, N; Rao, P V Madhusudhana; Mukhopadhyay, S; Muralithar, S; Nath, S; Pattabiraman, N S; Ray, S; Saha, S; Sarkar, M Saha; Sarkar, S; Singh, R; Singh, R P; Sinha, A K; Sinha, R K; Sugathan, P; Yogi, B K

    2013-01-01

    A {\\gamma}-ray linear polarization measurement has been performed to directly determine the parities for the levels in 146Gd nucleus. High-spin states in this nucleus were populated in a reaction 115In + 34S at 140 MeV incident energy. Linearly polarized {\\gamma} - rays emitted from oriented states were measured using a Compton polarimeter consisting of an array of 8 Compton-suppressed Clover detectors. Unambiguous assignments of the spin and parity have been made for most of the observed levels and changes made in the previously reported spin-parity assignments for a few levels. Shell model calculations performed with judicious truncation over the {\\pi}(gdsh) valence space interpret the structure of only the low-lying levels up to J{\\pi} = 19+ and 9-. N = 82 neutron-core breaking is found to be essential for high spin states with excitation energies Ex > 7 MeV.

  19. Linear Polarization Measurements for High-Spin States in 146Gd

    E-Print Network [OSTI]

    Krishichayan; Rajashri Bhattacherjee; S. K. Basu; R. K. Bhowmik; A. Chakraborty; L. Chaturvedi; A. Dhal; U. Garg; S. S. Ghugre; R. Goswami; A. Jhingan; N. Madhvan; P. V. Madhusudhana Rao; S. Mukhopadhyay; S. Muralithar; S. Nath; N. S. Pattabiraman; S. Ray; S. Saha; M. Saha Sarkar; S. Sarkar; R. Singh; R. P. Singh; A. K. Sinha; R. K. Sinha; P. Sugathan; B. K. Yogi

    2013-08-01

    A {\\gamma}-ray linear polarization measurement has been performed to directly determine the parities for the levels in 146Gd nucleus. High-spin states in this nucleus were populated in a reaction 115In + 34S at 140 MeV incident energy. Linearly polarized {\\gamma} - rays emitted from oriented states were measured using a Compton polarimeter consisting of an array of 8 Compton-suppressed Clover detectors. Unambiguous assignments of the spin and parity have been made for most of the observed levels and changes made in the previously reported spin-parity assignments for a few levels. Shell model calculations performed with judicious truncation over the {\\pi}(gdsh) valence space interpret the structure of only the low-lying levels up to J{\\pi} = 19+ and 9-. N = 82 neutron-core breaking is found to be essential for high spin states with excitation energies Ex > 7 MeV.

  20. Oscillations During Thermonuclear X-ray Bursts: A New Probe of Neutron Stars

    E-Print Network [OSTI]

    Tod E. Strohmayer

    1999-11-19

    Observations of thermonuclear (Type I) X-ray bursts from neutron stars in low mass X-ray binaries (LMXB) with the Rossi X-ray Timing Explorer (RXTE) have revealed large amplitude, high coherence X-ray brightness oscillations with frequencies in the 300 - 600 Hz range. Substantial spectral and timing evidence point to rotational modulation of the X-ray burst flux as the cause of these oscillations, and it is likely that they reveal the spin frequencies of neutron stars in LMXB from which they are detected. Here I review the status of our knowledge of these oscillations and describe how they can be used to constrain the masses and radii of neutron stars as well as the physics of thermonuclear burning on accreting neutron stars.

  1. Coated Fiber Neutron Detector Test

    SciTech Connect (OSTI)

    Lintereur, Azaree T.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2009-10-23

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Reported here are the results of tests of the 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT).

  2. Art of spin decomposition

    E-Print Network [OSTI]

    Xiang-Song Chen; Wei-Min Sun; Fan Wang; T. Goldman

    2011-05-31

    We analyze the problem of spin decomposition for an interacting system from a natural perspective of constructing angular momentum eigenstates. We split, from the total angular momentum operator, a proper part which can be separately conserved for a stationary state. This part commutes with the total Hamiltonian and thus specifies the quantum angular momentum. We first show how this can be done in a gauge-dependent way, by seeking a specific gauge in which part of the total angular momentum operator vanishes identically. We then construct a gauge-invariant operator with the desired property. Our analysis clarifies what is the most pertinent choice among the various proposals for decomposing the nucleon spin. A similar analysis is performed for extracting a proper part from the total Hamiltonian to construct energy eigenstates.

  3. Parity Violating Measurements of Neutron Densities: Implications for Neutron Stars

    E-Print Network [OSTI]

    C. J. Horowitz; J. Piekarewicz

    2002-01-08

    Parity violating electron scattering can measure the neutron density of a heavy nucleus accurately and model independently. This is because the weak charge of the neutron is much larger then that of the proton. The Parity Radius Experiment (PREX) at Jefferson Laboratory aims to measure the root mean square neutron radius of $^{208}$Pb with an absolute accuracy of 1% ($\\pm 0.05$ Fm). This is more accurate then past measurements with hadronic probes, which all suffer from controversial strong interaction uncertainties. PREX should clearly resolve the neutron-rich skin. Furthermore, this benchmark value for $^{208}$Pb will provide a calibration for hadronic probes, such as proton scattering, which can then be used to measure neutron densities of many exotic nuclei. The PREX result will also have many implications for neutron stars. The neutron radius of Pb depends on the pressure of neutron-rich matter: the greater the pressure, the larger the radius as neutrons are pushed out against surface tension. The same pressure supports a neutron star against gravity. The Pb radius is sensitive to the equation of state at normal densities while the radius of a 1.4 solar mass neutron star also depends on the equation of state at higher densities. Measurements of the radii of a number of isolated neutron stars such as Geminga and RX J185635-3754 should soon improve significantly. By comparing the equation of state information from the radii of both Pb and neutron stars one can search for a softening of the high density equation of state from a phase transition to an exotic state. Possibilities include kaon condensates, strange quark matter or color superconductors.

  4. Nuclear spin circular dichroism

    SciTech Connect (OSTI)

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  5. DISCOVERY OF A NEUTRON STAR OSCILLATION MODE DURING A SUPERBURST

    SciTech Connect (OSTI)

    Strohmayer, Tod [Astrophysics Science Division and Joint Space-Science Institute, NASA's Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mahmoodifar, Simin [Department of Physics and Joint Space-Science Institute, University of Maryland College Park, MD 20742 (United States)

    2014-10-01

    Neutron stars are among the most compact objects in the universe and provide a unique laboratory for the study of cold ultra-dense matter. While asteroseismology can provide a powerful probe of the interiors of stars, for example, helioseismology has provided unprecedented insights about the interior of the Sun, comparable capabilities for neutron star seismology have not yet been achieved. Here, we report the discovery of a coherent X-ray modulation from the neutron star 4U 1636–536 during the 2001 February 22 thermonuclear superburst seen with NASA's Rossi X-Ray Timing Explorer (RXTE) that is very likely produced by a global oscillation mode. The observed frequency is 835.6440 ± 0.0002 Hz (1.43546 times the stellar spin frequency of 582.14323 Hz) and the modulation is well described by a sinusoid (A + Bsin (? – ?{sub 0})) with a fractional half-amplitude of B/A = 0.19 ± 0.04% (4-15 keV). The observed frequency is consistent with the expected inertial frame frequency of a rotationally modified surface g-mode, an interfacial mode in the ocean-crust interface, or perhaps an r-mode. Observing an inertial frame frequency—as opposed to a co-rotating frame frequency—appears consistent with the superburst's thermal emission arising from the entire surface of the neutron star, and the mode may become visible by perturbing the local surface temperature. We briefly discuss the implications of the mode detection for the neutron star's projected velocity and mass. Our results provide further strong evidence that global oscillation modes can produce observable modulations in the X-ray flux from neutron stars.

  6. Scissors Mode of 162 Dy Studied from Resonance Neutron Capture

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baramsai, B.; Be?vá?, F.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; Kroll, J.; Krti?ka, M.; Mitchell, G. E.; O’Donnell, J. M.; Rundberg, R. S.; et al

    2015-05-28

    Multi-step cascade ?-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions,more »(n,?) experiments on Gd isotopes, and (?,?’) reactions.« less

  7. Isolated and Binary Neutron Stars in Dynamical Chern-Simons Gravity

    E-Print Network [OSTI]

    Kent Yagi; Leo C. Stein; Nicolas Yunes; Takahiro Tanaka

    2013-05-02

    We study isolated and binary neutron stars in dynamical Chern-Simons gravity. This theory modifies the Einstein-Hilbert action through the introduction of a dynamical scalar field coupled to the Pontryagin density. We here treat this theory as an effective model, working to leading order in the Chern-Simons coupling. We first construct isolated neutron star solutions in the slow-rotation expansion to quadratic order in spin. We find that isolated neutron stars acquire a scalar dipole charge that corrects its spin angular momentum to linear order in spin and corrects its mass and quadrupole moment to quadratic order in spin, as measured by an observer at spatial infinity. We then consider neutron stars binaries that are widely separated and solve for their orbital evolution in this modified theory. We find that the evolution of post-Keplerian parameters is modified, with the rate of periastron advance being the dominant correction at first post-Newtonian order. We conclude by applying these results to observed pulsars with the aim to place constraints on dynamical Chern-Simons gravity. We find that the modifications to the observed mass are degenerate with the neutron star equation of state, which prevents us from testing the theory with the inferred mass of the millisecond pulsar J1614-2230. We also find that the corrections to the post-Keplerian parameters are too small to be observable today even with data from the double binary pulsar J0737-3039. Our results suggest that pulsar observations are not currently capable of constraining dynamical Chern-Simons gravity, and thus, gravitational-wave observations may be the only path to a stringent constraint of this theory in the imminent future.

  8. Mksbauer measurements of spin correlations in a-(Fe,Ni),,Zt$n D. Wiard&and D. H. Ryan

    E-Print Network [OSTI]

    Ryan, Dominic

    amorphous Fe,u-,Ni,Z@n system was investigated by Miissbauer spectroscopyfor x=1,3. The magnetic probe atom 57Feand the nonmagneticr19Snwere usedto monitor thelocal correlationof the spins.The additional ma $ netic correla- tions and excitations. Neutron depolarization and Lorentz microscopy4clearly show

  9. Multifrequency spin resonance in diamond

    SciTech Connect (OSTI)

    Childress, Lilian; McIntyre, Jean

    2010-09-15

    Magnetic resonance techniques provide a powerful tool for controlling spin systems, with applications ranging from quantum information processing to medical imaging. Nevertheless, the behavior of a spin system under strong excitation remains a rich dynamical problem. In this paper, we examine spin resonance of the nitrogen-vacancy center in diamond under conditions outside the regime where the usual rotating-wave approximation applies, focusing on effects of multifrequency excitation and excitation with orientation parallel to the spin quantization axis. Strong-field phenomena such as multiphoton transitions and coherent destruction of tunneling are observed in the spectra and analyzed via numerical and analytic theory. In addition to illustrating the response of a spin system to strong multifrequency excitation, these observations may inform techniques for manipulating electron-nuclear spin quantum registers.

  10. Inductance due to spin current

    SciTech Connect (OSTI)

    Chen, Wei

    2014-03-21

    The inductance of spintronic devices that transport charge neutral spin currents is discussed. It is known that in a media that contains charge neutral spins, a time-varying electric field induces a spin current. We show that since the spin current itself produces an electric field, this implies existence of inductance and electromotive force when the spin current changes with time. The relations between the electromotive force and the corresponding flux, which is a vector calculated by the cross product of electric field and the trajectory of the device, are clarified. The relativistic origin generally renders an extremely small inductance, which indicates the advantage of spin current in building low inductance devices. The same argument also explains the inductance due to electric dipole current and applies to physical dipoles consist of polarized bound charges.

  11. Porous material neutron detector

    DOE Patents [OSTI]

    Diawara, Yacouba (Oak Ridge, TN); Kocsis, Menyhert (Venon, FR)

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  12. Neutron electric polarizability

    E-Print Network [OSTI]

    Andrei Alexandru; Frank X. Lee

    2009-11-13

    We use the background field method to extract the "connected" piece of the neutron electric polarizability. We present results for quenched simulations using both clover and Wilson fermions and discuss our experience in extracting the mass shifts and the challenges we encountered when we lowered the quark mass. For the neutron we find that as the pion mass is lowered below $500\\MeV$, the polarizability starts rising in agreement with predictions from chiral perturbation theory. For our lowest pion mass, $m_\\pi=320\\MeV$, we find that $\\alpha_n = 3.8(1.3)\\times 10^{-4}\\fm^3$, which is still only one third of the experimental value. We also present results for the neutral pion; we find that its polarizability turns negative for pion masses smaller than $500\\MeV$ which is puzzling.

  13. Feedback control of spin systems

    E-Print Network [OSTI]

    Claudio Altafini

    2006-01-03

    The feedback stabilization problem for ensembles of coupled spin 1/2 systems is discussed from a control theoretic perspective. The noninvasive nature of the bulk measurement allows for a fully unitary and deterministic closed loop. The Lyapunov-based feedback design presented does not require spins that are selectively addressable. With this method, it is possible to obtain control inputs also for difficult tasks, like suppressing undesired couplings in identical spin systems.

  14. Proton recoil scintillator neutron rem meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Seagraves, David T. (Los Alamos, NM)

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  15. Fast neutron imaging device and method

    DOE Patents [OSTI]

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  16. Di-neutron correlation in light neutron-rich nuclei

    E-Print Network [OSTI]

    K. Hagino; H. Sagawa; P. Schuck

    2008-12-03

    Using a three-body model with density-dependent contact interaction, we discuss the root mean square distance between the two valence neutrons in $^{11}$Li nuclues as a function of the center of mass of the neutrons relative to the core nucleus $^9$Li. We show that the mean distance takes a pronounced minimum around the surface of the nucleus, indicating a strong surface di-neutron correlation. We demonstrate that the pairing correlation plays an essential role in this behavior. We also discuss the di-neutron structure in the $^8$He nucleus.

  17. Symmetry breaking patterns and collective modes of spin-one color superconductors

    E-Print Network [OSTI]

    Tomas Brauner; Jin-yi Pang; Qun Wang

    2009-09-23

    Spin-one color superconductor is a viable candidate phase of dense matter in the interiors of compact stars. Its low-energy excitations will influence the transport properties of such matter and thus have impact on late-stage evolution of neutron stars. It also provides a good example of spontaneous symmetry breaking with rich breaking patterns. In this contribution, we reanalyze the phase diagram of a spin-one color superconductor and point out that a part of it is occupied by noninert states, which have been neglected in literature so far. We classify the collective Nambu--Goldstone modes, which are essential to the transport phenomena.

  18. Demand Response Spinning Reserve Demonstration

    E-Print Network [OSTI]

    2007-01-01

    Within 10 Minutes After Sudden Failure Of Two Generators inafter sudden failure of two generators in Texas. SpinningIn contrast, failure of a large generator to provide

  19. Static Response of Neutron Matter

    E-Print Network [OSTI]

    Buraczynski, Mateusz

    2015-01-01

    We generalize the problem of strongly interacting neutron matter by adding a periodic external modulation. This allows us to study from first principles a neutron system that is extended and inhomogeneous, with connections to the physics of both neutron-star crusts and neutron-rich nuclei. We carry out fully non-perturbative microscopic Quantum Monte Carlo calculations of the energy of neutron matter at different densities, as well as different strengths and periodicities of the external potential. In order to remove systematic errors, we examine finite-size effects and the impact of the wave function ansatz. We also make contact with energy-density functional theories of nuclei and disentangle isovector gradient contributions from bulk properties. Finally, we calculate the static density-density linear response function of neutron matter and compare it with the response of other physical systems.

  20. Are there good probes for the di-neutron correlation in light neutron-rich nuclei?

    E-Print Network [OSTI]

    Hagino, K

    2015-01-01

    The di-neutron correlation is a spatial correlation with which two valence neutrons are located at a similar position inside a nucleus. We discuss possible experimental probes for the di-neutron correlation. This includes the Coulomb breakup and the pair transfer reactions of neutron-rich nuclei, and the direct two-neutron decays of nuclei beyond the neutron drip-line.

  1. Mantid - Data Analysis and Visualization Package for Neutron Scattering and $\\mu SR$ Experiments

    SciTech Connect (OSTI)

    Arnold, Owen; Bilheux, Jean-Christophe; Borreguero Calvo, Jose M; Buts, Alex; Campbell, Stuart I; Doucet, Mathieu; Draper, Nicholas J; Ferraz Leal, Ricardo F; Gigg, Martyn; Lynch, Vickie E; Mikkelson, Dennis J; Mikkelson, Ruth L; Miller, Ross G; Perring, Toby G; Peterson, Peter F; Ren, Shelly; Reuter, Michael A; Savici, Andrei T; Taylor, Jonathan W; Taylor, Russell J; Zhou, Wenduo; Zikovsky, Janik L

    2014-11-01

    The Mantid framework is a software solution developed for the analysis and visualization of neutron scattering and muon spin measurements. The framework is jointly developed by a large team of software engineers and scientists at the ISIS Neutron and Muon Facility and the Oak Ridge National Laboratory. The objective of the development is to improve software quality, both in terms of performance and ease of use, for the the user community of large scale facilities. The functionality and novel design aspects of the framework are described.

  2. Neutron stars - cooling and transport

    E-Print Network [OSTI]

    Potekhin, A Y; Page, Dany

    2015-01-01

    Observations of thermal radiation from neutron stars can potentially provide information about the states of supranuclear matter in the interiors of these stars with the aid of the theory of neutron-star thermal evolution. We review the basics of this theory for isolated neutron stars with strong magnetic fields, including most relevant thermodynamic and kinetic properties in the stellar core, crust, and blanketing envelopes.

  3. Neutron Imaging by Boric Acid

    E-Print Network [OSTI]

    Fabio Cardone; Giovanni Cherubini; Walter Perconti; Andrea Petrucci; Alberto Rosada

    2013-02-22

    In this paper a new type of passive neutron detector based on the already existing one, CR39, is described. Its operation was verified by three different neutron sources: an Americium-Beryllium (Am241-Be) source; a TRIGA type nuclear reactor; and a fast neutron reactor called TAPIRO. The obtained results, reported here, positively confirm its operation and the accountability of the new developed detecting technique.

  4. Accelerated 2D magnetic resonance spectroscopy of single spins using matrix completion

    E-Print Network [OSTI]

    Jochen Scheuer; Alexander Stark; Matthias Kost; Martin B. Plenio; Boris Naydenov; Fedor Jelezko

    2015-07-14

    Two dimensional nuclear magnetic resonance (NMR) spectroscopy is one of the major tools for analysing the chemical structure of organic molecules and proteins. Despite its power, this technique requires long measurement times, which, particularly in the recently emerging diamond based single molecule NMR, limits its application to stable samples. Here we demonstrate a method which allows to obtain the spectrum by collecting only a small fraction of the experimental data. Our method is based on matrix completion which can recover the full spectral information from randomly sampled data points. We confirm experimentally the applicability of this technique by performing two dimensional electron spin echo envelope modulation (ESEEM) experiments on a two spin system consisting of a single nitrogen vacancy (NV) centre in diamond coupled to a single 13C nuclear spin. We show that the main peaks in the spectrum can be obtained with only 10 % of the total number of the data points. We believe that our results reported here can find an application in all types of two dimensional spectroscopy, as long as the measured matrices have a low rank.

  5. Spin-mapping of coal structures with ESE and ENDOR. Thirteenth quarterly report

    SciTech Connect (OSTI)

    Belford, R.L.; Clarkson, R.B.

    1991-12-01

    The goals of this program include developing a system for the analysis of the chemical forms of organic sulfur in coal and for study of coal particle surfaces by multifrequency EPR spectroscopy, ENDOR, and ESE spectroscopy and Applying it to coals, to the effects of treatment upon their sulfur-containing organic components, and to related carbonaceous materials (chars and the like). The approach is to utilize the naturally-occurring unpaired electrons in the organic structures of coals as spies to provide molecular structure information, reading out the information with Electron Paramagnetic Resonance (EPR) spectroscopy. Several forms of EPR are employed: Multifrequency continuous-wave (CW) EPR, from 1 GHz to 240 GHz source frequency; electron-nuclear double resonance (ENDOR), in which NMR spectra at paramagnetic centers are obtained by EPR detection; and pulsed EPR, including ESE (Electron Spin Echo) spectroscopy.

  6. Portable neutron spectrometer and dosimeter

    DOE Patents [OSTI]

    Waechter, David A. (Los Alamos, NM); Erkkila, Bruce H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM)

    1985-01-01

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  7. NEUTRON IMAGING, RADIOGRAPHY AND TOMOGRAPHY.

    SciTech Connect (OSTI)

    SMITH,G.C.

    2002-03-01

    Neutrons are an invaluable probe in a wide range of scientific, medical and commercial endeavors. Many of these applications require the recording of an image of the neutron signal, either in one-dimension or in two-dimensions. We summarize the reactions of neutrons with the most important elements that are used for their detection. A description is then given of the major techniques used in neutron imaging, with emphasis on the detection media and position readout principle. Important characteristics such as position resolution, linearity, counting rate capability and sensitivity to gamma-background are discussed. Finally, the application of a subset of these instruments in radiology and tomography is described.

  8. Supporting Organizations | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials. The user community takes advantage of division-supported capabilities of neutron scattering for measurements over wide ranges of experimental and operating...

  9. Advanced Neutron Source (ANS) Project

    SciTech Connect (OSTI)

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Peretz, F.J.

    1991-02-01

    This report discusses the research and development, design and safety of the Advanced Neutron Source at Oak Ridge National Laboratory. (LSP)

  10. Analytical applications for delayed neutrons

    SciTech Connect (OSTI)

    Eccleston, G.W.

    1983-01-01

    Analytical formulations that describe the time dependence of neutron populations in nuclear materials contain delayed-neutron dependent terms. These terms are important because the delayed neutrons, even though their yields in fission are small, permit control of the fission chain reaction process. Analytical applications that use delayed neutrons range from simple problems that can be solved with the point reactor kinetics equations to complex problems that can only be solved with large codes that couple fluid calculations with the neutron dynamics. Reactor safety codes, such as SIMMER, model transients of the entire reactor core using coupled space-time neutronics and comprehensive thermal-fluid dynamics. Nondestructive delayed-neutron assay instruments are designed and modeled using a three-dimensional continuous-energy Monte Carlo code. Calculations on high-burnup spent fuels and other materials that contain a mix of uranium and plutonium isotopes require accurate and complete information on the delayed-neutron periods, yields, and energy spectra. A continuing need exists for delayed-neutron parameters for all the fissioning isotopes.

  11. Centrifugal quantum states of neutrons

    E-Print Network [OSTI]

    V. V. Nesvizhevsky; A. K. Petukhov; K. V. Protasov; A. Yu. Voronin

    2008-06-24

    We propose a method for observation of the quasi-stationary states of neutrons, localized near the curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror Fermi-potential. This phenomenon is an example of an exactly solvable "quantum bouncer" problem that could be studied experimentally. It could provide a promising tool for studying fundamental neutron-matter interactions, as well as quantum neutron optics and surface physics effects. We develop formalism, which describes quantitatively the neutron motion near the mirror surface. The effects of mirror roughness are taken into account.

  12. Prospects for fusion neutron NPLs

    SciTech Connect (OSTI)

    Petra, M.; Miley, G.H.; Batyrbekov, E.; Jassby, D.L.; McArthur, D. [Fusion Studies Laboratory, University of Illinois, 100 NEL, 103 South Goodwin Avenue, Urbana, Illinois 61801-2984 (United States)

    1996-05-01

    To date, nuclear pumped lasers (NPLs) have been driven by neutrons from pulsed research fission reactors. However, future applications using either a Magnetic Confinement Fusion (MCF) neutron source or an Inertial Confinement Fusion (ICF) source appear attractive. One unique combination proposed earlier would use a neutron feedback NPL driver in an ICF power plant. 14-MeV D-T neutrons (and 2.5-MeV D-D neutrons) provide a unique opportunity for a neutron recoil pumped NPL. Alternatively, these neutrons can be thermalized to provide thermal-neutron induced reactions for pumping. Initial experience with a fusion-pumped NPL can possibly be obtained using the D-T burn experiments in progress/planning at the Tokamak Fusion Test Reactor (TFTR) and Joint European Torus (JET) tokamak devices or at the planned National Ignition Facility (NIF) high-gain ICF target experimental facility. With neutron fluxes presently available, peak thermalized fluxes at a test laser in the shield region could exceed 10{sup 14} n/cm{sup 2}/sec. Several low-threshold NPLs might be utilized in such an experiment, including the He-Ne-H{sub 2} NPL and the Ar-Xe NPL. Experimental set-ups for both the tokamak and the NIF will be described. {copyright} {ital 1996 American Institute of Physics.}

  13. Deeply virtual Compton scattering on longitudinally polarized protons and neutrons at CLAS

    E-Print Network [OSTI]

    Silvia Niccolai; for the CLAS Collaboration

    2012-07-13

    This paper focuses on a measurement of deeply virtual Compton scattering (DVCS) performed at Jefferson Lab using a nearly-6-GeV polarized electron beam, two longitudinally polarized (via DNP) solid targets of protons (NH3) and deuterons (ND3) and the CEBAF Large Acceptance Spectrometer. Here, preliminary results for target-spin asymmetries and double (beam-target) asymmetries for proton DVCS, as well as a very preliminary extraction of beam-spin asymmetry for neutron DVCS, are presented and linked to Generalized Parton Distributions.

  14. Spin-noise correlations and spin-noise exchange driven by low-field spin-exchange collisions

    E-Print Network [OSTI]

    A. T. Dellis; M. Loulakis; I. K. Kominis

    2014-09-28

    The physics of spin exchange collisions have fueled several discoveries in fundamental physics and numerous applications in medical imaging and nuclear magnetic resonance. We here report on the experimental observation and theoretical justification of spin-noise exchange, the transfer of spin-noise from one atomic species to another. The signature of spin-noise exchange is an increase of the total spin-noise power at low magnetic fields, on the order of 1 mG, where the two-species spin-noise resonances overlap. The underlying physical mechanism is the two-species spin-noise correlation induced by spin-exchange collisions.

  15. Neutron Generators for Spent Fuel Assay

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01

    13, 2010. [11] D-D Neutron Generator Development at LBNL, J.12] High-yield DT Neutron Generator, B.A. Ludewigt et al. ,a Compact High-Yield Neutron Generator, O. Waldmann and B.

  16. Requirements, possible alternatives & international NEUTRON SCATTERING

    E-Print Network [OSTI]

    Dimeo, Robert M.

    Requirements, possible alternatives & international NEUTRON SCATTERING DETECTORS for Rob Dimeo NIST neutron scattering instruments are the most demanding require background low #12;#12;The Helium-3 Supply Crisis ­ Alternative Techniques to Helium-3 based Detectors for Neutron Scattering Applications

  17. NEUTRON EMISSION IN RELATIVISTIC NUCLEAR COLLISIONS

    E-Print Network [OSTI]

    Stevenson, J.D.

    2013-01-01

    Figure Captions Figure l. Neutron-to-proton ratio at 30° labapparent anomalies in the neutron-to-proton fragment ratio.3 proton data. Figure 2. Neutron-to-proton ratio R 1 , Solid

  18. Neutron Generators for Spent Fuel Assay

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01

    of a High Fluence Neutron Source for NondestructiveAugust 8-13, 2010. [11] D-D Neutron Generator Development at2005. [12] High-yield DT Neutron Generator, B.A. Ludewigt et

  19. Neutron-deuteron breakup and quasielastic scattering

    E-Print Network [OSTI]

    Ohlson, Alice Elisabeth

    2009-01-01

    Quasielastic scattering and deuteron breakup in the 200 MeV region is studied by impinging a pulsed neutron beam on a deuterium target at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center. The ...

  20. NEUTRON PRODUCTION BY NEUTRAL BEAM SOURCES

    E-Print Network [OSTI]

    Berkner, K.H.

    2010-01-01

    HORSE Code—A Hultigroup Neutron and Gamma-Say Honte CarloR. Smith, "A Tantalus Fast Neutron Integrator," UCRL-17051.FiS- 9 Neutron dose during 3 months of typical TSUI

  1. Uncertainty evaluation of delayed neutron decay parameters 

    E-Print Network [OSTI]

    Wang, Jinkai

    2009-05-15

    In a nuclear reactor, delayed neutrons play a critical role in sustaining a controllable chain reaction. Delayed neutron’s relative yields and decay constants are very important for modeling reactivity control and have been studied for decades...

  2. Beam-Target Double Spin Asymmetry ALT in Charged Pion Production from Deep Inelastic Scattering on a Transversely Polarized 3He Target at 1.422

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meziani, Z -E; Michaels, R; Munoz Camacho, C; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Oh, Y; Osipenko, M; Parno, D; Peng, J C; Phillips, S K; Posik, M; Puckett, A.J. R; Qiang, Y; Rakhman, A; Ransome, R D; Riordan, S; Saha, A; Sawatzky, B; Schulte, E; Shahinyan, A; Shabestari, M H; Sirca, S; Stepanyan, S; Subedi, R; Sulkosky, V; Tang, L -G; Tobias, A; Urciuoli, G M; Vilardi, I; Wang, K; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y -W; Zhao, B; Zheng, X; Zhu, L; Zhu, X

    2012-01-30

    We report the first measurement of the double-spin asymmetry ALT for charged pion electroproduction in semi-inclusive deep inelastic electron scattering on a transversely polarized 3He target. The kinematics focused on the valence quark region, 0.16 2 2. The corresponding neutron ALT asymmetries were extracted from the measured 3He asymmetries and proton/3He cross section ratios using the effective polarization approximation. These new data probe the transverse momentum dependent parton distribution function gq and therefore provide access to quark spin-orbit correlations. Our results indicate a positive azimuthal asymmetry for ?- production on 3He and the neutron, while our ?+ asymmetries are consistent with zero.

  3. Spin-liquid ground state in the frustrated J1?J2 zigzag chain system BaTb2O4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aczel, A. A.; Li, L.; Garlea, V. O.; Yan, J. -Q.; Weickert, F.; Zapf, V. S.; Movshovich, R.; Jaime, M.; Baker, P. J.; Keppens, V.; et al

    2015-07-13

    We have investigated polycrystalline samples of the zigzag chain system BaTb2O4 with magnetic susceptibility, heat capacity, neutron powder diffraction, and muon spin relaxation measurements. No magnetic transitions are observed in the bulk measurements, while neutron diffraction reveals the presence of low-temperature, short-range, intrachain magnetic correlations between Tb3+ ions. muSR indicates that these correlations are dynamic, as no signatures of static magnetism are detected by the technique down to 0.095 K. Altogether these findings provide strong evidence for a spin liquid ground state in BaTb2O4.

  4. Spin noise spectroscopy of ZnO

    SciTech Connect (OSTI)

    Horn, H.; Berski, F.; Hübner, J.; Oestreich, M.; Balocchi, A.; Marie, X.; Mansur-Al-Suleiman, M.; Bakin, A.; Waag, A.

    2013-12-04

    We investigate the thermal equilibrium dynamics of electron spins bound to donors in nanoporous ZnO by optical spin noise spectroscopy. The spin noise spectra reveal two noise contributions: A weak spin noise signal from undisturbed localized donor electrons with a dephasing time of 24 ns due to hyperfine interaction and a strong spin noise signal with a spin dephasing time of 5 ns which we attribute to localized donor electrons which interact with lattice defects.

  5. Gravitational wave emission and spin-down of young pulsars

    SciTech Connect (OSTI)

    Alford, Mark G.; Schwenzer, Kai [Department of Physics, Washington University, St. Louis, MO 63130 (United States)

    2014-01-20

    The rotation frequencies of young pulsars are systematically below their theoretical Kepler limit. r-modes have been suggested as a possible explanation for this observation. With the help of semi-analytic expressions that make it possible to assess the uncertainties of the r-mode scenario due to the impact of uncertainties in underlying microphysics, we perform a quantitative analysis of the spin-down and the emitted gravitational waves of young pulsars. We find that the frequency to which r-modes spin-down a young neutron star (NS) is surprisingly insensitive to both the microscopic details and the saturation amplitude. Comparing our result to astrophysical data, we show that for a range of sufficiently large saturation amplitudes r-modes provide a viable spin-down scenario and that all observed young pulsars are very likely already outside the r-mode instability region. Therefore, the most promising sources for gravitational wave detection are unobserved NSs associated with recent supernovae, and we find that advanced LIGO should be able to see several of them. Our analysis shows that despite the coupling of the spin-down and thermal evolution, a power-law spin-down with an effective braking index n {sub rm} ? 7 is realized. Because of this, the gravitational wave strain amplitude is completely independent of both the r-mode saturation amplitude and the microphysics and depends on the saturation mechanism only within some tens of percent. However, the gravitational wave frequency depends on the amplitude, and we provide the required expected timing parameter ranges to look for promising sources in future searches.

  6. High Intensity, Pulsed, D-D Neutron Generator

    E-Print Network [OSTI]

    Williams, D. L.

    2010-01-01

    application. Whether thermal activation (measuring prompt orthermal neutrons for both prompt and delayed gamma neutron activation

  7. Neutron Multiplicity Measurements With 3He Alternative: Straw Neutron Detectors

    SciTech Connect (OSTI)

    Mukhopadhyay, Sanjoy

    2015-01-01

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylenemoderator. In the following year, we developed the field-programmable gate array and associated DAQ software. This SDRD effort successfully produced a prototype NMC with*33% detection efficiency compared to a commercial fission meter.

  8. Neutron structure effects in the deuteron and one neutron halos

    E-Print Network [OSTI]

    M. Nowakowski; N. G. Kelkar; T. Mart

    2006-08-29

    Although the neutron (n) does not carry a total electric charge, its charge and magnetization distributions represented in momentum space by the electromagnetic form factors, $F_1^{(n)} (q^2)$ and $F_2^{(n)} (q^2)$, lead to an electromagnetic potential of the neutron. Using this fact, we calculate the electromagnetic corrections to the binding energy, $B_d$, of the deuteron and a one neutron halo nucleus (11Be), by evaluating the neutron-proton and the neutron-charged core (10Be) potential, respectively. The correction to $B_d$ (~9 keV) is comparable to that arising due to the inclusion of the $\\Delta$-isobar component in the deuteron wave function. In the case of the more loosely bound halo nucleus, 11Be, the correction is close to about 2 keV.

  9. Recent Development in Proton Spin Physics

    E-Print Network [OSTI]

    Yuan, Feng

    2009-01-01

    Development in Proton Spin Physics Feng YUAN [8] H. Jackson,investigations. These important physics, together with otherthat the transverse spin physics is playing a very important

  10. Squeezing in Multivariate Spin Systems

    E-Print Network [OSTI]

    Swarnamala Sirsi

    2005-09-18

    In contrast to the canonically conjugate variates $q$,$p$ representing the position and momentum of a particle in the phase space distributions, the three Cartesian components, $J_{x}$,$J_{y}$, $J_{z}$ of a spin-$j$ system constitute the mutually non-commuting variates in the quasi-probabilistic spin distributions. It can be shown that a univariate spin distribution is never squeezed and one needs to look into either bivariate or trivariate distributions for signatures of squeezing. Several such distributions result if one considers different characteristic functions or moments based on various correspondence rules. As an example, discrete probability distribution for an arbitrary spin-1 assembly is constructed using Wigner-Weyl and Margenau-Hill correspondence rules. It is also shown that a trivariate spin-1 assembly resulting from the exposure of nucleus with non-zero quadrupole moment to combined electric quadrupole field and dipole magnetic field exhibits squeezing in cerain cases.

  11. Science Education Programs | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Tutorials Kids' Corner NScD Careers Supporting Organizations Neutron Science Home | Science & Discovery | Neutron Science | Science and Education SHARE Inspiring...

  12. Search for: "neutron scattering" | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    neutron scattering" Find + Advanced Search Advanced Search All Fields: "neutron scattering" Title: Full Text: Bibliographic Data: Creator Author: Name Name ORCID Search...

  13. 11th LANSCE School on Neutron Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11th LANSCE School on Neutron Scattering LANSCE 11th LANSCE School on Neutron Scattering Home Abstract Lecturers Lecturer Abstracts Hands-On Experiments Free Day About the...

  14. SciTech Connect: "neutron scattering"

    Office of Scientific and Technical Information (OSTI)

    neutron scattering" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "neutron scattering" Semantic Semantic Term Title: Full Text: Bibliographic...

  15. The Neutron EDM Experiment

    E-Print Network [OSTI]

    P. G. Harris

    2007-12-05

    The neutron EDM experiment has played an important part over many decades in shaping and constraining numerous models of CP violation. This review article discusses some of the techniques used to calculate EDMs under various theoretical scenarios, and highlights some of the implications of EDM limits upon such models. A pedagogical introduction is given to the experimental techniques employed in the recently completed ILL experiment, including a brief discussion of the dominant systematic uncertainties. A new and much more sensitive version of the experiment, which is currently under development, is also outlined.

  16. Neutron Science Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic(MillionNature andNeutrinos from the'..NeutronNeutronto

  17. Neutron Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic(MillionNature andNeutrinos from the'..NeutronNeutronto3

  18. Neutrons - 88-Inch Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture CSNationalNational UserNavalNeutrons

  19. Thermal Neutron Capture Cross Sections of the PalladiumIsotopes

    SciTech Connect (OSTI)

    Firestone, R.B.; Krticka, M.; McNabb, D.P.; Sleaford, B.; Agvaanluvsan, U.; Belgya, T.; Revay, Zs.

    2006-07-17

    Precise gamma-ray thermal neutron capture cross sectionshave been measured at the Budapest Reactor for all elements withZ=1-83,92 except for He and Pm. These measurements and additional datafrom the literature been compiled to generate the Evaluated Gamma-rayActivation File (EGAF), which is disseminated by LBNL and the IAEA. Thesedata are nearly complete for most isotopes with Z<20 so the totalradiative thermal neutron capture cross sections can be determineddirectly from the decay scheme. For light isotopes agreement with therecommended values is generally satisfactory although large discrepanciesexist for 11B, 12,13C, 15N, 28,30Si, 34S, 37Cl, and 40,41K. Neutroncapture decay data for heavier isotopes are typically incomplete due tothe contribution of unresolved continuum transitions so only partialradiative thermal neutron capture cross sections can be determined. Thecontribution of the continuum to theneutron capture decay scheme arisesfrom a large number of unresolved levels and transitions and can becalculated by assuming that the fluctuations in level densities andtransition probabilities are statistical. We have calculated thecontinuum contribution to neutron capture decay for the palladiumisotopes with the Monte Carlo code DICEBOX. These calculations werenormalized to the experimental cross sections deexciting low excitationlevels to determine the total radiative thermal neutron capture crosssection. The resulting palladium cross sections values were determinedwith a precision comparable to the recommended values even when only onegamma-ray cross section was measured. The calculated and experimentallevel feedings could also be compared to determine spin and parityassignments for low-lying levels.

  20. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    SciTech Connect (OSTI)

    Liu, Yang; Hu, Hui [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); Chen, Wen-Li [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); School of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090 (China); Bond, Leonard J. [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); Center for Nondestructive Evaluation, Iowa State University, 1915 Scholl Road, 151 ASC II, Ames, IA 50011 (United States)

    2014-02-18

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost $300, heavy wet snow removal can cost $3,000 and removal of accumulated frozen/freezing rain can cost close to $10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.

  1. A proposed search for new light bosons using a table-top neutron Ramsey apparatus

    E-Print Network [OSTI]

    F. M. Piegsa; G. Pignol

    2011-11-08

    If a new light boson existed, it would mediate a new force between ordinary fermions, like neutrons. In general such a new force is described by the Compton wavelength $\\lambda_c$ of the associated boson and a set of dimensionless coupling constants. For light boson masses of about $10^-4$ eV, $\\lambda_c$ is of the order millimeters. Here, we propose a table-top particle physics experiment which provides the possibility to set limits on the strength of the coupling constants of light bosons with spin-velocity coupling. It utilises Ramsey's technique of separated oscillating fields to measure the pseudo-magnetic effect on neutron spins passing by a massive sample.

  2. Impact of Triaxiality on the Emission and Absorption of Neutrons and Gamma Rays in Heavy Nuclei

    E-Print Network [OSTI]

    Grossea, Eckart; Massarczyk, Ralph

    2013-01-01

    For many spin-0 target nuclei neutron capture measurements yield information on level densities at the neutron separation energy. Also the average photon width has been determined from capture data as well as Maxwellian average cross sections for the energy range of unresolved resonances. Thus it is challenging to use this data set for a test of phenomenological prescriptions for the prediction of radiative processes. An important ingredient for respective calculations is the photon strength function for which a parameterization was proposed using a fit to giant dipole resonance shapes on the basis of theoretically determined ground state deformations including triaxiality. Deviations from spherical and axial symmetry also influence level densities and it is suggested to use a combined parameterization for both, level density and photon strength. The formulae presented give a good description of the data for low spin capture into 124 nuclei with 72

  3. Nuclear shape transitions in neutron-rich medium-mass nuclei

    SciTech Connect (OSTI)

    Sarriguren, P.; Rodriguez-Guzman, R.; Robledo, L. M.

    2012-10-20

    We study the isotopic evolution of the ground-state nuclear shapes in neutron-rich Kr, Rb, Sr, Y, Zr, Nb, and Mo isotopic chains. Both even-even and odd-A nuclei are included in the analysis. For the latter we also study the systematics of their one-quasiparticle low-lying configurations. The theoretical approach is based on a selfconsistent Hartree-Fock-Bogoliubov formalism with finite range Gogny energy density functionals. Neutron separation energies, charge radii, and the spin-parity of the ground states are calculated and compared with available data. Shape-transition signatures are identified around N= 60 isotones as discontinuities in both charge radii isotopic shifts and spin-parities of the ground states. The nuclear deformation including triaxiality is shown to play a relevant role in the understanding of the bulk and spectroscopic features of the ground and low-lying one-quasiparticle states.

  4. Physics of Neutron Star Crusts

    E-Print Network [OSTI]

    N. Chamel; P. Haensel

    2008-12-20

    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  5. Maintenance neutron coincidence counter manual

    SciTech Connect (OSTI)

    Krick, M.S.; Polk, P.J.; Atencio, J.D.

    1989-09-01

    A compact thermal-neutron coincidence counter has been constructed specifically for use by the International Atomic Energy Agency as a reference neutron detector for maintenance activities. The counter is designed for use only with {sup 252}Cf sources in SR-CF-100 capsules. This manual describes the detector's mechanical and electrical components and its operating characteristics. 2 refs., 8 figs.

  6. Fast neutron environments.

    SciTech Connect (OSTI)

    Buchheit, Thomas Edward; Kotula, Paul Gabriel; Lu, Ping; Brewer, Luke N. (Naval Postgraduate School, Monterey, CA); Goods, Steven Howard (Sandia National Laboratories, Livermore, CA); Foiles, Stephen Martin; Puskar, Joseph David; Hattar, Khalid Mikhiel; Doyle, Barney Lee; Boyce, Brad Lee; Clark, Blythe G.

    2011-10-01

    The goal of this LDRD project is to develop a rapid first-order experimental procedure for the testing of advanced cladding materials that may be considered for generation IV nuclear reactors. In order to investigate this, a technique was developed to expose the coupons of potential materials to high displacement damage at elevated temperatures to simulate the neutron environment expected in Generation IV reactors. This was completed through a high temperature high-energy heavy-ion implantation. The mechanical properties of the ion irradiated region were tested by either micropillar compression or nanoindentation to determine the local properties, as a function of the implantation dose and exposure temperature. In order to directly compare the microstructural evolution and property degradation from the accelerated testing and classical neutron testing, 316L, 409, and 420 stainless steels were tested. In addition, two sets of diffusion couples from 316L and HT9 stainless steels with various refractory metals. This study has shown that if the ion irradiation size scale is taken into consideration when developing and analyzing the mechanical property data, significant insight into the structural properties of the potential cladding materials can be gained in about a week.

  7. Effective No-Hair Relations for Neutron Stars and Quark Stars: Relativistic Results

    E-Print Network [OSTI]

    Kent Yagi; Koutarou Kyutoku; George Pappas; Nicolas Yunes; Theocharis A. Apostolatos

    2014-09-08

    Astrophysical charge-free black holes are known to satisfy no-hair relations through which all multipole moments can be specified in terms of just their mass and spin angular momentum. We here investigate the possible existence of no-hair-like relations among multipole moments for neutron stars and quark stars that are independent of their equation of state. We calculate the multipole moments of these stars up to hexadecapole order by constructing uniformly-rotating and unmagnetized stellar solutions to the Einstein equations. For slowly-rotating stars, we construct stellar solutions to quartic order in spin in a slow-rotation expansion, while for rapidly-rotating stars, we solve the Einstein equations numerically with the LORENE and RNS codes. We find that the multipole moments extracted from these numerical solutions are consistent with each other. We confirm that the current-dipole is related to the mass-quadrupole in an approximately equation of state independent fashion, which does not break for rapidly rotating neutron stars or quark stars. We further find that the current-octupole and the mass-hexadecapole moments are related to the mass-quadrupole in an approximately equation of state independent way to $\\sim 10%$, worsening in the hexadecapole case. All of our findings are in good agreement with previous work that considered stellar solutions to leading-order in a weak-field expansion. The quartic in spin, slowly-rotating solutions found here allow us to estimate the systematic errors in the measurement of the neutron star's mass and radius with future X-ray observations, such as NICER and LOFT. We find that the effect of these quartic-in-spin terms on the quadrupole and hexadecapole moments and stellar eccentricity may dominate the error budget for very rapidly-rotating neutron stars. The new universal relations found here should help to reduce such systematic errors.

  8. Analysing powers and spin correlations in deuteron-proton charge exchange at 726 MeV

    E-Print Network [OSTI]

    S. Dymov; T. Azaryan; Z. Bagdasarian; S. Barsov; J. Carbonell; D. Chiladze; R. Engels; R. Gebel; K. Grigoryev; M. Hartmann; A. Kacharava; A. Khoukaz; V. Komarov; P. Kulessa; A. Kulikov; V. Kurbatov; N. Lomidze; B. Lorentz; G. Macharashvili; D. Mchedlishvili; S. Merzliakov; M. Mielke; M. Mikirtychyants; S. Mikirtychyants; M. Nioradze; H. Ohm; D. Prasuhn; F. Rathmann; V. Serdyuk; H. Seyfarth; V. Shmakova; H. Ströher; M. Tabidze; S. Trusov; D. Tsirkov; Yu. Uzikov; Yu. Valdau; C. Weidemann; C. Wilkin

    2015-03-02

    The charge exchange of vector polarised deuterons on a polarised hydrogen target has been studied in a high statistics experiment at the COSY-ANKE facility at a deuteron beam energy of Td = 726 MeV. By selecting two fast protons at low relative energy E_{pp}, the measured analysing powers and spin correlations are sensitive to interference terms between specific neutron-proton charge-exchange amplitudes at a neutron kinetic energy of Tn ~ 1/2 Td =363 MeV. An impulse approximation calculation, which takes into account corrections due to the angular distribution in the diproton, describes reasonably the dependence of the data on both E_{pp} and the momentum transfer. This lends broad support to the current neutron-proton partial-wave solution that was used in the estimation.

  9. Spin noise spectroscopy to probe quantum states of ultracold fermionic atomic gases

    E-Print Network [OSTI]

    Bogdan Mihaila; Scott A. Crooker; Krastan B. Blagoev; Dwight G. Rickel; Peter B. Littlewood; Darryl L. Smith

    2006-01-01

    Ultracold alkali atoms provide experimentally accessible model systems for probing quantum states that manifest themselves at the macroscopic scale. Recent experimental realizations of superfluidity in dilute gases of ultracold fermionic (half-integer spin) atoms offer exciting opportunities to directly test theoretical models of related many-body fermion systems that are inaccessible to experimental manipulation, such as neutron stars and quark-gluon plasmas. However, the microscopic interactions between fermions are potentially quite complex, and experiments in ultracold gases to date cannot clearly distinguish between the qualitatively different microscopic models that have been proposed. Here, we theoretically demonstrate that optical measurements of electron spin noise -- the intrinsic, random fluctuations of spin -- can probe the entangled quantum states of ultracold fermionic atomic gases and unambiguously reveal the detailed nature of the interatomic interactions. We show that different models predict different sets of resonances in the noise spectrum, and once the correct effective interatomic interaction model is identified, the line-shapes of the spin noise can be used to constrain this model. Further, experimental measurements of spin noise in classical (Boltzmann) alkali vapors are used to estimate the expected signal magnitudes for spin noise measurements in ultracold atom systems and to show that these measurements are feasible.

  10. Magnetic-Compton-scattering study of spin moments in UFe{sub 2}

    SciTech Connect (OSTI)

    Lawson, P.K.; Cooper, M.J.; Dixon, M.A.; Timms, D.N.; Zukowski, E.; Itoh, F.; Sakurai, H.

    1997-08-01

    Spin moments were derived from the magnetic-Compton profile of UFe{sub 2}, which was measured using 59.38-keV circularly polarized synchrotron radiation from the Accumulation Ring Source at KEK, Japan. Although the net moment on the uranium site is no more than a tenth of a Bohr magneton, the individual spin and orbital moments, which are coupled antiparallel, are much larger and it is the spin moment that can be determined in magnetic-Compton scattering. The data have been analyzed in terms of the U 5f, Fe 3d and delocalized spin moments. The observed uranium-5f spin moment is less than half (i.e., {lt}0.25{mu}{sub B}) and the diffuse spin moment more than double (i.e., {gt}0.20{mu}{sub B}) those predicted from theory. These values compare favorably with those deduced from neutron measurements of the total magnetization. {copyright} {ital 1997} {ital The American Physical Society}

  11. The Spectroscopy of Neutron-Rich sdf-Shell Nuclei Using the CLARA-PRISMA Setup

    SciTech Connect (OSTI)

    Liang, X.; Hodsdon, A.; Chapman, R.; Burns, M.; Keyes, K.; Ollier, J.; Papenberg, A.; Spohr, K.; Azaiez, F.; Ibrahim, F.; Stanoiu, M.; Haas, F.; Caurier, E.; Curien, D.; Nowacki, F.; Salsac, M.-D.; Bazzacco, D.; Beghini, S.; Farnea, E.; Menegazzo, R.

    2006-08-14

    Since the discovery of the breakdown of shell effects in very neutron-rich N=20 and 28 nuclei, studies of the properties of nuclei far from stability have been of intense interest since they provide a unique opportunity to increase our understanding of nuclear interactions in extreme conditions and often challenge our theoretical models.Deep-inelastic processes can be used to populated high spin states of neutron-rich nuclei. In the deep-inelastic processes, an equilibration in N/Z between the target and projectile nuclei is achieved. For most heavy neutron-rich target nuclei, the N/Z ratio is 1.5 - 1.6, while for the possible neutron-rich sdf-shell projectile it is about 1.2. Thus by using deep-inelastic processes one can populate neutron-rich nuclei around N=20 and N=28.New results for the spectroscopy of neutron-rich N=22 36Si and 37P are presented here.

  12. Auxiliary Field Diffusion Monte Carlo calculation of ground state properties of neutron drops

    E-Print Network [OSTI]

    Francesco Pederiva; A. Sarsa; K. E. Schmidt; S. Fantoni

    2004-03-23

    The Auxiliary Field Diffusion Monte Carlo method has been applied to simulate droplets of 7 and 8 neutrons. Results for realistic nucleon-nucleon interactions, which include tensor, spin--orbit and three--body forces, plus a standard one--body confining potential, have been compared with analogous calculations obtained with Green's Function Monte Carlo methods. We have studied the dependence of the binding energy, the one--body density and the spin--orbit splittings of $^7n$ on the depth of the confining potential. The results obtained show an overall agreement between the two quantum Monte Carlo methods, although there persist differences in the evaluation of spin--orbit forces, as previously indicated by bulk neutron matter calculations. Energy density functional models, largely used in astrophysical applications, seem to provide results significantly different from those of quantum simulations. Given its scaling behavior in the number of nucleons, the Auxiliary Field Diffusion Monte Carlo method seems to be one of the best candidate to perform {\\sl ab initio} calculations on neutron rich nuclei.

  13. Delayed neutrons from the neutron irradiation of ²³?U 

    E-Print Network [OSTI]

    Heinrich, Aaron David

    2008-10-10

    two 235U samples, an array of three 3He cylindrical neutron detectors, signal processing circuitry, the PTS, a reactor core sensor and a computerized control system. A. Fissile Material Isotope Products Laboratories produced the two 235U samples... stream_source_info Heinrich.pdf.txt stream_content_type text/plain stream_size 107692 Content-Encoding UTF-8 stream_name Heinrich.pdf.txt Content-Type text/plain; charset=UTF-8 DELAYED NEUTRONS FROM THE NEUTRON...

  14. Putting the Spin on Graphite: Observing the Spins of Impurity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    such a tube can be used as a nanoscale x-ray detector. With the recent advance of "spintronics" - an area of science and technology which proposes to use the spin of electrons to...

  15. Use of gravitational waves to measure alignment of spins in compact binaries

    E-Print Network [OSTI]

    Salvatore Vitale; Ryan Lynch; Philip Graff; Riccardo Sturani

    2015-03-14

    Coalescences of compact objects, neutron star and black holes, in binary systems are very promising sources of gravitational waves for the ground based detectors Advanced LIGO and Virgo. Much about compact binaries is still uncertain, including how often they are formed in the Universe, and some key details about their formation channels. One of the key open questions about compact binary coalescences is whether or not common envelope evolution is highly efficient in aligning spins with the orbital angular momentum. In this paper we show how gravitational waves detected by Advanced LIGO and Virgo can be used to verify if spins are preferentially aligned with the orbital angular momentum in compact binaries made of two black holes or a neutron star and a black hole. We first assume that all sources have either nearly aligned or non-aligned spins and use Bayesian model selection to calculate a cumulative odds ratio to compare the aligned and non-aligned models. We see that the correct model is typically preferred after one year of observation, at the realistic detection rate. We also simulate a situation where only a fraction of detected events have nearly aligned spins, and show how the mixture parameter can be estimated. We find that there exists a bias toward higher degrees of alignment and that this bias is larger for black hole binaries.

  16. Magnetic order of the iron spins in NdFeAsO

    SciTech Connect (OSTI)

    Chen, Ying [National Institute of Standards and Technology (NIST); Lynn, J. W. [National Institute of Standards and Technology (NIST); Li, J. [National Institute of Standards and Technology (NIST); Li, G. [Beijing National Laboratroy for Condensed Matter Physics, Institute of Physics; Chen, G. F, [Beijing National Laboratroy for Condensed Matter Physics, Institute of Physics; Luo, J. L. [Chinese Academy of Sciences; Wang, N. L. [Chinese Academy of Sciences; Dai, Pengcheng [ORNL; de la Cruz, Clarina [University of Tennessee, Knoxville (UTK); Mook Jr, Herbert A [ORNL

    2008-09-01

    Polanzed and unpolarized neutron-diffraction mcasurements have bcr.:n carncd OUI to investigate the iron magnetIC order in undoped NdFeAsO. Antiferromagnctic order is observed bela" 141(6) K. which is in close proXtrlllty to the structural dlslonlon observed in thiS malena\\. The magnetl<: structure consists of chains of parallel spins that arc arrant;ed antiparallel between chams. which is Ihe same m-plane spin arrangement as observed in all the other iron oxypnictidc matcrials. Nearest-neighbor spins along the c a"is are antiparallellike LaFeAsO. The ordered momcnt is 0.25(7) /LR, which is the smallest moment found so far In these systems. 001: 10.1103/Ph}sRc"B.7S.064515 PACS numher(s): 74.25.Ha. 74.70.Dd. 75.25.+z. 75.40.Cx

  17. Atomic parity nonconservation and neutron radii in cesium isotopes

    E-Print Network [OSTI]

    B. Q. Chen; P. Vogel

    1993-03-05

    The interpretation of future precise experiments on atomic parity violation in terms of parameters of the Standard Model could be hampered by uncertainties in the atomic and nuclear structure. While the former can be overcome by measurement in a series of isotopes, the nuclear structure requires knowledge of the neutron density. We use the nuclear Hartree-Fock method, which includes deformation effects, to calculate the proton and neutron densities in {125}Cs-{139}Cs. We argue that the good agreement with the experimental charge radii, binding energies, and ground state spins signifies that the phenomenological nuclear force and the method of calculation that we use is adequate. Based on this agreement, and on calculations involving different effective interactions, we estimate the uncertainties in the differences of the neutron radii delta_{N,N'} and conclude that they cause uncertainties in the ratio of weak charges, the quantities determined in the atomic parity nonconservation experiments, of less than 10^{-3}. Such an uncertainty is smaller than the anticipated experimental error.

  18. Dynamical mass ejection from black hole-neutron star binaries

    E-Print Network [OSTI]

    Koutarou Kyutoku; Kunihito Ioka; Hirotada Okawa; Masaru Shibata; Keisuke Taniguchi

    2015-08-19

    We investigate properties of material ejected dynamically in the merger of black hole-neutron star binaries by numerical-relativity simulations. We systematically study the dependence of ejecta properties on the mass ratio of the binary, spin of the black hole, and equation of state of the neutron-star matter. Dynamical mass ejection is driven primarily by tidal torque, and the ejecta is much more anisotropic than that from binary neutron star mergers. In particular, the dynamical ejecta is concentrated around the orbital plane with a half opening angle of 10--20deg and often sweeps out only a half of the plane. The ejecta mass can be as large as ~0.1M_sun, and the velocity is subrelativistic with ~0.2--0.3c for typical cases. The ratio of the ejecta mass to the bound mass (disk and fallback components) is larger, and the ejecta velocity is larger, for larger values of the binary mass ratio, i.e., for larger values of the black-hole mass. The remnant black hole-disk system receives a kick velocity of O(100)km/s due to the ejecta linear momentum, and this easily dominates the kick velocity due to gravitational radiation. Structures of postmerger material, velocity distribution of the dynamical ejecta, fallback rates, and gravitational waves are also investigated. We also discuss the effect of ejecta anisotropy on electromagnetic counterparts, specifically a macronova/kilonova and synchrotron radio emission, developing analytic models.

  19. HOW CAN NEWLY BORN RAPIDLY ROTATING NEUTRON STARS BECOME MAGNETARS?

    SciTech Connect (OSTI)

    Cheng, Quan; Yu, Yun-Wei, E-mail: yuyw@mail.ccnu.edu.cn [Institute of Astrophysics, Central China Normal University, Wuhan 430079 (China)

    2014-05-10

    In a newly born (high-temperature and Keplerian rotating) neutron star, r-mode instability can lead to stellar differential rotation, which winds the seed poloidal magnetic field (?10{sup 11} G) to generate an ultra-high (?10{sup 17} G) toroidal field component. Subsequently, by succumbing to the Tayler instability, the toroidal field could be partially transformed into a new poloidal field. Through such dynamo processes, the newly born neutron star with sufficiently rapid rotation could become a magnetar on a timescale of ?10{sup 2} {sup –} {sup 3} s, with a surface dipolar magnetic field of ?10{sup 15} G. Accompanying the field amplification, the star could spin down to a period of ?5 ms through gravitational wave radiation due to the r-mode instability and, in particular, the non-axisymmetric stellar deformation caused by the toroidal field. This scenario provides a possible explanation for why the remnant neutron stars formed in gamma-ray bursts and superluminous supernovae could be millisecond magnetars.

  20. Spin Contamination in Inorganic Chemistry Calculations

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    R EVISED PAG E PR O O FS ia617 Spin Contamination in Inorganic Chemistry Calculations Jason L . In such cases, 0 is said to be spin contaminated owing to incorporation of higher spin state character of Iron­Sulfur ia618 Clusters). It is important to note that while spin-contaminated and broken

  1. RESEARCH PLAN FOR SPIN PHYSICS AT RHIC.

    SciTech Connect (OSTI)

    AIDALA, C.; BUNCE, G.; ET AL.

    2005-02-01

    In this report we present the research plan for the RHIC spin program. The report covers (1) the science of the RHIC spin program in a world-wide context; (2) the collider performance requirements for the RHIC spin program; (3) the detector upgrades required, including timelines; (4) time evolution of the spin program.

  2. Research on fusion neutron sources

    SciTech Connect (OSTI)

    Gryaznevich, M. P. [Tokamak Solutions UK, Culham Science Centre, Abingdon, OXON, OX133DB (United Kingdom)

    2012-06-19

    The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. 'Fusion for Neutrons' (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.

  3. Spectroscopy of 13,14B via the one-neutron knockout reaction

    E-Print Network [OSTI]

    V. Guimaraes; J. J. Kolata; D. Bazin; B. Blank; B. A. Brown; T. Glasmacher; P. G. Hansen; R. W. Ibbotson; D. Karnes; V. Maddalena; A. Navin; B. Pritychenko; B. M. Sherrill

    2000-01-26

    The single-nucleon knockout reactions 9Be(14B, 13B + gamma)X and 197Au(14B, 13B + gamma)X, at an incident energy of 60 MeV per nucleon, have been used to probe the structure of 14B and of the core fragment 13B. A dominant 2s configuration is deduced for the neutron in the ground state of 14B. The longitudinal momentum distribution for this state is consistent with "neutron halo" structure. Spin assignments for 13B excited states at 3.48 and 3.68 MeV are proposed based on the observed spectroscopic factors for one-neutron removal.

  4. The World Neutron Monitor Network as a tool for the study of solar neutrons

    E-Print Network [OSTI]

    Usoskin, Ilya G.

    The World Neutron Monitor Network as a tool for the study of solar neutrons I. G. Usoskin1 , G. A Neutron Monitor Network to detect high-energy solar neutrons is dis- cussed in detail. It is shown that the existing network can be used for the routine detection of intense sporadic solar-neutron events whenever

  5. A neutron producing target for BINP accelerator-based neutron source B. Bayanova

    E-Print Network [OSTI]

    Taskaev, Sergey Yur'evich

    A neutron producing target for BINP accelerator-based neutron source B. Bayanova , E. Kashaeva b l e i n f o Keywords: Target Lithium Neutron capture therapy Epithermal neutrons a b s t r a c t An innovative accelerator-based neutron source for BNCT has just started operation at the Budker Institute

  6. neutron density. The neutron density (nn) of the source was modeled by solving the simul-

    E-Print Network [OSTI]

    West, Stuart

    neutron density. The neutron density (nn) of the source was modeled by solving the simul- taneousT is the thermal neutron velocity, l is the decay constant, Ns is the s-process abun- dance, bsÀ is the maxwellian-averaged neutron capture cross-section, and t0 is the average neutron exposure (21). The branching decay of 186Re

  7. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA)

    1997-01-01

    An improved method for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue.

  8. Boron nitride solid state neutron detector

    DOE Patents [OSTI]

    Doty, F. Patrick

    2004-04-27

    The present invention describes an apparatus useful for detecting neutrons, and particularly for detecting thermal neutrons, while remaining insensitive to gamma radiation. Neutrons are detected by direct measurement of current pulses produced by an interaction of the neutrons with hexagonal pyrolytic boron nitride.

  9. Spin-s wave functions with algebraic order Onuttom Narayan and B. Sriram Shastry

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Spin-s wave functions with algebraic order Onuttom Narayan and B. Sriram Shastry Department November 2004) We generalize the Gutzwiller wave function for s= 1 2 spin chains to construct a family of wave functions for all s 1 2. Through numerical simulations, we demonstrate that the spin spin

  10. Spin-current-induced dynamics in ferromagnetic nanopillars of lateral spin-valve structures

    E-Print Network [OSTI]

    Otani, Yoshichika

    Spin-current-induced dynamics in ferromagnetic nanopillars of lateral spin-valve structures J 4 February 2009 Under electrical injection, spin accumulation occurs in lateral spin valves in a lateral spin valve while simultaneously sweeping an external magnetic field. We observe changes

  11. Large Spin Accumulation in a Permalloy-Silver Lateral Spin Valve T. Kimura and Y. Otani

    E-Print Network [OSTI]

    Otani, Yoshichika

    Large Spin Accumulation in a Permalloy-Silver Lateral Spin Valve T. Kimura and Y. Otani Institute accumulation due to the electrical spin injection has been observed in Permalloy-silver lateral spin-valve structures. The observed resistance change is the largest among the reported metallic lateral spin valves

  12. Correlation functions for a di-neutron condensate in asymmetric nuclear matter

    E-Print Network [OSTI]

    A. A. Isayev

    2008-07-10

    Recent calculations with an effective isospin dependent contact interaction show the possibility of the crossover from superfluidity of neutron Cooper pairs in $^1S_0$ pairing channel to Bose-Einstein condensation (BEC) of di-neutron bound states in dilute nuclear matter. The density and spin correlation functions are calculated for a di-neutron condensate in asymmetric nuclear matter with the aim to find the possible features of the BCS-BEC crossover. It is shown that the zero-momentum transfer spin correlation function satisfies the sum rule at zero temperature. In symmetric nuclear matter, the density correlation function changes sign at low momentum transfer across the BCS-BEC transition and this feature can be considered as a signature of the crossover. At finite isospin asymmetry, this criterion gives too large value for the critical asymmetry $\\alpha_c^d\\sim0.9$, at which the BEC state is quenched. Therefore, it can be trusted for the description of the density-driven BCS-BEC crossover of neutron pairs only at small isospin asymmetry. This result generalizes the conclusion of the study in Phys. Rev. Lett. {\\bf 95}, 090402 (2005), where the change of sign of the density correlation function at low momentum transfer in two-component quantum fermionic atomic gas with the balanced populations of fermions of different species was considered as an unambiguous signature of the BCS-BEC transition.

  13. Dual nature of 3 d electrons in YbT 2 Zn 20 (T = Co; Fe) evidenced by electron spin resonance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ivanshin, V. A.; Litvinova, T. O.; Gimranova, K.; Sukhanov, A. A.; Jia, S.; Bud'ko, S. L.; Canfield, P. C.

    2015-03-18

    The electron spin resonance experiments were carried out in the single crystals YbFe2Zn20. The observed spin dynamics is compared with that in YbCo2Zn20 and Yb2Co12P7 as well as with the data of inelastic neutron scattering and electronic band structure calculations. Our results provide direct evidence that 3d electrons are itinerant in YbFe2Zn20 and localized in YbCo2Zn20. Possible connection between spin paramagnetism of dense heavy fermion systems, quantum criticality effects, and ESR spectra is discussed.

  14. Switched Control of Electron Nuclear Spin Systems

    E-Print Network [OSTI]

    Navin Khaneja

    2007-07-11

    In this article, we study control of electron-nuclear spin dynamics at magnetic field strengths where the Larmor frequency of the nucleus is comparable to the hyperfine coupling strength. The quantization axis for the nuclear spin differs from the static B_0 field direction and depends on the state of the electron spin. The quantization axis can be switched by flipping the state of electron spin, allowing for universal control on nuclear spin states. We show that by performing a sequence of flips (each followed by a suitable delay), we can perform any desired rotation on the nuclear spins, which can also be conditioned on the state of the electron spin. These operations, combined with electron spin rotations can be used to synthesize any unitary transformation on the coupled electron-nuclear spin system. We discuss how these methods can be used for design of experiments for transfer of polarization from the electron to the nuclear spins.

  15. Neutron-Anti-Neutron Oscillation: Theory and Phenomenology

    E-Print Network [OSTI]

    R. N. Mohapatra

    2009-02-05

    The discovery of neutrino masses has provided strong hints in favor of the possibility that B-L symmetry is an intimate feature of physics beyond the standard model. I discuss how important information about this symmetry as well as other scenarios for TeV scale new physics can be obtained from the baryon number violating process, neutron-anti-neutron oscillation. This article presents an overview of different aspects of neutron-anti-neutron oscillation and is divided into the following parts : (i) the phenomenon; (ii) the physics, (iii) plausible models and (iv) applications to cosmology. In particular, it is argued how the discovery of $n-\\bar{n}$ oscillation can significantly affect our thinking about simple grand unified theory paradigms for physics beyond the standard model, elucidate the nature of forces behind neutrino mass and provide a new microphysical view of the origin of matter in the universe.

  16. Scattered neutron tomography based on a neutron transport problem 

    E-Print Network [OSTI]

    Scipolo, Vittorio

    2005-11-01

    and scattered images generated from a beam passing through an optically thick object. This inverse problem makes use of a computationally efficient, two-dimensional forward problem based on neutron transport theory that effectively calculates the detector...

  17. Spin Filtering in Storage Rings

    E-Print Network [OSTI]

    N. N. Nikolaev; F. F. Pavlov

    2005-12-05

    The spin filtering in storage rings is based on the multiple passage of a stored beam through a polarized internal gas target. Apart from the polarization by transmission, a unique geometrical feature of interaction with the target in such a filtering process, pointed out by H.O. Meyer \\cite{Meyer}, is a scattering of stored particles within the beam. A rotation of the spin in the scattering process affects the polarization buildup. We derive here a quantum-mechanical evolution equation for the spin-density matrix of the stored beam which incorporates scattering within the beam. We show how the interplay of transmission and scattering with the beam changes from polarized electrons to polarized protons in the atomic target. After discussions of the FILTEX results on the filtering of stored protons \\cite{FILTEX}, we comment on the strategy of spin filtering of antiprotons for the PAX experiment at GSI FAIR \\cite{PAX-TP}.

  18. Spinning angle optical calibration apparatus

    DOE Patents [OSTI]

    Beer, Stephen K. (Morgantown, WV); Pratt, II, Harold R. (Morgantown, WV)

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  19. Neutron-Scattering Evidence for a Periodically Modulated Superconducting Phase in the Underdoped Cuprate La1.905Ba0.095CuO4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Zhijun [Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Mater Physics and Materials Science Dept.; Stock, C. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States). Center for Neutron Research; Chi, Songxue [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States). Center for Neutron Research; Kolesnikov, A. I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Div.; Xu, Guangyong I. [Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Mater Physics and Materials Science Dept.; Gu, Genda [Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Mater Physics and Materials Science Dept.; Tranquada, J. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Mater Physics and Materials Science Dept.

    2014-10-01

    The role of antiferromagnetic spin correlations in high-temperature superconductors remains a matter of debate. We present inelastic neutron-scattering evidence that gapless spin fluctuations coexist with superconductivity in La1.905Ba0.095CuO4. Furthermore, we observe that both the low-energy magnetic spectral weight and the spin incommensurability are enhanced with the onset of superconducting correlations. We propose that the coexistence occurs through intertwining of spatial modulations of the pair wave function and the antiferromagnetic correlations. This proposal is also directly relevant to sufficiently underdoped La2-xSrxCuO4 and YBa2Cu3O6+x.

  20. Neutron-scattering evidence for a periodically modulated superconducting phase in the underdoped cuprate La1.905Ba0.095CuO4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Zhijun; Stock, C.; Chi, Songxue; Kolesnikov, A. I.; Xu, Guangyong I.; Gu, Genda; Tranquada, J. M.

    2014-10-01

    The role of antiferromagnetic spin correlations in high-temperature superconductors remains a matter of debate. We present inelastic neutron-scattering evidence that gapless spin fluctuations coexist with superconductivity in La1.905Ba0.095CuO4. Furthermore, we observe that both the low-energy magnetic spectral weight and the spin incommensurability are enhanced with the onset of superconducting correlations. We propose that the coexistence occurs through intertwining of spatial modulations of the pair wave function and the antiferromagnetic correlations. This proposal is also directly relevant to sufficiently underdoped La2-xSrxCuO4 and YBa2Cu3O6+x.

  1. Distribution of neutron resonance widths

    E-Print Network [OSTI]

    Hans A. Weidenmueller

    2011-10-28

    Recent data on neutron resonance widths indicate disagreement with the Porter-Thomas distribution (PTD). I discuss the theoretical arguments for the PTD, possible theoretical modifications, and I summarize the experimantal evidence.

  2. SNS | Spallation Neutron Source | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USA. This one-of-a-kind facility provides the most intense pulsed neutron beams in the world for scientific research and industrial development. The 80-acre SNS site is located...

  3. Coherent control of neutron interferometry

    E-Print Network [OSTI]

    Pushin, Dmitry A

    2007-01-01

    In this thesis, several novel techniques are proposed and demonstrated for measuring the coherent properties of materials and testing aspects of quantum information processing using a single crystal neutron interferometer. ...

  4. Ion chamber based neutron detectors

    DOE Patents [OSTI]

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  5. Research Highlights | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 06, 2014 - Thermoelectric SnTe and PbTe compounds were investigated with inelastic neutron scattering (INS) and first-principles calculations to understand the basis of...

  6. Chiral condensate in neutron matter

    E-Print Network [OSTI]

    N. Kaiser; W. Weise

    2008-08-06

    A recent chiral perturbation theory calculation of the in-medium quark condensate $$ is extended to the isospin-asymmetric case of pure neutron matter. In contrast to the behavior in isospin-symmetric nuclear matter we find only small deviations from the linear density approximation. This feature originates primarily from the reduced weight factors (e.g. 1/6 for the dominant contributions) of the $2\\pi$-exchange mechanisms in pure neutron matter. Our result suggests therefore that the tendencies for chiral symmetry restoration are actually favored in systems with large neutron excess (e.g. neutron stars). We also analyze the behavior of the density-dependent quark condensate $(\\rho_n)$ in the chiral limit $m_\\pi\\to 0$.

  7. Spin transport in lateral spin valves and across a metal- insulator transition in V?O? /

    E-Print Network [OSTI]

    Erekhinsky, Mikhail

    2013-01-01

    34] E.I. Rashba, Theory of electrical spin injection: Tunnel3.2 qualitative theory of electrical spin injection isIntroduction The basic theory of electrical spin injection

  8. Spin-dependent boundary resistance in the lateral spin-valve structure T. Kimura,a)

    E-Print Network [OSTI]

    Otani, Yoshichika

    such as a spin transistor,3 spin battery,4 etc. However, it has been difficult to detect spin-dependent signals 1(a) and 1(b) show scanning-electron-microscope (SEM) images of the final device. First, we

  9. Nonvanishing spin Hall currents in disordered spin-orbit coupling systems 

    E-Print Network [OSTI]

    Nomura, K.; Sinova, Jairo; Jungwirth, T.; Niu, Q.; MacDonald, A. H.

    2005-01-01

    Spin-orbit coupling-induced spin Hall currents are generic in metals and doped semiconductors. It has recently been argued that the spin Hall conductivity can be dominated by an intrinsic contribution that follows from ...

  10. Alternative Neutron Detection Testing Summary

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Lintereur, Azaree T.; Siciliano, Edward R.; Stromswold, David C.; Woodring, Mitchell L.

    2010-04-08

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. Most currently deployed radiation portal monitors (RPMs) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large area neutron detector. This type of neutron detector is used in the TSA and other RPMs installed in international locations and in the Ludlum and Science Applications International Corporation RPMs deployed primarily for domestic applications. There is a declining supply of 3He in the world and, thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated wavelength-shifting plastic fibers. Reported here is a summary of the testing carried out at Pacific Northwest National Laboratory on these technologies to date, as well as measurements on 3He tubes at various pressures. Details on these measurements are available in the referenced reports. Sponsors of these tests include the Department of Energy (DOE), Department of Homeland Security (DHS), and the Department of Defense (DoD), as well as internal Pacific Northwest National Laboratory funds.

  11. Neutron detectors comprising boron powder

    DOE Patents [OSTI]

    Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

    2013-05-21

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  12. Magnetism reflectometer study shows LiF layers improve efficiency in spin valve devices

    SciTech Connect (OSTI)

    Bardoel, Agatha A [ORNL; Lauter, Valeria [ORNL; Szulczewski, Greg J [ORNL

    2012-01-01

    New, more efficient materials for spin valves - a device used in magnetic sensors, random access memories, and hard disk drives - may be on the way based on research using the magnetism reflectometer at Oak Ridge National Laboratory (ORNL). Spin valve devices work by means of two or more conducting magnetic material layers that alternate their electrical resistance depending on the layers alignment. Giant magnetoresistance is a quantum mechanical effect first observed in thin film structures about 20 years ago. The effect is observed as a significant change in electrical resistance, depending on whether the magnetization of adjacent ferromagnetic layers is in a parallel or an antiparallel magnetic alignment. 'What we are doing here is developing new materials. The search for new materials suitable for injecting and transferring carriers with a preferential spin orientation is most important for the development of spintronics,' said Valeria Lauter, lead instrument scientist on the magnetism reflectometer at the Spallation Neutron Source (SNS), who collaborated on the experiment. The researchers discovered that the conductivity of such materials is improved when an organic polymer semiconductor layer is placed between the magnetic materials. Organic semiconductors are now the material of choice for future spin valve devices because they preserve spin coherence over longer times and distances than conventional semiconductors. While research into spin valves has been ongoing, research into organic semiconductors is recent. Previous research has shown that a 'conductivity mismatch' exists in spin valve systems in which ferromagnetic metal electrodes interface with such organic semiconductors as Alq3 ({pi}-conjugated molecule tris(8-hydroxy-quinoline) aluminium). This mismatch limits the efficient injection of the electrons from the electrodes at the interface with the semiconductor material. However, lithium fluoride (LiF), commonly used in light-emitting diodes, has been found to enhance the injection of electrons through the semiconductor. Researchers from the University of Alabama and ORNL used polarized neutrons at the magnetism reflectometer at SNS to investigate the electronic, magnetic, and structural properties of the electrodes in a novel system. In this system, the magnetic layers cobalt and Ni{sub 80}Fe{sub 20} are interfaced with spacer layers composed of the organic semiconductor Alq3. A coupling layer of LiF is inserted to separate the magnetized layers from the semiconductor. 'ALQ3 is an organic semiconductor material,' said Lauter. 'Normally in these systems a first magnetic layer is grown on a hard substrate so that one can get the controlled magnetic parameters. Then you grow the organic semiconductor layer, followed by another magnetic material layer, such as cobalt.' In addition to determining the effect of the LiF layers on the efficiency of the electron injection, the researchers wanted to determine the magnetic properties of the cobalt and Ni{sub 80}Fe{sub 20} as well as the interfacial properties: whether there is interdiffusion of cobalt through the LiF layer to the semiconductor, for example. The researchers used polarized neutrons at beam line 4A to probe the entire, layer-by-layer assembly of the system. 'Reflectometry with polarized neutrons is a perfect method to study thin magnetic films,' Lauter said. 'These thin films - if you put one on a substrate, you see it just like a mirror. However, this mirror has a very complicated internal multilayer structure. The neutrons look inside this complicated structure and characterize each and every interface. Due to the depth sensitivity of the method, we measure the structural and magnetic properties of each layer with the resolution of 0.5 nm. The neutron scattering results found that inserting LiF as a barrier significantly improves the quality of the interface, increasing the injection of electrons from the magnetic layer through the organic semiconductor in the spin valve and enhancing the overall properties of the system. In related work the magneti

  13. Graduate & Post-doctoral Programs | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graduate & Post-doctoral Programs SHARE Facilitating Education of Future Neutron Users ORNL's neutron science education programs promote strong partnerships between neutron...

  14. Thermal Neutron Computed Tomography of Soil Water and Plant Roots

    E-Print Network [OSTI]

    Leanne G. Tumlinson; Hungyuan Liu; Wendy K. Silk; Jan W. Hopmans

    2007-01-01

    caused by increased neutron scattering with an increase inof beam hardening and neutron scattering could be correctedof beam hardening or neutron scattering and backscattering

  15. Spin and Spectral Variations of Peculiar High-Mass X-ray Binary 4U 2206+54

    E-Print Network [OSTI]

    Wang, Wei

    2013-01-01

    Spin properties and spectral variations of high mass X-ray binary 4U 2206+54 are studied with long-term hard X-ray monitoring observations by INTEGRAL. A long-period X-ray pulsar of P_spin\\sim 5558 s has been identified in 4U 2206+54. The spin evolution of the neutron star in 4U 2206+54 is detected with the INTEGRAL/IBIS data. From 2005 to 2011, the spin period of the neutron star in 4U 2206+54 varies from \\sim 5558 s to 5588 s. The average spin-down rate in the last 20 years is derived as \\sim 5\\times 10^{-7} s s^{-1}. 4U 2206+54 is a variable source with luminosities of \\sim 10^{35} - 10^{36} erg s^{-1} in the range of 3 -- 100 keV. Its spectrum can be described by an absorbed power-law model with exponential rolloff. The hydrogen column density and photon index show the anti-correlations with hard X-ray luminosity: low column density and small photon index at maximum of luminosity. This spectral variation pattern suggests that 4U 2206+54 would be a highly obscured binary system. Furthermore, the possible c...

  16. I-Love-Q Relations in Neutron Stars and their Applications to Astrophysics, Gravitational Waves and Fundamental Physics

    E-Print Network [OSTI]

    Kent Yagi; Nicolas Yunes

    2013-09-09

    The exterior gravitational field of a slowly-rotating neutron star can be characterized by its multipole moments, the first few being the neutron star mass, moment of inertia, and quadrupole moment to quadratic order in spin. In principle, all of these quantities depend on the neutron star's internal structure, and thus, on unknown nuclear physics at supra-nuclear energy densities. We here find relations between the moment of inertia, the Love numbers and the quadrupole moment (I-Love-Q relations) that do not depend sensitively on the neutron star's internal structure. Three important consequences derive from these I-Love-Q relations. On an observational astrophysics front, the measurement of a single member of the I-Love-Q trio would automatically provide information about the other two, even when the latter may not be observationally accessible. On a gravitational wave front, the I-Love-Q relations break the degeneracy between the quadrupole moment and the neutron-star spins in binary inspiral waveforms, allowing second-generation ground-based detectors to determine the (dimensionless) averaged spin to $\\mathcal{O}(10)%$, given a sufficiently large signal-to-noise ratio detection. On a fundamental physics front, the I-Love-Q relations allow for tests of General Relativity in the neutron-star strong-field that are both theory- and internal structure-independent. As an example, by combining gravitational-wave and electromagnetic observations, one may constrain dynamical Chern-Simons gravity in the future by more than 6 orders of magnitude more stringently than Solar System and table-top constraints.

  17. Spin Wave Storage using Chirped Control Fields in Atomic Frequency Comb based Quantum Memory

    E-Print Network [OSTI]

    Ji?í Miná?; Nicolas Sangouard; Mikael Afzelius; Hugues de Riedmatten; Nicolas Gisin

    2010-08-13

    It has been shown that an inhomogeneously broadened optical transition shaped into an atomic frequency comb can store a large number of temporal modes of the electromagnetic field at the single photon level without the need to increase the optical depth of the storage material. The readout of light modes is made efficient thanks to the rephasing of the optical-wavelength coherence similarly to photon echo-type techniques and the re-emission time is given by the comb structure. For on-demand readout and long storage times, two control fields are used to transfer back and forth the optical coherence into a spin wave. Here, we present a detailed analysis of the spin wave storage based on chirped adiabatic control fields. In particular, we verify that chirped fields require significantly weaker intensities than $\\pi$-pulses. The price to pay is a reduction of the multimode storage capacity that we quantify for realistic material parameters associated with solids doped with rare-earth-metal ions.

  18. Emergent spin electromagnetism induced by magnetization textures in the presence of spin-orbit interaction (invited)

    SciTech Connect (OSTI)

    Tatara, Gen; Nakabayashi, Noriyuki

    2014-05-07

    Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.

  19. Spin transport in lateral spin valves and across a metal- insulator transition in V?O? /

    E-Print Network [OSTI]

    Erekhinsky, Mikhail

    2013-01-01

    J. Ansermet, Spin-dependent Peltier effect of perpendicularB. van Wees, Interplay of Peltier and Seebeck Effects inspin Seebeck coefficient. Peltier or spin blockade effects

  20. On the spin period distribution in Be/X-ray binaries

    SciTech Connect (OSTI)

    Cheng, Z.-Q.; Shao, Y.; Li, X.-D., E-mail: lixd@nju.edu.cn [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

    2014-05-10

    There is a remarkable correlation between the spin periods of the accreting neutron stars (NSs) in Be/X-ray binaries (BeXBs) and their orbital periods. Recently, Knigge et al. showed that the distribution of the spin periods contains two distinct subpopulations peaked at ?10 s and ?200 s, respectively, and suggested that they may be related to two types of supernovae for the formation of the NSs, i.e., core-collapse and electron-capture supernovae. Here we propose that the bimodal spin period distribution is likely to be ascribed to different accretion modes of the NSs in BeXBs. When the NS tends to capture material from the warped, outer part of the Be star disk and experiences giant outbursts, a radiatively cooling dominated disk is formed around the NS, which spins up the NS and is responsible for the short-period subpopulation. In BeXBs that are dominated by normal outbursts or are persistent, the accretion flow is advection-dominated or quasi-spherical. The spin-up process is accordingly inefficient, leading to longer periods of the neuron stars. The potential relation between the subpopulations and the supernova mechanism is also discussed.

  1. Transverse target spin asymmetry in inclusive DIS with two-photon exchange

    SciTech Connect (OSTI)

    Andrei Afanasev; Mark Strikman; Christian Weiss

    2007-09-06

    We study the transverse target spin dependence of the cross section for the inclusive electron-nucleon scattering with unpolarized beam. Such dependence is absent in the one-photon exchange approximation (Christ-Lee theorem) and arises only in higher orders of the QED expansion, from the interference of one-photon and absorptive two-photon exchange amplitudes as well as from real photon emission (bremsstrahlung). We demonstrate that the transverse spin-dependent two-photon exchange cross section is free of QED infrared and collinear divergences. We argue that in DIS kinematics the transverse spin dependence should be governed by a "parton-like" mechanism in which the two-photon exchange couples mainly to a single quark. We calculate the normal spin asymmetry in an approximation where the dominant contribution arises from quark helicity flip due to interactions with non-perturbative vacuum fields (constituent quark picture) and is proportional to the quark transversity distribution in the nucleon. Such helicity-flip processes are not significantly Sudakov-suppressed if the infrared scale for gluon emission in the photon-quark subprocess is of the order of the chiral symmetry breaking scale, mu^2_chiral>>Lambda^2_QCD. We estimate the asymmetry in the kinematics of the planned Jefferson Lab Hall A experiment to be of the order 10^-4, with different sign for proton and neutron. We also comment on the spin dependence in the limit of soft high-energy scattering.

  2. STUDY MAGNETIC EXCITATIONS IN DOPED TRANSITION METAL OXIDES USING INELASTIC NEUTRON SCATTERING

    SciTech Connect (OSTI)

    Dai, Pengcheng

    2014-02-18

    Understanding the interplay between magnetism and superconductivity continues to be a “hot” topic in modern condensed matter physics. The discovery of high-temperature superconductivity in iron-based materials in 2008 provided an unique opportunity to compare and contrast these materials with traditional high-Tc copper oxide superconductors. Neutron scattering plays an important role in determining the dynamical spin properties in these materials. This proposal is a continuation of previous DOE supported proposal. This report summarizes the final progress we have made over from May 2005 till Aug. 2013. Overall, we continue to carry out extensive neutron scattering experiments on Fe-based materials, focusing on understanding their magnetic properties. In addition, we have established a materials laboratory at UT that has allowed us to grow these superconductors. Because neutron scattering typically demands a large amount of samples, by growing these materials in our own laboratory, we can now pursuit neutron scattering experiments over the entire electronic phase diagram, focusing on regions of interests. The material synthesis laboratory at UT was established entirely with the support of DOE funding. This not only allowed us to carry out neutron scattering experiments, but also permit us to provide samples to other US/International collaborators for studying these materials.

  3. Coherent deeply virtual Compton scattering off 3He and neutron generalized parton distributions

    E-Print Network [OSTI]

    Matteo Rinaldi; Sergio Scopetta

    2014-06-18

    It has been recently proposed to study coherent deeply virtual Compton scattering (DVCS) off 3He nuclei to access neutron generalized parton distributions (GPDs). In particular, it has been shown that, in Impulse Approximation (IA) and at low momentum transfer, the sum of the quark helicity conserving GPDs of 3He, H and E, is dominated by the neutron contribution. This peculiar result makes the 3He target very promising to access the neutron information. We present here the IA calculation of the spin dependent GPD tilde-H of 3He. Also for this quantity the neutron contribution is found to be the dominant one, at low momentum transfer. The known forward limit of the IA calculation of tilde-H, yielding the polarized parton distributions of 3He, is correctly recovered. The extraction of the neutron information could be anyway non trivial, so that a procedure, able to take into account the nuclear effects encoded in the IA analysis, is proposed. These calculations, essential for the evaluation of the coherent DVCS cross section asymmetries, which depend on the GPDs H, E and tilde-H, represent a crucial step for planning possible experiments at Jefferson Lab.

  4. Constraints on binary neutron star merger product from short GRB observations

    E-Print Network [OSTI]

    Gao, He; Lü, Hou-Jun

    2015-01-01

    Binary neutron star mergers are strong gravitational wave (GW) sources and the leading candidates to interpret short duration gamma-ray bursts (SGRBs). Under the assumptions that SGRBs are produced by double neutron star mergers, we use the statistical observational properties of {\\em Swift} SGRBs and the mass distribution of Galactic double neutron star systems to place constraints on the neutron star equation of state (EoS) and the properties of the post-merger product. We show that current observations already put following tight constraints: 1) A neutron star EoS with a maximum mass close to a parameterization of $M_{\\rm max} = 2.37\\,M_\\odot (1+1.58\\times10^{-10} P^{-2.84})$ is favored; 2) The fractions for the several outcomes of NS-NS mergers are as follows: $\\sim40\\%$ prompt BHs, $\\sim30\\%$ supra-massive NSs that collapse to BHs in a range of delay time scales, and $\\sim30\\%$ stable NSs that never collapse; 3) The initial spin of the newly born supra-massive NSs should be near the breakup limit ($P_i\\s...

  5. 2013 Review of Neutron and Non-Neutron Nuclear Data

    SciTech Connect (OSTI)

    Holden, N. E.

    2014-05-23

    The results of a review and evaluation of neutron and non-neutron nuclear data published in the scientific literature over the past three years since the ISRD-14 Symposium has been performed and the highlights are presented. Included in the data review are the status of new chemical elements, new measurements of the isotopic composition for many chemical elements and the resulting change in the atomic weight values. New half-life measurements for both short-lived and longlived nuclides, some alpha decay and double beta decay measurements for quasistable nuclides are discussed. The latest evaluation of atomic masses has been published. Data from new measurements on the very heavy (trans-meitnerium) elements are discussed and tabulated. Data on various recent neutron cross section and resonance integral measurements are discussed and tabulated.

  6. Spin and orbital moments in actinide compounds (invited)

    SciTech Connect (OSTI)

    Lebech, B. ); Wulff, M.; Lander, G.H. )

    1991-04-15

    The extended spatial distribution of both the transition-metal 3{ital d} electrons and the actinide 5{ital f} electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single-electron band-structure calculations, is that the orbital moments of the actinide 5{ital f} electrons are considerably reduced from the values anticipated by a simple application of Hund's rules. To test these ideas, and thus to obtain a measure of the hybridization, we have performed a series of neutron scattering experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe{sub 2}, NpCo{sub 2}, and PuFe{sub 2} and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced as compared to the free-ion expectations. In addition there is qualitative agreement with theory, although the latter predicts values of both components that are larger than those found by experiment. Because {bold L} and {bold S} are opposed in the light actinides, and {ital L} is usually greater than {ital S}, the reduction of {ital L} can result in a situation for which {ital L}{minus}{ital S}{congruent}0. This almost occurs in UFe{sub 2}. However, neutrons are capable of observing the individual components at finite wave vector ({bold Q}), although the total component (observed at {bold Q}={bold 0}) may indeed be close to zero.

  7. Neutronic fuel element fabrication

    DOE Patents [OSTI]

    Korton, George (Cincinnati, OH)

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

  8. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    SciTech Connect (OSTI)

    Reinhardt, Brian [Pennsylvania State Univ., University Park, PA (United States). Dept. of Engineering Science and Mechanics; Tittmann, Bernhard [Pennsylvania State Univ., University Park, PA (United States). Dept. of Engineering Science and Mechanics; Rempe, Joy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daw, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kohse, Gordon [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). MIT Nuclear Reactor Lab.; Carpenter, David [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). MIT Nuclear Reactor Lab.; Ames, Micheal [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). MIT Nuclear Reactor Lab.; Ostrovsky, Yakov [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). MIT Nuclear Reactor Lab.; Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Robert [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chien, Hualte [Argonne National Lab. (ANL), Argonne, IL (United States); Wernsman, Bernard [Bettis Atomic Power Lab. (BAPL), West Mifflin, PA (United States). Bechtel Marine Propulsion Corp.

    2014-07-01

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) provide harsh environments in and near the core that can severely test material performance and limit their operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration radiation performance of fuels and materials. In To reduce the amount of Material and Test Reactor (MTR) irradiations required, DOE is also funding development of enhanced instrumentation that will be able to obtain data, with unprecedented accuracy and resolution, that are required to validate new multi-scale multiphysics modeling tools . It is not feasible to obtain such data with the current state of instrumentation technology. To address this need, PSU and collaborators have started an experiment to test the potential for utilizing ultrasonic instruments in-pile. Ultrasonic sensors must be resistant to high neutron flux, high gamma radiation, and high temperature. PSU and collaborators have designed, fabricated, and started to irradiate piezoelectric and magnetostrictive transducers designed to perform in such harsh environments. Three piezoelectric transducers were fabricated with aluminum nitride, zinc oxide, and bismuth titanate as the active element. The transducers are coupled kovar and aluminum waveguides of which pulse-echo ultrasonic measurements are made in-situ. Two magnetostrictive transducers were fabricated with Remendur and Arnokrome as the active elements. These devices will be pulsed and monitored in-situ. (1) Selection of candidate sensor materials as well as optimization of test assembly parameters (2) High temperature benchmark testing and (3) initial data from the irradiation will be reported.

  9. BF3 Neutron Detector Tests

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.; Woodring, Mitchell L.

    2009-12-09

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world; thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and detection capabilities are being investigated. Reported here are the results of tests of the efficiency of BF3 tubes at a pressure of 800 torr. These measurements were made partially to validate models of the RPM system that have been modified to simulate the performance of BF3-filled tubes. While BF3 could be a potential replacement for 3He, there are limitations to its use in deployed systems.

  10. Antiferromagnetic Spins Do The Twist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Spins Do The Twist Antiferromagnetic Spins

  11. Neutron-Neutron Correlations in the Dissociation of Halo Nuclei

    E-Print Network [OSTI]

    N. A. Orr

    2008-03-06

    Studies attempting to probe the spatial configuration of the valence neutrons in two-neutron halo nuclei using the technique of intensity interferometry are described. Following a brief review of the method and its application to earlier measurements of the breakup of 6He, 11Li and 14Be, the results of the analysis of a high statistics data set for 6He are presented. The limitations of the technique, including the assumption of incoherent emission in the breakup and the sensitivity to the continuum states populated in the dissociation rather than the ground state, are discussed.

  12. Post-merger evolution of a neutron star-black hole binary with neutrino transport

    E-Print Network [OSTI]

    Francois Foucart; Evan O'Connor; Luke Roberts; Matthew D. Duez; Roland Haas; Lawrence E. Kidder; Christian D. Ott; Harald P. Pfeiffer; Mark A. Scheel; Bela Szilagyi

    2015-02-13

    We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated general relativistic truncated moment formalism for neutrino transport. We describe our implementation of the moment formalism and important tests of our code, before studying the formation phase of a disk after a black hole-neutron star merger. We use as initial data an existing general relativistic simulation of the merger of a neutron star of 1.4 solar mass with a black hole of 7 solar mass and dimensionless spin a/M=0.8. Comparing with a simpler leakage scheme for the treatment of the neutrinos, we find noticeable differences in the neutron to proton ratio in and around the disk, and in the neutrino luminosity. We find that the electron neutrino luminosity is much lower in the transport simulations, and that the remnant is less neutron-rich. The spatial distribution of the neutrinos is significantly affected by relativistic effects. Over the short timescale evolved, we do not observe purely neutrino-driven outflows. However, a small amount of material (3e-4Msun) is ejected in the polar region during the circularization of the disk. Most of that material is ejected early in the formation of the disk, and is fairly neutron rich. Through r-process nucleosynthesis, that material should produce high-opacity lanthanides in the polar region, and could thus affect the lightcurve of radioactively powered electromagnetic transients. We also show that by the end of the simulation, while the bulk of the disk is neutron-rich, its outer layers have a higher electron fraction. As that material would be the first to be unbound by disk outflows on longer timescales, the changes in Ye experienced during the formation of the disk could have an impact on the nucleosynthesis outputs from neutrino-driven and viscously-driven outflows. [Abridged

  13. A New Spin on Photoemission Spectroscopy

    E-Print Network [OSTI]

    Jozwiak, Chris

    2010-01-01

    18. Wolf, S. A. et al. Spintronics: A Spin-Based Electronicsthe electron spin (spintronics 17,18 ) explicitly relies onand crossed. Applied to spintronics materials and de- vices,

  14. Spin-lozenge thermodynamics and magnetic excitations in Na3RuO4

    SciTech Connect (OSTI)

    Haraldsen, Jason T; Stone, Matthew B; Lumsden, Mark D; Barnes, Ted {F E }; Jin, Rongying; Taylor, J. W.; Fernandez-Alonso, F

    2009-01-01

    We report inelastic and elastic neutron scattering, magnetic susceptibility, and heat capacity measurements of polycrystalline sodium ruthenate (Na3RuO4). Previous work suggests this material consists of isolated tetramers of S = 3/2 Ru5+ ions in a so-called lozenge configuration. Using a Heisenberg antiferromagnet Hamiltonian, we analytically determine the energy eigenstates for general spin S. From this model, the neutron scattering cross-sections for excitations associated with spin-3/2 tetramer configurations is determined. Comparison of magnetic susceptibility and inelastic neutron scattering results shows that the proposed lozenge model is not distinctly supported, but provides evidence that the system may be better described as a pair of non-interacting inequivalent dimers, i.e double dimers. However, the existence of long-range magnetic order below Tc ? 28 K immediately questions such a description. Although no evidence of the lozenge model is observed, future studies on single crystals may further clarify the appropriate magnetic Hamiltonian.

  15. Multi-Messenger Tests for Fast-Spinning Newborn Pulsars Embedded in Stripped-Envelope Supernovae

    E-Print Network [OSTI]

    Kashiyama, Kazumi; Bartos, Imre; Kiuchi, Kenta; Margutti, Raffaella

    2015-01-01

    Fast-spinning strongly-magnetized newborn neutron stars, including nascent magnetars, are popularly implemented as the engine of luminous stellar explosions. Here, we consider the scenario that they power various stripped-envelope supernovae, not only super-luminous supernovae Ic but also broad-line supernova Ibc and possibly some ordinary supernovae Ibc. This scenario is also motivated by the hypothesis that Galactic magnetars largely originate from fast-spinning neutron stars as remnants of stripped-envelope supernovae. By consistently modeling the energy injection from magnetized wind and Ni decay, we show that proto-neutron stars with >~ 10 ms rotation and B_dip >~ 5 x 10^14 G can be harbored in ordinary supernovae Ibc. On the other hand, millisecond proto-neuton stars can solely power broad-line supernovae Ibc if they are born with poloidal magnetic field of B_dip >~ 5 x 10^14 G, and superluminous supernovae Ic with B_dip >~ 10^13 G. Then, we study how multi-messenger emission can be used to discriminate...

  16. Deuteron frozen spin polarized target for nd experiements at the VdG accelerator of Charles University

    E-Print Network [OSTI]

    N. S. Borisov; N. A. Bazhanov; A. A. Belyaev; J. Broz; J. Cerny; Z. Dolezal; A. N. Fedorov; G. M. Gurevich; M. P. Ivanov; P. Kodys; P. Kubik; E. S. Kuzmin; A. B. Lazarev; F. Lehar; O. O. Lukhanin; V. N. Matafonov; A. B. Neganov; I. L. Pisarev; J. Svejda; S. N. Shilov; Yu. A. Usov; I. Wilhelm

    2007-12-09

    A frozen spin polarized deuteron target cooled by the 3He/4He dilution refrigerator is described. Fully deuterated 1,2-propanediol was used as a target material. Deuteron vector polarization about 40% was obtained for the target in the shape of a cylinder of 2 cm diameter and 6 cm length. The target is intended for a study of 3N interactions at the polarized neutron beam generated by the Van de Graaff accelerator at the Charles University in Prague.

  17. Cooling of Neutron Stars with Color Superconducting Quark Cores

    E-Print Network [OSTI]

    David Blaschke; Dmitri N. Voskresensky; Hovik Grigorian

    2005-11-03

    We show that within a recently developed nonlocal chiral quark model the critical density for a phase transition to color superconducting quark matter under neutron star conditions can be low enough for these phases to occur in compact star configurations with masses below 1.3 M_sun. We study the cooling of these objects in isolation for different values of the gravitational mass and argue that, if the quark matter phase would allow unpaired quarks, the corresponding hybrid stars would cool too fast. The comparison with observational data puts tight constraints on possible color superconducting quark matter phases. Possible candidates with diquark gaps of the order of 10 keV - 1 MeV such as the "2SC+X" and the color spin locking (CSL) phase are presented.

  18. Spectroscopy of neutron-rich {sup 37}P

    SciTech Connect (OSTI)

    Hodsdon, A.; Chapman, R.; Liang, X.; Ollier, J.; Burns, M.; Keyes, K. L.; O'Donnell, D.; Papenberg, A.; Smith, J. F.; Spohr, K.-M.; Wang, Z.; Haas, F.; Caurier, E.; Nowacki, F.; Salsac, M.-D.; Curien, D.; Beghini, S.; Farnea, E.

    2007-03-15

    The excited states of the neutron-rich nucleus {sub 15}{sup 37}P{sub 22} have been populated in grazing reactions, using a beam of {sup 36}S ions (at 215 MeV) delivered onto a thin {sup 208}Pb target. Emitted {gamma} rays from excited projectile-like nuclei were detected using the CLARA array of 25 escape-suppressed Ge clover detectors in coincidence with reaction products detected and identified with the PRISMA magnetic spectrometer. A level scheme is presented for {sup 37}P together with proposed spin assignments. The level structure of {sup 37}P is discussed within the context of shell-model calculations by using an improved sdpf effective interaction.

  19. Spin-to-Orbital Angular Momentum Conversion and Spin-Polarization Filtering in Electron Beams

    E-Print Network [OSTI]

    Marrucci, Lorenzo

    Spin-to-Orbital Angular Momentum Conversion and Spin-Polarization Filtering in Electron Beams-variant Wien filter for electron beams that induces a spin half-turn and converts the corresponding spin-polarized electron beam, such a device can generate an electron vortex beam, carrying orbital angular momentum. When

  20. Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe

    E-Print Network [OSTI]

    Scholten, Robert

    Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe Stefan conditions using a single-spin nanodiamond sensor. Changes in the spin relaxation time of the sensor located in a nanodiamond­­which is situated in the target structure itself and acts as a nanoscopic magnetic field detector

  1. Student and Teacher Programs | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Student and Teacher Programs Often Hands-On Attendees of the 2011 National School on Neutron and X-Ray Scattering. Attendees of the 2011 National School on Neutron and X-Ray...

  2. 10th LANSCE School on Neutron Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10th LANSCE School on Neutron Scattering LANSCE 10th LANSCE School on Neutron Scattering Home Abstract Lecturers Hands-On Experiments Free Day About the School Sponsors FAQ's...

  3. Neutron Generators for Spent Fuel Assay

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01

    EUTRON G ENERATOR High-output DD generators developed at theoffers a high-output, pulsable neutron generator, the GENIEneutron generators. High neutron outputs of ~10 8 n/s and 10

  4. Neutron coincidence detectors employing heterogeneous materials

    DOE Patents [OSTI]

    Czirr, J. Bartley (Mapleton, UT); Jensen, Gary L. (Orem, UT)

    1993-07-27

    A neutron detector relies upon optical separation of different scintillators to measure the total energy and/or number of neutrons from a neutron source. In pulse mode embodiments of the invention, neutrons are detected in a first detector which surrounds the neutron source and in a second detector surrounding the first detector. An electronic circuit insures that only events are measured which correspond to neutrons first detected in the first detector followed by subsequent detection in the second detector. In spectrometer embodiments of the invention, neutrons are thermalized in the second detector which is formed by a scintillator-moderator and neutron energy is measured from the summed signals from the first and second detectors.

  5. Neutron Stars : A Comparative Study

    E-Print Network [OSTI]

    Mehedi Kalam; Sk. Monowar Hossein; Sajahan Molla

    2015-10-23

    The inner structure of neutron star is considered from theoretical point of view and is compared with the observed data. We have proposed a form of an equation of state relating pressure with matter density which indicates the stiff equation of state of neutron stars. From our study we have calculated mass(M), compactness(u) and surface red-shift(Zs ) for the neutron stars namely PSR J1614-2230, PSR J1903+327, Cen X-3, SMC X-1, Vela X-1, Her X-1 and compared with the recent observational data. We have also indicated the possible radii of the different stars which needs further study. Finally we have examined the stability for such type of theoretical structure.

  6. Neutron Science Laboratory The Neutron Science Laboratory (NSL) has been playing

    E-Print Network [OSTI]

    Katsumoto, Shingo

    Neutron Science Laboratory The Neutron Science Laboratory (NSL) has been playing a central role in neutron scattering activities in Japan since 1961 by performing its own research programs as well as providing a strong general user program for the university- owned various neutron scattering spectrometers

  7. Importance of nuclear triaxiality for electromagnetic strength, level density and neutron capture cross sections in heavy nuclei

    E-Print Network [OSTI]

    Grosse, Eckart; Massarczyk, Ralph

    2014-01-01

    Cross sections for neutron capture in the range of unresolved resonances are predicted simultaneously to level distances at the neutron threshold for more than 100 spin-0 target nuclei with A >70. Assuming triaxiality in nearly all these nuclei a combined parameterization for both, level density and photon strength is presented. The strength functions used are based on a global fit to IVGDR shapes by the sum of three Lorentzians adding up to the TRK sum rule and theory-based predictions for the A-dependence of pole energies and spreading widths. For the small spins reached by capture level densities are well described by only one free global parameter; a significant collective enhancement due to the deviation from axial symmetry is observed. Reliable predictions for compound nuclear reactions also outside the valley of stability as expected from the derived global parameterization are important for nuclear astrophysics and for the transmutation of nuclear waste.

  8. Inverse spin Hall effect induced by spin pumping into semiconducting ZnO

    SciTech Connect (OSTI)

    Lee, Jung-Chuan [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Huang, Leng-Wei [Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan (China); Hung, Dung-Shing, E-mail: dshung@mail.mcu.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Information and Telecommunications Engineering, Ming Chuan University, Taipei 111, Taiwan (China); Chiang, Tung-Han [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Huang, J. C. A., E-mail: jcahuang@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Liang, Jun-Zhi [Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Physics, Fu Jen Catholic University, Taipei 242, Taiwan (China); Lee, Shang-Fan, E-mail: leesf@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan (China)

    2014-02-03

    The inverse spin Hall effect (ISHE) of n-type semiconductor ZnO thin films with weak spin-orbit coupling has been observed by utilizing the spin pumping method. In the ferromagnetic resonance condition, the spin pumping driven by the dynamical exchange interaction of a permalloy film injects a pure spin current into the adjacent ZnO layer. This spin current gives rise to a DC voltage through the ISHE in the ZnO layer, and the DC voltage is proportional to the microwave excitation power. The effect is sizeable even when the spin backflow is considered.

  9. Quantum Spin Hall Eect May 9, 2011

    E-Print Network [OSTI]

    Hall Eect Quantum Spin Hall Eect in Graphene QSHE in quantum well QSHE in strained semiconductor Tim Quantum Spin Hall Eect in Graphene QSHE in quantum well QSHE in strained semiconductor Tim Hsieh Quantum Hsieh Quantum Spin Hall Eect #12;Integer Quantum Hall Eect (IQHE) 2D electron gas at low temperature

  10. Vivapure Metal Chelate Maxi spin columns

    E-Print Network [OSTI]

    Lebendiker, Mario

    ® Vivapure Metal Chelate Maxi spin columns Hisn Technical data and operating instructions. For in vitro use only. #12;2 Handling overview Vivapure Metal Chelate Maxi spin columns - for the purification of proteins with poly-histidine tags Storage conditions Vivapure Metal Chelate Maxi spin columns can be stored

  11. Vivapure Metal Chelate Mini spin columns

    E-Print Network [OSTI]

    Lebendiker, Mario

    ® Vivapure Metal Chelate Mini spin columns Hisn Technical data and operating instructions. For in vitro use only. #12;2 Handling overview Vivapure Metal Chelate Mini spin columns - for the purification of proteins with poly-histidine tags Storage conditions Vivapure Metal Chelate Mini spin columns can be stored

  12. Vivapure Metal Chelate Mega spin columns

    E-Print Network [OSTI]

    Lebendiker, Mario

    ®® Vivapure Metal Chelate Mega spin columns Hisn Technical data and operating instructions. For in vitro use only. #12;2 Handling overview Vivapure Metal Chelate Mega spin columns - for the purification of proteins with poly-histidine tags Storage conditions Vivapure Metal Chelate Mega spin columns can be stored

  13. Vivapure Metal Chelate Mini spin columns

    E-Print Network [OSTI]

    Lebendiker, Mario

    ® Vivapure Metal Chelate Mini spin columns Hisn #12;E. coli cell lysates containing a recombinant Hisn-tagged protein were purified using Vivapure Metal Chelate Mini spin columns and competitor products. The Vivapure Metal Chelate Mini spin columns were pre- loaded with different metal ions

  14. PRACTICAL NEUTRON DOSIMETRY AT HIGH ENERGIES

    E-Print Network [OSTI]

    McCaslin, J.B.

    2010-01-01

    Neutrons." National Aero­ nautics and Space AdministrationAmes Research Center or the National Aero­ nautics and Space

  15. Compact neutron source development at LBNL

    E-Print Network [OSTI]

    Reijonen, Jani; Lou, Tak Pui; Tolmachoff, Bryan; Leung, K.N.

    2001-01-01

    used for lead and polyethylene shielding for the secondaryinside the lead/polyethylene shielding. The neutron yield

  16. Impact on Spin Tune From Horizontal Orbital Angle Between Snakes and Orbital Angle Between Spin Rotators

    SciTech Connect (OSTI)

    Bai,M.; Ptitsyn, V.; Roser, T.

    2008-10-01

    To keep the spin tune in the spin depolarizing resonance free region is required for accelerating polarized protons to high energy. In RHIC, two snakes are located at the opposite side of each accelerator. They are configured to yield a spin tune of 1/2. Two pairs of spin rotators are located at either side of two detectors in each ring in RHIC to provide longitudinal polarization for the experiments. Since the spin rotation from vertical to longitudinal is localized between the two rotators, the spin rotators do not change the spin tune. However, due to the imperfection of the orbits around the snakes and rotators, the spin tune can be shifted. This note presents the impact of the horizontal orbital angle between the two snakes on the spin tune, as well as the effect of the vertical orbital angle between two rotators at either side of the collision point on the spin tune.

  17. Conducting Polymers for Neutron Detection

    SciTech Connect (OSTI)

    Kimblin, Clare; Miller, Kirk; Vogel, Bob; Quam, Bill; McHugh, Harry; Anthony, Glen; Mike, Grover

    2007-12-01

    Conjugated polymers have emerged as an attractive technology for large-area electronic applications. As organic semiconductors, they can be used to make large-area arrays of diodes or transistors using fabrication techniques developed for polymer coatings, such as spraying and screen-printing. We have demonstrated both neutron and alpha detection using diodes made from conjugated polymers and have done preliminary work to integrate a boron carbide layer into the conventional polymer device structure to capture thermal neutrons. The polymer devices appear to be insensitive to gamma rays, due to their small physical thickness and low atomic number.

  18. Nuclear Physics of Neutron Stars

    E-Print Network [OSTI]

    J. Piekarewicz

    2009-01-28

    Understanding the equation of state (EOS) of cold nuclear matter, namely, the relation between the pressure and energy density, is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova, all depend critically on the equation of state of hadronic matter. In this contribution I will concentrate on the special role that nuclear physics plays in constraining the EOS of cold baryonic matter and its impact on the properties of neutron stars.

  19. Plastic neutron detectors.

    SciTech Connect (OSTI)

    Wilson, Tiffany M.S; King, Michael J.; Doty, F. Patrick

    2008-12-01

    This work demonstrated the feasibility and limitations of semiconducting {pi}-conjugated organic polymers for fast neutron detection via n-p elastic scattering. Charge collection in conjugated polymers in the family of substituted poly(p-phenylene vinylene)s (PPV) was evaluated using band-edge laser and proton beam ionization. These semiconducting materials can have high H/C ratio, wide bandgap, high resistivity and high dielectric strength, allowing high field operation with low leakage current and capacitance noise. The materials can also be solution cast, allowing possible low-cost radiation detector fabrication and scale-up. However, improvements in charge collection efficiency are necessary in order to achieve single particle detection with a reasonable sensitivity. The work examined processing variables, additives and environmental effects. Proton beam exposure was used to verify particle sensitivity and radiation hardness to a total exposure of approximately 1 MRAD. Conductivity exhibited sensitivity to temperature and humidity. The effects of molecular ordering were investigated in stretched films, and FTIR was used to quantify the order in films using the Hermans orientation function. The photoconductive response approximately doubled for stretch-aligned films with the stretch direction parallel to the electric field direction, when compared to as-cast films. The response was decreased when the stretch direction was orthogonal to the electric field. Stretch-aligned films also exhibited a significant sensitivity to the polarization of the laser excitation, whereas drop-cast films showed none, indicating improved mobility along the backbone, but poor {pi}-overlap in the orthogonal direction. Drop-cast composites of PPV with substituted fullerenes showed approximately a two order of magnitude increase in photoresponse, nearly independent of nanoparticle concentration. Interestingly, stretch-aligned composite films showed a substantial decrease in photoresponse with increasing stretch ratio. Other additives examined, including small molecules and cosolvents, did not cause any significant increase in photoresponse. Finally, we discovered an inverse-geometric particle track effect wherein increased track lengths created by tilting the detector off normal incidence resulted in decreased signal collection. This is interpreted as a trap-filling effect, leading to increased carrier mobility along the particle track direction. Estimated collection efficiency along the track direction was near 20 electrons/micron of track length, sufficient for particle counting in 50 micron thick films.

  20. High-spin nuclear spectroscopy

    SciTech Connect (OSTI)

    Diamond, R.M.

    1986-07-01

    High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given. (DWL)